Putra, Afaf Trian (2018) Pola umum Spektrum Graf Subgrup dan Komplemen Graf Subgrup dari Grup Dihedral. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
Text (Fulltext)
14610073.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Request a copy |
Abstract
ABSTRAK
Spektrum adalah matriks baru yang memuat semua nilai Eigen pada baris pertama dan banyaknya vektor Eigen yang bersesuaian pada baris kedua. Tujuan penelitian ini adalah mencari bentuk umum spektrum adjacency, Laplace, signless Laplace, dan detour dari graf subgrup dan komplemen graf subgrup 〈r^2,rs〉 dari grup dihedral D_2n. Langkah awal yang dilakukan adalah menentukan subgrup pada grup dihedral, kemudian menggambar graf dan komplemennya, lalu menyatakan ke bentuk matriks, selanjutnya menentukan nilai Eigen untuk memperoleh spektrumnya. Langkah terakhir merumuskan suatu teorema dan membuktikannya secara deduktif. Hasil penelitian sebagai berikut:
1. Pada graf subgrup hanya diperoleh spektrum adjacency, Laplace, dan signless Laplace. Spektrum detour tidak dapat dinyatakan karena grafnya tidak terhubung.
Pola Umum spektrum adjacency graf subgrup adalah
〖spec〗_A (Γ_H (D_2n ))=[■((n-1)&-1@2&2(n-1))]
Pola Umum spektrum Laplace graf subgrup adalah
〖spec〗_L (Γ_H (D_2n ))=[■(n&0@2(n-1)&2)]
Pola Umum spektrum signless Laplace graf subgrup adalah
〖spec〗_(L^+ ) (Γ_H (D_2n ))=[■(2(n-1)&n-2@2&2(n-1) )]
2. Pada komplemen graf subgrup diperoleh spektrum adjacency, Laplace, signless Laplace, dan detour.
Pola Umum spektrum adjacency komplemen graf subgrup adalah
〖spec〗_A ((Γ_H (D_2n ) ) ̅ )=[■(n&0&(-n)@1&2(n-1)&1)]
Pola Umum spektrum Laplace komplemen graf subgrup adalah
〖spec〗_L ((Γ_H (D_2n ) ) ̅ )=[■(2n&n&0@1&2(n-1)&1)]
Pola Umum spektrum signless Laplace komplemen graf subgrup adalah
〖spec〗_(L^+ ) ((Γ_H (D_2n ) ) ̅ )=[■(2n&n&0@1&2(n-1)&1)]
Pola Umum spektrum detour komplemen graf subgrup adalah
〖spec〗_DD ((Γ_H (D_2n ) ) ̅ )=[■((4n^2-5n+2)&(-(2n-2))&(-(3n-2))@1&2(n-1)&1)]
ABSTRACT
Spectrum is a matrix which containing all of Eigen values in the first row and the number of the corresponding Eigen vectors in the second row. The purpose of this research is to find a general pattern of spectrum adjacency, Laplace, signless Laplace, and detour of subgroup graph and complement of subgroup graph 〈r^2,rs〉 of dihedral group D_2n. The first step is to determine the subgroups of the dihedral group, then draw the graph and its complement, then write it into the matrix form, then determine the Eigenvalues to obtain the spectrum. The final step is to formulate a theorem and prove it deductively. The results of this research are as follows:
1. In the subgroup graph only obtained adjacency, Laplace, and signless Laplace spectrum. The detour spectrum can not be expressed because the graph is not connected.
General pattern of spectrum adjacency of subgroup graph is
〖spec〗_A (Γ_H (D_2n ))=[■((n-1)&-1@2&2(n-1))]
General pattern of spectrum Laplace of subgroup graph is
〖spec〗_L (Γ_H (D_2n ))=[■(n&0@2(n-1)&2)]
General pattern of spectrum signless of subgroup graph is
〖spec〗_(L^+ ) (Γ_H (D_2n ))=[■(2(n-1)&n-2@2&2(n-1) )]
2. In the complement graph subgroup obtained spectrum adjacency, Laplace, signless Laplace, and detour.
General pattern of spectrum adjacency of complement of subgroup graph
〖spec〗_A ((Γ_H (D_2n ) ) ̅ )=[■(n&0&(-n)@1&2(n-1)&1)]
General pattern of spectrum Laplace of complement of subgroup graph is
〖spec〗_L ((Γ_H (D_2n ) ) ̅ )=[■(2n&n&0@1&2(n-1)&1)]
General pattern of spectrum signless Laplace of complement of subgroup graph is
〖spec〗_(L^+ ) ((Γ_H (D_2n ) ) ̅ )=[■(2n&n&0@1&2(n-1)&1)]
General pattern of spectrum detour of complement of subgroup graph is
〖spec〗_DD ((Γ_H (D_2n ) ) ̅ )=[■((4n^2-5n+2)&(-(2n-2))&(-(3n-2))@1&2(n-1)&1)]
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Abdussakir, Abdussakir and Jamhuri, Mohammad | |||||||||
Contributors: |
|
|||||||||
Keywords: | Spektrum; Adjacency; Laplace; Signless Laplace; Detour; Graf Subgrup; Komplemen Graf Subgrup; Grup Dihedral Spectrum; Adjacency; Laplace; Signless Laplace; Detour; Subgroup Graph; Complement of Subgroup Graph; Dihedral Group | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
Depositing User: | Moch. Nanda Indra Lexmana | |||||||||
Date Deposited: | 17 Mar 2023 13:25 | |||||||||
Last Modified: | 17 Mar 2023 13:25 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/48593 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |