Rizqiyah, Anisatur (2019) Keterbatasan operator integral fraksional pada ruang Morrey klasik tak homogen. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
Text (Fulltext)
15610037.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) |
Abstract
INDONESIA :
Operator integral fraksional merupakan salah satu perkembangan ilmu analisis modern yang masih diteliti hingga saat ini. Pada tahun 2012, Imam Utoyo, dkk. telah membuktikan bahwa operator integral fraksional dapat diaplikasikan dalam ruang morrey klasik tak homogen. Selanjutnya tahun 2018, Iaffei dan Nitti membuktikan bahwa operator integral fraksional juga dapat diaplikasikan di ruang lebesgue dengan menggunakan operator maksimal Hardy-Littlewood yang dimodifikasi.
Tujuan penelitian ini adalah mengetahui keterbatasan operator integral fraksional pada Ruang Lebesgue dan Ruang Morrey Klasik tak homogen. Pada proses pembahasan, penulis melakukan pembuktian ulang penelitian Iaffei dan Nitti (2018) yaitu membuktikan syarat perlu keterbatasan operator integral fraksional pada Ruang Lebesgue dengan memanfaatkan operator maksimal Hardy-Littlewood-Sobolev yang dimodifikasi tetapi dengan syarat konstanta jari-jari pangkat s. Kemudian, penulis melanjutkan penelitian Iaffei dan Nitti (2018) menuju ruang morrey klasik tak homogen. Hasil penelitian ini adalah pembuktian teorema keterbatasan operator integral fraksional pada Ruang Lebesgue dan Ruang Morrey Klasik tak homogen.
ENGLISH :
Fractional integral operators are one of the developments in modern analysis that are still being investigated to this day. In 2012, Imam Utoyo et al. has proven that fractional integral operators can be applied in a non-homogeneous classic morrey space. Furthermore, in 2018, Iaffei and Nitti proved that fractional integral operators can also be applied in the Lebanese space by using a modified Hardy-Littlewood operator.
The purpose of this study is to determine the boundedness of fractional integral operators in Classic and Homogeneous Space and Morrey Space. In the discussion process, the authors re-prove the research of Iaffei and Nitti (2018), which proves the necessary condition for the boundedness of fractional integral operators in the lebesgue space by utilizing the modified Hardy-Littlewood-Sobolev operator but with the terms of the constant radius of s. Then, the author continues the research of Iaffei and Nitti (2018) towards the classic homogeneous morrey space. The results of this study are proof of the theorem of the boundedness of fractional integral operators in the Classic and Non-homogeneous Space Space and Morrey Space.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Rahman, Hairur and Khudzaifah, Muhammad | |||||||||
Contributors: |
|
|||||||||
Keywords: | keterbatasan operator; integral fraksional; ruang morrey klasik; boundedness of operator; fractional integral; classic morrey space | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
Depositing User: | Dian Anesti | |||||||||
Date Deposited: | 16 Oct 2019 11:23 | |||||||||
Last Modified: | 16 Oct 2019 11:23 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/15068 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |