Fanani, Adif (2005) Penyelesaian persamaan regresi linier berganda dengan pendekatan metode kuadrat terkecil dan metode matriks. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
|
Text (Fulltext)
98120662.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (1MB) | Preview |
Abstract
INDONESIA:
Dalam kehidupan sehari-hari banyak dijumpai persoalan atau fenomena yang mempunyai lebih dari satu variabel missalnya produksi padi tergantung pada jumlah pupuk, irigasi dan sebagainya. Sehingga terasa perlu untuk mempelajari analisis data yang terdiri dari banyak variabel. Studi yang membahas bentuk hubungan antar variable ini disebut dengan analisis regresi (AR). Analisi regresi ada dua yaitu Analisis Regresi Linier Sederhana dan Analisis Regresi Berganda Yi = β_0 + β_1X1_i+β_2X_2i+ε_1
Dalam penulisan skripsi ini akan dibahas tentang penyelesaian persamaan regresi linier berganda dengan pendekatan metode kuadrat terkecil dan metode matriks. Adapun metode yang dipakai adalah metode kepustakaan yaitu metode yang dilakukan dengan bantuan bermacam-macam materi yang terdapat dalam perpustakaan.
Tujuan penulisan ini adalah untuk mencari penyelesaian persamaan regresi linier berganda yang hanya dibatasi 2 (dua) variable bebas (X) dan 1 (satu) variable terikat (Y) dengan metode kuadrat terkecil dan metode matriks sehungga didapatkan β_0,β_1,β_2
Penyelesaian persamaan regresi linier berganda dengan metode kuadrat terkecil (MKT) dan matriks didapatkan keakuratan hasil yang sama. Bertitik tolak dari penelitian ini, beberapa saran yang dapat penulis berikan yaitu hendaknya penyelesaian persamaan regresi linier berganda ini dikembangkan dengan menggunakan model-model penyelesaian matematis lainya.
ENGLISH:
Many issues or phenomena with more than one variable are often experienced in the daily life. A rice production, for instance, is depending on the fertilization rate, irrigation rate and others. Therefore, it is necessary to analyze the data involving many variables. A study to discuss the relationship between these variables is analysis of regression (AR). This analysis has two kinds, Simple Linear Regression Analysis and Multiple Regression Analysis Yi = β_0 + β_1X1_i+β_2X_2i+ε_1
This thesis explains about the solution to the Multiple Linear Regression Equation by two approaches, which are smallest square method and matrix method. Research method is literature study that is using some materials in the library to help the accomplishment of research.
The objective of research is to look for the solution to the Multiple Linear Regression Equation by smallest square and matrix methods which is only limited to 2 (two) independent variables (X) and 1 (one) dependent variable (Y) such that β_0,β_1,β_2 is obtained.
The solution to the Multiple Linear Regression Equation by smallest square method (MTK) and matrix method is showing similar grade of accuracy. Based on this finding, research may suggest that the solution to the Multiple Linear Regression Equation can be developed by using other mathematic solution models.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Harini, Sri | |||||||||
Contributors: |
|
|||||||||
Keywords: | Persamaan Regresi Linier Berganda; Metode Kuadrat Terkecil Matriks; Multiple Linear Regression Equation; Smallest Square Method; Matrix | |||||||||
Subjects: | 01 MATHEMATICAL SCIENCES > 0104 Statistics > 010401 Applied Statistics 01 MATHEMATICAL SCIENCES > 0104 Statistics > 010404 Probability Theory 01 MATHEMATICAL SCIENCES > 0104 Statistics > 010405 Statistical Theory |
|||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
Depositing User: | Ahmad Zaini | |||||||||
Date Deposited: | 29 May 2017 11:00 | |||||||||
Last Modified: | 20 Jun 2023 09:57 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/6753 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |