Responsive Banner

Deteksi bola pada robot soccer beroda menggunakan Model Yolov8

HAT, Aqza Tri Ananda (2025) Deteksi bola pada robot soccer beroda menggunakan Model Yolov8. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.

[img] Text (Fulltext)
200605110058.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

(3MB)

Abstract

ABSTRAK:

Dalam perkembangan teknologi zaman ini, robotika mendapatkan banyak peran penting dalam meningkatkan efisiensi dan akurasi di berbagai sektor. Khususnya dalam bidang kompetisi teknologi dan inovasi. Tujuan dari penelitian ini adalah untuk merancang dan membangun sebuah robot soccer yang mampu melakukan deteksi objek bola beserta jaraknya menggunakan model YOLOv8. Model YOLOv8 dipilih karena kemampuannya melakukan deteksi objek dengan waktu yang cepat dan akurat secara real-time. Penelitian ini melibatkan perancangan perangkat keras dan sistem deteksi, serta pembuatan sistem navigasi robot untuk mengontrol gerakan robot menuju objek yang telah terdeteksi. Hasil pengujian menunjukkan bahwa YOLOv8 dengan rata-rata accuracy 100%, precision 100%, dan recall 94%. Dengan hasil tersebut sistem deteksi berhasil dalam mendeteksi objek bola dengan baik dan akurat. Selain itu, pengujian terhadap navigasi robot menuju objek terdeteksi menunjukkan rata-rata error 8,0466% yang masih dalam batas wajar untuk digunakan dalam sistem navigasi robot soccer beroda. Berdasarkan hasil ini, dapat disimpulkan bahwa model YOLOv8 bisa menjadi pilihan dalam mempermudah pendeteksian objek bola dan jarak bola pada robot soccer beroda dengan akurasi yang tinggi. Penelitian ini diharapkan dapat menjadi dasar bagi para peneliti lain yang ingin melanjutkan penelitian ini dengan rekomendasi penggunaan hardware Raspberry Pi dengan spek yang lebih baik, kamera dengan resolusi tinggi, dan penambahan sensor untuk meningkatkan kemampuan deteksi, serta integrasi sistem deteksi dan navigasi yang lebih advance sehingga robot soccer dapat dengan mudah melewati rintangan seperti robot lawan dan gawang.

ABSTRACT:

In the development of modern technology, robotics plays a significant role in improving efficiency and accuracy across various sectors, particularly in the field of technology competitions and innovation. The objective of this research is to design and build a wheeled soccer robot capable of detecting the ball object along with its distance using the YOLOv8 model. The YOLOv8 model was chosen due to its ability to perform real-time object detection quickly and accurately. This research involves the design of hardware and detection systems, as well as the development of a robot navigation system to control the robot’s movement toward the detected object. Testing results show that YOLOv8 achieved an average accuracy of 100%, precision of 100%, and recall of 94%. With these results, the detection system successfully detected the ball object accurately and reliably. Additionally, navigation testing toward the detected object showed an average error of 8.0466%, which is still within an acceptable range for use in wheeled soccer robot navigation systems. Based on these results, it can be concluded that the YOLOv8 model is an excellent choice for simplifying ball detection and distance estimation in wheeled soccer robots with high accuracy. This research is expected to serve as a foundation for other researchers who wish to continue this work, with recommendations including the use of a higher-spec Raspberry Pi, a high-resolution camera, the addition of sensors to enhance detection capabilities, and the integration of more advanced detection and navigation systems so that the soccer robot can more easily avoid obstacles such as opponent robots and the goal

مستخلص البحث:

Item Type: Thesis (Undergraduate)
Supervisor: Utama, Shoffin Nahwa and Imamudin, Muhammad and Arif, Yunifa Miftachul and Hanani, Ajib
Keywords: Deteksi Objek; Navigasi Robot; Robot Soccer Beroda; YOLOv8. Object Detection; Robot Navigation; Wheeled Soccer Robot; YOLOv8.
Subjects: 08 INFORMATION AND COMPUTING SCIENCES > 0801 Artificial Intelligence and Image Processing > 080101 Adaptive Agents and Intelligent Robotics
08 INFORMATION AND COMPUTING SCIENCES > 0801 Artificial Intelligence and Image Processing > 080104 Computer Vision
08 INFORMATION AND COMPUTING SCIENCES > 0801 Artificial Intelligence and Image Processing > 080106 Image Processing
09 ENGINEERING > 0913 Mechanical Engineering > 091303 Autonomous Vehicles
Departement: Fakultas Sains dan Teknologi > Jurusan Teknik Informatika
Depositing User: Aqza Tri Ananda HAT
Date Deposited: 12 Feb 2026 13:37
Last Modified: 12 Feb 2026 13:37
URI: http://etheses.uin-malang.ac.id/id/eprint/82689

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item