Zaenab, Siti (2011) Model regresi spasial pada sub DAS Grindulu. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
|
Text (Fulltext)
06510070.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Preview |
Abstract
INDONESIA:
Penelitian ini bertujuan untuk mencari estimasi parameter dan model regresi spasial dalam merepresentasikan hubungan karakteristik jaringan sungai utama dengan debit puncak pada sub DAS Grindulu. Dari metode regresi klasik Ordinary Least Square (OLS), kemudian dilanjutkan diagnosis keberadaan efek spasial dengan menggunakan Lagrange Multiplier (LM) test. Model spasial yang dibuat adalah Model Spasial Error (MSE). Matriks penimbang spasial yang digunakan yaitu Rook Contiguity. Pemilihan model menggunakan kriteria nilai AIC (Akaike Information Criterion). Model debit puncak terbaik adalah metode Model Spasial Error (MSE) dengan penimbang Rook Contiguity. Faktor faktor yang mempengaruhi debit puncak adalah luas sub DAS ( ), panjang sungai( ) dan slope sungai ( ). Estimasi parameter yang didapatkan adalah sebagai berikut:
. . .
Sedangkan model regresi spasial error yang diperoleh dari penelitian ini
adalah:
4.7091 0.3758 4.7677 0.0588 0.0003
Aplikasi model regresi spasial error dapat menunjukkan bahwa terdapat pengaruh faktor geografis pada data luas sub das, panjang sungai, kemiringan sungai berdasarakan P-Value dari uji signifikansi parameter. Artinya lokasi pengamatan yang berdekatan akan saling mempengaruhi.
ENGLISH:
This study aimed to explore the parameter estimation and spatial regression models in representing the relationship characteristic of major river networks with peak discharge at the sub-watershed Grindulu. From the classical method of Ordinary Least Square Regression (OLS), then continued diagnosis of the presence of spatial effects by using the Lagrange Multiplier (LM) test. Spatial model that was made was the Model of Spatial Error (MSE). The matrix of spatial weights are used, namely Rook Contiguity. Selection criteria value model using AIC (Akaike Information Criterion). Peak discharge model is the best method of Spatial Error Model (MSE) with weighing Rook Contiguity. Factors that influence peak discharge is the area of sub-catchments ( ), the length of the river ( ) and the slope of the river ( ). Estimated parameters derived are as follows:
. . .
While the spatial error regression model derived from this research are:
4.7091 0.3758 4.7677 0.0588 0.0003
Application error spatial regression model to show that there are significant geographic factor on extensive data sub das, river length, river slope on the terms P-Value of significance test parameters. This means that the location of the adjacent observation will affect each other.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Harini, Sri and Nashichuddin, Achmad | |||||||||
Contributors: |
|
|||||||||
Keywords: | Sub Das; Contiguity; Model Regresi Spasial; Contiguity; Spatial Regression Models | |||||||||
Subjects: | 01 MATHEMATICAL SCIENCES > 0104 Statistics > 010401 Applied Statistics | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
Depositing User: | Cici Erisa Maulidah | |||||||||
Date Deposited: | 16 May 2017 11:34 | |||||||||
Last Modified: | 16 May 2017 11:34 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/6483 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |