Febry, Ifkra (2019) Spektrum matriks antiadjacency dan matriks Laplace graf invers dari grup modulo. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
| 
              
Text (Fulltext)
 12610069.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. (3MB)  | 
          
Abstract
INDONESIA:
Graf dapat dinyatakan dalam bentuk matriks, seperti matriks antiadjacency yang dinotasikan A^+ (G) yang diperoleh dari matriks adjacency dinotasikan A(G), matriks Laplace yang dinotasikan L(G) diperoleh dari operasi pengurangan matriks derajat titik dinotasikan D(G) dan matriks A(G) yang ditunjukan oleh L(G) = D(G)-A(G). Ketika graf telah dalam bentuk matriks, maka dapat ditentukan nilai eigen pada baris pertama dan algebraic multiplicity pada baris kedua disebut spektrum. Spektrum yang diperoleh dari matriks A^+ (G) disebut spektrum matriks antiadjacency dinotasikan sebagai Spec (A^+ (G)) dan yang diperoleh dari matriks L(G) disebut spektrum Laplace dinotasikan sebagai Spec (L(G)). Tujuan dari penelitian ini adalah mencari pola dari  Spec (A^+ (G)) dan Spec (L(G)). Hasil dari penelitian ini diperoleh:
a. Spektrum matriks antiadjacency dan matriks Laplace graf invers dari grup modulo untuk n ganjil adalah:
b. Spektrum matriks antiadjacency dan matriks Laplace graf invers dari grup modulo untuk n genap dan n=4k+2,k∈N adalah:
c. Spektrum matriks antiadjacency dan matriks Laplace graf invers dari grup modulo untuk n genap dan n=4k+4,k∈N adalah:
Bagi penelitian selanjutnya, diharapkan dapat menemukan bermacam-macam teorema tentang spektrum selain antiadjacency dan Laplace dari graf lainnya.
ENGLISH:
Graph can be shown in the from of matrix, like antiadjacency matrix is denoted by A^+ (G) obtained from adjacency matrix  denoted A(G), Laplacian matrix is denoted by L(G) obtained from the reduction operation of degree matrix denoted D(G) and matrix A(G)  indicated by L(G) = D(G) – A(G). When the graph is in the form of a matrix, then it can be determined the eigenvalue in the first row and algebraic multiplicity in the second row is called the spectrum. The spectrum obtained from the matrix  A^+ (G) is called the antiadjacency matrix spectrum denoted as Spec (A^+ (G)) and what is obtained from the matrix L(G) is called the Laplacian spectrum denoted as Spec (L(G)). The purpose of this study is to look for patterns from Spec (A^+ (G)) and Spec (L(G)). The results of this study were obtained:
a. Spectrum antiadjacency matrix and Laplacian matrix of the inverse graph of the modulo group for odd n is:
b. Spectrum antiadjacency matrix and Laplacian matrix is the inverse graph of the modulo group for n even and n=4k+2,k∈N is:
c. Spectrum antiadjacency matrix and Laplacian matrix is the inverse graph of the modulo group for n even and n=4k+4,k∈N is:
For further research, it is expected to find various kinds of theorems about spectrum other than antiadjacency and Laplacian from other graphs.
| Item Type: | Thesis (Undergraduate) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Supervisor: | Abdussakir, Abdussakir and Pagalay, Usman | |||||||||
| Contributors: | 
  | 
          |||||||||
| Keywords: | matriks antiadjacency; matriks Laplace; spektrum antiadjacency; spektrum Laplace; graf invers; grup modulo; antiadjacency matrix; laplacian matrix; antiadjacency spectrum; laplacian spectrum; inverse graph; modulo group | |||||||||
| Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
| Depositing User: | Heni Kurnia Ningsih | |||||||||
| Date Deposited: | 24 Apr 2020 15:28 | |||||||||
| Last Modified: | 24 Apr 2020 15:28 | |||||||||
| URI: | http://etheses.uin-malang.ac.id/id/eprint/15183 | 
Downloads
Downloads per month over past year
Actions (login required)
![]()  | 
        View Item | 
        