Mafaza, Vina (2018) Estimasi Parameter Model Geographically and Temporally Weighted Regression pada Data Multikolinieritas. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
Text (Fulltext)
13610110.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Request a copy |
Abstract
ABSTRAK
Model Geographically and Temporally Weighted Regression (GTWR) merupakan model yang dikembangkan dari model Geographically Weighted Regression (GWR) yang memperhatikan lokasi dan waktu untuk setiap pengamatan. Bandwidth adalah radius suatu lingkaran dimana titik yang berada dalam radius lingkaran masih dianggap berpengaruh dalam membentuk parameter model lokasi ke–i.
Penelitian dengan pendekatan studi literatur ini bertujuan untuk mendapatkan model GTWR pada data multikolinieritas menggunakan metode regresi ridge. Hasil penelitian diaplikasikan pada data kematian bayi di Jawa Timur tahun 2011-2014, sehingga akan didapatkan pemetaan kematian bayi di Jawa Timur. Variabel independent yang digunakan pada penelitian ini adalah jumlah bayi (X_1 ), jumlah ibu hamil (X_2 ), ibu nifas (X_3 ), jumlah ibu bersalin (X_4 ), jumlah neonatus komplikasi yang ditangani (X_5 ), pemberian ASI eksklusif (X_6), pemberian vitamin A (X_7), jumlah tenaga medis (X_8), dan jumlah tenaga paramedis (X_9). Hasil yang didapatkan dari penelitian ini adalah model GTWR dapat diselesaikan dengan baik serta kematian bayi di Jawa Timur tahun 2011-2014 mampu dijelaskan dengan baik.
ABSTRACT
Geographically and Temporally Weighted Regression Model (GTWR) is a model developed from the Geographically Weighted Regression (GWR) model that takes the location and time for each observation into account. Bandwidth is the radius of a circle where the points within the circle are still considered to be influential in forming the model parameter at-i location.
This research with literature study approach aimed to get the GTWR model on multicollinearity data using ridge regression method. The results were applied to data of infant mortality in East Java in 2011-2014, and obtained mapping of infant mortality in East Java. The independent variables used in this study were the number of infants (X_1), number of pregnant women (X_2), postpartum (X_3), number of maternal women (X_4), number of neonates handled complications (X_5), exclusive breastfeeding (X_6) administration of vitamin A (X_7), number of medical personnel (X_8), and number of paramedical personnel (X_9). The results obtained from this research is the GTWR model that can be solved well and infant mortality in East Java in 2011-2014 can be explained well.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Harini, Sri and Abdussakir, Abdussakir | |||||||||
Contributors: |
|
|||||||||
Keywords: | Regresi Ridge; Adaptive Gaussian; Kematian Bayi Ridge Regression; Adaptive gaussian; Infant Mortality | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
Depositing User: | Moch. Nanda Indra Lexmana | |||||||||
Date Deposited: | 17 Mar 2023 13:24 | |||||||||
Last Modified: | 17 Mar 2023 13:24 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/48531 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |