KLASIFIKASI CITRA ENDOSKOPI MENGGUNAKAN ARSITEKTUR
CONVNEXT UNTUK IDENTIFIKASI PENYAKIT GERD DAN POLIP

SKRIPSI

Oleh :
MUHAMMAD FAQIH

NIM. 220605110069

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM
MALANG
2025



KLASIFIKASI CITRA ENDOSKOPI MENGGUNAKAN ARSITEKTUR
CONVNEXT UNTUK IDENTIFIKASI PENYAKIT GERD DAN POLIP

SKRIPSI

Diajukan kepada:
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Untuk memenuhi Salah Satu Persyaratan dalam
Memperoleh Gelar Sarjana Komputer (S.Kom)

Oleh :
MUHAMMAD FAOIH
NIM. 220605110069

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM
MALANG
2025

i



HALAMAN PERSETUJUAN

KLASIFIKASI CITRA ENDOSKOPI MENGGUNAKAN ARSITEKTUR
CONVNEXT UNTUK IDENTIFIKASI PENYAKIT GERD DAN POLIP

SKRIPSI
Oleh :
H ) FAOII
NIM. 220605110069

Telah Diperiksa dan Disetujui untuk Diuji:
Tanggal: 1 Desember 2025

Okta Qomaruddin Aziz, M.Kom Ajib Hanani, M.T
NIP. 199110192019031013 NIP, 198407312023211013
Mengetahui,

Ketua Program Studi Teknik Informatika
kultas Sains dan Teknologi
UniversitasJ&tage NaggrzMaulana Malik Ibrahim Malang

il



HALAMAN PENGESAHAN

KLASIFIKASI CITRA ENDOSKOPI MENGGUNAKAN ARSITEKTUR
CONVNEXT UNTUK IDENTIFIKASI PENYAKIT GERD DAN POLIP

SKRIPSI

Oleh :

MUHAMMAD FAQIH
NIM. 220605110069

Telah Dipertahankan di Depan Dewan Penguji Skripsi
dan Dinyatakan Diterima Sebagai Salah Satu Persyaratan
Untuk Memperoleh Gelar Sarjana Komputer ( S.Kom )
Tanggal: 12 Desember 2025

Susunan Dewan Penguji

Ketua Penguji : Prof. Dr. Suhartono S.Si M.Kom
NIP. 196805192003121001 (
Anggota Penguji | : Shoffin Nahwa Utama, M.T (
NIP. 198607032020121003

Anggota Penguji 11 : Okta Qomaruddin Aziz, M.Kom
NIP. 199110192019031013

Anggota Penguji 11l : Ajib Hanani, M.T (
NIP. 198407312023211013

Mengetahui dan Mengesahkan,
Ketua Program Studi Teknik Informatika
Fakultas Sains dan Teknologi
Universitas Is ulana Malik Ibrahim Malang

& i) ¥4 Kom
NR77984 10567201903 1012

v



PERNYATAAN KEASLIAN TULISAN

Saya yang bertanda tangan di bawah ini:

Nama : MUHAMMAD FAQIH

NIM : 220605110069

Fakultas / Program Studi : Sains dan Teknologi / Teknik Informatika

Judul Skripsi : KLASIFIKASI CITRA ENDOSKOPI BERBASIS
ARSITEKTUR CONVNEXT UNTUK

IDENTIFIKASI PENYAKIT GERD DAN POLIP.

Mecnyatakan dengan scbenamya bahwa Skripsi yang saya tulis ini benar-benar
merupakan hasil karya saya sendiri, bukan merupakan pengambil alihan data,
tulisan, atau pikiran orang lain yang saya akui scbagai hasil tulisan atau pikiran saya
sendiri, kecuali dengan mencantumkan sumber cuplikan pada daftar pustaka.

Apabila dikemudian hari terbukti atau dapat dibuktikan skripsi ini merupakan hasil
jiplakan, maka saya bersedia menerima sanksi atas perbuatan tersebut.

Malang, 12 Desember 2025

NIM. 220605110069



MOTTO

Not every spark becomes a flame.
But every flame once lived as a spark refusing to die.
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ABSTRAK

Faqih, Muhammad. 2025. Klasifikasi Citra Endoskopi Berbasis Arsitektur ConviNeXt
Untuk Identifikasi Penyakit Gerd Dan Polip. Skripsi. Jurusan Teknik
Informatika Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana
Malik Ibrahim Malang. Pembimbing: (I) Okta Qomaruddin Aziz, M.Kom (II)
Ajib Hanani, M.T.

Kata kunci: Computer-Aided Diagnosis, ConvNeXt, Convolutional Neural Networks,
Klasifikasi Citra Endoskopi, Pencitraan Medis.

Identifikasi otomatis terhadap kelainan gastrointestinal penting untuk mendukung
deteksi dini gastroesophageal reflux disease (GERD) dan polip usus. Interpretasi manual
citra endoskopi memiliki keterbatasan karena variabilitas antar-pemeriksa dan waktu
pemrosesan, sehingga diperlukan sistem diagnosis berbantuan komputer yang andal.
Penelitian ini mengusulkan kerangka deep learning berbasis ConvNeXt-Tiny untuk
mengklasifikasikan citra endoskopi ke dalam empat kategori, yaitu GERD, GERD Normal,
Polyp, dan Polyp Normal. Dataset yang digunakan adalah GastroEndoNet v3, yang terdiri
atas 4.006 citra asli dan 20.030 citra augmentasi. Sebanyak dua belas skenario eksperimen
dilakukan untuk mengevaluasi pengaruh augmentasi data, normalisasi, dan ukuran batch
terhadap kinerja model. Konfigurasi terbaik, yang menggunakan augmentasi aktif dan
normalisasi berbasis ImageNet dengan batch size 64, mencapai akurasi sebesar 92,94% dan
macro Fl-score sebesar 92,94%. Hasil ini menunjukkan bahwa ConvNeXt-Tiny mampu
mengekstraksi pola mukosa secara efektif dengan efisiensi komputasi yang tinggi, sehingga
layak diterapkan pada lingkungan klinis. Kerangka yang diusulkan menyediakan baseline
yang akurat dan ringan untuk klasifikasi penyakit endoskopi serta menjadi dasar bagi
pengembangan lebih lanjut pada analisis video real-time dan validasi multi-senter.
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ABSTRACT

Faqih, Muhammad. 2025. Endoscopic Image Classification Based on ConvNeXt
Architecture for Identification of Gerd and Polyps. Undergraduate
Thesis. Informatics Engineering Study Program, Faculty of Science and
Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang.
Promotor: I) Okta Qomaruddin Aziz, M.Kom (II) Ajib Hanani, M.T.

Automated identification of gastrointestinal abnormalities is essential for
supporting the early diagnosis of gastroesophageal reflux disease (GERD) and
intestinal polyps. Manual interpretation of endoscopic images is limited by inter-
observer variability and processing time, creating the need for reliable computer-
aided diagnostic systems. This study proposes a ConvNeXt-Tiny based deep
learning framework for multi-class classification of endoscopic images into four
categories: GERD, GERD Normal, Polyp, and Polyp Normal. The experiments
used the GastroEndoNet v3 dataset, which includes 4,006 original images and
20,030 augmented images. Twelve experimental scenarios were conducted to
evaluate the effects of data augmentation, normalization, and batch size on model
performance. The best configuration, which applied active augmentation and
ImageNet-based normalization with a batch size of 64, achieved an accuracy of
92.94% and a macro F1-score of 92.94%. These results indicate that ConvNeXt-
Tiny effectively captures fine-grained mucosal patterns while maintaining
computational efficiency, making it suitable for clinical deployment. The proposed
framework provides a lightweight and accurate baseline for automated endoscopic
disease classification and forms a foundation for future work on real-time video
analysis and multi-center validation.

Keywords: Classification, Computer-Aided Diagnosis, ConvNeXt, Convolutional
Neural Networks, Endoscopic Image, Medical Imaging.
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BAB I

PENDAHULUAN

1.1 Latar Belakang

Penyakit gastroesophageal reflux disease (GERD) dan polip usus
merupakan dua kondisi gastrointestinal yang umum terjadi dan memiliki potensi
berkembang menjadi komplikasi serius jika tidak terdeteksi secara dini. GERD
adalah kondisi kronis yang ditandai dengan naiknya isi lambung ke esofagus,
menyebabkan gejala seperti nyeri epigastrium (heartburn), mual, regurgitasi asam,
dan kesulitan menelan. Jika dibiarkan, GERD dapat menimbulkan komplikasi
seperti esofagitis dan Barrett’s esophagus, yang berisiko berkembang menjadi
kanker esofagus (Syamsu Rijal et al., 2024). Meskipun prevalensinya di Asia
tergolong lebih rendah dibandingkan negara-negara Barat, tren kenaikannya cukup
mengkhawatirkan; sebagai contoh, di Jepang dan Taiwan, prevalensi GERD
mencapai 13—-15% (Syamsu Rijal et al., 2024).

Sementara itu, polip usus adalah pertumbuhan jaringan abnormal di dinding
usus besar yang sering tidak menunjukkan gejala pada stadium awal. Namun,
sekitar 35% kasus kanker kolorektal di Indonesia bermula dari polip yang tidak
tertangani, dan sebagian besar menyerang usia produktif di bawah 40 tahun
(Yasmina Lafau, 2024). Deteksi dini kedua kondisi ini menjadi krusial karena
penanganan pada tahap awal terbukti lebih efektif dan dapat mencegah transisi ke
fase penyakit yang lebih berat, terutama dalam sistem pelayanan kesehatan yang

masih menghadapi tantangan seperti keterbatasan tenaga ahli.



Endoskopi  merupakan prosedur medis minimal invasif yang
memungkinkan visualisasi langsung saluran pencernaan bagian atas maupun bawah
menggunakan kamera fleksibel, sehingga menjadi alat utama dalam diagnosis
berbagai penyakit gastrointestinal, termasuk GERD dan polip. Dari hasil prosedur
ini, diperoleh citra endoskopi yang mengandung informasi visual krusial mengenai
kondisi mukosa saluran cerna. Namun, interpretasi citra endoskopi secara manual
memiliki keterbatasan signifikan, seperti ketergantungan pada pengalaman klinis
dokter, variabilitas subjektif antarpengamat, serta risiko human error yang dapat
menyebabkan diagnosis kurang akurat atau tertunda (Zhou er al., 2023).
Kompleksitas visual, seperti perbedaan warna jaringan yang halus, pencahayaan
yang tidak merata, dan keberadaan artefak citra, menambah tantangan dalam
penilaian manual (Zhou et al., 2023).

Berkenaan dengan hal ini, teknologi berbasis kecerdasan buatan (artificial
intelligence |/ AI), khususnya model deep learning untuk Kklasifikasi citra,
menawarkan solusi inovatif. Dengan melatih model pada ribuan gambar endoskopi,
sistem A1 mampu mengenali pola-pola patologis secara konsisten dan dalam waktu
yang lebih singkat dibandingkan tenaga medis manusia, sehingga berpotensi
meningkatkan akurasi diagnosis dan efisiensi layanan kesehatan.

Kecerdasan buatan, khususnya deep learning berbasis convolutional neural
network (CNN) seperti ResNet atau EfficientNet, menawarkan potensi untuk
mengatasi tantangan ini melalui analisis citra endoskopi otomatis. Namun, model
CNN tradisional seperti ResNet atau EfficientNet sering kali kurang efisien untuk

diimplementasikan pada perangkat dengan spesifikasi rendah, yang umum



ditemukan di rumah sakit kecil (Tan & Le, 2019). Untuk mengatasi masalah ini,
penelitian ini menggunakan ConvNeXt, sebuah arsitektur CNN modern yang
menggabungkan efisiensi CNN dengan prinsip desain Vision Transformer.
ConvNeXt merupakan arsitektur konvolusional modern yang menunjukkan
performa tinggi dan efisiensi komputasi yang baik pada berbagai benchmark visi
komputer umum, seperti klasifikasi ImageNet, deteksi objek, dan segmentasi
semantik (Liu et al., 2022).

Hasil benchmark pada ImageNet-1K/22K menunjukkan bahwa berbagai
varian ConvNeXt secara konsisten melampaui performa ResNet dan bersaing
dengan atau bahkan melampaui Vision Transformer (misalnya Swin-B), dengan
akurasi lebih tinggi dan throughput inference yang lebih baik, sambil tetap
mempertahankan efisiensi parameter dan arsitektur CNN yang sederhana (Liu et al.,
2022). Keunggulan ini menjadikan ConvNeXt sangat relevan untuk aplikasi medis,
di mana presisi tinggi dibutuhkan namun dalam konteks operasional yang efisien
(Esteva et al., 2021). Selain itu, struktur ConvNeXt yang modular dan tidak terlalu
kompleks memungkinkan proses fine-tuning lebih fleksibel pada dataset medis
berskala sedang hingga kecil, sehingga cocok diterapkan untuk sistem klasifikasi
otomatis di fasilitas kesehatan (Shin et al., 2016).

Penelitian ini akan menggunakan dataset citra endoskopi GastroEndoNet:
Comprehensive Endoscopy Image dataset for GERD and Polyp Detection, yang
tersedia di Mendeley Data (Bitto et al., 2025), untuk melatih model ConvNeXt-Tiny
dalam mendeteksi GERD dan polip usus. Performa model akan dievaluasi

menggunakan metrik-metrik yang umum digunakan dalam klasifikasi citra medis,



yaitu matriks konfusi (menggambarkan distribusi prediksi benar dan salah untuk
setiap kelas), akurasi (persentase prediksi benar dari total data uji), sensitivitas
(recall, kemampuan mendeteksi kondisi positif seperti GERD atau polip),
spesifisitas (kemampuan mengenali kondisi normal tanpa salah melabeli sebagai
penyakit), dan F'/-score (keseimbangan antara precision dan recall) (Esteva et al.,
2017).

Penelitian ini bertujuan mengimplementasikan sistem klasifikasi citra
endoskopi berbasis ConvNeXt-Tiny yang akurat dan efisien, serta mengevaluasi
model untuk mendeteksi GERD dan polip usus, mendukung diagnosis di rumah
sakit tipe C di Indonesia. Dengan demikian, penelitian ini diharapkan dapat
meningkatkan efisiensi dan akurasi diagnosis, terutama di wilayah dengan akses
terbatas ke spesialis gastroenterologi. Upaya ini sejalan dengan nilai-nilai dalam
Islam yang mendorong pencegahan penyakit dan penyelamatan jiwa manusia
sebagai bentuk iisan (kebaikan). Allah SWT berfirman:
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"Wahai orang-orang yang beriman! Janganlah kamu melanggar syiar-syiar
kesucian Allah, dan jangan (melanggar kehormatan) bulan-bulan haram, jangan
(mengganggu) hadyu (hewan-hewan kurban) dan qala'id (hewan-hewan kurban
yang diberi tanda), dan jangan (pula) mengganggu orang-orang yang mengunjungi
Baitulharam,; mereka mencari karunia dan keridhaan Tuhannya. Tetapi apabila
kamu telah menyelesaikan ihram, maka bolehlah kamu berburu. Jangan sampai
kebencian(mu) kepada suatu kaum karena mereka menghalang-halangimu dari
Masjidilharam, mendorongmu berbuat melampaui batas (kepada mereka). Dan
tolong-menolonglah kamu dalam (mengerjakan) kebajikan dan takwa, dan jangan
tolong-menolong dalam berbuat dosa dan permusuhan. Bertakwalah kepada Allah,
sungguh, Allah sangat berat siksaan-Nya." (Q.S. Al-Maidah: 2)



Menurut Tafsir Ibn Kathir (2008), ayat ini menegaskan kewajiban umat
Islam untuk saling bekerja sama dalam kebajikan dan takwa, serta menjauhi kerja
sama dalam dosa dan permusuhan. Prinsip ini dapat diaktualisasikan dalam konteks
modern, misalnya dengan bekerja sama dalam menjaga kesehatan dan
menghindarkan diri dari mudharat melalui pengembangan sistem medis berbasis
teknologi. Selain itu, terdapat pula sabda Nabi Muhammad % yang mengandung

motivasi untuk berikhtiar dalam menemukan solusi medis bagi setiap penyakit:
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"Tidaklah Allah menurunkan suatu penyakit, melainkan Dia juga menurunkan
obatnya." (HR. Bukhari, no. 5678)

Dalam penjelasan Ibn Hajar al-‘Asqalani, hadis ini menunjukkan anjuran
untuk melakukan penelitian dan pengobatan, sebab setiap penyakit pasti memiliki
solusi yang diciptakan Allah, hanya saja sebagian telah ditemukan dan sebagian
lain menunggu untuk diikhtiarkan (Ibn Hajar al-‘Asqalani, 2001).

Dengan dasar tersebut, penelitian ini tidak hanya merupakan kontribusi
ilmiah dalam bidang teknologi medis, tetapi juga menjadi bentuk pengabdian dalam
kerangka etika Islam untuk menjaga kesehatan sebagai bagian dari amanah yang

wajib dijaga.

1.2 Rumusan Masalah
Bagaimana membangun dan mengevaluasi model klasifikasi citra

endoskopi menggunakan arsitektur ConvNeXt-Tiny untuk mendeteksi penyakit



GERD dan polip usus secara otomatis berdasarkan metrik matriks konfusi, akurasi,

sensitivitas, dan spesifisitas?

1.3 Batasan Masalah
a. Penelitian ini hanya menggunakan dataset citra endoskopi dari
GastroEndoNet
b. Deteksi terbatas pada dua jenis kondisi gastrointestinal, yaitu GERD
(gastroesophageal reflux disease) dan polip usus, tanpa mencakup jenis
kelainan lain seperti kanker kolorektal lanjut atau gastritis.
c. Arsitektur yang digunakan terbatas pada ConvNeXt-Tiny, tanpa perbandingan

dengan arsitektur lain seperti ResNet, EfficientNet, atau ViT.

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah untuk membangun model klasifikasi citra
endoskopi menggunakan arsitektur ConvNeXt-Tiny dan mengevaluasi performa
model berdasarkan metrik akurasi, sensitivitas, spesifisitas, dan matriks konfusi

untuk mendeteksi penyakit GERD dan polip usus secara otomatis.

1.5 Manfaat Penelitian
Penelitian ini diharapkan dapat memberikan manfaat baik secara teoritis
maupun praktis, sebagai berikut:
1. Penelitian ini memberikan kontribusi pada pengembangan ilmu
pengetahuan di bidang kecerdasan buatan, khususnya dalam penerapan

arsitektur ConvNeXt-Tiny untuk klasifikasi citra medis.



2. Hasil dari penelitian ini diharapkan dapat mendukung sistem pendukung
keputusan medis (clinical decision support system), khususnya dalam
membantu dokter atau tenaga medis mendiagnosis GERD dan polip usus

secara lebih cepat dan akurat.



BAB II

STUDI PUSTAKA

2.1 Penelitian Terkait

Dalam beberapa tahun terakhir, pemanfaatan deep learning, khususnya
convolutional neural networks (CNN), telah menjadi pendekatan utama dalam
klasifikasi citra medis, termasuk dalam analisis citra endoskopi. Deteksi dini
penyakit seperti kanker kolorektal maupun abnormalitas gastrointestinal lainnya
sangat bergantung pada kemampuan sistem untuk mengenali keberadaan polip atau
lesi pada dinding saluran cerna. Sebelumnya, metode deteksi polip banyak
bergantung pada fitur buatan (handcrafted features) seperti tekstur dan warna.
Namun, pendekatan tersebut memiliki keterbatasan, terutama ketika menghadapi
variasi bentuk, ukuran, dan pencahayaan dari citra endoskopi.

Seiring berkembangnya CNN dan arsitektur mutakhir seperti YOLO,
ResNet, dan UNet, performa deteksi dan segmentasi menjadi semakin akurat dan
cepat, membuka jalan bagi penerapan sistem computer-aided diagnosis (CAD)
secara real-time dalam praktik klinis. Salah satu studi penting dilakukan oleh Jha et
al. (2021) yang memperkenalkan ColonSegNet, sebuah arsitektur encoder-decoder
yang dirancang untuk segmentasi dan deteksi polip dalam citra kolonoskopi secara
real-time. Penelitian ini menggunakan dataset publik Kvasir-SEG dengan 1.072
citra yang telah dianotasi. Melalui benchmarking terhadap berbagai arsitektur
seperti YOLOv4, RetinaNet, dan Faster R-CNN, ColonSegNet menunjukkan

performa kompetitif dengan Dice coefficient sebesar 0,8206 dan kecepatan



inference mencapai 180 FPS, menjadikannya salah satu metode tercepat yang
mendekati kebutuhan klinis.

Pendekatan berbeda diusulkan oleh Cao ef al. (2021), yang fokus pada
deteksi polip lambung suatu tantangan tersendiri karena bentuk dan ukuran polip
yang lebih kecil serta tekstur mukosa lambung yang kompleks. Dengan
memodifikasi YOLOv3 dan menambahkan modul fusi fitur, mereka berhasil
meningkatkan presisi deteksi menjadi 91,6% dan F/-score hingga 88,8%, jauh
mengungguli baseline. Meskipun dataset yang digunakan bersifat privat dan
khusus untuk polip lambung, studi ini memberikan kontribusi penting dalam hal
penanganan objek kecil dan penggabungan fitur multi-level, yang sangat relevan
dalam konteks klasifikasi citra endoskopi gastrointestinal atas (Cao et al., 2021; Jha
etal.,2021).

Penelitian oleh Chan e al. (2023) berfokus pada klasifikasi multi-kelas
penyakit gastroesophageal reflux disease (GERD) menggunakan citra endoskopi
berbasis white light (WL). Dengan menggunakan dataset internal dari Xiangyang
Centre Hospital yang terdiri atas 3.654 citra endoskopi, mereka membagi data
berdasarkan klasifikasi Los Angeles (LACS) menjadi empat kelas: A, B, C, dan D.
Metode yang digunakan mencakup pemanfaatan model CNN pre-trained seperti
DenseNet121, ResNet, hingga InceptionResNet, yang kemudian dikombinasikan
dengan teknik data resampling dan attention map.

Model terbaik diperoleh dari kombinasi DenseNet121 dengan oversampling
dan global attention block (GAB), yang menghasilkan akurasi sebesar 74,69%, F'1-

score sebesar 69,87%, dan Cohen’s kappa 0,7757. Selain pengembangan model,
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peneliti juga merancang antarmuka pengguna berbasis HuggingFace untuk
memperkuat adopsi klinis. Keunggulan dari studi ini terletak pada pendekatan
sistematis terhadap klasifikasi GERD secara detail berdasarkan skala LACS penuh,
serta upaya untuk menangani imbalance data dan meningkatkan interpretabilitas
melalui attention map (Chan et al., 2023).

Perkembangan ini mengindikasikan adanya pergeseran dari pendekatan
CNN tradisional ke model-model berbasis Transformer, terutama dalam aplikasi
citra medis yang kompleks. Selain itu, fokus penelitian mulai bergeser dari
klasifikasi umum menuju kasus-kasus yang lebih spesifik, seperti GERD dan polip,
yang merupakan dua kategori penting dalam diagnostik gastrointestinal atas dan
bawah (Chan et al., 2023).

Seiring berkembangnya teknologi deep learning, pendekatan berbasis
arsitektur yang lebih modern mulai dikembangkan untuk mengatasi tantangan
klasifikasi citra medis yang kompleks. Salah satu penelitian oleh Li et al. (2023)
mengusulkan pendekatan hibrida ConvNeXt dan Vision Transformer (ViT) dalam
sistem diagnosis berbantuan komputer untuk lesi kulit akibat infeksi virus.
Penelitian ini menggunakan model gabungan ConvNeXt-Small dan Swin-T, serta
diterapkan pada dataset baru bernama Skin-CID, yang mencakup berbagai penyakit
kulit termasuk poxvirus. Sistem ini dilatih secara end-fo-end menggunakan strategi
penyeimbangan data dan augmentation berbasis warna serta tekstur. Hasil evaluasi
menunjukkan bahwa model gabungan ConvNeXt-Small dengan Swin-T berhasil
mencapai akurasi tertinggi sebesar 96,03% dan FI-score 94,27%, mengungguli

model baseline seperti ResNet dan DenseNet. Pendekatan ini membuktikan bahwa
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kombinasi CNN dan Transformer mampu memanfaatkan fitur global dan lokal
secara sinergis untuk meningkatkan akurasi diagnosis (Li et al., 2023).

Penelitian terbaru oleh Nergiz (2023) mengkaji penerapan ConvNeXt pada
klasifikasi lesi kolorektal menggunakan dataset MHIST yang berisi 3.152 tile citra
histopatologi berlabel hyperplastic polyp (HP) dan sessile serrated adenoma (SSA).
Peneliti mengevaluasi empat varian ConvNeXt (Tiny, Small, Big, Large) pada tiga
skenario: full data, k-shot learning, dan gradually increasing difficulty. Hasilnya
menunjukkan ConvNeXt-L. mencapai akurasi 88,9%, Fl-score 91,21%, AUC
93,91%, serta Cohen’s kappa 0,7633, mengungguli arsitektur CNN konvensional
seperti ResNet, DenseNet, dan Inception v3. Selain itu, eksperimen few-shot
menunjukkan kemampuan generalisasi ConvNeXt tetap tinggi meskipun data
terbatas, menjadikannya baseline yang menjanjikan untuk tugas klasifikasi medis
di domain data terbatas (Nergiz, 2023).

Pendekatan berbasis arsitektur ConvNeXt juga diuji secara spesifik dalam
konteks klasifikasi penyakit kulit yang menyerupai gejala virus, seperti monkeypox.
Huan dan Dun (2024) memperkenalkan MSMP-Net, sebuah model multi-scale
neural network yang dibangun di atas backbone ConvNeXt untuk klasifikasi lesi
kulit akibat virus monkeypox. MSMP-Net menggabungkan fitur multiskala dari
ConvNeXt dengan desain inverse bottleneck dan large kernel untuk meningkatkan
ekstraksi fitur spasial.

Penelitian ini menggunakan dataset MSLD v2.0 dan berhasil mencapai
akurasi 87,03%, F'I-score 86,58%, serta efisiensi tinggi dalam pipeline end-to-end.

Inovasi utama terletak pada struktur fusi fitur multiskala yang mampu menangkap
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perbedaan morfologis halus pada citra kulit. Penelitian ini menandai langkah maju
dalam pemanfaatan ConvNeXt untuk klasifikasi citra medis nonendoskopik, serta
membuka peluang adopsi pada domain yang lebih kompleks seperti endoskopi
saluran pencernaan.

Rangkuman dari seluruh penelitian yang telah dibahas dapat dilihat pada

Tabel 2.1, yang memuat perbandingan metode, dataset, dan hasil utama dari tiap

studi.
Tabel 2.1 Ringkasan Penelitian Terkait
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No Peneliti Tujl}a.n Dataset Metode Hasil Kelebihan Keterbat
Penelitian Utama asan
kappa
0,7633
) Bukan
MSMP- Multi-
Huan | Klasifikasi Net g‘ixkura scale, (C)?liERD/p
6 | & Dun | lesi MSLD v2.0 | (ConvN 2703 efisien noE:
(2024) | monkeypox eXt o) end-to-
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base) end pi

Berdasarkan enam penelitian yang telah dibahas, terlihat adanya
perkembangan signifikan dalam pemanfaatan metode deep [learning untuk
klasifikasi citra medis, khususnya dalam domain endoskopi dan penyakit kulit.
Dimulai dari pendekatan CNN konvensional yang berfokus pada segmentasi polip
atau klasifikasi GERD, hingga munculnya model hybrid dan backbone modern
seperti ConvNeXt dan Vision Transformer, tren penelitian menunjukkan upaya
berkelanjutan untuk meningkatkan akurasi, efisiensi, dan generalisasi model.

Sebagian besar penelitian masih terbatas pada klasifikasi satu jenis penyakit
secara spesifik, seperti polip atau GERD saja, dan belum banyak yang
menggabungkan klasifikasi multi-label dalam domain endoskopi gastrointestinal.
Selain itu, penggunaan ConvNeXt dalam domain endoskopi masih minim
ditemukan dalam literatur yang ada. Oleh karena itu, penelitian ini hadir dengan
kontribusi utama berupa penerapan ConvNeXt-Tiny sebagai arsitektur backbone
untuk klasifikasi citra endoskopi GERD dan polip secara bersamaan. Dengan
pendekatan ini, penelitian diharapkan dapat menjawab celah riset berupa kebutuhan
model ringan, efisien, dan akurat untuk diagnosis multi-label berbasis endoskopi.

Tabel 2.1 juga menunjukkan bagaimana pendekatan ini berada pada posisi strategis
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untuk menjembatani kekosongan antara pendekatan klasik dan arsitektur modern

dalam klasifikasi citra medis.

2.2 Gastroesophageal reflux disease (GERD)

Gastroesophageal reflux disease (GERD) merupakan gangguan saluran
cerna kronis yang ditandai dengan refluks isi lambung ke esofagus, yang
menimbulkan gejala seperti nyeri epigastrium (heartburn), regurgitasi asam, dan
disfagia (Rijal et al., 2024). Meskipun prevalensi GERD di Asia lebih rendah
dibandingkan negara-negara Barat, tren peningkatannya terus berkembang seiring
perubahan gaya hidup masyarakat.

Studi oleh Rijal et al. (2024) di RS Ibnu Sina Makassar mengungkap bahwa
mayoritas pasien GERD adalah perempuan usia dewasa muda (20—44 tahun)
dengan indeks massa tubuh normal, memiliki riwayat gastritis, dan berprofesi
sebagai ibu rumah tangga. Faktor risiko signifikan meliputi obesitas, pola makan
tidak sehat, stres, serta kebiasaan seperti merokok dan konsumsi makanan asam
atau pedas.

Endoskopi berperan penting dalam diagnosis GERD, khususnya dalam
mendeteksi komplikasi seperti Barrett’s esophagus, suatu lesi praneoplastik yang
dapat berkembang menjadi adenokarsinoma esofagus jika tidak ditangani. Oleh
karena itu, deteksi dini menjadi krusial guna mencegah komplikasi dan
mengoptimalkan manajemen klinis, terutama mengingat data yang menunjukkan
GERD mulai menjangkiti kelompok usia produktif dan berdampak pada kualitas

hidup serta beban sistem layanan kesehatan (Rijal et al., 2024).
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2.3 Polip Usus

Polip usus merupakan pertumbuhan abnormal pada lapisan mukosa saluran
cerna, terutama pada kolon dan rektum, yang dapat bersifat neoplastik maupun non-
neoplastik, dengan potensi transformasi menjadi kanker kolorektal, terutama pada
jenis adenomatosa dan polip serrated. Deteksi dan reseksi dini polip merupakan
langkah penting dalam mencegah perkembangan kanker kolorektal, yang secara
global merupakan penyebab kematian ketiga tertinggi akibat kanker (Jha et al.,
2021).

Meskipun prosedur kolonoskopi telah menjadi metode standar diagnosis
dan terapi melalui visualisasi langsung dan polipektomi, keterbatasan berupa
tingkat kesalahan deteksi yang mencapai 20% masih menjadi tantangan, khususnya
pada polip berukuran kecil dan datar (Cao ef al., 2021). Dalam hal ini, pendekatan
berbasis deep learning, seperti ColonSegNet dan model berbasis YOLOv3, telah
menunjukkan kinerja menjanjikan untuk segmentasi dan deteksi real-time citra
endoskopi, dengan akurasi tinggi serta kemampuan mendeteksi polip multipel
dalam satu gambar sekaligus (Jha et al., 2021; Cao et al., 2021).

Sistem berbasis CNN seperti GastroNet juga menunjukkan akurasi validasi
mencapai 99,2% dalam klasifikasi berbagai kelainan gastrointestinal, termasuk
polip, dari citra endoskopi kapsul, memperkuat relevansi integrasi teknologi
kecerdasan buatan dalam upaya deteksi dini polip usus secara otomatis dan efisien
(Rajkumar et al., 2024). Oleh karena itu, pengembangan sistem klasifikasi citra
berbasis deep learning tidak hanya mendukung diagnosis yang lebih cepat dan

objektif, tetapi juga menjadi fondasi penting dalam sistem Computer-Aided
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Diagnosis (CADx) yang berpotensi meningkatkan kualitas layanan medis

gastroenterologi secara luas.

2.4 Convolutional Neural Network

Convolutional Neural Network (CNN) merupakan salah satu arsitektur
jaringan saraf tiruan yang paling dominan dalam bidang visi komputer, terutama
untuk tugas-tugas klasifikasi citra. CNN dirancang untuk mengenali pola spasial
dalam data grid seperti citra dua dimensi (2D), dengan mengandalkan proses
pembelajaran fitur secara otomatis melalui lapisan-lapisan convolution, pooling,
dan fully connected. CNN memiliki keunggulan karena mampu mengekstraksi fitur
lokal secara hierarkis, mulai dari tepi dan tekstur pada lapisan awal hingga bentuk
kompleks pada lapisan yang lebih dalam (Nadachowski et al., 2024; Zhao et al.,
2020).

Arsitektur dasar CNN terdiri dari beberapa komponen utama. Pertama
adalah lapisan convolution, yang berfungsi menerapkan kernel atau filter untuk
mengekstraksi fitur dari data masukan. Proses ini menghasilkan feature maps yang
mewakili pola-pola penting dalam citra. Setelah itu, fungsi aktivasi seperti ReLU
diaplikasikan untuk menambahkan non-linearitas. Kemudian terdapat lapisan
pooling, umumnya menggunakan metode max pooling, yang berfungsi mereduksi
dimensi spasial dan menjaga informasi dominan. Lapisan ini juga membantu
mengurangi kompleksitas komputasi dan mencegah overfitting. D1 akhir jaringan,
lapisan fully connected digunakan untuk pengambilan keputusan klasifikasi, yang
sering kali diakhiri dengan fungsi Soffmax untuk menghitung probabilitas antar

kelas (Nadachowski ef al., 2024; Zhao et al., 2020).
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Dalam pemrosesan citra, CNN bekerja dengan cara menerima masukan
berupa representasi matriks (seperti citra atau data DEM), kemudian secara
bertahap mengekstraksi fitur melalui lapisan-lapisan konvolusional. Fitur-fitur ini
kemudian digabungkan dalam lapisan fully connected untuk menghasilkan keluaran
klasifikasi. Proses ini memungkinkan CNN untuk belajar langsung dari data mentah
tanpa memerlukan rekayasa fitur manual yang kompleks, sebagaimana terlihat pada
penerapan CNN untuk klasifikasi spektrum EEG (Ajra et al., 2022) dan struktur
sekunder protein (Zhao et al., 2020).

Salah satu keunggulan utama CNN adalah kemampuannya untuk mengatasi
keterbatasan pendekatan klasifikasi konvensional dalam pengolahan citra medis,
seperti ketergantungan pada fitur yang direkayasa secara manual dan sensitivitas
terhadap noise. CNN dapat mengidentifikasi pola penting bahkan dari citra yang
kompleks, sehingga sangat sesuai untuk klasifikasi citra endoskopi yang memiliki
variabilitas tekstur tinggi dan perbedaan morfologi halus, seperti pada kasus deteksi
GERD dan polip. CNN juga menawarkan pendekatan yang lebih objektif dan
reprodusibel karena tidak tergantung pada subjektivitas interpretasi manusia
(Nadachowski et al., 2024; Prommakhot & Srinonchat, 2024).

CNN menjadi fondasi bagi pengembangan arsitektur modern seperti VGG,
ResNet, dan ConvNeXt. VGG, misalnya, memperkenalkan desain arsitektur yang
dalam namun sederhana dengan filter convolution 3%3 yang berulang,
membuktikan pentingnya kedalaman jaringan dalam meningkatkan akurasi
klasifikasi (Nadachowski et al., 2024). Sedangkan ResNet menambahkan residual

connection untuk mengatasi masalah vanishing gradient pada jaringan yang sangat
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dalam. Arsitektur-arsitektur ini menjadi dasar evolusi ke arah model yang lebih
efisien dan canggih, termasuk ConvNeXt yang menggabungkan kekuatan CNN
dengan prinsip desain modern dari Vision Transformer. Dengan demikian,
memahami CNN merupakan langkah awal penting untuk mengaplikasikan
arsitektur seperti ConvNeXt secara efektif dalam tugas klasifikasi citra medis

endoskopi.

2.5 ConvNeXt

Kemunculan ConvNeXt merupakan respons terhadap dominasi Vision
Transformer (ViT) dalam bidang pengenalan citra visual sejak tahun 2020-an.
Meskipun arsitektur konvolusional klasik seperti ResNet dan VGGNet telah
membentuk fondasi kuat untuk visi komputer selama lebih dari satu dekade,
pengenalan ViT menantang asumsi bahwa konvolusi adalah strategi terbaik untuk
pembelajaran fitur visual. Vision Transformer menghadirkan keunggulan dalam
memodelkan konteks global melalui self-attention, namun sering kali mengabaikan
bias induktif lokal yang menjadi kekuatan utama ConvNet. Untuk menjembatani
kesenjangan tersebut, Liu et al. (2022) mengusulkan ConvNeXt, sebuah keluarga
arsitektur ConvNet yang dimodernisasi dengan mengadopsi prinsip desain dari
Transformer tanpa sepenuhnya mengabaikan struktur konvolusional tradisional.
Tujuannya adalah membuktikan bahwa ConvNet murni, dengan pembaruan
arsitektur yang cermat, masih mampu bersaing dengan Transformer dalam akurasi
dan efisiensi.

Arsitektur ConvNeXt dibangun di atas struktur ResNet, tetapi dimodifikasi

secara sistematis untuk meniru perilaku arsitektur Transformer sambil tetap
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mempertahankan sifat konvolusional. Model ini mempertahankan arsitektur
bertingkat (multi-stage) dengan resolusi fitur yang menurun secara bertahap, mirip
dengan ConvNet klasik. Namun, ConvNeXt memperkenalkan elemen-elemen baru
seperti penggunaan depthwise convolution, normalisasi layer (layer normalization),
aktivasi GELU, serta block-block dengan inverted bottleneck. Desain ini
memungkinkan ConvNeXt untuk menangkap fitur spasial lokal secara efisien
sambil juga memperluas jangkauan konteks spasial melalui kernel besar. Selain itu,
ConvNeXt mengadopsi teknik pelatihan modern seperti optimizer AdamW, strategi
augmentasi data yang intensif, dan regularisasi berbasis stochastic depth yang telah
terbukti efektif pada Transformer.

Detail arsitektur ConvNeXt mencakup beberapa komponen kunci. Pertama,
penggunaan depthwise convolution, teknik yang memungkinkan pemisahan
pemrosesan antar kanal sehingga mengurangi jumlah parameter secara signifikan.
Teknik ini telah digunakan sebelumnya pada arsitektur seperti MobileNet, dan
dalam ConvNeXt dipadukan dengan %I convolution untuk memungkinkan
pemrosesan spasial dan kanal secara terpisah. Kedua, ConvNeXt menerapkan
inverted bottleneck, yaitu konfigurasi layer di mana dimensi fitur diperluas sebelum
kembali dipersempit. Pendekatan ini meningkatkan kapasitas representasi tanpa
memperbesar jumlah parameter secara drastis. Ketiga, ConvNeXt menggantikan
aktivasi ReLU dengan GELU, yang menunjukkan peningkatan performa dalam
konteks pembelajaran mendalam.

ConvNeXt juga mengadopsi kernel convolution berukuran besar seperti 7x7,

berbeda dari pendekatan tradisional yang menggunakan stacking kernel kecil
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seperti 3x3. Penggunaan kernel besar ini memberikan jangkauan reseptif yang lebih
luas dan mendekati karakteristik global attention pada Transformer. Layer
normalisasi dalam ConvNeXt menggunakan LayerNorm, berbeda dari BatchNorm
yang umum dalam CNN konvensional, untuk menstabilkan pelatihan terutama
ketika ukuran batch kecil. Kombinasi dari desain mikro dan makro ini menciptakan
blok ConvNeXt yang efisien namun tetap kuat dalam ekstraksi fitur, baik untuk citra
alami maupun citra medis.

Dibandingkan dengan CNN konvensional seperti ResNet50, EfficientNet,
dan DenseNet, ConvNeXt menunjukkan peningkatan akurasi yang signifikan dalam
berbagai tugas klasifikasi dan segmentasi citra. Studi oleh Emegano et al. (2025)
menunjukkan bahwa ConvNeXt mencapai akurasi 98% dalam klasifikasi kanker
prostat multikelas, melampaui ResNet50 (93%) dan bahkan Swin Transformer
(95%). Keunggulan ini diperoleh tidak hanya dari desain arsitektur yang modern,
tetapi juga dari kombinasi efisiensi komputasi dan kemampuannya dalam
mengekstraksi fitur lokal maupun global secara efektif. Dalam domain citra medis,
sifat tersebut sangat penting mengingat keterbatasan data berlabel dan kebutuhan
akan model yang dapat diinterpretasikan.

ConvNeXt dikembangkan dalam beberapa varian yang berbeda dalam jumlah
kanal fitur, kedalaman blok, serta kapasitas komputasi. Varian varian ini dirancang
agar ConvNeXt dapat digunakan pada berbagai skenario, mulai dari aplikasi ringan
hingga kebutuhan komputasi besar. Perbedaan utama mencakup jumlah kanal pada
tiap stage dan jumlah blok yang digunakan. Liu ef al. (2022) mendefinisikan lima

varian utama yaitu ConvNeXt Tiny, Small, Base, Large, dan Extra Large. Semua
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varian mempertahankan struktur bertingkat empat stage dengan resolusi fitur yang
semakin menurun di setiap stage, tetapi memiliki kapasitas pemrosesan yang
berbeda.

A) ConvNeXt Tiny (ConvNeXt T)
ConvNeXt Tiny merupakan varian dengan kapasitas paling kecil. Model ini
menggunakan konfigurasi kanal berturut turut sebanyak 96, 192, 384, dan 768 pada
empat stage, dengan jumlah blok masing masing 3, 3, 9, dan 3. Total parameter
model adalah sekitar 29 juta dengan kebutuhan komputasi 4.5 GFLOPs. Meskipun
ringan, ConvNeXt Tiny mencapai akurasi 82.1 persen pada ImageNet K. Varian ini
cocok digunakan pada skenario dengan sumber daya komputasi terbatas seperti
klasifikasi citra endoskopi. Informasi konfigurasi ini dilaporkan oleh Liu et al.
dalam hasil eksperimen klasifikasi /mageNet (2022).

B) ConvNeXt Small (ConvNeXt S)

Varian Small memiliki jumlah kanal yang sama dengan ConvNeXt Tiny

tetapi menambah jumlah blok secara signifikan pada stage ketiga yaitu menjadi 27
blok. Konfigurasi bloknya adalah 3, 3, 27, dan 3 dengan total parameter sekitar 50
juta dan kebutuhan komputasi 8.7 GFLOPs. Penambahan kedalaman pada stage
ketiga bertujuan meningkatkan kapasitas representasi fitur. Model ini mencapai
akurasi 83.1 persen pada ImageNet 1K. Spesifikasi ini dicantumkan oleh Liu ef al.
(2022) dalam tabel perbandingan performa model.

C) ConvNeXt Base (ConvNeXt B)

ConvNeXt Base merupakan varian yang kapasitasnya sebanding dengan

Swin Transformer Base serta ResNet 200. Varian ini memakai kanal yang lebih
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lebar yaitu 128, 256, 512, dan 1024 dengan jumlah blok 3, 3, 27, dan 3. Total
parameter mencapai sekitar 89 juta dengan kebutuhan komputasi 15.4 GFLOPs:.
ConvNeXt Base menghasilkan akurasi 83.8 persen pada ImageNet [IK dan
meningkat hingga 86.8 persen ketika dilakukan pre training pada ImageNet 22K
sebelum fine tuning. Seluruh angka ini dilaporkan dalam hasil eksperimen model
oleh Liu et al. (2022).

D) ConvNeXt Large (ConvNeXt L)

Varian Large meningkatkan kanal lebih jauh yaitu 192, 384, 768, dan 1536
dengan jumlah blok tetap sama 3, 3, 27, dan 3. Jumlah parameter mencapai 198 juta
dengan kebutuhan komputasi 34.4 GFLOPs. Pada pelatihan ImageNet 1K, model
ini mencapai akurasi 84.3 persen dan meningkat menjadi 87.5 persen ketika
dilakukan pre training di ImageNet 22K lalu fine tuning pada resolusi 384 piksel.
Hal ini menunjukkan bahwa ConvNeXt memiliki kemampuan scaling yang baik
ketika kapasitas model diperbesar.

E) ConvNeXt Extra Large (ConvNeXt XL)

ConvNeXt Extra Large merupakan varian dengan kapasitas terbesar. Kanal
pada tiap stage adalah 256, 512, 1024, dan 2048 dengan jumlah blok 3, 3, 27, dan
3. Total parameter mencapai sekitar 350 juta dan kebutuhan komputasi 60.9
GFLOPs pada resolusi 224 piksel yang meningkat menjadi 179 GFLOPs pada
resolusi 384 piksel. Varian ini mencatatkan akurasi 87.8 persen pada ImageNet 22K
setelah fine tuning dalam konfigurasi resolusi tinggi. Menurut Liu et al. (2022),
varian XL menunjukkan bahwa ConvNeXt mampu bersaing dengan arsitektur

Vision Transformer besar tanpa memerlukan mekanisme self attention.
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Berdasarkan karakteristik masing-masing varian tersebut, penelitian ini
memilih ConvNeXt-Tiny sebagai backbone utama. Pemilihan ConvNeXt-Tiny
sebagai backbone dalam penelitian ini didasarkan pada pertimbangan efisiensi,
akurasi, dan keterbatasan sumber daya komputasi yang umum di lingkungan
akademik atau laboratorium medis. Sebagai varian terkecil, ConvNeXt-Tiny
memiliki jumlah parameter yang jauh lebih sedikit dibandingkan varian lain, namun
tetap mampu menangani kompleksitas pola dalam citra endoskopi. Model ini telah
diaplikasikan dalam penelitian segmentasi video polip oleh Bhattacharya et al.
(2024) yang menunjukkan performa tinggi bahkan pada skenario citra dengan
artefak seperti motion blur atau oklusi, dengan tetap mempertahankan kecepatan
inferensi real-time. Oleh karena itu, ConvNeXt-Tiny dinilai tepat untuk digunakan

dalam tugas klasifikasi citra endoskopi GERD dan polip pada penelitian ini.



BAB III

DESAIN DAN IMPLEMENTASI

3.1 Desain Penelitian

Penelitian dilakukan melalui beberapa tahapan sistematis, yaitu
pengumpulan data, pra-pemrosesan data, pelatihan model, pengujian, dan evaluasi
model. Data citra endoskopi diperoleh dari sumber yang telah divalidasi, seperti
dataset publik atau data klinis yang telah dianonimkan. Model ConvNeXt-Tiny
dipilih karena efisiensi komputasinya yang tinggi dan performa yang baik pada
tugas klasifikasi citra, terutama dalam domain medis. Proses pelatihan dilakukan
dengan memanfaatkan perangkat keras berbasis GPU untuk mempercepat
komputasi, diikuti dengan evaluasi menggunakan metrik seperti matriks konfusi,
akurasi, presisi, recall, dan F1-score untuk memastikan reliabilitas model dalam
mendeteksi GERD dan polip usus. Gambar 3.1 adalah diagram alur penelitian yang

menggambarkan tahapan-tahapan secara visual:

PENGUMPULAN DATA

Y

DESAIN SISTEM

Y

IMPLEMENTAST
METODE

¥

PENGUJTIAN

¥

EVALUASI

Gambar 3.1 Desain Penelitian
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3.2 Pengumpulan Data

Penelitian ini menggunakan dataset GastroEndoNet: Comprehensive
Endoscopy Image dataset for GERD and Polyp Detection yang tersedia di
Mendeley Data (Bitto et al., 2025). Dataset ini merupakan koleksi citra endoskopi
gastrointestinal berkualitas tinggi yang dirancang untuk mendukung penelitian
analisis citra medis, khususnya dalam deteksi dan klasifikasi penyakit GERD
(Gastroesophageal Reflux Disease) dan polip usus. dataset ini berisi 24.036 citra
dalam format JPG dengan resolusi 549x510 piksel, yang dikategorikan ke dalam
empat kelas: GERD, GERD Normal, Polyp, dan Polyp Normal. Jumlah total citra
tersebut berasal dari 4.006 citra primer yang diperluas melalui enam teknik
augmentation untuk meningkatkan variasi dan jumlah data, sehingga cocok untuk
pelatihan model pembelajaran mesin.

Distribusi citra per kelas adalah sebagai berikut:

1. GERD: 5.844 citra (974 citra primer x 6 augmentation), menampilkan
kerusakan esofagus akibat refluks pada pasien yang didiagnosis GERD melalui
pemeriksaan endoskopi. Citra ini mencakup berbagai tingkat keparahan kerusakan
jaringan esofagus.

2. GERD Normal: 6.618 citra (1.103 citra primer X 6 augmentation),
menggambarkan saluran gastrointestinal sehat tanpa tanda-tanda GERD, yang
berfungsi sebagai kontrol untuk memastikan model dapat membedakan kondisi

patologis dari normal.



26

3. Polyp: 4.674 citra (779 citra primer x 6 augmentation), menunjukkan
polip gastrointestinal dengan berbagai jenis dan tahap perkembangan, mendukung
deteksi dini kondisi yang berpotensi prakanker.

4. Polyp Normal: 6.900 citra (1.150 citra primer x 6 augmentation),
merepresentasikan kondisi gastrointestinal normal tanpa keberadaan polip, yang
digunakan untuk perbandingan dalam tugas klasifikasi.

Untuk memberikan gambaran visual tentang karakteristik citra dalam
dataset, Tabel 3.1 berikut menyajikan contoh citra dari masing-masing kelas. Tabel
ini akan diisi dengan citra representatif dari dataset GastroEndoNet untuk

mendukung analisis visual dan pelatihan model.

Tabel 3.1 Contoh Sampel Data Tiap Kelas
Kelas Deskripsi Contoh

Citra endoskopi esofagus
GERD dengan tanda kerusakan
akibat refluks.

Citra endoskopi saluran
GERD Normal gastrointestinal sehat
tanpa tanda GERD.

Citra endoskopi dengan
Polyp polip gastrointestinal
(berbagai jenis/tahap).

Citra endoskopi saluran
Polyp Normal gastrointestinal normal
tanpa polip.
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3.3 Desain Sistem

Desain sistem dalam penelitian ini ditunjukkan pada Gambar 3.2, yang
menggambarkan alur klasifikasi citra endoskopi menggunakan model ConvNeXt-
Tiny. Proses dimulai dari pemanfaatan dataset citra GastroEndoNet yang berisi
berbagai gambar endoskopi saluran pencernaan. Tahap awal dalam pemrosesan
data mencakup praproses berupa resize citra ke ukuran tertentu yang sesuai dengan
input model, dilanjutkan dengan normalisasi nilai piksel untuk meningkatkan
efisiensi dan akurasi pelatihan model. Setelah melalui tahap praproses, citra-citra
tersebut kemudian dimasukkan ke dalam model ConvNeXt-Tiny, yang telah
diadaptasi untuk tugas klasifikasi medis. Hasil keluaran dari model ini berupa label
klasifikasi yang menunjukkan jenis kondisi atau penyakit pada citra endoskopi yang

dianalisis.

PREPROCESSING CITRA

....................................

: F : HASIL
¢ Resize > normalisasi! [——»{MODEL CONVNEXT-TINY / KLASTFIKAST
- : CITRA

Dataset Citra
GastroEndoNet

Gambar 3.2 Desain Sistem

3.3.1 Input Citra

Tahap awal sistem adalah penerimaan citra endoskopi dari dataset
GastroEndoNet, yang berisi 24.036 citra dalam format JPG dengan resolusi 549 x
510 piksel. Citra tersebut mewakili empat kelas: GERD (5.844 citra), GERD
Normal (6.618 citra), Polyp (4.674 citra), dan Polyp Normal (6.900 citra). Citra-
citra ini diambil dari pemeriksaan endoskopi gastrointestinal, mencakup berbagai

kondisi patologis dan normal.
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3.3.2 Preprocessing Citra
Preprocessing bertujuan menyiapkan citra sebelum digunakan dalam
model. Tujuannya adalah meningkatkan efisiensi dan akurasi model dengan

memastikan data yang diproses konsisten serta lebih mudah dipahami oleh model.

3.3.2.1 Resize

Seluruh citra diubah ukurannya menjadi 224 x 224 piksel, yang merupakan
resolusi standar untuk pelatihan pada dataset ImageNet-1K. Ukuran ini dipilih
untuk memastikan kompatibilitas dengan arsitektur ConvNeXt yang digunakan.
Pada publikasi ConvNeXt (Liu et al., 2022), dijelaskan bahwa model dilatih dari
awal menggunakan dataset ImageNet-1K selama 300 epoch dengan resolusi
masukan 224 x 224 piksel. Hal tersebut menunjukkan bahwa resolusi ini digunakan
sebagai baseline pelatihan. Selain itu, citra dalam format RGB dengan tiga channel
merupakan standar pada dataset ImageNet, sehingga secara implisit format
masukan yang digunakan adalah 224 x 224 x 3. Penyeragaman dimensi ini penting
untuk menjaga konsistensi data masukan serta mendukung efisiensi dan kestabilan

selama proses pelatihan model.

3.3.2.2 Normalisasi

Setelah citra di-resize, langkah praproses selanjutnya adalah normalisasi nilai
piksel. Tujuan dari normalisasi ini adalah untuk menyelaraskan distribusi nilai input
agar lebih stabil dan mudah dipelajari oleh model. Dalam penelitian ini, normalisasi
dilakukan berdasarkan statistik global dari dataset ImageNet, yaitu dengan

menggunakan nilai rata-rata (mean) dan deviasi standar (standard deviation) pada
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masing-masing kanal warna (R, G, B). Nilai mean yang digunakan adalah [0,485,
0,456, 0,406], sedangkan nilai standard deviation-nya adalah [0,229, 0,224, 0,225].

Proses normalisasi ini secara matematis dapat dirumuskan dengan Persamaan 3.1.

255—
Xnorm = 2/255°0 (31)

o

di mana x adalah nilai piksel asli, p adalah nilai rata-rata (mean) untuk tiap
kanal, dan o adalah deviasi standar untuk tiap kanal. Langkah pembagian dengan
255 dilakukan terlebih dahulu untuk mengubah skala piksel dari 0-255 menjadi 0—
1, sebelum distandarkan menggunakan nilai statistik. Meskipun tidak disebutkan
secara eksplisit dalam paper ConvNeXt, proses ini merupakan praktik standar dalam
pelatihan model pada dataset ImageNet dan juga digunakan dalam implementasi
resmi ConvNeXt. Dengan melakukan normalisasi ini, model dapat menerima data
input dengan distribusi yang lebih terpusat, sehingga dapat mempercepat proses

pelatihan dan meningkatkan kestabilan konvergensi.

3.4 Implementasi Metode

Pada tahap ini, metode yang digunakan dalam penelitian diimplementasikan
untuk membangun model klasifikasi citra endoskopi berbasis arsitektur ConvNeXt-
Tiny. ConvNeXt merupakan pengembangan dari jaringan konvolusional standar
(ConvNet) yang dimodernisasi dengan mengadopsi prinsip desain Vision
Transformer, namun tetap mempertahankan sifat sepenuhnya konvolusional.
Keunggulan ConvNeXt terletak pada kemampuannya menggabungkan efisiensi
komputasi ConvNet dengan performa tinggi yang kompetitif terhadap arsitektur
Transformer pada berbagai tugas visi komputer, termasuk klasifikasi citra resolusi

tinggi. Dalam studi kasus ini, ConvNeX¢-Tiny dipilih karena memiliki kompleksitas
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komputasi yang relatif rendah, namun mampu mencapai akurasi tinggi pada tugas
klasifikasi. Arsitektur ini diadaptasi dan dilatih untuk mendeteksi dua jenis kelainan
pada citra endoskopi, yaitu Gastroesophageal Reflux Disease (GERD) dan polip

usus, yang memerlukan pemrosesan fitur visual secara mendetail.

3.4.1 Arsitektur ConvNeXt-Tiny

ConvNeXt-Tiny merupakan varian ringan dari keluarga ConvNeXt yang
dirancang untuk mempertahankan kinerja konvolusional modern sambil
mengadopsi prinsip-prinsip desain dari arsitektur transformer seperti Vision
Transformer (ViT). Arsitektur ini mengusung pendekatan hierarkis dengan empat
tahap (stage) yang memiliki resolusi peta fitur berbeda dan jumlah kanal (channels)
yang meningkat secara progresif, yakni 96, 192, 384, dan 768 kanal. Jumlah blok
konvolusional pada masing-masing tahap adalah (3, 3, 9, 3), dengan distribusi
beban komputasi 1:1:3:1 sebagaimana disarankan oleh Liu et al. (2022).

Setiap blok ConvNeXt mengintegrasikan depthwise convolution berukuran
kernel besar (7 x 7), diikuti LayerNorm, dua pointwise convolution (1 % 1) yang
membentuk struktur inverted bottleneck, serta aktivasi nonlinier GELU. Selain itu,
ConvNeXt-Tiny menggunakan mekanisme LayerScale, yaitu skalar yang dapat
dilatih untuk mengatur kontribusi jalur residual secara dinamis. Kombinasi ini
memungkinkan model menangkap konteks spasial yang luas dengan efisiensi
komputasi tinggi.

Proses pemrosesan dimulai dari stem layer (patch embedding) yang
mengubah citra masukan beresolusi 224 x 224 piksel menjadi representasi fitur

awal, dilanjutkan serangkaian downsampling layer untuk menurunkan resolusi
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spasial sambil meningkatkan dimensi kanal. Fitur yang dihasilkan kemudian
diproses melalui empat tahap blok ConvNeXt, dilanjutkan global average pooling
dan fully connected layer untuk menghasilkan keluaran klasifikasi. [lustrasi lengkap
arsitektur ConvNeXt-Tiny yang digunakan dalam penelitian ini ditunjukkan pada

Gambar 3.3.
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Gambar 3.3 Diagram alur arsitektur ConvNeXt-Tiny

3.4.1.1 Stem Layer (Patchify)

Pada tahap awal pemrosesan citra, ConvNeXt-Tiny menggunakan stem layer
atau patch embedding layer untuk mengubah citra mentah beresolusi tinggi menjadi
representasi fitur awal yang dapat diolah secara efisien oleh jaringan. Berbeda
dengan patch tokenization pada arsitektur Vision Transformer, ConvNeXt
menggunakan prinsip konvolusi dengan menerapkan convolutional layer berukuran
kernel besar dan stride tertentu untuk langsung menurunkan resolusi citra. Operasi
pada stem layer dapat direpresentasikan dengan proses konvolusi dua dimensi

sebagaimana Persamaan 3.2.

kn—1 wky—1
FM@py = Xpke Xwlo Kiw) X X(a+np+w) (3.2)
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Keterangan:

FMqpy : output konvolusi pada posisi (a, b)

K(nw) : kernel konvolusi dengan ukuran ky X kwr
X(a+np+w) : nilai piksel input di posisi (a + h, b + w)

Dalam ConvNeXt-Tiny, stem layer ini menggunakan kernel konvolusi
berukuran 4x4 dengan stride 4, yang berarti bahwa setiap keluaran representasi

(feature map) mengandung informasi dari area 16 piksel input (4x4).

H | 123 | T50 1230 245 |

H | 125 | 160 | 140 | 155

M | 120 145 | 135 | 150

n = embed_dim

M| 110 | 140 | 128 | 138

S

Feature Map
2 x 2 x embed_dim

patchify (Conv 4x4, stride 4)

Input Image (3 Channels)

Gambar 3.4 Contoh sederhana operasi patchify pada satu patch.

Proses ini mengubah citra RGB berukuran awal 224 x 224 x 3 menjadi
representasi awal berukuran 56 x 56 x 96, sebagaimana ditunjukkan pada Gambar
3.4. Transformasi ini dilakukan menggunakan konvolusi dengan kernel berukuran
4 x 4 dan stride 4, sehingga citra masukan dibagi menjadi potongan (patch)
berukuran 4 x 4 x 3. Tidak seperti ilustrasi konvolusi sederhana yang hanya
menggunakan satu kernel, pada tahap ini digunakan sebanyak 96 kernel (sesuai
jumlah kanal keluaran yang ditentukan arsitektur ConvNeXt-Tiny). Setiap kernel
menghasilkan satu nilai untuk setiap patch, sehingga setiap patch diproyeksikan
menjadi vektor fitur berdimensi 96. Nilai 96 ini bukan hasil perhitungan langsung

dari ukuran patch, melainkan jumlah kernel yang ditetapkan secara arsitektural
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sebagai embedding dimension awal. Seluruh hasil proyeksi kemudian disusun
kembali membentuk peta fitur awal (initial feature map) berukuran 56 x 56 x 96,
yang selanjutnya diproses pada tahap berikutnya.

Diilustrasikan pada Gambar 3.4, misalkan diambil sebuah patch citra
berukuran 4 % 4 pada kanal merah dari citra endoskopi. Nilai intensitas piksel dalam
patch tersebut, dari kiri atas ke kanan bawah, antara lain 123, 150, 130, 145 pada
baris pertama; 125, 160, 140, 155 pada baris kedua; 120, 145, 135, 150 pada baris
ketiga; serta 110, 140, 128, 138 pada baris keempat. Patch ini kemudian dikalikan
secara elemen demi elemen dengan kernel konvolusi berukuran 4 x 4 yang
bobotnya terdefinisi sebagai [1, 0, —1, 0] pada baris pertama, [0, 1, 0, —1] pada baris
kedua, [1, 0, —1, 0] pada baris ketiga, dan [0, 1, 0, —1] pada baris keempat.

Operasi dilakukan dengan cara sederhana: piksel 123 di kiri atas dikalikan
dengan bobot 1 menghasilkan 123, piksel 150 dikalikan dengan 0 menghasilkan 0,
piksel 130 dikalikan dengan —1 menghasilkan —130, dan seterusnya. Setelah semua
hasil perkalian dijumlahkan, nilai yang diperoleh adalah —15. Dengan demikian,
dari satu patch citra berukuran 4 x 4, kernel tersebut menghasilkan satu nilai tunggal
yang menjadi representasi fitur di posisi tersebut.

Sebagai simulasi, apabila proses serupa dilakukan pada seluruh citra berukuran
8 x 8 dengan stride 4, maka akan terbentuk 4 patch, dan masing-masing
menghasilkan satu nilai keluaran. Keempat nilai tersebut dapat disusun menjadi
feature map berukuran 2 x 2. Perlu dicatat bahwa ilustrasi ini hanya
menggambarkan mekanisme dasar patchify dengan satu kernel. Pada arsitektur

ConvNeXt-Tiny yang sesungguhnya, tahap patchify menggunakan sebanyak 96
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kernel paralel, sehingga setiap patch diproyeksikan bukan menjadi satu nilai
tunggal, melainkan vektor fitur berdimensi 96. Hal inilah yang menghasilkan

representasi awal berukuran 56 x 56 x 96 dari citra masukan 224 x 224 x 3.

3.4.1.2 Downsampling Layer

Setiap tahap pada arsitektur ConvNeXt-Tiny terdiri atas sejumlah blok
konvolusional yang beroperasi pada resolusi spasial tetap. Setelah suatu tahap
selesai, diperlukan downsampling layer untuk menurunkan resolusi spasial feature
map sebelum memasuki tahap berikutnya. Berbeda dengan ResNet yang
mengintegrasikan proses downsampling ke dalam blok residual pertama, ConvNeXt
memisahkannya menjadi lapisan terpisah sehingga proses ekstraksi fitur dan
perubahan resolusi dapat dioptimalkan secara independen (Liu et al., 2022).

Secara berurutan, downsampling layer pada ConvNeXt diawali dengan Layer
Normalization yang berfungsi menstabilkan distribusi aktivasi antarkanal dan
mengurangi pergeseran nilai statistik akibat perubahan resolusi. Setelah itu,

dilakukan konvolusi berukuran 2 x 2 dengan stride 2, yang secara matematis

mengubah dimensi feature map dari (H/s) x (W /s) X C menjadi (i) X (W) X

25
2C, dengan H dan W sebagai dimensi citra asli, € jumlah kanal, serta s faktor

downsampling kumulatif dari tahap sebelumnya.

w

4) X 96 akan

Sebagai contoh, keluaran tahap pertama dengan ukuran (%) X (

berubah menjadi (g) X (%) X 192 setelah melewati downsampling layer.

Peningkatan jumlah kanal dari 96 menjadi 192 bertujuan untuk mengompensasi
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berkurangnya informasi spasial dengan menambah kapasitas representasi di domain
kanal.

Pendekatan ini tidak hanya meningkatkan efisiensi komputasi, tetapi juga
memperluas jangkauan pola visual yang dapat ditangkap oleh jaringan. Dalam
konteks pengolahan citra medis, strategi ini memungkinkan model untuk
menggabungkan informasi lokal dan global secara lebih efektif, yang penting dalam

mengidentifikasi pola morfologi atau anomali dengan ukuran bervariasi.

3.4.1.3 ConvNeXt Block
ConvNeXt Block merupakan unit bangunan utama dalam arsitektur ConvNeXz-
Tiny, yang terdiri atas serangkaian operasi konvolusional dan nonlinier yang
dirancang untuk meniru efektivitas arsitektur transformer, namun tetap berbasis
konvolusi murni. Setiap blok dalam ConvNeXt memproses representasi fitur dari
peta fitur sebelumnya, dengan tujuan menyaring, memperkaya, dan mengekstraksi
informasi spasial maupun kontekstual yang lebih dalam. Struktur ConvNeXt Block
secara umum terdiri atas:
1. Depthwise Convolution (7 x 7)
2. Layer Normalization
3. Pointwise Convolution 1 (4% Expansion)
4. GELU Activation
5. Pointwise Convolution 2 (Projection)
6. Residual Connection dengan LayerScale
Desain ini terinspirasi dari struktur inverted bottleneck yang umum digunakan

pada arsitektur mobile seperti MobileNetV2, namun disesuaikan dengan konfigurasi
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yang lebih dalam dan stabil. Pemisahan antara konvolusi spasial (depthwise) dan
konvolusi kanal (pointwise) memberikan efisiensi komputasi sekaligus fleksibilitas
dalam manipulasi informasi fitur.

Dalam Kklasifikasi citra endoskopi, ConvNeXt Block berfungsi sebagai
ekstraktor fitur utama yang mampu mendeteksi pola-pola penting pada permukaan
mukosa esofagus atau jaringan usus besar, seperti tekstur kasar akibat GERD atau
bentuk tonjolan khas dari polip.

1) Depthwise Convolution (7x7)

Salah satu inovasi utama dalam ConvNeXt Block adalah penggunaan depthwise
convolution dengan kernel besar berukuran 7 % 7. Berbeda dari konvolusi standar,
di mana setiap filter terhubung ke seluruh kanal input, depthwise convolution hanya
melakukan konvolusi secara terpisah pada setiap kanal input seperti pada Gambar
3.8. Hal ini memungkinkan penekanan pada fitur spasial per kanal dengan beban
komputasi yang jauh lebih ringan. Operasi depthwise convolution secara matematis
dituliskan sebagaimana Persamaan 3.3.

Y.(a,b) = X526 20526 Ke(hw) * Xe(a+hb+w) (3.3)

Keterangan:

Y.(a, b) : output fitur untuk kanal ke-c pada posisi (a,b)
K. (nw) : kernel konvolusi kh x kw untuk kanal ¢
Xc(a+hp+w) : nilai input pada kanal c, posisi (at+h, b+w)
k : panjang sisi kernel, dalam hal ini 7

Penggunaan kernel besar (7%7) memperluas receptive field dari unit konvolusi
tanpa menambah kedalaman layer secara signifikan. Pada studi kasus citra

endoskopi, receptive field yang luas berfungsi untuk menangkap pola tekstural
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global, seperti perubahan pola mukosa akibat iritasi kronis (GERD) atau kontur

polip yang menonjol secara halus.

SPLIT CHANNEL

EACH SEPARABLE KERNEL

2] 15| 10 0.05[0.02}-0.0

— e ||| X 0.03(0.04
1| 3 7 0.040.01( 0
11| 14| 9 0.04[0.01| o
7 || 3| x [o.02o.03f0.0
2| s|e 0.02|0.401]
13 2|n 0.03}0.010.02

L o] &8 || X [o.01 0 [0.02
7|14 1s 0.020.01 ©

Gambar 3.5 Ilustrasi Depthwise convolution

Depthwise convolution juga lebih efisien dibandingkan konvolusi biasa.

Jumlah parameter dan komputasi menurun drastis karena filter hanya diterapkan

pada satu kanal, bukan seluruh input seperti pada Gambar 3.5. Hal ini sejalan

dengan kebutuhan model ringan seperti ConvNeXt-Tiny yang ditujukan untuk

penggunaan pada sistem terbatas, termasuk perangkat medis berbasis edge

computing atau inference lokal di rumah sakit.

Red channel kernel
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Gambar 3.6 Contoh Operasi Depthwise Convolution

Sebagai contoh proses depthwise convolution, pada gambar 3.6, misalkan

diambil sebuah patch citra berukuran 7 X 7 pada kanal merah dari citra endoskopi.

Nilai intensitas piksel dalam patch tersebut dapat direpresentasikan dalam bentuk

matriks sebagaimana ditunjukkan pada Gambar 3.6. Setiap elemen matriks
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menyatakan nilai intensitas piksel, misalnya baris pertama berisi
[12,15,10,8,9,14,11], baris kedua [10,13,11,7,12,15,9], dan seterusnya hingga baris
ketujuh.

Patch citra ini kemudian dikalikan secara elemen-demi-elemen dengan kernel
konvolusi berukuran sama, yang juga direpresentasikan dalam bentuk matriks
bobot. Sebagai contoh, piksel bernilai 12 pada posisi kiri-atas dikalikan dengan
bobot kernel 0.05 menghasilkan 0.6, piksel bernilai 15 dikalikan dengan bobot 0.02
menghasilkan 0.3, dan piksel bernilai 10 dikalikan dengan bobot —0.01
menghasilkan —0.1. Proses perkalian ini dilakukan untuk seluruh 49 pasangan
piksel-bobot pada patch tersebut.

Hasil dari semua perkalian kemudian dijumlahkan, sehingga menghasilkan
satu nilai keluaran, misalnya sebesar 0.6342 untuk posisi tersebut pada kanal merah.
Operasi serupa dilakukan secara independen pada kanal hijau dan kanal biru dengan
kernel masing-masing, misalnya menghasilkan 0.5821 dan 0.6015. Dengan
demikian, pada  posisi  keluaran yang sama  diperoleh  vektor
[0.6342,0.5821,0.6015]. Vektor inilah yang selanjutnya dapat diproses oleh
pointwise convolution (kernel 1x1) untuk menghasilkan representasi akhir dari
depthwise separable convolution.

2) Layer Normalization

Setelah proses ekstraksi fitur spasial melalui depthwise convolution, keluaran
dari setiap kanal fitur dalam ConvNeXt Block akan distandarisasi menggunakan
Layer Normalization (LayerNorm). Berbeda dari Batch Normalization yang

menghitung statistik berdasarkan mini-batch, Layer Normalization melakukan
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normalisasi berdasarkan fitur di dalam satu sampel saja, yaitu di sepanjang dimensi
kanal. Hal ini menjadikan LayerNorm lebih stabil dan efektif, terutama pada model
yang menggunakan batch kecil atau inference satu per satu kondisi yang sering
dijumpai dalam aplikasi medis. Secara matematis, proses normalisasi ini ditulis

dalam Persamaan 3.4.

LN(x;) = L& (3.4)

0%+e

Keterangan:
xi : nilai aktivasi pada dimensi ke-i dari vektor input
W : rata-rata dari semua nilai dalam satu vektor input
o2 : varians dari semua nilai dalam vektor
¢ : konstanta kecil untuk mencegah pembagian nol

Posisi LayerNorm dalam ConvNeXt juga tidak konvensional. Jika arsitektur
ResNet menempatkan normalisasi setelah aktivasi, ConvNeXt sejalan dengan
praktik pada Transformer, menempatkannya sebelum blok utama (pre-norm), yang
secara empiris terbukti mempercepat proses konvergensi dan mencegah hilangnya

gradien.

Tabel 3.2 Simulasi Perhitungan Layer Normalization dengan Rata-rata (i) = 0.6059 dan Varians
(c?) =0.0005

Kanal 1::::; X-p (x - p)? Normalisasi
1 0.6342 0.0283 0.0008 1.27
0.5821 -0.0238 0.0006 -1.05
3 0.6015 -0.0044 0 -0.22

Misalkan sebuah vektor keluaran dari depthwise convolution pada satu posisi
piksel ditunjukkan pada tabel 3.2 memiliki nilai fitur dari tiga kanal:
[0.6342,0.5821,0.6015]. Proses Layer Normalization akan menghitung rata-rata p
dari ketiga nilai ini, yaitu (0.6342 + 0.5821 + 0.6015) /3 = 0.6059. Selanjutnya

dihitung varians 62, misalnya ((0.6342 — 0.6059)? + (0.5821 — 0.6059)2 +
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(0.6015 — 0.6059)%)/3 = 0.0005. Setelah itu, setiap nilai dikurangi dengan rata-

rata dan dibagi akar varians ditambah konstanta €. Misalnya, nilai 0.6342 setelah
normalisasi menjadi (0.6342 — 0.6059)/+/0.0005 + € ~ 1.27 . Nilai 0.5821
menjadi  (0.5821 — 0.6059)/4/0.0005 + € ~ —1.05 . Nilai 0.6015 menjadi

(0.6015 — 0.6059) /+/0.0005 + € ~ —0.22.

Hasil akhirnya adalah vektor [1.27,—1.05,—0.22] , yaitu representasi
terstandarisasi dari fitur di titik tersebut. Dengan cara ini, LayerNorm memastikan
bahwa meskipun intensitas asli antar kanal berbeda, model tetap menerima
distribusi fitur dengan rata-rata nol dan varians terkontrol.

3) Pointwise Conv I (4% Expansion)

Setelah fitur melewati proses normalisasi, ConvNeXt Block melakukan tahap
ekspansi dimensi fitur menggunakan pointwise convolution berukuran kernel 1x1
seperti tampak pada Gambar 3.7. Tahap ini sering disebut 4 x Expansion karena
jumlah kanal keluaran diperbesar menjadi empat kali lipat dari jumlah kanal
masukan. Misalnya, jika masukan memiliki 96 kanal, maka setelah tahap ini akan

menjadi 384 kanal.

Gambar 3.7 Tlustrasi Pointwise Convolution (Sumber: Zhang et al., 2020)
Secara intuitif, proses ini dapat dianalogikan seperti memperluas ruang kerja
bagi model. Dengan memperbesar jumlah kanal, model memperoleh kapasitas

representasi yang lebih kaya sehingga dapat memproses variasi pola spasial dengan



41

detail yang lebih halus sebelum tahap kompresi kembali. Secara matematis,
pointwise convolution dengan kernel 1x1 dapat dituliskan sebagai:

C'll'l
l] k — Z Wl,l,c,k : Xi,j,c + bk (3-5)

Keterangan:

(Y;jx) : Nilai keluaran pada posisi koordinat spasial (i, j)untuk kanal ke-(k).

(X; ) : Nilai masukan pada posisi ((i, j)) untuk kanal ke-(c).

(W1 1,c1): Bobot kernel 1x1 yang menghubungkan kanal masukan ke-(c) dengan kanal keluaran
ke-(k).

(bkg :)Nilai bias yang ditambahkan pada kanal keluaran ke— (k).

(Cip) : Jumlah total kanal masukan.

Pointwise convolution berbeda dengan konvolusi standar yang menggunakan
kernel besar; di sini, kernel hanya berukuran 1x1 sehingga operasi yang dilakukan
murni menggabungkan informasi antarkanal tanpa mengubah dimensi spasial. Hal
ini membuatnya sangat efisien secara komputasi, namun tetap memberikan dampak

signifikan terhadap kemampuan pemodelan nonlinier jaringan.

= - T
0.0‘ 0.2 1.2 0.874
—-0.3 0.6 | -|-1.05 = | oy sgiom
0.8 0.4 —0 22 '
H—J
Weight Input Bias

Gambar 3.8 Contoh Operasi Pointwise Convolution

Hal ini tampak misalkan pada satu posisi spasial (i,j) setelah melalui
LayerNorm terdapat tiga kanal fitur dengan nilai [1.27,—1.05,—0.22] yang
ditunjukkan oleh gambar 3.8. Pada tahap pointwise convolution dengan kernel 1x1,
setiap kanal keluaran akan dihitung sebagai kombinasi /inear dari ketiga nilai ini.
Misalnya, untuk kanal keluaran pertama, bobot yang digunakan adalah

[0.5,—0.3,0.8] dengan bias 0.1. Perhitungannya menjadi: (1.27 X 0.5) +
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(=1.05 x —0.3) + (—0.22 x 0.8) + 0.1 = 0.635 + 0.315 - 0.176 + 0.1 =
0.874. Untuk kanal keluaran kedua, bobotnya [—0.2,0.6,0.4] dengan bias -0.05.
Maka hasilnya adalah (1.27 x —0.2) + (—1.05 x 0.6) + (—0.22 x 0.4) — 0.05 =
—0.254 — 0.63 — 0.088 — 0.05 = —1.022 . Proses ini dilakukan terus hingga
terbentuk empat kanal keluaran (sesuai dengan ekspansi 4x dari tiga kanal
masukan). Jika sebelumnya ada 3 kanal, maka setelah ekspansi jumlahnya menjadi
12 kanal; pada arsitektur sebenarnya, 96 kanal akan diekspansi menjadi 384 kanal.

Dengan begitu, pada titik spasial yang sama diperoleh vektor fitur baru
berdimensi lebih besar, misalnya [0.874,—1.022,0.457,0.215, ...] . Vektor ini
kemudian diteruskan ke tahap aktivasi nonlinier berikutnya. Simulasi ini
memperlihatkan bahwa meskipun hanya menggunakan kernel 1x1, operasi
pointwise convolution mampu mencampur informasi antar kanal dan memperkaya
representasi fitur.

4) GELU Activation

Setelah tahap ekspansi kanal, keluaran kemudian diproses menggunakan fungsi
aktivasi Gaussian Error Linear Unit (GELU). Fungsi aktivasi ini diperkenalkan
untuk memberikan pemetaan nonlinier yang lebih halus dibandingkan fungsi klasik
seperti ReLU. GELU secara probabilistik mempertahankan nilai input berdasarkan
distribusi Gaussian, sehingga transisi antara nilai yang diredam dan dipertahankan
menjadi lebih smooth. Secara matematis, fungsi aktivasi GELU dapat didefinisikan
sebagaimana diuraikan dalam Persamaan 3.6.

GELU(x) = x - ®(x) (3.6)
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dengan ®(x) merupakan fungsi distribusi kumulatif (CDF) dari distribusi

normal standar.

GELU Activation Function

3.0

2.5

2.04

GELU(x)
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0.5

0.0 1

Gambar 3.9 Ilustrasi Fungsi Aktivasi GeLU

Namun, dalam implementasi pada jaringan saraf, sering digunakan bentuk

pendekatan sebagai berikut:

GELU(x) ~ 0.5x

1 + tanh (\/% (x+ 0.044715x3)>] (3.7)

Perbedaan utama GELU dibandingkan ReLU adalah sifatnya yang tidak
sepenuhnya mematikan nilai negatif, melainkan menimbangnya secara
probabilistik. Hal ini membuat pembelajaran menjadi lebih stabil dan
memungkinkan jaringan mempertahankan informasi penting yang berada di dekat
ambang nol, seperti terlihat pada Gambar 3.9, yang biasanya hilang pada ReLU.

Sebagai contoh, misalkan dari hasil pointwise convolution di tahap sebelumnya
pada satu titik spasial diperoleh empat nilai fitur: [0.874,—1.022,0.457,0.215].
Masing-masing nilai ini kemudian diproses menggunakan fungsi aktivasi GELU.
Untuk nilai positif 0.874, fungsi distribusi Gaussian akan memberikan probabilitas

mendekati 1, sehingga hasil GELU kira-kira GELU(0.874) ~ 0.874 X 0.82 =
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0.716 . Untuk nilai negatif -1.022, probabilitasnya mendekati 0.16, sehingga
GELU(—1.022) =~ —1.022 X 0.16 = —0.164 . Sementara itu, nilai 0.457 akan
menghasilkan GELU(0.457) ~ 0.457 X 0.67 = 0.306, dan nilai 0.215 menjadi
GELU(0.215) =~ 0.215 x 0.58 = 0.125. Sehingga, vektor keluaran setelah melalui
GELU adalah [0.716,—0.164,0.306,0.125]. Terlihat bahwa nilai besar positif
dipertahankan hampir penuh, nilai kecil positif dilewatkan sebagian, sementara
nilai negatif tidak langsung dibuang tetapi tetap diberi kontribusi kecil.

5) Pointwise Conv 2 (Projection)

Lapisan Pointwise Convolution 2 (Projection) merupakan tahap akhir dari
bagian feed-forward dalam ConvNeXt Block, yang berfungsi untuk mengembalikan
jumlah kanal (channel) fitur ke dimensi semula setelah proses ekspansi pada
Pointwise Convolution 1. Masukan pada tahap ini adalah peta fitur berdimensi
tinggi (4C) yang dihasilkan dari Pointwise Convolution I dan telah melalui fungsi
aktivasi nonlinier GELU. Peta fitur ini memiliki kapasitas representasi yang kaya
namun berukuran lebih besar dibandingkan dimensi awal blok.

Untuk memperjelas, misalkan pada satu titik spasial setelah melewati GELU
terdapat empat kanal hasil ekspansi dengan nilai [0.716,—0.164,0.306,0.125].
Tahap Pointwise Convolution 2 bertugas memproyeksikan kembali empat nilai ini
menjadi satu kanal (atau lebih umum: dari 4C kembali ke C). Misalnya, bobot
kernel 1x1 untuk kanal keluaran adalah [0.4,—0.2,0.3,0.5] dengan bias sebesar
0.05. Maka perhitungannya menjadi (0.716 x 0.4) + (—0.164 x —0.2) +
(0.306 x 0.3) + (0.125 x 0.5) + 0.05 . Hasilnya adalah 0.286 + 0.0328 +

0.0918 + 0.0625 + 0.05 = 0.5231. Sehingga, vektor berdimensi 4 berhasil
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dipadatkan menjadi sebuah nilai tunggal 0.5231 pada kanal keluaran. Dalam
implementasi nyata, proses ini dilakukan pada setiap posisi spasial dan untuk semua
kanal keluaran, sehingga jika awalnya ada 96 kanal masukan yang diekspansi
menjadi 384, tahap ini akan mengompresinya kembali ke 96 kanal. Hasil proyeksi
ini kemudian siap untuk digabungkan dengan shortcut connection (residual path).
6) Residual Connection & LayerScale
Residual connection digunakan untuk mempertahankan aliran informasi
dan gradien di dalam jaringan, sehingga pelatihan tetap stabil pada arsitektur yang
dalam. Mekanisme ini menambahkan input awal (shortcut connection) langsung ke
keluaran hasil transformasi blok, sehingga jaringan hanya perlu mempelajari fungsi
residu alih-alih mempelajari transformasi penuh. Secara matematis, residual
connection dapat dinyatakan pada Persamaan 3.8.
y=FQx,W)+x (3.8)

Keterangan:

x : input ke blok

F(x, W) : hasil transformasi non-linear (misalnya depthwise convolution, LayerNorm, pointwise
convolution, dan aktivasi)

y : output blok setelah penjumlahan residual

Pada ConvNeXt, residual connection dikombinasikan dengan LayerScale,
yaitu parameter penskalaan adaptif (y) yang diberikan pada setiap kanal output dari
fungsi F(x,W) sebelum dilakukan penjumlahan dengan shortcut connection.
Tujuannya adalah mengatur besarnya kontribusi hasil transformasi terhadap
keluaran akhir. Persamaan LayerScale tertera pada Persamaan 3.9.

y=(YOF(xW))+x (3.9)

Keterangan:
vy : vektor skalar berukuran sama dengan jumlah kanal, diinisialisasi dengan nilai kecil (misalnya
le-6)
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© : operasi perkalian elemen-per-elemen (element-wise multiplication)

Inisialisasi y dengan nilai kecil membuat model pada awal pelatihan lebih
mengandalkan shortcut connection, sehingga mengurangi risiko ketidakstabilan
pada iterasi awal. Nilai y akan menyesuaikan selama pelatihan, memberikan

fleksibilitas kontribusi transformasi F (x, W).

Gambar 3.10 Residual Pada ConvNeXt

Struktur alur data pada ConvNeXt Block yang menerapkan residual
connection dan LayerScale ditunjukkan pada Gambar 3.10. Blok ini dimulai dari
depthwise convolution (kernel 7x7), diikuti Layer Normalization (LN), dilanjutkan
dengan pointwise convolution pertama (1x1) yang memperluas dimensi kanal
menjadi empat kali lipat, aktivasi GELU, lalu pointwise convolution kedua (1x1)
untuk mengembalikan jumlah kanal ke dimensi semula. Keluaran dari rangkaian
transformasi ini kemudian diskalakan menggunakan LayerScale sebelum
dijumlahkan dengan shortcut connection.

Sebagai simulasi, sebuah fitur berukuran 4x4 piksel dengan 2 kanal masuk
ke sebuah blok ConvNeXt. Input ini kita sebut x. Setelah melalui depthwise

convolution, normalisasi, pointwise convolution, aktivasi GELU, dan pointwise
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convolution kedua, diperoleh hasil transformasi F(x, W) dengan ukuran sama,
yaitu 4 X 4 X 2. Pada tahap LayerScale, setiap kanal hasil transformasi dikalikan
dengan skalar y. Misalnya y = [0.000001,0.000001] di awal pelatihan, maka
seluruh nilai pada kanal pertama dan kedua dari F(x, W) dikalikan dengan angka
sangat kecil, sehingga nilainya mendekati nol. Dengan demikian, saat dijumlahkan
dengan shortcut connection, keluaran akhir y hampir identik dengan x. Hal ini
membuat model lebih stabil pada iterasi awal karena tidak terjadi perubahan besar
terhadap data. Seiring pelatihan, nilai y menyesuaikan. Misalkan setelah beberapa
epoch, y berubah menjadi [0.8, 1.2]. Artinya kanal pertama dari F (x, W) dikalikan
0.8 (sedikit direduksi kontribusinya), sedangkan kanal kedua dikalikan 1.2
(ditingkatkan kontribusinya). Setelah itu, kedua kanal hasil skala ini dijumlahkan
dengan shortcut x. Jadi, untuk setiap posisi piksel (i, j), operasi yang terjadi adalah:
1. Output kanal 1 =x(i,j,1) + 0.8 x F(x, W)(i,j, 1)

2. Output kanal 2 =x(i,j,2) + 1.2 X F(x,W)(i,}, 2)

3.4.1.4 Global Average Pooling

Setelah melalui rangkaian ConvNeXt Block pada tahap akhir ekstraksi fitur,
keluaran jaringan berupa kumpulan feature map dengan kedalaman yang setara
dengan jumlah kanal pada blok terakhir. Pada arsitektur ConvNeXt-Tiny, feature
map ini tidak langsung diratakan (flatten) dan diproses menggunakan fully
connected layer, melainkan terlebih dahulu melewati tahap Global Average

Pooling (GAP).
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Gambar 3.11 Global Average Pooling

GAP bekerja dengan menghitung rata-rata nilai dari setiap feature map pada
seluruh dimensi spasialnya, sehingga menghasilkan satu nilai representatif untuk
setiap kanal. Proses ini ditunjukkan pada gambar 3.11 untuk menjaga
keterhubungan langsung antara setiap kanal fitur dengan satu kategori keluaran,
sehingga setiap feature map dapat diinterpretasikan sebagai peta kepercayaan
(confidence map) terhadap suatu kelas (Lin et al., 2014). Selain itu, tidak adanya
bobot yang perlu dilatih pada GAP menjadikannya lebih ringan secara komputasi
dan secara alami berperan sebagai structural regularizer yang mengurangi risiko
overfitting.

GAP digunakan sebagai tahap akhir setelah seluruh proses ekstraksi fitur
konvolusional, sebelum masuk ke /ayer klasifikasi sofimax. Integrasi GAP menjaga
sifat fully-convolutional dari arsitektur, sehingga efisien dalam komputasi dan dapat
menangani input dengan dimensi bervariasi tanpa penyesuaian struktur jaringan

(Liu et al., 2022).
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Penggunaan GAP mempertahankan sifat fully-convolutional dari jaringan,
memungkinkannya menerima masukan dengan dimensi yang bervariasi tanpa
penyesuaian struktur (Liu ez al., 2022). Secara matematis, jika Fj, (x, y) menyatakan
nilai aktivasi pada koordinat (x, y) dari feature map ke-k berukuran H X W, maka

nilai keluaran GAP untuk kanal tersebut diberikan oleh persamaan 3.10

Gk =—=3H_ YW F(x,y) (3.10).

T HxwW

Keterangan:

Jx : Nilai keluaran Global Average Pooling untuk kanal (feature map) ke-k.

H : Tinggi (height) dari feature map.

W : Lebar (width) dari feature map.

x : Indeks posisi piksel pada dimensi tinggi (height).

y : Indeks posisi piksel pada dimensi lebar (width).

Fy (x,y) : Nilai aktivasi (activation value) pada koordinat (x, y) dari feature map ke-k.

ﬁ : Faktor normalisasi untuk menghitung rata-rata seluruh nilai dalam feature map.

X
Z;’:lzg"le : Operasi penjumlahan dua dimensi yang menjumlahkan semua nilai aktivasi pada
feature map.

Hasil vektor [g1, g2, ---, gk dari proses ini kemudian menjadi masukan bagi
Linear Classifier pada tahap berikutnya, yang akan mengubahnya menjadi skor
prediksi untuk setiap kelas target. Misalkan pada akhir ConvNeXt-Tiny, diperoleh
feature map dengan ukuran 4x4 piksel dan 3 kanal (K = 3). Kemudian, kanal
pertama (F;) memiliki nilai piksel [[2, 3, 1, 0], [1, 2, 2, 3], [0, 1, 2, 1], [3, 2, 1, O]].

Jumlah seluruh elemen = 24. Karena ukuran 4x4 = 16 piksel, maka rata-rata g, =

i—: = 1.5. Kanal kedua (F,) misalnya memiliki jumlah total 32, sehingga rata-rata

g2 = % = 2.0. Kanal ketiga (F3) misalnya memiliki jumlah total 40, sehingga rata-

rata gz = g = 2.5. Maka, vektor hasil GAP adalah [g4, g,, g3] = [1.5, 2.0, 2.5].

Vektor ini mewakili ringkasan informasi dari seluruh feature map tanpa lagi
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memiliki dimensi spasial. Selanjutnya, vektor tersebut diteruskan ke [linear

classifier yang mengubahnya menjadi skor probabilitas melalui fungsi softmax.

3.4.1.5 Linear Classifier (Fully Connected)

Vektor keluaran dari Global Average Pooling, yang memiliki panjang sama
dengan jumlah kanal pada /ayer terakhir, kemudian diproses oleh lapisan Linear
Classifier untuk menghasilkan prediksi akhir. Pada ConvNeXt-Tiny, Linear
Classifier ini direalisasikan sebagai fully connected layer tunggal yang mengubah
vektor fitur berukuran K menjadi vektor skor prediksi untuk setiap kelas pada
dataset. Secara matematis, jika g € RX merupakan vektor hasil GAP dan W €
R¢*K adalah matriks bobot linear dengan C adalah jumlah kelas, maka skor
prediksi z € R¢ dapat dihitung sebagaimana persamaan 3.11.

z=Wg+b (3.11).

di mana b € R¢ adalah vektor bias. Skor ini kemudian diberikan ke fungsi

softmax untuk menghasilkan probabilitas prediksi setiap kelas pada persamaan

3.12.

_ exp(zy) _
Pe= ey L L2 O (3.12)

Keterangan:

p; : probabilitas prediksi untuk kelas ke-i

z; : skor keluaran (logit) dari fully connected layer untuk kelas ke-i sebelum fungsi aktivasi
softmax

C :jumlah total kelas pada dataset

exp(-) : fungsi eksponensial

ZJC'=1 exp (zj) : penjumlahan seluruh skor eksponensial untuk normalisasi agar total probabilitas =
1

Linear classifier pada ConvNeXt-Tiny memiliki jumlah parameter yang

relatif kecil dibandingkan arsitektur CNN konvensional yang menggunakan
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beberapa lapisan fully connected, karena dimensi input ke lapisan ini telah direduksi
oleh GAP. Pendekatan ini tidak hanya mengurangi kompleksitas model, tetapi juga
mempertahankan efisiensi komputasi dan membantu menghindari overfitting (Liu

etal.,2022).

2.5
1 [e®] 1 [9.488] [o0.711
P= 223 | o135 |19 ™ 13345 |3.857| ~ [0.289]

Gambar 3.12 Contoh Perhitungan pada Linear Classifier

ZSehat _ 02 03 0.5 é'g + 0.10 _ 2.25
ZTidak Sehat 04 0.1 0.2 ' 0.05 1.35

Sebagai gambaran, hasil GAP berupa vektor berdimensi tiga [1.5,2.0,2.5].
Vektor ini kemudian masuk ke lapisan Linear Classifier yang memiliki bobot dan
bias berbeda untuk setiap kelas target seperti ditunjukkan pada gambar 3.12.
Sebagai ilustrasi sederhana, misalkan jaringan ini ditujukan untuk
mengklasifikasikan citra endoskopi ke dalam dua kelas: “Sehat” dan “Tidak Sehat”.
Bobot yang digunakan untuk kelas pertama adalah [0.2,0.3,0.5] dengan bias 0.1,
sedangkan bobot untuk kelas kedua adalah [0.4,0.1,0.2] dengan bias 0.05.

Proses perhitungan dilakukan dengan mengalikan setiap elemen vektor
input dengan bobot yang sesuai, lalu menjumlahkannya dengan bias. Untuk kelas
pertama, hasil perhitungan adalah (1.5 X 0.2) + (2.0 X 0.3) + (2.5 X 0.5) +
0.1 =03+ 0.6+ 1.25+ 0.1 = 2.25. Untuk kelas kedua, perhitungannya adalah
(1.5%x0.4)+(2.0%x0.1) + (2.5 % 0.2) + 0.05 =0.6 + 0.2 + 0.5 + 0.05 =
1.35. Dua nilai ini, yaitu 2.25 dan 1.35, disebut /ogit atau skor mentah sebelum

normalisasi. Agar dapat ditafsirkan sebagai probabilitas, skor tersebut diproses
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melalui fungsi softmax. Perhitungan softmax dilakukan dengan terlebih dahulu
menghitung  eksponensial ~ dari  masing-masing  skor:  exp(2.25) =

dan exp(1.35) = 3.8 . Kemudian, masing-masing nilai dibagi dengan total

keduanya (9.49 + 3.86 = 13.35). Hasilnya adalah probabilitas % ~ 0.71 untuk

kelas pertama dan % ~ 0.29 untuk kelas kedua. Dengan demikian, untuk contoh

input ini, model memprediksi bahwa citra endoskopi memiliki peluang 71%
termasuk ke dalam kelas “Sehat” dan 29% ke dalam kelas “Tidak Sehat”.

Selama proses pelatihan, parameter W (bobot) dan b (bias) pada Linear
Classifier diperbarui secara iteratif agar model dapat meminimalkan nilai /oss
function. Pada penelitian ini digunakan fungsi loss Cross-Entropy, yang mengukur
seberapa jauh distribusi probabilitas prediksi p; dari label sebenarnya y;. Secara
matematis, /oss untuk satu sampel dapat dituliskan sebagai:

L= —X{, y;log(p;) (3.14)

Keterangan:

y; = 1 jika sampel termasuk kelas ke-i, dan 0 untuk kelas lainnya
p; = probabilitas prediksi untuk kelas ke-i (hasil fungsi sofimax)
C = jumlah total kelas

Gradien dari fungsi /oss terhadap setiap parameter Wdan b dihitung melalui
proses backpropagation. Nilai gradien ini menunjukkan arah perubahan yang harus
dilakukan agar /oss berkurang.

Kemudian, parameter diperbarui menggunakan algoritma optimizer Adam
yang mengombinasikan konsep momentum dan adaptive learning rate. Secara

umum, pembaruan bobot dilakukan berdasarkan persamaan:

t+1) — ) _ 5 9L
w =W N (3.14)
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oL

(t+1) — 3, (t) _ ., 94
b =b N,

(3.15)

Keterangan:

1 : learning rate
L dL

T probabilitas prediksi untuk kelas ke-i (hasil fungsi softmax)

Proses ini diulang untuk setiap batch data pada seluruh epoch pelatihan hingga
nilai /oss konvergen atau mencapai batas epoch yang ditentukan. Dengan cara ini,
Linear Classifier secara bertahap belajar untuk menghasilkan bobot dan bias yang

menghasilkan prediksi paling akurat terhadap data endoskopi yang diberikan.

3.5 Evaluasi

Evaluasi kinerja model pada penelitian ini bertujuan untuk menilai sejauh mana
arsitektur ConvNeXt-Tiny mampu mengklasifikasikan citra endoskopi menjadi
kategori Gastroesophageal Reflux Disease (GERD) atau polip usus. Mengingat
pentingnya akurasi dalam diagnosis medis, proses evaluasi tidak hanya berfokus
pada satu metrik, melainkan menggunakan confusion matrix dan empat metrik
turunan, yaitu akurasi, presisi, recall, dan Fl-score seperti yang diusulkan oleh
Powers (2011).

Confusion matrix merupakan tabel yang membandingkan hasil prediksi model
dengan label sebenarnya, yang tersusun dari empat komponen: 7rue Positive (TP),
yaitu jumlah citra yang benar terprediksi sebagai kelas positif; True Negative (TN),
jumlah citra yang benar terprediksi sebagai kelas negatif, False Positive (FP),
jumlah citra yang salah terprediksi sebagai kelas positif; dan False Negative (FN),

jumlah citra yang salah terprediksi sebagai kelas negatif. Dengan memanfaatkan
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confusion matrix, analisis kinerja model dapat dilakukan secara lebih mendalam
karena setiap jenis kesalahan dapat diidentifikasi secara spesifik.
Akurasi digunakan untuk mengukur proporsi prediksi yang benar

dibandingkan dengan keseluruhan data uji, yang dirumuskan sebagai berikut:

TP+TN

Akurasi (9 =(—
(%) TP+TN+FP+FN

) x 100% (3.14)

Meskipun akurasi memberikan gambaran umum kinerja model, metrik ini
dapat menyesatkan jika jumlah data pada tiap kelas tidak seimbang. Oleh karena
itu, digunakan juga precision dan recall untuk memberikan perspektif yang lebih
komprehensif. Precision mengukur tingkat ketepatan prediksi positif, atau seberapa

besar proporsi prediksi positif yang benar-benar positif, dengan rumus:

TP
TP+FP

Presisi (%) = (=) x 100% (3.15)

Nilai precision yang tinggi menunjukkan bahwa model jarang memberikan
prediksi positif yang keliru (false positive rendah), yang sangat penting dalam
konteks medis agar pasien sehat tidak salah terdiagnosis. Sementara itu, recall
mengukur kemampuan model dalam menemukan semua sampel positif yang

sebenarnya ada, dengan rumus:

TP

Recall %) = —e

x 100% (3.16)

Recall yang tinggi berarti false negative rendah, sehingga model jarang
melewatkan pasien yang sebenarnya sakit. Dalam bidang kesehatan, recall sering
menjadi metrik prioritas karena kesalahan melewatkan diagnosis dapat berakibat
fatal. Untuk mendapatkan keseimbangan antara precision dan recall, digunakan F'1-

score, yang merupakan rata-rata harmonis keduanya. Rumusnya adalah:
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2XTP

F1 Score (%) = (m

)x 100% (3.17)

Nilai Fl-score yang tinggi menunjukkan bahwa model tidak hanya akurat
dalam memberikan prediksi positif, tetapi juga konsisten dalam mendeteksi semua
kasus positif. Dengan kombinasi kelima ukuran evaluasi ini, performa model dapat
dinilai secara lebih menyeluruh, sehingga hasil yang diperoleh tidak bias terhadap

satu jenis metrik saja.

3.6 Skenario Pengujian

Pada tahap ini dilakukan serangkaian pengujian untuk mengevaluasi
performa model ConvNeXt-Tiny dalam mengklasifikasikan citra endoskopi menjadi
tiga kategori, yaitu GERD, polip, dan normal. Skenario pengujian dirancang secara
sistematis untuk menganalisis pengaruh beberapa faktor terhadap kinerja model,
baik dari sisi data maupun konfigurasi pelatihan. Dalam penelitian ini ditetapkan
dua faktor utama (skenario mayor) dan satu faktor tambahan (skenario minor). Dua
faktor utama adalah penggunaan augmentasi data dan penerapan normalisasi
berbasis distribusi z-score dengan nilai mean dan standar deviasi dari /mageNet,
sedangkan faktor tambahan adalah variasi ukuran batch (batch size).

Skenario pertama adalah pengujian dengan dan tanpa augmentasi data.
Augmentasi merupakan teknik yang bertujuan meningkatkan keragaman data latih
tanpa menambah jumlah data asli, sehingga model diharapkan mampu melakukan
generalisasi dengan lebih baik. Bentuk augmentasi yang digunakan dalam
penelitian ini antara lain rotasi, flipping horizontal, dan penyesuaian kecerahan
secara acak. Skenario ini dibagi menjadi dua opsi, yaitu la (dengan augmentasi)

dan 1b (tanpa augmentasi).
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Skenario kedua adalah pengujian dengan dan tanpa normalisasi data.
Normalisasi digunakan untuk menyeragamkan distribusi intensitas piksel pada citra
agar proses pembelajaran menjadi lebih stabil dan cepat konvergen. Normalisasi
dilakukan menggunakan metode z-score dengan parameter mean dan standar
deviasi yang diadopsi dari dataset ImageNet. Skenario ini juga dibagi menjadi dua
opsi, yaitu 2a (dengan normalisasi) dan 2b (tanpa normalisasi).

Skenario ketiga adalah variasi ukuran batch sebagai faktor minor. Ukuran
batch memengaruhi frekuensi pembaruan bobot, waktu pelatihan, serta penggunaan
memori. Tiga opsi batch size yang digunakan dalam penelitian ini adalah 16 (3a),
32 (3b), dan 64 (3c). Batch yang lebih kecil memberikan pembaruan bobot yang
lebih sering sehingga pembelajaran lebih halus, tetapi membutuhkan waktu
pelatihan lebih lama. Sebaliknya, batch yang lebih besar mempercepat pelatihan
namun berpotensi membuat model kurang sensitif terhadap variasi data.

Ketiga skenario tersebut kemudian dikombinasikan untuk membentuk
konfigurasi pengujian. Dengan dua opsi augmentasi, dua opsi normalisasi, dan tiga
opsi batch size, dihasilkan total 12 kombinasi pengujian. Sebelum proses pelatihan
dilakukan, dataset dibagi menjadi tiga subset dengan perbandingan 7:2:1, yaitu
70% data digunakan untuk pelatihan (training), 20% untuk validasi (validation),
dan 10% untuk pengujian (festing). Pembagian ini dilakukan secara acak untuk
memastikan distribusi kelas yang seimbang pada setiap subset data, sehingga hasil
evaluasi model dapat merepresentasikan performa sebenarnya terhadap data yang
belum pernah dilihat. Setiap kombinasi akan dilatih dengan jumlah epoch yang

sama yaitu 10, serta menggunakan parameter pelatihan lainnya yang ditetapkan
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konstan agar perbedaan kinerja yang dihasilkan murni disebabkan oleh variasi pada
skenario pengujian. Parameter tetap tersebut meliputi optimizer Adam sebagai
algoritma pembaruan bobot, fungsi loss CrossEntropy untuk klasifikasi multikelas,
serta nilai learning rate sebesar 0,001. Kombinasi skenario pengujian ditunjukkan

pada Tabel 3.5 berikut.

Tabel 3.3 Kombinasi Skenario Pengujian

Nama . o
Skenario Kombinasi Deskripsi
A la2a-3a Augmentasi aktif, pormahsas1 aktif, batch
size 16
B la-2a-3b Augmentasi aktif, pormahsam aktif, batch
size 32
C la-2a-3¢ Augmentasi aktif, pormahsam aktif, batch
size 64
Augmentasi aktif, normalisasi tidak
D la-2b-3a dilakukan, batch size 16
Augmentasi aktif, normalisasi tidak
E 1a-2b-3b dilakukan, batch size 32
Augmentasi aktif, normalisasi tidak
F la-2b-3¢ dilakukan, batch size 64
Augmentasi tidak dilakukan, normalisasi
G 1b-2a-3a aktif, batch size 16
Augmentasi tidak dilakukan, normalisasi
H 1b-2a-3b aktif, barch size 32
Augmentasi tidak dilakukan, normalisasi
! 1b-2a-3¢ aktif, batch size 64
Augmentasi tidak dilakukan, normalisasi
! 1b-2b-3a tidak dilakukan, batch size 16
Augmentasi tidak dilakukan, normalisasi
K 1b-2b-3b tidak dilakukan, batch size 32
Augmentasi tidak dilakukan, normalisasi
L 1b-2b-3¢ tidak dilakukan, barch size 64

Dengan pengaturan skenario seperti di atas, hasil pengujian diharapkan
mampu menunjukkan secara jelas pengaruh penggunaan augmentasi data,
penerapan normalisasi, serta variasi batch size terhadap performa model ConvNeXt-

Tiny. Pendekatan ini juga memungkinkan analisis mendalam mengenai kombinasi
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parameter yang menghasilkan akurasi terbaik sekaligus mempertahankan efisiensi

pelatihan.



BAB IV

HASIL DAN PEMBAHASAN

4.1 Konfigurasi Eksperimen

Pelatihan model dilakukan menggunakan Google Colab dengan akselerator
GPU NVIDIA Tesla T4 (16 GB). Implementasi dilakukan menggunakan framework
PyTorch dengan learning rate awal sebesar 0,001 dan algoritma optimisasi Adam.
Fungsi /oss yang digunakan adalah Cross-Entropy Loss, yang sesuai untuk kasus
klasifikasi multikelas. Proses pelatihan dijalankan selama maksimum 20 epoch,
dengan penerapan early stopping menggunakan nilai patience sebesar 10 epoch
untuk mencegah overfitting dan menjaga efisiensi pelatihan. Seluruh proses
menggunakan random seed 42 untuk menjaga reprodusibilitas hasil.

Dataset yang digunakan berasal dari GastroEndoNet versi 3 (Bitto et al.,
2025), yang berisi citra endoskopi lambung dan usus dengan empat kategori:
GERD, GERD Normal, Polyp, dan Polyp Normal. Dataset tersebut telah
menyediakan dua versi data, yaitu original dan augmented, sehingga proses
augmentasi tidak dilakukan secara manual pada tahap pelatihan, melainkan
disesuaikan berdasarkan skenario pengujian. Total citra yang tersedia adalah 4.006
citra asli dan 24.036 citra hasil augmentasi. Seluruh citra berukuran 224x224 piksel
dan dibagi menjadi tiga bagian dengan rasio 70% data latih, 20% data validasi, dan
10% data uji, menggunakan pembagian stratified agar distribusi antar kelas tetap

seimbang.
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4.2 Hasil Uji Coba

Sebelum membahas performa kuantitatif dan perbandingan antar skenario,
perlu dilakukan peninjauan terhadap dinamika proses pelatihan untuk memastikan
bahwa model telah mencapai konvergensi dengan stabil. Analisis ini dilakukan
melalui visualisasi perubahan training loss dan validation loss selama 20 epoch
pelatihan pada setiap skenario. Pola /oss memberikan gambaran tentang sejauh
mana model mampu menyesuaikan bobot internalnya terhadap data pelatihan tanpa
kehilangan kemampuan generalisasi terhadap data validasi.

Gambar 4.1 berikut menampilkan visualisasi perubahan training loss dan
validation loss pada enam skenario yang menggunakan augmentasi data (1a—2a—3a
hingga 1a—2b—3c). Pola yang tampak menunjukkan tren penurunan yang konsisten
pada kedua kurva, baik selama proses pelatihan maupun validasi, yang menandakan
bahwa proses optimasi parameter berjalan stabil dan model mampu melakukan
generalisasi dengan baik terhadap data validasi. Pada awal pelatihan, training loss
umumnya bernilai tinggi karena bobot inisialisasi acak belum merepresentasikan
pola citra, namun setelah beberapa epoch, kurva mulai menurun tajam dan
berangsur mendatar di bawah nilai 0.2 pada epoch ke-15 hingga ke-20. Pola ini
sejalan dengan penurunan validation loss yang relatif berirama dengan training
loss, hanya berbeda sedikit pada titik-titik tertentu akibat fluktuasi distribusi batch.
Tidak terlihat indikasi overfitting yang signifikan, karena jarak antara kedua kurva

tetap kecil dan tidak terjadi divergensi di akhir pelatihan.
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Gambar 4.1 Visualisasi loss pada data dengan augmentasi (Skenario A-F)

Kestabilan konvergensi ini menunjukkan bahwa penerapan augmentasi
memberikan dampak positif terhadap pembelajaran model. Variasi tambahan pada
citra pelatihan seperti rotasi, pencahayaan, dan flipping memperluas distribusi data,
sehingga model belajar mengenali pola tekstur dan bentuk mukosa yang lebih
beragam tanpa kehilangan kemampuan generalisasi. Skenario dengan batch size

besar (misalnya 64) memperlihatkan kurva yang lebih halus dibanding batch size
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kecil, yang menandakan perataan gradien lebih stabil akibat agregasi sampel yang
lebih luas. Selain itu, efek normalisasi turut menjaga kestabilan nilai aktivasi antar
batch, menjadikan proses pembaruan bobot lebih terkontrol.

Berbeda dengan kelompok sebelumnya, keenam grafik pada Gambar 4.2
memperlihatkan pola training loss dan validation loss pada skenario tanpa
penerapan augmentasi data. Secara umum, kurva menunjukkan kecenderungan
penurunan di awal pelatihan, namun konvergensinya tidak sehalus kelompok
dengan augmentasi. Beberapa skenario memperlihatkan fluktuasi cukup tajam pada
validation loss setelah epoch ke-10, bahkan terdapat kecenderungan divergensi di
mana nilai validation loss meningkat sementara training loss terus menurun.
Fenomena ini mengindikasikan terjadinya overfitting, yaitu kondisi ketika model
terlalu menyesuaikan diri terhadap pola data pelatihan dan kehilangan kemampuan
generalisasi terhadap data validasi. Penyebab utama gejala tersebut adalah
keterbatasan variasi data pelatihan akibat absennya augmentasi, sehingga distribusi
citra yang diterima model tidak cukup beragam untuk merepresentasikan kondisi

dunia nyata.
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Gambar 4.2 Visualisasi loss pada dataset tanpa augmentasi (Skenario J-L)

Selain itu, pola pelatihan tanpa augmentasi memperlihatkan penurunan
training loss yang cepat namun tidak diikuti dengan stabilitas pada validation loss,
menandakan bahwa model belajar terlalu cepat terhadap fitur-fitur dominan tertentu
tetapi gagal mempertahankan performa pada variasi minor. Hal ini terlihat pada
grafik dengan batch size kecil (misalnya 16), di mana fluktuasi validasi cenderung
ekstrem karena pembaruan bobot dilakukan pada subset data yang terlalu terbatas.
Sebaliknya, pada batch size besar (64), fluktuasi sedikit teredam namun tidak
menghasilkan peningkatan signifikan pada validation accuracy, menandakan
bahwa peningkatan ukuran batch tidak mampu menggantikan fungsi augmentasi

dalam memperkaya distribusi data.
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4.2.1 Skenario A

Skenario A merupakan konfigurasi dasar dengan augmentation dan
normalization aktif menggunakan batch size 16. Berdasarkan Gambar 4.3,
distribusi prediksi relatif seimbang dan mayoritas berada pada diagonal,
menunjukkan klasifikasi yang cukup baik. Kesalahan terutama muncul pada
pasangan kelas dengan kemiripan visual, sepertt GERD—GERD Normal dan Polyp—

Polyp Normal.
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Gambar 4.3 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario A.

Tabel 4.1 Hasil evaluasi metrik kuantitatif model pada Skenario A.

Metrik Nilai (%)
Accuracy 90.05
Precision 89.99

Recall 89.85
Fl-score 89.9

Nilai metrik pada Tabel 4.1 menunjukkan accuracy 90.05%, precision
89.99%, recall 89.85%, dan F'1-score 89.90%. Kedekatan antar metrik menandakan

performa yang stabil. Batch size kecil memberi variasi gradien yang tinggi sehingga
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model menangkap detail tekstur secara baik, namun menyebabkan fluktuasi kecil
pada proses validasi. Secara keseluruhan, Skenario A memberikan performa awal

yang solid dengan metrik sekitar 0.90.

4.2.1 Skenario B

Pengujian berikutnya pada Skenario B menggunakan konfigurasi yang sama
dengan Skenario A, dengan batch size yang meningkat menjadi 32. Gambar 4.4
menunjukkan pola diagonal yang lebih kuat dibandingkan Skenario A, dengan
peningkatan akurasi terutama pada GERD Normal dan Polyp Normal. Kesalahan

antar kelas lebih kecil dan lebih merata.
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Gambar 4.4 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario B.

Seperti ditampilkan pada Tabel 4.2, model mencapai accuracy 90.77%,
precision 90.88%, recall 90.54%, dan FI-score 90.68%. Perbedaan antar metrik
kecil (<0.004), menunjukkan bahwa model semakin stabil dan seimbang.
Peningkatan batch size terbukti mengurangi fluktuasi validation loss dan

memperbaiki konsistensi prediksi. Dengan performa seluruh metrik di atas 90%,
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Skenario B dapat dianggap sebagai konfigurasi yang lebih stabil dibandingkan

Skenario A.
Tabel 4.2 Hasil evaluasi metrik kuantitatif model pada Skenario B.
Metrik Nilai (%)
Accuracy 90.77
Precision 90.88
Recall 90.54
Fl-score 90.68

4.2.1 Skenario C

Skenario C menguji efek batch size yang lebih besar, yaitu 64, dengan
augmentation dan normalization tetap aktif. Gambar 4.5 menunjukkan dominasi
diagonal yang lebih kuat dibandingkan dua skenario sebelumnya. Kesalahan
semakin berkurang, terutama antara GERD-GERD Normal, dan konsistensi
prediksi meningkat signifikan. Polyp Normal menunjukkan jumlah prediksi benar
tertinggi.
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Gambar 4.5 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario C.
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Tabel 4.3 menunjukkan accuracy 92.94%, precision 93.04%, recall
92.85%, dan Fl-score 92.94%. Keempat metrik sangat berdekatan dan berada di
atas 92%, menandakan konvergensi yang stabil serta pembelajaran fitur global yang
lebih baik. Kurva training—validation loss yang halus (lihat bagian sebelumnya)
mendukung bahwa model berlatih tanpa tanda overfitting. Dengan hasil tertinggi di
antara seluruh konfigurasi, Skenario C ditetapkan sebagai model terbaik untuk

analisis lanjutan.

Tabel 4.3 Hasil evaluasi metrik kuantitatif model pada Skenario C.

Metrik Nilai (%)
Accuracy 92.94
Precision 93.04
Recall 92.85
Fl-score 92.94

Skenario C menunjukkan performa tertinggi dari seluruh konfigurasi
dengan augmentasi aktif. Nilai metrik yang konsisten di atas 92% menegaskan
bahwa penggunaan batch size besar membantu memperhalus gradien dan
memperkuat pembelajaran fitur global tanpa kehilangan detail tekstur. Kurva loss
yang halus dan jarak kecil antara training dan validation loss (ditampilkan pada
bagian sebelumnya) memperkuat bukti bahwa model mencapai konvergensi
sempurna tanpa gejala overfitting. Dengan demikian, Skenario C ditetapkan sebagai
model terbaik secara keseluruhan untuk tahap evaluasi mendalam berikutnya, baik

dari sisi kuantitatif maupun kualitatif.

4.2.1 Skenario D
Konfigurasi berikutnya, Skenario D merupakan konfigurasi tanpa

normalization dengan augmentation aktif dan batch size 16. Gambar 4.6
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menunjukkan bahwa model gagal melakukan klasifikasi: seluruh citra diprediksi
sebagai Polyp Normal sehingga diagonal confusion matrix hampir seluruhnya
kosong. Ketidakmampuan ini mengindikasikan hilangnya stabilitas distribusi fitur

akibat absennya normalisasi, sehingga gradien menjadi tidak terkontrol.
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Gambar 4.6 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario D.

Tabel 4.4 memperlihatkan performa yang sangat rendah: accuracy 28.31%,
precision 07.08%, recall 25%, dan F1-score 11.03%. Pola ini mencerminkan mode
collapse, di mana model memilih satu kelas dominan untuk meminimalkan /oss.
Hasil ini menegaskan bahwa normalisasi berperan penting dalam menjaga

konsistensi skala fitur dan stabilitas konvergensi.

Tabel 4.4 Hasil evaluasi metrik kuantitatif model pada Skenario D.

Metrik Nilai (%)
Accuracy 28.31
Precision 7.08

Recall 25.00
Fl-score 11.03
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4.2.1 Skenario E

Pengamatan terhadap dampak ukuran batch yang lebih besar dalam kondisi
tanpa normalization dilakukan pada Skenario E dengan meningkatkan batch size
menjadi 32. Tujuannya adalah untuk menilai apakah ukuran batch yang lebih besar
dapat mengurangi instabilitas yang muncul tanpa proses normalisasi. Namun,

Gambar 4.7 menunjukkan hasil yang identik dengan skenario sebelumnya.
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Gambar 4.7 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario E.

Nilai metrik pada Tabel 4.5 juga sama persis dengan Skenario D (accuracy
2831% dan Fl-score 11.03%), sehingga dapat disimpulkan bahwa peningkatan
batch size tidak mampu mengimbangi hilangnya proses normalisasi. Tanpa
penyeimbangan distribusi fitur antar batch, model tetap gagal mempelajari

representasi antar kelas meskipun jumlah sampel per batch diperbesar.

Tabel 4.5 Hasil evaluasi metrik kuantitatif model pada Skenario E.

Metrik Nilai (%)
Accuracy 28.31
Precision 07.08

Recall 25.00
Fl-score 11.03




70

4.2.1 Skenario F

Berbeda dengan dua skenario sebelumnya, Skenario F menguji batch size
64 pada kondisi tanpa normalization. Berbeda dengan dua skenario sebelumnya,
Gambar 4.8 menunjukkan pemulihan performa yang signifikan. Diagonal confusion
matrix kembali dominan dan seluruh kelas dapat dikenali dengan baik. Kelas GERD
Normal dan Polyp Normal memperoleh prediksi benar tertinggi.
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Gambar 4.8 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario F.

Tabel 4.6 menunjukkan accuracy 90.91%, precision 90.89%, recall
90.77%, dan FI-score 90.82%. Konsistensi antar metrik menandakan bahwa batch
size besar menghasilkan gradien yang lebih stabil meskipun tanpa normalisasi.

Namun performanya tetap sedikit di bawah kelompok dengan normalisasi aktif.

Tabel 4.6 Hasil evaluasi metrik kuantitatif model pada Skenario F.

Metrik Nilai (%)
Accuracy 90.91
Precision 90.89

Recall 90.77
Fl-score 90.82
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4.2.1 Skenario G
Skenario G menguji konfigurasi tanpa augmentation dengan normalization
aktif dan batch size 16. Tanpa augmentasi, variasi data menjadi terbatas sehingga

kemampuan generalisasi model berpotensi menurun.
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Gambar 4.9 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario G.

Gambar 4.9 menunjukkan bahwa model masih dapat melakukan klasifikasi
dengan cukup baik, namun kesalahan meningkat dibandingkan skenario dengan
augmentasi aktif. Kelas GERD Normal dan GERD memperoleh prediksi benar
tertinggi, sedangkan kelas Polyp dan Polyp Normal menunjukkan tumpang tindih
besar. Hal ini menandakan bahwa model kesulitan membedakan variasi tekstur
yang lebih kompleks.

Tabel 4.7 menunjukkan accuracy 73.82%, precision 73.83%, recall
73.07%, dan F'I-score 73.00%. Nilai metrik yang konsisten menunjukkan stabilitas,

namun penurunan umum pada performa menandakan adanya underfitting akibat
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kurangnya variasi visual. Dengan demikian, normalisasi saja tidak cukup untuk

mempertahankan performa optimal tanpa dukungan augmentasi.

Tabel 4.7 Hasil evaluasi metrik kuantitatif model pada Skenario G.

Metrik Nilai (%)
Accuracy 73.82
Precision 73.83

Recall 73.07
Fl-score 73.00

4.2.1 Skenario H

Pada pengujian berikutnya, Skenario H diperlihatkan Gambar 4.10
menunjukkan bahwa performa menurun dibandingkan Skenario G. GERD Normal
masih menjadi kelas dengan prediksi benar terbanyak, tetapi kesalahan meningkat
pada GERD dan Polyp, terutama mis-klasifikasi menuju kelas dengan fitur visual
lebih dominan. Hal ini menunjukkan kecenderungan class bias ketika variasi citra
rendah.
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Gambar 4.10 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario H.



73

Tabel 4.8 menunjukkan accuracy 71.57%, precision 73.47%, recall
70.57%, dan Fl-score 70.52%. Penurunan recall mengindikasikan semakin
sulitnya model mengenali kelas minor. Secara keseluruhan, peningkatan batch size
tidak memberikan perbaikan berarti tanpa augmentasi, dan keterbatasan variasi

citra tetap menjadi faktor utama yang membatasi kinerja.

Tabel 4.8 Hasil evaluasi metrik kuantitatif model pada Skenario H.

Metrik Nilai (%)
Accuracy 71.57
Precision 73.47

Recall 70.57
Fl-score 70.52

4.2.1 Skenario I

Melanjutkan analisis tersebut, Skenario I pada Gambar 4.11
memperlihatkan adanya peningkatan akurasi di seluruh kelas, dengan GERD
Normal dan Polyp Normal menjadi kelas yang paling konsisten dikenali. Meskipun
tumpang tindih prediksi pada kelas Polyp masih terlihat, dominasi diagonal
memperlihatkan adanya stabilisasi yang cukup kuat berkat ukuran batch yang besar.

Tabel 4.9 menunjukkan accuracy 74.81%, precision 74.30%, recall
74.43%, dan Fl-score 74.25%. Perbaikan dibandingkan Skenario G dan H
menunjukkan bahwa batch size besar membantu menghasilkan gradien yang lebih

stabil sehingga performa meningkat meski tanpa augmentasi.
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Gambar 4.11 Confusion matrix hasil pengujian model Conv~NeXt-Tiny pada Skenario 1.

Tabel 4.9 Hasil evaluasi metrik kuantitatif model pada Skenario I.

Metrik Nilai (%)
Accuracy 74.81
Precision 7.43

Recall 74.43
Fl-score 74.25

4.2.1 Skenario J

Berbeda dari Skenario I, Skenario J yang direpresentasikan oleh Gambar
4.12 menunjukkan penurunan performa yang sangat drastis: model hanya
memprediksi dua kelas dominan (GERD dan Polyp), sementara hampir seluruh
diagonal confusion matrix bernilai nol. Kelas Polyp hanya memperoleh 14 prediksi
benar, dan tiga kelas lainnya didominasi kesalahan. Pola ini menunjukkan mode

collapse akibat kurangnya stabilitas distribusi fitur.
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Gambar 4.12 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario J.

Tabel 4.10 menunjukkan accuracy 31.67%, precision 29.27%, recall
29.39% dan FI-score 19.00%. Seluruh metrik menunjukkan kegagalan total dalam
pembelajaran. Hal ini menegaskan bahwa augmentation sebagai sumber keragaman
dan normalization sebagai pengatur stabilitas merupakan komponen fundamental

yang tidak dapat dihilangkan secara bersamaan.

Tabel 4.10 Hasil evaluasi metrik kuantitatif model pada Skenario J.

Metrik Nilai (%)
Accuracy 31.67
Precision 29.27

Recall 29.39
Fl-score 19.00

4.2.1 Skenario K
Penilaian terhadap kemungkinan peningkatan batch size dalam
memperbaiki performa dilakukan pada Skenario K dengan memperbesar batch size

menjadi 32 pada kondisi tanpa augmentation dan tanpa normalization. Langkah ini
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bertujuan untuk menguji apakah ukuran batch yang lebih besar dapat meningkatkan
performa yang sangat rendah pada Skenario J.

Gambar 4.13 menunjukkan sedikit perbaikan, namun model tetap gagal
membedakan empat kelas. Tidak ada prediksi benar pada kelas GERD, dan
sebagian besar sampel diarahkan ke kelas dominan seperti Polyp Normal. Kelas
tersebut menjadi satu-satunya yang menunjukkan akurasi relatif lebih baik (111
prediksi benar), tetapi model masih bergantung pada pola global tanpa mampu

menangkap perbedaan tekstur antar kelas.
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Gambar 4.13 Confision matrix hasil pengujian model ConvNeXt-Tiny pada Skenario K.

Tabel 4.11 memperlihatkan accuracy 39.90%, precision 42.28%, recall
38.36%, dan Fl-score 30.51%. Walaupun sedikit lebih baik dari Skenario J,
nilainya tetap rendah dan menunjukkan ketidakmampuan model untuk belajar

secara stabil tanpa normalisasi maupun augmentasi. Hal ini mempertegas bahwa
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sekadar memperbesar batch size tidak cukup untuk mengimbangi hilangnya dua

teknik penting tersebut.

Tabel 4.11 Hasil evaluasi metrik kuantitatif model pada Skenario K.

Metrik Nilai (%)
Accuracy 39.90
Precision 42.28

Recall 38.36
Fl-score 30.51

4.2.1 Skenario L

Hasil berbeda terlihat pada Skenario L. Gambar 4.14 menunjukkan
peningkatan performa dibandingkan Skenario J dan K. Diagonal confusion matrix
kembali terlihat, dengan Polyp Normal mencapai 101 prediksi benar. Namun
kesalahan pada GERD dan GERD Normal masih tinggi, menandakan bahwa
meskipun gradien lebih stabil, absennya normalisasi menyebabkan distribusi fitur

antar batch tetap tidak konsisten.
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Gambar 4.14 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario L.
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Tabel 4.12 menunjukkan accuracy 63.34%, precision 67.86%, recall
61.27%, dan F1-score 61.24%. Nilainya jauh lebih baik daripada Skenario J dan K,
tetapi masih jauh dari performa optimal pada konfigurasi dengan augmentasi dan

normalisasi aktif.

Tabel 4.12 Hasil evaluasi metrik kuantitatif model pada Skenario L.

Metrik Nilai (%)
Accuracy 63.34
Precision 67.86

Recall 61.27
Fl-score 61.24

4.3 Analisis dan Pembahasan

Dua belas skenario yang diuji memperlihatkan pola yang konsisten:
kombinasi augmentasi aktif + normalisasi aktif memberi kinerja tertinggi dan
paling stabil; penghapusan normalisasi merusak pembelajaran hingga titik mode
collapse (Skenario D-E), namun batch besar (64) dapat sedikit menstabilkan
(Skenario F). Pada kelompok tanpa augmentasi tetapi normalisasi aktif (G-I),
performa berada di tingkat menengah: kurva /loss lebih stabil daripada tanpa
normalisasi, tetapi akurasi dan F1 tetap lebih rendah karena kurangnya keragaman
visual saat pelatihan. Kelompok tanpa augmentasi & tanpa normalisasi (J-L)
menunjukkan degradasi signifikan; batch besar (L) memang membantu, tetapi tetap
jauh dari konfigurasi optimal. Secara keseluruhan, Skenario C (1a—2a—3c) menjadi
model terbaik dengan F1=0.9294, menunjukkan bahwa gradien yang halus (batch
64), keragaman data (augmentasi), dan kestabilan statistik (normalisasi) bekerja
sinergis untuk memaksimalkan generalisasi. Tren ini konsisten dengan confusion

matrix per skenario: kesalahan terbanyak terjadi pada pasangan kelas
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berkarakteristik mirip (Polyp vs. Polyp Normal, GERD vs. GERD Normal), dan

berkurang paling jelas pada skenario yang menggabungkan ketiga faktor di atas.

Tabel 4.13 Ringkasan metrik semua skenario (test set, macro-avg)

Skenario Kombinasi Accuracy Precision Recall | Fl-score
A la—2a-3a 0.9005 0.8999 0.899 0.899
B la—2a-3b 0.9077 0.9088 0.905 0.9068
C la—2a-3c 0.9294 0.9304 0.929 0.9294
D la—2b-3a 0.2831 0.0708 0.25 0.1103
E 1a—2b-3b 0.2831 0.0708 0.25 0.1103
F la—2b-3c 0.9091 0.9089 0.908 0.9082
G 1b—2a-3a 0.7382 0.7383 0.731 0.73
H 1b—2a-3b 0.7157 0.7347 0.706 0.7052
I 1b—2a-3c¢ 0.7481 0.743 0.744 0.7425
J 1b—2b—3a 0.3167 0.2927 0.294 0.19
K 1b—2b-3b 0.399 0.4228 0.384 0.3051
L 1b—2b-3c 0.6334 0.6786 0.613 0.6124

F1-Score Comparison Between Scenarios (A-L)

1.0

Fl-Score
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0.93

091

091

skenario
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031

019

0.61

Gambar 4.15 Bar chart perbandingan F1 antar skenario

Berdasarkan Tabel 4.13, terlihat bahwa kinerja model sangat dipengaruhi

oleh keberadaan normalisasi dan augmentasi. Nilai accuracy dan Fl-score

menunjukkan rentang perbedaan yang lebar antar skenario, dari 0.11 pada

konfigurasi gagal (D—E) hingga 0.93 pada konfigurasi optimal (C). Tren kenaikan

performa dari Skenario A — B — C menunjukkan efek positif dari peningkatan
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batch size ketika dua teknik tersebut diaktifkan bersamaan, menandakan bahwa
model memperoleh gradien yang lebih stabil dan pembelajaran fitur yang lebih
representatif. Sebaliknya, ketika normalisasi dihilangkan (D—E), model kehilangan
kemampuan diskriminatif secara total, ditunjukkan dengan mode collapse yang
tercermin dari nilai metrik di bawah 0.3.

Sementara itu, Gambar 4.15 memperlihatkan perbandingan visual antar
skenario dari segi Fl-score, yang memperjelas kesenjangan performa antar
kelompok. Batang tertinggi terdapat pada Skenario C, disusul F dan B, yang
semuanya melibatkan augmentasi aktif. Kelompok tanpa augmentasi (G-I)
menempati posisi menengah, sedangkan kelompok tanpa normalisasi (D-E, J-K)
tampak mendekati dasar grafik, menandakan ketidakstabilan dan kegagalan
generalisasi. Pola ini mengonfirmasi bahwa kombinasi augmentasi dan normalisasi
memiliki kontribusi sinergis yang krusial dalam memperkuat pembelajaran spasial
serta mengurangi variance antar batch. Dengan demikian, hasil rekapitulasi ini
tidak hanya menunjukkan model terbaik secara numerik, tetapi juga memberikan
pemahaman empiris tentang hubungan antarvariabel pelatihan terhadap performa

akhir model ConvNeXt-Tiny.

4.3.1 Evaluasi Perubahan Variabel

Analisis pada bagian ini bertujuan untuk mengevaluasi pengaruh tiga
variabel utama yang digunakan dalam seluruh skenario pelatihan, yaitu augmentasi
data, normalisasi, dan ukuran batch, terhadap performa model ConvNeXt-Tiny.
Evaluasi dilakukan dengan menghitung nilai rata-rata (mean) dan simpangan baku

(standard deviation) dari Fl-score pada setiap kelompok yang memiliki
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konfigurasi sama untuk satu variabel, sementara dua variabel lainnya bervariasi.
Ringkasan statistik tersebut disajikan pada Tabel 4.14, yang menjadi dasar untuk
menilai kestabilan serta kontribusi relatif masing-masing variabel terhadap akurasi

klasifikasi akhir.

Tabel 4.14 Ringkasan Statistik '/-score (Mean =+ Std) berdasarkan Variabel Eksperimen

Variabel Kondisi Rata-ratgtlzll) (Mean

Interpretasi Utama

Meningkatkan generalisasi
Augmentasi | Aktif (A—F) 79.4% £ 31.6% model; efek terbesar pada
batch besar.

Model kehilangan variasi

Tidak Aktif

(G-L) 55.4% +22.4% fitur, cenderung
underfitting.
. Menjaga stabilitas dan
Normalisasi Akif (/B_C’ G- 81.8% £ 9.1% konvergensi; performa
konsisten tinggi.
. . Tanpa normalisasi, gradien
F{Sﬂ{ ?}Iﬁl)f 37.4% +£29.5% tidak stabil dan performa

turun drastis.
Batch kecil kurang stabil,
rawan fluktuasi /oss.
Kinerja relatif sama; belum

Batch size 16 (A,D, G, 1)) 58.2% +31.2%

32 (B,E, H,K) 57.9% +30.4% cukup menstabilkan tanpa
normalisasi.

Batch besar memperhalus

64 (C,F,LLL) 74.2% +26.1% gradien dan meningkatkan
generalisasi.

1) Pengaruh Augmentasi Data
Konfigurasi dengan augmentasi aktif (A—F) menunjukkan rata-rata F'/-
score sebesar 79,4%, sedangkan kelompok tanpa augmentasi (G-L) hanya
mencapai 55,4%. Perbedaan sekitar 24 persen ini menunjukkan bahwa augmentasi
berperan penting dalam meningkatkan kemampuan generalisasi model, khususnya
pada citra endoskopi yang memiliki variasi tinggi pada tekstur, pencahayaan, dan

bentuk anatomi. Nilai rata-rata (mean) yang tinggi menunjukkan peningkatan
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kinerja keseluruhan model, sedangkan simpangan baku (31,6%) yang cukup besar
menandakan bahwa efek augmentasi masih bervariasi antar-skenario.

Temuan ini sejalan dengan penelitian Shorten & Khoshgoftaar (2019) yang
menjelaskan bahwa data augmentation memperluas distribusi sampel melalui
geometric transformation maupun photometric transformation, sehingga model
CNN dapat belajar dari variasi yang lebih luas dan tidak terjebak pada pola terbatas
dataset berukuran kecil. Dalam konteks penelitian ini, data augmentation
membantu model menjadi lebih tahan terhadap variasi pencahayaan, sudut kamera,
serta tekstur mukosa yang berbeda.

Namun, nilai simpangan baku yang besar menunjukkan bahwa data
augmentation bekerja optimal bila disertai normalization yang stabil. Beberapa
skenario (misalnya D dan E) membuktikan bahwa tanpa normalization, proses
pelatihan dapat gagal convergent meskipun data augmentation diaktifkan. Dengan
demikian, data augmentation efektif dalam memperluas representasi fitur, tetapi
tetap memerlukan dukungan preprocessing yang konsisten agar hasilnya stabil.

2) Pengaruh Normalisasi (ImageNet Normalization)

Normalisasi berbasis statistik /mageNet terbukti menjadi variabel paling
krusial untuk menjaga stabilitas pelatihan dan distribusi fitur. Kelompok dengan
normalisasi aktif (A—C, G-I) memperoleh rata-rata F/-score sebesar 81,8%,
dengan simpangan baku 9,1%. Sebaliknya, kelompok tanpa normalisasi (D-F, J—
L) hanya mencapai rata-rata 37,4%, dengan simpangan baku 29,5%. Nilai rata-rata

yang tinggi menunjukkan bahwa normalisasi secara langsung meningkatkan
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performa model, sedangkan std yang rendah menandakan kestabilan hasil antar-
skenario.

Penurunan performa sekitar 44 persen tanpa normalisasi menunjukkan
bahwa model kehilangan kesesuaian distribusi input dengan distribusi saat
pretraining, sehingga lapisan awal gagal mengekstraksi fitur dengan benar. Secara
teoretis, He et al. (2016) menegaskan bahwa preprocessing berbasis statistik
ImageNet (mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]) merupakan
bagian penting dari proses training dan inference pada model pretrained modern.
Ketidaksesuaian distribusi ini dapat menyebabkan nilai aktivasi ekstrem, gradien
tidak stabil, dan kesulitan konvergensi.

Selain itu, simpangan baku yang jauh lebih besar pada kelompok tanpa
normalisasi menunjukkan bahwa model menjadi sangat sensitif terhadap kombinasi
variabel lain, terutama ukuran batch dan augmentasi. Skenario seperti D, E, J, dan
K menunjukkan performa rendah bahkan mendekati kegagalan pelatihan. Dengan
demikian, normalisasi berfungsi tidak hanya untuk menormalkan skala data, tetapi
juga untuk menjaga konsistensi dan kestabilan proses optimasi di seluruh
konfigurasi eksperimen.

3) Pengaruh Ukuran Batch

Ukuran batch memberikan pengaruh moderat namun signifikan terhadap
stabilitas dan konvergensi model. Nilai rata-rata F'/-score yang diperoleh untuk
batch 16, 32, dan 64 berturut-turut adalah 58,2% =+ 31,2%, 57,9% =+ 30,4%, dan
74,2% + 26,1%. Nilai mean yang meningkat seiring bertambahnya ukuran batch

menunjukkan bahwa batch besar mampu menghasilkan estimasi gradien yang lebih
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stabil, sedangkan simpangan baku yang masih relatif tinggi menunjukkan adanya
variasi antarskenario akibat pengaruh variabel lain.

Peningkatan sekitar 16 persen dari batch kecil ke batch besar
memperlihatkan bahwa ukuran batch yang besar dapat membantu memperhalus
gradien dan mengurangi fluktuasi /oss selama pelatihan. Efek positif ini paling jelas
terlihat pada skenario C dan F, yang mencapai F'/-score di atas 90%. Penemuan ini
konsisten dengan penelitian Goyal et al. (2017), yang menunjukkan bahwa /arge
batch mampu meningkatkan stabilitas pelatihan dan mempercepat konvergensi jika
dikombinasikan dengan pengaturan learning rate yang sesuai.

Meskipun demikian, nilai simpangan baku yang masih tinggi menandakan
bahwa ukuran batch besar tidak dapat sepenuhnya mengompensasi ketidakstabilan
distribusi input atau absennya augmentasi dan normalisasi. Pada kelompok tanpa
preprocessing yang memadai (misalnya skenario J-L), peningkatan batch size
memang memperbaiki hasil, tetapi performanya tetap jauh di bawah kondisi
optimal. Hal ini menegaskan bahwa ukuran batch besar hanya efektif jika

diintegrasikan dengan augmentasi dan normalisasi yang aktif.

4.3.2 Analisis Kuantitatif dan Kualitatif

Berdasarkan hasil rekapitulasi pada bagian sebelumnya, skenario C
(augmentation aktif, normalization aktif, batch size 64) ditetapkan sebagai model
dengan performa terbaik dan stabilitas konvergensi tertinggi. Untuk memahami
kinerja model secara lebih mendalam, dilakukan dua bentuk analisis: kuantitatif
(berdasarkan distribusi confusion matrix per kelas) dan kualitatif (berdasarkan

visualisasi citra prediksi benar dan salah). Analisis ini bertujuan untuk menilai
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kemampuan diskriminatif ConvNeXt-Tiny dalam mengenali karakteristik visual
antar kelas endoskopi, serta mengidentifikasi pola kesalahan yang masih muncul
pada hasil klasifikasi.

Analisis kuantitatif dilakukan dengan menghitung nilai precision, recall,
Fl-score, dan accuracy untuk masing-masing kelas berdasarkan confusion matrix
pada Tabel 4.15. Nilai precision dihitung sebagai rasio prediksi benar terhadap
seluruh prediksi kelas tersebut, sedangkan recall menggambarkan proporsi prediksi
benar terhadap total data aktual pada kelas bersangkutan. Nilai F'/-score merupakan
harmonisasi antara precision dan recall, sementara accuracy dihitung sebagai rasio

total prediksi benar terhadap keseluruhan citra uji.

Tabel 4.15 Confusion matrix Model Terbaik (Skenario C)

True \ Predicted Gerd Gerd Normal Polyp Polyp Normal
Gerd 618 43 2 9
Gerd Normal 37 721 0 10
Polyp 12 11 526 22
Polyp Normal 6 19 27 742

Dari hasil perhitungan berbasis matriks di atas, diperoleh hasil sebagai

berikut:
Tabel 4.16 Hasil perhitungan metrik kuantitatif per kelas model ConvNeXz-Tiny (Skenario C).
Kelas Accuracy Precision Recall Fl-score

GERD 0.899 0.92 0.909
GERD
Normal 0.9294 0.912 0.931 0.921
Polyp 0.932 0.931 0.931
Polyp Normal 0.945 0.944 0.944

Nilai metrik per kelas pada Tabel 4.16 menunjukkan bahwa model memiliki
performa yang relatif seimbang di seluruh kategori, dengan F'/-score berada pada

rentang 0.909-0.944 (atau 91%-94%). Kelas Polyp Normal menunjukkan nilai
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tertinggi pada seluruh metrik, menandakan bahwa model paling mudah mengenali
pola mukosa sehat dengan tekstur halus dan permukaan teratur. Sebaliknya, kelas
GERD memiliki precision sedikit lebih rendah (0.899 atau 89.9%), yang
menunjukkan masih terdapat kesalahan klasifikasi terhadap GERD Normal. Hal ini
dapat dijelaskan oleh kemiripan visual pada kasus mild reflux, di mana dinding
esofagus tampak hanya sedikit hiperemik tanpa ulserasi jelas. Meskipun demikian,
tidak ditemukan indikasi bias ekstrem terhadap salah satu kelas, yang berarti model
memiliki keseimbangan sensitivitas dan ketepatan yang baik (balanced sensitivity
and specificity).

Analisis kualitatif dilakukan untuk mengamati secara visual hasil prediksi
model terhadap citra endoskopi pada dua kelompok utama, yaitu GERD/GERD
Normal dan Polyp/Polyp Normal, sebagaimana ditampilkan pada Gambar 4.16 dan
Gambar 4.17. Masing-masing kelompok menampilkan beberapa contoh prediksi
benar (frue positive) dan salah (false prediction), yang membantu memahami pola

keputusan model dan konteks kesalahan klasifikasinya.
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Contoh Prediksi Benar & Salah (Gerd / Gerd Normal)

T:Gerd Normal T:Gerd Normal T:Gerd
P:Gerd Normal P:Gerd Normal P:Gerd

T:Gerd T:Gerd Normal T:Gerd
P:Gerd P.Gerd P:Gerd Normal

Gambear 4.16 Contoh prediksi benar dan salah model ConvNeXt-Tiny pada citra GERD dan GERD
Normal.

Contoh Prediksi Benar & Salah (Polyp / Polyp Normal)

T:Polyp Normal T:Polyp Normal T:Polyp
P:Polyp Normal P:Polyp Normal P:Polyp
- e S

T:Polyp Normal
P:Polyp Normal

T:Gerd Normal T:Polyp
P:Polyp Normal

P:Polyp Normal

Gambar 4.17 Contoh prediksi benar dan salah model ConvNeXt-Tiny pada citra Polyp dan Polyp
Normal.

Mengacu pada Gambar 4.16, dapat diamati bahwa model mampu

membedakan citra GERD aktif dari GERD Normal dengan cukup baik. Pada
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prediksi benar, model tampaknya mengenali ciri khas patologis seperti adanya area
hiperemia, erosi mukosa, dan refleksi mukosa tidak teratur di daerah distal
esofagus. Sementara pada kasus kesalahan, citra GERD dengan inflamasi ringan
cenderung diklasifikasikan sebagai GERD Normal karena tampilannya menyerupai
mukosa sehat dengan perbedaan warna yang sangat tipis. Fenomena ini
menegaskan bahwa batas diagnostik visual antara GERD ringan dan normal sangat
halus bahkan bagi manusia, sehingga wajar bila model masih menunjukkan
ambiguitas pada kondisi borderline tersebut.

Sementara itu, pada Gambar 4.17, performa model dalam membedakan
Polyp dan Polyp Normal juga tergolong baik. Citra polip umumnya dikenali
berdasarkan pola elevasi mukosa, adanya lesi menonjol dengan tepi tidak rata, atau
permukaan berwarna lebih terang akibat pembuluh darah superfisial. Prediksi salah
umumnya terjadi pada citra kolon dengan lipatan mukosa besar atau refleksi cairan
tinggi, yang menyebabkan struktur menyerupai tonjolan polip padahal bukan.
Kesalahan minor ini menandakan bahwa model sensitif terhadap perbedaan
topografi lokal, namun masih dapat terkecoh oleh artefak optik akibat pencahayaan

dan sudut kamera.

4.3.3 Sintesis dan Implikasi

Hasil penelitian ini menunjukkan bahwa penerapan ConvNeXt-Tiny sebagai
arsitektur dasar klasifikasi citra endoskopi memberikan performa tinggi dan
stabilitas pelatihan yang kompetitif dibandingkan CNN konvensional. Nilai F'I-
score makro sebesar 0.9294 pada skenario C membuktikan bahwa desain

modernized convolutional block dengan large kernel, efficient residual connection,
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serta adaptive normalization mampu mengekstraksi fitur morfologis halus pada
mukosa gastrointestinal. Kombinasi augmentation aktif, normalization aktif, dan
batch besar memperkuat generalisasi model terhadap variasi citra uji yang
kompleks. Secara ilmiah, hasil ini menegaskan pergeseran dari pendekatan
handcrafted features menuju representasi otomatis berbasis deep learning. Berbeda
dengan studi Jha et al. (2021) dan Cao et al. (2021) yang masih bergantung pada
struktur CNN klasik, ConvNeXt dengan large kernel design dan Layer
Normalization bergaya Transformer mampu menjembatani efisiensi CNN dengan
kemampuan generalisasi ViT.

Penelitian ini juga menegaskan relevansi ConvNeXt terhadap arah
perkembangan terkini di bidang medical imaging. Chan et al. (2023) melaporkan
Fl-score 69,87% pada DenseNet dengan attention. Dalam konteks ini, ConvNeXt-
Tiny menjadi solusi kompromi ideal setara ViT dalam ketepatan klasifikasi, namun
lebih efisien dan mudah diintegrasikan ke sistem CAD. Dibandingkan pendekatan
hibrida seperti Li ef al. (2023) dan Huan & Dun (2024), varian Tiny sudah cukup
kuat mencapai akurasi klinis tanpa fusi arsitektur tambahan. Nilai F'/-score di atas
0.92 pada citra dengan pencahayaan tidak seragam menunjukkan efisiensi
representasional yang baik, sejalan dengan Nergiz (2023). Dengan demikian,
ConvNeXt dapat diposisikan sebagai benchmark baru dalam klasifikasi citra medis,
menggabungkan efisiensi, presisi, serta potensi penerapan pada perangkat terbatas

seperti embedded GPU atau sistem edge di fasilitas medis kecil.
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4.3.4 Integrasi Sains dan Islam

Perkembangan ilmu pengetahuan dan teknologi modern, termasuk
penelitian ini yang mengimplementasikan deep learning untuk mendeteksi penyakit
lambung dan usus, tidak dapat dipisahkan dari prinsip dasar Islam yang
menempatkan ilmu sebagai sarana untuk mengenal dan mengabdi kepada Allah
SWT. Dalam pandangan Islam, sains bukan sesuatu yang berdiri sendiri dan
terpisah dari nilai moral dan spiritual. Sains merupakan bagian dari ibadah
intelektual manusia untuk mewujudkan kemaslahatan. Oleh karena itu, integrasi
sains dan Islam tidak hanya berarti menyandingkan ayat Al-Qur’an dengan teori
ilmiah, tetapi juga menyatukan keduanya pada tingkat pemahaman. Hal ini
mencakup keserasian antara ayat gauliyyah dan ayat kauniyyah. Landasan integrasi

ini dapat ditemukan dalam firman Allah SWT pada Surah A/-Ma’idah [5]: 32:

Soog LB izh (HET LS e i ool %% e s %% zE e A B o T s o yzeze SpL (o7 e
G ol 8 GG (251 (3 2led 51 e iy Ll (38 00 el B0 2 e 7 s 131 0

<§ syl e I N SR VS R IR S S PP P S oo THED (gyro T o s
oV A A S S O el B Sl A Wa 0 e TS besl
é;ie}fs

“Oleh karena itu, Kami menetapkan (suatu hukum) bagi Bani Israil bahwa siapa
vang membunuh seseorang bukan karena (orang yang dibunuh itu) telah
membunuh orang lain atau karena telah berbuat kerusakan di bumi, maka seakan-
akan dia telah membunuh semua manusia. Sebaliknya, siapa yang memelihara
kehidupan seorang manusia, dia seakan-akan telah memelihara kehidupan semua
manusia. Sungguh, rasul-rasul Kami benar-benar telah datang kepada mereka
dengan (membawa) keterangan-keterangan yang jelas. Kemudian, sesungguhnya
banyak di antara mereka setelah itu melampaui batas di bumi.” (QS. Al-Ma’idah

[5]:32)

Ayat ini menunjukkan bahwa setiap usaha ilmiah yang bertujuan

menyelamatkan kehidupan manusia memiliki nilai kemanusiaan yang tinggi.
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Dalam penelitian ini, pengembangan sistem klasifikasi citra endoskopi berbasis
kecerdasan buatan bertujuan membantu mempercepat dan mempermudah diagnosis
penyakit lambung dan polip usus. Upaya ini secara langsung berhubungan dengan
penyelamatan jiwa karena deteksi dini penyakit dapat meningkatkan peluang
penanganan yang tepat. Tafsir /bn Kathir (2000) menjelaskan bahwa siapa saja
yang menjadi sebab tegaknya kehidupan seseorang, baik melalui pemberian
makanan, penyelamatan dari kebinasaan, maupun pengobatan, maka ia
mendapatkan pahala seakan-akan menyelamatkan seluruh manusia. Penjelasan ini
memperlihatkan bahwa kedokteran, farmasi, dan teknologi medis termasuk bidang
dengan nilai fardhu kifayah, yaitu kewajiban kolektif umat untuk menjamin
kelangsungan hidup manusia.

Dalam perspektif magashid al-syari‘ah, seluruh aktivitas ilmiah yang
mendorong kemaslahatan manusia bertujuan menjaga lima aspek utama kehidupan,
yaitu agama (hifz al-din), jiwa (hifz al-nafs), akal (hifz al-‘aql), keturunan atau
kehormatan (hifz al-nasl atau al-‘ird), dan harta (hifz al-mal). Penelitian ini
berkaitan secara langsung dengan tujuan hifz al-nafs, yaitu perlindungan jiwa
manusia melalui upaya pencegahan dan pengobatan penyakit. Dengan
menghadirkan teknologi deteksi dini berbasis kecerdasan buatan untuk penyakit
pencernaan, penelitian ini termasuk bentuk ikhtiar ilmiah untuk menjaga kesehatan
dan keselamatan manusia sesuai dengan nilai-nilai syariah. Islam juga menekankan
kewajiban pencarian ilmu. Nabi Muhammad SAW bersabda:

“Menuntut ilmu itu wajib bagi setiap Muslim.” (HR. Ibn Mdajah, no. 224, dinilai
hasan oleh Al-Albani dalam Sahih Ibn Mdjah)
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Hadis ini menjadi dasar bahwa penelitian ilmiah, termasuk di bidang
kedokteran dan teknologi, merupakan bagian dari kewajiban intelektual umat Islam.
Menurut pandangan A/-Ghazali dalam kitab lhya’ ‘Ulim al-Din, ilmu yang
membawa manfaat kepada masyarakat seperti kedokteran, pertanian, dan teknik
termasuk kategori fardhu kifayah karena ilmu tersebut diperlukan untuk menjaga
keberlangsungan hidup manusia. Dengan demikian, penelitian ini yang
mengembangkan kecerdasan buatan untuk membantu diagnosis penyakit
pencernaan merupakan penerapan nyata dari prinsip hifz al-nafs dalam magashid
al-syari ‘ah.

Teknologi yang dikembangkan tidak bertujuan menggantikan peran dokter.
Teknologi ini berfungsi sebagai pendukung proses klinis dengan memberikan
analisis objektif berbasis citra digital. Hal ini sejalan dengan sabda Nabi
Muhammad SAW:

S A o5 e o3 G
“Tidaklah Allah menurunkan suatu penyakit kecuali Dia menurunkan pula
obatnya; orang yang mengetahuinya mengetahuinya, dan orang yang tidak
mengetahuinya tidak mengetahuinya. ” (HR. Muslim, no. 2204)'

Hadis ini menunjukkan bahwa setiap penyakit memiliki solusi yang telah
Allah tetapkan dalam hukum alam-Nya (sunnatullah). Tugas manusia sebagai
khalifah fi al-ard adalah berusaha menyingkap pengetahuan tersebut melalui riset
dan eksperimen ilmiah. Oleh karena itu, penelitian berbasis machine learning di

bidang medis seperti ini merupakan bagian dari upaya menemukan asbab asy-syifa’
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yang diamanahkan kepada manusia untuk digali melalui akal dan ilmu
pengetahuan.

Integrasi sains dan Islam juga mengandung nilai etis yang harus dipegang
dalam setiap langkah penelitian. Dalam Islam, ilmu tidak hanya bernilai karena
manfaat praktisnya, tetapi juga karena cara dan niat di balik pencapaiannya. Allah
SWT berfirman:

¥ i die I8 Gl 3R a5 5 peaill s gt &) Fle g ll Gl e il Y

“Dan janganlah kamu mengikuti sesuatu yang kamu tidak mempunyai

pengetahuan tentangnya. Sesungguhnya pendengaran, penglihatan, dan hati,
semuanya itu akan diminta pertanggungjawabannya.” (QS. Al-Isra’ [17]: 36)

Ayat ini mengajarkan bahwa seorang peneliti tidak boleh menyampaikan
kesimpulan tanpa bukti yang jelas. Dalam riset yang melibatkan data medis, hal ini
berkaitan dengan kejujuran dalam pengumpulan data, validitas metode penelitian,
penyajian hasil secara objektif, serta perlindungan privasi pasien. Nilai-nilai ini
menjadi dasar bahwa penelitian harus dilakukan dengan amanah ilmiah dan
kesadaran bahwa ilmu adalah titipan Allah yang harus digunakan untuk kebaikan,
bukan untuk merugikan pihak lain.

Dengan pemahaman tersebut, inovasi teknologi medis tidak hanya dinilai
dari efektivitas algoritmanya, tetapi juga dari kontribusinya terhadap nilai-nilai
kemanusiaan. Integrasi sains dan Islam dalam penelitian ini memperlihatkan bahwa
ilmuwan Muslim dituntut untuk menggabungkan kecerdasan intelektual dengan
kesadaran spiritual, sehingga ilmu pengetahuan kembali pada tujuannya, yaitu

memberikan manfaat bagi seluruh manusia.



BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian dan analisis yang dilakukan, dapat disimpulkan
bahwa penerapan arsitektur ConvNeXt-Tiny mampu menghasilkan model
klasifikasi citra endoskopi yang efektif dan konsisten dalam mengidentifikasi dua
kondisi utama saluran cerna, yaitu Gastroesophageal Reflux Disease (GERD) dan
polip usus. Kinerja terbaik dicapai pada skenario C, yaitu konfigurasi dengan
augmentation aktif, normalization aktif, serta batch size 64. Pada pengaturan
tersebut, model memperoleh akurasi sebesar 92.94%, precision 93.04%, recall
92.85%, dan Fl-score 92.94%, yang menunjukkan keseimbangan sangat baik
antara sensitivitas dan spesifisitas.

Secara keseluruhan, kombinasi strategi augmentation dan normalization
memberikan kontribusi paling besar terhadap peningkatan kemampuan generalisasi
model. Augmentation membantu memperluas variasi data pelatihan sehingga model
lebih mampu mengenali perbedaan bentuk dan tekstur mukosa, sementara
normalization menjaga stabilitas gradien selama proses pelatihan. Selain itu,
penggunaan batch yang lebih besar berperan dalam memperhalus estimasi gradien
dan mempercepat proses konvergensi. Evaluasi kuantitatif menunjukkan performa
yang merata di keempat kelas dengan F'/-score berkisar antara 91-94%, sedangkan

analisis kualitatif mengonfirmasi bahwa model dapat mengenali karakteristik visual
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patologis seperti area hiperemia, tonjolan mukosa, serta tekstur abnormal secara

akurat.

5.2 Saran

Berdasarkan hasil dan keterbatasan penelitian, beberapa saran untuk

penelitian dan pengembangan selanjutnya adalah sebagai berikut:

1.

Perluasan dataset dan variasi kasus klinis

Dataset yang digunakan dalam penelitian ini masih terbatas pada citra dari
GastroEndoNet dengan dua kategori utama (GERD dan polip). Penelitian
selanjutnya disarankan untuk menggunakan dataset multi-institusi yang
lebih beragam, mencakup variasi kondisi seperti gastritis, ulserasi, atau
kanker kolorektal lanjut agar model memiliki kemampuan generalisasi yang
lebih luas.

Perbandingan antar arsitektur modern

Untuk memperkuat temuan performa ConvNeXt, penelitian berikutnya
dapat membandingkan arsitektur ini dengan model-model lain seperti
EfficientNetV2, Swin Transformer, atau Vision Transformer (ViT). Analisis
perbandingan tersebut penting untuk menilai efisiensi komputasi,
kompleksitas model, serta tingkat interpretabilitas yang paling sesuai untuk
aplikasi klinis.

Integrasi interpretabilitas model

Penggunaan explainable Al (XAI) seperti Grad-CAM, Score-CAM, atau
Layer-wise Relevance Propagation direkomendasikan untuk meningkatkan

transparansi prediksi model, sehingga hasil klasifikasi dapat lebih mudah



96

diverifikasi oleh tenaga medis dan meningkatkan kepercayaan terhadap
sistem diagnosis berbantuan A4/.
4. Optimasi pipeline pelatihan dan inference
Penggunaan teknik seperti mixed precision training, adaptive
augmentation, dan learning rate scheduling dapat meningkatkan efisiensi
pelatihan. Selain itu, konversi model ke format ringan seperti TensorRT atau
TFLite memungkinkan penerapan pada perangkat edge computing atau
sistem endoskopi portabel.
5. Integrasi ke sistem CAD klinis
Sebagai arah pengembangan aplikatif, model ConvNeXt-Tiny dapat
diintegrasikan ke dalam sistem Computer-Aided Diagnosis real-time untuk
membantu dokter dalam mendeteksi lesi atau polip selama prosedur
endoskopi. Tahap ini memerlukan pengujian lebih lanjut terhadap aspek
latency, reliabilitas, dan user experience di lingkungan klinis nyata.
Melalui pengembangan lanjutan tersebut, diharapkan hasil penelitian ini
dapat berkontribusi pada peningkatan efektivitas pemeriksaan endoskopi,
membantu deteksi dini penyakit gastrointestinal, serta mendukung transformasi
digital dalam praktik medis modern yang berorientasi pada kemaslahatan dan

peningkatan kualitas hidup manusia.
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