• Home
  • Contact Us
  • Statistics
  • Browse
    • Browse by Year
    • Browse by Subject
    • Browse by Division
    • Browse by Author
    • Browse by Supervisor
  • Login
  • Create Account

Aljabar max-plus dan sifat-sifatnya

Majid, Abdul (2012) Aljabar max-plus dan sifat-sifatnya. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.

[img] Text (Fulltext)
07610066.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB)

Abstract

INDONESIA:

Aljabar max-plus yang dinotasikan dengan = (Rmax,... ,... ) merupakan salah satu struktur dalam aljabar yaitu semi-field idempoten. Rmax merupakan himpunan , dimana R merupakan himpunan bilangan real, dengan ε=–∞, sedangkan operasi ... menyatakan maximal dan ... menyatakan penjumlahan normal bilangan real, yang didefinisikan sebagai berikut:

a,b Rmax
a b = max(a,b)
a b = a + b

Aljabar max-plus (Rmax, , ) merupakan semi-ring dengan elemen netral = – dan elemen satuan e = 0, karena untuk setiap a, b, c Rmax berlaku sifat-sifat berikut:
i. (Rmax, ) membentuk semi-grup komutatif dengan elemen identitas , karena (Rmax, ) memiliki sifat assosiatif, komutatif terhadap operasi .
ii. (Rmax, ) membentuk grup abelian dengan elemen identitas e, dan memiliki elemen netral yang bersifat menyerap terhadap operasi , karena (Rmax, ) memiliki sifat assosiatif, komutatif, terdapat elemen identitas, dan elemen invers terhadap operasi .
iii. (Rmax, , ) membentuk semi-ring, karena berdasarkan sifat-sifat di atas maka (Rmax, ) membentuk semi-grup komutatif dengan elemen identitas, (Rmax, ) membentuk grup abelian dengan elemen identitas e, dan memiliki elemen netral yang bersifat menyerap terhadap operasi , dan (Rmax, , ) memiliki sifat distributif operasi terhadap operasi .

Semi-ring Rmax merupakan semi-ring komutatif jika operasi bersifat komutatif dan merupakan semi-ring idempoten jika operasi bersifat idempoten, dan semi-ring komutatif Rmax merupakan semi-field jika setiap elemen tak netralnya mempunyai invers terhadap operasi . Maka, terlihat bahwa (Rmax, , ) merupakan semi-field idempoten. Maka disarankan kepada peneliti selanjutnya untuk membahas tentang aljabar max-plus pada matrik, pada fungsi skalar, pada masalah nilai eigen dan vektor eigen, dan lain-lain. Aljabar max-plus memiliki peranan yang sangat banyak dalam menyelesaikan persoalan di beberapa bidang seperti teori graf, fuzzy, kombinatorika, teori sistem, teori antrian dan proses stokastik. Karena penelitian ini adalah aljabar max-plus, maka bisa diteliti pula tentang aljabar min-plus.

ENGLISH:

Max-plus algebra are denoted by = (Rmax, , ) is one of the algebraic structure of idempotent semi-field. Rmax is the set , where R is the set of real numbers, with
= – , while the operation stated maximum and normal addition of real numbers, which are defined as follows:

a,b Rmax
a b = max(a,b)
a b = a + b

Max-plus algebra (Rmax, , ) is a semi-ring with neutral element = – and identity element e = 0, since for every a, b, c Rmax apply the following properties:
i. (Rmax, ) form a commutative semi-group with identity element , because (Rmax, ) has the properties of associative, and commutative operation on .
ii. (Rmax, ) form abelian group with identity element e, and has a neutral element that are absorbed to the operation , because (Rmax, ) has the properties of associative, commutative, there is the identity element and inverse elements of the operation .
iii. (Rmax, , ) form a semi-ring, because based on the properties of the above then (Rmax, ) form a commutative semi-group with identity element , (Rmax, ) form abelian group with identity element e, and has neutral element that are absorbed to the operation , and (Rmax, , ) has a distributive nature of the operations to the operation .

Semi-ring Rmax is a commutative semi-ring if the operation hold on commutative and idempotent semi-ring if the operation hold on idempotent, and commutative semi-ring Rmax is the semi-field if every element of neutrality did not have the inverse of the operation . Thus, it appears that (Rmax, , ) is an idempotent semi-field.

It is advisable to research further to discuss about the max-plus algebra on the matrix, the scalar function, the problem of eigenvalues and eigenvectors, and others. Max-plus algebra has a role very much in solving problems in several fields such as graph theory, fuzzy, kombinatorika, systems theory, queuing theory and stochastic processes. Because of this research is the max-plus algebra, so it can be observed also on the min-plus algebra.

Item Type: Thesis (Undergraduate)
Supervisor: Jamhuri, Mohammad and Nashichuddin, Achmad
Keywords: Semi-grup; Semi-ring; Semi-field; Aljabar Max-plus; Max-plus Algebra
Subjects: 01 MATHEMATICAL SCIENCES > 0101 Pure Mathematics > 010101 Algebra and Number Theory
Departement: Fakultas Sains dan Teknologi > Jurusan Matematika
Depositing User: M. Muzakir
Date Deposited: 24 May 2017 12:29
Last Modified: 24 May 2017 12:29
URI: http://etheses.uin-malang.ac.id/id/eprint/6720

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item
EPrints Logo
UIN Maliki Malang
Etheses of Maulana Malik Ibrahim State Islamic University is powered by EPrints 3 and Supports OAI 2.0 with a base URL of here.