Hanafi, M. Saiful Rizal (2021) Sistem pakar diagnosa kerusakan mesin sepeda motor menggunakan Case Base Reasoning (CBR) dengan algoritma K-Nearest Neighbor (K-NN). Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
|
Text (Fulltext)
14650098.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Preview |
Abstract
INDONESIA :
Kerusakan motor menjadi salah satu hal yang sangat krusial pada setiap jenis motor, apabila terjadi kendala maka akan menyulitkan pengguna-melakukan-perawatan-dan diagnosis kerusakan karena terbatasnya pengetahuan perihal gejala kerusakan motor. –Kenyataannya-sebagian-besar-jasa-servis / perawatan-motor-tidak-memiliki-mekanik yang-handal-sehingga-tidak-dapat melakukan diagnosa gejala kerusakan secara tepat dan hanya berdasarkan kepada perkiraan saja. Kecenderungannya masih banyak mekanik yang hanya mengandalkan kepada intuisinya saja sehingga hasil perawatan menjadi tidak maksimal dan menimbulkan kekecewaan bagi pengguna. Tingkat kesulitan ini membutuhkan pemanfaatan teknologi informasi melalui metode yang menggabungkan keahlian dan pengetahuan seorang pakar untuk membangun sebuah aplikasi pengetahuan baru berdasarkan sejumlah kasus yang sudah terjadi dan dikenal dengan istilah Case-Based Reasoning.
Dalam Tugas Akhir ini penulis merancang sebuah sistem pakar berbasis website untuk mendiagnosis dan menyelesaikan masalah kerusakan pada motor. Metode yang digunakan dalam Tugas Akhir ini adalah Case Based Reasoning dengan algoritma K-Nearest Neighbor yang bertujuan untuk-membantu-menganalisa-kerusakan-serta memberikan solusi dari masalah yang ada pada motor.
Diharapkan dengan Tugas Akhir yang berjudul “Sistem Pakar Diagnosa Kerusakan Mesin Sepeda Motor Menggunakan Case Base Reasoning (CBR) Dengan Algoritma K-Nearest Neighbor (K-NN)” ini dapat membantu para pemilik motor dan-montir-dalam-menghadapi-masalah-kerusakan-yang-terjadi-pada-motor-tersebut.
ENGLISH :
Motorcycle damage is one of the most crucial things in every type of motor, if there are problems it will make it difficult for users to carry out maintenance and diagnosis of damage due to limited knowledge about the symptoms of motor damage. In fact, most of the motorcycle service/maintenance services do not have reliable mechanics, so they cannot diagnose the symptoms of damage correctly and are only based on estimates. The tendency is that there are still many mechanics who only rely on their intuition so that the treatment results are not optimal and cause disappointment for users. This level of difficulty requires the use of information technology through a method that combines the expertise and knowledge of an expert to build a new knowledge application based on a number of cases that have occurred and is known as Case-Based Reasoning.
In this final project, the author designed a website-based expert system to diagnose and solve motor problems. The-method-used-in-this-final project is Case Based Reasoning with the K-Nearest Neighbor algorithm which aims to help analyze damage and provide-solutions-to-problems-that exist on the motor.
It is hoped that with this final project entitled "Expert System for Diagnosing Motorcycle Engine Damage Using Case Base Reasoning (CBR) With the K-Nearest Neighbor (K-NN) Algorithm" it can help motorcycle owners and mechanics in dealing with damage problems that occur on the motorcycle.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Nurhayati, Hani and Nugroho, Fresy | |||||||||
Contributors: |
|
|||||||||
Keywords: | Kerusakan Motor; Case Based Reasoning; K-Nearest Neighbor; Website; Diagnosis Motorcycle Damage; Case Based Reasoning; K-Nearest Neighbor; Website; Diagnosis | |||||||||
Subjects: | 08 INFORMATION AND COMPUTING SCIENCES > 0805 Distributed Computing > 080599 Distributed Computing not elsewhere classified | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Teknik Informatika | |||||||||
Depositing User: | M. Saiful Rizal Hanafi | |||||||||
Date Deposited: | 04 Jan 2022 09:40 | |||||||||
Last Modified: | 04 Jan 2022 09:40 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/33001 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |