Tamam, Moh Badrit (2012) Deteksi Masa Kawin Sapi melalui Analisis Citra Vulva menggunakan Jaringan Saraf Tiruan dalam meningkatkan keberhasilan Inseminasi Buatan. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
![]() |
Text (Fulltext)
06540026.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (1MB) | Request a copy |
Abstract
ABSTRAK
Inseminasi Buatan adalah teknologi yang telah dikenal dan diterapkan di Indonesia sejak lama, pada peternak sapi perah, sapi potong dan kerbau. Namun demikian pelaksanaannya di lapangan belum optimal sehingga hasilnya (tingkat kelahiran) dari tahun ke tahun berfluktuasi. Penyebab kegagalan sapi bunting akibat deteksi masa kawin sapi yang dilakukan peternak tidak tepat, umumnya akibat pengetahuan peternak masih kurang. Teknologi beternak yang baik dan benar untuk mengeffektifkan produksi harus bisa mengenali ciri-ciri sapi normal dan sapi siap kawin, sapi dapat ditandai antara lain sapi gelisah, warna kemerahan dan terjadi penebalan pada vagina, nafsu makan turun bahkan hilang sama sekali, sehingga penelitian deteksi masa kawin sapi ini sangat penting.
Penelitian ini dilakukan dengan tujuan untuk : (1) Menentukan ciri citra vulva yang dapat membedakan antara sapi normal dan sapi siap kawin; (2) Mengukur akurasi deteksi masa kawin sapi melalui analisis citra vulva dengan metode jaringan saraf tiruan. Tahapan penelitian dibagi 2 yaitu tahapan pengolahan citra dan tahapan metode jaringan syaraf tiruan. Pada tahap pengolahan citra menggunakan mengubah warna ke grayscale, pemotongan (crop) citra. Hasil pengolahan citra didapatkan nilai gabor dan nilai pixel RGB. Data hasil pengolahan citra digunakan sebagai input jaringan syaraf tiruan. Jaringan syaraf tiruan yang digunakan dengan algoritma Backpropagation. Proses jaringan syaraf tiruan menggunakan jumlah neuron 5, 15, 25, dan 30 untuk mengetahui ke akuratan jaringan mengenali data yang diujikan.
Hasil pengujian dilakukan analisis untuk mengetahui jumlah neuron terbaik yang digunakan dalam jaringan. Jumlah neuron 25 dapat mengenali data pengujian sebesar 86% untuk data pengujian pelatihan dan 80% untuk data baru, dengan MSE 0.0641651. Hasil dari penelitian ini menunjukkan jaringan dapat mengenali data pengujian dengan benar.
ABSTRACT
Artificial insemination is a technology that has long been known and applied by dairy cattle cattleman, crosscut cow and buffalo in Indonesia. Nevertheless its performing at field is not optimum until its success (natal zoom) is year by year fluctuating. The cause of failure is full cow because term detects of cow wedding is not properly done by breeder. Generally, the knowledge of breeder is not enough. Good and right breed technology to effect on production must be able to recognize the characteristic of normal cow and wed ready cow, the cow can be signed by perturbed cow, florid color and thick vagina, downward appetite moreover it is nothing until the research of this term detects of cow wedding is very important.
This research was conducted with the goal to: (1) Determine the characteristic image of the vulva that can distinguish between normal cattle and cattle ready for mating; (2) Measuring the accuracy of detection of the breeding cattle through the vulva image analysis with neural network methods. Research step was divided by 2 that was image management step and imitation afferent network step. The image management step changed color to grayscale, image crop. Image management result was obtained Gabor’s point and pixel RGB’s point. Management yielding data image was used as imitation afferent network input. Imitation afferent network was worn with Backpropagation Algorithm. Process of Imitation afferent network used neuron 5, 15, 25 and 30 to know data network examined accurately.
Examination result was done with analysis to get best neuron used to network. Many of neuron 25 could recognize examination data 86 % in training examination data and 80% of new data with MSE 0.0641651. This research result indicated network to be able to recognize examination data rightly.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Mulyono, Agus and Abidin, Munirul | |||||||||
Contributors: |
|
|||||||||
Keywords: | Masa Kawin Sapi; Nilai Energi Gabor; Nilai Pixel Warna RGB; Jaringan Syaraf Tiruan Backpropagation Cows Wed Term; Gabor’s Energy Point; Pixel’s Point RGB’s Color | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Fisika | |||||||||
Depositing User: | Moch. Nanda Indra Lexmana | |||||||||
Date Deposited: | 04 Apr 2023 09:22 | |||||||||
Last Modified: | 04 Apr 2023 09:22 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/49046 |
Downloads
Downloads per month over past year
Actions (login required)
![]() |
View Item |