Aunillah, Kalvin Niam (2021) Owl knowledge base generator dinamis dari konten halaman website dengan metode graph breadth first search. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
|
Text (Fulltext)
17650060.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Preview |
Abstract
ABSTRAK:
Berita adalah informasi yang banyak dicari masyarakat, di antaranya ialah berita-berita tentang kesehatan hingga berita-berita tentang pemerintahan. Informasi mengenai kebijakan-kebijakan pemerintah merupakan salah satu informasi yang dibutuhkan oleh masyarakat. Berdasarkan data survei Asosiasi Penyelenggara Jasa Internet Indonesia (APJII) 2019-2020 (Q2) terhitung 196,71 juta pengguna internet di Indonesia yang mana di antaranya 13,60% pengguna mengakses Iayanan informasi berita. Terkadang pembaca kesulitan menangkap informasi yang mereka inginkan dikarenakan banyak sekali informasi promosi yang tersebar dari beberapa website dan dianggap memakan waktu serta membuat tidak nyaman pembaca, sehingga keakuratan pencarian dan pemilahan informasi sangat dibutuhkan. Pada penelitian ini digunakan metode Graph Breadth First Search (BFS) sebagai metode yang digunakan dalam teknik Web Scraping. BFS merupakan Breadth First Search (BFS) adalah algoritma dari struktur data graph yang tepat untuk proses crawling. Tujuan dari penelitian ini adalah untuk menghasilkan OWL Knowledge Base Generator sesuai dengan dokumen yang diekstrak dari halaman website berita. Hasil pengujian kualitas perangkat lunak OWL Knowledge Base Generator menghasilkan presentase Functionality 70%, Reliability 96%, Usability 81%, Efficiency 81%, Maintainability 50%, Portability 100% dan total skualitas sebesar 79.66%. Berdasarkan hasillini, penggunaan metode Breadth First Search dianggap sangat baik dan efektif dalam pembuatan OWL Knowledge Base dinamis dari konten halaman website.
ABSTRACT:
News is information that many people are looking for, including news about health to news
about government. Information about government policies is one of the information needed
by the community. Based on survey data from the Indonesian Internet Service Providers
Association (APJII) 2019-2020 (Q2), there are 196.71 million internet users in Indonesia,
of which 13.60% of users access news information services. Sometimes readers have
difficulty capturing the information they want because a lot of promotional information is
scattered from several websites and is considered time consuming and makes the reader
uncomfortable, so that the accuracy of searching and sorting information is needed. In this
study, the Graph Breadth First Search (BFS) method is used as the method used in the Web
Scraping technique. BFS is Breadth First Search (BFS) is an algorithm of graph data
structure that is appropriate for the crawling process. The purpose of this research is to
produce an OWL Knowledge Base Generator according to the documents extracted from
the news website pages. The results of the OWL Knowledge Base Generator software
quality test resulted in the percentage of Functionality 70%, Reliability 96%, Usability
81%, Efficiency 81%, Maintainability 50%, Portability 100%, and total quality of 79.66%.
Based on these results, the use of the Breadth First Search method is considered very good
and effective in creating a dynamic OWL Knowledge Base from web page content.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Syauqi, A’la and Arif, Yunifa Miftachul | |||||||||
Contributors: |
|
|||||||||
Keywords: | OWL Knowledge Base; Web Scraping; BFS; crawling | |||||||||
Subjects: | 08 INFORMATION AND COMPUTING SCIENCES > 0803 Computer Software > 080302 Computer System Architecture 08 INFORMATION AND COMPUTING SCIENCES > 0803 Computer Software > 080308 Programming Languages 08 INFORMATION AND COMPUTING SCIENCES > 0803 Computer Software > 080309 Software Engineering |
|||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Teknik Informatika | |||||||||
Depositing User: | Kalvin niam aunillah | |||||||||
Date Deposited: | 04 Jan 2022 09:05 | |||||||||
Last Modified: | 04 Jan 2022 09:05 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/32144 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |