Kurniati, Hernita Eka (2020) Pemodelan GJR-Garch menggunakan Metode Quasi Maximum Likelihood: Studi kasus pada data harga saham Jakarta Islamic Index. Undergraduate thesis, Universitas Islam Negeri Maulana Malik Ibrahim.
|
Text (Fulltext)
16610027.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Preview |
Abstract
ABSTRACT
This research implements the GJR-GARCH model withtheQuasi Maximum Likelihood method on the daily stock price closing data of the Jakarta Islamic Index (JII) from January 2019 until February 2020 period. GJR-GARCH model is a development of the further GARCH model which contains dummy variables. This research uses support Eviews 10 and Minitab 17 software to determine the best model. The result obtained from modeling GJR-GARCH with the Quasi Maximum Likelihood method is choosing the best model using the smallest AIC value. The best model obtained is ARIMA(1,0,1)-GJR-GARCH(1,1). Implementation results GJR-GARCH model with Quasi Maximum Likelihood method on case the daily stock price closing data of Jakarta Islamic Index(JII) arethe variance of the error is the autocorrelation of ARIMA (1,0,1) with GJR-GARCH (1,1) model which the error in the period t is a normal distribution with a mean of zero. The model can be used to forecaststock price in March 2020 that obtained forecasting results of Rp. 566,195 for a stock price on March 2, 2020
ABSTRAK
Penelitian ini mengimplementasikan model GJR-GARCH menggunakan metode Quasi Maximum Likelihood pada data harian harga saham penutupan Jakarta Islamic Index (JII) periode Januari 2019 sampai Februari 2020. Model GJR-GARCH merupakan perkembangan dari model GARCH yang lebih lanjut yang mengandung variabel dummy. Penelitian ini menggunakan bantuan software Eviews 10 dan Minitab 17 dalam menentukan model terbaik. Hasil yang diperoleh dari pemodelan GJR-GARCH dengan metode Quasi Maximum Likelihood yaitu dengan memilih model terbaik menggunakan nilai AIC terkecil. Model terbaik yang didapatkan yaitu ARIMA (1,0,1)-GJR-GARCH (1,1). Hasil implementasi model GJR-GARCH dengan metode Quasi Maximum Likelihood pada kasus data harian harga saham penutupan Jakarta Islamic Index (JII) yaitu variansi dari error terdapat autokorelasi model ARIMA (1,0,1) dengan GJR-GARCH (1,1) dimana error pada periode ke-t berdistribusi normal dengan rata-rata nol. Model tersebut dapat digunakan untuk meramalkan harga saham pada periode Maret 2020 yang diperoleh hasil peramalan sebesar Rp. 566,195 untuk harga saham pada tanggal 2 Maret 2020.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Supervisor: | Aziz, Abdul and Khudzaifah, Muhammad | |||||||||
Contributors: |
|
|||||||||
Keywords: | GJR-GARCH; Quasi Maximum Likelihood; Stock Price; GJR-GARCH; Quasi Maximum Likelihood; Harga Saham | |||||||||
Subjects: | 14 ECONOMICS > 1403 Econometrics > 140399 Econometrics not elsewhere classified | |||||||||
Departement: | Fakultas Sains dan Teknologi > Jurusan Matematika | |||||||||
Depositing User: | Hernita Eka Kurniati | |||||||||
Date Deposited: | 04 Aug 2020 10:07 | |||||||||
Last Modified: | 04 Aug 2020 10:07 | |||||||||
URI: | http://etheses.uin-malang.ac.id/id/eprint/19764 |
Downloads
Downloads per month over past year
Actions (login required)
View Item |