Dewi, Nurmala Rosmitha (2013) Polinomial atas ring. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
Text (Fulltext)
08610079.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (3MB) |
Abstract
INDONESIA :
Struktur aljabar yang terdiri dari himpunan tak kosong dengan satu operasi biner yang memenuhi beberapa aksioma, diantaranya tertutup, assosiatif, memiliki elemen identitas, memiliki elemen invers dan komutatif dinamakan grup abelian. Sedangkan suatu himpunan tak kosong R dengan dua operasi biner yaitu operasi penjumlahan (+) dan perkalian (×) dinotasikan dengan (R,+,×) yang memenuhi tiga aksioma diantaranya yaitu (R,+) berupa grup abelian, operasi kedua bersifat assosiatif dan operasi pertama bersifat distributif terhadap operasi kedua disebut ring.
Polinomial f(x) berderajat n, didefinisikan sebagai suatu fungsi berbentuk f(x)=a_0+a_1 x+a_2 x^2+⋯+a_n x^n,a_1 dengan adalah konstanta riil,i = 0,1,2,...,n dan a_n≠0, dimana x merupakan peubah, a_0, a_1, a_2,..., a_n nilai koefisien persamaan x, dan n adalah orde atau derajat persamaan. Metode yang digunakan dalam penelitian ini adalah menentukan polinomial-polinomial di R[x] pada suatu peubah x dengan derajat n, sehingga dapat didefinisikan penjumlahan, pengurangan, perkalian dan pembagian pada polinomial-polinomial di R[x], dengan demikian dapat ditentukan pola penjumlahan, pola pengurangan, pola perkalian dan pola pembagian pada derajat polinomial-polinomial di R[x]. Maka himpunan polinomial R[x] yang telah didefinisikan kemudian dikenakan operasi penjumlahan dan perkalian yang dinotasikan dengan (R[x],+,×) akan dibuktikan ring untuk derajat polinomial m=n dan m≠n.
.
Dari hasil penelitian yang didapat adalah semua polinomial-polinomial di R[x] dapat didefinisikan dan ditentukan pola derajatnya dengan operasi perjumlahan, pengurangan, perkalian dan pembagian. Dengan demikian, himpunan semua polinomial R[x] jika diberikan dua operasi biner berupa operasi penjumlahan (+) dan operasi perkalian (×) atau dapat dinotasikan dengan (R[x],+,×) memenuhi tiga aksioma yaitu (R[x],+) berupa grup abelian, operasi kedua bersifat assosiatif dan operasi pertama bersifat distributif terhadap operasi kedua untuk derajat polinomial m=n dan m≠n terbukti ring akan tetapi bukan field.
ENGLISH :
Algebraic structure consisting of a nonempty set with a binary operation that satisfies several axioms, including closed, associative, has identity element, inverse element and has called commutative abelian group. While not an empty set R with two binary operations are operations of addition (+) and multiplication (×) is denoted by (R,+,×) that satisfies the three axioms among which (R,+) of abelian groups, both operations are associative and first operation distributive nature of the second operation called a ring.
Polynomial f(x) of degree n, is defined as a function of the form f(x)=a_0+a_1 x+a_2 x^2+⋯+a_n x^n,a_1, with are real constants, i = 0,1,2,...,n dan a_n≠0, where is a x variable,a_0, a_1, a_2, ..., a_n coefficient x equations, and n is the order or degree equation. The method used in this research were determining polynomials in R[x] on variable n with degree, can be defined so that addition, subtraction, multiplication and division on polynomials in R[x], and is therefore determined the pattern of summation, pattern subtraction, multiplication pattern and the pattern of distribution on the degree of polynomials in R[x]. Then the set of polynomials R[x] which has been defined then subjected to operations of addition and multiplication are denoted by (R[x],+,×) be evidenced ring to polynomial degree m=n dan m≠n.
From the research results obtained are all polynomials in R[x] can be defined and determined by the pattern of operations rank sum, subtraction, multiplication and division. Thus, the set of all polynomials R[x] if given two binary operations such as addition operation (+) and multiplication (×) or can be denoted by (R[x],+,×) satisfy the three axioms, namely (R[x],+) form abelian group, a second operation is associative and distributive nature of the first operation second operation to polynomial degree m=n dan m≠n it proved to ring but not field.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Kusumastuti, Ari and Irawan, Wahyu Henky | |||||||||
Contributors: |
|
|||||||||
Keywords: | Polynomials; ring; polinomial | |||||||||
Subjects: | 01 MATHEMATICAL SCIENCES > 0101 Pure Mathematics > 010101 Algebra and Number Theory 01 MATHEMATICAL SCIENCES > 0101 Pure Mathematics > 010105 Group Theory and Generalisations 01 MATHEMATICAL SCIENCES > 0101 Pure Mathematics > 010107 Mathematical Logic, Set Theory, Lattices and Universal Algebra |
|||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
Depositing User: | M. Muzakir | |||||||||
Date Deposited: | 23 May 2017 09:49 | |||||||||
Last Modified: | 16 Jun 2023 10:26 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/6815 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |