Kurniasari, Harum (2015) Analisis dinamik pada model intra-host malaria dengan respon sel imun. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
|
Text (Fulltext)
10610054.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (5MB) | Preview |
Abstract
INDONESIA:
Model matematika pada intra-host malaria dengan respon sel imun yang terbentuk merupakan sistem persamaan diferensial biasa nonlinear yang terdiri dari lima persamaan dengan masing-masing variabel terikatnya yaitu sel darah merah normal, sel darah merah yang terinfeksi, merozoit, sel imun, dan antibodi. Sistem imun pada model ini merupakan gabungan sel, molekul dan jaringan yang berperan dalam resistensi terhadap intra-host malaria oleh nyamuk Anopheles. Analisis kestabilan diamati melalui titik tetap dengan mencari matriks Jacobian, nilai eigen, dan solusi umum dari model yang dilinierkan disekitar titik tetapnya, maka dapat diperoleh bahwa semua titik tetap tersebut bersifat stabil. Pada titik tetap tersebut, nilai eigen yang dihasilkan semuanya bernilai negatif dan solusi umumnya mendekati nilai titik tetap dari persamaan, sehingga persamaan tersebut bersifat stabil pada titik tetapnya. Solusi numerik pada model matematika beserta grafik yang dihasilkan ini menggunakan ODE-45. Berdasarkan simulasi numerik yang dihasilkan, dinamika pada model intra-host malaria dengan respon sel imun menunjukkan adanya pengaruh penekanan sel imun terhadap populasi sel darah merah yang terifeksi dan populasi merozoit.
ENGLISH:
Mathematical models in intra-host malaria with the response of immune cells that is formed is a system of nonlinear ordinary differential equations consisting of five equations with each dependent variable those are normal red blood cells, infected red blood cells, merozoites, immune cells and antibodies. The immune system of this model is a combination of cells, molecules and tissues that play a role in intra-host resistance to malaria by the Anopheles mosquito. Analysis of stability was observed through a fixed point by determining the Jacobian matrix, eigen values, and the general solution of the liniearized model around its fixed point, it can be obtained that all the fixed point are stable. At the fixed point, the resulting eigenvalues are all negative, and the solution is generally close to the value of the fixed point of the equation, so that the equation is stable on a fixed point. Numerical solution on a mathematical model and its graph is generated using the ODE-45. Based on numerical simulations generated, the dynamics of intra-host models of malaria with an immune cell response showed suppression of immune cells against the effects of red blood cell population and the population is infected with merozoites.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Jamhuri, Mohammad and Barizi, Ahmad | |||||||||
Contributors: |
|
|||||||||
Keywords: | Analisis Dinamik; Analisis Kestabilan; Intra-Host Malaria; Sel Imun Tubuh; Dynamic Analysis; stability Analysis; Intra-Host Malaria; Body Immune Cells | |||||||||
Subjects: | 01 MATHEMATICAL SCIENCES > 0102 Applied Mathematics > 010202 Biological Mathematics | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
Depositing User: | Luluk Handayani | |||||||||
Date Deposited: | 28 Apr 2017 09:15 | |||||||||
Last Modified: | 28 Apr 2017 09:15 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/6414 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |