Puspithasari, Nanda Nafisah (2020) Implementasi Data Mining Pada Sisitem E-Learning Moodle Terhadap Tingkat Pemahaman Mahasiswa Dengan Menggunakan Algoritma LVQ(Learning Vector Quantization). Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
|
Text (Fulltext)
16650100.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Preview |
Abstract
ABSTRACT
Data Mining is a process of extractions of data (large numbers) to obtain structured information from a system that is a necessity for the user. Data Mining of this research data on Moodle's LMS e-learning System (Learning Management System) is open-source software for developing flexible, accessible learning processes. However, the LMS (Learning Management System) Moodle has not yet provided an evaluation of user-behaviour statistics, and Moodle only includes reporting services for the ongoing input of the educational process. Thus, this research aims to develop learning analytics to get information on student understanding of the LMS Moodle e-learning system. Trials on this study use the Learning Vector Quantization algorithm with a 10-fold cross-validation calculation model for error estimation, performed as much as a 10-time trial. At ten times the test gained the result that LVQ's algorithm classification process of students’understanding of the Moodle e-learning system had the most significant level of accuracy in the 4th test, where the learning rate of 0.1 was 89.47% and the lowest error of 9.89%.
ABSTRAK
Data Mining atau Penambangan data adalah proses ekstrasi dari data-data(berjumlah besar) untuk mendapatkan informasi yang terstruktur dari sistem yang menjadi kebutuhan bagi pengguna. Penambangan data penelitian ini pada sistem e-learning LMS (Learning Management System) Moodle yang merupakan software open sourceuntuk mengembangkan proses pembelajaran yang dapatdia kses dengan fleksibel. Namun LMS (Learning Management System) Moodle belum menyediakan evaluasi statistik user-behaviour, moodle hanya menyediakan layanan reporting untuk masukan yang berkelanjutan dari proses pendidikan. Sehingga tujuan pada penelitian ini ialah mengembangkan learning analytics untuk mendapatkan informasi mengenai pemahaman mahasiswa terhadap pembelajaran pada sistem e-learning LMS Moodle. Uji coba pada penelitian ini menggunakan algoritma Learning Vector Quantizationdengan model perhitungan 10-fold cross validation untuk estimasi error, dilakukansebanyak 10 kali uji coba. Pada 10 kali pengujian tersebut, didapatkan hasil bahwa proses klasifikasi algoritma LVQ terhadap pemahaman mahasiswa pada sistem e-learning Moodle memiliki tingkat keakuratan terbesar pada pengujian ke-4, dimana learning rate 0.1 sebesar 89.47% dan error terendah 9.89%.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Nugroho, Fresy and Santoso, Irwan Budi | |||||||||
Contributors: |
|
|||||||||
Keywords: | Data Mining; E-Learning; Moodle; K-Fold Cross Validation; Learning Vector Quantization; Data Mining; E-Learning; Moodle; K-Fold Cross Validation; Learning Vector Quantization | |||||||||
Subjects: | 08 INFORMATION AND COMPUTING SCIENCES > 0801 Artificial Intelligence and Image Processing > 080108 Neural, Evolutionary and Fuzzy Computation 08 INFORMATION AND COMPUTING SCIENCES > 0802 Computation Theory and Mathematics > 080201 Analysis of Algorithms and Complexity |
|||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Teknik Informatika | |||||||||
Depositing User: | Nanda Nafisah Pupithasari | |||||||||
Date Deposited: | 13 Jul 2020 09:15 | |||||||||
Last Modified: | 13 Jul 2020 09:15 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/18909 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |