Responsive Banner

Estimasi parameter pada model statistik nonlinier secara maximum likelihood

Kurniasih, Eva (2014) Estimasi parameter pada model statistik nonlinier secara maximum likelihood. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.

[img]
Preview
Text (Fulltext)
10610088.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (3MB) | Preview

Abstract

INDONESIA

Ekonometri merupakan salah satu ilmu yang memanfaatkan ilmu matematika, ilmu statistik, dan ilmu ekonomi dalam menemukan nilai suatu parameter. Pada ekonometri terdapat dua model, yaitu model statistik linier dan model statistik nonlinier. Pada penelitian ini model statistik nonlinier yang digunakan untuk mengestimasi parameter (β) adalah model statistik Nonlinear Maximum Likelihood (NML). Untuk mendapatkan nilai estimasi parameter pada metode NML ini dapat diselesaikan dengan iterasi Newton-Rhapson dan iterasi BHHH. Iterasi Newton- Rhapson merupakan iterasi yang memanfaatkan deret Taylor orde dua sedangkan iterasi BHHH merupakan pengembangan dari iterasi Newton-Rhapson. Berdasarkan hasil dari penelitian, diperoleh bahwa bentuk estimasi parameter dari model statistik nonlinier secara Maximum Likelihood dengan iterasi Newton-Rhapson
adalah

β¬^(n+1)=β^n-(∂^2/(∂β^T ∂β) |_(β^n ) )^(-1) ∂L/∂β |_(β^n)

Sedangkan model statistik nonlinier secara Maximum Likelihood dengan iterasi BHHH adalah

β¬^(n+1)=β^n+(∑_(i=1)^n((∂L_i)/(∂β^T ) |_(β^n ) ) ((∂L_i)/(∂β^T ) |_(β^n ) )^T )^(-1) ∂L/∂β |_(β^n)

Hasil dari estimasi Nonlinear Maximum Likelihood (NML) tersebut diaplikasikan pada implementasi data Industri Logam, Mesin, Tekstil dan Aneka (ILMTA) tahun 1993-2012 di Provinsi Jawa Timur dengan fungsi produksi Cobb-Douglas (CD), yaitu:

Q=β_1 L^(β_2 ) K^(β_3)

Selanjutnya dari kedua iterasi tersebut diperoleh hasil terbaik, yaitu iterasi Newton-Rhapson dimana
untuk

β_1=18.854793988051924,β_2=-1.345791046510193,dan β_3=0.459155159079776

sehingga dapat ditulis menjadi

Q=18.854793988051924L^(-1.345791046510193) K^0.459155159079776

ENGLISH

Econometrics is one of science that use mathematic science, statistics, and economics in finding parameter value. There are two models of econometrics, linear statistic and nonlinear statistic models. In this research, nonlinear statistic model used for parameter estimation (β)is Nonlinear Maximum Likelihood (NML) statistic model. To obtain parameter estimation value in this NML method we can useNewton Rhapson iteration and BHHH iteration. Newton-Rhapson iteration is an iteration that used second order Taylor series, while BHHH iteration is the development of Newton-Rhapsoniteration. Based on the research, parameter estimation form of Maximum Likelihood nonlinear statistic model with Newton-Rhapson iteration is

β¬^(n+1)=β^n-(∂^2/(∂β^T ∂β) |_(β^n ) )^(-1) ∂L/∂β |_(β^n )

While Maximum Likelihood nonlinear statistic model with BHHH iteration is

β¬^(n+1)=β^n+(∑_(i=1)^n((∂L_i)/(∂β^T ) |_(β^n ) ) ((∂L_i)/(∂β^T ) |_(β^n ) )^T )^(-1) ∂L/∂β |_(β^n)

The result of Nonllinear Maximum Likelihood (NML) estimation can be interpreted in Metal, Machine, Textile, and Various of (ILMTA) Industry year 1993-2012 at East Java Province with Cobb-Douglas (CD) production function, is

Q=β_1 L^(β_2 ) K^(β_3)

From that two iterations, we obtain the best result, that is Newton-Rhapson iteration in which

β_1=18.854793988051924,β_2=-1.345791046510193,and β_3=0.459155159079776

so can be written

Q=18.854793988051924L^(-1.345791046510193) K^0.459155159079776

Item Type: Thesis (Undergraduate)
Supervisor: Aziz, Abdul and Nashichuddin, Achmad
Contributors:
ContributionNameEmail
UNSPECIFIEDAziz, AbdulUNSPECIFIED
UNSPECIFIEDNashichuddin, AchmadUNSPECIFIED
Keywords: Model Statistik Nonlinier; Estimasi Parameter; Fungsi produksi Cobb- Douglas (CD); Metode Nonlinear Maximum Likelihood (NML); Iterasi Newton-Rhapson; Iterasi BHHH;Nonlinear Statistic Model, Parameter Estimation; Cobb-Douglas (CD) Production Function; Nonlinear Maximum Likelihood (NML) Method; Newton-RhapsonIteration; BHHH Iteration
Departement: Fakultas Sains dan Teknologi > Jurusan Matematika
Depositing User: Ida Lestari
Date Deposited: 31 May 2017 11:12
Last Modified: 31 May 2017 11:12
URI: http://etheses.uin-malang.ac.id/id/eprint/6874

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item