Prastyo, Ficki Tri Cahyo (2012) Invers tergeneralisasi dan invers matriks pada aljabar max-plus. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
|
Text (Fulltext)
08610023.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (21MB) | Preview |
Abstract
INDONESIA :
Dalam aljabar max-plus ((R_maks)^n × n,⊕,⊗) merupakan salah satu struktur aljabar yang semiring. Notasi (R_maks)^n × n menyatakan himpunan semua matriks berukuran n × n dengan entri-entrinya elemen R_maks, dimana R merupakan himpunan bilangan real. Operasi ⊕ menyatakan maksimal dan operasi ⊗ menyatakan penjumlahan. Mengingat aljabar max-plus memiliki peranan yang sangat banyak dalam menyelesaikan beberapa bidang seperti teori graf, fuzzi, kombinatorik, teori sistem, dan proses stokastik, maka karakteristik solusi persamaan A ⊗ X ⊗ A = A sangat penting untuk dibahas.
Berdasarkan teorema-teorema yang mendukung kajian ini, didapatkan invers tergeneralisasi matriks A ∈ (R_maks)^n × n dengan menentukan matriks X^# yang entri ke-k l-nya adalah
X_(k 1)^# (n@min@i=1){(n@〖min〗_(a_(i j) )-(a_(i k)+a_(1 j) )@j=1)}
Selain itu, jika ada matriks X^# yang memenuhi A ⊗ X^# = X^# ⊗ A, maka matriks X^# dapat dikatakan sebagai invers matriks. Dengan diberikan matriks [(a&b@c&d)] maka didapatkan
X^#=[(min{(-a);(d-c-b)}&min{(-c);(b-a-d)}@min{(-b);(c-d-a)}&min{(-d);(a-b-c)} )]
Dalam aljabar max-plus, tidak ada jaminan bahwa matriks A memiliki invers tergeneralisasi tunggal.
ENGLISH :
Max-plus algebra ((R_maks)^n × n,⊕,⊗) is one of the algebraic structure of a semi-ring. Notation (R_maks)^n × n states the set of all matrices of size n × n with entries element of R_maks, where R is the set of real numbers. Operation ⊕ states maximum and operation ⊗ states addition. Seeing that max-plus algebra had major effect in completing are some common as already graph theory, fuzzy, combinatorics, sistems theory, and stochastic processes. So the characteristic solution of equation A ⊗ X ⊗ A = A very important is to discuss.
Base on contributing theorems in this study, we had following the generalized inverse regular matrix A ∈ (R_maks)^n × n performed by determining the matrix X^# with its entry (kl)^th is:
X_(k 1)^# (n@min@i=1){(n@〖min〗_(a_(i j) )-(a_(i k)+a_(1 j) )@j=1)}
And what is more, if there are matrix X^# met the criteria of A ⊗ X^# = X^# ⊗ A, the matrix X^# can be said us matrix inverse. Given a matrix [(a&b@c&d)], so obtain
X^#=[(min{(-a);(d-c-b)}&min{(-c);(b-a-d)}@min{(-b);(c-d-a)}&min{(-d);(a-b-c)} )]
In there algebra max-plus hasn’t collateral that matrix A have just one generalized inverse matrix.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Turmudi, Turmudi and Barizi, Ahmad | |||||||||
Contributors: |
|
|||||||||
Keywords: | Aljabar Max-plus; Pemetaan Residuated; Matriks pada Aljabar Maxplus; Invers Matriks pada Aljabar Max-plus; Max-plus Algebra; Mapping Residuated; Matrix on Max-plus Algebra; Inverse of Matrix on Max-plus Algebra | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
Depositing User: | Nisfu Lailatul Maghfiroh | |||||||||
Date Deposited: | 26 May 2017 09:46 | |||||||||
Last Modified: | 26 May 2017 09:46 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/6839 |
Downloads
Downloads per month over past year

Actions (login required)
![]() |
View Item |