KamiL, Moh. Irfan (2016) Kajian terhadap K-Aljabar. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
|
Text (Fulltext)
09610058.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (1MB) | Preview |
Abstract
INDONESIA:
K-Aljabar dibangun atas suatu grup dengan menggunakan operasi biner⊙ pada (G,*), sehingga untuk setiap x,y di G didefinisikanx⊙y=x*y^(-1) dan e adalah unsur identitas di G, (G,*,⊙,e)memenuhi aksioma-aksioma tertentu disebut K-aljabar. Dalam penelitian ini diperoleh sifat-sifat K-aljabar, K-sub aljabar dan K-homomorfisme, misalkan suatu himpunan bagian tidak kosong H dari K-aljabar (G,*,⊙,e) disebut K-sub aljabar jika:
1. e∈H
2. h_1⊙h_2∈H,∀ h_1,h_1∈H
Misalkan K_1 dan K_2 merupakan K-aljabar. Suatu pemetaan φ dari K_1 ke K_2, dinotasikan dengan φ:K_1→K_2, disebut K-homomorfisme jika ∀ x_1,y_1∈K_1 berlaku φ(x_1⊙y_1 )=φ(x_1 )⊙φ(y_1 ), dimana φ(x_1 ),φ(y_1 )∈K_2.
ENGLISH:
K-algebra is built on a group by using binary operations ⊙on (G,*), so that for every x,y in G defined x ⊙y=x* y^(-1)and e is the identity element in G, (G,*,⊙,e)satisfies certain axioms called K-algebra. In this research, the properties of K-algebra, K-sub algebra, and K-homomorphism, for example a non-empty subset H of K-algebra (G,*,⊙,e)is called K-sub algebra if:
1. e∈H
2. h_1⊙h_2∈H,∀h_1,h_1∈H
Like K_1and K_2 are K-algebra. A mapping φ ofK_1to K_2, denoted by φ:K_1→K_2called K-homomorphism if ∀〖 x〗_1,y_1∈K_1applied φ(x_1⊙y_1 )=φ(x_1 )⊙φ(y_1 ), where φ(x_1 ),φ(y_1 )∈K_2.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Alisah, Evawati and Rozi, Fachrur | |||||||||
Contributors: |
|
|||||||||
Keywords: | Grup; Subgrup; K-Aljabar; K-Subaljabar; K-Homomorfisme; Group; Subgroup; K-Algebra; K-Sub Algebra; K-Homomorphism | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
Depositing User: | Kumala Inayati | |||||||||
Date Deposited: | 03 Aug 2016 11:08 | |||||||||
Last Modified: | 03 Aug 2016 11:08 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/4050 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |