Responsive Banner

Ukuran Fuzzy pada interval [0,1] dan sifat – sifatnya

Rohmah, Syifa'ur (2015) Ukuran Fuzzy pada interval [0,1] dan sifat – sifatnya. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.

[img]
Preview
Text (Fulltext)
08610037.pdf - Updated Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (8MB) | Preview

Abstract

INDONESIA:

Matematika mempelajari tentang teori ukuran yang mengkonstruksikan ukuran umum dan integral terhadap ukuran umun pada himpunan. Hingga akhirnya seorang matemaikawan dari Universitas California, Lotfi Asker Zadeh, pada tahun 1960 mempelajari tentang ukuran fuzzy. Sebelum dibicarakan pengertian ukuran umum, lebih dahulu didefinisikan pengertian-pengertian fungsi himpunan dan himpunan terukur.

Berdasarkan latar belakang tersebut, penelitian ini dilakukan dengan tujuan untuk: menyebutkan, mendiskripsikan, menganalisis, dan membuktikan teorema-teorema yang pada Ukuran Fuzzy pada interval [0,1] dan sifat-sifatnya.Dalam hal ini peneliti akan memaparkan tentang ukuran fuzzy bersifat monoton, sifat-sifat ukuran fuzzy meliputisifat additive, super additive, sub additive dan membuktikan teorema-teorema beserta mendiskripsikan contoh-contohnya. Ukuran fuzzy pada A dalam X adalah fungsi g:A→[0.1] yang memberikan nilai dalam interval [0.1] untuk setiap himpunan A, yang harus memenuhi aksioma
(i) X∈A,g(∅)=0 dang(X)=1
(ii) g(A)≤g(B)
(iii) g(⋃_(n=1)^∞▒A_n )=lim┬(n→∞)⁡〖g(A_n)〗
(iv) g(⋂_(n=1)^∞▒A_n )=lim┬(n→∞)⁡〖g(A_n)〗
Penelitian ini menganalisis beberapa teorema yang merupakan sifat-sifat dari ukuran fuzzy, yaitu:
(1) Additive jika: ∀A,B∈P(X) maka g(A∪B)=g(A)+g(B)
(2) super- additive jika∀A,B∈P(X) maka g(A∪B)≥g(A)+g(B)
(3) sub-additive jika∀A,B∈P(X), maka g(A∪B)≤g(A)+g(B).

ENGLISH:

Mathematics talk about theory of measure that construct a general measure and integral of genral measure of a set. On 1960 a mathematician of California university, lotfi Asker zaedah, did a rescarch about fuzzy measure. Before going for then to the general measure, first we define a function set and measure set.

Based on this background, this study was conducted to: mention, describe, analyze, and prove theorems on fuzzy measure on the interval [0,1] and its properties. In This thesis, the author will explain about the measure fuzzy monotonous, its properties including the additive, super additive, sub-additive property and prove theorem salong with describing examples. fuzzy measure of A in X is a function g: A→[0,1] that givethe valves in the interval [0,1] for any set A, which should satisfy the axioms
(i) X∈A,g(∅)=0 dang(X)=1
(ii) g(A)≤g(B)
(iii)g(⋃_(n=1)^∞▒A_n )=lim┬(n→∞)⁡〖g(A_n)〗
(iv)g(⋂_(n=1)^∞▒A_n )=lim┬(n→∞)⁡〖g(A_n)〗
In this study the outhor analyzed several theorems which are the properties of the Fuzzy Measure, namely :
(1) Additiveif: ∀A,B∈P(X) then g(A∪B)=g(A)+g(B)
(2) super- additive if ∀A,B∈P(X) then g(A∪B)≥g(A)+g(B)
(3) sub-additive if ∀A,B∈P(X),then g(A∪B)≤g(A)+g(B)

Item Type: Thesis (Undergraduate)
Supervisor: Rahman, Hairur and Barizi, Ahmad
Contributors:
ContributionNameEmail
UNSPECIFIEDRahman, HairurUNSPECIFIED
UNSPECIFIEDBarizi, AhmadUNSPECIFIED
Keywords: Ukuran; Fuzzy; Ukuran Fuzzy; Measure; Fuzy; Fuzzy Measure
Departement: Fakultas Sains dan Teknologi > Jurusan Matematika
Depositing User: Mahdiatul Maknun
Date Deposited: 12 Jun 2017 11:17
Last Modified: 12 Jun 2017 11:17
URI: http://etheses.uin-malang.ac.id/id/eprint/6498

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item