Mustofa, Ahmad Habibil (2019) Kontrol gerak robot menggunakan Hand Gesture Recognition berbasis Neural Network Backpropagation. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
Text (Fulltext)
14650080.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (3MB) |
Abstract
ABSTRAK
Berbeda dengan remote control konvensional yang memiliki banyak tombol sehingga menuntut pemahaman baru bagi orang yang belum pernah menggunakannya, kontrol dengan pendekatan Hand Gesture Recogniton mampu menawarkan kesederhanaan dan pemahaman instan dengan menggunakan gesture tangan pengontrol sendiri.
Kendali gerak robot pada penelitian ini menggunakan Hand Gesture Recognition berbentuk glove. Sensor MEMS (Accelerometer dan Gyroscope) dipasang di glove tersebut untuk membaca gesture tangan. Hasil pembacaan diklasifikasi menggunakaan metode Neural Network Backpropagation. Hasil klasifikasi digunakan sebagai perintah kontrol gerak terhadap sebuah robot yaitu berupa perintah diam, maju, mundur, belok kiri dan belok kanan.
Uji coba dilakukan oleh 1 orang tester. Uji coba dilakukan sebanyak 10 kali untuk mengenali gesture diam, maju, mundur, belok kiri dan belok kanan. Hasil pengenalan seluruh gesture sebesar 82,8%.
ABSTRACT
Unlike conventional remote controls that have many buttons that demand a new understanding for people who have never used them, controls with Hand Gesture Recogniton approach are able to offer instant simplicity and understanding by using your own hand gestures.
Control of robot movement in this study using Hand Gesture Recognition in the form of glove. The MEMS Sensor (Accelerometer and Gyroscope) is mounted on the glove to read hand gestures. The reading results are classified using the Neural Network Backpropagation method. The results of the classification are used as a motion control command to a robot in the form of stop, forward, backward, turn left and turn right.
The trial was conducted by 1 person tester. The trial is done 10 times to recognize the gesture of stop, forward, backward, turn left and turn right. The success rate of recognizing of all gestures is 82.8%.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Arif, Yunifa Miftachul and Melani, Roro Inda | |||||||||
Contributors: |
|
|||||||||
Keywords: | Hand Gesture Recognition; Neural Network Backpropagation; Remote Control; Accelerometer; Gyroscope; GY-521; STM32F01 | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Teknik Informatika | |||||||||
Depositing User: | Heni Kurnia Ningsih | |||||||||
Date Deposited: | 08 Oct 2021 11:21 | |||||||||
Last Modified: | 27 Mar 2023 10:01 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/31096 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |