Responsive Banner

Invers tergeneralisasi dan invers matriks pada aljabar max-plus

Prastyo, Ficki Tri Cahyo (2012) Invers tergeneralisasi dan invers matriks pada aljabar max-plus. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.

[img]
Preview
Text (Fulltext)
08610023.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (21MB) | Preview

Abstract

INDONESIA :

Dalam aljabar max-plus ((R_maks)^n × n,⊕,⊗) merupakan salah satu struktur aljabar yang semiring. Notasi (R_maks)^n × n menyatakan himpunan semua matriks berukuran n × n dengan entri-entrinya elemen R_maks, dimana R merupakan himpunan bilangan real. Operasi ⊕ menyatakan maksimal dan operasi ⊗ menyatakan penjumlahan. Mengingat aljabar max-plus memiliki peranan yang sangat banyak dalam menyelesaikan beberapa bidang seperti teori graf, fuzzi, kombinatorik, teori sistem, dan proses stokastik, maka karakteristik solusi persamaan A ⊗ X ⊗ A = A sangat penting untuk dibahas.

Berdasarkan teorema-teorema yang mendukung kajian ini, didapatkan invers tergeneralisasi matriks A ∈ (R_maks)^n × n dengan menentukan matriks X^# yang entri ke-k l-nya adalah
X_(k 1)^# (n@min@i=1){(n@〖min〗_(a_(i j) )-(a_(i k)+a_(1 j) )@j=1)}

Selain itu, jika ada matriks X^# yang memenuhi A ⊗ X^# = X^# ⊗ A, maka matriks X^# dapat dikatakan sebagai invers matriks. Dengan diberikan matriks [(a&b@c&d)] maka didapatkan
X^#=[(min{(-a);(d-c-b)}&min{(-c);(b-a-d)}@min{(-b);(c-d-a)}&min{(-d);(a-b-c)} )]
Dalam aljabar max-plus, tidak ada jaminan bahwa matriks A memiliki invers tergeneralisasi tunggal.

ENGLISH :

Max-plus algebra ((R_maks)^n × n,⊕,⊗) is one of the algebraic structure of a semi-ring. Notation (R_maks)^n × n states the set of all matrices of size n × n with entries element of R_maks, where R is the set of real numbers. Operation ⊕ states maximum and operation ⊗ states addition. Seeing that max-plus algebra had major effect in completing are some common as already graph theory, fuzzy, combinatorics, sistems theory, and stochastic processes. So the characteristic solution of equation A ⊗ X ⊗ A = A very important is to discuss.

Base on contributing theorems in this study, we had following the generalized inverse regular matrix A ∈ (R_maks)^n × n performed by determining the matrix X^# with its entry (kl)^th is:
X_(k 1)^# (n@min@i=1){(n@〖min〗_(a_(i j) )-(a_(i k)+a_(1 j) )@j=1)}

And what is more, if there are matrix X^# met the criteria of A ⊗ X^# = X^# ⊗ A, the matrix X^# can be said us matrix inverse. Given a matrix [(a&b@c&d)], so obtain
X^#=[(min{(-a);(d-c-b)}&min{(-c);(b-a-d)}@min{(-b);(c-d-a)}&min{(-d);(a-b-c)} )]
In there algebra max-plus hasn’t collateral that matrix A have just one generalized inverse matrix.

Item Type: Thesis (Undergraduate)
Supervisor: Turmudi, Turmudi and Barizi, Ahmad
Contributors:
ContributionNameEmail
UNSPECIFIEDTurmudi, TurmudiUNSPECIFIED
UNSPECIFIEDBarizi, AhmadUNSPECIFIED
Keywords: Aljabar Max-plus; Pemetaan Residuated; Matriks pada Aljabar Maxplus; Invers Matriks pada Aljabar Max-plus; Max-plus Algebra; Mapping Residuated; Matrix on Max-plus Algebra; Inverse of Matrix on Max-plus Algebra
Departement: Fakultas Sains dan Teknologi > Jurusan Matematika
Depositing User: Nisfu Lailatul Maghfiroh
Date Deposited: 26 May 2017 09:46
Last Modified: 26 May 2017 09:46
URI: http://etheses.uin-malang.ac.id/id/eprint/6839

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item