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ABSTRAK 

 

Faqih, Muhammad. 2025. Klasifikasi Citra Endoskopi Berbasis Arsitektur ConvNeXt 

Untuk Identifikasi Penyakit Gerd Dan Polip. Skripsi. Jurusan Teknik 

Informatika Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana 

Malik Ibrahim Malang. Pembimbing: (I) Okta Qomaruddin Aziz, M.Kom (II) 

Ajib Hanani, M.T. 

 

Kata kunci: Computer-Aided Diagnosis, ConvNeXt, Convolutional Neural Networks, 

Klasifikasi Citra Endoskopi, Pencitraan Medis. 

 

 

Identifikasi otomatis terhadap kelainan gastrointestinal penting untuk mendukung 

deteksi dini gastroesophageal reflux disease (GERD) dan polip usus. Interpretasi manual 

citra endoskopi memiliki keterbatasan karena variabilitas antar-pemeriksa dan waktu 

pemrosesan, sehingga diperlukan sistem diagnosis berbantuan komputer yang andal. 

Penelitian ini mengusulkan kerangka deep learning berbasis ConvNeXt-Tiny untuk 

mengklasifikasikan citra endoskopi ke dalam empat kategori, yaitu GERD, GERD Normal, 

Polyp, dan Polyp Normal. Dataset yang digunakan adalah GastroEndoNet v3, yang terdiri 

atas 4.006 citra asli dan 20.030 citra augmentasi. Sebanyak dua belas skenario eksperimen 

dilakukan untuk mengevaluasi pengaruh augmentasi data, normalisasi, dan ukuran batch 

terhadap kinerja model. Konfigurasi terbaik, yang menggunakan augmentasi aktif dan 

normalisasi berbasis ImageNet dengan batch size 64, mencapai akurasi sebesar 92,94% dan 

macro F1-score sebesar 92,94%. Hasil ini menunjukkan bahwa ConvNeXt-Tiny mampu 

mengekstraksi pola mukosa secara efektif dengan efisiensi komputasi yang tinggi, sehingga 

layak diterapkan pada lingkungan klinis. Kerangka yang diusulkan menyediakan baseline 

yang akurat dan ringan untuk klasifikasi penyakit endoskopi serta menjadi dasar bagi 

pengembangan lebih lanjut pada analisis video real-time dan validasi multi-senter. 
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ABSTRACT 

 

Faqih, Muhammad. 2025. Endoscopic Image Classification Based on ConvNeXt 

Architecture for Identification of Gerd and Polyps. Undergraduate 

Thesis. Informatics Engineering Study Program, Faculty of Science and 

Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang. 

Promotor: I) Okta Qomaruddin Aziz, M.Kom (II) Ajib Hanani, M.T. 

 

 

Automated identification of gastrointestinal abnormalities is essential for 

supporting the early diagnosis of gastroesophageal reflux disease (GERD) and 

intestinal polyps. Manual interpretation of endoscopic images is limited by inter-

observer variability and processing time, creating the need for reliable computer-

aided diagnostic systems. This study proposes a ConvNeXt-Tiny based deep 

learning framework for multi-class classification of endoscopic images into four 

categories: GERD, GERD Normal, Polyp, and Polyp Normal. The experiments 

used the GastroEndoNet v3 dataset, which includes 4,006 original images and 

20,030 augmented images. Twelve experimental scenarios were conducted to 

evaluate the effects of data augmentation, normalization, and batch size on model 

performance. The best configuration, which applied active augmentation and 

ImageNet-based normalization with a batch size of 64, achieved an accuracy of 

92.94% and a macro F1-score of 92.94%. These results indicate that ConvNeXt-

Tiny effectively captures fine-grained mucosal patterns while maintaining 

computational efficiency, making it suitable for clinical deployment. The proposed 

framework provides a lightweight and accurate baseline for automated endoscopic 

disease classification and forms a foundation for future work on real-time video 

analysis and multi-center validation. 

 

Keywords: Classification, Computer-Aided Diagnosis, ConvNeXt, Convolutional 

Neural Networks, Endoscopic Image, Medical Imaging. 
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 مستخلص البحث 

 
 فقيه، محمد .ألفان  وخمسة وعشرون  .تصنيف صور التنظير الداخلي بالاعتماد على معمارية كونفنيكست للتعرّف على مرض الارتجاع 
 المعدي المريئي والسلائل .رسالة جامعية .قسم هندسة المعلوماتية، كلية العلوم  والتكنولوجيا،  جامعة  مولانا مالك إبراهيم 
 ،الإسلامية الحكومية مالانغ .المشرفان ) :الأول  (أوكتا قمر الدين عزيز،  ماجستير في علوم الحاسوب، )الثاني (أجيب حناني

 .ماجستير في الهندسة

 ،الكلمات المفتاحية :التشخيص بمساعدة  الحاسوب، كونفنيكست، الشبكات العصبية الالتفافية، تصنيف صور التنظير  الداخلي
 .التصوير الطب 

 تعُدّ  عملية  التعرّف  الآل  على اضطرابات الجهاز الهضمي  ذات  أهمية كبيرة  لدعم الكشف المبكر  عن  مرض الارتجاع  المعدي المريئي 
 وسلائل الأمعاء، حيث  إن  التفسير اليدوي لصور التنظير الداخلي  يعاني من عدة  قيود، من بينها اختلاف التقييم بين الفاحصين وطول 
 زمن  المعالجة،  مما يستدعي  الحاجة إل  نظام  تشخيص موثوق  قائم على الحاسوب .تقترح هذه  الدراسة  إطار عمل  للتعلّم  العميق  يعتمد 
 على نموذج كونفنيكست-تايني لتصنيف صور التنظير  الداخلي  إل أربع فئات، وهي :الارتجاع  المعدي المريئي،  الارتجاع المعدي المريئي 
 الطبيعي، السلائل، والسلائل  الطبيعية  .ت  استخدام مجموعة بيانات غاستروإندونت الإصدار  الثالث، التي تتكوّن  من أربعة آلاف 
 ،وست صور  أصلية  وعشرين ألفًا  وثلاثين  صورة  ناتجة  عن  تقنيات  تعزيز البيانات .أُجريت اثنتا عشرة  تجربة  لتقييم  تأثير  تعزيز  البيانات
 والتطبيع، وحجم  الدفعة  على أداء النموذج .وحققت  أفضل الإعدادات—باستخدام تعزيز  بيانات فعّال وتطبيع قائم على  إيميج  نت 
 .مع حجم  دفعة  قدره  أربعة  وستون —دقة بلغت  اثنين  وتسعين  فاصل أربعة  وتسعين  في  المائة،  وقيمة  إف واحد  الكلية  بالمقدار نفسه 
 وتُظهر هذه  النتائج أن  نموذج كونفنيكست-تايني قادر على استخلاص أنماط الغشاء المخاطي بكفاءة  عالية مع الحفاظ على كفاءة
 حسابية مرتفعة، مما يجعله مناسبًا للتطبيق في البيئات السريرية، كما يوفرّ الإطار المقترح خطّ  أساس دقيقًا وخفيف الوزن  لتصنيف

 .أمراض التنظير  الداخلي،  ويشكّل  أساسًا لتطويرات مستقبلية  تشمل  تحليل الفيديو في الزمن  الحقيقي  والتحقق متعدد المراكز
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BAB I PENDAHULUAN

BAB I 

PENDAHULUAN 

 

1.1 Latar Belakang 

Penyakit gastroesophageal reflux disease (GERD) dan polip usus 

merupakan dua kondisi gastrointestinal yang umum terjadi dan memiliki potensi 

berkembang menjadi komplikasi serius jika tidak terdeteksi secara dini. GERD 

adalah kondisi kronis yang ditandai dengan naiknya isi lambung ke esofagus, 

menyebabkan gejala seperti nyeri epigastrium (heartburn), mual, regurgitasi asam, 

dan kesulitan menelan. Jika dibiarkan, GERD dapat menimbulkan komplikasi 

seperti esofagitis dan Barrett’s esophagus, yang berisiko berkembang menjadi 

kanker esofagus (Syamsu Rijal et al., 2024). Meskipun prevalensinya di Asia 

tergolong lebih rendah dibandingkan negara-negara Barat, tren kenaikannya cukup 

mengkhawatirkan; sebagai contoh, di Jepang dan Taiwan, prevalensi GERD 

mencapai 13–15% (Syamsu Rijal et al., 2024). 

Sementara itu, polip usus adalah pertumbuhan jaringan abnormal di dinding 

usus besar yang sering tidak menunjukkan gejala pada stadium awal. Namun, 

sekitar 35% kasus kanker kolorektal di Indonesia bermula dari polip yang tidak 

tertangani, dan sebagian besar menyerang usia produktif di bawah 40 tahun 

(Yasmina Lafau, 2024). Deteksi dini kedua kondisi ini menjadi krusial karena 

penanganan pada tahap awal terbukti lebih efektif dan dapat mencegah transisi ke 

fase penyakit yang lebih berat, terutama dalam sistem pelayanan kesehatan yang 

masih menghadapi tantangan seperti keterbatasan tenaga ahli. 



2 

 

 

Endoskopi merupakan prosedur medis minimal invasif yang 

memungkinkan visualisasi langsung saluran pencernaan bagian atas maupun bawah 

menggunakan kamera fleksibel, sehingga menjadi alat utama dalam diagnosis 

berbagai penyakit gastrointestinal, termasuk GERD dan polip. Dari hasil prosedur 

ini, diperoleh citra endoskopi yang mengandung informasi visual krusial mengenai 

kondisi mukosa saluran cerna. Namun, interpretasi citra endoskopi secara manual 

memiliki keterbatasan signifikan, seperti ketergantungan pada pengalaman klinis 

dokter, variabilitas subjektif antarpengamat, serta risiko human error yang dapat 

menyebabkan diagnosis kurang akurat atau tertunda (Zhou et al., 2023). 

Kompleksitas visual, seperti perbedaan warna jaringan yang halus, pencahayaan 

yang tidak merata, dan keberadaan artefak citra, menambah tantangan dalam 

penilaian manual (Zhou et al., 2023). 

Berkenaan dengan hal ini, teknologi berbasis kecerdasan buatan (artificial 

intelligence / AI), khususnya model deep learning untuk klasifikasi citra, 

menawarkan solusi inovatif. Dengan melatih model pada ribuan gambar endoskopi, 

sistem AI mampu mengenali pola-pola patologis secara konsisten dan dalam waktu 

yang lebih singkat dibandingkan tenaga medis manusia, sehingga berpotensi 

meningkatkan akurasi diagnosis dan efisiensi layanan kesehatan. 

Kecerdasan buatan, khususnya deep learning berbasis convolutional neural 

network (CNN) seperti ResNet atau EfficientNet, menawarkan potensi untuk 

mengatasi tantangan ini melalui analisis citra endoskopi otomatis. Namun, model 

CNN tradisional seperti ResNet atau EfficientNet sering kali kurang efisien untuk 

diimplementasikan pada perangkat dengan spesifikasi rendah, yang umum 
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ditemukan di rumah sakit kecil (Tan & Le, 2019). Untuk mengatasi masalah ini, 

penelitian ini menggunakan ConvNeXt, sebuah arsitektur CNN modern yang 

menggabungkan efisiensi CNN dengan prinsip desain Vision Transformer. 

ConvNeXt merupakan arsitektur konvolusional modern yang menunjukkan 

performa tinggi dan efisiensi komputasi yang baik pada berbagai benchmark visi 

komputer umum, seperti klasifikasi ImageNet, deteksi objek, dan segmentasi 

semantik (Liu et al., 2022). 

Hasil benchmark pada ImageNet-1K/22K menunjukkan bahwa berbagai 

varian ConvNeXt secara konsisten melampaui performa ResNet dan bersaing 

dengan atau bahkan melampaui Vision Transformer (misalnya Swin-B), dengan 

akurasi lebih tinggi dan throughput inference yang lebih baik, sambil tetap 

mempertahankan efisiensi parameter dan arsitektur CNN yang sederhana (Liu et al., 

2022). Keunggulan ini menjadikan ConvNeXt sangat relevan untuk aplikasi medis, 

di mana presisi tinggi dibutuhkan namun dalam konteks operasional yang efisien 

(Esteva et al., 2021). Selain itu, struktur ConvNeXt yang modular dan tidak terlalu 

kompleks memungkinkan proses fine-tuning lebih fleksibel pada dataset medis 

berskala sedang hingga kecil, sehingga cocok diterapkan untuk sistem klasifikasi 

otomatis di fasilitas kesehatan (Shin et al., 2016). 

Penelitian ini akan menggunakan dataset citra endoskopi GastroEndoNet: 

Comprehensive Endoscopy Image dataset for GERD and Polyp Detection, yang 

tersedia di Mendeley Data (Bitto et al., 2025), untuk melatih model ConvNeXt-Tiny 

dalam mendeteksi GERD dan polip usus. Performa model akan dievaluasi 

menggunakan metrik-metrik yang umum digunakan dalam klasifikasi citra medis, 
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yaitu matriks konfusi (menggambarkan distribusi prediksi benar dan salah untuk 

setiap kelas), akurasi (persentase prediksi benar dari total data uji), sensitivitas 

(recall, kemampuan mendeteksi kondisi positif seperti GERD atau polip), 

spesifisitas (kemampuan mengenali kondisi normal tanpa salah melabeli sebagai 

penyakit), dan F1-score (keseimbangan antara precision dan recall) (Esteva et al., 

2017). 

Penelitian ini bertujuan mengimplementasikan sistem klasifikasi citra 

endoskopi berbasis ConvNeXt-Tiny yang akurat dan efisien, serta mengevaluasi 

model untuk mendeteksi GERD dan polip usus, mendukung diagnosis di rumah 

sakit tipe C di Indonesia. Dengan demikian, penelitian ini diharapkan dapat 

meningkatkan efisiensi dan akurasi diagnosis, terutama di wilayah dengan akses 

terbatas ke spesialis gastroenterologi. Upaya ini sejalan dengan nilai-nilai dalam 

Islam yang mendorong pencegahan penyakit dan penyelamatan jiwa manusia 

sebagai bentuk ihsan (kebaikan). Allah SWT berfirman: 

يۡنَ  الۡبـَيۡتَ  الۡحـَراَمَ  يَـبۡـتـَغُوۡنَ  دَ  وَلَاا  ا ٰٓمِّّ ٮِٕ رَ  اللّ ِّ  وَلَا  الشَّهۡرَ  الۡحـَراَمَ  وَلَا  الۡهدَۡىَ  وَلَا  الۡقَلآَٰ ـايَّـُهَا الَّذِّيۡنَ  ا مَنُـوۡا لَا  تحِّلُّوۡا شَعَآٰٮِٕ
 ي ا

دِّ  الۡحـَراَمِّ  انَۡ  رِّمَنَّكُمۡ  شَناَ نُ  قَـوۡم   انَۡ  صَدُّوكُۡمۡ  عَنِّ  الۡمَسۡجِّ ؕ   وَلَا  يَجۡ ؕ   وَاِّذَا حَللَۡتُمۡ  فاَصۡطاَدُوۡا    فَضۡلًا  مِّّنۡ  رَّبِِّّّّمۡ  وَرِّضۡوَاناً 
ؕ   اِّنَّ  اللّ َ  شَدِّيۡدُ  الۡعِّقَابِّ   تَـعۡتَدُوۡا ۘ وَتَـعَاوَنُـوۡا عَلَى الۡبِِّّّ  وَالتـَّقۡو ى  ۖ وَلَا  تَـعَاوَنُـوۡا عَلَى الۡاِّثِّۡ  وَالۡعُدۡوَانِّ  ۖ وَاتّـَقُوا اللّ َ 

 

"Wahai orang-orang yang beriman! Janganlah kamu melanggar syiar-syiar 

kesucian Allah, dan jangan (melanggar kehormatan) bulan-bulan haram, jangan 

(mengganggu) hadyu (hewan-hewan kurban) dan qala'id (hewan-hewan kurban 

yang diberi tanda), dan jangan (pula) mengganggu orang-orang yang mengunjungi 

Baitulharam; mereka mencari karunia dan keridhaan Tuhannya. Tetapi apabila 

kamu telah menyelesaikan ihram, maka bolehlah kamu berburu. Jangan sampai 

kebencian(mu) kepada suatu kaum karena mereka menghalang-halangimu dari 

Masjidilharam, mendorongmu berbuat melampaui batas (kepada mereka). Dan 

tolong-menolonglah kamu dalam (mengerjakan) kebajikan dan takwa, dan jangan 

tolong-menolong dalam berbuat dosa dan permusuhan. Bertakwalah kepada Allah, 

sungguh, Allah sangat berat siksaan-Nya." (Q.S. Al-Maidah: 2) 
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Menurut Tafsir Ibn Kathīr (2008), ayat ini menegaskan kewajiban umat 

Islam untuk saling bekerja sama dalam kebajikan dan takwa, serta menjauhi kerja 

sama dalam dosa dan permusuhan. Prinsip ini dapat diaktualisasikan dalam konteks 

modern, misalnya dengan bekerja sama dalam menjaga kesehatan dan 

menghindarkan diri dari mudharat melalui pengembangan sistem medis berbasis 

teknologi. Selain itu, terdapat pula sabda Nabi Muhammad صلى الله عليه وسلم yang mengandung 

motivasi untuk berikhtiar dalam menemukan solusi medis bagi setiap penyakit: 

فاءً  له أنْـزَلَ  إلاَّ  داءً  اللَُّ  أنْـزَلَ  ما شِّ  

"Tidaklah Allah menurunkan suatu penyakit, melainkan Dia juga menurunkan 

obatnya." (HR. Bukhari, no. 5678) 

 

Dalam penjelasan Ibn Ḥajar al-‘Asqalānī, hadis ini menunjukkan anjuran 

untuk melakukan penelitian dan pengobatan, sebab setiap penyakit pasti memiliki 

solusi yang diciptakan Allah, hanya saja sebagian telah ditemukan dan sebagian 

lain menunggu untuk diikhtiarkan (Ibn Ḥajar al-‘Asqalānī, 2001). 

Dengan dasar tersebut, penelitian ini tidak hanya merupakan kontribusi 

ilmiah dalam bidang teknologi medis, tetapi juga menjadi bentuk pengabdian dalam 

kerangka etika Islam untuk menjaga kesehatan sebagai bagian dari amanah yang 

wajib dijaga. 

 

1.2 Rumusan Masalah 

Bagaimana membangun dan mengevaluasi model klasifikasi citra 

endoskopi menggunakan arsitektur ConvNeXt-Tiny untuk mendeteksi penyakit 
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GERD dan polip usus secara otomatis berdasarkan metrik matriks konfusi, akurasi, 

sensitivitas, dan spesifisitas? 

 

1.3 Batasan Masalah 

a. Penelitian ini hanya menggunakan dataset citra endoskopi dari 

GastroEndoNet 

b. Deteksi terbatas pada dua jenis kondisi gastrointestinal, yaitu GERD 

(gastroesophageal reflux disease) dan polip usus, tanpa mencakup jenis 

kelainan lain seperti kanker kolorektal lanjut atau gastritis. 

c. Arsitektur yang digunakan terbatas pada ConvNeXt-Tiny, tanpa perbandingan 

dengan arsitektur lain seperti ResNet, EfficientNet, atau ViT. 

 

1.4 Tujuan Penelitian 

Tujuan dari penelitian ini adalah untuk membangun model klasifikasi citra 

endoskopi menggunakan arsitektur ConvNeXt-Tiny dan mengevaluasi performa 

model berdasarkan metrik akurasi, sensitivitas, spesifisitas, dan matriks konfusi 

untuk mendeteksi penyakit GERD dan polip usus secara otomatis. 

 

1.5 Manfaat Penelitian 

Penelitian ini diharapkan dapat memberikan manfaat baik secara teoritis 

maupun praktis, sebagai berikut: 

1. Penelitian ini memberikan kontribusi pada pengembangan ilmu 

pengetahuan di bidang kecerdasan buatan, khususnya dalam penerapan 

arsitektur ConvNeXt-Tiny untuk klasifikasi citra medis.  
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2. Hasil dari penelitian ini diharapkan dapat mendukung sistem pendukung 

keputusan medis (clinical decision support system), khususnya dalam 

membantu dokter atau tenaga medis mendiagnosis GERD dan polip usus 

secara lebih cepat dan akurat. 
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BAB II STUDI PUSTAKA 

BAB II 

STUDI PUSTAKA 

 

2.1 Penelitian Terkait 

Dalam beberapa tahun terakhir, pemanfaatan deep learning, khususnya 

convolutional neural networks (CNN), telah menjadi pendekatan utama dalam 

klasifikasi citra medis, termasuk dalam analisis citra endoskopi. Deteksi dini 

penyakit seperti kanker kolorektal maupun abnormalitas gastrointestinal lainnya 

sangat bergantung pada kemampuan sistem untuk mengenali keberadaan polip atau 

lesi pada dinding saluran cerna. Sebelumnya, metode deteksi polip banyak 

bergantung pada fitur buatan (handcrafted features) seperti tekstur dan warna. 

Namun, pendekatan tersebut memiliki keterbatasan, terutama ketika menghadapi 

variasi bentuk, ukuran, dan pencahayaan dari citra endoskopi. 

Seiring berkembangnya CNN dan arsitektur mutakhir seperti YOLO, 

ResNet, dan UNet, performa deteksi dan segmentasi menjadi semakin akurat dan 

cepat, membuka jalan bagi penerapan sistem computer-aided diagnosis (CAD) 

secara real-time dalam praktik klinis. Salah satu studi penting dilakukan oleh Jha et 

al. (2021) yang memperkenalkan ColonSegNet, sebuah arsitektur encoder-decoder 

yang dirancang untuk segmentasi dan deteksi polip dalam citra kolonoskopi secara 

real-time. Penelitian ini menggunakan dataset publik Kvasir-SEG dengan 1.072 

citra yang telah dianotasi. Melalui benchmarking terhadap berbagai arsitektur 

seperti YOLOv4, RetinaNet, dan Faster R-CNN, ColonSegNet menunjukkan 

performa kompetitif dengan Dice coefficient sebesar 0,8206 dan kecepatan 
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inference mencapai 180 FPS, menjadikannya salah satu metode tercepat yang 

mendekati kebutuhan klinis. 

Pendekatan berbeda diusulkan oleh Cao et al. (2021), yang fokus pada 

deteksi polip lambung suatu tantangan tersendiri karena bentuk dan ukuran polip 

yang lebih kecil serta tekstur mukosa lambung yang kompleks. Dengan 

memodifikasi YOLOv3 dan menambahkan modul fusi fitur, mereka berhasil 

meningkatkan presisi deteksi menjadi 91,6% dan F1-score hingga 88,8%, jauh 

mengungguli baseline. Meskipun dataset yang digunakan bersifat privat dan 

khusus untuk polip lambung, studi ini memberikan kontribusi penting dalam hal 

penanganan objek kecil dan penggabungan fitur multi-level, yang sangat relevan 

dalam konteks klasifikasi citra endoskopi gastrointestinal atas (Cao et al., 2021; Jha 

et al., 2021). 

Penelitian oleh Chan et al. (2023) berfokus pada klasifikasi multi-kelas 

penyakit gastroesophageal reflux disease (GERD) menggunakan citra endoskopi 

berbasis white light (WL). Dengan menggunakan dataset internal dari Xiangyang 

Centre Hospital yang terdiri atas 3.654 citra endoskopi, mereka membagi data 

berdasarkan klasifikasi Los Angeles (LACS) menjadi empat kelas: A, B, C, dan D. 

Metode yang digunakan mencakup pemanfaatan model CNN pre-trained seperti 

DenseNet121, ResNet, hingga InceptionResNet, yang kemudian dikombinasikan 

dengan teknik data resampling dan attention map. 

Model terbaik diperoleh dari kombinasi DenseNet121 dengan oversampling 

dan global attention block (GAB), yang menghasilkan akurasi sebesar 74,69%, F1-

score sebesar 69,87%, dan Cohen’s kappa 0,7757. Selain pengembangan model, 
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peneliti juga merancang antarmuka pengguna berbasis HuggingFace untuk 

memperkuat adopsi klinis. Keunggulan dari studi ini terletak pada pendekatan 

sistematis terhadap klasifikasi GERD secara detail berdasarkan skala LACS penuh, 

serta upaya untuk menangani imbalance data dan meningkatkan interpretabilitas 

melalui attention map (Chan et al., 2023). 

Perkembangan ini mengindikasikan adanya pergeseran dari pendekatan 

CNN tradisional ke model-model berbasis Transformer, terutama dalam aplikasi 

citra medis yang kompleks. Selain itu, fokus penelitian mulai bergeser dari 

klasifikasi umum menuju kasus-kasus yang lebih spesifik, seperti GERD dan polip, 

yang merupakan dua kategori penting dalam diagnostik gastrointestinal atas dan 

bawah (Chan et al., 2023). 

Seiring berkembangnya teknologi deep learning, pendekatan berbasis 

arsitektur yang lebih modern mulai dikembangkan untuk mengatasi tantangan 

klasifikasi citra medis yang kompleks. Salah satu penelitian oleh Li et al. (2023) 

mengusulkan pendekatan hibrida ConvNeXt dan Vision Transformer (ViT) dalam 

sistem diagnosis berbantuan komputer untuk lesi kulit akibat infeksi virus. 

Penelitian ini menggunakan model gabungan ConvNeXt-Small dan Swin-T, serta 

diterapkan pada dataset baru bernama Skin-CID, yang mencakup berbagai penyakit 

kulit termasuk poxvirus. Sistem ini dilatih secara end-to-end menggunakan strategi 

penyeimbangan data dan augmentation berbasis warna serta tekstur. Hasil evaluasi 

menunjukkan bahwa model gabungan ConvNeXt-Small dengan Swin-T berhasil 

mencapai akurasi tertinggi sebesar 96,03% dan F1-score 94,27%, mengungguli 

model baseline seperti ResNet dan DenseNet. Pendekatan ini membuktikan bahwa 
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kombinasi CNN dan Transformer mampu memanfaatkan fitur global dan lokal 

secara sinergis untuk meningkatkan akurasi diagnosis (Li et al., 2023). 

Penelitian terbaru oleh Nergiz (2023) mengkaji penerapan ConvNeXt pada 

klasifikasi lesi kolorektal menggunakan dataset MHIST yang berisi 3.152 tile citra 

histopatologi berlabel hyperplastic polyp (HP) dan sessile serrated adenoma (SSA). 

Peneliti mengevaluasi empat varian ConvNeXt (Tiny, Small, Big, Large) pada tiga 

skenario: full data, k-shot learning, dan gradually increasing difficulty. Hasilnya 

menunjukkan ConvNeXt-L mencapai akurasi 88,9%, F1-score 91,21%, AUC 

93,91%, serta Cohen’s kappa 0,7633, mengungguli arsitektur CNN konvensional 

seperti ResNet, DenseNet, dan Inception v3. Selain itu, eksperimen few-shot 

menunjukkan kemampuan generalisasi ConvNeXt tetap tinggi meskipun data 

terbatas, menjadikannya baseline yang menjanjikan untuk tugas klasifikasi medis 

di domain data terbatas (Nergiz, 2023). 

Pendekatan berbasis arsitektur ConvNeXt juga diuji secara spesifik dalam 

konteks klasifikasi penyakit kulit yang menyerupai gejala virus, seperti monkeypox. 

Huan dan Dun (2024) memperkenalkan MSMP-Net, sebuah model multi-scale 

neural network yang dibangun di atas backbone ConvNeXt untuk klasifikasi lesi 

kulit akibat virus monkeypox. MSMP-Net menggabungkan fitur multiskala dari 

ConvNeXt dengan desain inverse bottleneck dan large kernel untuk meningkatkan 

ekstraksi fitur spasial. 

Penelitian ini menggunakan dataset MSLD v2.0 dan berhasil mencapai 

akurasi 87,03%, F1-score 86,58%, serta efisiensi tinggi dalam pipeline end-to-end. 

Inovasi utama terletak pada struktur fusi fitur multiskala yang mampu menangkap 
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perbedaan morfologis halus pada citra kulit. Penelitian ini menandai langkah maju 

dalam pemanfaatan ConvNeXt untuk klasifikasi citra medis nonendoskopik, serta 

membuka peluang adopsi pada domain yang lebih kompleks seperti endoskopi 

saluran pencernaan. 

Rangkuman dari seluruh penelitian yang telah dibahas dapat dilihat pada 

Tabel 2.1, yang memuat perbandingan metode, dataset, dan hasil utama dari tiap 

studi. 

Tabel 2.1 Ringkasan Penelitian Terkait 

No Peneliti 
Tujuan 

Penelitian 
Dataset Metode 

Hasil 

Utama 
Kelebihan 

Keterbat

asan 

1 

Jha et 

al. 

(2021) 

Deteksi dan 

segmentasi 

polip secara 

real-time 

Kvasir-

SEG 

YOLOv

4, 

ColonSe

gNet 

Dice 

0.82; 

180 

FPS 

Real-

time, 

benchmar

k lengkap 

Fokus 

polip 

kolon 

saja 

1 

Cao et 

al. 

(2021) 

Deteksi 

polip 

lambung 

ukuran 

kecil 

Dataset 

internal 

YOLOv

3 + 

feature 

fusion 

Precisi

on 

91.6% 

Deteksi 

objek 

kecil 

efektif 

Dataset 

privat, 

domain 

sempit 

2 

Chan 

et al. 

(2023) 

Klasifikasi 

GERD 

multi-kelas 

(LACS A–

D) 

Xiangyang 

Hosp. 

(3654 citra) 

DenseN

et121 + 

GAB 

Akura

si 

74.69

% 

Fokus 

GERD, 

interpreta

bilitas 

baik 

Imbalan

ced data 

4 

Li et 

al. 

(2023) 

Klasifikasi 

infeksi kulit 

(pox, 

herpes) 

Skin-CID 

ConvNe

Xt + 

Swin-T 

Akura

si 

96.03

% 

Hybrid 

CNN-

ViT, 

klasifikasi 

luas 

Domain 

non-

endosko

pi 

5 
Nergiz 

(2023) 

ConvNeXt 

dalam 

klasifikasi 

lesi 

kolorektal 

(SSA vs 

HP) 

MHIST 

(3.152 tile 

citra 

histopatolo

gi) 

ConvNe

Xt 

(Tiny, 

Small, 

Big, 

Large) 

Akura

si 

88,9%, 

F1-

score 

91,21

%, 

AUC 

93,91

%, 

Cohen

’s 

Mengung

guli CNN 

tradisiona

l, kuat 

pada few-

shot 

learning, 

hasil 

stabil 

pada data 

sulit 

Fokus 

pada 

citra 

histopat

ologi 

(bukan 

endosko

pi) 
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No Peneliti 
Tujuan 

Penelitian 
Dataset Metode 

Hasil 

Utama 
Kelebihan 

Keterbat

asan 

kappa 

0,7633 

6 

Huan 

& Dun 

(2024) 

Klasifikasi 

lesi 

monkeypox 

MSLD v2.0 

MSMP-

Net 

(ConvN

eXt 

base) 

Akura

si 

87.03

% 

Multi-

scale, 

efisien 

end-to-

end 

Bukan 

GERD/p

olip, 

non-

endosko

pi 

 

Berdasarkan enam penelitian yang telah dibahas, terlihat adanya 

perkembangan signifikan dalam pemanfaatan metode deep learning untuk 

klasifikasi citra medis, khususnya dalam domain endoskopi dan penyakit kulit. 

Dimulai dari pendekatan CNN konvensional yang berfokus pada segmentasi polip 

atau klasifikasi GERD, hingga munculnya model hybrid dan backbone modern 

seperti ConvNeXt dan Vision Transformer, tren penelitian menunjukkan upaya 

berkelanjutan untuk meningkatkan akurasi, efisiensi, dan generalisasi model. 

Sebagian besar penelitian masih terbatas pada klasifikasi satu jenis penyakit 

secara spesifik, seperti polip atau GERD saja, dan belum banyak yang 

menggabungkan klasifikasi multi-label dalam domain endoskopi gastrointestinal. 

Selain itu, penggunaan ConvNeXt dalam domain endoskopi masih minim 

ditemukan dalam literatur yang ada. Oleh karena itu, penelitian ini hadir dengan 

kontribusi utama berupa penerapan ConvNeXt-Tiny sebagai arsitektur backbone 

untuk klasifikasi citra endoskopi GERD dan polip secara bersamaan. Dengan 

pendekatan ini, penelitian diharapkan dapat menjawab celah riset berupa kebutuhan 

model ringan, efisien, dan akurat untuk diagnosis multi-label berbasis endoskopi. 

Tabel 2.1 juga menunjukkan bagaimana pendekatan ini berada pada posisi strategis 
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untuk menjembatani kekosongan antara pendekatan klasik dan arsitektur modern 

dalam klasifikasi citra medis. 

 

2.2 Gastroesophageal reflux disease (GERD) 

Gastroesophageal reflux disease (GERD) merupakan gangguan saluran 

cerna kronis yang ditandai dengan refluks isi lambung ke esofagus, yang 

menimbulkan gejala seperti nyeri epigastrium (heartburn), regurgitasi asam, dan 

disfagia (Rijal et al., 2024). Meskipun prevalensi GERD di Asia lebih rendah 

dibandingkan negara-negara Barat, tren peningkatannya terus berkembang seiring 

perubahan gaya hidup masyarakat. 

Studi oleh Rijal et al. (2024) di RS Ibnu Sina Makassar mengungkap bahwa 

mayoritas pasien GERD adalah perempuan usia dewasa muda (20–44 tahun) 

dengan indeks massa tubuh normal, memiliki riwayat gastritis, dan berprofesi 

sebagai ibu rumah tangga. Faktor risiko signifikan meliputi obesitas, pola makan 

tidak sehat, stres, serta kebiasaan seperti merokok dan konsumsi makanan asam 

atau pedas. 

Endoskopi berperan penting dalam diagnosis GERD, khususnya dalam 

mendeteksi komplikasi seperti Barrett’s esophagus, suatu lesi praneoplastik yang 

dapat berkembang menjadi adenokarsinoma esofagus jika tidak ditangani. Oleh 

karena itu, deteksi dini menjadi krusial guna mencegah komplikasi dan 

mengoptimalkan manajemen klinis, terutama mengingat data yang menunjukkan 

GERD mulai menjangkiti kelompok usia produktif dan berdampak pada kualitas 

hidup serta beban sistem layanan kesehatan (Rijal et al., 2024). 
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2.3 Polip Usus 

Polip usus merupakan pertumbuhan abnormal pada lapisan mukosa saluran 

cerna, terutama pada kolon dan rektum, yang dapat bersifat neoplastik maupun non-

neoplastik, dengan potensi transformasi menjadi kanker kolorektal, terutama pada 

jenis adenomatosa dan polip serrated. Deteksi dan reseksi dini polip merupakan 

langkah penting dalam mencegah perkembangan kanker kolorektal, yang secara 

global merupakan penyebab kematian ketiga tertinggi akibat kanker (Jha et al., 

2021). 

Meskipun prosedur kolonoskopi telah menjadi metode standar diagnosis 

dan terapi melalui visualisasi langsung dan polipektomi, keterbatasan berupa 

tingkat kesalahan deteksi yang mencapai 20% masih menjadi tantangan, khususnya 

pada polip berukuran kecil dan datar (Cao et al., 2021). Dalam hal ini, pendekatan 

berbasis deep learning, seperti ColonSegNet dan model berbasis YOLOv3, telah 

menunjukkan kinerja menjanjikan untuk segmentasi dan deteksi real-time citra 

endoskopi, dengan akurasi tinggi serta kemampuan mendeteksi polip multipel 

dalam satu gambar sekaligus (Jha et al., 2021; Cao et al., 2021). 

Sistem berbasis CNN seperti GastroNet juga menunjukkan akurasi validasi 

mencapai 99,2% dalam klasifikasi berbagai kelainan gastrointestinal, termasuk 

polip, dari citra endoskopi kapsul, memperkuat relevansi integrasi teknologi 

kecerdasan buatan dalam upaya deteksi dini polip usus secara otomatis dan efisien 

(Rajkumar et al., 2024). Oleh karena itu, pengembangan sistem klasifikasi citra 

berbasis deep learning tidak hanya mendukung diagnosis yang lebih cepat dan 

objektif, tetapi juga menjadi fondasi penting dalam sistem Computer-Aided 
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Diagnosis (CADx) yang berpotensi meningkatkan kualitas layanan medis 

gastroenterologi secara luas. 

 

2.4 Convolutional Neural Network 

Convolutional Neural Network (CNN) merupakan salah satu arsitektur 

jaringan saraf tiruan yang paling dominan dalam bidang visi komputer, terutama 

untuk tugas-tugas klasifikasi citra. CNN dirancang untuk mengenali pola spasial 

dalam data grid seperti citra dua dimensi (2D), dengan mengandalkan proses 

pembelajaran fitur secara otomatis melalui lapisan-lapisan convolution, pooling, 

dan fully connected. CNN memiliki keunggulan karena mampu mengekstraksi fitur 

lokal secara hierarkis, mulai dari tepi dan tekstur pada lapisan awal hingga bentuk 

kompleks pada lapisan yang lebih dalam (Nadachowski et al., 2024; Zhao et al., 

2020). 

Arsitektur dasar CNN terdiri dari beberapa komponen utama. Pertama 

adalah lapisan convolution, yang berfungsi menerapkan kernel atau filter untuk 

mengekstraksi fitur dari data masukan. Proses ini menghasilkan feature maps yang 

mewakili pola-pola penting dalam citra. Setelah itu, fungsi aktivasi seperti ReLU 

diaplikasikan untuk menambahkan non-linearitas. Kemudian terdapat lapisan 

pooling, umumnya menggunakan metode max pooling, yang berfungsi mereduksi 

dimensi spasial dan menjaga informasi dominan. Lapisan ini juga membantu 

mengurangi kompleksitas komputasi dan mencegah overfitting. Di akhir jaringan, 

lapisan fully connected digunakan untuk pengambilan keputusan klasifikasi, yang 

sering kali diakhiri dengan fungsi Softmax untuk menghitung probabilitas antar 

kelas (Nadachowski et al., 2024; Zhao et al., 2020). 
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Dalam pemrosesan citra, CNN bekerja dengan cara menerima masukan 

berupa representasi matriks (seperti citra atau data DEM), kemudian secara 

bertahap mengekstraksi fitur melalui lapisan-lapisan konvolusional. Fitur-fitur ini 

kemudian digabungkan dalam lapisan fully connected untuk menghasilkan keluaran 

klasifikasi. Proses ini memungkinkan CNN untuk belajar langsung dari data mentah 

tanpa memerlukan rekayasa fitur manual yang kompleks, sebagaimana terlihat pada 

penerapan CNN untuk klasifikasi spektrum EEG (Ajra et al., 2022) dan struktur 

sekunder protein (Zhao et al., 2020). 

Salah satu keunggulan utama CNN adalah kemampuannya untuk mengatasi 

keterbatasan pendekatan klasifikasi konvensional dalam pengolahan citra medis, 

seperti ketergantungan pada fitur yang direkayasa secara manual dan sensitivitas 

terhadap noise. CNN dapat mengidentifikasi pola penting bahkan dari citra yang 

kompleks, sehingga sangat sesuai untuk klasifikasi citra endoskopi yang memiliki 

variabilitas tekstur tinggi dan perbedaan morfologi halus, seperti pada kasus deteksi 

GERD dan polip. CNN juga menawarkan pendekatan yang lebih objektif dan 

reprodusibel karena tidak tergantung pada subjektivitas interpretasi manusia 

(Nadachowski et al., 2024; Prommakhot & Srinonchat, 2024). 

CNN menjadi fondasi bagi pengembangan arsitektur modern seperti VGG, 

ResNet, dan ConvNeXt. VGG, misalnya, memperkenalkan desain arsitektur yang 

dalam namun sederhana dengan filter convolution 3×3 yang berulang, 

membuktikan pentingnya kedalaman jaringan dalam meningkatkan akurasi 

klasifikasi (Nadachowski et al., 2024). Sedangkan ResNet menambahkan residual 

connection untuk mengatasi masalah vanishing gradient pada jaringan yang sangat 
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dalam. Arsitektur-arsitektur ini menjadi dasar evolusi ke arah model yang lebih 

efisien dan canggih, termasuk ConvNeXt yang menggabungkan kekuatan CNN 

dengan prinsip desain modern dari Vision Transformer. Dengan demikian, 

memahami CNN merupakan langkah awal penting untuk mengaplikasikan 

arsitektur seperti ConvNeXt secara efektif dalam tugas klasifikasi citra medis 

endoskopi.  

 

2.5 ConvNeXt 

Kemunculan ConvNeXt merupakan respons terhadap dominasi Vision 

Transformer (ViT) dalam bidang pengenalan citra visual sejak tahun 2020-an. 

Meskipun arsitektur konvolusional klasik seperti ResNet dan VGGNet telah 

membentuk fondasi kuat untuk visi komputer selama lebih dari satu dekade, 

pengenalan ViT menantang asumsi bahwa konvolusi adalah strategi terbaik untuk 

pembelajaran fitur visual. Vision Transformer menghadirkan keunggulan dalam 

memodelkan konteks global melalui self-attention, namun sering kali mengabaikan 

bias induktif lokal yang menjadi kekuatan utama ConvNet. Untuk menjembatani 

kesenjangan tersebut, Liu et al. (2022) mengusulkan ConvNeXt, sebuah keluarga 

arsitektur ConvNet yang dimodernisasi dengan mengadopsi prinsip desain dari 

Transformer tanpa sepenuhnya mengabaikan struktur konvolusional tradisional. 

Tujuannya adalah membuktikan bahwa ConvNet murni, dengan pembaruan 

arsitektur yang cermat, masih mampu bersaing dengan Transformer dalam akurasi 

dan efisiensi. 

Arsitektur ConvNeXt dibangun di atas struktur ResNet, tetapi dimodifikasi 

secara sistematis untuk meniru perilaku arsitektur Transformer sambil tetap 
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mempertahankan sifat konvolusional. Model ini mempertahankan arsitektur 

bertingkat (multi-stage) dengan resolusi fitur yang menurun secara bertahap, mirip 

dengan ConvNet klasik. Namun, ConvNeXt memperkenalkan elemen-elemen baru 

seperti penggunaan depthwise convolution, normalisasi layer (layer normalization), 

aktivasi GELU, serta block-block dengan inverted bottleneck. Desain ini 

memungkinkan ConvNeXt untuk menangkap fitur spasial lokal secara efisien 

sambil juga memperluas jangkauan konteks spasial melalui kernel besar. Selain itu, 

ConvNeXt mengadopsi teknik pelatihan modern seperti optimizer AdamW, strategi 

augmentasi data yang intensif, dan regularisasi berbasis stochastic depth yang telah 

terbukti efektif pada Transformer. 

Detail arsitektur ConvNeXt mencakup beberapa komponen kunci. Pertama, 

penggunaan depthwise convolution, teknik yang memungkinkan pemisahan 

pemrosesan antar kanal sehingga mengurangi jumlah parameter secara signifikan. 

Teknik ini telah digunakan sebelumnya pada arsitektur seperti MobileNet, dan 

dalam ConvNeXt dipadukan dengan 1×1 convolution untuk memungkinkan 

pemrosesan spasial dan kanal secara terpisah. Kedua, ConvNeXt menerapkan 

inverted bottleneck, yaitu konfigurasi layer di mana dimensi fitur diperluas sebelum 

kembali dipersempit. Pendekatan ini meningkatkan kapasitas representasi tanpa 

memperbesar jumlah parameter secara drastis. Ketiga, ConvNeXt menggantikan 

aktivasi ReLU dengan GELU, yang menunjukkan peningkatan performa dalam 

konteks pembelajaran mendalam. 

ConvNeXt juga mengadopsi kernel convolution berukuran besar seperti 7×7, 

berbeda dari pendekatan tradisional yang menggunakan stacking kernel kecil 
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seperti 3×3. Penggunaan kernel besar ini memberikan jangkauan reseptif yang lebih 

luas dan mendekati karakteristik global attention pada Transformer. Layer 

normalisasi dalam ConvNeXt menggunakan LayerNorm, berbeda dari BatchNorm 

yang umum dalam CNN konvensional, untuk menstabilkan pelatihan terutama 

ketika ukuran batch kecil. Kombinasi dari desain mikro dan makro ini menciptakan 

blok ConvNeXt yang efisien namun tetap kuat dalam ekstraksi fitur, baik untuk citra 

alami maupun citra medis. 

Dibandingkan dengan CNN konvensional seperti ResNet50, EfficientNet, 

dan DenseNet, ConvNeXt menunjukkan peningkatan akurasi yang signifikan dalam 

berbagai tugas klasifikasi dan segmentasi citra. Studi oleh Emegano et al. (2025) 

menunjukkan bahwa ConvNeXt mencapai akurasi 98% dalam klasifikasi kanker 

prostat multikelas, melampaui ResNet50 (93%) dan bahkan Swin Transformer 

(95%). Keunggulan ini diperoleh tidak hanya dari desain arsitektur yang modern, 

tetapi juga dari kombinasi efisiensi komputasi dan kemampuannya dalam 

mengekstraksi fitur lokal maupun global secara efektif. Dalam domain citra medis, 

sifat tersebut sangat penting mengingat keterbatasan data berlabel dan kebutuhan 

akan model yang dapat diinterpretasikan. 

ConvNeXt dikembangkan dalam beberapa varian yang berbeda dalam jumlah 

kanal fitur, kedalaman blok, serta kapasitas komputasi. Varian varian ini dirancang 

agar ConvNeXt dapat digunakan pada berbagai skenario, mulai dari aplikasi ringan 

hingga kebutuhan komputasi besar. Perbedaan utama mencakup jumlah kanal pada 

tiap stage dan jumlah blok yang digunakan. Liu et al. (2022) mendefinisikan lima 

varian utama yaitu ConvNeXt Tiny, Small, Base, Large, dan Extra Large. Semua 
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varian mempertahankan struktur bertingkat empat stage dengan resolusi fitur yang 

semakin menurun di setiap stage, tetapi memiliki kapasitas pemrosesan yang 

berbeda. 

A) ConvNeXt Tiny (ConvNeXt T) 

ConvNeXt Tiny merupakan varian dengan kapasitas paling kecil. Model ini 

menggunakan konfigurasi kanal berturut turut sebanyak 96, 192, 384, dan 768 pada 

empat stage, dengan jumlah blok masing masing 3, 3, 9, dan 3. Total parameter 

model adalah sekitar 29 juta dengan kebutuhan komputasi 4.5 GFLOPs. Meskipun 

ringan, ConvNeXt Tiny mencapai akurasi 82.1 persen pada ImageNet 1K. Varian ini 

cocok digunakan pada skenario dengan sumber daya komputasi terbatas seperti 

klasifikasi citra endoskopi. Informasi konfigurasi ini dilaporkan oleh Liu et al. 

dalam hasil eksperimen klasifikasi ImageNet (2022). 

B) ConvNeXt Small (ConvNeXt S) 

Varian Small memiliki jumlah kanal yang sama dengan ConvNeXt Tiny 

tetapi menambah jumlah blok secara signifikan pada stage ketiga yaitu menjadi 27 

blok. Konfigurasi bloknya adalah 3, 3, 27, dan 3 dengan total parameter sekitar 50 

juta dan kebutuhan komputasi 8.7 GFLOPs. Penambahan kedalaman pada stage 

ketiga bertujuan meningkatkan kapasitas representasi fitur. Model ini mencapai 

akurasi 83.1 persen pada ImageNet 1K. Spesifikasi ini dicantumkan oleh Liu et al. 

(2022) dalam tabel perbandingan performa model. 

C) ConvNeXt Base (ConvNeXt B) 

ConvNeXt Base merupakan varian yang kapasitasnya sebanding dengan 

Swin Transformer Base serta ResNet 200. Varian ini memakai kanal yang lebih 
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lebar yaitu 128, 256, 512, dan 1024 dengan jumlah blok 3, 3, 27, dan 3. Total 

parameter mencapai sekitar 89 juta dengan kebutuhan komputasi 15.4 GFLOPs. 

ConvNeXt Base menghasilkan akurasi 83.8 persen pada ImageNet 1K dan 

meningkat hingga 86.8 persen ketika dilakukan pre training pada ImageNet 22K 

sebelum fine tuning. Seluruh angka ini dilaporkan dalam hasil eksperimen model 

oleh Liu et al. (2022). 

D) ConvNeXt Large (ConvNeXt L) 

Varian Large meningkatkan kanal lebih jauh yaitu 192, 384, 768, dan 1536 

dengan jumlah blok tetap sama 3, 3, 27, dan 3. Jumlah parameter mencapai 198 juta 

dengan kebutuhan komputasi 34.4 GFLOPs. Pada pelatihan ImageNet 1K, model 

ini mencapai akurasi 84.3 persen dan meningkat menjadi 87.5 persen ketika 

dilakukan pre training di ImageNet 22K lalu fine tuning pada resolusi 384 piksel. 

Hal ini menunjukkan bahwa ConvNeXt memiliki kemampuan scaling yang baik 

ketika kapasitas model diperbesar. 

E) ConvNeXt Extra Large (ConvNeXt XL) 

ConvNeXt Extra Large merupakan varian dengan kapasitas terbesar. Kanal 

pada tiap stage adalah 256, 512, 1024, dan 2048 dengan jumlah blok 3, 3, 27, dan 

3. Total parameter mencapai sekitar 350 juta dan kebutuhan komputasi 60.9 

GFLOPs pada resolusi 224 piksel yang meningkat menjadi 179 GFLOPs pada 

resolusi 384 piksel. Varian ini mencatatkan akurasi 87.8 persen pada ImageNet 22K 

setelah fine tuning dalam konfigurasi resolusi tinggi. Menurut Liu et al. (2022), 

varian XL menunjukkan bahwa ConvNeXt mampu bersaing dengan arsitektur 

Vision Transformer besar tanpa memerlukan mekanisme self attention. 
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Berdasarkan karakteristik masing-masing varian tersebut, penelitian ini 

memilih ConvNeXt-Tiny sebagai backbone utama. Pemilihan ConvNeXt-Tiny 

sebagai backbone dalam penelitian ini didasarkan pada pertimbangan efisiensi, 

akurasi, dan keterbatasan sumber daya komputasi yang umum di lingkungan 

akademik atau laboratorium medis. Sebagai varian terkecil, ConvNeXt-Tiny 

memiliki jumlah parameter yang jauh lebih sedikit dibandingkan varian lain, namun 

tetap mampu menangani kompleksitas pola dalam citra endoskopi. Model ini telah 

diaplikasikan dalam penelitian segmentasi video polip oleh Bhattacharya et al. 

(2024) yang menunjukkan performa tinggi bahkan pada skenario citra dengan 

artefak seperti motion blur atau oklusi, dengan tetap mempertahankan kecepatan 

inferensi real-time. Oleh karena itu, ConvNeXt-Tiny dinilai tepat untuk digunakan 

dalam tugas klasifikasi citra endoskopi GERD dan polip pada penelitian ini. 
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BAB III DESAIN DAN IMPLEMENTASI 

BAB III 

DESAIN DAN IMPLEMENTASI 

 

3.1 Desain Penelitian 

Penelitian dilakukan melalui beberapa tahapan sistematis, yaitu 

pengumpulan data, pra-pemrosesan data, pelatihan model, pengujian, dan evaluasi 

model. Data citra endoskopi diperoleh dari sumber yang telah divalidasi, seperti 

dataset publik atau data klinis yang telah dianonimkan. Model ConvNeXt-Tiny 

dipilih karena efisiensi komputasinya yang tinggi dan performa yang baik pada 

tugas klasifikasi citra, terutama dalam domain medis. Proses pelatihan dilakukan 

dengan memanfaatkan perangkat keras berbasis GPU untuk mempercepat 

komputasi, diikuti dengan evaluasi menggunakan metrik seperti matriks konfusi, 

akurasi, presisi, recall, dan F1-score untuk memastikan reliabilitas model dalam 

mendeteksi GERD dan polip usus. Gambar 3.1 adalah diagram alur penelitian yang 

menggambarkan tahapan-tahapan secara visual: 

 

Gambar 3.1 Desain Penelitian 
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3.2 Pengumpulan Data 

Penelitian ini menggunakan dataset GastroEndoNet: Comprehensive 

Endoscopy Image dataset for GERD and Polyp Detection yang tersedia di 

Mendeley Data (Bitto et al., 2025). Dataset ini merupakan koleksi citra endoskopi 

gastrointestinal berkualitas tinggi yang dirancang untuk mendukung penelitian 

analisis citra medis, khususnya dalam deteksi dan klasifikasi penyakit GERD 

(Gastroesophageal Reflux Disease) dan polip usus. dataset ini berisi 24.036 citra 

dalam format JPG dengan resolusi 549×510 piksel, yang dikategorikan ke dalam 

empat kelas: GERD, GERD Normal, Polyp, dan Polyp Normal. Jumlah total citra 

tersebut berasal dari 4.006 citra primer yang diperluas melalui enam teknik 

augmentation untuk meningkatkan variasi dan jumlah data, sehingga cocok untuk 

pelatihan model pembelajaran mesin. 

Distribusi citra per kelas adalah sebagai berikut: 

1. GERD: 5.844 citra (974 citra primer × 6 augmentation), menampilkan 

kerusakan esofagus akibat refluks pada pasien yang didiagnosis GERD melalui 

pemeriksaan endoskopi. Citra ini mencakup berbagai tingkat keparahan kerusakan 

jaringan esofagus. 

2. GERD Normal: 6.618 citra (1.103 citra primer × 6 augmentation), 

menggambarkan saluran gastrointestinal sehat tanpa tanda-tanda GERD, yang 

berfungsi sebagai kontrol untuk memastikan model dapat membedakan kondisi 

patologis dari normal. 
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3. Polyp: 4.674 citra (779 citra primer × 6 augmentation), menunjukkan 

polip gastrointestinal dengan berbagai jenis dan tahap perkembangan, mendukung 

deteksi dini kondisi yang berpotensi prakanker. 

4. Polyp Normal: 6.900 citra (1.150 citra primer × 6 augmentation), 

merepresentasikan kondisi gastrointestinal normal tanpa keberadaan polip, yang 

digunakan untuk perbandingan dalam tugas klasifikasi. 

Untuk memberikan gambaran visual tentang karakteristik citra dalam 

dataset, Tabel 3.1 berikut menyajikan contoh citra dari masing-masing kelas. Tabel 

ini akan diisi dengan citra representatif dari dataset GastroEndoNet untuk 

mendukung analisis visual dan pelatihan model. 

Tabel 3.1 Contoh Sampel Data Tiap Kelas 

Kelas Deskripsi Contoh 

GERD 

Citra endoskopi esofagus 

dengan tanda kerusakan 

akibat refluks. 

 

GERD Normal 

Citra endoskopi saluran 

gastrointestinal sehat 

tanpa tanda GERD. 

 

Polyp 

Citra endoskopi dengan 

polip gastrointestinal 

(berbagai jenis/tahap). 

 

Polyp Normal 

Citra endoskopi saluran 

gastrointestinal normal 

tanpa polip. 
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3.3 Desain Sistem 

Desain sistem dalam penelitian ini ditunjukkan pada Gambar 3.2, yang 

menggambarkan alur klasifikasi citra endoskopi menggunakan model ConvNeXt-

Tiny. Proses dimulai dari pemanfaatan dataset citra GastroEndoNet yang berisi 

berbagai gambar endoskopi saluran pencernaan. Tahap awal dalam pemrosesan 

data mencakup praproses berupa resize citra ke ukuran tertentu yang sesuai dengan 

input model, dilanjutkan dengan normalisasi nilai piksel untuk meningkatkan 

efisiensi dan akurasi pelatihan model. Setelah melalui tahap praproses, citra-citra 

tersebut kemudian dimasukkan ke dalam model ConvNeXt-Tiny, yang telah 

diadaptasi untuk tugas klasifikasi medis. Hasil keluaran dari model ini berupa label 

klasifikasi yang menunjukkan jenis kondisi atau penyakit pada citra endoskopi yang 

dianalisis. 

 

Gambar 3.2 Desain Sistem 

 

3.3.1 Input Citra 

 Tahap awal sistem adalah penerimaan citra endoskopi dari dataset 

GastroEndoNet, yang berisi 24.036 citra dalam format JPG dengan resolusi 549 × 

510 piksel. Citra tersebut mewakili empat kelas: GERD (5.844 citra), GERD 

Normal (6.618 citra), Polyp (4.674 citra), dan Polyp Normal (6.900 citra). Citra-

citra ini diambil dari pemeriksaan endoskopi gastrointestinal, mencakup berbagai 

kondisi patologis dan normal. 
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3.3.2 Preprocessing Citra 

 Preprocessing bertujuan menyiapkan citra sebelum digunakan dalam 

model. Tujuannya adalah meningkatkan efisiensi dan akurasi model dengan 

memastikan data yang diproses konsisten serta lebih mudah dipahami oleh model. 

 

3.3.2.1 Resize 

 Seluruh citra diubah ukurannya menjadi 224 × 224 piksel, yang merupakan 

resolusi standar untuk pelatihan pada dataset ImageNet-1K. Ukuran ini dipilih 

untuk memastikan kompatibilitas dengan arsitektur ConvNeXt yang digunakan. 

Pada publikasi ConvNeXt (Liu et al., 2022), dijelaskan bahwa model dilatih dari 

awal menggunakan dataset ImageNet-1K selama 300 epoch dengan resolusi 

masukan 224 × 224 piksel. Hal tersebut menunjukkan bahwa resolusi ini digunakan 

sebagai baseline pelatihan. Selain itu, citra dalam format RGB dengan tiga channel 

merupakan standar pada dataset ImageNet, sehingga secara implisit format 

masukan yang digunakan adalah 224 × 224 × 3. Penyeragaman dimensi ini penting 

untuk menjaga konsistensi data masukan serta mendukung efisiensi dan kestabilan 

selama proses pelatihan model. 

 

3.3.2.2 Normalisasi 

Setelah citra di-resize, langkah praproses selanjutnya adalah normalisasi nilai 

piksel. Tujuan dari normalisasi ini adalah untuk menyelaraskan distribusi nilai input 

agar lebih stabil dan mudah dipelajari oleh model. Dalam penelitian ini, normalisasi 

dilakukan berdasarkan statistik global dari dataset ImageNet, yaitu dengan 

menggunakan nilai rata-rata (mean) dan deviasi standar (standard deviation) pada 
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masing-masing kanal warna (R, G, B). Nilai mean yang digunakan adalah [0,485, 

0,456, 0,406], sedangkan nilai standard deviation-nya adalah [0,229, 0,224, 0,225]. 

Proses normalisasi ini secara matematis dapat dirumuskan dengan Persamaan 3.1. 

𝑥norm =
𝑥/255−μ

σ
 (3.1) 

di mana 𝑥 adalah nilai piksel asli, μ adalah nilai rata-rata (mean) untuk tiap 

kanal, dan σ adalah deviasi standar untuk tiap kanal. Langkah pembagian dengan 

255 dilakukan terlebih dahulu untuk mengubah skala piksel dari 0–255 menjadi 0–

1, sebelum distandarkan menggunakan nilai statistik. Meskipun tidak disebutkan 

secara eksplisit dalam paper ConvNeXt, proses ini merupakan praktik standar dalam 

pelatihan model pada dataset ImageNet dan juga digunakan dalam implementasi 

resmi ConvNeXt. Dengan melakukan normalisasi ini, model dapat menerima data 

input dengan distribusi yang lebih terpusat, sehingga dapat mempercepat proses 

pelatihan dan meningkatkan kestabilan konvergensi. 

 

3.4 Implementasi Metode 

Pada tahap ini, metode yang digunakan dalam penelitian diimplementasikan 

untuk membangun model klasifikasi citra endoskopi berbasis arsitektur ConvNeXt-

Tiny. ConvNeXt merupakan pengembangan dari jaringan konvolusional standar 

(ConvNet) yang dimodernisasi dengan mengadopsi prinsip desain Vision 

Transformer, namun tetap mempertahankan sifat sepenuhnya konvolusional. 

Keunggulan ConvNeXt terletak pada kemampuannya menggabungkan efisiensi 

komputasi ConvNet dengan performa tinggi yang kompetitif terhadap arsitektur 

Transformer pada berbagai tugas visi komputer, termasuk klasifikasi citra resolusi 

tinggi. Dalam studi kasus ini, ConvNeXt-Tiny dipilih karena memiliki kompleksitas 
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komputasi yang relatif rendah, namun mampu mencapai akurasi tinggi pada tugas 

klasifikasi. Arsitektur ini diadaptasi dan dilatih untuk mendeteksi dua jenis kelainan 

pada citra endoskopi, yaitu Gastroesophageal Reflux Disease (GERD) dan polip 

usus, yang memerlukan pemrosesan fitur visual secara mendetail. 

 

3.4.1 Arsitektur ConvNeXt-Tiny 

ConvNeXt-Tiny merupakan varian ringan dari keluarga ConvNeXt yang 

dirancang untuk mempertahankan kinerja konvolusional modern sambil 

mengadopsi prinsip-prinsip desain dari arsitektur transformer seperti Vision 

Transformer (ViT). Arsitektur ini mengusung pendekatan hierarkis dengan empat 

tahap (stage) yang memiliki resolusi peta fitur berbeda dan jumlah kanal (channels) 

yang meningkat secara progresif, yakni 96, 192, 384, dan 768 kanal. Jumlah blok 

konvolusional pada masing-masing tahap adalah (3, 3, 9, 3), dengan distribusi 

beban komputasi 1:1:3:1 sebagaimana disarankan oleh Liu et al. (2022). 

Setiap blok ConvNeXt mengintegrasikan depthwise convolution berukuran 

kernel besar (7 × 7), diikuti LayerNorm, dua pointwise convolution (1 × 1) yang 

membentuk struktur inverted bottleneck, serta aktivasi nonlinier GELU. Selain itu, 

ConvNeXt-Tiny menggunakan mekanisme LayerScale, yaitu skalar yang dapat 

dilatih untuk mengatur kontribusi jalur residual secara dinamis. Kombinasi ini 

memungkinkan model menangkap konteks spasial yang luas dengan efisiensi 

komputasi tinggi. 

Proses pemrosesan dimulai dari stem layer (patch embedding) yang 

mengubah citra masukan beresolusi 224 × 224 piksel menjadi representasi fitur 

awal, dilanjutkan serangkaian downsampling layer untuk menurunkan resolusi 
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spasial sambil meningkatkan dimensi kanal. Fitur yang dihasilkan kemudian 

diproses melalui empat tahap blok ConvNeXt, dilanjutkan global average pooling 

dan fully connected layer untuk menghasilkan keluaran klasifikasi. Ilustrasi lengkap 

arsitektur ConvNeXt-Tiny yang digunakan dalam penelitian ini ditunjukkan pada 

Gambar 3.3. 

 

Gambar 3.3 Diagram alur arsitektur ConvNeXt-Tiny 

 

3.4.1.1 Stem Layer (Patchify) 

Pada tahap awal pemrosesan citra, ConvNeXt-Tiny menggunakan stem layer 

atau patch embedding layer untuk mengubah citra mentah beresolusi tinggi menjadi 

representasi fitur awal yang dapat diolah secara efisien oleh jaringan. Berbeda 

dengan patch tokenization pada arsitektur Vision Transformer, ConvNeXt 

menggunakan prinsip konvolusi dengan menerapkan convolutional layer berukuran 

kernel besar dan stride tertentu untuk langsung menurunkan resolusi citra. Operasi 

pada stem layer dapat direpresentasikan dengan proses konvolusi dua dimensi 

sebagaimana Persamaan 3.2. 

𝐹𝑀(𝑎,𝑏) = ∑ ∑ 𝐾(ℎ,𝑤)
𝑘𝑤−1
𝑤=0

𝑘ℎ−1
ℎ=0 × 𝑋(𝑎+ℎ,𝑏+𝑤) (3.2) 
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Keterangan: 

𝐹𝑀(𝑎,𝑏) : output konvolusi pada posisi (a, b) 

𝐾(ℎ,𝑤) : kernel konvolusi dengan ukuran 𝑘ₕ ×  𝑘𝓌 

𝑋(𝑎+ℎ,𝑏+𝑤) : nilai piksel input di posisi (𝑎 + ℎ, 𝑏 + 𝑤) 

 

Dalam ConvNeXt-Tiny, stem layer ini menggunakan kernel konvolusi 

berukuran 4×4 dengan stride 4, yang berarti bahwa setiap keluaran representasi 

(feature map) mengandung informasi dari area 16 piksel input (4×4).  

 

Gambar 3.4 Contoh sederhana operasi patchify pada satu patch. 

 

Proses ini mengubah citra RGB berukuran awal 224 × 224 × 3 menjadi 

representasi awal berukuran 56 × 56 × 96, sebagaimana ditunjukkan pada Gambar 

3.4. Transformasi ini dilakukan menggunakan konvolusi dengan kernel berukuran 

4 × 4 dan stride 4, sehingga citra masukan dibagi menjadi potongan (patch) 

berukuran 4 × 4 × 3. Tidak seperti ilustrasi konvolusi sederhana yang hanya 

menggunakan satu kernel, pada tahap ini digunakan sebanyak 96 kernel (sesuai 

jumlah kanal keluaran yang ditentukan arsitektur ConvNeXt-Tiny). Setiap kernel 

menghasilkan satu nilai untuk setiap patch, sehingga setiap patch diproyeksikan 

menjadi vektor fitur berdimensi 96. Nilai 96 ini bukan hasil perhitungan langsung 

dari ukuran patch, melainkan jumlah kernel yang ditetapkan secara arsitektural 
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sebagai embedding dimension awal. Seluruh hasil proyeksi kemudian disusun 

kembali membentuk peta fitur awal (initial feature map) berukuran 56 × 56 × 96, 

yang selanjutnya diproses pada tahap berikutnya. 

Diilustrasikan pada Gambar 3.4, misalkan diambil sebuah patch citra 

berukuran 4 × 4 pada kanal merah dari citra endoskopi. Nilai intensitas piksel dalam 

patch tersebut, dari kiri atas ke kanan bawah, antara lain 123, 150, 130, 145 pada 

baris pertama; 125, 160, 140, 155 pada baris kedua; 120, 145, 135, 150 pada baris 

ketiga; serta 110, 140, 128, 138 pada baris keempat. Patch ini kemudian dikalikan 

secara elemen demi elemen dengan kernel konvolusi berukuran 4 × 4 yang 

bobotnya terdefinisi sebagai [1, 0, –1, 0] pada baris pertama, [0, 1, 0, –1] pada baris 

kedua, [1, 0, –1, 0] pada baris ketiga, dan [0, 1, 0, –1] pada baris keempat. 

Operasi dilakukan dengan cara sederhana: piksel 123 di kiri atas dikalikan 

dengan bobot 1 menghasilkan 123, piksel 150 dikalikan dengan 0 menghasilkan 0, 

piksel 130 dikalikan dengan –1 menghasilkan –130, dan seterusnya. Setelah semua 

hasil perkalian dijumlahkan, nilai yang diperoleh adalah –15. Dengan demikian, 

dari satu patch citra berukuran 4 × 4, kernel tersebut menghasilkan satu nilai tunggal 

yang menjadi representasi fitur di posisi tersebut. 

Sebagai simulasi, apabila proses serupa dilakukan pada seluruh citra berukuran 

8 × 8 dengan stride 4, maka akan terbentuk 4 patch, dan masing-masing 

menghasilkan satu nilai keluaran. Keempat nilai tersebut dapat disusun menjadi 

feature map berukuran 2 × 2. Perlu dicatat bahwa ilustrasi ini hanya 

menggambarkan mekanisme dasar patchify dengan satu kernel. Pada arsitektur 

ConvNeXt-Tiny yang sesungguhnya, tahap patchify menggunakan sebanyak 96 
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kernel paralel, sehingga setiap patch diproyeksikan bukan menjadi satu nilai 

tunggal, melainkan vektor fitur berdimensi 96. Hal inilah yang menghasilkan 

representasi awal berukuran 56 × 56 × 96 dari citra masukan 224 × 224 × 3. 

 

3.4.1.2 Downsampling Layer 

Setiap tahap pada arsitektur ConvNeXt-Tiny terdiri atas sejumlah blok 

konvolusional yang beroperasi pada resolusi spasial tetap. Setelah suatu tahap 

selesai, diperlukan downsampling layer untuk menurunkan resolusi spasial feature 

map sebelum memasuki tahap berikutnya. Berbeda dengan ResNet yang 

mengintegrasikan proses downsampling ke dalam blok residual pertama, ConvNeXt 

memisahkannya menjadi lapisan terpisah sehingga proses ekstraksi fitur dan 

perubahan resolusi dapat dioptimalkan secara independen (Liu et al., 2022). 

Secara berurutan, downsampling layer pada ConvNeXt diawali dengan Layer 

Normalization yang berfungsi menstabilkan distribusi aktivasi antarkanal dan 

mengurangi pergeseran nilai statistik akibat perubahan resolusi. Setelah itu, 

dilakukan konvolusi berukuran 2 × 2 dengan stride 2, yang secara matematis 

mengubah dimensi feature map dari (𝐻/𝑠) × (𝑊/𝑠) × 𝐶  menjadi (
𝐻

2𝑠
) × (

𝑊

2𝑠
) ×

2𝐶 , dengan 𝐻  dan 𝑊  sebagai dimensi citra asli, 𝐶  jumlah kanal, serta 𝑠  faktor 

downsampling kumulatif dari tahap sebelumnya. 

Sebagai contoh, keluaran tahap pertama dengan ukuran (
𝐻

4
) × (

𝑊

4
) × 96 akan 

berubah menjadi (
𝐻

8
) × (

𝑊

8
) × 192  setelah melewati downsampling layer. 

Peningkatan jumlah kanal dari 96 menjadi 192 bertujuan untuk mengompensasi 
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berkurangnya informasi spasial dengan menambah kapasitas representasi di domain 

kanal. 

Pendekatan ini tidak hanya meningkatkan efisiensi komputasi, tetapi juga 

memperluas jangkauan pola visual yang dapat ditangkap oleh jaringan. Dalam 

konteks pengolahan citra medis, strategi ini memungkinkan model untuk 

menggabungkan informasi lokal dan global secara lebih efektif, yang penting dalam 

mengidentifikasi pola morfologi atau anomali dengan ukuran bervariasi. 

 

3.4.1.3 ConvNeXt Block  

ConvNeXt Block merupakan unit bangunan utama dalam arsitektur ConvNeXt-

Tiny, yang terdiri atas serangkaian operasi konvolusional dan nonlinier yang 

dirancang untuk meniru efektivitas arsitektur transformer, namun tetap berbasis 

konvolusi murni. Setiap blok dalam ConvNeXt memproses representasi fitur dari 

peta fitur sebelumnya, dengan tujuan menyaring, memperkaya, dan mengekstraksi 

informasi spasial maupun kontekstual yang lebih dalam. Struktur ConvNeXt Block 

secara umum terdiri atas: 

1. Depthwise Convolution (7 × 7) 

2. Layer Normalization 

3. Pointwise Convolution 1 (4× Expansion) 

4. GELU Activation 

5. Pointwise Convolution 2 (Projection) 

6. Residual Connection dengan LayerScale 

Desain ini terinspirasi dari struktur inverted bottleneck yang umum digunakan 

pada arsitektur mobile seperti MobileNetV2, namun disesuaikan dengan konfigurasi 
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yang lebih dalam dan stabil. Pemisahan antara konvolusi spasial (depthwise) dan 

konvolusi kanal (pointwise) memberikan efisiensi komputasi sekaligus fleksibilitas 

dalam manipulasi informasi fitur. 

Dalam klasifikasi citra endoskopi, ConvNeXt Block berfungsi sebagai 

ekstraktor fitur utama yang mampu mendeteksi pola-pola penting pada permukaan 

mukosa esofagus atau jaringan usus besar, seperti tekstur kasar akibat GERD atau 

bentuk tonjolan khas dari polip. 

1) Depthwise Convolution (7x7) 

Salah satu inovasi utama dalam ConvNeXt Block adalah penggunaan depthwise 

convolution dengan kernel besar berukuran 7 × 7. Berbeda dari konvolusi standar, 

di mana setiap filter terhubung ke seluruh kanal input, depthwise convolution hanya 

melakukan konvolusi secara terpisah pada setiap kanal input seperti pada Gambar 

3.8. Hal ini memungkinkan penekanan pada fitur spasial per kanal dengan beban 

komputasi yang jauh lebih ringan. Operasi depthwise convolution secara matematis 

dituliskan sebagaimana Persamaan 3.3. 

𝑌𝑐(𝑎, 𝑏) = ∑ ∑ 𝐾𝑐(ℎ,𝑤)
𝑘−1
𝑤=0

𝑘−1
ℎ=0 ⋅ 𝑋𝑐(𝑎+ℎ,𝑏+𝑤) (3.3) 

Keterangan: 

𝑌𝑐(𝑎, 𝑏) : output fitur untuk kanal ke-c pada posisi (a,b) 

𝐾𝑐(ℎ,𝑤) : kernel konvolusi kh × kw untuk kanal c 

𝑋𝑐(𝑎+ℎ,𝑏+𝑤) : nilai input pada kanal c, posisi (a+h, b+w) 

k : panjang sisi kernel, dalam hal ini 7 

 

Penggunaan kernel besar (7×7) memperluas receptive field dari unit konvolusi 

tanpa menambah kedalaman layer secara signifikan. Pada studi kasus citra 

endoskopi, receptive field yang luas berfungsi untuk menangkap pola tekstural 
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global, seperti perubahan pola mukosa akibat iritasi kronis (GERD) atau kontur 

polip yang menonjol secara halus. 

 

Gambar 3.5 Ilustrasi Depthwise convolution 

 

Depthwise convolution juga lebih efisien dibandingkan konvolusi biasa. 

Jumlah parameter dan komputasi menurun drastis karena filter hanya diterapkan 

pada satu kanal, bukan seluruh input seperti pada Gambar 3.5. Hal ini sejalan 

dengan kebutuhan model ringan seperti ConvNeXt-Tiny yang ditujukan untuk 

penggunaan pada sistem terbatas, termasuk perangkat medis berbasis edge 

computing atau inference lokal di rumah sakit. 

 

Gambar 3.6 Contoh Operasi Depthwise Convolution 

 

Sebagai contoh proses depthwise convolution, pada gambar 3.6, misalkan 

diambil sebuah patch citra berukuran 7 × 7 pada kanal merah dari citra endoskopi. 

Nilai intensitas piksel dalam patch tersebut dapat direpresentasikan dalam bentuk 

matriks sebagaimana ditunjukkan pada Gambar 3.6. Setiap elemen matriks 
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menyatakan nilai intensitas piksel, misalnya baris pertama berisi 

[12,15,10,8,9,14,11], baris kedua [10,13,11,7,12,15,9], dan seterusnya hingga baris 

ketujuh. 

Patch citra ini kemudian dikalikan secara elemen-demi-elemen dengan kernel 

konvolusi berukuran sama, yang juga direpresentasikan dalam bentuk matriks 

bobot. Sebagai contoh, piksel bernilai 12 pada posisi kiri-atas dikalikan dengan 

bobot kernel 0.05 menghasilkan 0.6, piksel bernilai 15 dikalikan dengan bobot 0.02 

menghasilkan 0.3, dan piksel bernilai 10 dikalikan dengan bobot –0.01 

menghasilkan –0.1. Proses perkalian ini dilakukan untuk seluruh 49 pasangan 

piksel–bobot pada patch tersebut. 

Hasil dari semua perkalian kemudian dijumlahkan, sehingga menghasilkan 

satu nilai keluaran, misalnya sebesar 0.6342 untuk posisi tersebut pada kanal merah. 

Operasi serupa dilakukan secara independen pada kanal hijau dan kanal biru dengan 

kernel masing-masing, misalnya menghasilkan 0.5821 dan 0.6015. Dengan 

demikian, pada posisi keluaran yang sama diperoleh vektor 

[0.6342, 0.5821, 0.6015]. Vektor inilah yang selanjutnya dapat diproses oleh 

pointwise convolution (kernel 1×1) untuk menghasilkan representasi akhir dari 

depthwise separable convolution. 

2) Layer Normalization 

Setelah proses ekstraksi fitur spasial melalui depthwise convolution, keluaran 

dari setiap kanal fitur dalam ConvNeXt Block akan distandarisasi menggunakan 

Layer Normalization (LayerNorm). Berbeda dari Batch Normalization yang 

menghitung statistik berdasarkan mini-batch, Layer Normalization melakukan 
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normalisasi berdasarkan fitur di dalam satu sampel saja, yaitu di sepanjang dimensi 

kanal. Hal ini menjadikan LayerNorm lebih stabil dan efektif, terutama pada model 

yang menggunakan batch kecil atau inference satu per satu kondisi yang sering 

dijumpai dalam aplikasi medis. Secara matematis, proses normalisasi ini ditulis 

dalam Persamaan 3.4. 

LN(𝑥𝑖) =
𝑥𝑖−μ

√σ2+ϵ
 (3.4) 

Keterangan: 

xᵢ : nilai aktivasi pada dimensi ke-i dari vektor input 

μ : rata-rata dari semua nilai dalam satu vektor input 

σ² : varians dari semua nilai dalam vektor 

ε : konstanta kecil untuk mencegah pembagian nol  

 

Posisi LayerNorm dalam ConvNeXt juga tidak konvensional. Jika arsitektur 

ResNet menempatkan normalisasi setelah aktivasi, ConvNeXt sejalan dengan 

praktik pada Transformer, menempatkannya sebelum blok utama (pre-norm), yang 

secara empiris terbukti mempercepat proses konvergensi dan mencegah hilangnya 

gradien. 

Tabel 3.2 Simulasi Perhitungan Layer Normalization dengan Rata-rata (μ) = 0.6059 dan Varians 

(σ²) = 0.0005 

Kanal 
Nilai 

awal 
x - μ (x - μ)² Normalisasi 

1 0.6342 0.0283 0.0008 1.27 

2 0.5821 -0.0238 0.0006 -1.05 

3 0.6015 -0.0044 0 -0.22 

 

Misalkan sebuah vektor keluaran dari depthwise convolution pada satu posisi 

piksel ditunjukkan pada tabel 3.2 memiliki nilai fitur dari tiga kanal: 

[0.6342,0.5821,0.6015]. Proses Layer Normalization akan menghitung rata-rata μ 

dari ketiga nilai ini, yaitu (0.6342 + 0.5821 + 0.6015)/3 = 0.6059. Selanjutnya 

dihitung varians σ2 , misalnya ((0.6342 − 0.6059)2 + (0.5821 − 0.6059)2 +



40 

 

 

(0.6015 − 0.6059)2)/3 = 0.0005. Setelah itu, setiap nilai dikurangi dengan rata-

rata dan dibagi akar varians ditambah konstanta ϵ. Misalnya, nilai 0.6342 setelah 

normalisasi menjadi (0.6342 − 0.6059)/√0.0005 + ϵ ≈ 1.27 . Nilai 0.5821 

menjadi (0.5821 − 0.6059)/√0.0005 + ϵ ≈ −1.05 . Nilai 0.6015 menjadi 

(0.6015 − 0.6059)/√0.0005 + ϵ ≈ −0.22. 

Hasil akhirnya adalah vektor [1.27, −1.05, −0.22] , yaitu representasi 

terstandarisasi dari fitur di titik tersebut. Dengan cara ini, LayerNorm memastikan 

bahwa meskipun intensitas asli antar kanal berbeda, model tetap menerima 

distribusi fitur dengan rata-rata nol dan varians terkontrol. 

3) Pointwise Conv 1 (4× Expansion) 

Setelah fitur melewati proses normalisasi, ConvNeXt Block melakukan tahap 

ekspansi dimensi fitur menggunakan pointwise convolution berukuran kernel 1×1 

seperti tampak pada Gambar 3.7. Tahap ini sering disebut 4× Expansion karena 

jumlah kanal keluaran diperbesar menjadi empat kali lipat dari jumlah kanal 

masukan. Misalnya, jika masukan memiliki 96 kanal, maka setelah tahap ini akan 

menjadi 384 kanal. 

 

Gambar 3.7 Ilustrasi Pointwise Convolution (Sumber: Zhang et al., 2020) 

 

Secara intuitif, proses ini dapat dianalogikan seperti memperluas ruang kerja 

bagi model. Dengan memperbesar jumlah kanal, model memperoleh kapasitas 

representasi yang lebih kaya sehingga dapat memproses variasi pola spasial dengan 
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detail yang lebih halus sebelum tahap kompresi kembali. Secara matematis, 

pointwise convolution dengan kernel 1×1 dapat dituliskan sebagai: 

𝑌𝑖,𝑗,𝑘 = ∑ 𝑊1,1,𝑐,𝑘
𝐶in
𝑐=1 ⋅ 𝑋𝑖,𝑗,𝑐 + 𝑏𝑘  (3.5) 

Keterangan: 

(𝑌𝑖,𝑗,𝑘) : Nilai keluaran pada posisi koordinat spasial (𝑖, 𝑗)untuk kanal ke-(𝑘). 

(𝑋𝑖,𝑗,𝑐) : Nilai masukan pada posisi ((𝑖, 𝑗)) untuk kanal ke-(𝑐). 

(𝑊1,1,𝑐,𝑘): Bobot kernel 1×1 yang menghubungkan kanal masukan ke-(𝑐) dengan kanal keluaran 

ke-(𝑘). 
(𝑏𝑘) : Nilai bias yang ditambahkan pada kanal keluaran ke−(𝑘). 
(𝐶in) : Jumlah total kanal masukan. 

 

Pointwise convolution berbeda dengan konvolusi standar yang menggunakan 

kernel besar; di sini, kernel hanya berukuran 1×1 sehingga operasi yang dilakukan 

murni menggabungkan informasi antarkanal tanpa mengubah dimensi spasial. Hal 

ini membuatnya sangat efisien secara komputasi, namun tetap memberikan dampak 

signifikan terhadap kemampuan pemodelan nonlinier jaringan. 

 

Gambar 3.8 Contoh Operasi Pointwise Convolution 

 

Hal ini tampak misalkan pada satu posisi spasial (𝑖, 𝑗)  setelah melalui 

LayerNorm terdapat tiga kanal fitur dengan nilai [1.27, −1.05, −0.22]  yang 

ditunjukkan oleh gambar 3.8. Pada tahap pointwise convolution dengan kernel 1×1, 

setiap kanal keluaran akan dihitung sebagai kombinasi linear dari ketiga nilai ini. 

Misalnya, untuk kanal keluaran pertama, bobot yang digunakan adalah 

[0.5, −0.3,0.8]  dengan bias 0.1. Perhitungannya menjadi: (1.27 × 0.5) +
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(−1.05 × −0.3) + (−0.22 × 0.8) + 0.1 = 0.635 + 0.315 − 0.176 + 0.1 =

0.874. Untuk kanal keluaran kedua, bobotnya [−0.2,0.6,0.4] dengan bias -0.05. 

Maka hasilnya adalah (1.27 × −0.2) + (−1.05 × 0.6) + (−0.22 × 0.4) − 0.05 =

−0.254 − 0.63 − 0.088 − 0.05 = −1.022 . Proses ini dilakukan terus hingga 

terbentuk empat kanal keluaran (sesuai dengan ekspansi 4× dari tiga kanal 

masukan). Jika sebelumnya ada 3 kanal, maka setelah ekspansi jumlahnya menjadi 

12 kanal; pada arsitektur sebenarnya, 96 kanal akan diekspansi menjadi 384 kanal. 

Dengan begitu, pada titik spasial yang sama diperoleh vektor fitur baru 

berdimensi lebih besar, misalnya [0.874, −1.022,0.457,0.215, … ] . Vektor ini 

kemudian diteruskan ke tahap aktivasi nonlinier berikutnya. Simulasi ini 

memperlihatkan bahwa meskipun hanya menggunakan kernel 1×1, operasi 

pointwise convolution mampu mencampur informasi antar kanal dan memperkaya 

representasi fitur. 

4) GELU Activation 

Setelah tahap ekspansi kanal, keluaran kemudian diproses menggunakan fungsi 

aktivasi Gaussian Error Linear Unit (GELU). Fungsi aktivasi ini diperkenalkan 

untuk memberikan pemetaan nonlinier yang lebih halus dibandingkan fungsi klasik 

seperti ReLU. GELU secara probabilistik mempertahankan nilai input berdasarkan 

distribusi Gaussian, sehingga transisi antara nilai yang diredam dan dipertahankan 

menjadi lebih smooth. Secara matematis, fungsi aktivasi GELU dapat didefinisikan 

sebagaimana diuraikan dalam Persamaan 3.6. 

GELU(𝑥) = 𝑥 ⋅ Φ(𝑥) (3.6) 
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dengan Φ(𝑥)  merupakan fungsi distribusi kumulatif (CDF) dari distribusi 

normal standar. 

 

Gambar 3.9 Ilustrasi Fungsi Aktivasi GeLU 

 

Namun, dalam implementasi pada jaringan saraf, sering digunakan bentuk 

pendekatan sebagai berikut: 

GELU(𝑥) ≈ 0.5𝑥 [1 + tanh (√
2

π
(𝑥 + 0.044715𝑥3))] (3.7) 

Perbedaan utama GELU dibandingkan ReLU adalah sifatnya yang tidak 

sepenuhnya mematikan nilai negatif, melainkan menimbangnya secara 

probabilistik. Hal ini membuat pembelajaran menjadi lebih stabil dan 

memungkinkan jaringan mempertahankan informasi penting yang berada di dekat 

ambang nol, seperti terlihat pada Gambar 3.9, yang biasanya hilang pada ReLU.  

Sebagai contoh, misalkan dari hasil pointwise convolution di tahap sebelumnya 

pada satu titik spasial diperoleh empat nilai fitur: [0.874, −1.022,0.457,0.215]. 

Masing-masing nilai ini kemudian diproses menggunakan fungsi aktivasi GELU. 

Untuk nilai positif 0.874, fungsi distribusi Gaussian akan memberikan probabilitas 

mendekati 1, sehingga hasil GELU kira-kira GELU(0.874) ≈ 0.874 × 0.82 =
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0.716 . Untuk nilai negatif -1.022, probabilitasnya mendekati 0.16, sehingga 

GELU(−1.022) ≈ −1.022 × 0.16 = −0.164 . Sementara itu, nilai 0.457 akan 

menghasilkan GELU(0.457) ≈ 0.457 × 0.67 = 0.306 , dan nilai 0.215 menjadi 

GELU(0.215) ≈ 0.215 × 0.58 = 0.125. Sehingga, vektor keluaran setelah melalui 

GELU adalah [0.716, −0.164,0.306,0.125] . Terlihat bahwa nilai besar positif 

dipertahankan hampir penuh, nilai kecil positif dilewatkan sebagian, sementara 

nilai negatif tidak langsung dibuang tetapi tetap diberi kontribusi kecil. 

5) Pointwise Conv 2 (Projection) 

Lapisan Pointwise Convolution 2 (Projection) merupakan tahap akhir dari 

bagian feed-forward dalam ConvNeXt Block, yang berfungsi untuk mengembalikan 

jumlah kanal (channel) fitur ke dimensi semula setelah proses ekspansi pada 

Pointwise Convolution 1. Masukan pada tahap ini adalah peta fitur berdimensi 

tinggi (4C) yang dihasilkan dari Pointwise Convolution 1 dan telah melalui fungsi 

aktivasi nonlinier GELU. Peta fitur ini memiliki kapasitas representasi yang kaya 

namun berukuran lebih besar dibandingkan dimensi awal blok. 

Untuk memperjelas, misalkan pada satu titik spasial setelah melewati GELU 

terdapat empat kanal hasil ekspansi dengan nilai [0.716, −0.164,0.306,0.125] . 

Tahap Pointwise Convolution 2 bertugas memproyeksikan kembali empat nilai ini 

menjadi satu kanal (atau lebih umum: dari 4C kembali ke C). Misalnya, bobot 

kernel 1×1 untuk kanal keluaran adalah [0.4, −0.2,0.3,0.5] dengan bias sebesar 

0.05. Maka perhitungannya menjadi (0.716 × 0.4) + (−0.164 × −0.2) +

(0.306 × 0.3) + (0.125 × 0.5) + 0.05 . Hasilnya adalah 0.286 +  0.0328 +

 0.0918 +  0.0625 +  0.05 =  0.5231 . Sehingga, vektor berdimensi 4 berhasil 
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dipadatkan menjadi sebuah nilai tunggal 0.5231 pada kanal keluaran. Dalam 

implementasi nyata, proses ini dilakukan pada setiap posisi spasial dan untuk semua 

kanal keluaran, sehingga jika awalnya ada 96 kanal masukan yang diekspansi 

menjadi 384, tahap ini akan mengompresinya kembali ke 96 kanal. Hasil proyeksi 

ini kemudian siap untuk digabungkan dengan shortcut connection (residual path). 

6) Residual Connection & LayerScale 

 Residual connection digunakan untuk mempertahankan aliran informasi 

dan gradien di dalam jaringan, sehingga pelatihan tetap stabil pada arsitektur yang 

dalam. Mekanisme ini menambahkan input awal (shortcut connection) langsung ke 

keluaran hasil transformasi blok, sehingga jaringan hanya perlu mempelajari fungsi 

residu alih-alih mempelajari transformasi penuh. Secara matematis, residual 

connection dapat dinyatakan pada Persamaan 3.8. 

                                 𝑦 = 𝐹(𝑥, 𝑊) + 𝑥  (3.8) 

Keterangan:  
x : input ke blok 

F(x, W) : hasil transformasi non-linear (misalnya depthwise convolution, LayerNorm, pointwise 

convolution, dan aktivasi) 

y : output blok setelah penjumlahan residual 

 

 Pada ConvNeXt, residual connection dikombinasikan dengan LayerScale, 

yaitu parameter penskalaan adaptif (γ) yang diberikan pada setiap kanal output dari 

fungsi 𝐹(𝑥, 𝑊)  sebelum dilakukan penjumlahan dengan shortcut connection. 

Tujuannya adalah mengatur besarnya kontribusi hasil transformasi terhadap 

keluaran akhir. Persamaan LayerScale tertera pada Persamaan 3.9. 

                         𝑦 = (γ ⊙ 𝐹(𝑥, 𝑊)) + 𝑥  (3.9) 

Keterangan:  
γ : vektor skalar berukuran sama dengan jumlah kanal, diinisialisasi dengan nilai kecil (misalnya 

1e-6) 
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⊙ : operasi perkalian elemen-per-elemen (element-wise multiplication) 

 

 Inisialisasi γ dengan nilai kecil membuat model pada awal pelatihan lebih 

mengandalkan shortcut connection, sehingga mengurangi risiko ketidakstabilan 

pada iterasi awal. Nilai γ akan menyesuaikan selama pelatihan, memberikan 

fleksibilitas kontribusi transformasi 𝐹(𝑥, 𝑊). 

 

Gambar 3.10 Residual Pada ConvNeXt 

 

Struktur alur data pada ConvNeXt Block yang menerapkan residual 

connection dan LayerScale ditunjukkan pada Gambar 3.10. Blok ini dimulai dari 

depthwise convolution (kernel 7×7), diikuti Layer Normalization (LN), dilanjutkan 

dengan pointwise convolution pertama (1×1) yang memperluas dimensi kanal 

menjadi empat kali lipat, aktivasi GELU, lalu pointwise convolution kedua (1×1) 

untuk mengembalikan jumlah kanal ke dimensi semula. Keluaran dari rangkaian 

transformasi ini kemudian diskalakan menggunakan LayerScale sebelum 

dijumlahkan dengan shortcut connection. 

Sebagai simulasi, sebuah fitur berukuran 4×4 piksel dengan 2 kanal masuk 

ke sebuah blok ConvNeXt. Input ini kita sebut x. Setelah melalui depthwise 

convolution, normalisasi, pointwise convolution, aktivasi GELU, dan pointwise 
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convolution kedua, diperoleh hasil transformasi 𝐹(𝑥, 𝑊)  dengan ukuran sama, 

yaitu 4 × 4 × 2. Pada tahap LayerScale, setiap kanal hasil transformasi dikalikan 

dengan skalar γ . Misalnya γ = [0.000001,0.000001]  di awal pelatihan, maka 

seluruh nilai pada kanal pertama dan kedua dari 𝐹(𝑥, 𝑊) dikalikan dengan angka 

sangat kecil, sehingga nilainya mendekati nol. Dengan demikian, saat dijumlahkan 

dengan shortcut connection, keluaran akhir y hampir identik dengan 𝑥 . Hal ini 

membuat model lebih stabil pada iterasi awal karena tidak terjadi perubahan besar 

terhadap data. Seiring pelatihan, nilai γ menyesuaikan. Misalkan setelah beberapa 

epoch, γ berubah menjadi [0.8,  1.2]. Artinya kanal pertama dari 𝐹(𝑥, 𝑊) dikalikan 

0.8 (sedikit direduksi kontribusinya), sedangkan kanal kedua dikalikan 1.2 

(ditingkatkan kontribusinya). Setelah itu, kedua kanal hasil skala ini dijumlahkan 

dengan shortcut 𝑥. Jadi, untuk setiap posisi piksel (𝑖, 𝑗), operasi yang terjadi adalah:  

1. Output kanal 1 = 𝑥(𝑖, 𝑗, 1) + 0.8 × 𝐹(𝑥, 𝑊)(𝑖, 𝑗, 1)  

2. Output kanal 2 = 𝑥(𝑖, 𝑗, 2) + 1.2 × 𝐹(𝑥, 𝑊)(𝑖, 𝑗, 2) 

 

3.4.1.4 Global Average Pooling 

Setelah melalui rangkaian ConvNeXt Block pada tahap akhir ekstraksi fitur, 

keluaran jaringan berupa kumpulan feature map dengan kedalaman yang setara 

dengan jumlah kanal pada blok terakhir. Pada arsitektur ConvNeXt-Tiny, feature 

map ini tidak langsung diratakan (flatten) dan diproses menggunakan fully 

connected layer, melainkan terlebih dahulu melewati tahap Global Average 

Pooling (GAP). 
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Gambar 3.11 Global Average Pooling 

 

GAP bekerja dengan menghitung rata-rata nilai dari setiap feature map pada 

seluruh dimensi spasialnya, sehingga menghasilkan satu nilai representatif untuk 

setiap kanal. Proses ini ditunjukkan pada gambar 3.11 untuk menjaga 

keterhubungan langsung antara setiap kanal fitur dengan satu kategori keluaran, 

sehingga setiap feature map dapat diinterpretasikan sebagai peta kepercayaan 

(confidence map) terhadap suatu kelas (Lin et al., 2014). Selain itu, tidak adanya 

bobot yang perlu dilatih pada GAP menjadikannya lebih ringan secara komputasi 

dan secara alami berperan sebagai structural regularizer yang mengurangi risiko 

overfitting. 

GAP digunakan sebagai tahap akhir setelah seluruh proses ekstraksi fitur 

konvolusional, sebelum masuk ke layer klasifikasi softmax. Integrasi GAP menjaga 

sifat fully-convolutional dari arsitektur, sehingga efisien dalam komputasi dan dapat 

menangani input dengan dimensi bervariasi tanpa penyesuaian struktur jaringan 

(Liu et al., 2022). 
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Penggunaan GAP mempertahankan sifat fully-convolutional dari jaringan, 

memungkinkannya menerima masukan dengan dimensi yang bervariasi tanpa 

penyesuaian struktur (Liu et al., 2022). Secara matematis, jika 𝐹𝑘(𝑥, 𝑦) menyatakan 

nilai aktivasi pada koordinat (x, y) dari feature map ke-k berukuran 𝐻 ×  𝑊, maka 

nilai keluaran GAP untuk kanal tersebut diberikan oleh persamaan 3.10 

𝑔𝑘 =
1

𝐻×𝑊
∑ ∑ 𝐹𝑘(𝑥, 𝑦)𝑊

𝑦=1
𝐻
𝑥=1  (3.10). 

Keterangan: 

𝑔𝑘 : Nilai keluaran Global Average Pooling untuk kanal (feature map) ke-𝑘. 

𝐻 : Tinggi (height) dari feature map. 

𝑊 : Lebar (width) dari feature map. 

𝑥 : Indeks posisi piksel pada dimensi tinggi (height). 

𝑦 : Indeks posisi piksel pada dimensi lebar (width). 

𝐹𝑘(𝑥, 𝑦) : Nilai aktivasi (activation value) pada koordinat (𝑥, 𝑦) dari feature map ke-𝑘. 
1

𝐻×𝑊
 : Faktor normalisasi untuk menghitung rata-rata seluruh nilai dalam feature map. 

∑ ∑   ∶𝑊
𝑦=1

𝐻
𝑥=1  Operasi penjumlahan dua dimensi yang menjumlahkan semua nilai aktivasi pada 

feature map. 

 

Hasil vektor [𝑔1, 𝑔2, … , 𝑔𝐾] dari proses ini kemudian menjadi masukan bagi 

Linear Classifier pada tahap berikutnya, yang akan mengubahnya menjadi skor 

prediksi untuk setiap kelas target. Misalkan pada akhir ConvNeXt-Tiny, diperoleh 

feature map dengan ukuran 4×4 piksel dan 3 kanal (𝐾 =  3). Kemudian, kanal 

pertama (𝐹1) memiliki nilai piksel [[2, 3, 1, 0], [1, 2, 2, 3], [0, 1, 2, 1], [3, 2, 1, 0]]. 

Jumlah seluruh elemen = 24. Karena ukuran 4×4 = 16 piksel, maka rata-rata 𝑔1 =

24

16
= 1.5. Kanal kedua (𝐹2) misalnya memiliki jumlah total 32, sehingga rata-rata 

𝑔2 =
32

16
= 2.0. Kanal ketiga (𝐹3) misalnya memiliki jumlah total 40, sehingga rata-

rata 𝑔3 =
40

16
= 2.5. Maka, vektor hasil GAP adalah [𝑔1, 𝑔2, 𝑔3] = [1.5,  2.0,  2.5]. 

Vektor ini mewakili ringkasan informasi dari seluruh feature map tanpa lagi 
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memiliki dimensi spasial. Selanjutnya, vektor tersebut diteruskan ke linear 

classifier yang mengubahnya menjadi skor probabilitas melalui fungsi softmax. 

 

3.4.1.5 Linear Classifier (Fully Connected) 

Vektor keluaran dari Global Average Pooling, yang memiliki panjang sama 

dengan jumlah kanal pada layer terakhir, kemudian diproses oleh lapisan Linear 

Classifier untuk menghasilkan prediksi akhir. Pada ConvNeXt-Tiny, Linear 

Classifier ini direalisasikan sebagai fully connected layer tunggal yang mengubah 

vektor fitur berukuran 𝐾  menjadi vektor skor prediksi untuk setiap kelas pada 

dataset. Secara matematis, jika 𝑔 ∈ ℝ𝐾  merupakan vektor hasil GAP dan 𝑊 ∈

ℝ𝐶×𝐾  adalah matriks bobot linear dengan 𝐶  adalah jumlah kelas, maka skor 

prediksi 𝑧 ∈ ℝ𝐶 dapat dihitung sebagaimana persamaan 3.11. 

𝑧 =  𝑊𝑔 +  𝑏  (3.11). 

di mana 𝑏 ∈ ℝ𝐶 adalah vektor bias. Skor ini kemudian diberikan ke fungsi 

softmax untuk menghasilkan probabilitas prediksi setiap kelas pada persamaan 

3.12. 

𝑝𝑖 =
exp(𝑧𝑖)

∑ exp(𝑧𝑗)𝐶
𝑗=1

,  𝑖 = 1,2, … , C ( (3.12) 

Keterangan: 

𝑝𝑖 : probabilitas prediksi untuk kelas ke-i 

𝑧𝑖 : skor keluaran (logit) dari fully connected layer untuk kelas ke-i sebelum fungsi aktivasi 

softmax 

𝐶   : jumlah total kelas pada dataset 

exp(⋅) : fungsi eksponensial 

∑ exp(𝑧𝑗)𝐶
𝑗=1  : penjumlahan seluruh skor eksponensial untuk normalisasi agar total probabilitas = 

1 

 

Linear classifier pada ConvNeXt-Tiny memiliki jumlah parameter yang 

relatif kecil dibandingkan arsitektur CNN konvensional yang menggunakan 
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beberapa lapisan fully connected, karena dimensi input ke lapisan ini telah direduksi 

oleh GAP. Pendekatan ini tidak hanya mengurangi kompleksitas model, tetapi juga 

mempertahankan efisiensi komputasi dan membantu menghindari overfitting (Liu 

et al., 2022). 

 

Gambar 3.12 Contoh Perhitungan pada Linear Classifier 

 

Sebagai gambaran, hasil GAP berupa vektor berdimensi tiga [1.5,2.0,2.5]. 

Vektor ini kemudian masuk ke lapisan Linear Classifier yang memiliki bobot dan 

bias berbeda untuk setiap kelas target seperti ditunjukkan pada gambar 3.12. 

Sebagai ilustrasi sederhana, misalkan jaringan ini ditujukan untuk 

mengklasifikasikan citra endoskopi ke dalam dua kelas: “Sehat” dan “Tidak Sehat”. 

Bobot yang digunakan untuk kelas pertama adalah [0.2,0.3,0.5] dengan bias 0.1, 

sedangkan bobot untuk kelas kedua adalah [0.4,0.1,0.2] dengan bias 0.05. 

Proses perhitungan dilakukan dengan mengalikan setiap elemen vektor 

input dengan bobot yang sesuai, lalu menjumlahkannya dengan bias. Untuk kelas 

pertama, hasil perhitungan adalah (1.5 × 0.2) + (2.0 × 0.3) + (2.5 × 0.5) +

0.1 = 0.3 + 0.6 + 1.25 + 0.1 = 2.25. Untuk kelas kedua, perhitungannya adalah 

(1.5 × 0.4) + (2.0 × 0.1) + (2.5 × 0.2) + 0.05 = 0.6 + 0.2 + 0.5 + 0.05 =

1.35. Dua nilai ini, yaitu 2.25 dan 1.35, disebut logit atau skor mentah sebelum 

normalisasi. Agar dapat ditafsirkan sebagai probabilitas, skor tersebut diproses 
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melalui fungsi softmax. Perhitungan softmax dilakukan dengan terlebih dahulu 

menghitung eksponensial dari masing-masing skor: exp(2.25) ≈

𝑑𝑎𝑛 exp(1.35) ≈ 3.8 . Kemudian, masing-masing nilai dibagi dengan total 

keduanya (9.49 + 3.86 = 13.35). Hasilnya adalah probabilitas 
9.49

13.35
≈ 0.71 untuk 

kelas pertama dan 
3.86

13.35
≈ 0.29 untuk kelas kedua. Dengan demikian, untuk contoh 

input ini, model memprediksi bahwa citra endoskopi memiliki peluang 71% 

termasuk ke dalam kelas “Sehat” dan 29% ke dalam kelas “Tidak Sehat”. 

Selama proses pelatihan, parameter 𝑊  (bobot) dan 𝑏  (bias) pada Linear 

Classifier diperbarui secara iteratif agar model dapat meminimalkan nilai loss 

function. Pada penelitian ini digunakan fungsi loss Cross-Entropy, yang mengukur 

seberapa jauh distribusi probabilitas prediksi 𝑝𝑖  dari label sebenarnya 𝑦𝑖 . Secara 

matematis, loss untuk satu sampel dapat dituliskan sebagai: 

L = − ∑ 𝑦𝑖 log(𝑝𝑖)𝐶
𝑖=1     (3.14) 

Keterangan: 

𝑦𝑖 = 1 jika sampel termasuk kelas ke-𝑖, dan 0 untuk kelas lainnya   

𝑝𝑖 = probabilitas prediksi untuk kelas ke-𝑖 (hasil fungsi softmax)   

𝐶 = jumlah total kelas 

 

Gradien dari fungsi loss terhadap setiap parameter 𝑊dan 𝑏 dihitung melalui 

proses backpropagation. Nilai gradien ini menunjukkan arah perubahan yang harus 

dilakukan agar loss berkurang. 

Kemudian, parameter diperbarui menggunakan algoritma optimizer Adam 

yang mengombinasikan konsep momentum dan adaptive learning rate. Secara 

umum, pembaruan bobot dilakukan berdasarkan persamaan: 

𝑊(𝑡+1) = 𝑊(𝑡) − η 
∂𝐿

∂𝑊
     (3.14) 
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𝑏(𝑡+1) = 𝑏(𝑡) − η 
∂𝐿

∂𝑏
      (3.15) 

Keterangan: 

η : learning rate  
∂𝐿

∂𝑊
,

∂𝐿

∂𝑏
 = probabilitas prediksi untuk kelas ke-𝑖 (hasil fungsi softmax)  

  

Proses ini diulang untuk setiap batch data pada seluruh epoch pelatihan hingga 

nilai loss konvergen atau mencapai batas epoch yang ditentukan. Dengan cara ini, 

Linear Classifier secara bertahap belajar untuk menghasilkan bobot dan bias yang 

menghasilkan prediksi paling akurat terhadap data endoskopi yang diberikan. 

 

3.5 Evaluasi 

Evaluasi kinerja model pada penelitian ini bertujuan untuk menilai sejauh mana 

arsitektur ConvNeXt-Tiny mampu mengklasifikasikan citra endoskopi menjadi 

kategori Gastroesophageal Reflux Disease (GERD) atau polip usus. Mengingat 

pentingnya akurasi dalam diagnosis medis, proses evaluasi tidak hanya berfokus 

pada satu metrik, melainkan menggunakan confusion matrix dan empat metrik 

turunan, yaitu akurasi, presisi, recall, dan F1-score seperti yang diusulkan oleh 

Powers (2011). 

Confusion matrix merupakan tabel yang membandingkan hasil prediksi model 

dengan label sebenarnya, yang tersusun dari empat komponen: True Positive (TP), 

yaitu jumlah citra yang benar terprediksi sebagai kelas positif; True Negative (TN), 

jumlah citra yang benar terprediksi sebagai kelas negatif; False Positive (FP), 

jumlah citra yang salah terprediksi sebagai kelas positif; dan False Negative (FN), 

jumlah citra yang salah terprediksi sebagai kelas negatif. Dengan memanfaatkan 
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confusion matrix, analisis kinerja model dapat dilakukan secara lebih mendalam 

karena setiap jenis kesalahan dapat diidentifikasi secara spesifik. 

Akurasi digunakan untuk mengukur proporsi prediksi yang benar 

dibandingkan dengan keseluruhan data uji, yang dirumuskan sebagai berikut: 

Akurasi (%) = (
TP+TN

TP+TN+FP+FN
) × 100%  (3.14) 

Meskipun akurasi memberikan gambaran umum kinerja model, metrik ini 

dapat menyesatkan jika jumlah data pada tiap kelas tidak seimbang. Oleh karena 

itu, digunakan juga precision dan recall untuk memberikan perspektif yang lebih 

komprehensif. Precision mengukur tingkat ketepatan prediksi positif, atau seberapa 

besar proporsi prediksi positif yang benar-benar positif, dengan rumus: 

Presisi (%) = (
TP

TP+FP
) × 100%  (3.15) 

Nilai precision yang tinggi menunjukkan bahwa model jarang memberikan 

prediksi positif yang keliru (false positive rendah), yang sangat penting dalam 

konteks medis agar pasien sehat tidak salah terdiagnosis. Sementara itu, recall 

mengukur kemampuan model dalam menemukan semua sampel positif yang 

sebenarnya ada, dengan rumus: 

Recall (%) = (
TP

TP+FN
) × 100%  (3.16) 

Recall yang tinggi berarti false negative rendah, sehingga model jarang 

melewatkan pasien yang sebenarnya sakit. Dalam bidang kesehatan, recall sering 

menjadi metrik prioritas karena kesalahan melewatkan diagnosis dapat berakibat 

fatal. Untuk mendapatkan keseimbangan antara precision dan recall, digunakan F1-

score, yang merupakan rata-rata harmonis keduanya. Rumusnya adalah: 
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F1 Score (%) = (
2×TP

2TP+FP+FN
) × 100%  (3.17) 

Nilai F1-score yang tinggi menunjukkan bahwa model tidak hanya akurat 

dalam memberikan prediksi positif, tetapi juga konsisten dalam mendeteksi semua 

kasus positif. Dengan kombinasi kelima ukuran evaluasi ini, performa model dapat 

dinilai secara lebih menyeluruh, sehingga hasil yang diperoleh tidak bias terhadap 

satu jenis metrik saja. 

 

3.6 Skenario Pengujian 

Pada tahap ini dilakukan serangkaian pengujian untuk mengevaluasi 

performa model ConvNeXt-Tiny dalam mengklasifikasikan citra endoskopi menjadi 

tiga kategori, yaitu GERD, polip, dan normal. Skenario pengujian dirancang secara 

sistematis untuk menganalisis pengaruh beberapa faktor terhadap kinerja model, 

baik dari sisi data maupun konfigurasi pelatihan. Dalam penelitian ini ditetapkan 

dua faktor utama (skenario mayor) dan satu faktor tambahan (skenario minor). Dua 

faktor utama adalah penggunaan augmentasi data dan penerapan normalisasi 

berbasis distribusi z-score dengan nilai mean dan standar deviasi dari ImageNet, 

sedangkan faktor tambahan adalah variasi ukuran batch (batch size). 

Skenario pertama adalah pengujian dengan dan tanpa augmentasi data. 

Augmentasi merupakan teknik yang bertujuan meningkatkan keragaman data latih 

tanpa menambah jumlah data asli, sehingga model diharapkan mampu melakukan 

generalisasi dengan lebih baik. Bentuk augmentasi yang digunakan dalam 

penelitian ini antara lain rotasi, flipping horizontal, dan penyesuaian kecerahan 

secara acak. Skenario ini dibagi menjadi dua opsi, yaitu 1a (dengan augmentasi) 

dan 1b (tanpa augmentasi). 
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Skenario kedua adalah pengujian dengan dan tanpa normalisasi data. 

Normalisasi digunakan untuk menyeragamkan distribusi intensitas piksel pada citra 

agar proses pembelajaran menjadi lebih stabil dan cepat konvergen. Normalisasi 

dilakukan menggunakan metode z-score dengan parameter mean dan standar 

deviasi yang diadopsi dari dataset ImageNet. Skenario ini juga dibagi menjadi dua 

opsi, yaitu 2a (dengan normalisasi) dan 2b (tanpa normalisasi). 

Skenario ketiga adalah variasi ukuran batch sebagai faktor minor. Ukuran 

batch memengaruhi frekuensi pembaruan bobot, waktu pelatihan, serta penggunaan 

memori. Tiga opsi batch size yang digunakan dalam penelitian ini adalah 16 (3a), 

32 (3b), dan 64 (3c). Batch yang lebih kecil memberikan pembaruan bobot yang 

lebih sering sehingga pembelajaran lebih halus, tetapi membutuhkan waktu 

pelatihan lebih lama. Sebaliknya, batch yang lebih besar mempercepat pelatihan 

namun berpotensi membuat model kurang sensitif terhadap variasi data. 

Ketiga skenario tersebut kemudian dikombinasikan untuk membentuk 

konfigurasi pengujian. Dengan dua opsi augmentasi, dua opsi normalisasi, dan tiga 

opsi batch size, dihasilkan total 12 kombinasi pengujian. Sebelum proses pelatihan 

dilakukan, dataset dibagi menjadi tiga subset dengan perbandingan 7:2:1, yaitu 

70% data digunakan untuk pelatihan (training), 20% untuk validasi (validation), 

dan 10% untuk pengujian (testing). Pembagian ini dilakukan secara acak untuk 

memastikan distribusi kelas yang seimbang pada setiap subset data, sehingga hasil 

evaluasi model dapat merepresentasikan performa sebenarnya terhadap data yang 

belum pernah dilihat. Setiap kombinasi akan dilatih dengan jumlah epoch yang 

sama yaitu 10, serta menggunakan parameter pelatihan lainnya yang ditetapkan 
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konstan agar perbedaan kinerja yang dihasilkan murni disebabkan oleh variasi pada 

skenario pengujian. Parameter tetap tersebut meliputi optimizer Adam sebagai 

algoritma pembaruan bobot, fungsi loss CrossEntropy untuk klasifikasi multikelas, 

serta nilai learning rate sebesar 0,001. Kombinasi skenario pengujian ditunjukkan 

pada Tabel 3.5 berikut. 

Tabel 3.3 Kombinasi Skenario Pengujian 

Nama 

Skenario 
Kombinasi Deskripsi 

A 1a-2a-3a 
Augmentasi aktif, normalisasi aktif, batch 

size 16 

B 1a-2a-3b 
Augmentasi aktif, normalisasi aktif, batch 

size 32 

C 1a-2a-3c 
Augmentasi aktif, normalisasi aktif, batch 

size 64 

D 1a-2b-3a 
Augmentasi aktif, normalisasi tidak 

dilakukan, batch size 16 

E 1a-2b-3b 
Augmentasi aktif, normalisasi tidak 

dilakukan, batch size 32 

F 1a-2b-3c 
Augmentasi aktif, normalisasi tidak 

dilakukan, batch size 64 

G 1b-2a-3a 
Augmentasi tidak dilakukan, normalisasi 

aktif, batch size 16 

H 1b-2a-3b 
Augmentasi tidak dilakukan, normalisasi 

aktif, batch size 32 

I 1b-2a-3c 
Augmentasi tidak dilakukan, normalisasi 

aktif, batch size 64 

J 1b-2b-3a 
Augmentasi tidak dilakukan, normalisasi 

tidak dilakukan, batch size 16 

K 1b-2b-3b 
Augmentasi tidak dilakukan, normalisasi 

tidak dilakukan, batch size 32 

L 1b-2b-3c 
Augmentasi tidak dilakukan, normalisasi 

tidak dilakukan, batch size 64 

 

Dengan pengaturan skenario seperti di atas, hasil pengujian diharapkan 

mampu menunjukkan secara jelas pengaruh penggunaan augmentasi data, 

penerapan normalisasi, serta variasi batch size terhadap performa model ConvNeXt-

Tiny. Pendekatan ini juga memungkinkan analisis mendalam mengenai kombinasi 
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parameter yang menghasilkan akurasi terbaik sekaligus mempertahankan efisiensi 

pelatihan. 
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BA DAN PEMBAHASAN

BAB IV UJI COBA DAN PEMBAHASAN 

  BAB IV 

HASIL DAN PEMBAHASAN 

 

4.1 Konfigurasi Eksperimen 

Pelatihan model dilakukan menggunakan Google Colab dengan akselerator 

GPU NVIDIA Tesla T4 (16 GB). Implementasi dilakukan menggunakan framework 

PyTorch dengan learning rate awal sebesar 0,001 dan algoritma optimisasi Adam. 

Fungsi loss yang digunakan adalah Cross-Entropy Loss, yang sesuai untuk kasus 

klasifikasi multikelas. Proses pelatihan dijalankan selama maksimum 20 epoch, 

dengan penerapan early stopping menggunakan nilai patience sebesar 10 epoch 

untuk mencegah overfitting dan menjaga efisiensi pelatihan. Seluruh proses 

menggunakan random seed 42 untuk menjaga reprodusibilitas hasil. 

Dataset yang digunakan berasal dari GastroEndoNet versi 3 (Bitto et al., 

2025), yang berisi citra endoskopi lambung dan usus dengan empat kategori: 

GERD, GERD Normal, Polyp, dan Polyp Normal. Dataset tersebut telah 

menyediakan dua versi data, yaitu original dan augmented, sehingga proses 

augmentasi tidak dilakukan secara manual pada tahap pelatihan, melainkan 

disesuaikan berdasarkan skenario pengujian. Total citra yang tersedia adalah 4.006 

citra asli dan 24.036 citra hasil augmentasi. Seluruh citra berukuran 224×224 piksel 

dan dibagi menjadi tiga bagian dengan rasio 70% data latih, 20% data validasi, dan 

10% data uji, menggunakan pembagian stratified agar distribusi antar kelas tetap 

seimbang. 
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4.2 Hasil Uji Coba 

Sebelum membahas performa kuantitatif dan perbandingan antar skenario, 

perlu dilakukan peninjauan terhadap dinamika proses pelatihan untuk memastikan 

bahwa model telah mencapai konvergensi dengan stabil. Analisis ini dilakukan 

melalui visualisasi perubahan training loss dan validation loss selama 20 epoch 

pelatihan pada setiap skenario. Pola loss memberikan gambaran tentang sejauh 

mana model mampu menyesuaikan bobot internalnya terhadap data pelatihan tanpa 

kehilangan kemampuan generalisasi terhadap data validasi.  

Gambar 4.1 berikut menampilkan visualisasi perubahan training loss dan 

validation loss pada enam skenario yang menggunakan augmentasi data (1a–2a–3a 

hingga 1a–2b–3c). Pola yang tampak menunjukkan tren penurunan yang konsisten 

pada kedua kurva, baik selama proses pelatihan maupun validasi, yang menandakan 

bahwa proses optimasi parameter berjalan stabil dan model mampu melakukan 

generalisasi dengan baik terhadap data validasi. Pada awal pelatihan, training loss 

umumnya bernilai tinggi karena bobot inisialisasi acak belum merepresentasikan 

pola citra, namun setelah beberapa epoch, kurva mulai menurun tajam dan 

berangsur mendatar di bawah nilai 0.2 pada epoch ke-15 hingga ke-20. Pola ini 

sejalan dengan penurunan validation loss yang relatif berirama dengan training 

loss, hanya berbeda sedikit pada titik-titik tertentu akibat fluktuasi distribusi batch. 

Tidak terlihat indikasi overfitting yang signifikan, karena jarak antara kedua kurva 

tetap kecil dan tidak terjadi divergensi di akhir pelatihan. 
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(Skenario A) 

 

(Skenario B) 

 

(Skenario C) 

 

(Skenario D) 

 

(Skenario E) 

 

(Skenario F) 

Gambar 4.1 Visualisasi loss pada data dengan augmentasi (Skenario A-F) 

 

Kestabilan konvergensi ini menunjukkan bahwa penerapan augmentasi 

memberikan dampak positif terhadap pembelajaran model. Variasi tambahan pada 

citra pelatihan seperti rotasi, pencahayaan, dan flipping memperluas distribusi data, 

sehingga model belajar mengenali pola tekstur dan bentuk mukosa yang lebih 

beragam tanpa kehilangan kemampuan generalisasi. Skenario dengan batch size 

besar (misalnya 64) memperlihatkan kurva yang lebih halus dibanding batch size 
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kecil, yang menandakan perataan gradien lebih stabil akibat agregasi sampel yang 

lebih luas. Selain itu, efek normalisasi turut menjaga kestabilan nilai aktivasi antar 

batch, menjadikan proses pembaruan bobot lebih terkontrol. 

 Berbeda dengan kelompok sebelumnya, keenam grafik pada Gambar 4.2 

memperlihatkan pola training loss dan validation loss pada skenario tanpa 

penerapan augmentasi data. Secara umum, kurva menunjukkan kecenderungan 

penurunan di awal pelatihan, namun konvergensinya tidak sehalus kelompok 

dengan augmentasi. Beberapa skenario memperlihatkan fluktuasi cukup tajam pada 

validation loss setelah epoch ke-10, bahkan terdapat kecenderungan divergensi di 

mana nilai validation loss meningkat sementara training loss terus menurun. 

Fenomena ini mengindikasikan terjadinya overfitting, yaitu kondisi ketika model 

terlalu menyesuaikan diri terhadap pola data pelatihan dan kehilangan kemampuan 

generalisasi terhadap data validasi. Penyebab utama gejala tersebut adalah 

keterbatasan variasi data pelatihan akibat absennya augmentasi, sehingga distribusi 

citra yang diterima model tidak cukup beragam untuk merepresentasikan kondisi 

dunia nyata. 

 

(Skenario G) 

 

(Skenario H) 
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(Skenario I) 

 

(Skenario J) 

 

(Skenario K) 

 

(Skenario L) 

Gambar 4.2 Visualisasi loss pada dataset tanpa augmentasi (Skenario J-L) 

 

 Selain itu, pola pelatihan tanpa augmentasi memperlihatkan penurunan 

training loss yang cepat namun tidak diikuti dengan stabilitas pada validation loss, 

menandakan bahwa model belajar terlalu cepat terhadap fitur-fitur dominan tertentu 

tetapi gagal mempertahankan performa pada variasi minor. Hal ini terlihat pada 

grafik dengan batch size kecil (misalnya 16), di mana fluktuasi validasi cenderung 

ekstrem karena pembaruan bobot dilakukan pada subset data yang terlalu terbatas. 

Sebaliknya, pada batch size besar (64), fluktuasi sedikit teredam namun tidak 

menghasilkan peningkatan signifikan pada validation accuracy, menandakan 

bahwa peningkatan ukuran batch tidak mampu menggantikan fungsi augmentasi 

dalam memperkaya distribusi data. 
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4.2.1 Skenario A 

 Skenario A merupakan konfigurasi dasar dengan augmentation dan 

normalization aktif menggunakan batch size 16. Berdasarkan Gambar 4.3, 

distribusi prediksi relatif seimbang dan mayoritas berada pada diagonal, 

menunjukkan klasifikasi yang cukup baik. Kesalahan terutama muncul pada 

pasangan kelas dengan kemiripan visual, seperti GERD–GERD Normal dan Polyp–

Polyp Normal. 

 

Gambar 4.3 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario A. 

 

Tabel 4.1 Hasil evaluasi metrik kuantitatif model pada Skenario A. 

Metrik Nilai (%) 

Accuracy 90.05 

Precision 89.99 

Recall 89.85 

F1-score 89.9 

 

Nilai metrik pada Tabel 4.1 menunjukkan accuracy 90.05%, precision 

89.99%, recall 89.85%, dan F1-score 89.90%. Kedekatan antar metrik menandakan 

performa yang stabil. Batch size kecil memberi variasi gradien yang tinggi sehingga 
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model menangkap detail tekstur secara baik, namun menyebabkan fluktuasi kecil 

pada proses validasi. Secara keseluruhan, Skenario A memberikan performa awal 

yang solid dengan metrik sekitar 0.90. 

 

4.2.1 Skenario B 

 Pengujian berikutnya pada Skenario B menggunakan konfigurasi yang sama 

dengan Skenario A, dengan batch size yang meningkat menjadi 32. Gambar 4.4 

menunjukkan pola diagonal yang lebih kuat dibandingkan Skenario A, dengan 

peningkatan akurasi terutama pada GERD Normal dan Polyp Normal. Kesalahan 

antar kelas lebih kecil dan lebih merata. 

 

Gambar 4.4 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario B. 

 

 Seperti ditampilkan pada Tabel 4.2, model mencapai accuracy 90.77%, 

precision 90.88%, recall 90.54%, dan F1-score 90.68%. Perbedaan antar metrik 

kecil (≤0.004), menunjukkan bahwa model semakin stabil dan seimbang. 

Peningkatan batch size terbukti mengurangi fluktuasi validation loss dan 

memperbaiki konsistensi prediksi. Dengan performa seluruh metrik di atas 90%, 
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Skenario B dapat dianggap sebagai konfigurasi yang lebih stabil dibandingkan 

Skenario A. 

Tabel 4.2 Hasil evaluasi metrik kuantitatif model pada Skenario B. 

Metrik Nilai (%) 

Accuracy 90.77 

Precision 90.88 

Recall 90.54 

F1-score 90.68 

 

 

4.2.1 Skenario C 

 Skenario C menguji efek batch size yang lebih besar, yaitu 64, dengan 

augmentation dan normalization tetap aktif. Gambar 4.5 menunjukkan dominasi 

diagonal yang lebih kuat dibandingkan dua skenario sebelumnya. Kesalahan 

semakin berkurang, terutama antara GERD–GERD Normal, dan konsistensi 

prediksi meningkat signifikan. Polyp Normal menunjukkan jumlah prediksi benar 

tertinggi. 

 

Gambar 4.5 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario C. 
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Tabel 4.3 menunjukkan accuracy 92.94%, precision 93.04%, recall 

92.85%, dan F1-score 92.94%. Keempat metrik sangat berdekatan dan berada di 

atas 92%, menandakan konvergensi yang stabil serta pembelajaran fitur global yang 

lebih baik. Kurva training–validation loss yang halus (lihat bagian sebelumnya) 

mendukung bahwa model berlatih tanpa tanda overfitting. Dengan hasil tertinggi di 

antara seluruh konfigurasi, Skenario C ditetapkan sebagai model terbaik untuk 

analisis lanjutan. 

Tabel 4.3 Hasil evaluasi metrik kuantitatif model pada Skenario C. 

Metrik Nilai (%) 

Accuracy 92.94 

Precision 93.04 

Recall 92.85 

F1-score 92.94 

 

 Skenario C menunjukkan performa tertinggi dari seluruh konfigurasi 

dengan augmentasi aktif. Nilai metrik yang konsisten di atas 92% menegaskan 

bahwa penggunaan batch size besar membantu memperhalus gradien dan 

memperkuat pembelajaran fitur global tanpa kehilangan detail tekstur. Kurva loss 

yang halus dan jarak kecil antara training dan validation loss (ditampilkan pada 

bagian sebelumnya) memperkuat bukti bahwa model mencapai konvergensi 

sempurna tanpa gejala overfitting. Dengan demikian, Skenario C ditetapkan sebagai 

model terbaik secara keseluruhan untuk tahap evaluasi mendalam berikutnya, baik 

dari sisi kuantitatif maupun kualitatif. 

 

4.2.1 Skenario D 

 Konfigurasi berikutnya, Skenario D merupakan konfigurasi tanpa 

normalization dengan augmentation aktif dan batch size 16. Gambar 4.6 
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menunjukkan bahwa model gagal melakukan klasifikasi: seluruh citra diprediksi 

sebagai Polyp Normal sehingga diagonal confusion matrix hampir seluruhnya 

kosong. Ketidakmampuan ini mengindikasikan hilangnya stabilitas distribusi fitur 

akibat absennya normalisasi, sehingga gradien menjadi tidak terkontrol. 

 

Gambar 4.6 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario D. 

 

 Tabel 4.4 memperlihatkan performa yang sangat rendah: accuracy 28.31%, 

precision 07.08%, recall 25%, dan F1-score 11.03%. Pola ini mencerminkan mode 

collapse, di mana model memilih satu kelas dominan untuk meminimalkan loss. 

Hasil ini menegaskan bahwa normalisasi berperan penting dalam menjaga 

konsistensi skala fitur dan stabilitas konvergensi. 

Tabel 4.4 Hasil evaluasi metrik kuantitatif model pada Skenario D. 

Metrik Nilai (%) 

Accuracy 28.31 

Precision 7.08 

Recall 25.00 

F1-score 11.03 
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4.2.1 Skenario E 

 Pengamatan terhadap dampak ukuran batch yang lebih besar dalam kondisi 

tanpa normalization dilakukan pada Skenario E dengan meningkatkan batch size 

menjadi 32. Tujuannya adalah untuk menilai apakah ukuran batch yang lebih besar 

dapat mengurangi instabilitas yang muncul tanpa proses normalisasi. Namun, 

Gambar 4.7 menunjukkan hasil yang identik dengan skenario sebelumnya. 

 

Gambar 4.7 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario E. 

 

 Nilai metrik pada Tabel 4.5 juga sama persis dengan Skenario D (accuracy 

2831% dan F1-score 11.03%), sehingga dapat disimpulkan bahwa peningkatan 

batch size tidak mampu mengimbangi hilangnya proses normalisasi. Tanpa 

penyeimbangan distribusi fitur antar batch, model tetap gagal mempelajari 

representasi antar kelas meskipun jumlah sampel per batch diperbesar. 

Tabel 4.5 Hasil evaluasi metrik kuantitatif model pada Skenario E. 

Metrik Nilai (%) 

Accuracy 28.31 

Precision 07.08 

Recall 25.00 

F1-score 11.03 
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4.2.1 Skenario F 

 Berbeda dengan dua skenario sebelumnya, Skenario F menguji batch size 

64 pada kondisi tanpa normalization. Berbeda dengan dua skenario sebelumnya, 

Gambar 4.8 menunjukkan pemulihan performa yang signifikan. Diagonal confusion 

matrix kembali dominan dan seluruh kelas dapat dikenali dengan baik. Kelas GERD 

Normal dan Polyp Normal memperoleh prediksi benar tertinggi. 

 

Gambar 4.8 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario F. 

 

Tabel 4.6 menunjukkan accuracy 90.91%, precision 90.89%, recall 

90.77%, dan F1-score 90.82%. Konsistensi antar metrik menandakan bahwa batch 

size besar menghasilkan gradien yang lebih stabil meskipun tanpa normalisasi. 

Namun performanya tetap sedikit di bawah kelompok dengan normalisasi aktif. 

Tabel 4.6 Hasil evaluasi metrik kuantitatif model pada Skenario F. 

Metrik Nilai (%) 

Accuracy 90.91 

Precision 90.89 

Recall 90.77 

F1-score 90.82 
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4.2.1 Skenario G 

 Skenario G menguji konfigurasi tanpa augmentation dengan normalization 

aktif dan batch size 16. Tanpa augmentasi, variasi data menjadi terbatas sehingga 

kemampuan generalisasi model berpotensi menurun. 

 

Gambar 4.9 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario G. 

 

 Gambar 4.9 menunjukkan bahwa model masih dapat melakukan klasifikasi 

dengan cukup baik, namun kesalahan meningkat dibandingkan skenario dengan 

augmentasi aktif. Kelas GERD Normal dan GERD memperoleh prediksi benar 

tertinggi, sedangkan kelas Polyp dan Polyp Normal menunjukkan tumpang tindih 

besar. Hal ini menandakan bahwa model kesulitan membedakan variasi tekstur 

yang lebih kompleks. 

Tabel 4.7 menunjukkan accuracy 73.82%, precision 73.83%, recall 

73.07%, dan F1-score 73.00%. Nilai metrik yang konsisten menunjukkan stabilitas, 

namun penurunan umum pada performa menandakan adanya underfitting akibat 
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kurangnya variasi visual. Dengan demikian, normalisasi saja tidak cukup untuk 

mempertahankan performa optimal tanpa dukungan augmentasi. 

Tabel 4.7 Hasil evaluasi metrik kuantitatif model pada Skenario G. 

Metrik Nilai (%) 

Accuracy 73.82 

Precision 73.83 

Recall 73.07 

F1-score 73.00 

 

 

4.2.1 Skenario H 

 Pada pengujian berikutnya, Skenario H diperlihatkan Gambar 4.10 

menunjukkan bahwa performa menurun dibandingkan Skenario G. GERD Normal 

masih menjadi kelas dengan prediksi benar terbanyak, tetapi kesalahan meningkat 

pada GERD dan Polyp, terutama mis-klasifikasi menuju kelas dengan fitur visual 

lebih dominan. Hal ini menunjukkan kecenderungan class bias ketika variasi citra 

rendah. 

 

Gambar 4.10 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario H. 
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 Tabel 4.8 menunjukkan accuracy 71.57%, precision 73.47%, recall 

70.57%, dan F1-score 70.52%. Penurunan recall mengindikasikan semakin 

sulitnya model mengenali kelas minor. Secara keseluruhan, peningkatan batch size 

tidak memberikan perbaikan berarti tanpa augmentasi, dan keterbatasan variasi 

citra tetap menjadi faktor utama yang membatasi kinerja. 

Tabel 4.8 Hasil evaluasi metrik kuantitatif model pada Skenario H. 

Metrik Nilai (%) 

Accuracy 71.57 

Precision 73.47 

Recall 70.57 

F1-score 70.52 

 

 

4.2.1 Skenario I 

 Melanjutkan analisis tersebut, Skenario I pada Gambar 4.11 

memperlihatkan adanya peningkatan akurasi di seluruh kelas, dengan GERD 

Normal dan Polyp Normal menjadi kelas yang paling konsisten dikenali. Meskipun 

tumpang tindih prediksi pada kelas Polyp masih terlihat, dominasi diagonal 

memperlihatkan adanya stabilisasi yang cukup kuat berkat ukuran batch yang besar. 

Tabel 4.9 menunjukkan accuracy 74.81%, precision 74.30%, recall 

74.43%, dan F1-score 74.25%. Perbaikan dibandingkan Skenario G dan H 

menunjukkan bahwa batch size besar membantu menghasilkan gradien yang lebih 

stabil sehingga performa meningkat meski tanpa augmentasi. 
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Gambar 4.11 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario I. 

 

Tabel 4.9 Hasil evaluasi metrik kuantitatif model pada Skenario I. 

Metrik Nilai (%) 

Accuracy 74.81 

Precision 7.43 

Recall 74.43 

F1-score 74.25 

 

 

4.2.1 Skenario J 

 Berbeda dari Skenario I, Skenario J yang direpresentasikan oleh Gambar 

4.12 menunjukkan penurunan performa yang sangat drastis: model hanya 

memprediksi dua kelas dominan (GERD dan Polyp), sementara hampir seluruh 

diagonal confusion matrix bernilai nol. Kelas Polyp hanya memperoleh 14 prediksi 

benar, dan tiga kelas lainnya didominasi kesalahan. Pola ini menunjukkan mode 

collapse akibat kurangnya stabilitas distribusi fitur. 
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Gambar 4.12 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario J. 

 

Tabel 4.10 menunjukkan accuracy 31.67%, precision 29.27%, recall 

29.39% dan F1-score 19.00%. Seluruh metrik menunjukkan kegagalan total dalam 

pembelajaran. Hal ini menegaskan bahwa augmentation sebagai sumber keragaman 

dan normalization sebagai pengatur stabilitas merupakan komponen fundamental 

yang tidak dapat dihilangkan secara bersamaan. 

Tabel 4.10 Hasil evaluasi metrik kuantitatif model pada Skenario J. 

Metrik Nilai (%) 

Accuracy 31.67 

Precision 29.27 

Recall 29.39 

F1-score 19.00 

 

 

4.2.1 Skenario K 

 Penilaian terhadap kemungkinan peningkatan batch size dalam 

memperbaiki performa dilakukan pada Skenario K dengan memperbesar batch size 

menjadi 32 pada kondisi tanpa augmentation dan tanpa normalization. Langkah ini 
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bertujuan untuk menguji apakah ukuran batch yang lebih besar dapat meningkatkan 

performa yang sangat rendah pada Skenario J. 

Gambar 4.13 menunjukkan sedikit perbaikan, namun model tetap gagal 

membedakan empat kelas. Tidak ada prediksi benar pada kelas GERD, dan 

sebagian besar sampel diarahkan ke kelas dominan seperti Polyp Normal. Kelas 

tersebut menjadi satu-satunya yang menunjukkan akurasi relatif lebih baik (111 

prediksi benar), tetapi model masih bergantung pada pola global tanpa mampu 

menangkap perbedaan tekstur antar kelas. 

 

 

Gambar 4.13 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario K. 

 

Tabel 4.11 memperlihatkan accuracy 39.90%, precision 42.28%, recall 

38.36%, dan F1-score 30.51%. Walaupun sedikit lebih baik dari Skenario J, 

nilainya tetap rendah dan menunjukkan ketidakmampuan model untuk belajar 

secara stabil tanpa normalisasi maupun augmentasi. Hal ini mempertegas bahwa 
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sekadar memperbesar batch size tidak cukup untuk mengimbangi hilangnya dua 

teknik penting tersebut. 

Tabel 4.11 Hasil evaluasi metrik kuantitatif model pada Skenario K. 

Metrik Nilai (%) 

Accuracy 39.90 

Precision 42.28 

Recall 38.36 

F1-score 30.51 

 

 

4.2.1 Skenario L 

Hasil berbeda terlihat pada Skenario L. Gambar 4.14 menunjukkan 

peningkatan performa dibandingkan Skenario J dan K. Diagonal confusion matrix 

kembali terlihat, dengan Polyp Normal mencapai 101 prediksi benar. Namun 

kesalahan pada GERD dan GERD Normal masih tinggi, menandakan bahwa 

meskipun gradien lebih stabil, absennya normalisasi menyebabkan distribusi fitur 

antar batch tetap tidak konsisten. 

 

Gambar  4.14 Confusion matrix hasil pengujian model ConvNeXt-Tiny pada Skenario L. 
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Tabel 4.12 menunjukkan accuracy 63.34%, precision 67.86%, recall 

61.27%, dan F1-score 61.24%. Nilainya jauh lebih baik daripada Skenario J dan K, 

tetapi masih jauh dari performa optimal pada konfigurasi dengan augmentasi dan 

normalisasi aktif. 

Tabel 4.12 Hasil evaluasi metrik kuantitatif model pada Skenario L. 

Metrik Nilai (%) 

Accuracy 63.34 

Precision 67.86 

Recall 61.27 

F1-score 61.24 

 

 

4.3 Analisis dan Pembahasan 

Dua belas skenario yang diuji memperlihatkan pola yang konsisten: 

kombinasi augmentasi aktif + normalisasi aktif memberi kinerja tertinggi dan 

paling stabil; penghapusan normalisasi merusak pembelajaran hingga titik mode 

collapse (Skenario D–E), namun batch besar (64) dapat sedikit menstabilkan 

(Skenario F). Pada kelompok tanpa augmentasi tetapi normalisasi aktif (G–I), 

performa berada di tingkat menengah: kurva loss lebih stabil daripada tanpa 

normalisasi, tetapi akurasi dan F1 tetap lebih rendah karena kurangnya keragaman 

visual saat pelatihan. Kelompok tanpa augmentasi & tanpa normalisasi (J–L) 

menunjukkan degradasi signifikan; batch besar (L) memang membantu, tetapi tetap 

jauh dari konfigurasi optimal. Secara keseluruhan, Skenario C (1a–2a–3c) menjadi 

model terbaik dengan F1=0.9294, menunjukkan bahwa gradien yang halus (batch 

64), keragaman data (augmentasi), dan kestabilan statistik (normalisasi) bekerja 

sinergis untuk memaksimalkan generalisasi. Tren ini konsisten dengan confusion 

matrix per skenario: kesalahan terbanyak terjadi pada pasangan kelas 



79 

 

 

berkarakteristik mirip (Polyp vs. Polyp Normal, GERD vs. GERD Normal), dan 

berkurang paling jelas pada skenario yang menggabungkan ketiga faktor di atas. 

Tabel 4.13 Ringkasan metrik semua skenario (test set, macro-avg) 

Skenario Kombinasi Accuracy Precision Recall F1-score 

A 1a–2a–3a 0.9005 0.8999 0.899 0.899 

B 1a–2a–3b 0.9077 0.9088 0.905 0.9068 

C 1a–2a–3c 0.9294 0.9304 0.929 0.9294 

D 1a–2b–3a 0.2831 0.0708 0.25 0.1103 

E 1a–2b–3b 0.2831 0.0708 0.25 0.1103 

F 1a–2b–3c 0.9091 0.9089 0.908 0.9082 

G 1b–2a–3a 0.7382 0.7383 0.731 0.73 

H 1b–2a–3b 0.7157 0.7347 0.706 0.7052 

I 1b–2a–3c 0.7481 0.743 0.744 0.7425 

J 1b–2b–3a 0.3167 0.2927 0.294 0.19 

K 1b–2b–3b 0.399 0.4228 0.384 0.3051 

L 1b–2b–3c 0.6334 0.6786 0.613 0.6124 

 

 

Gambar 4.15 Bar chart perbandingan F1 antar skenario 

 

 Berdasarkan Tabel 4.13, terlihat bahwa kinerja model sangat dipengaruhi 

oleh keberadaan normalisasi dan augmentasi. Nilai accuracy dan F1-score 

menunjukkan rentang perbedaan yang lebar antar skenario, dari 0.11 pada 

konfigurasi gagal (D–E) hingga 0.93 pada konfigurasi optimal (C). Tren kenaikan 

performa dari Skenario A → B → C menunjukkan efek positif dari peningkatan 
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batch size ketika dua teknik tersebut diaktifkan bersamaan, menandakan bahwa 

model memperoleh gradien yang lebih stabil dan pembelajaran fitur yang lebih 

representatif. Sebaliknya, ketika normalisasi dihilangkan (D–E), model kehilangan 

kemampuan diskriminatif secara total, ditunjukkan dengan mode collapse yang 

tercermin dari nilai metrik di bawah 0.3. 

Sementara itu, Gambar 4.15 memperlihatkan perbandingan visual antar 

skenario dari segi F1-score, yang memperjelas kesenjangan performa antar 

kelompok. Batang tertinggi terdapat pada Skenario C, disusul F dan B, yang 

semuanya melibatkan augmentasi aktif. Kelompok tanpa augmentasi (G–I) 

menempati posisi menengah, sedangkan kelompok tanpa normalisasi (D–E, J–K) 

tampak mendekati dasar grafik, menandakan ketidakstabilan dan kegagalan 

generalisasi. Pola ini mengonfirmasi bahwa kombinasi augmentasi dan normalisasi 

memiliki kontribusi sinergis yang krusial dalam memperkuat pembelajaran spasial 

serta mengurangi variance antar batch. Dengan demikian, hasil rekapitulasi ini 

tidak hanya menunjukkan model terbaik secara numerik, tetapi juga memberikan 

pemahaman empiris tentang hubungan antarvariabel pelatihan terhadap performa 

akhir model ConvNeXt-Tiny. 

 

4.3.1 Evaluasi Perubahan Variabel 

 Analisis pada bagian ini bertujuan untuk mengevaluasi pengaruh tiga 

variabel utama yang digunakan dalam seluruh skenario pelatihan, yaitu augmentasi 

data, normalisasi, dan ukuran batch, terhadap performa model ConvNeXt-Tiny. 

Evaluasi dilakukan dengan menghitung nilai rata-rata (mean) dan simpangan baku 

(standard deviation) dari F1-score pada setiap kelompok yang memiliki 
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konfigurasi sama untuk satu variabel, sementara dua variabel lainnya bervariasi. 

Ringkasan statistik tersebut disajikan pada Tabel 4.14, yang menjadi dasar untuk 

menilai kestabilan serta kontribusi relatif masing-masing variabel terhadap akurasi 

klasifikasi akhir. 

Tabel 4.14 Ringkasan Statistik F1-score (Mean ± Std) berdasarkan Variabel Eksperimen 

Variabel Kondisi 
Rata-rata F1 (Mean ± 

Std) 
Interpretasi Utama 

Augmentasi Aktif (A–F) 79.4% ± 31.6% 

Meningkatkan generalisasi 

model; efek terbesar pada 

batch besar. 

  
Tidak Aktif 

(G–L) 
55.4% ± 22.4% 

Model kehilangan variasi 

fitur, cenderung 

underfitting. 

Normalisasi 
Aktif (A–C, G–

I) 
81.8% ± 9.1% 

Menjaga stabilitas dan 

konvergensi; performa 

konsisten tinggi. 

  
Tidak Aktif 

(D–F, J–L) 
37.4% ± 29.5% 

Tanpa normalisasi, gradien 

tidak stabil dan performa 

turun drastis. 

Batch size 16 (A, D, G, J) 58.2% ± 31.2% 
Batch kecil kurang stabil, 

rawan fluktuasi loss. 

  32 (B, E, H, K) 57.9% ± 30.4% 

Kinerja relatif sama; belum 

cukup menstabilkan tanpa 

normalisasi. 

  64 (C, F, I, L) 74.2% ± 26.1% 

Batch besar memperhalus 

gradien dan meningkatkan 

generalisasi. 

 

1) Pengaruh Augmentasi Data 

 Konfigurasi dengan augmentasi aktif (A–F) menunjukkan rata-rata F1-

score sebesar 79,4%, sedangkan kelompok tanpa augmentasi (G–L) hanya 

mencapai 55,4%. Perbedaan sekitar 24 persen ini menunjukkan bahwa augmentasi 

berperan penting dalam meningkatkan kemampuan generalisasi model, khususnya 

pada citra endoskopi yang memiliki variasi tinggi pada tekstur, pencahayaan, dan 

bentuk anatomi. Nilai rata-rata (mean) yang tinggi menunjukkan peningkatan 
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kinerja keseluruhan model, sedangkan simpangan baku (31,6%) yang cukup besar 

menandakan bahwa efek augmentasi masih bervariasi antar-skenario.  

Temuan ini sejalan dengan penelitian Shorten & Khoshgoftaar (2019) yang 

menjelaskan bahwa data augmentation memperluas distribusi sampel melalui 

geometric transformation maupun photometric transformation, sehingga model 

CNN dapat belajar dari variasi yang lebih luas dan tidak terjebak pada pola terbatas 

dataset berukuran kecil. Dalam konteks penelitian ini, data augmentation 

membantu model menjadi lebih tahan terhadap variasi pencahayaan, sudut kamera, 

serta tekstur mukosa yang berbeda. 

Namun, nilai simpangan baku yang besar menunjukkan bahwa data 

augmentation bekerja optimal bila disertai normalization yang stabil. Beberapa 

skenario (misalnya D dan E) membuktikan bahwa tanpa normalization, proses 

pelatihan dapat gagal convergent meskipun data augmentation diaktifkan. Dengan 

demikian, data augmentation efektif dalam memperluas representasi fitur, tetapi 

tetap memerlukan dukungan preprocessing yang konsisten agar hasilnya stabil. 

2) Pengaruh Normalisasi (ImageNet Normalization) 

Normalisasi berbasis statistik ImageNet terbukti menjadi variabel paling 

krusial untuk menjaga stabilitas pelatihan dan distribusi fitur. Kelompok dengan 

normalisasi aktif (A–C, G–I) memperoleh rata-rata F1-score sebesar 81,8%, 

dengan simpangan baku 9,1%. Sebaliknya, kelompok tanpa normalisasi (D–F, J–

L) hanya mencapai rata-rata 37,4%, dengan simpangan baku 29,5%. Nilai rata-rata 

yang tinggi menunjukkan bahwa normalisasi secara langsung meningkatkan 
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performa model, sedangkan std yang rendah menandakan kestabilan hasil antar-

skenario. 

Penurunan performa sekitar 44 persen tanpa normalisasi menunjukkan 

bahwa model kehilangan kesesuaian distribusi input dengan distribusi saat 

pretraining, sehingga lapisan awal gagal mengekstraksi fitur dengan benar. Secara 

teoretis, He et al. (2016) menegaskan bahwa preprocessing berbasis statistik 

ImageNet (mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]) merupakan 

bagian penting dari proses training dan inference pada model pretrained modern. 

Ketidaksesuaian distribusi ini dapat menyebabkan nilai aktivasi ekstrem, gradien 

tidak stabil, dan kesulitan konvergensi. 

Selain itu, simpangan baku yang jauh lebih besar pada kelompok tanpa 

normalisasi menunjukkan bahwa model menjadi sangat sensitif terhadap kombinasi 

variabel lain, terutama ukuran batch dan augmentasi. Skenario seperti D, E, J, dan 

K menunjukkan performa rendah bahkan mendekati kegagalan pelatihan. Dengan 

demikian, normalisasi berfungsi tidak hanya untuk menormalkan skala data, tetapi 

juga untuk menjaga konsistensi dan kestabilan proses optimasi di seluruh 

konfigurasi eksperimen. 

3) Pengaruh Ukuran Batch 

Ukuran batch memberikan pengaruh moderat namun signifikan terhadap 

stabilitas dan konvergensi model. Nilai rata-rata F1-score yang diperoleh untuk 

batch 16, 32, dan 64 berturut-turut adalah 58,2% ± 31,2%, 57,9% ± 30,4%, dan 

74,2% ± 26,1%. Nilai mean yang meningkat seiring bertambahnya ukuran batch 

menunjukkan bahwa batch besar mampu menghasilkan estimasi gradien yang lebih 
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stabil, sedangkan simpangan baku yang masih relatif tinggi menunjukkan adanya 

variasi antarskenario akibat pengaruh variabel lain. 

Peningkatan sekitar 16 persen dari batch kecil ke batch besar 

memperlihatkan bahwa ukuran batch yang besar dapat membantu memperhalus 

gradien dan mengurangi fluktuasi loss selama pelatihan. Efek positif ini paling jelas 

terlihat pada skenario C dan F, yang mencapai F1-score di atas 90%. Penemuan ini 

konsisten dengan penelitian Goyal et al. (2017), yang menunjukkan bahwa large 

batch mampu meningkatkan stabilitas pelatihan dan mempercepat konvergensi jika 

dikombinasikan dengan pengaturan learning rate yang sesuai. 

Meskipun demikian, nilai simpangan baku yang masih tinggi menandakan 

bahwa ukuran batch besar tidak dapat sepenuhnya mengompensasi ketidakstabilan 

distribusi input atau absennya augmentasi dan normalisasi. Pada kelompok tanpa 

preprocessing yang memadai (misalnya skenario J–L), peningkatan batch size 

memang memperbaiki hasil, tetapi performanya tetap jauh di bawah kondisi 

optimal. Hal ini menegaskan bahwa ukuran batch besar hanya efektif jika 

diintegrasikan dengan augmentasi dan normalisasi yang aktif. 

 

4.3.2 Analisis Kuantitatif dan Kualitatif 

 Berdasarkan hasil rekapitulasi pada bagian sebelumnya, skenario C 

(augmentation aktif, normalization aktif, batch size 64) ditetapkan sebagai model 

dengan performa terbaik dan stabilitas konvergensi tertinggi. Untuk memahami 

kinerja model secara lebih mendalam, dilakukan dua bentuk analisis: kuantitatif 

(berdasarkan distribusi confusion matrix per kelas) dan kualitatif (berdasarkan 

visualisasi citra prediksi benar dan salah). Analisis ini bertujuan untuk menilai 
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kemampuan diskriminatif ConvNeXt-Tiny dalam mengenali karakteristik visual 

antar kelas endoskopi, serta mengidentifikasi pola kesalahan yang masih muncul 

pada hasil klasifikasi. 

 Analisis kuantitatif dilakukan dengan menghitung nilai precision, recall, 

F1-score, dan accuracy untuk masing-masing kelas berdasarkan confusion matrix 

pada Tabel 4.15. Nilai precision dihitung sebagai rasio prediksi benar terhadap 

seluruh prediksi kelas tersebut, sedangkan recall menggambarkan proporsi prediksi 

benar terhadap total data aktual pada kelas bersangkutan. Nilai F1-score merupakan 

harmonisasi antara precision dan recall, sementara accuracy dihitung sebagai rasio 

total prediksi benar terhadap keseluruhan citra uji. 

Tabel 4.15 Confusion matrix Model Terbaik (Skenario C) 

True \ Predicted Gerd Gerd Normal Polyp Polyp Normal 

Gerd 618 43 2 9 

Gerd Normal 37 721 0 10 

Polyp 12 11 526 22 

Polyp Normal 6 19 27 742 

 

Dari hasil perhitungan berbasis matriks di atas, diperoleh hasil sebagai 

berikut: 

Tabel 4.16 Hasil perhitungan metrik kuantitatif per kelas model ConvNeXt-Tiny (Skenario C). 

Kelas Accuracy Precision Recall F1-score 

GERD 

0.9294 

0.899 0.92 0.909 

GERD 

Normal 
0.912 0.931 0.921 

Polyp 0.932 0.931 0.931 

Polyp Normal 0.945 0.944 0.944 

 

 Nilai metrik per kelas pada Tabel 4.16 menunjukkan bahwa model memiliki 

performa yang relatif seimbang di seluruh kategori, dengan F1-score berada pada 

rentang 0.909–0.944 (atau 91%–94%). Kelas Polyp Normal menunjukkan nilai 
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tertinggi pada seluruh metrik, menandakan bahwa model paling mudah mengenali 

pola mukosa sehat dengan tekstur halus dan permukaan teratur. Sebaliknya, kelas 

GERD memiliki precision sedikit lebih rendah (0.899 atau 89.9%), yang 

menunjukkan masih terdapat kesalahan klasifikasi terhadap GERD Normal. Hal ini 

dapat dijelaskan oleh kemiripan visual pada kasus mild reflux, di mana dinding 

esofagus tampak hanya sedikit hiperemik tanpa ulserasi jelas. Meskipun demikian, 

tidak ditemukan indikasi bias ekstrem terhadap salah satu kelas, yang berarti model 

memiliki keseimbangan sensitivitas dan ketepatan yang baik (balanced sensitivity 

and specificity). 

 Analisis kualitatif dilakukan untuk mengamati secara visual hasil prediksi 

model terhadap citra endoskopi pada dua kelompok utama, yaitu GERD/GERD 

Normal dan Polyp/Polyp Normal, sebagaimana ditampilkan pada Gambar 4.16 dan 

Gambar 4.17. Masing-masing kelompok menampilkan beberapa contoh prediksi 

benar (true positive) dan salah (false prediction), yang membantu memahami pola 

keputusan model dan konteks kesalahan klasifikasinya. 
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Gambar 4.16 Contoh prediksi benar dan salah model ConvNeXt-Tiny pada citra GERD dan GERD 

Normal. 

 

 

Gambar 4.17 Contoh prediksi benar dan salah model ConvNeXt-Tiny pada citra Polyp dan Polyp 

Normal. 

 

 Mengacu pada Gambar 4.16, dapat diamati bahwa model mampu 

membedakan citra GERD aktif dari GERD Normal dengan cukup baik. Pada 
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prediksi benar, model tampaknya mengenali ciri khas patologis seperti adanya area 

hiperemia, erosi mukosa, dan refleksi mukosa tidak teratur di daerah distal 

esofagus. Sementara pada kasus kesalahan, citra GERD dengan inflamasi ringan 

cenderung diklasifikasikan sebagai GERD Normal karena tampilannya menyerupai 

mukosa sehat dengan perbedaan warna yang sangat tipis. Fenomena ini 

menegaskan bahwa batas diagnostik visual antara GERD ringan dan normal sangat 

halus bahkan bagi manusia, sehingga wajar bila model masih menunjukkan 

ambiguitas pada kondisi borderline tersebut. 

Sementara itu, pada Gambar 4.17, performa model dalam membedakan 

Polyp dan Polyp Normal juga tergolong baik. Citra polip umumnya dikenali 

berdasarkan pola elevasi mukosa, adanya lesi menonjol dengan tepi tidak rata, atau 

permukaan berwarna lebih terang akibat pembuluh darah superfisial. Prediksi salah 

umumnya terjadi pada citra kolon dengan lipatan mukosa besar atau refleksi cairan 

tinggi, yang menyebabkan struktur menyerupai tonjolan polip padahal bukan. 

Kesalahan minor ini menandakan bahwa model sensitif terhadap perbedaan 

topografi lokal, namun masih dapat terkecoh oleh artefak optik akibat pencahayaan 

dan sudut kamera. 

 

4.3.3 Sintesis dan Implikasi 

 Hasil penelitian ini menunjukkan bahwa penerapan ConvNeXt-Tiny sebagai 

arsitektur dasar klasifikasi citra endoskopi memberikan performa tinggi dan 

stabilitas pelatihan yang kompetitif dibandingkan CNN konvensional. Nilai F1-

score makro sebesar 0.9294 pada skenario C membuktikan bahwa desain 

modernized convolutional block dengan large kernel, efficient residual connection, 



89 

 

 

serta adaptive normalization mampu mengekstraksi fitur morfologis halus pada 

mukosa gastrointestinal. Kombinasi augmentation aktif, normalization aktif, dan 

batch besar memperkuat generalisasi model terhadap variasi citra uji yang 

kompleks. Secara ilmiah, hasil ini menegaskan pergeseran dari pendekatan 

handcrafted features menuju representasi otomatis berbasis deep learning. Berbeda 

dengan studi Jha et al. (2021) dan Cao et al. (2021) yang masih bergantung pada 

struktur CNN klasik, ConvNeXt dengan large kernel design dan Layer 

Normalization bergaya Transformer mampu menjembatani efisiensi CNN dengan 

kemampuan generalisasi ViT. 

Penelitian ini juga menegaskan relevansi ConvNeXt terhadap arah 

perkembangan terkini di bidang medical imaging. Chan et al. (2023) melaporkan 

F1-score 69,87% pada DenseNet dengan attention. Dalam konteks ini, ConvNeXt-

Tiny menjadi solusi kompromi ideal setara ViT dalam ketepatan klasifikasi, namun 

lebih efisien dan mudah diintegrasikan ke sistem CAD. Dibandingkan pendekatan 

hibrida seperti Li et al. (2023) dan Huan & Dun (2024), varian Tiny sudah cukup 

kuat mencapai akurasi klinis tanpa fusi arsitektur tambahan. Nilai F1-score di atas 

0.92 pada citra dengan pencahayaan tidak seragam menunjukkan efisiensi 

representasional yang baik, sejalan dengan Nergiz (2023). Dengan demikian, 

ConvNeXt dapat diposisikan sebagai benchmark baru dalam klasifikasi citra medis, 

menggabungkan efisiensi, presisi, serta potensi penerapan pada perangkat terbatas 

seperti embedded GPU atau sistem edge di fasilitas medis kecil. 
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4.3.4 Integrasi Sains dan Islam 

Perkembangan ilmu pengetahuan dan teknologi modern, termasuk 

penelitian ini yang mengimplementasikan deep learning untuk mendeteksi penyakit 

lambung dan usus, tidak dapat dipisahkan dari prinsip dasar Islam yang 

menempatkan ilmu sebagai sarana untuk mengenal dan mengabdi kepada Allah 

SWT. Dalam pandangan Islam, sains bukan sesuatu yang berdiri sendiri dan 

terpisah dari nilai moral dan spiritual. Sains merupakan bagian dari ibadah 

intelektual manusia untuk mewujudkan kemaslahatan. Oleh karena itu, integrasi 

sains dan Islam tidak hanya berarti menyandingkan ayat Al-Qur’an dengan teori 

ilmiah, tetapi juga menyatukan keduanya pada tingkat pemahaman. Hal ini 

mencakup keserasian antara ayat qauliyyah dan ayat kauniyyah. Landasan integrasi 

ini dapat ditemukan dalam firman Allah SWT pada Surah Al-Mā’idah [5]: 32: 

 

لِّكَ   اَجْلِّ  مِّنْ  ناَ ذ  ءِّيْلَ  بَنيِّْٰٓ  عَل ى كَتـَبـْ اَ الْاَرْضِّ  فِّ  فَسَاد   اوَْ  نَـفْس   بِّغَيْرِّ   ۢنَـفْسًا  قَـتَلَ  مَنْ  ؕ  انََّه اِّسْراَا عًا   النَّاسَ  قَـتَلَ  فَكَانمَّ جَِّيـْ  
آَٰ  اَحْياَهَا وَمَنْ  عًا   النَّاسَ  اَحْياَ فَكَانمَّ ءَتْْمُْ  وَلَقَدْ  جَِّيـْ لْبـَيِّن تِّ  رُسُلنُاَ جَاا هُمْ  كَثِّيْراً  اِّنَّ  ثَُّ  باِّ نـْ الْاَرْضِّ  فِّ  ذ لِّكَ  بَـعْدَ  مِّّ  

  لَمُسْرِّفُـوْنَ 
 

“Oleh karena itu, Kami menetapkan (suatu hukum) bagi Bani Israil bahwa siapa 

yang membunuh seseorang bukan karena (orang yang dibunuh itu) telah 

membunuh orang lain atau karena telah berbuat kerusakan di bumi, maka seakan-

akan dia telah membunuh semua manusia. Sebaliknya, siapa yang memelihara 

kehidupan seorang manusia, dia seakan-akan telah memelihara kehidupan semua 

manusia. Sungguh, rasul-rasul Kami benar-benar telah datang kepada mereka 

dengan (membawa) keterangan-keterangan yang jelas. Kemudian, sesungguhnya 

banyak di antara mereka setelah itu melampaui batas di bumi.” (QS. Al-Mā’idah 

[5]: 32) 

 

 

Ayat ini menunjukkan bahwa setiap usaha ilmiah yang bertujuan 

menyelamatkan kehidupan manusia memiliki nilai kemanusiaan yang tinggi. 
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Dalam penelitian ini, pengembangan sistem klasifikasi citra endoskopi berbasis 

kecerdasan buatan bertujuan membantu mempercepat dan mempermudah diagnosis 

penyakit lambung dan polip usus. Upaya ini secara langsung berhubungan dengan 

penyelamatan jiwa karena deteksi dini penyakit dapat meningkatkan peluang 

penanganan yang tepat. Tafsir Ibn Kathir (2000) menjelaskan bahwa siapa saja 

yang menjadi sebab tegaknya kehidupan seseorang, baik melalui pemberian 

makanan, penyelamatan dari kebinasaan, maupun pengobatan, maka ia 

mendapatkan pahala seakan-akan menyelamatkan seluruh manusia. Penjelasan ini 

memperlihatkan bahwa kedokteran, farmasi, dan teknologi medis termasuk bidang 

dengan nilai fardhu kifayah, yaitu kewajiban kolektif umat untuk menjamin 

kelangsungan hidup manusia. 

Dalam perspektif maqāshid al-syarī‘ah, seluruh aktivitas ilmiah yang 

mendorong kemaslahatan manusia bertujuan menjaga lima aspek utama kehidupan, 

yaitu agama (hifz al-dīn), jiwa (hifz al-nafs), akal (hifz al-‘aql), keturunan atau 

kehormatan (hifz al-nasl atau al-‘ird), dan harta (hifz al-māl). Penelitian ini 

berkaitan secara langsung dengan tujuan hifz al-nafs, yaitu perlindungan jiwa 

manusia melalui upaya pencegahan dan pengobatan penyakit. Dengan 

menghadirkan teknologi deteksi dini berbasis kecerdasan buatan untuk penyakit 

pencernaan, penelitian ini termasuk bentuk ikhtiar ilmiah untuk menjaga kesehatan 

dan keselamatan manusia sesuai dengan nilai-nilai syariah. Islam juga menekankan 

kewajiban pencarian ilmu. Nabi Muhammad SAW bersabda: 

سْلِم   ك ل ِ  عَلىَ فرَِيضَة   الْعِلْمِ  طَلَب   م   

“Menuntut ilmu itu wajib bagi setiap Muslim.” (HR. Ibn Mājah, no. 224, dinilai 

hasan oleh Al-Albānī dalam Ṣaḥīḥ Ibn Mājah) 
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Hadis ini menjadi dasar bahwa penelitian ilmiah, termasuk di bidang 

kedokteran dan teknologi, merupakan bagian dari kewajiban intelektual umat Islam. 

Menurut pandangan Al-Ghazali dalam kitab Iḥyā’ ‘Ulūm al-Dīn, ilmu yang 

membawa manfaat kepada masyarakat seperti kedokteran, pertanian, dan teknik 

termasuk kategori fardhu kifayah karena ilmu tersebut diperlukan untuk menjaga 

keberlangsungan hidup manusia. Dengan demikian, penelitian ini yang 

mengembangkan kecerdasan buatan untuk membantu diagnosis penyakit 

pencernaan merupakan penerapan nyata dari prinsip hifz al-nafs dalam maqāshid 

al-syarī‘ah. 

Teknologi yang dikembangkan tidak bertujuan menggantikan peran dokter. 

Teknologi ini berfungsi sebagai pendukung proses klinis dengan memberikan 

analisis objektif berbasis citra digital. Hal ini sejalan dengan sabda Nabi 

Muhammad SAW: 

دوََاء   لهَ   أنَْزَلَ  إلَِّ  داَء   اَللّ   أنَْزَلَ  مَا ... 

“Tidaklah Allah menurunkan suatu penyakit kecuali Dia menurunkan pula 

obatnya; orang yang mengetahuinya mengetahuinya, dan orang yang tidak 

mengetahuinya tidak mengetahuinya.” (HR. Muslim, no. 2204)' 

 

Hadis ini menunjukkan bahwa setiap penyakit memiliki solusi yang telah 

Allah tetapkan dalam hukum alam-Nya (sunnatullah). Tugas manusia sebagai 

khalīfah fī al-arḍ adalah berusaha menyingkap pengetahuan tersebut melalui riset 

dan eksperimen ilmiah. Oleh karena itu, penelitian berbasis machine learning di 

bidang medis seperti ini merupakan bagian dari upaya menemukan asbāb asy-syifā’ 
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yang diamanahkan kepada manusia untuk digali melalui akal dan ilmu 

pengetahuan. 

Integrasi sains dan Islam juga mengandung nilai etis yang harus dipegang 

dalam setiap langkah penelitian. Dalam Islam, ilmu tidak hanya bernilai karena 

manfaat praktisnya, tetapi juga karena cara dan niat di balik pencapaiannya. Allah 

SWT berfirman: 

ىِٕكَُٔ كَانَُٔ عَنْه ُٔ مَسْـ ُٔوْلّ  
 وَلَُٔ تقَْف ُٔ مَا لَيْسَُٔ لكََُٔ بهِ ُٔ عِلْم  ُٔ اِنَُّٔ السَّمْعَُٔ وَالْبَصَرَُٔ وَالْف ؤَادَُٔ ك ل ُٔ ا ول ٰۤ

 
 “Dan janganlah kamu mengikuti sesuatu yang kamu tidak mempunyai 

pengetahuan tentangnya. Sesungguhnya pendengaran, penglihatan, dan hati, 

semuanya itu akan diminta pertanggungjawabannya.” (QS. Al-Isrā’ [17]: 36) 

 

Ayat ini mengajarkan bahwa seorang peneliti tidak boleh menyampaikan 

kesimpulan tanpa bukti yang jelas. Dalam riset yang melibatkan data medis, hal ini 

berkaitan dengan kejujuran dalam pengumpulan data, validitas metode penelitian, 

penyajian hasil secara objektif, serta perlindungan privasi pasien. Nilai-nilai ini 

menjadi dasar bahwa penelitian harus dilakukan dengan amanah ilmiah dan 

kesadaran bahwa ilmu adalah titipan Allah yang harus digunakan untuk kebaikan, 

bukan untuk merugikan pihak lain. 

Dengan pemahaman tersebut, inovasi teknologi medis tidak hanya dinilai 

dari efektivitas algoritmanya, tetapi juga dari kontribusinya terhadap nilai-nilai 

kemanusiaan. Integrasi sains dan Islam dalam penelitian ini memperlihatkan bahwa 

ilmuwan Muslim dituntut untuk menggabungkan kecerdasan intelektual dengan 

kesadaran spiritual, sehingga ilmu pengetahuan kembali pada tujuannya, yaitu 

memberikan manfaat bagi seluruh manusia. 
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BAB V KESIMPULAN DAN SARAN 

BAB V 

KESIMPULAN DAN SARAN 

 

5.1 Kesimpulan 

Berdasarkan hasil penelitian dan analisis yang dilakukan, dapat disimpulkan 

bahwa penerapan arsitektur ConvNeXt-Tiny mampu menghasilkan model 

klasifikasi citra endoskopi yang efektif dan konsisten dalam mengidentifikasi dua 

kondisi utama saluran cerna, yaitu Gastroesophageal Reflux Disease (GERD) dan 

polip usus. Kinerja terbaik dicapai pada skenario C, yaitu konfigurasi dengan 

augmentation aktif, normalization aktif, serta batch size 64. Pada pengaturan 

tersebut, model memperoleh akurasi sebesar 92.94%, precision 93.04%, recall 

92.85%, dan F1-score 92.94%, yang menunjukkan keseimbangan sangat baik 

antara sensitivitas dan spesifisitas. 

Secara keseluruhan, kombinasi strategi augmentation dan normalization 

memberikan kontribusi paling besar terhadap peningkatan kemampuan generalisasi 

model. Augmentation membantu memperluas variasi data pelatihan sehingga model 

lebih mampu mengenali perbedaan bentuk dan tekstur mukosa, sementara 

normalization menjaga stabilitas gradien selama proses pelatihan. Selain itu, 

penggunaan batch yang lebih besar berperan dalam memperhalus estimasi gradien 

dan mempercepat proses konvergensi. Evaluasi kuantitatif menunjukkan performa 

yang merata di keempat kelas dengan F1-score berkisar antara 91–94%, sedangkan 

analisis kualitatif mengonfirmasi bahwa model dapat mengenali karakteristik visual 
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patologis seperti area hiperemia, tonjolan mukosa, serta tekstur abnormal secara 

akurat. 

 

5.2 Saran 

Berdasarkan hasil dan keterbatasan penelitian, beberapa saran untuk 

penelitian dan pengembangan selanjutnya adalah sebagai berikut: 

1. Perluasan dataset dan variasi kasus klinis 

Dataset yang digunakan dalam penelitian ini masih terbatas pada citra dari 

GastroEndoNet dengan dua kategori utama (GERD dan polip). Penelitian 

selanjutnya disarankan untuk menggunakan dataset multi-institusi yang 

lebih beragam, mencakup variasi kondisi seperti gastritis, ulserasi, atau 

kanker kolorektal lanjut agar model memiliki kemampuan generalisasi yang 

lebih luas. 

2. Perbandingan antar arsitektur modern  

Untuk memperkuat temuan performa ConvNeXt, penelitian berikutnya 

dapat membandingkan arsitektur ini dengan model-model lain seperti 

EfficientNetV2, Swin Transformer, atau Vision Transformer (ViT). Analisis 

perbandingan tersebut penting untuk menilai efisiensi komputasi, 

kompleksitas model, serta tingkat interpretabilitas yang paling sesuai untuk 

aplikasi klinis. 

3. Integrasi interpretabilitas model  

Penggunaan explainable AI (XAI) seperti Grad-CAM, Score-CAM, atau 

Layer-wise Relevance Propagation direkomendasikan untuk meningkatkan 

transparansi prediksi model, sehingga hasil klasifikasi dapat lebih mudah 
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diverifikasi oleh tenaga medis dan meningkatkan kepercayaan terhadap 

sistem diagnosis berbantuan AI. 

4. Optimasi pipeline pelatihan dan inference  

Penggunaan teknik seperti mixed precision training, adaptive 

augmentation, dan learning rate scheduling dapat meningkatkan efisiensi 

pelatihan. Selain itu, konversi model ke format ringan seperti TensorRT atau 

TFLite memungkinkan penerapan pada perangkat edge computing atau 

sistem endoskopi portabel. 

5. Integrasi ke sistem CAD klinis  

Sebagai arah pengembangan aplikatif, model ConvNeXt-Tiny dapat 

diintegrasikan ke dalam sistem Computer-Aided Diagnosis real-time untuk 

membantu dokter dalam mendeteksi lesi atau polip selama prosedur 

endoskopi. Tahap ini memerlukan pengujian lebih lanjut terhadap aspek 

latency, reliabilitas, dan user experience di lingkungan klinis nyata. 

Melalui pengembangan lanjutan tersebut, diharapkan hasil penelitian ini 

dapat berkontribusi pada peningkatan efektivitas pemeriksaan endoskopi, 

membantu deteksi dini penyakit gastrointestinal, serta mendukung transformasi 

digital dalam praktik medis modern yang berorientasi pada kemaslahatan dan 

peningkatan kualitas hidup manusia. 
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