Responsive Banner

Spektrum matriks antiadjacency dan matriks Laplace graf invers dari grup modulo

Febry, Ifkra (2019) Spektrum matriks antiadjacency dan matriks Laplace graf invers dari grup modulo. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.

[img] Text (Fulltext)
12610069.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (3MB)

Abstract

INDONESIA:

Graf dapat dinyatakan dalam bentuk matriks, seperti matriks antiadjacency yang dinotasikan A^+ (G) yang diperoleh dari matriks adjacency dinotasikan A(G), matriks Laplace yang dinotasikan L(G) diperoleh dari operasi pengurangan matriks derajat titik dinotasikan D(G) dan matriks A(G) yang ditunjukan oleh L(G) = D(G)-A(G). Ketika graf telah dalam bentuk matriks, maka dapat ditentukan nilai eigen pada baris pertama dan algebraic multiplicity pada baris kedua disebut spektrum. Spektrum yang diperoleh dari matriks A^+ (G) disebut spektrum matriks antiadjacency dinotasikan sebagai Spec (A^+ (G)) dan yang diperoleh dari matriks L(G) disebut spektrum Laplace dinotasikan sebagai Spec (L(G)). Tujuan dari penelitian ini adalah mencari pola dari Spec (A^+ (G)) dan Spec (L(G)). Hasil dari penelitian ini diperoleh:
a. Spektrum matriks antiadjacency dan matriks Laplace graf invers dari grup modulo untuk n ganjil adalah:

b. Spektrum matriks antiadjacency dan matriks Laplace graf invers dari grup modulo untuk n genap dan n=4k+2,k∈N adalah:

c. Spektrum matriks antiadjacency dan matriks Laplace graf invers dari grup modulo untuk n genap dan n=4k+4,k∈N adalah:

Bagi penelitian selanjutnya, diharapkan dapat menemukan bermacam-macam teorema tentang spektrum selain antiadjacency dan Laplace dari graf lainnya.

ENGLISH:

Graph can be shown in the from of matrix, like antiadjacency matrix is denoted by A^+ (G) obtained from adjacency matrix denoted A(G), Laplacian matrix is denoted by L(G) obtained from the reduction operation of degree matrix denoted D(G) and matrix A(G) indicated by L(G) = D(G) – A(G). When the graph is in the form of a matrix, then it can be determined the eigenvalue in the first row and algebraic multiplicity in the second row is called the spectrum. The spectrum obtained from the matrix A^+ (G) is called the antiadjacency matrix spectrum denoted as Spec (A^+ (G)) and what is obtained from the matrix L(G) is called the Laplacian spectrum denoted as Spec (L(G)). The purpose of this study is to look for patterns from Spec (A^+ (G)) and Spec (L(G)). The results of this study were obtained:
a. Spectrum antiadjacency matrix and Laplacian matrix of the inverse graph of the modulo group for odd n is:

b. Spectrum antiadjacency matrix and Laplacian matrix is the inverse graph of the modulo group for n even and n=4k+2,k∈N is:

c. Spectrum antiadjacency matrix and Laplacian matrix is the inverse graph of the modulo group for n even and n=4k+4,k∈N is:

For further research, it is expected to find various kinds of theorems about spectrum other than antiadjacency and Laplacian from other graphs.

Item Type: Thesis (Undergraduate)
Supervisor: Abdussakir, Abdussakir and Pagalay, Usman
Contributors:
ContributionNameEmail
UNSPECIFIEDAbdussakir, AbdussakirUNSPECIFIED
UNSPECIFIEDPagalay, UsmanUNSPECIFIED
Keywords: matriks antiadjacency; matriks Laplace; spektrum antiadjacency; spektrum Laplace; graf invers; grup modulo; antiadjacency matrix; laplacian matrix; antiadjacency spectrum; laplacian spectrum; inverse graph; modulo group
Departement: Fakultas Sains dan Teknologi > Jurusan Matematika
Depositing User: Heni Kurnia Ningsih
Date Deposited: 24 Apr 2020 15:28
Last Modified: 24 Apr 2020 15:28
URI: http://etheses.uin-malang.ac.id/id/eprint/15183

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item