
i

THALAMAN JUDUL

CHATBOT INFORMASI AKADEMIK TEKNIK INFORMATIKA

UIN MAULANA MALIK IBRAHIM MALANG BERBASIS

RETRIEVAL AUGMENTED GENERATION (RAG)

SKRIPSI

Oleh :

WAFIY ANWARUL HIKAM

NIM. 220605110022

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM

MALANG

2025

ii

HALAMAN PENGAJUAN

CHATBOT INFORMASI AKADEMIK TEKNIK INFORMATIKA

UIN MAULANA MALIK IBRAHIM MALANG BERBASIS

RETRIEVAL AUGMENTED GENERATION (RAG)

SKRIPSI

Diajukan kepada:

Universitas Islam Negeri Maulana Malik Ibrahim Malang

Untuk memenuhi Salah Satu Persyaratan dalam

Memperoleh Gelar Sarjana Komputer (S.Kom)

Oleh :

WAFIY ANWARUL HIKAM

NIM. 220605110022

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM

MALANG

2025

vi

MOTTO

“Jadilah Mata Air Bersih Yang Mengalir”

“Janganlah Menjadi Air Kotor Yang Menggenang”

vii

HALAMAN PERSEMBAHAN

Dengan penuh rasa syukur, karya ini penulis persembahkan kepada:

Ayah dan Ibu tercinta dan adik penulis

Yang senantiasa mendukung, mendoakan, dan memberikan kasih sayang

tanpa batas serta selalu menjadi motivasi terbesar penulis.

Keluarga besar

Atas dukungan dan doa yang selalu mengiringi langkah penulis.

Dosen Pembimbing dan Seluruh Pengajar

Yang telah membimbing serta memberikan ilmu yang bermanfaat.

Teman-teman Infinity Teknik Informatika 2022

Yang selalu menemani perjalanan belajar di bangku perkuliahan ini dengan

penuh cerita, kebersamaan, semangat, dan optimisme.

Dan terakhir, untuk diri penulis sendiri

Yang telah berusaha dan bertahan sampai sejauh ini, semoga bahu ini semakin

dikuatkan untuk terus melangkah maju tanpa ragu.

viii

KATA PENGANTAR

Bismillahirrahmaanirrahiim, Assalamu’alaikum Warahmatullahi

Wabarakatuh. Alhamdulillahirabbil'alamin, segala puji bagi Allah SWT yang telah

melimpahkan rahmat, nikmat, serta hidayah-Nya, sehingga pada kesempatan kali

ini penulis mampu menyelesaikan skripsi yang berjudul “Chatbot Informasi

Akademik Teknik Informatika UIN Maulana Malik Ibrahim Malang Berbasis

Retrieval Augmented Generation” dengan baik dan lancar. Shalawat serta salam

senantiasa penulis lafalkan kepada junjungan kekasih Allah yakni Nabi Agung

Muhammad SAW., yang telah menjadi teladan mulia bagi seluruh umat manusia,

membawa kita semua dari zaman jahiliyyah menuju zaman kebenaran,

sempurnanya agama Islam, dan zaman yang penuh ilmu pengetahuan sehingga

dapat kita nikmati manfaatnya hingga saat ini.

Skripsi ini penulis susun dalam rangka memenuhi salah satu syarat

kelulusan untuk memperoleh gelar Sarjana Komputer pada Program Studi Teknik

Informatika, Fakultas Sains dan Teknologi, UIN Maulana Malik Ibrahim Malang.

Selama proses penyusunan skripsi ini, penulis banyak sekali mendapatkan

dukungan, bantuan, serta doa dari berbagai pihak. Maka dari itu, pada halaman ini

penulis ingin menyampaikan rasa terima kasih yang sebesar-besarnya kepada:

1. Prof. Dr. Hj. Ilfi Nur Diana, M.Si., CAHRM., CRMP,, selaku Rektor

Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang.

2. Prof. Dr. Sri Harini, M.Si., selaku Dekan Fakultas Sains dan Teknologi UIN

Maulana Malik Ibrahim Malang.

ix

3. Supriyono, M.Kom, selaku Ketua Program Studi Teknik Informatika UIN

Maulana Malik Ibrahim Malang, sekaligus ketua penguji yang turut

memberikan arahan dan kritik serta sarannya terhadap skripsi ini.

4. Dr. Totok Chamidy, M.Kom., selaku Dosen Pembimbing I, yang selalu

dengan sabar membimbing dan mengarahkan penulis selama penyusunan

skripsi ini.

5. Dr. Muhammad Ainul Yaqin, M.Kom., selaku Dosen Pembimbing II, yang

juga senantiasa memberikan arahan dan masukan dalam pengerjaan skripsi

ini.

6. Fajar Rohman Hariri, M.Kom., selaku Anggota Penguji 1 yang telah

memberikan kritik, saran konstruktif, dan bimbingan untuk

menyempurnakan skripsi ini.

7. Nia Faricha, S.Si., selaku admin Program Studi Teknik Informatika, yang

turut membantu penulis dalam urusan administrasi dan selalu mengingatkan

tentang kelengkapan berkas.

8. Bapak Wido Nugroho dan Ibu Faridatul Khuriyah, orang tua tercinta, serta

Taufiq Luthfi Nurrohim, adik penulis, yang terus menjadi sumber kekuatan

dengan doa, cinta, dan dukungan tanpa henti.

9. Teman-teman Boejank Abangan, Ridho, Faqih, Fahrizal yang telah menjadi

tempat diskusi bersama berbagi cerita suka dan duka serta salah satu support

system penulis.

10. Teman-teman Kopstud dan Sobat Lab Intelligent System, Uqie, Arif, Ridi,

dan Radifan yang turut menjadi support system penulis juga selama

x

menghadapi berbagai kondisi mengerjakan skripsi serta tempat berbagi

cerita dan motivasi.

11. Teman-teman IFL Malang, khususnya teman-teman Departemen CDSI

Bintang, Keysha dan lainnya beserta teman-teman Divisi Sistem Informasi

Zul, Tika, Akin, Anggi yang juga turut berperan menjadi penyemangat dan

tempat penulis tumbuh dan belajar serta saling mendukung satu sama lain.

12. Teman-teman Sekamar Mabna Ibn-Rusyd Nomor 2 yang telah memberikan

kebersamaan dan cerita suka duka di awal masa perkuliahan.

13. Teman-teman KKM Desa Sukomulyo yang turut memberikan pengalaman

nyata dalam pengabdian kepada masyarakat dan ruang bagi penulis bisa

mengabdikan diri.

14. Seluruh keluarga besar, teman, sahabat, dan kerabat penulis yang tidak

dapat penulis sebutkan satu per satu, yang turut memberikan bantuan,

semangat, dukungan, dan doa untuk penulis.

15. Terakhir tidak lupa terimakasih kepada diri penulis, yang sudah mau dan

mampu melangkah hingga sejauh ini dengan tekad yang kuat sehingga

setiap tantangan dan kesulitan dapat dilalui dengan baik pada perjalanan ini.

Penulis menyadari bahwa penelitian dalam tugas skripsi ini masih jauh dari

kata sempurna dan terdapat banyak keterbatasan. Maka dari itu, dengan penuh

kerendahan hati, penulis membuka diri untuk menerima kritik dan saran yang

membangun dari para pembaca guna menjadi bahan evaluasi dan pengembangan di

masa mendatang. Penelitian ini juga memiliki potensi untuk dilanjutkan dan

dikembangkan lebih jauh dalam penelitian berikutnya, sehingga dapat melengkapi

xi

kekurangan yang ada. Harapan penulis, karya ini di masa mendatang dapat

memberikan kontribusi positif bagi masyarakat secara luas dan tidak berhenti

sebatas memberikan manfaat bagi pembaca saja.

Wassalamu’alaikum Warahmatullahi Wabarakatuh. Assalamu’alaikum

Warahmatullahi Wabarakatuh.

Malang, 22 Desember 2025

 Penulis

xii

DAFTAR ISI

HALAMAN JUDUL .. i
HALAMAN PENGAJUAN .. ii
HALAMAN PERSETUJUAN... iii
HALAMAN PENGESAHAN .. iv
PERNYATAAN KEASLIAN TULISAN ... v
MOTTO ... vi
HALAMAN PERSEMBAHAN.. vii
KATA PENGANTAR .. viii
DAFTAR ISI .. xii
DAFTAR GAMBAR .. xiv
DAFTAR TABEL... xv
ABSTRAK ... xvii
ABSTRACT .. xviii
 xix ... البحث مستخلص
BAB I PENDAHULUAN .. 1
1.1 Latar Belakang .. 1
1.2 Rumusan Masalah ... 7
1.3 Batasan Masalah.. 7
1.4 Tujuan Penelitian .. 7
1.5 Manfaat Penelitian .. 8
BAB II STUDI PUSTAKA ... 9
2.1 Penelitian Terkait .. 9
2.2 Landasan Teori .. 12
2.3 Kerangka Pemikiran .. 28
BAB III DESAIN DAN IMPLEMENTASI .. 31
3.1 Desain Penelitian ... 31
3.2 Pengumpulan Data .. 32
3.3 Desain Sistem .. 34
3.4 Implementasi Sistem ... 50
3.5 Skenario Pengujian.. 54

3.5.1 Pengujian Retrieval ... 54
3.5.2 Pengujian Generation ... 58

BAB IV HASIL DAN PEMBAHASAN.. 62
4.1 Hasil .. 62

4.1.1 Arsitektur & Antarmuka Klien (Front-end) ... 62
4.1.2 Arsitektur & Organisasi Kode RAG (Back-end) 63
4.1.3 Hasil Web Scraping dan Pembentukan Dataset 64
4.1.4 Hasil Preprocessing .. 67
4.1.5 Hasil Embedding dan Indexing ... 73
4.1.6 Contoh Hasil Retrieval.. 79
4.1.7 Contoh Hasil Generation .. 83

4.2 Skenario Pengujian .. 88
4.2.1 Hasil Skenario Pengujian Retrieval .. 90

xiii

4.2.2 Hasil Skenario Pengujian Generation... 102
4.2.3 Hasil Pengujian Konsistensi Output dengan Query Berulang 112
4.2.4 Contoh Perhitungan Tahap Retrieval Pada RAG 115
4.2.5 Contoh Perhitungan Tahap Generation Pada RAG 120

4.3 Analisis Hasil .. 129
4.3.1 Analisis Komparatif Retrieval vs Generation 129
4.3.2 Analisis Performa Retrieval .. 132
4.3.3 Analisis Performa Generation .. 133
4.3.4 Analisis Keterkaitan Retrieval dan Generation 134
4.3.5 Limitasi dan Tantangan Generation ... 135
4.3.6 Implikasi Penggunaan Model Kecil (TinyLlama 1.1B)...................... 137

4.4 Integrasi Islam dan Maqasid Syariah .. 138
4.2.6 Hifz al-‘Aql (Menjaga dan Mengoptimalkan Akal) 138
4.2.7 Hifz al-‘Ilm (Menjaga Ilmu dan Keaslian Informasi) 139
4.2.8 Hifz al-Nafs (Menjaga Kenyamanan, Ketenangan, dan Kesiapan

Mahasiswa) ... 141
4.2.9 Hifz al-Din (Integritas, Kejujuran, dan Etika Teknologi) 141

BAB V KESIMPULAN DAN SARAN .. 145
5.1 Kesimpulan ... 145
5.2 Saran .. 147
DAFTAR PUSTAKA
LAMPIRAN-LAMPIRAN

xiv

DAFTAR GAMBAR

Gambar 2.1 Kerangka Pemikiran Penelitian ... 29
Gambar 3.1 Desain Penelitian ... 31
Gambar 3.2 Alur Desain Sistem.. 34
Gambar 3.3 Alur Web Scraping .. 35
Gambar 3.4 Alur Tahap Preprocessing .. 36
Gambar 3.5 Alur Tahap Text Embedding ... 40
Gambar 3.6 Alur Tahap Vector Indexing .. 42
Gambar 3.7 Alur Tahap First Stage Retrieval .. 46
Gambar 3.8 Alur Tahap Reranking ... 47
Gambar 3.9 Alur Tahap Generation ... 48
Gambar 3.10 Skema Implementasi Desain Utama Sistem Chatbot RAG 51
Gambar 4.1 Antarmuka Chatbot Akademik (mode gelap) 63
Gambar 4.3 Sebaran embedding (PCA 2D) – kluster kasar per tema halaman 77
Gambar 4.4 Sebaran embedding (t-SNE 2D) – pemisahan non-linier antar

kelompok ... 78
Gambar 4.5 Sebaran embedding (UMAP 2D) – struktur manifold yang lebih

terjaga .. 79
Gambar 4.8 Perbandingan Performa Generation Per Kategori Query 109
Gambar 4.9 Heatmap Performa Generation Per Kategori Query 110
Gambar 4.10 Perbandingan Performa Metrik ... 111
Gambar 4.11 Perbandingan Rata-Rata Global & Per Category (Generation) ... 112

xv

DAFTAR TABEL

Tabel 2.1 Alur Umum Retrieval-Augmented Generation RAG 22
Tabel 3.1 Tampilan Beberapa Halaman Website Prodi yang dilakukan web

scraping ... 33
Tabel 3.2 Ilustrasi Pembagian Chunk dan Cakupan Token 38
Tabel 3.3 Ilustrasi Vektor Pendek Proses Embedding .. 41
Tabel 3.4 Alur Pemetaan Indeks ke FAISS .. 43
Tabel 3.5 Alur Teknis Build Time Indeksasi Vektor ke FAISS 44
Tabel 3.6 Alur Teknis Vector Index Searching pada FAISS 44
Tabel 3.7 Catatan Penting Tipe Indeks FAISS ... 45
Tabel 3.8 Keterangan Rumus BM25 ... 47
Tabel 3.9 Template Prompt dan Konfigurasi LLM .. 49
Tabel 3.10 Spesifikasi Perangkat Lunak yang digunakan 51
Tabel 3.11 Penjelasan Proses Inti RAG .. 53
Tabel 4.1 Struktur berkas (root front-end) .. 62
Tabel 4.2 Struktur Proyek RAG (back-end) ... 63
Tabel 4.3 Kode Python Untuk Menjalanan Scraping ... 65
Tabel 4.4 Total Data Terkumpul Sementara ... 65
Tabel 4.5 Contoh Data Dosen Hasil Scraping .. 66
Tabel 4.6 Contoh Hasil Penghapusan Tag HTML .. 67
Tabel 4.7 Contoh Hasil Normalisasi whitespace .. 68
Tabel 4.8 Contoh Hasil Penghapusan Karakter Noise .. 68
Tabel 4.9 Contoh Hasil Filtering Blok ... 69
Tabel 4.10 Aturan Normalisasi per Level ... 69
Tabel 4.11 Contoh Normalisasi Nyata (Sebelum & Sesudah) 71
Tabel 4.12 Statistik Hasil Proses Chunking .. 71
Tabel 4.13 Contoh Metadata Hasil Chunking ... 72
Tabel 4.14 Contoh Hasil Chunking ... 72
Tabel 4.15 Konfigurasi Embedding .. 74
Tabel 4.16 Contoh Metadata Chunk dari chunks_meta.json 75
Tabel 4.17 Ringkasan Hasil Embedding ... 76
Tabel 4.18 Contoh Hasil Retrieval .. 80
Tabel 4.19 Endpoint Pengujian Retrieval ... 81
Tabel 4.20 Hasil Retrieve untuk Kueri “jadwal perkuliahan teknik informatika .. 82
Tabel 4.21 Konfigurasi Model LLM untuk Tahap Generation 83
Tabel 4.22 Prompt Untuk Sistem dan User .. 84
Tabel 4.23 Isi Blok Konteks Dokumen ... 84
Tabel 4.24 Contoh Hasil Uji Tahap Generation ... 85
Tabel 4.25 Endpoint Pengujian Generation .. 86
Tabel 4.26 Susunan isi JSON Generation Reponse .. 87
Tabel 4.27 Evaluasi Kualitatif Hasil Generation untuk Kueri “apa itu komunitas

fun java?” .. 87
Tabel 4.28 Detail Skenario Pengujian Retrieval ... 90
Tabel 4.29 Hasil Evaluasi Retrieval Global (Skenario 7) 91

xvi

Tabel 4.30 Hasil Evaluasi Retrieval Per Kategori (Skenario 1-6) k=3 93
Tabel 4.31 Hasil Evaluasi Retrieval Per Kategori (Skenario 1-6) k=5 94
Tabel 4.32 Hasil Evaluasi Retrieval Per Kategori (Skenario 1-6) k=10 95
Tabel 4.33 Hasil Evaluasi Generation Global .. 102
Tabel 4.34 Hasil Evaluasi Generation Per Kategori (Skenario 1-6) 104
Tabel 4.35 Hasil Pengujian Konsistensi Output dengan Query Berulang 113
Tabel 4.36 Perbandingan Performa Retrieval (NDCG@5) vs Generation

(Semantic Similarity) ... 129

xvii

ABSTRAK

Anwarul Hikam, Wafiy. 2025. Chatbot Informasi Akademik Teknik Informatika

UIN Maulana Malik Ibrahim Malang Berbasis Retrieval Augmented

Generation (RAG). Skripsi. Jurusan Teknik Informatika Fakultas Sains

dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang.

Pembimbing: (I) Dr. Totok Chamidy, M.Kom (II) Dr. Muhammad Ainul

Yaqin, M.Kom.

Kata kunci: chatbot, Retrieval-Augmented Generation, RAG, informasi akademik,

TinyLlama, FAISS, BM25.

Aksesibilitas informasi akademik merupakan tantangan di institusi

pendidikan tinggi karena mahasiswa kesulitan menemukan informasi terkini

mengenai kurikulum, dosen, dan kebijakan akademik yang tersebar di berbagai

platform. Penelitian ini bertujuan merancang dan mengimplementasikan sistem

chatbot berbasis Retrieval-Augmented Generation (RAG) untuk layanan informasi

akademik Prodi Teknik Informatika UIN Malang, serta menganalisis kinerjanya

dalam memberikan respons akurat dan kontekstual. Metode penelitian

menggunakan pendekatan Research and Development dengan tahapan:

pengumpulan data melalui ekstraksi otomatis 350 halaman menghasilkan 384

potongan dokumen, pembangunan sistem pencarian gabungan FAISS dan BM25,

implementasi pembangkit jawaban menggunakan TinyLlama 1.1B, serta evaluasi

menggunakan 60 pertanyaan dengan ukuran kinerja pencarian dan pembangkitan

jawaban. Hasil menunjukkan pencarian mencatat nilai kualitas peringkat 0.258 dan

tingkat penemuan 1.028 dengan kinerja terbaik pada pertanyaan acak (0.68),

sedangkan pembangkit jawaban mencatat kemiripan semantik 0.381 dan kesetiaan

dokumen 0.549 dengan kinerja optimal pada pertanyaan 5+ kata (0.472). Pengujian

konsistensi dengan mengulang pertanyaan sama 5 kali menghasilkan variasi nol,

memvalidasi mekanisme pengaman berhasil mengatasi ketidakkonsistenan.

Keterbatasan meliputi pengulangan kalimat dan kebocoran template yang

dimitigasi melalui penyaringan pasca-pemrosesan. Sistem beroperasi mandiri

dengan sumber daya minimal, membuktikan kelayakan penerapan di institusi

pendidikan dengan anggaran terbatas.

xviii

ABSTRACT

Anwarul Hikam, Wafiy. 2025. Chatbot Informasi Akademik Teknik Informatika

UIN Maulana Malik Ibrahim Malang Berbasis Retrieval Augmented

Generation (RAG). Skripsi. Jurusan Teknik Informatika Fakultas Sains

dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang.

Promotor: (I) Dr. Totok Chamidy, M.Kom (II) Dr. Muhammad Ainul

Yaqin, M.Kom.

Academic information accessibility poses a challenge in higher education

institutions as students struggle to find up-to-date information regarding

curriculum, faculty, and academic policies scattered across various platforms. This

research aims to design and implement a Retrieval-Augmented Generation (RAG)

based chatbot system for academic information services at the Informatics

Engineering Study Program UIN Malang, and to analyze its performance in

delivering accurate and contextual responses. The research employs a Research and

Development approach with stages: data collection through automatic extraction of

350 pages yielding 384 document chunks, construction of hybrid retrieval system

using FAISS and BM25, generation implementation using TinyLlama 1.1B, and

evaluation using 60 queries with retrieval and generation performance metrics.

Results show retrieval achieved ranking quality of 0.258 and discovery rate of 1.028

with optimal performance on scrambled queries (0.68), while generation recorded

semantic similarity of 0.381 and document faithfulness of 0.549 with optimal

performance on 5+ word queries (0.472). Consistency testing with 5 repetitions of

the same query yielded zero variation, validating that guardrail mechanisms

successfully addressed inconsistencies. Limitations include sentence repetitions

and template leakage mitigated through post-processing filtering. The system

operates self-hosted with minimal resources, proving deployment feasibility in

educational institutions with limited budgets.

Key words: chatbot, Retrieval-Augmented Generation, academic information,

TinyLlama, FAISS, BM25.

xix

 البحث مستخلص

برنامج المحادثة الآلي للمعلومات الأكاديمية لقسم هندسة المعلوماتية بجامعة مولانا مالك إبراهيم .٢٠٢٥ أنوار الحكم، وافي.
بالاسترجاع المعزز التوليد على القائم بمالانج الحكومية الجامعي .(RAG) الإسلامية هندسة .البحث قسم

المشرف إبراهيم الإسلامية الحكومية بمالانج. مالك مولانا والتكنولوجيا، جامعة العلوم)الأول(المعلوماتية، كلية :
 .الدكتور توتوك تشاميدي الماجستير)الثاني(الدكتور محمد عين اليقين الماجستير

برنامج المحادثة الآلي الكلمات المفتاحية: (Chatbot)التوليد المعزز بالاسترجاع ، (RAG) المعلومات ،

 .TinyLlama ،FAISS ،BM25الأكاديمية،

الطلاب صعوبات في العثور على تمثل إمكانية الوصول إلى المعلومات الأكاديمية تحديًا في مؤسسات التعليم العالي، حيث يواجه
علومات الحديثة المتعلقة بالمناهج الدراسية وأعضاء هيئة التدريس والسياسات الأكاديمية المتناثرة عبر منصات مختلفة. يهدف الم

 (RAG) القائم على تقنية التوليد المعزز بالاسترجاع (Chatbot) "هذا البحث إلى تصميم وتنفيذ نظام "روبوت الدردشة
لخدمات المعلومات الأكاديمية في قسم هندسة المعلوماتية بجامعة مولانا مالك إبراهيم بمالانج، بالإضافة إلى تحليل أدائه في تقديم
عبر مراحل متعددة: جمع البيانات من (R&D) استجابات دقيقة وسياقية. تستخدم هذه الدراسة منهج البحث والتطوير

جزءاا من الوثائق، وبناء نظام استرجاع هجين يجمع بين 384صفحة مما أنتج 350خلال الاستخراج التلقائي لـ FAISS و
BM25وتنفيذ التوليد باستخدام نموذج ، TinyLlama 1.1B استعلاماا مع مقاييس أداء 60، وأخيراا التقييم باستخدام
 0.258بلغت (Ranking Quality) الاسترجاع والتوليد. أظهرت النتائج أن عملية الاسترجاع سجلت جودة ترتيب
. بينما سجل (0.68)مع أداء أفضل في الاستعلامات العشوائية 1.028بلغ (Discovery Rate) ومعدل اكتشاف
وموثوقية الوثائق 0.381بنسبة (Semantic Similarity) التوليد تشابهاا دلالياا (Document Faithfulness)

. أثبت اختبار الاتساق بتكرار نفس السؤال (0.472)كلمات 5، مع أداء أمثل في الاستعلامات التي تزيد عن 0.549بنسبة
مرات عدم وجود أي تباين، مما يؤكد نجاح آليات الحماية في معالجة عدم الاتساق. وتشمل القيود تكرار الجمل وتسرب 5

بموارد (Self-hosted) القوالب التي تم التخفيف من حدتها من خلال التصفية بعد المعالجة. يعمل النظام بشكل مستقل
جدوى تطبيقه في المؤسسات التعليمية ذات الميزانيات المحدودة قليلة، مما يثبت .

1

BAB I

PENDAHULUAN

1.1 Latar Belakang

Era transformasi digital berlangsung sangat cepat dan telah mengubah

paradigma akses informasi di lingkungan perguruan tinggi tanpa terkecuali mulai

dari lingkup paling luas di universitas, fakultas hingga program studi. Program

Studi Teknik Informatika UIN Maulana Malik Ibrahim Malang sebagai salah satu

program studi unggul telah menyediakan website resmi (https://informatika.uin-

malang.ac.id/) sebagai portal informasi akademik yang komprehensif. Website

tersebut memuat berbagai informasi penting meliputi profil program studi,

kurikulum, informasi dosen, kelompok keilmuan, prosedur akademik, hingga

panduan skripsi, dan PKL. Meski demikian, berdasarkan observasi awal, masih

terdapat gap antara ketersediaan informasi dengan tingkat pemanfaatannya oleh

para pengguna khususnya mahasiswa.

Permasalahan yang sering muncul adalah mahasiswa cenderung mengalami

kesulitan dalam menemukan informasi spesifik yang mereka butuhkan di website

program studi. Hal ini disebabkan oleh beberapa faktor, pertama struktur navigasi

website yang memerlukan eksplorasi manual, kedua informasi yang tersebar di

berbagai halaman berbeda, terakhir belum adanya mekanisme interaktif untuk

membantu mahasiswa menemukan informasi dengan cepat. Sehingga, mahasiswa

lebih memilih untuk bertanya langsung baik kepada teman seangkatannya yang

terkadang harus menjelaskan ulang maupun kepada admin program studi, yang

tentunya memiliki keterbatasan waktu dan sumber daya dalam melayani pertanyaan

2

repetitif dari para mahasiswa. Kondisi ini menuntut sistem bantu yang interaktif,

adaptif, dan kontekstual.

Di sisi global, Labadze et al. (2024) melakukan kajian sistematis terhadap

67 penelitian internasional yang menunjukkan bahwa sistem interaktif chatbot AI

membantu dalam akses cepat terhadap informasi akademik, personalisasi belajar,

dan efisiensi interaksi dengan dosen. Di lain sisi, berdasarkan survei terhadap 5.894

mahasiswa universitas di Swedia, ditemukan bahwa lebih dari 55% memiliki sikap

positif terhadap penggunaan chatbot AI, dan sekitar 35% sudah menggunakan

ChatGPT secara rutin untuk kegiatan akademik (Stohr et al., 2024). Dan tren global

saat ini menunjukkan adanya peningkatan signifikan penggunaan chatbot generatif

di perguruan tinggi sejak 2023, menandakan pergeseran menuju sistem informasi

akademik yang lebih interaktif (Mcgrath et al., 2025). Fakta-fakta tersebut

memperkuat relevansi penelitian ini yang berfokus pada pengembangan chatbot

akademik di era transformasi digital pendidikan tinggi.

Dalam perspektif Islam, akses terhadap ilmu yang mudah dan tertata adalah

nilai yang dijunjung. Allah memerintahkan kepada kita di dalam Al-Qur’an untuk

“membaca” sebagai jalan pembuka ilmu:

نْسَانَ مِنْ عَلَق َۚ ١اِقْ رَأْ بِِسْمِ ربَِ كَ الَّذِيْ خَلَقََۚ ١اِقْ رَأْ بِِسْمِ ربَِ كَ الَّذِيْ خَلَقََۚ ُۙ ٢خَلَقَ الِْْ
 ٣اِقْ رَأْ وَربَُّكَ الْْكَْرَم

نْسَانَ مَا لََْ يَ عْلَمْْۗ ٤الَّذِيْ عَلَّمَ بِِلْقَلَمُِۙ ٥عَلَّمَ الِْْ

“Bacalah dengan (menyebut) nama Tuhanmu yang menciptakan! Dia menciptakan

manusia dari segumpal darah. Bacalah! Tuhanmulah Yang Maha Mulia, yang

mengajar (manusia) dengan pena. Dia mengajarkan manusia apa yang tidak

diketahuinya” (QS Al-‘Alaq 96: 1 – 5).

3

Dari rangkaian ayat 1 sampai 5 pada Al-Qur’an surah Al-‘Alaq tersebut

Allah menegaskan bahwa “Allah mengajarkan kepada manusia apa yang tidak

diketahui”. Menurut tafsir tahlili NU Online juga dijelaskan bahwa Allah memberi

kemampuan kepada manusia untuk bisa menggunakan alat tulis untuk menuliskan

temuannya sehingga dapat dibaca oleh orang lain dan generasi berikutnya. Hal ini

semakin memperkuat kondisi bahwa Allah sangat mendorong manusia untuk

memaksimalkan sarana penyampaian ilmu demi kemajuan pengetahuan dan

sekaligus membuktikan bahwa integrasi yang terdapat pada ayat tersebut relevan

dengan konteks penelitian ini yang mencoba menghadirkan layanan teknologi

informasi berupa chatbot untuk memudahkan para mahasiswa dalam mengakses

pengetahuan akademik secara tepat dan cepat.

Al-Qur’an juga menegaskan pentingnya medium bahasa yang dapat

dipahami manusia. Pada Surah Yusuf ayat 2, Allah berfirman:

 إِنََّّ أنَْ زَلْنَاه ق رْآنَّا عَرَبيًِّا لَعَلَّك مْ تَ عْقِل ونَ

“Sesungguhnya Kami menurunkannya berupa Al-Qur’an berbahasa Arab agar

kamu memahaminya.” (QS. Yūsuf 12: 2).

Dikutip dari Tafsir Tahlili NU Online, ayat ini menekankan bahwa ilmu

pengetahuan disampaikan dengan bahasa yang dapat dimengerti. Penelitian ini

mengambil spirit tersebut, dimana sistem harus dapat “memahami” pertanyaan

manusia lalu menyajikan jawaban yang bisa dipahami kembali oleh manusia. Dari

sisi teknis, prinsip tersebut diwujudkan melalui proses NLP (Natural Language

Processing) yaitu teknik yang memetakan bahasa alami ke bentuk terstruktur

4

(embedding) sehingga komputer dapat memprosesnya, dan kemudian

mengembalikan informasi yang jelas, terarah, dan sesuai konteks institusional.

Di samping itu, Islam juga menekankan pentingnya menjaga kebenaran

informasi. Allah sendiri berfirman di dalam Al-Qur’an seperti berikut:

وْا قَ وْمااٌۢ بَِهَالَة فَ ت ب بنَِ بَا فَ تَ بَ ي َّن واْا اَنْ ت صِي ْ
ٌۢ
يَ ُّهَا الَّذِيْنَ آمَن واْا اِنْ جَاۤءكَ مْ فاَسِق صْبِح وْا عَلٓى مَا فَ عَلْت مْ نٓدِمِيَْْ يٰآ

“Wahai orang-orang yang beriman, jika seorang fasik datang kepadamu membawa

berita penting, maka telitilah kebenarannya agar kamu tidak mencelakakan suatu

kaum karena ketidaktahuan(-mu) yang berakibat kamu menyesali perbuatanmu

itu”. (QS Al-Ḥujurāt 49: 6).

Dikutip dari tafsir tahlili NU Online juga dijelaskan bahwa pada ayat ini

Allah memberikan pedoman bagi kaum mukmin untuk senantiasa berhati-hati

dalam menerima berita dan juga mengecek kebenarannya terlebih dulu sebelum

sebelum meyakini berita yang disampaikan. Prinsip tabayyun inilah yang menjadi

landasan normatif untuk memastikan jawaban yang disajikan bersumber dari

sumber yang benar, nyata, dan tidak menyesatkan. Pada konteks chatbot, prinsip

tabayyun ini diterapkan dengan melandaskan setiap jawaban yang dihasilkan tetap

pada koridor dan konteks sumber institusional yang sah serta terverifikasi. Dua

dasar yaitu akses terhadap ilmu dan verifikasi kebenaran inilah yang menjadi

pijakan integrasi Islam dalam penelitian ini.

Untuk dapat memenuhi kebutuhan penyediaan informasi akademik dengan

mekanisme interaktif dan tetap berpijak pada kedua dasar utama prinsip Islam

(menyampaikan ilmu dan tabayyun), maka diperlukan teknologi yang cerdas. Di

sinilah peran teknologi Artificial Intelligence (AI) yang saat ini berkembang pesat,

khususnya Natural Language Processing (NLP) hadir. Dimana dengan kehadiran

5

teknologi cerdas tersebut nantinya akan memudahkan potensi terciptanya sistem

interaktif tadi yaitu dengan mengimplementasikan pengembangan chatbot cerdas.

Chatbot sendiri banyak jenisnya, salah satunya adalah chatbot konvensional

rule-based. Chatbot jenis ini memang dapat digunakan, akan tetapi memiliki

keterbatasan dalam memahami konteks dan menghasilkan respons yang natural.

Sementara itu, model bahasa besar (Large Language Model/LLM) seperti GPT,

Claude, dan Gemini mampu memberikan pemahaman bahasa yang lebih baik,

meski demikian LLM ini masih menghadapi tantangan berupa halusinasi, yakni

menghasilkan jawaban yang terlihat sangat meyakinkan padahal tidak akurat atau

tidak sesuai dengan konteks kebutuhan institusi. Disinilah letak tantangannya.

Bagaimana kemungkinan timbulnya halusinasi dari jawaban yang dihasilkan

chatbot tersebut dapat diminimalisir bahkan dicegah, sehingga respon yang

dihasilkan akan tetap bersandar pada dua nilai islam yang sudah dibahas pada

paragraf sebelumnya dan akurat sesuai informasi resmi dari institusi yang

menggunakan.

Maka dari itu, Retrieval-Augmented Generation (RAG) di sini dihadirkan.

RAG hadir sebagai solusi yang dapat menggabungkan kekuatan LLM dengan

akurasi informasi yang bersumber dari knowledge base lokal. Teknologi RAG

memungkinkan chatbot untuk mengambil informasi relevan dari basis data vektor

yang berisi embedding dari konten website prodi, kemudian menggunakan

informasi tersebut sebagai konteks untuk menghasilkan respons yang akurat dan

sesuai dengan kondisi spesifik di Program Studi Teknik Informatika UIN Malang

tanpa keluar dari konteks knowledge base yang sudah diberikan sebelumnya.

6

Pendekatan ini juga telah terbukti efektif dalam berbagai konteks

pendidikan, pengembangan chatbot sebagai dukungan mahasiswa menunjukkan

bahwa RAG mengurangi halusinasi dan meningkatkan keterkaitan jawaban dengan

sumber domain-spesifik, sehingga lebih andal untuk layanan informasi akademik

(Oreški & Vlahek, 2024). Pada penelitian Soliman et al. (2025) terbukti bahwa

prototipe RAG untuk dukungan pembelajaran di perguruan tinggi meraih tingkat

jawaban benar hingga 87% sehingga dinilai cukup berhasil dalam meningkatkan

ketepatan informasi. Di sisi lain implementasi di chatbot berbasis RAG di sekolah

menengah juga menunjukkan akurasi yang sangat tinggi sebesar 100% pada dua

model yang digunakan yaitu (LlaMA-3-8B-Instruct dan Mistral-7B-Instruct-v0.3)

dengan jumlah pertanyaan sebanyak 30 (Elysia et al., 2024). Sementara, studi

layanan akademik calon mahasiswa di UCIC melaporkan kualitas respons yang

baik (ROUGE-1 0,50; ROUGE-L 0,48) dengan arsitektur Python–LangChain–

FAISS–GPT (Sugiarto et al., 2025).

Berdasarkan temuan-temuan tersebut, penelitian ini diarahkan untuk dapat

menjembatani kesenjangan yang ada dengan mengimplementasikan chatbot

berbasis RAG yang terintegrasi dengan informasi website Prodi Teknik Informatika

UIN Malang. Sistem ini diharapkan dapat berfungsi menjadi asisten virtual yang

dapat membantu mahasiswa memperoleh informasi akademik secara cepat, akurat,

dan interaktif, sekaligus meningkatkan efisiensi layanan serta memperkaya

pengalaman pengguna dalam mengakses informasi resmi program studi. Selain

memberikan manfaat praktis bagi mahasiswa dan pengelola program studi,

7

penelitian ini juga diharapkan dapat menjadi kontribusi akademik dalam penerapan

teknologi kecerdasan buatan pada bidang pendidikan tinggi di Indonesia.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan, maka rumusan masalah

dalam penelitian ini adalah:

a. Bagaimana merancang dan mengimplementasikan sistem chatbot berbasis

Retrieval-Augmented Generation (RAG) untuk menyediakan layanan

informasi akademik Prodi Teknik Informatika UIN Malang?

b. Bagaimana performa chatbot berbasis RAG dalam menjawab pertanyaan

akademik mahasiswa berdasarkan konteks informasi dari website prodi?

1.3 Batasan Masalah

Lingkup data yang digunakan pada penelitian ini hanya mencakup konten

publik dari website prodi (profil, kurikulum, dosen, laboratorium, fasilitas,

akreditasi, beasiswa, dan lainnya), tidak termasuk data internal pada siakad.

1.4 Tujuan Penelitian

Tujuan yang ingin dicapai dalam penelitian ini adalah:

a. Merancang dan mengimplementasikan sistem chatbot berbasis Retrieval-

Augmented Generation (RAG) yang dapat memberikan layanan informasi

akademik Prodi Teknik Informatika UIN Malang.

b. Menganalisis performa chatbot dalam memberikan respons yang akurat,

relevan, dan kontekstual berdasarkan informasi dari website prodi.

8

1.5 Manfaat Penelitian

Dengan hadirnya penelitian, diharapkan dapat memberikan kontribusi nyata

dalam pengembangan ilmu pengetahuan di bidang Sistem Informasi, khususnya

pada penerapan metode Retrieval-Augmented Generation (RAG) dalam

pengembangan chatbot berbasis data akademik. Memudahkan mahasiswa

mengakses informasi akademik secara interaktif, cepat, dan akurat melalui chatbot

Informasi Akademik Prodi Teknik Informatika UIN Malang yang selama ini hanya

dapat diakses secara pasif. Sementara, pengelola program studi juga akan terbantu

dalam mengurangi beban pertanyaan berulang, serta pihak akademisi dan peneliti

juga dapat menjadikan penelitian ini sebagai referensi untuk penelitian lanjutan di

bidang sistem informasi berbasis kecerdasan buatan. Dengan demikian, penelitian

ini layak untuk dilakukan karena memiliki nilai kebermanfaatan baik secara

akademik maupun praktis.

9

BAB II

STUDI PUSTAKA

2.1 Penelitian Terkait

Penelitian Elysia et al. (2024) mengembangkan chatbot berbasis RAG untuk

layanan informasi sekolah menengah, dengan memanfaatkan model

LlaMA/Mistral/Zephyr. Fokus penelitian terletak pada aksesibilitas informasi

pendidikan bagi siswa dan orang tua. Pendekatan ini menekankan kemudahan

pengguna dalam memperoleh informasi akademik, dan berhasil menunjukkan

bahwa RAG dapat diadaptasi di domain pendidikan non-kampus secara efektif.

Kemudian Pujiono et al. (2024) dalam Jurnal JITK Nusa Mandiri membahas

penerapan RAG yang dikombinasikan dengan basis data vektor untuk chatbot.

Mereka menilai performa sistem melalui metrik retrieval yang terukur, sehingga

arsitektur RAG + vector DB dapat dipertanggungjawabkan secara kuantitatif.

Kontribusinya memperlihatkan validitas pendekatan RAG sebagai solusi yang lebih

unggul daripada retrieval klasik seperti BM25.

Putro et al. (2025) di Infomedia PNL membangun chatbot RAG untuk

layanan aduan pelanggan PLN. Penelitian ini menekankan penggunaan LLM lokal

berbahasa Indonesia dan menghasilkan tingkat kebermanfaatan jawaban sebesar

92%. Studi ini menunjukkan bahwa RAG tidak hanya relevan di domain akademik,

tetapi juga di sektor pelayanan public dengan hasil yang cukup meyakinkan.

Sugiarto et al., (2025) menyajikan implementasi chatbot berbasis RAG

untuk melayani informasi akademik bagi calon mahasiswa dalam proses

penerimaan mahasiswa baru (PMB). Konteksnya yang dekat dengan kebutuhan

10

akademik Indonesia membuat penelitian ini sangat relevan, terutama karena

menunjukkan bagaimana RAG dapat mempercepat akses informasi kampus.

Penelitian oleh Nur’aini (2024) merancang chatbot informasi kesehatan

mental berbasis RAG dengan memanfaatkan LlaMA3 dan create_retrieval_chain.

Penelitian ini memperlihatkan implementasi RAG end-to-end dalam platform web,

serta menekankan pentingnya akses informasi yang sensitif melalui sistem yang

responsif dan faktual.

Sementara Prasetyo (2024) menyoroti pengembangan chatbot untuk

informasi pembangunan Kota Semarang. diterapkan untuk memperkuat distribusi

informasi publik, dan penelitian ini memberi gambaran tentang ruang lingkup

aplikasi RAG di tingkat pemerintahan daerah. Nilai tambahnya ada pada pola

evaluasi yang digunakan untuk mengukur keberhasilan sistem.

Abudrrohman R (2024) memadukan RAG dengan GPT-4 yang diperkaya

oleh knowledge graph. Variasi basis pengetahuan ini memberikan perspektif

berbeda dari sekadar vector database. Dengan pendekatan graph, chatbot dapat

memahami hubungan antarentitas dengan lebih baik, sekaligus menjadi rujukan

alternatif dalam membahas desain knowledge base.

Septri (2025) mengusulkan chatbot RAG untuk layanan akademik seperti

informasi skripsi dan PMB. Penelitian ini menggunakan metrik evaluasi modern,

yaitu BERTScore dan UniEval, untuk mengukur kualitas jawaban. Hal ini sangat

relevan bagi penelitian saya karena memberikan pembanding konkret dalam aspek

pengujian dan evaluasi chatbot akademik.

11

Sementara itu Salsabila (2025) menyinggung pemanfaatan FAISS sebagai

knowledge base dalam sistem chatbot berbasis RAG. Studi ini penting karena

memperlihatkan penggunaan FAISS di konteks Indonesia, sehingga memperkuat

argumen pemilihan FAISS sebagai vector database yang tepat untuk implementasi

RAG.

Penelitian oleh Samudra et al. (2025) ini membangun sistem RAG dengan

penekanan pada evaluasi faithfulness dan semantic similarity. Metode yang

digunakan adalah kombinasi dense retriever (embedding) dan reranker untuk

memastikan jawaban konsisten dengan dokumen sumber. Kebaruannya ada pada

metrik evaluasi yang tidak hanya berbasis akurasi tetapi juga kesesuaian semantik.

Hasil penelitian menunjukkan peningkatan relevansi jawaban chatbot hingga 15%

dibanding baseline retrieval murni. Hasilnya RAG mampu meningkatkan kualitas

jawaban chatbot dalam domain terbatas dengan evaluasi yang lebih kaya.

Kemudian Lewis et al. (2020) pada penelitiannya yang berjudul Retrieval-

Augmented Generation for Knowledge-Intensive NLP Tasks memperkenalkan

arsitektur RAG pertama kali, menggabungkan retriever berbasis Dense Passage

Retrieval (DPR) dengan generator seq2seq (BART). Kebaruan penelitian ini adalah

integrasi retrieval langsung ke proses decoding, sehingga model dapat

menghasilkan jawaban lebih faktual. Hasilnya menunjukkan RAG mengungguli

baseline open-domain QA pada dataset Natural Questions. Penelitian ini

membuktikan bahwa RAG merupakan fondasi kuat untuk aplikasi chatbot berbasis

knowledge retrieval.

12

2.2 Landasan Teori

Bagian ini membahas teori-teori yang menjadi dasar pengembangan sistem,

mencakup konsep chatbot, dasar NLP, arsitektur transformer dan LLM, hingga

mekanisme RAG dan pengindeksan vektor yang mendukung proses pencarian

konteks secara efisien.

2.2.1 Chatbot dan Klasifikasinya

Chatbot pada dasarnya adalah sistem perangkat lunak yang mampu

menjawab pertanyaan manusia menggunakan teks atau suara secara otomatis,

menyerupai percakapan manusia. Sistem ini sering diintegrasikan ke dalam layanan

digital untuk memfasilitasi interaksi pengguna tanpa memerlukan manusia sebagai

perantara (Adamopoulou & Moussiades, 2023).

Dalam literatur, klasifikasi chatbot dikembangkan berdasarkan berbagai

kriteria. Salah satu pembagian yang sering dipakai adalah berdasarkan metode

generasi respons: rule-based, retrieval-based, dan generative-based (Adamopoulou

& Moussiades, 2023).

Chatbot rule-based bekerja berdasarkan aturan eksplisit (pattern matching,

decision trees), cocok untuk domain terbatas, namun sangat rentan jika pertanyaan

keluar dari aturan yang didefinisikan. Chatbot retrieval-based memilih respons dari

kumpulan respons yang sudah ada, dengan pencocokan semantik atau leksikal

(misalnya cosine similarity, BM25). Terakhir, chatbot generative-based

menghasilkan respons baru lewat model pembelajaran mendalam (deep learning),

misalnya dengan model seq2seq atau model bahasa besar (LLM). Ada juga chatbot

dengan pendekatan hybrid yang menggabungkan retrieval dan generative, RAG

13

(Retrieval-Augmented Generation) sendiri adalah contoh hybrid popular dimana

sistem bisa menarik konteks relevan dari basis pengetahuan dan sekaligus

menghasilkan respons yang fleksibel.

Keunggulan (RAG) dibanding metode konvensional adalah kemampuannya

menghasilkan jawaban yang lebih factual dan grounding ke sumber eksternal,

sekaligus mengurangi risiko hallucination yang umum pada model generatif murni

(Klesel & Wittmann, 2025).

Sejalan dengan perkembangan teknologi, konsep interaksi manusia dengan

sistem digital (dalam konteks ini adalah chatbot) dapat dianalogikan dengan

gambaran interaksi yang Allah abadikan di dalam Al-Qur’an. Misalnya, pada kisah

Siti Maryam saat berinteraksi dengan malaikat Jibril yang menampakkan diri

kepadanya:

اْ اَع وْذ بِِلرَّحْْٓنِ مِنْكَ اِنْ ۝١ قاَلَتْ اِن ِ هَا ر وْحَنَا فَ تَمَثَّلَ لََاَ بَشَراا سَوِيًّٰ ْۗ فاَرَْسَلْنَاا الِيَ ْ
فاَتَََّّذَتْ مِنْ د وْنِِِمْ حِجَابِا

۝١٩ اَا اَنََّ۠ رَس وْل ربَِ كِِۖ لَِْهَبَ لَكِ غ لٓماا زكَِيًّا ۝١٨ قاَلَ اِنََّّ ك نْتَ تَقِيًّا

“Maka ia mengadakan tabir (yang melindunginya) dari mereka; lalu Kami

mengutus roh Kami kepadanya, maka ia menjelma di hadapannya dalam bentuk

manusia yang sempurna. Maryam berkata: ‘Sesungguhnya aku berlindung dari

padamu kepada Tuhan Yang Maha Pemurah, jika kamu seorang yang bertakwa.’

Ia (Jibril) berkata: ‘Sesungguhnya aku ini hanyalah seorang utusan Tuhanmu,

untuk memberimu seorang anak laki-laki yang suci.’” (QS Maryam: 17–19).

Dikutip dari tafsir tahlili NU Online bahwa pada ayat ini tergambar jelas

terdapat komunikasi yang terjadi dua arah antara Siti Maryam dan malaikat Jibril,

di mana menyampaikan Siti Maryam menyampaikan respon saat melihat malaikat

Jibril, lalu malaikat Jibril memberikan jawaban yang menenangkan Siti Maryam

14

dan bersifat informatif. Hal ini memberi gambaran bahwa interaksi bukanlah

sesuatu yang asing, melainkan bagian dari sunnatullah dalam menyampaikan

pesan. Inilah bentuk interaksi yang bisa dianalogikan dengan mekanisme tanya-

jawab pada chatbot, di mana pertanyaan dari pengguna itu dapat dibalas dengan

jawaban yang relevan oleh sistem chatbot.

Demikian pula ketika Allah berdialog dengan para malaikat tentang

penciptaan manusia pertama, Nabi Adam:

هَا مَنْ ي ُّفْسِد فِ قاَل واْا اَتََْعَل فِي ْ
ْۗ
فَةا ْ جَاعِل فِِ الَْْرْضِ خَلِي ْ كَةِِ ان ِ ىِٕ

ۤٓ
هَا وَيَسْفِك الدِ مَاۤءََۚ وَنََْن وَاِذْ قاَلَ ربَُّكَ للِْمَل ي ْ

اْ اَعْلَم مَا لَْ تَ عْلَم وْنَ ۝٣٠ ن سَبِ ح بَِمْدِكَ وَن قَدِ س لَكَْۗ قاَلَ اِن ِ

“Ingatlah ketika Tuhanmu berfirman kepada para malaikat: ‘Sesungguhnya Aku

hendak menjadikan seorang khalifah di muka bumi.’ Mereka berkata: ‘Mengapa

Engkau hendak menjadikan di bumi itu orang yang akan membuat kerusakan

padanya dan menumpahkan darah, padahal kami senantiasa bertasbih dengan

memuji Engkau dan mensucikan Engkau?’ Tuhan berfirman: ‘Sesungguhnya Aku

mengetahui apa yang tidak kamu ketahui.’” (QS Al-Baqarah: 30).”

Dialog ini menunjukkan bagaimana malaikat bertanya tentang alasan Allah

menurunkan khalifah di muka bumi kemudian Allah menjawab dengan argumentasi

yang menegaskan hikmah di balik keputusan-Nya bahwa Allah lebih mengetahui

segalanya daripada sekedar yang makhluk-Nya ketahui. Adanya interaksi tanya-

jawab antara Allah dan malaikat tersebut memperlihatkan terjadi pola komunikasi

yang dapat menjadi analogi juga dalam memahami fungsi chatbot yaitu adanya

pengguna yang menyampaikan pertanyaan, dan sistem memberikan jawaban yang

relevan.

Dengan demikian, keberadaan chatbot dalam layanan akademik dapat

dipahami sebagai bentuk rekayasa teknologi yang meniru pola komunikasi

15

interaktif, yaitu adanya pertukaran informasi antara penanya dan pemberi jawaban.

Analogi ini menekankan bahwa chatbot bukan sekadar alat pasif, melainkan

menjadi suatu sarana interaksi yang aktif dan dinamis, sebagaimana interaksi antara

manusia dengan malaikat digambarkan dalam Al-Qur’an.

Sebagai catatan terminologi, kata “chatbot” sendiri tidak selalu memiliki

padanan spesifik dalam KBBI, tapi bisa digolongkan sebagai bot interaktif di

domain percakapan digital.

2.2.2 Dasar NLP (Natural Languange Processing)

Sebelum teks bisa dipahami dalam model komputasi, langkah awal yang

mutlak adalah tokenisasi memecah teks menjadi unit lebih kecil yang disebut

“token”. Token bisa berupa kata, subword, atau karakter, tergantung metode yang

dipakai. Tokenisasi memfasilitasi pemrosesan teks agar tidak diperlakukan sebagai

string panjang tak terstruktur (Airbyte, 2024).

 Setelah tokenisasi, teks umumnya melalui tahap normalisasi, meliputi,

konversi ke huruf kecil (lowercasing), penghapusan karakter non-alfanumerik

(simbol, tanda baca yang tidak penting), penghapusan spasi ekstra atau karakter

yang tidak bermakna. Tujuan normalisasi adalah menyatukan format agar

“Rumah,” “rumah” dan “rumah!” tidak dianggap entitas berbeda. Beberapa

penelitian memperlihatkan bahwa meskipun pipeline embedding modern sangat

kuat, tahap praproses tetap memberikan kontribusi terhadap akurasi (Siino et al.,

2024).

Setelah itu, token-token tersebut diwujudkan ke bentuk numerik melalui

representasi vektor atau embedding inti dari NLP modern. Sebelumnya, metode

16

representasi seperti one-hot encoding atau TF-IDF sering digunakan, tetapi

memiliki keterbatasan dalam menangkap makna. Embedding (representasi padat)

memungkinkan penyajian teks dengan dimensi tetap yang menyimpan konteks

semantik dan hubungan antar kata. Sebuah survei menyebut bahwa bidang NLP

telah bergeser dari representasi eksplisit dan statistik ke representasi kontekstual

yang dipelajari via model neural (Patil et al., 2023).

2.2.3 Arsitektur Transformer

Arsitektur Transformer diperkenalkan oleh Vaswani et al. (2017) melalui

makalah Attention is All You Need. Model ini didesain untuk memproses data

sekuensial (seperti teks) tanpa ketergantungan berurutan seperti pada RNN atau

LSTM. Komponen inti dari transformer adalah self-attention, yaitu mekanisme

yang memungkinkan setiap token dalam sebuah kalimat memperhatikan token lain

untuk membangun representasi kontekstual yang lebih kaya.

Secara matematis, self-attention dihitung dengan tiga proyeksi vektor: Query (Q),

Key (K), dan Value (V). Formula perhatian adalah:

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (2.1)

Keterangan:

𝑄= Query,

𝐾= Key,

𝑉 = Value,

𝑑𝑘 = dimensi vector key.

Persamaan ini menjelaskan bagaimana bobot relevansi antar token dihitung untuk

menghasilkan representasi baru. Nilai 𝑄𝐾𝑇 menghasilkan skor kesesuaian antar

token, kemudian hasilnya dinormalisasi dengan softmax sehingga menjadi bobot

17

perhatian. Bobot ini kemudian dikalikan dengan 𝑉 untuk menghasilkan representasi

baru yang sudah memperhatikan relasi semantik antar token.

Untuk meningkatkan kapasitas model, transformer menggunakan Multi-

Head Attention (MHA), di mana beberapa self-attention berjalan paralel. Hasil dari

tiap “head” digabungkan, sehingga model dapat menangkap beragam jenis

hubungan semantik sekaligus. Agar urutan kata tetap dikenali, Transformer

menambahkan positional encoding ke embedding input.

1. Encoder

Encoder terdiri dari beberapa lapisan yang masing-masing memiliki Multi-

Head Self-Attention dan feed-forward network. Encoder bertugas mengubah input

teks menjadi representasi vektor yang padat dan informatif. Setiap lapisan encoder

saling menumpuk, sehingga menghasilkan embedding yang makin kaya makna.

Contoh model encoder-only adalah BERT dan E5, yang efektif digunakan untuk

klasifikasi, ekstraksi fitur, dan pembuatan embedding untuk retrieval.

2. Decoder

Decoder juga terdiri dari beberapa lapisan, tetapi selain memiliki self-

attention, decoder menambahkan masked self-attention agar prediksi token

berikutnya hanya bergantung pada token sebelumnya (autoregresif). Selain itu,

decoder memiliki cross-attention, yang memungkinkan decoder memperhatikan

hasil dari encoder. Di antara contoh model decoder-only adalah GPT, LLaMA,

TinyLLaMA, yang digunakan untuk menghasilkan teks baru dengan memprediksi

token berikutnya secara bertahap.

18

3. Encoder-Decoder

Arsitektur penuh encoder–decoder menggabungkan kedua peran: encoder

membangun representasi dari input, dan decoder menghasilkan output berdasarkan

representasi tersebut. Arsitektur ini umum dipakai untuk tugas machine translation

(misalnya pada model T5, mBART).

Dalam penelitian ini, kedua peran arsitektur Transformer dimanfaatkan

secara terpisah sesuai kebutuhan:

a. Encoder-only (Sentence-Transformer/E5) digunakan untuk menghasilkan

embedding dokumen dan query yang padat serta bermakna. Embedding inilah

yang disimpan pada basis data vektor (FAISS) untuk mendukung retrieval.

b. Decoder-only (TinyLLaMA 1.1B) digunakan untuk menyusun jawaban dengan

cara memanfaatkan konteks hasil retrieval. Model generatif ini dipilih karena

lebih ringan secara komputasi dibandingkan LLM besar (misalnya LLaMA

7B/8B), tetapi tetap efektif jika dikombinasikan dengan RAG yang memastikan

jawaban berbasis konteks domain spesifik.

Dengan kombinasi tersebut, sistem dapat memanfaatkan keunggulan encoder dalam

memahami teks dan keunggulan decoder dalam menghasilkan jawaban, tanpa harus

menggunakan model raksasa yang membebani perangkat.

2.2.4 Large Language Model (LLM)

Large Language Model (LLM) merupakan implementasi lanjutan dari

arsitektur transformer. LLM dilatih pada korpus teks berukuran sangat besar,

sehingga mampu mempelajari pola bahasa, relasi semantik, serta pengetahuan

dunia secara luas. Dalam konteks penelitian ini, peran LLM dan encoder dipisahkan

19

sesuai fungsinya. Proses embedding teks dilakukan menggunakan sentence-

transformer (E5). Sentence-Transformer (E5), yang termasuk kategori encoder-

only model, untuk menghasilkan representasi vektor yang padat dan bermakna dari

dokumen maupun query. Sementara itu, LLM decoder-only seperti TinyLLaMA

1.1B digunakan pada tahap generation untuk menyusun jawaban berdasarkan hasil

retrieval. Pemisahan peran ini bertujuan menjaga efisiensi komputasi sekaligus

mempertahankan kualitas hasil keluaran sistem. Untuk proses embedding sendiri

akan memetakan kalimat atau dokumen ke dalam ruang vektor berdimensi tinggi,

sehingga memungkinkan perhitungan kesamaan semantik dengan operasi

matematis sederhana seperti cosine similarity:

cos(θ) =
𝑞 ⋅ 𝑑

|𝑞| |𝑑|
(2.2)

dengan 𝑞 sebagai vektor query dan 𝑑 sebagai vektor dokumen.

Untuk memastikan model LLM yang nantinya digunakan tidak

memberatkan perangkat keras (hardware), maka seperti yang sudah disebutkan

pada poin sebelumnya di penelitian ini mengadopsi TinyLlama-1.1B dan tidak

menggunakan model LLM besar seperti LLaMA-3 8B. TinyLlama-1.1B sendiri

adalah sebuah model bahasa ringan berparameter 1,1 miliar (sesuai dengan nama

detailnya) (Zhang et al., 2024). TinyLlama ini dirancang sebagai versi kompak dari

arsitektur LLaMA 2, dilatih pada sekitar 1 triliun token selama 3 epoch dan

memanfaatkan optimasi seperti FlashAttention untuk efisiensi komputasi ekstra.

Kelebihan utama TinyLlama ialah performa lebih baik dibandingkan model open-

source yang seukuran pada banyak tugas downstream, meskipun ukurannya kecil.

20

Dalam penelitian ini, TinyLlama berfungsi sebagai model generatif

(decoder-only) yang akan menerima konteks hasil retrieval dari basis pengetahuan

prodi dan akan menghasilkan jawaban yang relevan. Karena konteks sudah

“dipersempit” melalui retrieval, maka beban komputasi model generatif menjadi

lebih ringan. Hal ini lebih memungkinkan bagi TinyLlama meskipun ukurannya

jauh lebih kecil dibandingkan dengan LLaMA 8B dan tetap mampu memberikan

jawaban yang memadai dalam domain akademik lokal.

Namun, tetap perlu dicatat bahwa tentu terdapat keterbatasan, dimana model

kecil umumnya hanya memiliki kapasitas memori internal yang lebih terbatas,

sehingga kemungkinan penurunan kualitas reasoning kompleks atau “lupa konteks

panjang” lebih tinggi dibanding dengan model besar. Maka dari itu, strategi

prompting, pemotongan konteks, dan pengaturan top-k harus dioptimalkan agar

hasil (output) tetap konsisten dan tidak melantur.

Dengan mempertimbangkan kemampuan perangkat (komputer/Colab),

TinyLlama-1.1B menjadi pilihan paling realistis dibanding model besar seperti

LLaMA 3.1 8B atau Mistral 7B. Jadi, seluruh skripsi ini akan mengacu pada

pipeline RAG yang memadukan encoder (E5 / Sentence-Transformer) untuk

embedding dan TinyLlama sebagai model generatif ringan, daripada menggunakan

model generatif raksasa yang tidak feasible di lingkungan penelitian ini.

2.2.5 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) adalah paradigma baru dalam

pemrosesan bahasa alami yang menggabungkan dua komponen utama: retriever

21

dan generator (Oreški & Vlahek, 2024). Retriever bertugas mencari dokumen

relevan dari basis pengetahuan eksternal (misalnya vektor database), sedangkan

generator (biasanya LLM) menggunakan dokumen tersebut sebagai konteks

tambahan untuk menghasilkan jawaban. Dengan cara ini, RAG meminimalkan

risiko hallucination yang sering muncul pada model generatif murni karena

jawaban selalu didasarkan pada informasi faktual yang diambil dari knowledge base

(Lewis et al., 2020). Di samping itu, dengan adanya RAG maka akan memastikan

jawaban yang dihasilkan tetap pada pada konteks knowledge base dan tidak keluar

dari konteks tersebut.

Model bahasa besar (LLM) seperti GPT atau LLaMA dapat menghasilkan

teks yang fasih, tetapi sering kali berisiko mengarang fakta karena keterbatasan data

latih. Di sisi lain, pendekatan retrieval tradisional seperti BM25 tetap memiliki

peran penting dalam proses information retrieval, khususnya pada tahap reranking

untuk memastikan hasil pencarian paling relevan berada di posisi teratas. RAG

menggabungkan kekuatan keduanya dengan menghasilkan jawaban faktual yang

didukung dokumen relevan, sembari mempertahankan gaya bahasa alami dari

model generatif. Arsitektur ini memungkinkan pemisahan yang efisien antara

komponen retriever dan generator, sehingga pembaruan basis pengetahuan cukup

dilakukan di sisi retrieval/vector database tanpa perlu melatih ulang model bahasa

besar.

RAG telah diuji pada berbagai domain mulai dari pendidikan Elysia et al.

(2024) membuktikan RAG dapat mempermudah akses informasi sekolah.

Kemudian di bidang pelayanan publik Putro et al. (2025) menunjukkan efektivitas

22

RAG di sektor aduan pelanggan PLN dengan akurasi tinggi, dan tentu di bidang

akademik Sugiarto et al. (2025) menyoroti potensi RAG untuk layanan penerimaan

mahasiswa baru. Studi-studi ini memperkuat bahwa RAG relevan untuk domain

pendidikan tinggi, termasuk untuk chatbot informasi akademik program studi.

Alasan RAG masih relevan dan penting dalam penelitian ini diantaranya

yaitu dari sisi program studi sendiri data akademik tentu akan mengalami perubahan

yang dinamis baik (kurikulum, dosen, prestasi, beasiswa, dan informasi terkait

akademik lainnya), sehingga retrieval menjadi solusi fleksibel. Kemudian dari sisi

faktualitas, dengan retrieval, jawaban chatbot tidak berdiri pada data latih lama,

melainkan selalu didukung knowledge base terbaru. Dan dari sisi fleksibilitas,

sistem tetap bisa menggunakan LLM open-source (misalnya LLaMA), namun

knowledge base bisa diperbarui hanya di retriever.

Pada Tabel 2.1 berikut disajikan alur umum RAG. Alur ini secara berurutan

dimulai dari tahap query encoding, kemudian dilakukan proses retrieval pada

korpus data, setelah itu hasil top-k pada proses itu akan dipilih dimana dalam hal

ini sudah memasuki tahap augmentation. Terakhir masuk ke tahap generation

jawaban oleh LLM berdasarkan hasil proses augmentation.

Tabel 2.1 Alur Umum Retrieval-Augmented Generation RAG

Tahap Deskripsi

Query Encoding pertanyaan pengguna diubah menjadi vektor

Retrieval
vektor query dicocokkan dengan koleksi dokumen (vector DB, misalnya

FAISS atau ElasticSearch).

Augmentation
dokumen dengan skor kesesuaian tertinggi (Top-k) dipilih sebagai konteks

tambahan.

Generation
model generatif memproduksi jawaban berdasarkan query dan konteks

tersebut.

23

Penelitian yang dilakukan oleh Prastowo et al. (2025) turut menegaskan

efektivitas RAG dalam meningkatkan kualitas customer service. Hasil studinya

menunjukkan bahwa kombinasi mekanisme retrieval dan generation mampu

menghasilkan respons yang lebih kontekstual dan konsisten dibandingkan model

retrieval-based murni. Temuan ini memperlihatkan kemampuan RAG untuk

menggabungkan relevansi informasi dengan gaya respons alami, bahkan dalam

domain dengan data dinamis.

2.2.6 Text Embedding / Encoder

Tahap inti dalam pipeline RAG adalah representasi teks ke dalam bentuk

vektor yang bisa dihitung secara matematis. Proses ini dilakukan oleh encoder.

Encoder memetakan kalimat atau dokumen ke embedding berdimensi tetap,

misalnya 768 dimensi pada model E5. Embedding ini menyimpan representasi

semantik sehingga dua teks dengan makna mirip akan berada berdekatan di ruang

vektor (Reimers & Gurevych, 2019).

Salah satu model populer adalah Sentence-Transformers, misalnya keluarga

E5 (Enhanced Embeddings for Information Retrieval). Model E5 dilatih dengan

pendekatan contrastive learning untuk memaksimalkan kedekatan embedding antar

pasangan teks yang relevan (Wang et al., 2024).

Secara matematis, embedding hasil encoder biasanya dinormalisasi dengan

L2 normalization:

𝐸̂(𝑡) =
𝐸(𝑡)

|𝐸(𝑡)|2

(2.3)

24

Sehingga, kesamaan antara query 𝑞 dan dokumen 𝑑 dapat dihitung dengan cosine

similarity:

cos(𝑞, 𝑑) = 𝐸̂(𝑞) ⋅ 𝐸̂(𝑑) (2.4)

Contoh sederhana penerapan embedding dapat dilihat pada proses ketika

pengguna mengajukan pertanyaan ke chatbot. Misalnya, pengguna menanyakan

“Kapan waktu pelaksanaan PKL untuk mahasiswa Informatika?”. Kalimat

pertanyaan ini kemudian diubah menjadi representasi vektor, misalnya [0.45, 0.28,

–0.12, …]. Di sisi lain, sistem juga telah menyimpan vektor-vektor dari dokumen

atau teks sumber, seperti “PKL dilaksanakan pada semester 6 selama minimal 1

bulan”, yang mungkin dipetakan ke vektor [0.47, 0.31, –0.10, …]. Karena jarak

kosinus antar kedua vektor tersebut sangat kecil (misalnya 0.94), sistem menilai

bahwa dokumen tersebut relevan dengan pertanyaan pengguna.

Dengan demikian, proses embedding tidak hanya memetakan kalimat

sederhana seperti “Mahasiswa Teknik Informatika” ke vektor [0.12, 0.34, –0.07,

…], tetapi juga memungkinkan sistem mengenali kedekatan makna antara

pertanyaan dan jawaban yang berbeda secara redaksi namun serupa secara

semantik. Implementasi text embedding ini menjadi fondasi penting bagi proses

indexing pada FAISS serta perhitungan skor relevansi di tahap retrieval.

2.2.7 Vector Search dan FAISS

Vector search adalah teknik pencarian dokumen berbasis kesamaan

semantik, bukan sekadar pencocokan kata kunci. Prinsip dasarnya yaitu setiap

dokumen 𝑑 dan query 𝑞 diproyeksikan ke ruang vektor berdimensi tetap oleh

25

encoder. Kemudian, skor kesamaan dihitung (misalnya cosine similarity atau inner

product), dan dokumen dengan skor tertinggi dianggap paling relevan.

Untuk mengatasi skalabilitas, digunakan Approximate Nearest Neighbor

(ANN) indexing. ANN memungkinkan pencarian Top-k dokumen relevan dari

jutaan entri dengan efisiensi tinggi, tanpa harus menghitung jarak ke seluruh

dokumen. Salah satu 25emanti ANN 25emanti adalah FAISS (Facebook AI

Similarity Search) (Douze et al., 2025). FAISS mendukung berbagai skema

indexing, misalnya: Flat Index: brute-force search; akurat tetapi lambat. IVF

(Inverted File Index) membagi ruang vektor ke dalam centroids sehingga pencarian

hanya dilakukan pada subset. HNSW (Hierarchical Navigable Small World)

struktur graf yang mempermudah pencarian tetangga terdekat (Malkov &

Yashunin, 2018).

Efektivitas FAISS dalam konteks bahasa Indonesia juga telah diuji pada

penelitian Ramadhan et al. (2024) yang mengimplementasikan Passage Retrieval

untuk sistem Question Answering (QA). Dengan memanfaatkan embedding BERT

dan FAISS sebagai vector index, penelitian tersebut berhasil mencapai akurasi

hingga 72,5% setelah proses fine-tuning, sekaligus mempertahankan waktu

eksekusi rata-rata hanya 0,23 detik per pertanyaan (Ramadhan et al., 2024). Hasil

ini menunjukkan bahwa FAISS tidak hanya unggul secara teoritis dalam

mendukung skema ANN, tetapi juga terbukti praktis dalam aplikasi pencarian

semantik berbasis bahasa Indonesia.

Penggunaan vector database dalam penelitian ini dimaksudkan untuk

mengelola dan menata informasi sehingga lebih mudah ditemukan kembali secara

26

efisien. Konsep pencatatan dan penyimpanan informasi ini memiliki kesesuaian

dengan prinsip yang digambarkan dalam Al-Qur’an. Allah berfirman:

۝١٨ مَا يَ لْفِظ مِنْ قَ وْل اِلَّْ لَدَيْهِ رقَِيْب عَتيِْد

“Tidak ada suatu kata yang diucapkannya melainkan di sisinya ada malaikat

pengawas yang selalu hadir.” (QS Qāf: 18).

Ayat ini menunjukkan bahwa setiap ucapan manusia dicatat oleh malaikat Raqīb

dan ‘Atīd secara rapi dan terstruktur. Bahkan, Al-Qur’an sendiri ditegaskan

tersimpan di Lauh Mahfuzh sebagai bentuk pencatatan ilahi yang sempurna.

۝٢ ٢ ۝٢١ فِْ لَوْح مََّّْف وْظ ࣖ ُۙ
يْد بَلْ ه وَ ق رْآن مََِّّ

“Bahkan, (yang didustakan itu) Al-Qur’an yang mulia, yang (tersimpan) dalam

(tempat) yang terjaga (Lauh Mahfuz).” (QS Al-Burūj: 22).

Hal ini dapat dianalogikan dengan peran vector database yang berfungsi

bukan sekadar menyimpan data, tetapi juga menata dan mengindeksnya sehingga

informasi dapat dengan mudah ditemukan kembali saat dibutuhkan. Dengan

demikian, penerapan FAISS dan metode indexing dalam penelitian ini sejalan

dengan prinsip pencatatan yang sistematis sebagaimana digambarkan dalam Al-

Qur’an.

 Alur kerja FAISS sendiri secara garis besar meliputi build time yaitu semua

embedding dokumen disimpan dalam index (misalnya IVF), setelah itu masuk ke

tahap query time dimana embedding query dihitung kemudian dicocokkan dengan

index, terakhir dokumen relevan dengan nilai Top-k akan dikembalikan. Contoh

27

sederhana: misalnya ada 3 dokumen (d1, d2, d3) dengan embedding tersimpan di

FAISS. Saat query 𝑞 masuk, FAISS mencari embedding dengan jarak kosinus

terdekat dan mengembalikan dokumen [d2, d1] sebagai Top-2.

2.2.8 Pengujian Retrieval dan Generation

Evaluasi merupakan aspek penting dalam penelitian RAG, karena kualitas

sistem tidak hanya ditentukan oleh kemampuannya mengambil dokumen

(retrieval), tetapi juga bagaimana jawaban akhir dibangkitkan (generation). Oleh

sebab itu, pengujian dilakukan dua level yaitu Retrieval (IR) dan Generation (NLG)

Natural Language Generation).

2.2.8.1 Pengujian Retrieval

Pada level retrieval, yang dinilai adalah sejauh mana sistem berhasil

menemukan dokumen relevan dari koleksi yang tersedia (Guo et al., 2020). Dua

metrik utama adalah Recall@k dan Mean Reciprocal Rank (MRR).

Recall@k menilai berapa banyak dokumen relevan yang berhasil muncul

dalam Top-k hasil pencarian. Misalnya, jika ada 5 dokumen relevan dan sistem

mengembalikan 3 di antaranya pada Top-5, maka recall@5 = 3/5 = 0,6. Metrik ini

penting karena pengguna biasanya hanya melihat hasil teratas, semakin tinggi skor

recall@k, maka semakin baik sistem memastikan konteks relevan tidak terlewat

(Shiri, 2004).

Mean Reciprocal Rank (MRR) mengukur seberapa cepat dokumen relevan

pertama muncul pada daftar hasil. Jika sebuah query memiliki dokumen relevan di

posisi pertama, skor reciprocal rank = 1; jika di posisi ketiga, maka skor = 1/3.

28

MRR menghitung rata-rata reciprocal rank di seluruh query. Dengan demikian,

MRR memberi gambaran seberapa cepat sistem menghadirkan jawaban yang tepat

di depan mata pengguna.

2.2.8.2 Pengujian Generasi Jawaban

Setelah retrieval, tahap berikutnya adalah generasi jawaban oleh LLM.

Evaluasi di tahap ini menilai aspek kualitas, koherensi, dan kesesuaian jawaban.

a. Faithfulness menilai apakah klaim dalam jawaban sesuai dengan dokumen

sumber yang di-retrieve (Samudra et al., 2025). Jika 4 dari 5 klaim sesuai

dokumen, maka faithfulness = 0,8. Metrik ini dinyatakan sebagai berikut.

Faithfulness =
jumlah klaim benar

total klaim
(2.6)

Metrik ini krusial untuk RAG karena tujuan utamanya adalah mengurangi

halusinasi.

b. Semantic Similarity dihitung dengan cosine similarity antar embedding jawaban

sistem dan jawaban referensi. Metrik ini membantu mengukur kedekatan makna

tanpa harus membandingkan token satu per satu.

Untuk memudahkan, evaluasi dapat diilustrasikan sebagai berikut. Misalnya, untuk

Query Q1 dengan dokumen relevan {D2, D5}, sistem mengembalikan Top-3 {D2,

D4, D1}. Maka recall@3 = 1/2 = 0,5.

2.3 Kerangka Pemikiran

Pada penelitian ini, permasalahan utama adalah bagaimana menyediakan

layanan chatbot akademik yang mampu memberikan jawaban relevan berdasarkan

29

data internal Program Studi Teknik Informatika UIN Malang. Untuk menjawab

masalah tersebut digunakan pendekatan Retrieval-Augmented Generation (RAG)

yang memadukan dua komponen utama, yaitu retrieval dan generation.

Dari Gambar 2.1 berikut dapat dipahami, tahap pertama, data akademik

dikumpulkan melalui proses web scraping dari situs resmi program studi. Data

mentah tersebut kemudian melalui tahap preprocessing untuk dibersihkan dari

elemen yang tidak relevan (seperti tag HTML, format yang berlebihan, maupun

stopwords). Setelah itu, dilakukan proses text embedding menggunakan model

Sentence-Transformers (E5) yang mengubah teks ke dalam representasi vektor

numerik. Representasi ini kemudian disimpan dalam basis data vektor (FAISS) agar

dapat dilakukan pencarian berbasis kesamaan.

Gambar 0.1 Kerangka Pemikiran Penelitian

Pada saat pengguna memberikan pertanyaan (query), sistem akan

melakukan tahap retrieval untuk mengambil potongan dokumen paling relevan

30

berdasarkan ukuran kesamaan kosinus (cosine similarity). Hasil dari tahap retrieval

dapat ditingkatkan kualitasnya melalui proses reranking menggunakan algoritma

BM25 untuk mengutamakan konteks dengan tingkat kemiripan tertinggi.

Selanjutnya, dokumen hasil reranking dipadukan dengan pertanyaan pengguna dan

diproses oleh model bahasa besar (LLM) untuk menghasilkan jawaban yang lebih

koheren dan kontekstual.

Kerangka pemikiran ini menegaskan bahwa penggunaan RAG

memungkinkan chatbot tidak hanya menghasilkan jawaban berbasis memorization

model, tetapi juga memanfaatkan basis pengetahuan spesifik prodi. Hal ini

diharapkan meningkatkan akurasi, kontekstualitas, dan kredibilitas jawaban

chatbot. Dengan demikian, penelitian ini secara konseptual membangun hubungan

antara teori NLP, teknik information retrieval, serta kebutuhan praktis layanan

informasi akademik.

31

BAB III

DESAIN DAN IMPLEMENTASI

3.1 Desain Penelitian

Penelitian ini menggunakan pendekatan penelitian terapan (applied

research). Tujuannya adalah untuk merancang, mengimplementasikan, dan

mengevaluasi sebuah teknologi, yaitu sistem chatbot informasi akademik berbasis

Retrieval-Augmented Generation (RAG), guna menyelesaikan permasalahan

praktis yang dihadapi mahasiswa dalam mengakses informasi di website Prodi

Teknik Informatika UIN Malang. Dengan adanya desain penelitian yang jelas maka

akan membantu penulis melakukan penelitian secara terarah dan tepat.

Secara garis besar, alur penelitian akan mengikuti flowchart yang

digambarkan pada Gambar 3.1.

Gambar 3.1 Desain Penelitian

Kerangka kerja metodologis penelitian ini dirancang secara sistematis untuk

memastikan setiap tahapan dilakukan secara terstruktur dan terukur. Secara garis

besar, tahapan penelitian ini dimulai dari identifikasi masalah untuk menentukan

kebutuhan penelitian, dilanjutkan dengan studi literatur untuk mengumpulkan

referensi dan landasan teori yang relevan. Setelah itu, proses pengumpulan data

dilakukan untuk mendapatkan informasi yang diperlukan sebagai dasar dari tahap

perancangan sistem. Selanjutnya adalah tahap perancangan sistem dan

32

implementasi sistem dilakukan. Kemudian sistem yang sudah selesai dibuat

tersebut memasuki tahap pengujian, dan evaluasi. Tahap ini dilakukan dengan

tujuan untuk mengukur kinerja dan ketepatan dari solusi yang dihasilkan sistem.

Tahap terakhir adalah analisis hasil dan penarikan kesimpulan berdasarkan data

yang diperoleh dari seluruh proses penelitian yang sudah dilakukan (Pratama &

Sisephaputra, 2024). Pendekatan ini memungkinkan pengembangan teknologi yang

tidak hanya berfungsi tetapi juga teruji dan dievaluasi secara komprehensif,

memberikan solusi praktis terhadap permasalahan yang diidentifikasi.

3.2 Pengumpulan Data

Tahap pengumpulan data ini merupakan langkah fundamental dalam

penelitian ini yang bertujuan untuk membangun basis pengetahuan (knowledge

base) yang komprehensif untuk sistem chatbot. Berbeda dengan penelitian yang

memanfaatkan dataset sekunder yang sudah ada, penelitian ini menggunakan data

primer yang dikumpulkan secara langsung dari sumber utamanya. Sumber data

yang digunakan dalam penelitian ini bersifat tunggal dan spesifik, yaitu seluruh

konten tekstual publik yang tersedia di website resmi Program Studi Teknik

Informatika, Universitas Islam Negeri Maulana Malik Ibrahim Malang, yang dapat

diakses pada (https://informatika.uin-malang.ac.id).

Proses pengumpulan data dilakukan dengan menggunakan teknik web

scraping secara otomatis. Sebuah skrip pemrograman yang dirancang untuk

menavigasi dan mengekstrak informasi tekstual dari berbagai halaman relevan di

dalam domain website tersebut. Lingkup data yang diambil mencakup, namun tidak

terbatas pada, informasi mengenai kurikulum, profil dosen, prosedur akademik,

33

panduan skripsi, informasi beasiswa, serta berita dan pengumuman. Pembatasan

pengumpulan data hanya pada domain website resmi prodi, ini dilakukan untuk

menjamin validitas, relevansi, dan konteks informasi yang akan menjadi dasar

jawaban chatbot.

Hasil dari tahap ini adalah sebuah korpus data mentah (raw data) yang berisi

seluruh informasi tekstual yang berhasil diekstraksi. Kumpulan data mentah inilah

yang kemudian akan menjadi input untuk tahap pra-pemrosesan data sebelum

diindeks ke dalam database vektor dan diintegrasikan dengan Large Language

Model (LLM) dalam pipeline RAG. Untuk memberikan gambaran yang lebih jelas

mengenai cakupan halaman yang menjadi sumber data, beberapa contoh halaman

disajikan dalam Tabel 3.1 di bawah ini.

Tabel 3.1 Tampilan Beberapa Halaman Website Prodi yang dilakukan web scraping

Gambar Tangkapan Layar

Website Prodi
Keterangan

Halaman Landing Page dari website

prodi Teknik Informatika UIN

Malang

Halaman Profil S1

dari website prodi

Teknik Informatika

UIN Malang

34

Tabel 3.1 Lanjutan

Gambar Tangkapan Layar

Website Prodi
Keterangan

 Halaman Organisasi dan Komunitas

dari website prodi Teknik

Informatika

UIN Malang

3.3 Desain Sistem

Pada Gambar 3.2 berikut disajikan gambaran umum desain sistem. Desain

sistem dilakukan dengan tujuan untuk mendefinisikan secara jelas bagaimana

desain sistem dari chatbot yang akan dikembangkan.

Gambar 3.2 Alur Desain Sistem

Data awal berupa data akademik program studi Teknik Informatika yang sudah

diambil dari website resmi program studi, kemudian memasuki tahap

preprocessing, dilanjutkan ke proses text embedding dan vector indexing. Setelah

itu baru proses inti RAG yaitu meliputi retrieval dan terakhir adalah generation

dimana tahap ini akan menghasilkan response (jawaban).

35

3.3.1 Web Scraping

Tahap ini ialah tahap awal yang sangat penting dalam siklus pengembangan

sistem RAG, bertujuan untuk mengumpulkan data tekstual secara otomatis yang

akan menjadi fondasi dari basis pengetahuan (knowledge base) chatbot. Proses ini

dirancang untuk secara sistematis mengambil seluruh konten informatif dari sumber

data tunggal yang telah ditetapkan, yaitu website resmi Program Studi Teknik

Informatika UIN Malang. Metode ini dipilih karena efisiensinya dalam

mengakuisisi data dalam volume besar langsung dari sumber aslinya, memastikan

otentisitas dan relevansi informasi yang akan digunakan oleh sistem. Alur kerja dari

proses web scraping ini diilustrasikan secara visual pada Gambar 3.3.

Gambar 3.3 Alur Web Scraping

Proses web scraping diawali dengan menginisialisasi sebuah scraper yang

diprogram menggunakan Python untuk melakukan permintaan HTTP dan

mengambil struktur dokumen HTML dari halaman-halaman yang relevan di

domain (https://informatika.uin-malang.ac.id). Setiap halaman yang telah

ditentukan diakses secara langsung tanpa melakukan penelusuran rekursif ke

seluruh tautan sebagaimana pada teknik crawling. Skrip scraping kemudian

mengekstrak konten teks dari elemen-elemen HTML tertentu seperti paragraf

(<p>), judul (<h1>, <h2>), dan item daftar () yang mengandung informasi

https://informatika.uin-malang.ac.id/

36

akademik utama. Selama proses ekstraksi, dilakukan tahap pembersihan untuk

menghapus elemen yang tidak relevan seperti tag skrip, menu navigasi, atau spasi

berlebih, sehingga data yang tersimpan adalah teks bersih dan siap digunakan. Hasil

teks bersih tersebut selanjutnya disimpan dalam format terstruktur, seperti JSON

atau CSV, agar dapat diproses lebih lanjut pada tahap preprocessing sebelum

dilakukan embedding dan penyimpanan ke basis data vektor.

3.3.2 Preprocessing

Tahap preprocessing merupakan kelanjutan dari tahap pengumpulan data

(web scraping), yang bertujuan untuk mengubah data mentah yang telah diekstraksi

menjadi format yang bersih, terstruktur, dan siap untuk memasuki tahap embedding

dan indeksasi. Proses ini juga penting untuk memastikan kualitas input bagi model

embedding dan efektivitas retrieval di tahap mendatang. Input untuk tahap ini

adalah kumpulan data teks mentah dalam format JSON (misalnya, data/raw/*.json)

yang dihasilkan dari proses web scraping sebelumnya. Proses detail pra-

pemrosesan teks digambarkan pada Gambar 3.4 berikut.

Gambar 3.4 Alur Tahap Preprocessing

Alur preprocessing dimulai dengan tahap pemuatan data dalam format

JSON yang sebelumnya telah terkumpul. Setelah itu, data melewati proses

37

pembersihan (cleaning) yang menyeluruh, mencakup penghapusan tag HTML yang

masih tersisa, penghilangan spasi ganda, serta eliminasi karakter non-teks yang

tidak memberikan makna. Pada tahap berikutnya, data dapat dinormalisasi,

misalnya melalui penyamaan bentuk huruf menjadi lowercase, agar variasi

penulisan lebih seragam dan mudah diproses. Setelah bersih dan seragam, teks

diuraikan menjadi satuan-satuan yang lebih kecil dan bermakna. Proses ini sering

kali diwujudkan dalam bentuk pemecahan kalimat (sentence splitting) atau paragraf

(paragraph splitting), yang secara alami mempersiapkan teks untuk langkah

pengolahan berikutnya. Selanjutnya setiap kata dilakukan tokenisasi secara formal.

𝑇 = {𝑤1, 𝑤2, … , 𝑤𝑛}, 𝑡 = tokenizer(text) (3.1)

Dari unit-unit kecil tersebut, dilakukan chunking, yaitu menggabungkan

kembali kalimat atau paragraf menjadi segmen teks dengan panjang yang optimal,

umumnya berkisar antara 200–350 token. Agar informasi tidak terputus, setiap

chunk diberi irisan konteks (overlap) sekitar 20–30% dengan chunk sebelumnya.

Strategi ini membantu menjaga kesinambungan makna dan mencegah hilangnya

detail penting. Secara algoritmik yaitu dengan cara mengambil window yang dapat

dinotasikan dengan notasi berikut, dengan panjang L token.

[𝑖, 𝑖 + 𝐿) (3.2)

Jadi, misalkan pada penelitian ini digunakan L = 300 token, maka sudah

melalui perhitungan kata atau tanda pemisah (whitespace dan punctuation) agar

cukup panjang untuk menjaga konteks, tapi tidak melebihi batas jendela model.

Kemudian mulai dari token pertama, ambil L token dari indeks ke-i sampai 𝑖 + 𝐿.

Notasi [𝑖, 𝑖 + 𝐿) berarti mulai dari token i (inklusif) sampai 𝑖 + 𝐿 (eksklusif).

38

Window tidak langsung melompat ke token berikutnya setelah 𝑖 + 𝐿, tapi digeser

sebagian dengan rumus stride berikut agar ada overlap.

𝑠𝑡𝑟𝑖𝑑𝑒 = 𝐿 × (1 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝) (3.3)

Lalu untuk overlap dibuat 20%, berarti 𝑠𝑡𝑟𝑖𝑑𝑒 = 300 × (1 − 0.2) =

 240. Jadi window kedua mulai dari token ke-241, bukan ke-301. Dilanjutkan

dengan window kedua mencakup token [241, 541) → tetap 300 token. Window

ketiga [481, 781), dan seterusnya. Proses ini akan berlangsung secara berulang

sampai semua token habis. Chunk terakhir mungkin berisi token lebih sedikit (<L)

jika teks tidak habis dibagi rata.

Sebagai ilustrasi lebih lengkap, penulis menggambarkan pada Tabel 3.2

berikut. Misal teks menghasilkan 1000 token setelah tokenisasi, dengan L = 300

dan overlap 20%:

Tabel 3.2 Ilustrasi Pembagian Chunk dan Cakupan Token

Pembagian Chunk Cakupan Token

Chunk 1 [1 … 300]

Chunk 2 [241 … 540]

Chunk 3 [481 … 780]

Chunk 4 [721 … 1000]

Dari Tabel 3.2 dapat dipahami bahwa dengan 1000 token menghasilkan 4 chunk,

dengan masing-masing terdapat irisan (overlap 20%) dengan chunk sebelumnya.

Selain teks, setiap chunk diperkaya dengan informasi tambahan berupa

metadata, seperti alamat URL, judul halaman, dan bagian spesifik dari mana teks

tersebut diambil. Metadata ini berperan penting untuk keperluan rujukan maupun

validasi di tahap analisis berikutnya. Hasil akhir dari rangkaian ini disimpan dalam

format JSON Lines (JSONL), misalnya pada berkas data/chunks/chunks.jsonl, di

39

mana setiap baris memuat objek JSON berisi id, url, title, serta teks dari chunk yang

telah diproses.

3.3.3 Text Embedding

Setelah teks dipecah menjadi potongan (chunks), tiap chunk harus diubah

ke bentuk numerik agar bisa dibandingkan secara matematis di dalam vector

database. Proses ini dilakukan dengan bantuan encoder. Encoder adalah model

neural network yang bertugas memetakan teks (berupa kata atau kalimat) menjadi

vektor berdimensi tetap. Vektor ini merepresentasikan makna semantik teks,

sehingga kalimat dengan arti mirip akan memiliki vektor yang letaknya dekat di

ruang vektor. Pada tahap ini model open source yaitu Sentence-Transformers (E5)

ini dipilih karena lebih superior dalam menghasilkan representasi vektor yang

semantik dan sadar konteks untuk unit teks yang panjang, seperti kalimat dan

paragraf. Keunggulan ini menjadi krusial jika dibandingkan dengan metode

alternatif. Metode TF-IDF, yang berbasis frekuensi statistik, tidak mampu

menjembatani kesenjangan leksikal, artinya ia tidak akan mengenali hubungan

antara query "biaya kuliah" dengan dokumen yang berisi frasa "Uang Kuliah

Tunggal". Sementara itu, Word2Vec, meskipun mampu menangkap relasi semantik

antar kata, memiliki keterbatasan signifikan karena representasi kalimatnya

seringkali hanya merupakan agregasi (misalnya, rata-rata) dari vektor kata-kata

penyusunnya, sehingga mengabaikan struktur sintaksis dan konteks yang

kompleks. Sebaliknya, Sentence-Transformers, yang dibangun di atas arsitektur

Transformer, mampu memproses seluruh urutan teks secara bersamaan. Hal ini

40

memungkinkannya untuk menghasilkan embedding tunggal yang padat makna,

yang secara efektif menjadi fondasi bagi proses pencarian kemiripan (similarity

search) yang akurat dalam pipeline RAG.

Pilihan ini memastikan bahwa kontribusi ilmiah utama dari penelitian ini

terpusat pada perancangan arsitektur dan evaluasi alur kerja sistem RAG secara

menyeluruh, yang mencakup tahap pra-pemrosesan data, indexing, retrieval,

hingga generation respons. Hal ini merupakan inti dari penyelesaian masalah yang

diajukan, alih-alih berfokus pada pengembangan model embedding fundamental

yang berada di luar cakupan penelitian.

Ilustrasi alur pada tahap text-embedding ini terdapat pada Gambar 3.5

berikut. Sebelum proses proses embedding dipastikan dulu datanya sudah dalam

bentuk potongan dokumen (chunking).

Gambar 3.5 Alur Tahap Text Embedding

Dengan Sentence-Transformers (E5), setiap teks 𝑡 diproyeksikan oleh

encoder ke ruang vektor berdimensi 𝑑 (umumnya 768).

𝐸(𝑡) = 𝑓θ(tokenize(𝑡)) ∈ 𝑅𝑑 (3.4)

Keterangan:

𝐸(𝑡) : embedding dari teks 𝑡, berupa vektor,

𝑓𝜃 : fungsi encoder dengan parameter terlatih,

𝑑 : dimensi tetap (misal 768).

41

Agar konsisten dalam perhitungan kesamaan, embedding dinormalisasi

dengan L2 normalization:

𝐸̂(𝑡) =
𝐸(𝑡)

|𝐸(𝑡)|2

(3.5)

Dimana |𝐸(𝑡)|2 = √∑ (𝐸(𝑡)𝑖)2𝑑
𝑖=1

Ini akan menghasilkan semua embedding punya panjang vektor 1 (unit vektor).

Kemudian kesamaan semantik antar dua teks (query 𝑞 dan dokumen 𝑑)

didefinisikan dengan cosine similarity bentuk umum:

cos(𝐸(𝑞), 𝐸(𝑑)) =
𝐸(𝑞) ⋅ 𝐸(𝑑)

|𝐸(𝑞)|2 |𝐸(𝑑)|2

(3.6)

Rumus ini selalu berlaku sebelum normalisasi. Sementara itu, pada penelitian ini

semua embedding sudah dinormalisasi L2, sehingga berlaku:

|𝐸̂(𝑞)|2 = |𝐸̂(𝑑)|2 = 1 (3.7)

Sehingga jarak/kesamaan antar teks bisa dihitung dengan rumus cosine similarity

yang yang menjadi lebih sederhana yaitu

cos (𝐸̂(𝑞), 𝐸̂(𝑑)) = 𝐸̂(𝑞) ⋅ 𝐸̂(𝑑) (3.8)

Penulis menyajikan ilustrasi pada Tabel 3.3. Misalkan encoder menghasilkan

vektor 3 dimensi (untuk contoh sederhana saja, ukuran aslinya 768 dimensi).

Tabel 3.3 Ilustrasi Vektor Pendek Proses Embedding

Teks Vektor awal {𝐸(𝑡)} Normalisasi L2 𝐸̂(𝑡)

“kurikulum TI” [0.21, 0.34, -0.11] [0.49, 0.79, -0.26]

“144 SKS TI” [0.15, -0.28, 0.39] [0.31, -0.58, 0.81]

Berikutnya dihitung cosine similarity dari kedua vektor hasil normalisasi:

𝑐𝑜𝑠 = 0.49 × 0.31 + 0.79 × (−0.58) + (−0.26) × 0.81 = −0.20

42

Hasilnya didapatkan nilai negatif yang artinya makna antar dua teks kurang relevan.

3.3.4 Pengindeksan Vektor (Vector Index)

Ilustrasi proses tahap embedding digambarkan pada Gambar 3.6. Setelah

setiap potongan teks (chunk) direpresentasikan menjadi vektor berdimensi tetap

melalui tahap text embedding. Langkah berikutnya adalah menyusun indeks vektor

agar pencarian k-tetangga terdekat (k-NN) bisa dilakukan cepat dan terukur. Pada

penelitian ini digunakan FAISS (Facebook/Meta AI Similarity Search) sebagai

engine pencarian vektor, karena mendukung jutaan vektor Nur Hakim et al., (2025),

memiliki banyak tipe indeks (dari yang akurat sampai yang sangat cepat), dan

tersedia antarmuka Python sehingga mudah diintegrasikan dengan pipeline RAG.

Gambar 3.6 Alur Tahap Vector Indexing

Konsep dasar pada tahap ini adalah misalkan setiap dokumen/chunk 𝐼

memiliki embedding ter-normalisasi 𝑑𝑖̂ ∈ 𝑅𝑑, 𝑞̂ ∈ 𝑅𝑑 dan sebuah kueri pengguna

direpresentasikan menjadi embedding ter-normalisasi cos(𝑞̂, 𝑑𝑖̂) = 𝑞̂ ⋅ 𝑑𝑖̂. Skor

kedekatan yang digunakan adalah cosine similarity. Karena semua vektor sudah L2-

normalized |𝐸̂|2 = 1, cosine similarity ekuivalen dengan inner product (IP):

cos(𝑞̂, 𝑑𝑖̂) = 𝑞̂ ⋅ 𝑑𝑖̂ (3.9)

43

Dengan demikian, ranking dokumen relevan bisa diperoleh dengan mencari Top-K

nilai 𝑞̂ ⋅ 𝑑𝑖̂ terbesar untuk semua 𝑖. Sementara, untuk pemetaannya ke FAISS

terdapat pada Tabel 3.4. Pada tabel tersebut berisi penjelasan tahap-tahap proses

vector indexing.

Tabel 3.4 Alur Pemetaan Indeks ke FAISS

Tahap Deskripsi

1 Menyusun sebuah indeks FAISS berisi semua vektor dokumen

2
Tipe indeks yang digunakan pada tahap awal adalah IndexFlatIP (inner product)

akurat dan sederhana.

3
Karena vektor telah dinormalisasi, IndexFlatIP menghasilkan urutan yang sama

dengan cosine similarity (tanpa perlu membagi oleh norma).

4

Untuk skala lebih besar, indeks bisa ditingkatkan ke IVF (Inverted File) atau

HNSW untuk mempercepat, dengan kompromi akurasi (approximate nearest

neighbor).

Catatan: Pada penelitian ini digunakan IndexFlatIP sebagai metode indexing utama

karena memiliki tingkat akurasi tinggi dengan mekanisme pencarian berbasis inner

product (Krisnawati et al., 2024). Pendekatan ini sederhana untuk direplikasi dan

sangat cocok digunakan pada tahap awal pengembangan sistem dengan jumlah

vektor relatif kecil (dimensi 𝑑 = 768, sesuai keluaran model Sentence-

Transformer). Apabila ukuran data meningkat secara signifikan (jumlah vektor 𝑁

bertambah besar), maka arsitektur dapat diskalakan dengan mengganti index type

ke IVF (Inverted File Index) atau HNSW (Hierarchical Navigable Small World).

Kedua metode ini memungkinkan peningkatan efisiensi pencarian melalui

approximate nearest neighbor search dengan tetap menjaga keseimbangan antara

kecepatan dan akurasi.

Pada Tabel 3.5 berikut disajikan bagaimana alur teknis proses indeksasi

vektor secara singkat.

44

Tabel 3.5 Alur Teknis Build Time Indeksasi Vektor ke FAISS

Tahap Deskripsi

1 Load semua chunk dari data/chunks/chunks.jsonl.

2
Embed setiap chunk dengan model (misal E5), lalu hasilnya dilakukan L2-

normalization.

3 Inisialisasi indeks.

index = faiss.IndexFlatIP(dim)

4 Tambahkan seluruh embedding ke indeks:

index.add(embeddings)

embeddings shape: [N, d], sudah dinormalisasi

5 Simpan indeks dan metadata secara terpisah.

data/index/chunks.faiss → struktur FAISS (hanya vektor).

data/index/meta.json → daftar metadata yang urutannya sejajar dengan vektor

(id, url, title, text, dan sebagainya).

Kemudian pada Tabel 3.6 berikut disajikan deskripsi dari tahap awal sampai

akhir dari proses teknis pencarian indeks vektor pada FAISS.

Tabel 3.6 Alur Teknis Vector Index Searching pada FAISS

Tahap Deskripsi

1
Terima pertanyaan pengguna, bentuk embedding query ter-normalisasi 𝑞̂ (format

E5: "query: <teks>")

2

Lakukan pencarian Top-K di indeks:

scores, idxs = index.search(q_vec, k) # inner product

FAISS mengembalikan dua matriks: scores (nilai IP/cosine) dan idxs (indeks baris

vektor dokumen).

3
Gunakan idxs untuk mengambil metadata terkait dari meta.json (url, judul, cuplikan

teks).

4
Kirim daftar kandidat ini ke tahap reranking (opsional) atau langsung ke prompting

(jika tanpa reranker).

Jika disusun semua vektor dokumen sebagai baris matriks 𝐷 ∈ 𝑅𝑁×𝑑 (setiap baris

adalah 𝑑𝑖̂), dan vektor kueri sebagai kolom 𝑞̂ ∈ 𝑅𝑑×𝟙, maka skor kedekatan seluruh

dokumen ke query dapat dihitung sebagai:

𝑠 = 𝐷𝑞̂ ∈ 𝑅𝑁×𝟙, 𝑠𝑖 = 𝑑𝑖̂ ⋅ 𝑞̂ (3.10)

FAISS melakukan operasi serupa secara sangat efisien (dengan optimasi

C++/SIMD/GPU). Proses Top-K berarti mengambil 𝐾 nilai 𝑠𝑖 terbesar beserta

indeksnya.

45

 Untuk menjaga keamanan dan konsistensi skor, maka perlu dipastikan

normalisasi L2 diterapkan baik pada embedding dokumen saat build maupun

embedding query saat query. Ini membuat inner product setara dengan cosine,

sehingga interpretasi skor konsisten. Jika tidak dinormalisasi, inner product akan

bergantung pada panjang vektor, bukan hanya arah (makna), sehingga ranking bisa

bias.

 Penyimpanan indeks FAISS (file dengan format .faiss) bersifat read-only

dalam penelitian ini, artinya jika korpus data diperbarui, maka pipeline rebuild

indeks perlu dijalankan ulang. Sementara untuk metadata sendiri disimpan di berkas

meta.json (atau Parquet) agar mudah dibaca ulang saat serve. Di production,

metadata bisa dipindah ke database (misal Postgres/Supabase) untuk pemeliharaan

yang lebih nyaman.

Terdapat Tabel 3.7 yang menyajikan catatan penting untuk memudahkan

penjelasan lebih eksplisit terkait tipe indeks FAISS, dapat dilihat pada tabel berikut.

Tabel 3.7 Catatan Penting Tipe Indeks FAISS

Tipe Indeks Deskripsi

IndexFlatIP exact search berbasis inner product; akurat, cocok untuk N kecil–menengah

IVF (Inverted

File)

membagi ruang vektor ke beberapa centroid; mempercepat pencarian pada N

besar (kompromi akurasi)

HNSW
graph-based ANN (Approximate Nearest Neighbor) dengan performa sangat

baik untuk skala besar.

3.3.5 First Stage Retrieval

Setelah embedding dokumen disimpan dalam vector index kemudian masuk

tahap berikutnya yaitu first stage retrieval. Alur pada tahap ini dapat dilihat pada

Gambar 3.7. Embedding dari query pengguna (𝑞̂) dibandingkan dengan embedding

dokumen yang tersimpan dalam indeks (𝑑̂𝑖) menggunakan ukuran kesamaan.

46

Pencarian dilakukan untuk menemukan Top-k dokumen dengan skor kesamaan

tertinggi (Soliman et al., 2025).

Gambar 3.7 Alur Tahap First Stage Retrieval

Dengan embedding yang telah dinormalisasi menggunakan L2, perhitungan

cosine similarity pada tahap retrieval dapat disederhanakan menjadi operasi dot

product antar vektor. Oleh karena itu, peringkat dokumen relevan (Top-k) dapat

langsung diperoleh dari hasil skor kesamaan. Ilustrasi perhitungan manual telah

disajikan pada tahap sebelumnya (Vector Indexing), di mana dokumen dengan skor

tertinggi diprioritaskan sebagai hasil first stage retrieval. Jadi, kesamaan dihitung

menggunakan cosine similarity, yang dirumuskan persis seperti persamaan 3.9 yang

terdapat pada tahap embedding.

Dengan menggunakan FAISS, proses ini dapat dilakukan secara efisien

meskipun jumlah dokumen sangat besar. Sistem kemudian mengembalikan daftar

kandidat Top-k dokumen yang paling relevan. Hasil dari tahap ini bersifat coarse

retrieval, artinya masih mungkin ada dokumen yang urutannya kurang tepat,

sehingga diperlukan tahap selanjutnya yaitu reranking.

47

3.3.6 Reranking

Tahap ini bertujuan untuk menyempurnakan urutan dokumen yang

dihasilkan dari tahap first stage retrieval. Alur proses reranking disajikan pada

Gambar 3.8. Dari Top-k kandidat dokumen, sistem mengevaluasi kembali tingkat

relevansi menggunakan metode yang lebih presisi, meskipun lebih mahal secara

komputasi.

Gambar 3.8 Alur Tahap Reranking

Dalam penelitian ini digunakan kombinasi pendekatan embedding dengan

algoritma berbasis lexical matching, seperti BM25, yang merupakan salah satu

algoritma probabilistic retrieval. Setelah hasil retrieval awal diperoleh dari FAISS,

sistem melakukan proses reranking menggunakan metode BM25 untuk

memprioritaskan potongan teks yang paling relevan secara leksikal dengan query

pengguna. Skor relevansi BM25 dihitung dengan persamaan formula berikut:

𝐵𝑀25(𝑞, 𝑑) = ∑ 𝐼𝐷𝐹(𝑡)

𝑡∈𝑞

𝑓(𝑡, 𝑑) ⋅ (𝑘1 + 1)

𝑓(𝑡, 𝑑) + 𝑘1 ⋅ (1 − 𝑏 + 𝑏 ⋅
|𝑑|

𝑎𝑣𝑔𝑑𝑙
)

(3.11)

Keterangan lengkap dari rumus BM25 dapat dilihat pada Tabel 3.8 berikut.

Tabel 3.8 Keterangan Rumus BM25

Simbol Keterangan

𝑓(𝑡, 𝑑) frekuensi kemunculan term 𝑡 dalam dokumen 𝑑

|𝑑| panjang dokumen 𝑑

𝑎𝑣𝑔𝑑𝑙 panjang rata-rata dokumen dalam koleksi

48

Tabel 3.8 Lanjutan

Simbol Keterangan

𝑘1 𝑑𝑎𝑛 𝑏 parameter pengatur (umumnya 𝑘_{1} ∈ [1.2, 2.0], 𝑏 = 0.75)

𝐼𝐷𝐹(𝑡) inverse document frequency dari term 𝑡

Proses reranking ini menggabungkan kekuatan semantic retrieval (embedding

similarity) dan lexical retrieval (BM25). Dengan demikian, dokumen yang paling

relevan baik secara semantik maupun leksikal dapat diprioritaskan (Robertson &

Zaragoza, 2009).

3.3.7 Generation

Tahap terakhir adalah generation. Seperti yang terdapat pada Gambar 3.9

menunjukkan alur dari proses generation dimana ini merupakan proses dokumen

hasil retrieval (yang sudah diurutkan kembali melalui reranking) digunakan

sebagai konteks tambahan (augmented context) bagi model bahasa (LLM) untuk

menghasilkan jawaban.

Gambar 3.9 Alur Tahap Generation

Secara teknis, model generatif menerima dua masukan yaitu query asli dari

pengguna dan kumpulan dokumen relevan hasil retrieval (umumnya 3–5 dokumen

teratas). LLM kemudian memproses kedua masukan tersebut dengan mekanisme

atensi, sehingga jawaban yang dihasilkan bersandar pada pengetahuan yang ada

dalam dokumen, bukan semata-mata pada model. Mekanisme ini membuat jawaban

49

lebih faktual dan mengurangi risiko hallucination. Formulasinya dapat

digambarkan secara sederhana:

Answer = 𝐿𝐿𝑀(Query, ContextTop-𝑘) (3.12)

Keterangan:

𝑄𝑢𝑒𝑟𝑦 : pertanyaan pengguna

ContextTop-𝑘 : dokumen hasil retrieval yang disatukan sebagai prompt augmentation

Answer : keluaran jawaban akhir dari sistem

Pada tahap generation ini, sistem memanfaatkan model TinyLLaMA 1.1B

sebagai decoder-only LLM untuk menghasilkan jawaban berdasarkan potongan

konteks hasil retrieval. Model ini dipilih karena berukuran ringan, efisien, dan

dapat dijalankan pada perangkat dengan sumber daya terbatas. Berikutnya agar

tahap “generation” berlangsung lebih solid, maka perlu dilakukan prompting untuk

LLM sendiri dan melakukan konfigurasi sehingga panjang jawaban konteks juga

disesuaikan dengan kebutuhan. Misalnya dilakukan konfigurasi seperti pada Tabel

3.9 berikut.

Tabel 3.9 Template Prompt dan Konfigurasi LLM

Kebutuhan

Konfigurasi
Keterangan

Instruction

Jawablah pertanyaan pengguna hanya berdasarkan KONTEN yang

diberikan. Jika tidak ditemukan jawabannya di KONTEN, sampaikan

tidak tersedia dan di luar domain.

𝐾𝑂𝑁𝑇𝐸𝑁 …(Top-k chunk)…

PERTANYAAN {𝑞}

Konfigurasi

TinyLLaMA-1.1B, quantization 4-bit (QloRA/gguf), max_tokens

output 256, temperature 0.3–0.7, top-k 40–100, top-p 0.9. Panjang

konteks efektif disesuaikan (49issal 2–4 potongan @300 token) agar

tidak melebihi jendela model.

Adapun tahap evaluasi akan dijelaskan pada bagian skenario pengujian,

menggunakan metrik seperti Faithfulness untuk konsistensi terhadap konteks.

50

3.4 Implementasi Sistem

Tahap implementasi akan mencakup pengembangan dua komponen utama:

backend RAG dan antarmuka (frontend) chatbot. Gambaran implementasi dari

desain sistem yang sudah diuraikan pada bagian 3.3 secara garis besar keseluruhan

diilustrasikan pada Gambar 3.10 berikut. Pada gambar tersebut dapat dipahami

bahwa ranah yang bisa diakses oleh user hanya sebatas pada tampilan antarmuka

chatbot saja. Untuk detail mekanisme RAG sendiri akan terjadi di sisi server

backend). Adapun jika diruntut secara singkat, user mengakses chatbot,

mengajukan pertanyaan, lalu sistem akan mengubah query user menjadi bentuk

vektor lalu dari nilai tersebut akan digunakan untuk melakukan pencarian dokumen

relevan di database vektor. Top-k dokumen paling relevan akan diteruskan ke LLM

beserta vektor dari query user tadi sebagai dasar LLM melakukan generasi jawaban.

Kemudian setelah jawaban berhasil dihasilkan akan ditampilkan di antarmuka

chatbot yang dapat diakses oleh user.

51

Gambar 3.10 Skema Implementasi Desain Utama Sistem Chatbot RAG

3.4.1 Perangkat Keras dan Lunak:

Perangkat keras yang digunakan selama pengembangan dan pengujian akan

dilakukan pada laptop dengan spesifikasi prosesor AMD Ryzen 3, RAM 8 GB, dan

sistem operasi Windows 64-bit. Sementara untuk detail dari spesifikasi perangkat

lunak yang digunakan dalam penelitian ini tertera jelas pada Tabel 3.10 berikut.

Tabel 3.10 Spesifikasi Perangkat Lunak yang digunakan

Perangkat Lunak Spesifikasi

Bahasa Pemrograman Python 3.10+

Backend Framework FastAPI

Open Source LLM TinyLLaMA-1.1B

Vector Database FAISS

Embedding Hugging Face (transformers, sentence-transformers)

52

3.4.2 Arsitektur Sistem

Sistem akan dibangun dengan arsitektur client-server, yaitu frontend dan

backend. Frontend merupakan antarmuka pengguna (UI) berbasis web yang telah

Anda kembangkan (index.html, app.js, styles.css). Komponen ini bertanggung

jawab untuk menampilkan dialog percakapan dan berkomunikasi dengan backend

melalui HTTP requests.

Backend (RAG API) merupakan sebuah layanan API yang dibangun dengan

FastAPI. API ini akan menyediakan endpoint (misalnya /api/chat) yang menerima

pertanyaan dari query user di sisi frontend, menjalankan seluruh pipeline RAG

(retrieval dari FAISS dan generasi oleh TinyLLaMA-1.1B), dan mengembalikan

jawaban beserta sumbernya.

Selain pendekatan client–server tradisional, sistem ini juga dirancang agar

dapat di-deploy menggunakan Streamlit. Streamlit merupakan framework Python

yang memungkinkan pembangunan antarmuka interaktif berbasis web tanpa

memerlukan pengembangan frontend manual. Dengan menjalankan perintah

‘streamlit run’, backend RAG dapat sekaligus menyajikan antarmuka chatbot yang

dapat diakses langsung melalui browser. Pendekatan ini memberikan fleksibilitas

yang tinggi di tahap awal penelitian. Streamlit mempermudah prototyping dan

pengujian sistem oleh banyak pengguna, sedangkan di tahap lanjut, frontend dan

backend tetap dapat dipisahkan untuk tujuan skalabilitas.

3.4.3 Input dan Proses

Input utama sistem adalah data tekstual tidak terstruktur yang berasal dari

website Prodi Teknik Informatika UIN Malang. Lingkup data yang diambil

53

meliputi, namun tidak terbatas pada, halaman profil prodi, kurikulum, informasi

dosen, detail kelompok keilmuan, prosedur akademik, panduan skripsi dan PKL,

serta berita dan pengumuman. Selain itu, input lainnya adalah pertanyaan (query)

dalam bahasa Indonesia yang diajukan oleh pengguna melalui antarmuka chatbot.

Proses inti dalam sistem ini adalah alur kerja RAG yang telah dijelaskan pada

Desain Sistem (3.3). Proses ini dapat dirinci lebih lanjut seperti pada Tabel 3.11.

Tabel 3.11 Penjelasan Proses Inti RAG

Nama Proses Penjelasan Proses

Query Processing Pertanyaan dari pengguna diterima melalui API.

Vector Search

Sistem melakukan pencarian pada indeks FAISS untuk menemukan

dokumen-dokumen (chunks) yang paling relevan dengan pertanyaan

pengguna.

Context

Formulation
Dokumen-dokumen yang relevan diformat menjadi sebuah konteks.

Prompt

Engineering

Sistem menyusun sebuah prompt terstruktur yang berisi instruksi untuk

LLM, konteks yang relevan, dan pertanyaan asli pengguna.

LLM Inference
Prompt tersebut dikirim ke endpoint LLM (TinyLLaMA-1.1B) untuk

menghasilkan jawaban.

Response

Formatting

Jawaban dari LLM beserta sumber referensinya (dokumen yang digunakan

sebagai konteks) diformat menjadi sebuah respons JSON untuk dikirim

kembali ke antarmuka pengguna.

3.4.4 Output

Output yang dihasilkan oleh sistem adalah jawaban tekstual yaitu sebuah

jawaban dalam format bahasa natural yang relevan dengan pertanyaan pengguna,

dihasilkan oleh LLM berdasarkan konteks yang diberikan dan dilengkapi dengan

sumber referensi yaitu daftar sumber (judul halaman atau URL) dari website prodi

yang digunakan sebagai dasar untuk menghasilkan jawaban, guna meningkatkan

transparansi dan memungkinkan pengguna untuk melakukan verifikasi.

54

3.5 Skenario Pengujian

Tujuan pengujian pada penelitian ini adalah untuk menilai sejauh mana

sistem chatbot berbasis Retrieval-Augmented Generation (RAG) mampu

menghasilkan jawaban yang relevan dengan pertanyaan pengguna, menyajikan

jawaban yang akurat dan konsisten dengan sumber data (knowledge base), dan

memberikan respons dalam waktu yang wajar, sehingga layak digunakan dalam

skenario nyata.

Untuk skenario uji sendiri dilakukan melalui dua aspek utama, yaitu

pengujian retrieval dan pengujian generasi jawaban (generation). Selain pengujian

kedua aspek tadi. Beberapa metrik yang digunakan untuk mengevaluasi sistem

chatbot sendiri yaitu diantaranya ada MRR (Mean Reciprocal Rank), Semantic

Similarity, dan masih ada lainnya.

Seluruh metrik evaluasi dalam penelitian ini menghasilkan skor dalam

rentang 0 hingga 1. Rentang ini digunakan karena setiap nilai hasil pengukuran

telah dinormalisasi. Semakin mendekati angka 1, semakin baik performa sistem

baik dalam hal pencarian dokumen relevan maupun kualitas jawaban yang

dihasilkan. Sebaliknya, nilai yang mendekati 0 menunjukkan rendahnya relevansi

dan akurasi sistem dalam menjawab pertanyaan pengguna. Dengan rentang nilai

yang terstandarisasi ini, perbandingan antar-metrik menjadi lebih objektif dan

mudah dianalisis.

3.5.1 Pengujian Retrieval

Pengujian retrieval ini berfokus pada kemampuan sistem mengambil

dokumen paling relevan terhadap query pengguna. Terdapat tiga metrik utama yang

55

digunakan pada pengujian ini, yaitu Recall at k, Mean Reciprocal Rank (MRR@k),

dan Normalized Discounted Cumulative Gain (NDCG@k). Pengujian Retrieval

dilakukan pada 30 pertanyaan uji yang diambil dari konten website resmi Program

Studi. Variasi parameter k digunakan dengan nilai k = 3, 5, dan 10. Pemilihan

variasi ini mengacu pada praktik umum dalam penelitian Retrieval-Augmented

Generation dan Information Retrieval, seperti yang digunakan oleh Lewis et al.

(2020) pada Dense Retriever dan Karpukhin et al. (2020) dalam Dense Passage

Retrieval (DPR), di mana rentang k = 3 hingga k = 10 dianggap cukup mewakili

keseimbangan antara cakupan konteks yang diambil dan relevansi hasil pencarian.

Sementara itu, nilai k = 3 mencerminkan skenario focused retrieval dengan

konteks minimal, k = 5 menggambarkan kondisi moderat yang sering digunakan

sebagai nilai default dalam sistem RAG, sedangkan k = 10 mengevaluasi performa

sistem ketika cakupan konteks diperluas untuk memastikan dokumen relevan tidak

terlewat. Dengan variasi ini, dapat diamati pengaruh jumlah dokumen terambil

terhadap skor relevansi (Recall@k), kualitas perankingan dokumen (NDCG@k),

posisi dokumen relevan pertama (MRR@k), serta konsistensi hasil generasi

jawaban pada tahap berikutnya.

1. Recall at – k

Metrik ini mengukur proporsi dokumen relevan yang berhasil ditemukan

pada k hasil teratas. Recall@k didefinisikan sebagai rasio jumlah dokumen relevan

yang berhasil tampil dalam 𝑘 hasil teratas (Top-k) terhadap total jumlah dokumen

relevan untuk query tersebut. Dengan kata lain, jika sistem hanya menampilkan 𝑘

56

kandidat jawaban teratas, Recall@k mengukur seberapa banyak dari dokumen

relevan itu berhasil tercakup dalam daftar tersebut.

Recall@𝑘 =
Jumlah dokumen relevan dalam Top-𝑘

Total dokumen relevan
(3.13)

Misalnya, untuk query tentang “kurikulum semester 5” ada total 4 dokumen relevan

di koleksi, dan sistem menampilkan 3 di antara mereka di Top-5 → Recall@5 = 3/4

= 0,75.

Versi pertama (Recall@k dasar) tersebut digunakan untuk memahami

konsep pada satu query, sedangkan formulasi agregat memperhitungkan semua

query sehingga representatif untuk evaluasi sistem menyeluruh. Pendekatan agregat

ini banyak digunakan dalam penelitian informasi retrieval dan sistem RAG modern

Knollmeyer et al. (2025), seperti yang terlihat pada framework GraphRAG yang

menggabungkan struktur graf dokumen untuk memperkuat kualitas konteks dan

hasil generasi.

Recall@𝑘 =
1

|𝑄|
∑

|𝑅𝑞 ∩ 𝐶𝑞,𝑘|

|𝑅𝑞|
𝑞∈𝑄

(3.14)

Keterangan:

𝑄: himpunan semua query uji,

𝑅𝑞: himpunan dokumen relevan (ground truth) untuk query 𝑞,

𝐶𝑞,𝑘: himpunan 𝑘 kandidat teratas yang dikembalikan sistem,

𝑅𝑞 ∩ 𝐶𝑞,𝑘: jumlah dokumen relevan yang muncul dalam Top-k sistem.

2. Mean Reciprocal Rank (MRR)

Mengukur posisi relatif jawaban relevan pertama dalam hasil pencarian.

Semakin tinggi nilai MRR, semakin baik karena item relevan muncul di peringkat

awal.

57

𝑀𝑅𝑅 =
1

|𝑄|
(∑

1

𝑟𝑎𝑛𝑘𝑖

|𝑄|

𝑖=1

) (3.15)

dengan 𝑟𝑎𝑛𝑘𝑖 adalah posisi jawaban relevan pertama untuk query ke-𝑖.

3. Normalized Discounted Cumulative Gain (NDCG@k)

NDCG@k mengukur kualitas perankingan dokumen dengan

mempertimbangkan posisi dokumen relevan dalam hasil retrieval. Metrik ini

memberikan bobot lebih tinggi pada dokumen relevan yang muncul di posisi atas.

Formula NDCG@k:

𝑁𝐷𝐶𝐺@𝑘 = 𝐼𝐷𝐶𝐺@𝑘/𝐷𝐶𝐺@𝑘 3.16

dengan

DCG@𝑘 = ∑
𝑟𝑒𝑙𝑖

log2(𝑖 + 1)

𝑘

𝑖=1

3.17

Keterangan:

𝑟𝑒𝑙𝑖 = skor relevansi dokumen di posisi ii i (1 jika relevan, 0 jika tidak)

𝐼𝐷𝐶𝐺@𝑘 = ideal DCG, yaitu DCG maksimum jika semua dokumen relevan berada di posisi teratas

Rentang nilai berkisar antara 0–1 (semakin tinggi semakin baik). NDCG@5 = 0.8

berarti kualitas ranking sistem mencapai 80% dari kondisi ideal di mana semua

dokumen relevan berada di top-5 dengan urutan sempurna.

NDCG lebih informatif dibanding Recall karena tidak hanya mengukur

"apakah dokumen relevan ditemukan", tetapi juga "seberapa baik posisi

perankingannya". Dokumen relevan di posisi 1 memberikan kontribusi lebih besar

daripada di posisi 10.

58

3.5.2 Pengujian Generation

Selain kemampuan retrieval, penting untuk mengukur kualitas jawaban

yang dihasilkan model pada proses generasi. Pengujian generation dilakukan pada

subset 50 pertanyaan yang disusun dari topik akademik Prodi (kurikulum, PKL,

dosen, kelompok keilmuan, layanan administrasi, dan lainnya). Setiap pertanyaan

dipasangkan dengan reference answer yang diambil dari konten resmi website

prodi (misalnya halaman kurikulum, panduan PKL, informasi dosen). Reference

answer berfungsi sebagai jawaban acuan yang “benar” untuk perbandingan objektif

terhadap keluaran chatbot. Evaluasi kuantitatif dilakukan menggunakan metrik

Answer Relevancy dan Faithfulness, untuk menilai kedekatan semantik terhadap

jawaban acuan dan kepatuhan pada konteks sumber.

1. Answer Relevancy

Metrik ini mengukur sejauh mana jawaban yang dihasilkan sistem selaras

dengan maksud pertanyaan pengguna. Dengan menggunakan cosine similarity

antara embedding pertanyaan (𝐸𝑜) dan embedding jawaban (𝐸𝑔), nilai AR akan

semakin tinggi jika jawaban semakin relevan dengan konteks pertanyaan.

𝐴𝑅 =
1

𝑁
∑ cos(𝐸𝑔, 𝐸𝑜)

𝑁

𝑖=1

(3.18)

dengan 𝐸𝑔 adalah embedding jawaban dan 𝐸𝑜 adalah embedding pertanyaan. Metrik

ini dipakai karena jawaban yang dihasilkan LLM/RAG belum tentu langsung

relevan, sehingga perlu dibandingkan kedekatannya dengan pertanyaan.

59

2. Faithfulness

Faithfulness mengevaluasi kebenaran faktual jawaban terhadap konteks

dokumen yang diambil oleh sistem. Jika jawaban menghasilkan klaim yang

tidak ada atau bertentangan dengan konteks, nilainya akan menurun.

𝐹 =
jumlah klaim jawaban yang sesuai konteks

total klaim jawaban
(3.19)

Metrik ini penting karena salah satu kelemahan LLM adalah halusinasi. Dengan

faithfulness, bisa diukur apakah sistem benar-benar mengambil informasi dari

basis pengetahuan yang relevan.

Klaim jawaban sendiri adalah berupa unit pernyataan faktual yang bisa

diverifikasi, misalnya entitas (nama dosen/kelompok keilmuan), atribut

(jumlah, tanggal, semester), relasi (X termasuk Y, syarat PKL = Z),

daftar/anggota (item-item dalam list resmi). Jadi jawaban dapat dikatakan

sesuai konteks artinya sebuah klaim dianggap didukung bila tercantum, tersirat

kuat, atau terparafrasa setara di dalam potongan teks sumber resmi untuk

pertanyaan tersebut. Pemeriksaan dukungan dilakukan per klaim (bukan per

kalimat penuh).

3. Semantic Similarity

Metrik ini mengukur kesamaan semantik antara jawaban sistem dengan

jawaban referensi (ground truth). Metrik ini juga dihitung dengan cosine

similarity antara vektor embedding jawaban dan jawaban referensi. Jawaban

referensi/ground truth adalah teks jawaban acuan yang dirumuskan dari website

resmi prodi teknik informatika untuk setiap pertanyaan (disusun ringkas,

60

faktual, dan merefleksikan isi sumber). Sedangkan jawaban sistem adalah

keluaran generatif chatbot RAG untuk pertanyaan yang sama.

Metrik ini beroperasi di tingkat kalimat penuh untuk menilai kesamaan

semantik global. Semantic Similarity digunakan untuk mengukur kesamaan

makna umum antar jawaban sistem dan referensi.

𝑆𝑆 = cos(𝑉jawaban, 𝑉referensi) (3.20)

Dengan semantic similarity, sistem tetap dianggap benar walaupun gaya

bahasanya berbeda, selama makna intinya sama. Semakin tinggi nilai dari

Semantic Similarity maka makna keluaran (output) semakin mendekati

jawaban acuan yang bersumber dari website resmi.

 Pada Tabel 3.11 ini adalah ringkasan skenario pengujian yang akan

dilakukan untuk menilai dan menguji masing-masing tahap dari tahap retrieval dan

tahap generation dari sistem chatbot berbasis RAG ini:

Tabel 3.11 Ringkasan Skenario Pengujian RAG

Aspek Uji Metrik Tujuan Data Uji Parameter

Retrieval Recall@k, MRR

Mengukur

relevansi

pencarian

30 pertanyaan k = 3,5,10

Generation

Semantic

Similarity, AR,

Faithfulness

Menilai akurasi

& faktualitas

jawaban

30 pertanyaan —

Generation

Semantic

Similarity, AR,

Faithfulness

Menilai

konsistensi

jawaban

1 pertanyaan

(sama)
5x percobaan

 Terdapat tambahan pengujian tahap generation yaitu dilakukan pengujian

konsistensi jawaban dari sistem dengan mengujikan satu query yang sama namun

dengan jumlah percobaan lebih dari satu kali yaitu sebanyak lima kalil. Hal ini

bertujuan untuk melihat bagaimana nilai metrik dari semantic similarity, answer

61

relevancy, dan juga faithfulness jika query yang diuji coba terhadap sistem adalah

query yang sama.

62

BAB IV

HASIL DAN PEMBAHASAN

4.1 Hasil

Sistem chatbot akademik berbasis RAG dikembangkan untuk membantu

mahasiswa mengakses informasi akademik dari Program Studi Teknik Informatika

UIN Malang secara cepat dan akurat.

4.1.1 Arsitektur & Antarmuka Klien (Front-end)

Arsitektur sistem untuk antarmuka chabot terdiri dari HTML, CSS, dan

Javascript. Aplikasi ini bersifat statis dan murni (tanpa framework) sehingga mudah

dipelihara dan ringan dijalankan di perangkat mahasiswa. Aplikasi ini memanggil

REST API dari layanan RAG (FastAPI) menggunakan fetch(). Penjelasan dari

masing-masing file beserta fungsi nya dapat dilihat pada Tabel 4.1.

Tabel 4.1 Struktur berkas (root front-end)

Berkas Fungsi singkat

index.html Halaman utama (container chat, header judul, area riwayat percakapan)

styles.css Gaya visual (tema gelap, komponen kartu sumber, badge status)

app.js Logika klien: panggil /api/retrieve & /api/chat, render jawaban + sumber

README.md Petunjuk singkat menjalankan front-end di lokal

Cara menjalankan (lokal):

• Serve sederhana via extension/Live Server atau PHP built-in server di VS Code.

• Akses: http://localhost:3000/index.html

Tampilan dari antarmuka chatbot dapat dilihat pada Gambar 4.1 di bawah.

http://localhost:3000/index.html

63

Gambar 4.1 Antarmuka Chatbot Akademik (mode gelap)

4.1.2 Arsitektur & Organisasi Kode RAG (Back-end)

Di sisi back-end, arsitektur sistemnya lebih kompleks dan penjelasan dari

masing-masing file juga dapat dilihat pada Tabel 4.2. Pada tabel tersebut dijelaskan

dari isi dan fungsi dari setiap direktori apa saja. Sistem back-end ini dikembangkan

dengan FastAPI (Python), dengan memisahkan lapisan API dan modul RAG.

Desain ini memudahkan pengujian unit serta penggantian komponen

(retriever/LLM) tanpa mengubah antarmuka.

Tabel 4.2 Struktur Proyek RAG (back-end)

Direktori/Berkas Isi / Peran

api/main.py Entry FastAPI, registrasi router, middleware CORS

api/routes/ Endpoint publik (/api/retrieve, /api/chat)

api/deps.py,

api/schemas.py
Dependency injection & skema Pydantic request/response

rag/scraping/ Skrip scraping (seed, fetch, simpan JSON mentah)

rag/preprocess/ clean_html.py, clean_blocks.py (cleaning & normalisasi)

rag/retrieve/ search.py (BM25), util re-ranking; retrieve.py (wrapper retriever)

64

Tabel 4.2 Lanjutan

Direktori/Berkas Isi / Peran

rag/index/ Pembuatan embedding (E5-Small/Multilingual-E5) & indeks FAISS

rag/generate/
llm_client.py (TinyLlama GGUF + prompt), chat.py (alur RAG →

jawab)

data/raw/ Hasil scraping mentah (JSON)

data/cleaned/ Hasil cleaning/normalisasi (blocks_filtered.jsonl)

data/chunks/ Hasil chunking (chunks.jsonl, chunks_meta.json)

data/index/ Berkas embedding & indeks FAISS

data/eval/ (Opsional) log & sampel pengujian

models/ Model lokal tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf

logs/ Log proses (scrape/embedding/retrieve/generate)

4.1.3 Hasil Web Scraping dan Pembentukan Dataset

Pada tahap ini, proses pengumpulan data dilakukan melalui teknik web

scraping terhadap website resmi Jurusan Teknik Informatika UIN Maulana Malik

Ibrahim Malang sebagai sumber utama korpus pengetahuan untuk sistem chatbot

berbasis RAG. Proses scraping menggunakan modul Python requests dan

BeautifulSoup yang telah diimplementasikan pada skrip scrape_ti.py. Daftar URL

awal (entry points) dimuat melalui berkas sitemap.txt yang berisi delapan kategori

utama, yaitu: profil, akademik, beasiswa, kategori/berita, kegiatan, penelitian,

PMB, dan kontak. Scraper kemudian mengekstraksi seluruh konten dari halaman-

halaman tersebut, dan jika terdapat tautan internal yang masih berada pada domain

yang sama, scraper tetap memprosesnya sebagai bagian dari mekanisme kelanjutan

scraping, bukan crawling mandiri, sehingga teknik yang digunakan masih dalam

ruang lingkup scraping multi-halaman sesuai metodologi penelitian.

Pengumpulan data dilakukan menggunakan skrip python yang terdapat pada

Tabel 4.3 berikut. Dengan menjalankan kode berikut pada terminal, maka berkas

scrape_ti.py yang bertugas untuk melakukan proses scraping akan dijalankan.

65

Tabel 4.3 Kode Python Untuk Menjalanan Scraping

Kode
python rag/scraping/scrape_ti.py --depth 1 --max_pages 350 --

delay 0.6

Parameter ini membuat scraper mengeksplorasi halaman awal website

kemudian mengambil seluruh konten relevan sampai batas maksimum menjadi 350

bagian file, di mana satu halaman website dapat menghasilkan banyak file JSON

karena dipisahkan berdasarkan entitas, misalnya 1 dosen menjadi 1 file JSON

sendiri, 1 mata kuliah juga 1 file JSON terpisah. Dari batas maksimal yang sudah

ditentukan yaitu 350, berhasil didapatkan file (.json) sebanyak 250 yang diambil

kontennya, sementara sisanya gagal dan juga tidak dilakukan scraping dengan

beberapa kondisi seperti SSL certificate error, struktur HTML tidak stabil, halaman

tidak ditemukan, dan juga halaman web yang tingkat informasinya rendah sehingga

akan di-skip oleh kode saat dilakukan scraping. Beberapa hasil scraping juga

mengandung teks yang tidak relevan, markup anomali, atau duplikasi paragraf,

sehingga dilakukan pembersihan manual pada tahap pascaproses. Dan ringkasan

data JSON yang diperoleh dari tahap scraping dapat dilihat pada Tabel 4.4 berikut.

Tabel 4.4 Total Data Terkumpul Sementara

Keterangan Total File JSON

Batas Jumlah File 350

File JSON yang berhasil didapatkan 250

Jumlah Total 250

Seluruh hasil scraping kemudian disimpan dalam format JSON terstruktur dengan

tiga komponen utama: url, fetched_at, dan daftar blocks berisi pasangan tag–text.

Dataset ini menjadi fondasi untuk tahap selanjutnya berupa preprocessing,

66

cleaning, normalisasi, serta chunking sebelum masuk ke proses embedding dan

indexing pada pipeline RAG. Pada Tabel 4.5 ini disajikan contoh rincian dari data

JSON terstruktur hasil scraping:

Tabel 4.5 Contoh Data Dosen Hasil Scraping

Keterangan Deskripsi

Nama Prof. Dr. Suhartono, S.Si, M.Kom

Bidang Keahlian Intelligent System

Email suhartono@ti.uin-malang.ac.id

Research Fields
Pattern Recognition, Neural Networks, Intelligent

Multimedia Networking

Pendidikan

S1 Matematika, ITS

S2 Informatika, ITS

S3 Jaringan Cerdas Multimedia, ITS

Sinta ID 5975073

Scopus ID 56465811900

ORCID ID 0000-0002-4304-4279

Pada Gambar 4.2 disajikan gambar tangkapan layar dari aplikasi Visual

Studio Code yang menampilkan cuplikan data JSON asli hasil dari tahap scraping.

Gambar 4.2 Contoh Data Mentah Dosen Hasil Scraping

Data profil seperti pada Gambar 4.2 dan Tabel 4.5 tersebut akan dijadikan dasar

menjawab pertanyaan seperti “Siapa dosen dengan fokus bidang Intelligent System

di TI UIN Malang?” kemudian juga pertanyaan seperti “Apa penelitian Prof.

mailto:suhartono@ti.uin-malang.ac.id

67

Suhartono?”, namun akan melalui proses yang lebih panjang lagi yaitu seperti

proses pembuatan chunking text hingga embedding terlebih dahulu.

4.1.4 Hasil Preprocessing

Tahap preprocessing merupakan langkah penting untuk menyiapkan data

hasil web scraping menjadi korpus terstruktur yang siap diproses pada tahap

embedding dan indexing. Proses ini mencakup dua komponen utama, yaitu

pembersihan dokumen (cleaning) dan pembentukan potongan teks (chunking).

Seluruh tahapan dilakukan secara otomatis menggunakan dua skrip utama, yaitu

clean_html.py dan chunker.py. Berikut adalah penjelasan rinci berdasarkan data

nyata hasil scraping.

1. Hasil Pembersihan Teks (Cleaning)

Pembersihan dilakukan terhadap seluruh file JSON hasil scraping yang

berada di direktori data/raw_new/. Berdasarkan output clean_html.py, sistem

berhasil memproses 250 file JSON mentah, menghasilkan 2.363 blok teks bersih

yang lolos proses ini, kemudian output disimpan pada

data/cleaned/blocks_filtered.jsonl. Proses cleaning dengan skrip tersebut meliputi:

a. Penghapusan tag HTML secara menyeluruh

Semua elemen <p>, <div>, <h1>–<h4>, , dan atribut HTML

dibersihkan menjadi teks polos. Ilustrasi dari teks yang sebelum dan sesudah

dilakukan penghapusan tag HTML dapat dilihat pada Tabel 4.6 berikut.

Tabel 4.6 Contoh Hasil Penghapusan Tag HTML

Tahap Contoh

Sebelum

Cleaning

" <p>The realization of an integrative Informatics Engineering

Department...</p> <script>alert()</script> "

68

Tabel 4.6 Lanjutan

Tahap Contoh

Sesudah

Cleaning

"The realization of an integrative Informatics Engineering Department in

integrating science and Islam with an international reputation."

b. Normalisasi whitespace

Pada Tabel 4.7 berikut disajikan ilustrasi dari normalisasi whitespace,

dimana normalisasi ini akan menghilangkan spasi ganda, newline berulang,

dan karakter formatting.

Tabel 4.7 Contoh Hasil Normalisasi whitespace

Tahap Contoh

Sebelum

Cleaning
"The realization\n\n of an integrative Informatics Engineering Department ..."

Sesudah

Cleaning

"The realization of an integrative Informatics Engineering Department in

integrating science and Islam with an international reputation."

c. Penghapusan karakter non-teks / noise

Proses ini menghilangkan (sisa script (<script>…), potongan struktur

gambar, artefak CSS/JS, string "JFIF" (penanda file gambar), dan karakter

yang bukan huruf/angka).

Tabel 4.8 Contoh Hasil Penghapusan Karakter Noise

Tahap Contoh

Sebelum

Cleaning
"JFIF....\x00\x1f\x00 Teaching Laboratory <div>..."

Sesudah

Cleaning

"Teaching Laboratory digunakan untuk kegiatan praktikum pemrograman dan

asistensi mahasiswa." (contoh real dari blok lain dalam blocks_filtered.jsonl)

d. Filtering blok tanpa konten

Proses cleaning juga menghapus halaman dengan blok kosong atau berisi

karakter tidak bermakna sehingga bagian seperti itu tidak ikut dimasukkan

69

ke blok final (text == "" → dilewati). Ilustrasi dari hasil proses filtering blok

dapat dilihat pada Tabel 4.9.

Tabel 4.9 Contoh Hasil Filtering Blok

Tahap Contoh

Sebelum Cleaning "" atau " " atau "<div></div>"

Sesudah Cleaning Tidak dimasukkan ke blocks_filtered.jsonl

Jika text.strip() == "", blok tersebut langsung dilewati. Itulah sebabnya dari 350

file hanya tersisa 2350 blok yang dianggap valid.

2. Hasil Normalisasi dan Standarisasi Informasi

Setelah proses cleaning menghasilkan 2.363 blok teks bersih, seluruh blok

diproses kembali pada tahap normalisasi untuk memastikan keseragaman format,

penulisan, dan struktur linguistik sebelum masuk ke embedding. Tahap ini

dilakukan otomatis melalui fungsi-fungsi dalam clean_html.py serta pemrosesan

tambahan pada chunker.py. Normalisasi pada penelitian ini terbagi ke dalam empat

kategori, yaitu normalisasi karakter, normalisasi token, normalisasi entitas, dan

normalisasi struktur.

Tabel 4.10 Aturan Normalisasi per Level

Level Aturan Sebelum Sesudah Dampak ke Sistem

Karakter

Unicode normalization

(NFKC), hilangkan

karakter tak terlihat

(NBSP, ZWSP),

normalisasi dash

KRS —

Online,

Visi\u200b

Prodi

KRS —

Online, Visi

Prodi

Menghindari token

“phantom” yang

menurunkan skor

BM25 dan kualitas

embedding

Karakter

Normalisasi spasi &

baris (≤1 spasi, ≤2

baris)

Laboratoriu

m

Informatika

Laboratori

um

Informatika

Menstabilkan

tokenisasi

70

Tabel 4.10 Lanjutan

Level Aturan Sebelum Sesudah Dampak ke Sistem

Token Case folding selektif

(kecuali nama

orang/instansi/akronim)

PROGRAM

STUDI,

Fakultas

SAINS

Program

Studi,

Fakultas

Sains

Menjaga proper-noun

tetap kapital seperlunya

Token Angka & satuan

(format konsisten)

14 sMt, 12

SKS

14 semester,

12 SKS

Angka terbaca

konsisten; mengurangi

varian token

Token Tanggal (standar teks

Indonesia) + metadata

ISO (di meta)

28 Agustus–

15 Des 2023

28 Agustus–

15

Desember

2023 (meta:

2023-08-

28..2023-12-

15)

Teks tetap natural;

metadata siap dipakai

filter

Token Tanda baca (hilangkan

ganda, seragamkan

kutip & bullet)

“visi prodi’’,

- -

“visi prodi”,

—

Mengurangi noise

embedding

Entitas Nama dosen/role

diseragamkan

Prof Dr

Suhartono

SSi MKom

Prof. Dr.

Suhartono,

S.Si.,

M.Kom.

Pencarian nama

menjadi presisi

Entitas Unit organisasi standar Informatics

Engineering,

Informatika

Teknik

Informatika

(TI)

Menyatukan istilah

lintas bahasa

Struktur
Penyatuan kalimat

yang patah/tercerai

Teaching

Lab.

Digunakan

untuk...

Praktikum...

Teaching

Laboratory

digunakan

untuk

kegiatan

praktikum

dan

asistensi.

Kalimat utuh

menghasilkan

embedding lebih

bermakna

71

Catatan: nama diri (dosen, unit, lab) tidak di-lowercase. Normalisasi angka &

tanggal tidak mengubah isi, hanya menstandarkan penulisan; representasi ISO

disimpan di metadata untuk kebutuhan analitik tambahan (opsional). Contoh

Normalisasi Nyata (Sebelum & Sesudah) dapat dilihat pada Tabel 4.11.

Tabel 4.11 Contoh Normalisasi Nyata (Sebelum & Sesudah)

Sumber/

Kategori
Kutipan Sebelum Sesudah Normalisasi

Profil Dosen Prof Dr Suhartono SSi MKom Prof. Dr. Suhartono, S.Si., M.Kom.

Regulasi

Akademik
Batas masa studi maks. 14 sMt

Batas masa studi maksimal 14

semester.

Jadwal

Perkuliahan
28 Agustus–15 Des 2023

28 Agustus–15 Desember 2023

(meta: 2023-08-28..2023-12-15)

Istilah Prodi

(EN→ID)

Informatics Engineering

Undergraduate

Program Sarjana (S1) Teknik

Informatika (TI)

Normalisasi memastikan korpus seragam, bersih, dan siap di-embedding, tanpa

mengubah makna ilmiah dokumen. Dampaknya: BM25 lebih stabil, cosine

similarity lebih bermakna, dan faithfulness generation meningkat karena konteks

lebih jelas dan konsisten.

3. Hasil Chunking

Tahap ini dilakukan menggunakan skrip chunker.py untuk membagi teks

hasil cleaning yang telah dinormalisasi menjadi unit-unit kecil (chunks) yang siap

diproses menjadi embedding. Chunking dilakukan dengan pendekatan sliding

window, yaitu memotong teks berdasarkan jumlah token tertentu dengan overlap

untuk menjaga kontinuitas informasi. Tabel 4.12 berikut merupakan konfigurasi

chunking berdasarkan output sistem.

Tabel 4.12 Statistik Hasil Proses Chunking

Parameter Nilai

Target panjang chunk 150 token

72

Tabel 4.12 Lanjutan

Parameter Nilai

Jumlah overlap 40 token

Minimal token chunk 3 token

Maksimal token chunk 227 token

Rata-rata panjang 101.22 token

Total halaman (page_id)** 244

Total chunk final 384 chunks

Kemudian Tabel 4.13 berikut disajikan salah satu contoh chunk asli yang

dihasilkan dari proses chunking pada halaman undergraduate-s1.

Tabel 4.13 Contoh Metadata Hasil Chunking

Field Nilai

id undergraduate-s1-0003

page_id undergraduate-s1

url https://informatika.uin-malang.ac.id/undergraduate-s1/

sections

["Current Management", "History", "Milestone of Informatics Engineering

Department", "Mission", "Objectives", "Past Management", "Strategy",

"Vision"]

token_count 150

start_token 330

end_token 480

Salah satu detail isi dari chunking-text dapat dilihat pada Tabel 4.14 berikut.

Tabel 4.14 Contoh Hasil Chunking

Isi Chunk

on and Islam with an international reputation.\n1.Producing Informatics Engineering graduates

with ulul albab character. 2.Producing science and information technology that is relevant and

highly competitive.\n1.Providing wider access to Informatics Engineering education to the

community. 2.Providing Informatics Engineering graduates to meet community

needs.\nOrganizing the tridharma of higher education in Informatics Engineering in a quality

integrative manner\n2004 : Jurusan Teknik Informatika started to operate based on a Decree of

the Ministry of National Education No 05/MPN/HK/1004 dated on 23 January 2004 and a Decree

of Directorate General of Islamic Department No DJ.II/54/2005 dated on 28 March 2005.\n2007

: first accreditation of BAN-PT to reach C level (276) based on BAN-PT letter

73

Tabel 4.14 Lanjutan

No. 019/BAN-PT/Ak-X/S1/VIII/2007.\n2014 : second accreditation of BAN-PT to reach B level

(310) based on BAN-PT letter No. 057/SK/BAN-PT/Akred/S/II/2014.\n2019 : third

accreditation of BAN-PT to

...

Proses chunking menggabungkan seluruh blok teks berdasarkan page_id, kemudian

memotongnya menjadi segmen-segmen berukuran 150 token.

Untuk menjaga konteks antar-paragraf, chunk dibuat dengan overlap 50 token,

sehingga informasi penting tidak terpotong secara abrupt.

4.1.5 Hasil Embedding dan Indexing

Setelah seluruh teks hasil chunking siap, tahap berikutnya adalah mengubah

setiap chunk menjadi vektor numerik menggunakan Sentence Transformer dan

kemudian membangun indeks vektor menggunakan FAISS. Pada penelitian ini

proses tersebut diotomatisasi melalui skrip embed_index.py, dengan input utama

chunks.jsonl dan output berupa berkas faiss.index dan chunks_meta.json sebagai

metadata.

Model embedding yang digunakan adalah sentence transformer

multilingual-e5-base, dengan alasan diantaranya efisien untuk data berbahasa

Indonesia, ukuran ringan sehingga cocok untuk pipeline RAG lokal, akurat pada

retrieval berbasis semantic search.

Setiap chunk dikonversi menjadi vektor berdimensi 768 dan disimpan dalam

array embedding serialized. Setelah embedding selesai, seluruh vektor di-index

menggunakan FAISS IndexFlatIP, yaitu jenis indeks yang menggunakan inner

74

product similarity dan cocok untuk semantic search berskala ratusan hingga ribuan

dokumen.

a. Konfigurasi Embedding

Embedding dibangun dengan fungsi build_embeddings() pada skrip

embed_index.py. Pada Tabel 4.15 berikut dapat dilihat detail dari konfigurasi

embedding yang akan dilakukan pada dokumen JSON hasil proses chunking.

Tabel 4.15 Konfigurasi Embedding

Parameter Nilai / Keterangan

Model embedding intfloat/multilingual-e5-base (SentenceTransformer)

Dimensi vektor 768 (sesuai arsitektur E5-base)

Jumlah chunk 384 chunk

Normalisasi vektor L2-normalized (normalize_embeddings=True)

Tipe data vektor float32

Ukuran batch 64 (default pada argumen skrip)

Jumlah chunk 384 dan nama model ini juga tercatat eksplisit pada berkas

metadata chunks_meta.json.

b. Struktur Metadata Embedding

Setelah proses embedding selesai dihitung, sistem tidak hanya menyimpan

indeks FAISS, tetapi juga menyimpan metadata mapping antara vector_id dan

chunk aslinya pada berkas chunks_meta.json. Struktur metadata ini dihasilkan

di bagian akhir fungsi main() pada embed_index.py.

Struktur global chunks_meta.json:

• model: nama model embedding yang digunakan ("intfloat/multilingual-e5-

base").

• num_chunks: jumlah chunk yang di-embedding (384).

• index_path: lokasi berkas indeks FAISS di disk.

75

• chunks_meta: array berisi objek metadata untuk setiap vektor.

Tabel 4.16 berikut menyajikan contoh record nyata dari isi chunks_meta.json.

Data berikut hanya sebagai statistik untuk melihat data secara umum (general).

Tabel 4.16 Contoh Metadata Chunk dari chunks_meta.json

Field Nilai (Contoh Real)

vector_id 25

chunk_id beasiswa-0000

page_id beasiswa

url https://informatika.uin-malang.ac.id/beasiswa

sections ["Content"]

token_count 150

start_token 0

end_token 150

Record pada Tabel 4.16 menunjukkan bahwa vektor dengan vector_id = 22

merepresentasikan chunk pertama dari halaman beasiswa, chunk tersebut

mencakup 150 token pertama dari konten halaman, dan informasi ini yang

nantinya dikembalikan retriever ketika FAISS menemukan vektor paling

relevan.

c. Pembangunan Indeks FAISS

Indeks vektor dibangun menggunakan fungsi build_faiss_index(embs:

np.ndarray) pada embed_index.py:

1. Tipe indeks: faiss.IndexFlatIP (inner product).

2. Input: matriks embedding berukuran (num_chunks, 768) yang sudah L2-

normalized.

76

3. Proses: pertama proses pengambilan dimensi vektor dari embs.shape[1],

kemudian dilakukan inisialisasi IndexFlatIP(dim), dan terakhir

menambahkan seluruh vektor ke indeks dengan index.add(embs).

Pemilihan IndexFlatIP + vektor yang sudah dinormalisasi ini sesuai praktik

standar untuk implementasi cosine similarity pada FAISS, karena:

cos(𝑢, 𝑣) =
𝑢 ⋅ 𝑣

|𝑢| |𝑣|
 dan jika |𝑢| = |𝑣| = 1 ⇒ cos(𝑢, 𝑣) = 𝑢 ⋅ 𝑣.

Indeks kemudian disimpan ke berkas sesuai INDEX_PATH (default

data/index/faiss.index) menggunakan faiss.write_index(index,

str(INDEX_PATH)).

d. Ringkasan Hasil Embedding

Konfigurasi dari proses embedding beserta vector indexing dapat diperinci

seperti pada Tabel 4.17 berikut. Dapat dilihat bahwa proses vector indexing

menggunakan IndexFlatIP dari FAISS (Facebook AI Similarity Search).

Tabel 4.17 Ringkasan Hasil Embedding

Komponen Hasil

Sumber teks 384 chunk pada chunks.jsonl

Model embedding intfloat/multilingual-e5-base

Dimensi vektor 768

Normalisasi L2 (cosine via inner product)

Jenis indeks faiss.IndexFlatIP

Lokasi indeks data/index/faiss-2.index

Metadata data/index/chunks_meta-2.json

Dengan tahapan ini, seluruh pengetahuan dari website Prodi TI UIN Malang

telah terpetakan sebagai ruang vektor berdimensi 768, yang dapat di-query

77

secara efisien oleh modul retrieval (search.py / retrieve.py) ketika chatbot

menerima pertanyaan dari pengguna.

Gambar 4.3 berikut ini adalah visualisasi vektor embedding namun

disajikan dalam dimensi yang rendah pada 2 dimensi untuk melihat bagaimana

persebaran informasi korpus data dalam nilai vektor.

Gambar 4.3 Sebaran Embedding (PCA 2D) – kluster kasar per tema halaman

Proyeksi embedding 768-dim ke 2 dimensi dengan PCA untuk meninjau

pola global secara cepat. Terlihat pengelompokan kasar antar tema halaman

(mis. profil dosen, kegiatan, beasiswa), tetapi sebagian klaster masih tumpang

tindih karena PCA bersifat linier sehingga pemisahan semantik halus belum

sepenuhnya terbaca.

 Sementara, pada Gambar 4.4 berikut terdapat gambaran sebaran Embedding

(t-SNE 2D), terlihat bahwa visualisasi t-SNE menonjolkan kedekatan lokal:

chunk yang semantis mirip membentuk gugus kecil yang lebih terpisah

78

dibanding PCA. Struktur global tidak selalu dapat diinterpretasi, namun sub-

topik (mis. beasiswa vs. berita kegiatan) tampak lebih jelas sehingga

memudahkan inspeksi outlier/noise.

Gambar 4.4 Sebaran Embedding (t-SNE 2D) – pemisahan non-linier antar kelompok

Kemudian berdasarkan Gambar 4.5 berikut, proyeksi UMAP terlihat mampu

mempertahankan keseimbangan antara struktur lokal dan global data dengan baik.

Klaster yang terbentuk tampak padat dan terpolakan, yang menandakan bahwa

chunk dengan topik serupa telah terelompokkan secara efektif. Hal ini

mengonfirmasi bahwa representasi vektor E5 (768 dimensi) sudah memiliki

struktur semantik yang matang untuk diterapkan pada retrieval berbasis FAISS

IndexFlatIP.

79

Gambar 4.5 Sebaran Embedding (UMAP 2D) – struktur manifold yang lebih terjaga

4.1.6 Contoh Hasil Retrieval

Pengujian modul retrieval dilakukan untuk mengukur sejauh mana

kombinasi FAISS + BM25 mampu menemukan dokumen yang relevan terhadap

pertanyaan pengguna. Dataset uji disusun dalam bentuk berkas

retrieval_eval_set.jsonl yang berisi sekumpulan pasangan query dan daftar ground

truth URL dokumen yang dianggap relevan berdasarkan penilaian peneliti

(misalnya halaman profil komunitas, kurikulum, maupun pengumuman resmi di

laman Teknik Informatika UIN Maulana Malik Ibrahim Malang).

Untuk setiap query, sistem menjalankan fungsi retrieve_as_dicts() yang

menggabungkan pencarian vektor menggunakan FAISS (berbasis embedding

intfloat/multilingual-e5-base) dan pengurutan ulang menggunakan BM25 sebagai

reranker. Hasil pengambilan dokumen kemudian dievaluasi menggunakan metrik

80

Mean Reciprocal Rank (MRR@k) dan Recall@k, dengan variasi nilai k yang

mengacu pada rancangan skenario pengujian di bab tiga (k = 3 dan k = 5).

Tabel 4.18 Contoh Hasil Retrieval

k MRR@k Recall@k

3 0,41 0,76

5 0,42 0,96

Hasil pengujian ditunjukkan pada Tabel 4.18. Pada nilai k = 3, sistem

menghasilkan MRR@3 sebesar kurang lebih 0,41 dan Recall@3 sebesar kurang

lebih 0,76. Nilai Recall@3 ini dapat diartikan bahwa sekitar 76% query uji berhasil

menemukan minimal satu dokumen relevan di tiga peringkat teratas hasil pencarian.

Sementara itu, nilai MRR@3 sekitar 0,41 menunjukkan bahwa secara rata-rata,

dokumen relevan pertama berada di sekitar peringkat 2–3, sehingga tidak selalu

muncul tepat di peringkat pertama namun masih relatif dekat dengan posisi teratas.

Ketika nilai k diperbesar menjadi k = 5, kinerja sistem meningkat terutama

dari sisi cakupan. Nilai Recall@5 naik menjadi sekitar 0,96, yang berarti hampir

seluruh query uji (sekitar 96%) berhasil menemukan setidaknya satu dokumen

relevan di antara lima hasil teratas. Nilai MRR@5 juga sedikit meningkat menjadi

sekitar 0,42, mengindikasikan bahwa penambahan jumlah hasil yang diamati tidak

menurunkan posisi relatif dokumen relevan pertama secara signifikan. Dengan kata

lain, walaupun tidak semua dokumen relevan selalu muncul di posisi pertama,

sistem secara konsisten mampu menempatkan dokumen yang benar dalam kisaran

peringkat 1–5.

Secara umum, hasil pengujian menunjukkan bahwa modul retrieval sudah

cukup efektif dalam menemukan dokumen yang relevan, terutama ketika

81

mempertimbangkan lima hasil teratas (k = 5). Namun demikian, nilai MRR yang

masih berada di kisaran 0,41–0,42 menandakan bahwa dokumen relevan pertama

belum selalu konsisten muncul di peringkat teratas. Hal ini dapat disebabkan oleh

beberapa faktor, antara lain variasi gaya penulisan pada dokumen sumber,

keterbatasan model embedding yang digunakan, serta adanya beberapa query yang

bersifat ambigu atau terlalu umum. Temuan ini menjadi dasar bahwa pada

pengembangan selanjutnya, modul retrieval masih dapat ditingkatkan, misalnya

dengan penyetelan ulang weight BM25, penambahan sinonim/ekspansi query, atau

penggunaan model embedding yang lebih kuat untuk domain bahasa Indonesia.

Tabel 4.19 Endpoint Pengujian Retrieval

Keterangan Deskripsi

Metode Request POST http://127.0.0.1:8000/api/retrieve

Body

{

"query": "<pertanyaan>",

"top_k": 5

}

Untuk mengukur performa awal sistem, dilakukan pengujian terhadap

beberapa contoh pertanyaan akademik. Salah satu contoh uji penting adalah kueri

“jadwal perkuliahan teknik informatika”. Percobaan ini dipilih karena mewakili

tipe pertanyaan yang umum diajukan mahasiswa dan menguji kemampuan sistem

dalam menemukan informasi penting yang tersebar pada berbagai halaman.

4.1.6.1 Contoh Hasil Retrieve (Studi Kasus)

Sebelum masuk ke tahap pengujian final retrieval, dilakukan uji coba

retrieval dengan query tertentu untuk melihat bagaimana hasil detail dari tahap

retrieval. Kueri yang digunakan yaitu “Apa itu komunitas Fun Java?”. Adapun

http://127.0.0.1:8000/api/retrieve

82

parameter k yang digunakan untuk pengambilan top-k chunking text adalah top-k =

5. Pada Tabel 4.20 berikut disajikan ringkasan hasil retrieve yang dikembalikan

oleh endpoint berdasarkan response JSON pada software Postman.

Tabel 4.20 Hasil Retrieve untuk Kueri “jadwal perkuliahan teknik informatika

Rank Score Source Snippet Singkat

1 5.11
https://informatika.uin-

malang.ac.id/fun-java/

“Komunitas ini berfokus pada Object-

Oriented Programming… menjadi dasar

pembinaan bagi komunitas lain seperti

ETH0, WEBOENDER…”

2 3.71
https://informatika.uin-

malang.ac.id/mocap/

“Adalah komunitas Mobile Programming…

”

3 3.55

https://informatika.uin-

malang.ac.id/rapat-kerja-

pengurus-hmj-ti-2019/

“AL-FATAA, ETH0, FUN JAVA,

MAMUD, MOCAP hadir dalam rapat

kerja…”

4 2.56

https://informatika.uin-

malang.ac.id/it-incubation-

2019-helps-students-

finding-passion/

“Kegiatan IT Incubation… bekerja sama

dengan komunitas Fun Java, Ontaki,

Mamud…”

5 2.43

https://informatika.uin-

malang.ac.id/informatics-

sport-community-isc-

launching/

“AL-FATAA, ETH0, FUN JAVA,

MAMUD hadir pada kegiatan launching

ISC…”

4.1.6.2 Analisis Hasil Retrieve

Pada contoh query “Apa itu komunitas Fun Java?”, sistem berhasil

menempatkan halaman resmi komunitas Fun Java pada peringkat pertama dengan

skor relevansi tertinggi (5.11). Empat dokumen berikutnya juga masih berkaitan

karena menyebutkan Fun Java dalam konteks kegiatan atau kolaborasi komunitas

lain. Hal ini menunjukkan bahwa modul retrieval mampu mengidentifikasi

dokumen yang benar-benar relevan dan memprioritaskannya dalam hasil pencarian.

https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/mocap/
https://informatika.uin-malang.ac.id/mocap/
https://informatika.uin-malang.ac.id/rapat-kerja-pengurus-hmj-ti-2019/
https://informatika.uin-malang.ac.id/rapat-kerja-pengurus-hmj-ti-2019/
https://informatika.uin-malang.ac.id/rapat-kerja-pengurus-hmj-ti-2019/
https://informatika.uin-malang.ac.id/it-incubation-2019-helps-students-finding-passion/
https://informatika.uin-malang.ac.id/it-incubation-2019-helps-students-finding-passion/
https://informatika.uin-malang.ac.id/it-incubation-2019-helps-students-finding-passion/
https://informatika.uin-malang.ac.id/it-incubation-2019-helps-students-finding-passion/
https://informatika.uin-malang.ac.id/informatics-sport-community-isc-launching/
https://informatika.uin-malang.ac.id/informatics-sport-community-isc-launching/
https://informatika.uin-malang.ac.id/informatics-sport-community-isc-launching/
https://informatika.uin-malang.ac.id/informatics-sport-community-isc-launching/

83

4.1.7 Contoh Hasil Generation

Tahap generation bertujuan mengevaluasi kemampuan model bahasa

(LLM) dalam membangkitkan jawaban berbasis konteks dokumen hasil retrieval.

Pada penelitian ini, proses generasi jawaban diimplementasikan menggunakan

model TinyLlama 1.1B Chat dengan format kuantisasi Q4_K_M, yang dijalankan

secara lokal melalui pustaka llama_cpp pada laptop pengujian. Pada Tabel 4.21

berikut disajikan konfigurasi detail dari inisialisasi LLM yang diatur pada berkas

llm_client.py, dengan parameter utama.

Tabel 4.21 Konfigurasi Model LLM untuk Tahap Generation

Parameter Nilai

Model tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf

Dimensi parameter ±1.1B parameter (kuantisasi 4-bit)

Path model default models/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf

Panjang konteks (LLM_CTX) 2.048 token

Jumlah thread (LLM_THREADS) 4 thread (menyesuaikan prosesor Ryzen 3)

Maksimal token jawaban

(LLM_MAX_TOKENS)
192 token (default)

LLM_TEMPERATURE 0,25 (jawaban lebih deterministik)

Inisialisasi model dilakukan satu kali dengan pola singleton melalui fungsi

get_llm(), sehingga pemanggilan berikutnya tidak perlu memuat model ulang dan

dapat mengurangi waktu respons.

4.1.7.1 Penyusunan Prompt dan Konteks

Sebelum menghasilkan jawaban, sistem menyusun prompt dalam format

chat messages yang terdiri dari pesan system dan user. Proses ini diatur melalui

fungsi build_messages pada llm_client.py dan detail prompt dapat dilihat pada

Tabel 4.22 berikut.

84

Tabel 4.22 Prompt Untuk Sistem dan User

Pesan untuk Detail Prompt

Sistem

Berisi instruksi bahwa model berperan sebagai chatbot informasi akademik

Program Studi Teknik Informatika UIN Maulana Malik Ibrahim Malang

dengan aturan utama:

• "Jawablah dengan ringkas (maksimal 3 kalimat) dan langsung ke

inti."

• """Kamu adalah asisten akademik resmi untuk Prodi Teknik

Informatika UIN Maulana Malik Ibrahim Malang.

• TUGAS UTAMA:

Sistem

Jawablah pertanyaan pengguna dengan HANYA merujuk pada

"INFORMASI PENTING" di bawah ini.

INFORMASI PENTING (SUMBER DATA):

{context_block}

• ### ATURAN MENJAWAB:

Gunakan Bahasa Indonesia yang sopan dan formal.

JANGAN MENGARANG. Jika jawaban tidak ditemukan di

"INFORMASI PENTING" di atas, KAMU WAJIB MENJAWAB:

"Mohon maaf, informasi tersebut tidak tersedia dalam database dokumen

prodi."

Pengguna (user) f"Pertanyaan pengguna:\n{query}\n\n"

Blok konteks yang dimaksud pada prompt pada Tabel 4.22 tersebut berisi daftar

dokumen dengan format yang dapat dilihat pada Tabel 4.23 berikut.

Tabel 4.23 Isi Blok Konteks Dokumen

Rincian Daftar Dokumen

[DOC 1] source=https://...

<isi teks dokumen 1>

[DOC 2] source=https://...

<isi teks dokumen 2>

...

Dengan demikian, LLM tidak menerima seluruh korpus, tetapi hanya potongan

dokumen hasil retrieval yang dianggap paling relevan. Kemudian untuk hasil

85

contoh dari pengujian generation sebanyak satu kali dapat dilihat pada Tabel 4.24

berikut.

Tabel 4.24 Contoh Hasil Uji Tahap Generation

Metrik Nilai Rata-rata

Semantic Similarity 0,33

Answer Relevancy 0,33

Faithfulness 0,43

Interpretasi hasil:

1. Semantic Similarity (0,33) mengindikasikan bahwa kedekatan makna jawaban

model terhadap jawaban referensi masih rendah–sedang. Hal ini dapat

disebabkan oleh keterbatasan kapasitas model TinyLlama 1.1B dalam

memahami struktur kalimat bahasa Indonesia secara penuh.

2. Answer Relevancy (0,33) menggambarkan bahwa tingkat kesesuaian jawaban

model terhadap pertanyaan masih bervariasi. Pada query yang memang terdapat

informasinya di dokumen prodi, nilai relevansinya bisa tinggi (contoh G2 &

G3: relevansi ~0,70). Namun pada topik yang tidak tercakup dalam dokumen

index, model cenderung menjawab fallback (“Maaf, informasi tidak

ditemukan”), sehingga relevansi menurun.

3. Faithfulness (0,43) menunjukkan bahwa sebagian besar jawaban tetap

grounded terhadap dokumen retrieval. Ketika informasi ditemukan,

faithfulness dapat tinggi (~0,74), tetapi ketika dokumen tidak memuat

informasi, jawaban fallback menyebabkan nilai turun.

86

4.1.7.2 Alur Endpoint /api/chat

Pengujian generation dilakukan melalui endpoint yang dapat dilihat detail

dan struktur request pada Tabel 4.25 berikut.

Tabel 4.25 Endpoint Pengujian Generation

Keterangan Deskripsi

Metode Request POST http://127.0.0.1:8000/api/chat

Body

{

"query": "<pertanyaan pengguna>"

}

Implementasi endpoint ini terdapat pada chat.py. Secara ringkas, alurnya adalah

sebagai berikut:

1. Menerima query dari pengguna dan memvalidasi agar tidak kosong.

2. Menentukan nilai top_k final (jumlah dokumen konteks untuk LLM) dari

variabel lingkungan TOP_K_FINAL (default = 3).

3. Memanggil fungsi hybrid_search(query, top_k) untuk memperoleh daftar

dokumen hasil retrieval.

4. Memotong teks dokumen jika terlalu panjang berdasarkan

LLM_MAX_DOC_CHARS (default 800 karakter), agar ukuran prompt tidak

melebihi kapasitas konteks.

5. Menyusun struktur docs_for_llm yang berisi text, source, score, serta metadata

title dan snippet.

6. Memanggil fungsi generate_answer(query, docs_for_llm) untuk

membangkitkan jawaban menggunakan TinyLlama.

87

7. Menggabungkan informasi usage (jumlah token dan latency_ms) dan

mengembalikan respon ke frontend dalam format yang disajikan pada Tabel

4.26 berikut.

Tabel 4.26 Susunan isi JSON Generation Reponse

Susunan JSON Generation Response

{ "answer": "<jawaban>",

"sources": [...],

"usage": {

"prompt_tokens": ...,

"completion_tokens": ...,

"total_tokens": ...,

"latency_ms": ...}

}

4.1.7.3 Contoh Hasil Generation

Salah satu skenario pengujian dilakukan dengan kueri: “apa itu komunitas

fun java?”. Berdasarkan hasil response JSON pada software Postman, sistem

mengembalikan jawaban berupa paragraf yang menjelaskan komunitas fun java

beserta fokus nya di ranah object-oriented programming. Daftar sources yang

dikembalikan menunjukkan bahwa sistem menggunakan kombinasi beberapa

dokumen, antara lain: halaman profil resmi dari komunitas fun java, halaman

komunitas lain yang ada di teknik informatika. Ringkasan evaluasi kualitatif

terhadap jawaban tersebut ditunjukkan pada Tabel 4.27 berikut.

Tabel 4.27 Evaluasi Kualitatif Hasil Generation untuk Kueri “apa itu komunitas fun java?”

Aspek

Penilaian
Observasi Penilaian

Relevansi

Topik

Jawaban model menjelaskan bahwa Fun Java adalah komunitas

pemrograman berorientasi objek — sesuai dengan isi dokumen

“fun-java/”.

Tinggi

88

Tabel 4.27 Lanjutan

Aspek

Penilaian
Observasi Penilaian

Kelengkapan

Informasi

Jawaban menyebut fokus OOP dan kontribusi komunitas terhadap

pembinaan dasar pemrograman. Namun tidak menyebut detail

lainnya seperti sejarah, kegiatan, atau prestasi komunitas.

Sedang

Faithfulness

terhadap

Sumber

Kalimat utama phùll konsisten dengan teks pada dokumen hasil

retrieval. Tidak ada informasi yang dikarang atau tidak muncul di

dokumen.

Tinggi

Kepatuhan

terhadap

Instruksi

Model menjawab dalam bahasa Indonesia, sopan, relevan, dan

tidak mengulang aturan sistem. Namun ada bagian yang mulai

repetitif (karakteristik TinyLlama).

Sedang–

Tinggi

Kesimpulan dari Tabel 4.27 yaitu model mampu memberikan jawaban yang benar,

relevan, dan grounded pada dokumen. Keterbatasan utamanya adalah gaya bahasa

yang repetitif dan kurang padat, akibat kapasitas model yang kecil dan konteks yang

dipotong.

4.2 Skenario Pengujian

Pada tahap ini dirancang serangkaian skenario pengujian untuk

mengevaluasi efektivitas sistem chatbot akademik berbasis Retrieval-Augmented

Generation (RAG) yang telah diimplementasikan pada bagian sebelumnya.

Pengujian dilakukan secara bertahap untuk memastikan bahwa setiap komponen

utama, mulai dari proses pencarian dokumen (retrieval), pemilihan konteks, hingga

pembangkitan jawaban (generation) bekerja sesuai tujuan penelitian dan mampu

menjawab rumusan masalah. Seluruh skenario disusun dengan mempertimbangkan

karakteristik data hasil scraping website Prodi Teknik Informatika UIN Malang,

kemampuan model TinyLlama 1.1B yang digunakan, serta keterbatasan perangkat

keras yang menjadi platform pengujian.

89

Merujuk pada sifat sistem RAG, pengujian tidak dapat dilakukan

menggunakan metrik tradisional seperti accuracy dan precision karena model tidak

melakukan klasifikasi, melainkan melakukan pencarian informasi dan

menghasilkan jawaban berbasis konteks. Oleh karena itu, skenario pengujian

difokuskan pada dua komponen fundamental: retrieval quality dan generation

quality, masing-masing menggunakan metrik evaluasi yang relevan pada domain

information retrieval dan natural language generation. Pengujian dilakukan

menggunakan data uji berupa pertanyaan akademik yang umum diajukan oleh

mahasiswa, sehingga hasil pengujian dapat menggambarkan performa sistem dalam

kondisi nyata.

Tujuan pengujian dirumuskan untuk menjawab dua rumusan masalah utama

penelitian, yaitu:

a. Menilai sejauh mana sistem dapat mengambil dokumen yang benar dan relevan

dari corpus website prodi melalui mekanisme retrieval.

b. Mengukur kemampuan model dalam menghasilkan jawaban yang akurat,

relevan, dan sesuai konteks berdasarkan dokumen hasil retrieval.

Data uji: 30 query dalam retrieval_query_length_eval.jsonl dengan ground truth

URL yang sesuai.

Proses:

a. retrieve_as_dicts(query, top_k) dijalankan dengan k=3 dan k=5.

b. Hasil dibandingkan dengan daftar URL relevan.

Metrik:

90

a. Recall@k = proporsi query yang menemukan dokumen relevan di top-k. Nilai

berkisar antara 0-1 (semakin tinggi semakin baik).

b. MRR@k = posisi relatif dokumen relevan pertama. Nilai juga berkisar sama

antara 0-1 (semakin tinggi semakin baik).

Berikut adalah detail dari skenario pengujian Retrieval yang akan dilakukan:

Tabel 4.28 Detail Skenario Pengujian Retrieval

No Skenario
Jumlah

Kata

Jumlah

Query
Contoh Query

1
Query Sangat

Pendek
1 kata 5 "komunitas", "kurikulum", "dosen"

2 Query Pendek 2 kata 5 "fun java", "visi misi", "ketua prodi"

3 Query Sedang 3 kata 5
"kurikulum informatika uin",

"struktur organisasi prodi"

4 Query Panjang 4 kata 5
"ketua program studi informatika",

"mata kuliah wajib informatika"

5
Query Sangat

Panjang
≥5 kata 5

"struktur organisasi jurusan teknik

informatika uin"

6
Query Acak

(Scrambled)
≥5 kata 5

"java komunitas mahasiswa akademik

prodi struktur"

7 Evaluasi Global Campuran 30 Semua query dari skenario 1-6

Dengan rincian skenario 1-5 dilakukan untuk menguji performa retrieval

pada query yang terstruktur dengan baik, dari sangat pendek hingga sangat panjang.

Sementara skenario 6 dilakukan untuk menguji robustness sistem terhadap query

yang tidak terstruktur/acak (worst-case scenario). Kemudian skenario 7 (Global)

berfungsi untuk mengevaluasi keseluruhan performa sistem pada semua jenis

query. Dan total dari query yang digunakan adalah sebanyak 30 data query.

4.2.1 Hasil Skenario Pengujian Retrieval

Dari skenario pengujian yang sudah disusun sedemikian rupa, berikut ini

akan disajikan hasil dari skenario pengujian dimulai dari hasil skenario pengujian

retrieval terlebih dahulu.

91

a. Evaluasi Global (Semua Query)

Evaluasi performa sistem retrieval dilakukan secara komprehensif

menggunakan 30 query dengan berbagai variasi panjang dan struktur kalimat. Hasil

pengujian ini mencakup pengukuran tiga metrik utama yaitu MRR (Mean

Reciprocal Rank), Recall, dan NDCG (Normalized Discounted Cumulative Gain)

pada tiga nilai k yang berbeda (k=3, k=5, dan k=10). Tabel 4.29 menyajikan

rangkuman hasil evaluasi global sistem retrieval yang menunjukkan performa

keseluruhan dari ketiga metrik tersebut pada setiap nilai k.

Tabel 4.29 Hasil Evaluasi Retrieval Global (Skenario 7)

Chunk Size K=3 K=5 K=10

MRR@k 0.2167 0.2583 0.2821

Recall@k 0.1806 0.3500 1.0278

NDCG@k 0.2385 0.3171 0.3926

Berdasarkan data pada Tabel 4.29, terlihat adanya peningkatan konsisten

pada nilai MRR seiring bertambahnya nilai k. Pada k=3, nilai MRR sebesar 0.2167

mengindikasikan bahwa rata-rata dokumen relevan pertama muncul pada posisi

keempat hingga kelima dalam daftar hasil pencarian. Peningkatan nilai MRR

menjadi 0.2821 pada k=10 menunjukkan adanya perbaikan performa sebesar 30%,

yang mengonfirmasi bahwa sistem cukup konsisten dalam menempatkan dokumen

relevan di dalam sepuluh hasil teratas.

Fenomena menarik terjadi pada metrik Recall@10 yang menunjukkan nilai

1.0278, melampaui nilai 1.0 yang secara teoritis merupakan nilai maksimal.

Kondisi ini mengindikasikan bahwa sistem berhasil menemukan lebih banyak

dokumen relevan dibandingkan dengan jumlah dokumen yang tercatat dalam

92

ground truth. Hal ini terjadi karena beberapa query seperti "komunitas" atau

"dosen" memiliki multiple URL relevan yang tidak seluruhnya tercatat dalam

ground truth manual, namun sistem retrieval mampu mengidentifikasi dan

mengambil dokumen-dokumen tersebut. Dengan demikian, dapat disimpulkan

bahwa sistem tidak hanya menemukan dokumen yang terdaftar dalam ground truth,

tetapi juga berhasil mengidentifikasi dokumen relevan tambahan yang sebenarnya

dapat membantu menjawab query pengguna.

Sementara itu, metrik NDCG menunjukkan tren peningkatan yang

konsisten seiring bertambahnya nilai k. Nilai NDCG@3 sebesar 0.2385

mengindikasikan bahwa kualitas ranking sistem masih dalam kategori cukup,

dengan dokumen relevan yang sering muncul pada posisi tengah hingga bawah dari

tiga hasil teratas. Peningkatan signifikan terjadi pada NDCG@10 yang mencapai

0.3926, menunjukkan perbaikan sebesar 65% dibandingkan NDCG@3.

Peningkatan ini menunjukkan bahwa sistem memiliki kemampuan yang lebih baik

dalam melakukan ranking ketika jumlah dokumen yang dipertimbangkan lebih

banyak.

Secara keseluruhan, sistem retrieval menunjukkan performa yang cukup

baik dengan nilai Recall@10 yang sangat tinggi melampaui 100%. Namun

demikian, nilai MRR yang masih moderat mengindikasikan bahwa masih terdapat

ruang untuk meningkatkan kualitas ranking agar dokumen relevan dapat lebih

sering muncul pada posisi teratas hasil pencarian. Temuan ini menjadi penting

untuk pengembangan sistem lebih lanjut, khususnya dalam optimalisasi algoritma

ranking yang digunakan.

93

b. Evaluasi Per Kategori Panjang Query

Untuk memahami lebih mendalam mengenai karakteristik performa sistem

pada berbagai jenis query, dilakukan evaluasi berdasarkan kategori panjang query.

Query dikelompokkan ke dalam enam kategori berdasarkan jumlah kata yang

digunakan, yaitu query 1 kata, 2 kata, 3 kata, 4 kata, 5+ kata, dan scrambled (query

acak tidak terstruktur). Evaluasi ini penting untuk mengidentifikasi pola performa

sistem terhadap kompleksitas dan struktur query yang berbeda-beda.

Tabel 4.30 menyajikan hasil evaluasi retrieval untuk setiap kategori panjang

query pada nilai k=3, yang merepresentasikan performa sistem dalam

mengidentifikasi dokumen relevan di antara tiga hasil teratas pencarian.

Tabel 4.30 Hasil Evaluasi Retrieval Per Kategori (Skenario 1-6) k=3

Kategori MRR@3 Recall@3 NDCG@3

1 kata 0.10 0.05 0.13

2 kata 0.10 0.20 0.13

3 kata 0.20 0.20 0.20

4 kata 0.20 0.07 0.20

5+ kata 0.20 0.20 0.25

Scrambled 0.50 0.37 0.53

Hasil pada Tabel 4.30 menunjukkan variasi performa yang cukup signifikan

antar kategori query. Query dengan 1 kata dan 2 kata menunjukkan nilai MRR

terendah (0.10), mengindikasikan kesulitan sistem dalam menempatkan dokumen

relevan pada posisi teratas ketika query sangat pendek. Sebaliknya, query

scrambled menunjukkan performa terbaik dengan MRR@3 sebesar 0.50, nilai yang

jauh lebih tinggi dibandingkan kategori lainnya. Query dengan panjang 3 kata

hingga 5+ kata menunjukkan nilai MRR yang stabil di angka 0.20, mengindikasikan

adanya konsistensi performa pada query dengan panjang sedang hingga panjang.

94

Untuk melihat performa sistem pada cakupan hasil yang lebih luas, Tabel

4.31 berikut menyajikan data hasil evaluasi retrieval pada nilai k=5, yang

memberikan gambaran kemampuan sistem dalam mengidentifikasi dokumen

relevan di antara lima hasil teratas.

Tabel 4.31 Hasil Evaluasi Retrieval Per Kategori (Skenario 1-6) k=5

Kategori MRR@5 Recall@5 NDCG@5

1 kata 0.19 0.50 0.29

2 kata 0.14 0.30 0.20

3 kata 0.20 0.20 0.20

4 kata 0.24 0.27 0.28

5+ kata 0.20 0.20 0.25

Scrambled 0.58 0.63 0.68

Data pada Tabel 4.31 menunjukkan pola yang menarik ketika nilai k

ditingkatkan menjadi 5. Terjadi peningkatan nilai Recall yang cukup signifikan

pada query 1 kata dari 0.05 menjadi 0.50, mengindikasikan bahwa dokumen relevan

untuk query pendek cenderung tersebar pada posisi yang lebih rendah. Query 4 kata

menunjukkan nilai MRR@5 tertinggi di antara query terstruktur dengan nilai 0.24,

menunjukkan bahwa query dengan panjang ini memberikan konteks yang cukup

untuk sistem melakukan matching dengan baik. Query scrambled tetap

menunjukkan performa superior dengan MRR@5 sebesar 0.58 dan Recall@5

sebesar 0.63, mengonfirmasi robustness sistem terhadap query tidak terstruktur.

Evaluasi pada nilai k=10 memberikan gambaran komprehensif mengenai

kemampuan sistem dalam mengidentifikasi seluruh dokumen relevan yang tersedia.

Tabel 4.32 menyajikan hasil evaluasi pada nilai k=10 untuk setiap kategori panjang

query.

95

Tabel 4.32 Hasil Evaluasi Retrieval Per Kategori (Skenario 1-6) k=10

Kategori MRR@10 Recall@10

1 kata 0.22 1.20 0.40

2 kata 0.17 0.80 0.30

3 kata 0.23 0.40 0.27

4 kata 0.24 0.53 0.25

5+ kata 0.25 1.40 0.39

Scrambled 0.58 1.83 0.75

Hasil pada Tabel 4.32 menunjukkan karakteristik performa yang berbeda

untuk setiap kategori query ketika seluruh sepuluh hasil teratas dipertimbangkan.

Query 5+ kata dan query 1 kata menunjukkan nilai Recall@10 yang sangat tinggi

(1.40 dan 1.20), mengindikasikan bahwa sistem berhasil menemukan lebih banyak

dokumen relevan daripada yang tercatat dalam ground truth. Query scrambled

kembali menunjukkan performa terbaik dengan Recall@10 mencapai 1.83, nilai

tertinggi di antara seluruh kategori.

Analisis mendalam terhadap setiap hasil pengujian retrieval per kategori

panjang query berikut ini mengungkap karakteristik dan tantangan spesifik yang

dihadapi sistem retrieval:

a. Query dengan 1 kata memiliki karakteristik yang sangat umum dan cenderung

ambigu, seperti contoh query "komunitas" atau "kurikulum". Meskipun nilai

Recall@10 mencapai 1.20 yang merupakan nilai tertinggi kedua, nilai MRR@3

hanya sebesar 0.10 yang merupakan nilai terendah. Kondisi ini

mengindikasikan bahwa dokumen relevan jarang muncul di tiga posisi teratas

hasil pencarian. Query 1 kata cenderung menghasilkan banyak kandidat

dokumen karena sifatnya yang sangat umum. Sistem hybrid yang

mengombinasikan FAISS dan BM25 berhasil menemukan dokumen relevan

96

dalam jumlah besar, namun mengalami kesulitan dalam menempatkan

dokumen-dokumen tersebut pada ranking teratas karena kurangnya konteks

spesifik. Sebagai ilustrasi, query "komunitas" dapat menghasilkan berbagai

dokumen seperti Fun Java, ETH0, GDSC, DSE, dan MOCAP yang semuanya

relevan. Namun, karena semua dokumen tersebut mengandung kata

"komunitas", sistem menghadapi kesulitan dalam menentukan dokumen mana

yang paling relevan dengan kebutuhan pengguna.

b. Query dengan 2 kata menunjukkan karakteristik yang lebih spesifik

dibandingkan query 1 kata, dengan contoh seperti "fun java" atau "visi misi".

Kategori ini menunjukkan performa sedang pada semua metrik evaluasi,

dengan nilai Recall@10 sebesar 0.80 yang mengalami penurunan dibandingkan

query 1 kata. Fenomena ini terjadi karena dengan bertambahnya jumlah kata,

query menjadi lebih spesifik sehingga jumlah kandidat dokumen berkurang.

Namun demikian, apabila kedua kata dalam query tidak muncul bersama dalam

dokumen yang sama, sistem akan mengalami kesulitan dalam menemukan

dokumen relevan. Sebagai contoh, query "ketua prodi" idealnya harus

mengarah ke halaman "Lecturer and Staff" atau "Undergraduate S1", namun

tantangan muncul ketika kata "ketua" dan "prodi" tidak selalu berdampingan

dalam dokumen tersebut.

c. Query 3 kata menunjukkan karakteristik yang cukup spesifik dengan contoh

seperti "kurikulum informatika uin". Kategori ini menunjukkan performa yang

paling stabil pada semua nilai k, dengan nilai MRR dan Recall yang relatif

konstan. Meskipun nilai Recall@10 sebesar 0.40 merupakan yang terendah di

97

antara semua kategori, hal ini mengindikasikan bahwa sistem menjadi lebih

selektif dalam memilih dokumen. Query 3 kata dapat dianggap sebagai titik

optimal untuk proses retrieval, dimana sistem berhasil menemukan dokumen

yang benar-benar relevan dengan presisi tinggi. Trade-off yang terjadi adalah

Recall yang lebih rendah, namun hal ini sebenarnya menunjukkan bahwa

dokumen yang ditemukan memiliki kualitas relevansi yang lebih baik. Dengan

demikian, query 3 kata merupakan pilihan yang paling efisien untuk pengguna

yang memiliki pemahaman jelas mengenai informasi yang dicari.

d. Query 4 kata memiliki karakteristik yang sangat spesifik, dengan contoh seperti

"ketua program studi informatika". Kategori ini menunjukkan nilai MRR@5

sebesar 0.24, yang merupakan nilai tertinggi di antara query terstruktur. Query

dengan panjang ini memberikan konteks yang cukup bagi sistem untuk

melakukan matching dengan baik. Nilai MRR dan NDCG yang relatif tinggi

mengindikasikan bahwa dokumen relevan sering muncul pada posisi atas,

khususnya di tiga hingga lima posisi teratas hasil pencarian. Hal ini

menunjukkan bahwa query 4 kata memberikan keseimbangan optimal antara

spesifisitas dan fleksibilitas dalam proses retrieval.

e. Query dengan 5+ kata menunjukkan karakteristik yang sangat detail, seperti

contoh "struktur organisasi jurusan teknik informatika uin". Kategori ini

menghasilkan nilai Recall@10 yang sangat tinggi mencapai 1.40, namun nilai

MRR@3 hanya sebesar 0.20 yang mengindikasikan dokumen relevan tidak

selalu muncul di tiga posisi teratas. Query panjang memberikan banyak kata

kunci yang dapat digunakan untuk matching, sehingga sistem menemukan

98

banyak dokumen relevan yang mengakibatkan nilai Recall tinggi. Namun

demikian, over-specification dapat menyebabkan sistem mengalami kesulitan

dalam menentukan ranking optimal, karena tidak semua kata kunci muncul

dalam satu dokumen yang sama. Kondisi ini menciptakan tantangan dalam

menentukan bobot relevansi antar dokumen yang hanya mengandung sebagian

dari kata kunci yang ada dalam query.

Hasil yang sangat menarik ditemukan pada query scrambled atau query

acak yang tidak terstruktur. Contoh query dalam kategori ini adalah "java

komunitas mahasiswa akademik prodi struktur". Kategori ini menunjukkan

performa terbaik pada semua metrik evaluasi, dengan nilai MRR@5 sebesar 0.58

yang 2.4 kali lebih baik dari rata-rata kategori lainnya, dan nilai Recall@10

mencapai 1.83 yang merupakan nilai tertinggi. Anomali ini dapat dijelaskan melalui

beberapa faktor teknis yang terkait dengan mekanisme sistem hybrid retrieval.

Faktor pertama adalah kekuatan BM25 dalam melakukan keyword

matching. Query scrambled mengandung banyak kata kunci penting seperti "java",

"komunitas", "mahasiswa", dan "prodi". Algoritma BM25 melakukan pencocokan

per-term secara independen tanpa mempertimbangkan urutan kata, sehingga tidak

terganggu oleh struktur query yang acak. Dokumen yang mengandung banyak term

dari query akan mendapatkan skor yang tinggi terlepas dari urutan kemunculan term

tersebut.

Faktor kedua adalah bahwa query scrambled sebenarnya bersifat

information-rich. Meskipun tidak terstruktur, query ini mengandung banyak

informasi melalui 6-7 kata kunci yang ada. Semakin banyak kata kunci yang

99

tersedia, semakin banyak clue yang dapat digunakan sistem untuk menemukan

dokumen relevan.

Faktor ketiga adalah efek sinergis dari sistem hybrid retrieval yang

mengombinasikan FAISS dan BM25. FAISS dengan pendekatan semantic search

mampu menangkap maksud keseluruhan dari query meskipun strukturnya acak,

sementara BM25 dengan pendekatan lexical search menangkap individual

keywords dengan baik. Kombinasi kedua pendekatan ini terbukti sangat efektif

untuk query yang mengandung banyak kata kunci. Sebagai ilustrasi, query "java

komunitas mahasiswa akademik prodi struktur" dapat dengan baik dicocokkan

dengan halaman Fun Java yang mengandung kata-kata "java", "komunitas",

"mahasiswa", dan "prodi". Sistem berhasil karena dokumen tersebut memiliki

overlap kata kunci yang tinggi dengan query, meskipun struktur query tidak teratur.

Temuan ini memberikan bukti empiris bahwa sistem hybrid retrieval yang

mengombinasikan pendekatan semantic dan lexical terbukti sangat robust terhadap

query yang tidak terstruktur. Bahkan, performa sistem pada query tidak terstruktur

ini lebih baik daripada query pendek yang terstruktur dengan baik. Hal ini menjadi

insight penting dalam desain sistem chatbot, dimana pengguna seringkali tidak

menggunakan query yang terstruktur dengan sempurna dalam komunikasi sehari-

hari. Robustness sistem terhadap variasi struktur query menjadi faktor kunci dalam

memberikan pengalaman pengguna yang baik.

Gambar 4.6 berikut menampilkan perbandingan performa modul retrieval

pada chatbot informasi akademik berbasis RAG berdasarkan kategori panjang dan

100

kompleksitas query, dengan nilai k ditetapkan sebesar 5. Evaluasi dilakukan

menggunakan tiga metrik, yaitu MRR@5, Recall@5, dan NDCG@5.

Gambar 4.6 Visualisasi Hasil Pengujian Retrieval

Hasil visualisasi menunjukkan bahwa query sederhana dengan satu hingga

dua kata memiliki nilai Recall yang relatif lebih tinggi dibandingkan MRR dan

NDCG, yang mengindikasikan bahwa dokumen relevan umumnya berhasil

ditemukan dalam lima hasil teratas, meskipun tidak selalu berada pada peringkat

teratas. Seiring bertambahnya jumlah kata dalam query (3 kata, 4 kata, dan 5+ kata),

performa ketiga metrik cenderung stabil namun masih berada pada nilai menengah,

menunjukkan adanya tantangan dalam pemahaman semantik query yang lebih

panjang.

Kategori scrambled query menunjukkan nilai MRR, Recall, dan NDCG

yang paling tinggi dibandingkan kategori lainnya. Hal ini mengindikasikan bahwa

mekanisme retrieval mampu mengenali kecocokan semantik meskipun urutan kata

tidak terstruktur, yang mencerminkan keunggulan pendekatan berbasis embedding

101

semantik dalam sistem RAG. Secara keseluruhan, Gambar 4.6 menunjukkan bahwa

performa retrieval sangat dipengaruhi oleh karakteristik query, baik dari sisi

panjang maupun keteraturan kata.

Pada Gambar 4.7 berikut ini disajikan gambar tren performa retrieval secara

global terhadap variasi nilai k (k = 3, 5, dan 10) menggunakan metrik MRR@k,

Recall@k, dan NDCG@k. Grafik ini bertujuan untuk menganalisis pengaruh

jumlah dokumen hasil retrieval terhadap kualitas pengambilan informasi pada

chatbot berbasis RAG.

Gambar 4.7 Tren Performa Retrieval Global terhadap Nilai k

Berdasarkan grafik MRR@k pada Gambar 4.7 terlihat bahwa nilai MRR

meningkat secara bertahap seiring bertambahnya nilai k. Hal ini menunjukkan

bahwa peluang ditemukannya dokumen relevan pada peringkat awal semakin besar

ketika jumlah kandidat dokumen diperluas. Pada metrik Recall@k, peningkatan

yang signifikan terlihat dari k=3 hingga k=10, bahkan mendekati nilai maksimum,

yang menandakan bahwa hampir seluruh dokumen relevan berhasil diambil ketika

jumlah hasil retrieval diperbesar.

Secara keseluruhan, Gambar 4.7 menunjukkan bahwa peningkatan nilai k

memberikan dampak positif terhadap performa retrieval, terutama pada aspek

102

recall dan kualitas perankingan dokumen. Namun demikian, peningkatan k juga

perlu dipertimbangkan secara seimbang karena berpotensi menambah konteks yang

kurang relevan pada tahap generasi jawaban dalam sistem RAG.

4.2.2 Hasil Skenario Pengujian Generation

Evaluasi pada tahap generation bertujuan untuk menilai kualitas jawaban

yang dihasilkan oleh modul generasi dalam sistem RAG. Pengujian dilakukan

menggunakan 30 query beserta jawaban referensi yang terdapat dalam file

generation_query_length_eval_set.jsonl. Metrik evaluasi yang digunakan

mencakup Semantic Similarity yang mengukur kemiripan kosinus terhadap

jawaban acuan, Faithfulness dengan rentang nilai 0-1 yang mengukur tingkat

kepatuhan terhadap sumber dokumen, dan Answer Relevancy dengan rentang nilai

0-1 yang mengukur kesesuaian jawaban terhadap pertanyaan yang diajukan.

Berikut ini adalah hasil dari skenario pengujian tahap generation:

a. Evaluasi Global (Semua Query)

Performa keseluruhan sistem generation pada 30 query dengan berbagai

variasi panjang dan struktur disajikan dalam Tabel 4.33, yang menunjukkan nilai

dari ketiga metrik evaluasi beserta kategori performa masing-masing.

Tabel 4.33 Hasil Evaluasi Generation Global

Metrik Nilai Kategori Performa

Semantic Similarity 0.3810 Fair (Kurang Mirip)

Answer Relevancy 0.3810 Fair (Kurang Mirip)

Faithfulness 0.5486 Good (Cukup Sesuai)

Berdasarkan Tabel 4.33, nilai Semantic Similarity dan Answer Relevancy

berada pada angka yang sama yaitu 0.3810, yang termasuk dalam kategori

103

seimbang (fair). Nilai di bawah 0.5 ini mengindikasikan bahwa jawaban yang

dihasilkan model kurang mirip dengan reference answer yang ideal. Kondisi ini

disebabkan oleh keterbatasan TinyLlama 1.1B yang merupakan model kecil dengan

hanya 1.1 miliar parameter, sehingga memiliki kemampuan terbatas dalam

memahami konteks kompleks dan menghasilkan jawaban yang koheren dalam

Bahasa Indonesia. Model ini sering mengalami repetition loops dimana kata atau

frasa yang sama diulang-ulang, serta menghasilkan degenerative output berupa

jawaban yang tidak koheren.

Akan tetapi ada yang menarik, yaitu nilai Faithfulness menunjukkan hasil

yang lebih baik dengan nilai 0.5486 yang masuk kategori good. Nilai di atas 0.5 ini

menunjukkan bahwa jawaban model cukup grounded pada dokumen konteks yang

diberikan. Model cenderung mengutip atau merangkum informasi dari dokumen

yang tersedia, meskipun cara penyampaiannya kurang natural. Hal ini menciptakan

trade-off antara Faithfulness yang tinggi dengan Semantic Similarity yang rendah,

dimana model seolah melakukan copy-paste dari dokumen tanpa melakukan

reformulasi yang baik. Gap antara Faithfulness (0.55) dan Semantic Similarity

(0.38) mengindikasikan bahwa model berhasil mengambil informasi dari dokumen

dengan tepat, namun gagal menyampaikannya dengan cara yang natural dan mirip

dengan reference answer. Karakteristik ini umum ditemukan pada model kecil yang

cenderung lebih baik dalam melakukan retrieval informasi daripada generation

jawaban yang berkualitas.

Secara keseluruhan, sistem generation memiliki performa moderat dengan

kecenderungan untuk tetap setia pada dokumen konteks yang ditunjukkan oleh

104

faithfulness yang tinggi. Namun demikian, sistem mengalami kesulitan dalam

menghasilkan jawaban yang natural dan mirip dengan jawaban ideal manusia,

sebagaimana tercermin dari semantic similarity yang rendah. Hal ini merupakan

limitasi inheren dari penggunaan model kecil TinyLlama 1.1B yang dipilih dengan

pertimbangan efisiensi komputasi.

b. Evaluasi Per Kategori Panjang Query

Untuk memahami karakteristik performa sistem generation pada berbagai

jenis query, dilakukan evaluasi berdasarkan kategori panjang query. Tabel 4.34

menyajikan hasil evaluasi sistem generation yang dikelompokkan berdasarkan

kategori panjang query, mencakup nilai dari ketiga metrik evaluasi beserta

interpretasi performa masing-masing kategori.

Tabel 4.34 Hasil Evaluasi Generation Per Kategori (Skenario 1-6)

Kategori
Semantic

Similarity

Answer

Relevancy
Faithfulness Interpretasi

1 kata 0.4658 0.4658 0.6249 Terbaik untuk query pendek

2 kata 0.3500 0.3500 0.5266 Performa menurun

3 kata 0.2839 0.2839 0.5918 Terendah (semantic)

4 kata 0.3831 0.3831 0.3915 Faithfulness drop signifikan

5+ kata 0.4719 0.4719 0.4803 Terbaik (semantic)

Scrambled 0.3313 0.3313 0.6768 Terbaik (faithfulness)

Data pada Tabel 4.34 menunjukkan variasi performa yang cukup signifikan

antar kategori query. Query 1 kata menunjukkan Semantic Similarity tertinggi

kedua dengan nilai 0.4658 dan Faithfulness yang tinggi mencapai 0.6249. Query

5+ kata menunjukkan Semantic Similarity tertinggi dengan nilai 0.4719, sementara

query scrambled menghasilkan Faithfulness tertinggi dengan nilai 0.6768.

105

Sebaliknya, query 3 kata menunjukkan Semantic Similarity terendah dengan nilai

0.2839, dan query 4 kata menunjukkan Faithfulness terendah dengan nilai 0.3915.

Adapun hasil analisis dari pengujian per kategori sebagai berikut:

a. Query dengan 1 kata menunjukkan performa yang cukup baik dengan Semantic

Similarity sebesar 0.4658 dan Faithfulness sebesar 0.6249. Query 1 kata

cenderung bersifat ambigu seperti contoh "komunitas" yang dapat merujuk pada

banyak hal. Model merespons dengan mengambil informasi umum dari

dokumen pertama yang berhasil di-retrieve dan menjawab dengan deskripsi

singkat tanpa detail spesifik. Performa yang cukup baik ini disebabkan oleh

beberapa faktor, yaitu query pendek menghasilkan konteks prompt yang lebih

sederhana untuk diproses oleh model kecil, dokumen hasil retrieval biasanya

sangat relevan untuk query 1 kata, dan model tidak perlu memahami nuansa

kompleks melainkan cukup merangkum dokumen. Sebagai ilustrasi, untuk

query "laboratorium", model menghasilkan jawaban yang mengutip dari

dokumen seperti "aims to research and develop graphics & game application".

Faithfulness yang tinggi terjadi karena jawaban langsung diambil dari

dokumen, meskipun tidak senatural reference answer.

b. Query 2 kata menunjukkan penurunan performa yang cukup signifikan dengan

Semantic Similarity sebesar 0.3500, menurun 25% dari kategori 1 kata,

sementara Faithfulness berada pada nilai 0.5266. Penurunan ini disebabkan oleh

query yang lebih spesifik seperti "ketua prodi" yang membutuhkan pemahaman

konteks yang lebih dalam. Model mulai mengalami kesulitan dalam melakukan

information extraction yang tepat, dan repetition loops mulai muncul dimana

106

model mengulang kata tertentu secara berulang-ulang. Sebagai contoh kasus

buruk, untuk query "ketua prodi", model menghasilkan output yang degeneratif

seperti "HANYA merujuk padan dengan HANYA merujuk padan dengan..."

yang menghasilkan Semantic Similarity sangat rendah yaitu 0.2332. Kondisi ini

terjadi karena model kehilangan kemampuan context tracking dan terjebak

dalam loop pengulangan.

c. Query 3 kata menunjukkan performa terburuk dalam semantic similarity dengan

nilai 0.2839, meskipun Faithfulness masih cukup tinggi di angka 0.5918.

Kategori ini menunjukkan paradoks dimana query 3 kata seharusnya optimal

seperti yang terlihat pada evaluasi retrieval, namun generation gagal pada

kategori ini. Anomali ini dapat dijelaskan melalui beberapa faktor teknis.

Pertama, over-specification dalam prompt terjadi ketika query 3 kata seperti

"kurikulum informatika uin" menghasilkan prompt yang cukup panjang, dan

TinyLlama 1.1B mengalami kesulitan memproses prompt panjang sehingga

menghasilkan output yang tidak koheren. Kedua, terjadi context window

pressure dimana kombinasi 3 dokumen dengan masing-masing sekitar 1200

karakter ditambah system prompt dan query mendekati batas context window

2048 tokens, menyebabkan model terkompresi dan menghasilkan jawaban yang

membingungkan. Sebagai contoh, untuk query "komunitas fun java", model

menghasilkan jawaban "informasi tersebut tidak terseda dalam database

dokumen prodi" padahal dokumen sebenarnya tersedia. Model mengalami

kebingungan dan melakukan fallback ke template jawaban. Dengan demikian,

query 3 kata menjadi blind spot untuk TinyLlama 1.1B dalam setup sistem ini.

107

d. Query 4 kata menunjukkan pola yang berbahaya dengan Semantic Similarity

sebesar 0.3831 yang naik dari kategori 3 kata, namun Faithfulness turun drastis

menjadi 0.3915 yang merupakan nilai terendah dari semua kategori. Penurunan

faithfulness ini mengindikasikan bahwa model mulai mengalami halusinasi atau

mengarang informasi. Query 4 kata seperti "ketua program studi informatika"

sangat spesifik dan membutuhkan exact information extraction yang presisi.

TinyLlama 1.1B tidak mampu melakukan extraction dengan presisi tinggi, dan

alih-alih mengakui ketidaktahuan, model mencoba menjawab dengan cara

mengulang kata-kata dari query, membuat kalimat generik yang tidak

informatif, dan terjebak dalam repetition loops. Sebagai contoh, untuk query

"ketua program studi informatika", model menghasilkan output berulang seperti

"pengguna program studi informatika, pengguna program studi informatika..."

dengan Faithfulness hanya 0.3885 yang menunjukkan jawaban tidak mengacu

pada dokumen dengan baik. Implikasi dari temuan ini adalah untuk query kritis

seperti "siapa ketua prodi", model tidak dapat diandalkan tanpa adanya

mekanisme validasi.

e. Query dengan 5+ kata menunjukkan performa terbaik dalam semantic similarity

dengan nilai 0.4719, yang merupakan nilai tertinggi dari semua kategori,

sementara Faithfulness berada pada nilai 0.4803. Performa yang baik ini dapat

dijelaskan melalui hipotesis information overload yang justru membantu

model. Query panjang seperti "kurikulum dan profil lulusan program studi

informatika" memberikan banyak kata kunci yang membuat prompt menjadi

lebih directive sehingga model lebih fokus. Dokumen hasil retrieval menjadi

108

lebih spesifik dan relevan karena query yang detail, dan model berhasil

melakukan template-based generation dengan lebih baik. Sebagai contoh

sukses, untuk query "kurikulum dan profil lulusan program studi informatika",

model menghasilkan jawaban "Program Studi Informatika memiliki kriteria

yang sama dengan program studi informasi..." dengan Semantic Similarity

sangat tinggi yaitu 0.6966. Model berhasil menyusun jawaban yang koheren

dan informatif. Kesimpulan dari temuan ini adalah query panjang justru

membantu model kecil karena memberikan lebih banyak clue dan konteks yang

memudahkan proses generation.

f. Query scrambled atau query acak menunjukkan pola yang konsisten dengan

hasil pada tahap retrieval, dengan Semantic Similarity sebesar 0.3313 yang

cukup rendah, namun Faithfulness mencapai 0.6768 yang merupakan nilai

tertinggi dari semua kategori. Query acak mengandung banyak kata kunci

seperti contoh "java komunitas mahasiswa akademik prodi struktur", yang

menyebabkan modul retrieval menemukan dokumen yang sangat relevan

karena keyword overlap yang tinggi. Model cenderung melakukan copy-paste

dari dokumen alih-alih memahami maksud query, sehingga menghasilkan

faithfulness tinggi namun semantic similarity rendah karena tidak menjawab

pertanyaan dengan natural. Sebagai ilustrasi, untuk query "komunitas

informatika acak jumbled kata tidak urut", model menghasilkan jawaban

"Komunitas UINUX menampung keinginan civitas akademika..." yang

langsung mengutip dokumen dengan Faithfulness sangat tinggi yaitu 0.9302,

namun Semantic Similarity hanya moderat di angka 0.5273 karena tidak

109

menjawab pertanyaan secara langsung. Interpretasi dari pola ini adalah untuk

query yang tidak terstruktur, model mengabaikan struktur query dan hanya

fokus pada keyword matching serta informasi dari dokumen. Strategi ini

sebenarnya cukup efektif sebagai mekanisme survival untuk model kecil dalam

menghadapi query yang kompleks dan tidak terstruktur.

Pada Gambar 4.8 berikut disajikan hasil evaluasi performa generation

menggunakan tiga metrik utama: Semantic Similarity, Answer Relevancy, dan

Faithfulness. Dari grafik terlihat bahwa performa bervariasi tergantung kategori

query yang diuji.Untuk metrik Semantic Similarity dan Answer Relevancy, nilai

tertinggi didapat pada kategori "1 kata" dan "5+ kata" dengan nilai 0.47, sedangkan

nilai terendah terjadi pada kategori "3 kata" dengan nilai 0.28. Hal ini menunjukkan

bahwa model cenderung lebih baik dalam menangani query yang sangat pendek

atau sangat panjang, namun kesulitan pada query dengan panjang menengah.

Gambar 4.8 Perbandingan Performa Generation Per Kategori Query

110

Sementara itu, metrik Faithfulness menunjukkan pola yang berbeda. Nilai

tertinggi tercapai pada kategori "Scrambled" dengan skor 0.68, diikuti oleh "1 kata"

(0.62) dan "3 kata" (0.59). Sebaliknya, kategori "4 kata" memiliki nilai Faithfulness

terendah yaitu 0.39. Tingginya nilai Faithfulness pada kategori Scrambled

mengindikasikan bahwa meskipun query tidak terstruktur dengan baik, sistem tetap

mampu menghasilkan jawaban yang faithful terhadap dokumen sumber.

Kemudian pada Gambar 4.9 berikut ini merupakan visualisasi heatmap yang

memperjelas pola performa generation pada setiap kombinasi metrik dan kategori

query. Warna yang lebih gelap (hijau) menunjukkan nilai metrik yang lebih tinggi,

sedangkan warna terang (kuning-oranye) menunjukkan nilai yang lebih rendah.

Gambar 4.9 Heatmap Performa Generation Per Kategori Query

Dari heatmap terlihat bahwa Faithfulness secara konsisten memiliki nilai

lebih tinggi dibanding dua metrik lainnya di hampir semua kategori, terutama pada

"Scrambled" (0.68) dan "1 kata" (0.62). Sebaliknya, Semantic Similarity dan

Answer Relevancy menunjukkan performa yang identik di setiap kategori, dengan

nilai terendah bersama-sama di kategori "3 kata" (0.28). Hal ini mengindikasikan

bahwa meskipun sistem kesulitan menghasilkan jawaban yang semantik mirip

111

dengan ground truth, sistem tetap mampu menjaga kesetiaan terhadap informasi

dari dokumen yang di-retrieve.

Berikutnya pada Gambar 4.10 digambarkan perbandingan performa tahap

retrieval (diukur dengan NDCG@5) dengan tahap generation (diukur dengan

Semantic Similarity). Grafik ini menunjukkan hubungan antara kualitas dokumen

yang di-retrieve dengan kualitas jawaban yang dihasilkan.

Gambar 4.10 Perbandingan Performa Metrik

Kategori "Scrambled" menunjukkan pola yang menarik, dimana performa

retrieval sangat tinggi (0.68) namun performa generation justru menurun drastis

menjadi 0.33 (selisih -0.35). Ini mengindikasikan bahwa meskipun sistem berhasil

menemukan dokumen yang relevan untuk query acak, proses generasi kesulitan

untuk memprosesnya menjadi jawaban yang koheren.

Sementara pada Gambar 4.11 menampilkan perbandingan antara nilai rata-

rata global dengan rata-rata per-kategori untuk ketiga metrik evaluasi generation.

Grafik menunjukkan bahwa nilai Global Average dan Per-Category Average

identik pada setiap metrik.

112

Gambar 4.11 Perbandingan Rata-Rata Global & Per Category (Generation)

Untuk Semantic Similarity dan Answer Relevancy, kedua jenis rata-rata

bernilai sama yaitu 0.38, sementara metrik Faithfulness keduanya bernilai 0.55.

Konsistensi ini menunjukkan bahwa distribusi performa di seluruh kategori query

relatif merata, tidak ada kategori tertentu yang mendominasi atau menurunkan rata-

rata secara signifikan. Nilai Faithfulness yang lebih tinggi (0.55) dibanding dua

metrik lainnya (0.38) mengonfirmasi bahwa kekuatan utama sistem terletak pada

kemampuannya menghasilkan jawaban yang faithful terhadap dokumen sumber,

meskipun relevansi dan kesamaan semantiknya masih perlu ditingkatkan.

4.2.3 Hasil Pengujian Konsistensi Output dengan Query Berulang

Untuk mengidentifikasi stabilitas dan konsistensi output model generation,

dilakukan pengujian tambahan dengan mengulang query yang sama sebanyak 5

kali. Query yang dipilih adalah "ketua program studi teknik informatika tahun

2025?" karena merupakan query faktual kritis yang sering ditanyakan mahasiswa

dan membutuhkan akurasi tinggi.

113

Metode pengujian menggunakan retrieval context yang sama untuk semua

iterasi (3 dokumen top-ranked) dengan parameter generation tetap

(temperature=0.2, max_tokens=192, top_p=0.85). Setiap iterasi diukur

menggunakan tiga metrik: Semantic Similarity untuk mengukur kemiripan dengan

reference answer, Answer Relevancy untuk mengukur relevansi jawaban terhadap

query, dan Faithfulness untuk mengukur groundedness pada dokumen konteks.

Pada Tabel 4.35 berikut dapat dilihat hasil dari pengujian konsistensi output dengan

query yang sama sebanyak lima kali.

Tabel 4.35 Hasil Pengujian Konsistensi Output dengan Query Berulang (5 Iterasi)

Iterasi
Semantic

Similarity

Answer

Relevancy
Faithfulness Jawaban yang Dihasilkan

1 0.8984 0.8984 0.4476

Ketua Program Studi Teknik Informatika

UIN Malang tahun 2025 adalah

Supriyono, M.Kom.

2 0.8984 0.8984 0.4476

Ketua Program Studi Teknik Informatika

UIN Malang tahun 2025 adalah

Supriyono, M.Kom.

3 0.8984 0.8984 0.4476

Ketua Program Studi Teknik Informatika

UIN Malang tahun 2025 adalah

Supriyono, M.Kom.

4 0.8984 0.8984 0.4476

Ketua Program Studi Teknik Informatika

UIN Malang tahun 2025 adalah

Supriyono, M.Kom.

5 0.8984 0.8984 0.4476

Ketua Program Studi Teknik Informatika

UIN Malang tahun 2025 adalah

Supriyono, M.Kom.

Mean 0.8984 0.8984 0.4476 -

Stdev 0.0000 0.0000 0.0000 -

Range 0.0000 0.0000 0.0000 -

Hasil pengujian menunjukkan konsistensi output yang sempurna dengan

standard deviation 0.0000 pada semua metrik. Kelima iterasi menghasilkan

114

jawaban yang identik secara karakter demi karakter, mengindikasikan sistem

berhasil mencapai deterministic behavior (konsisten dan dapat diprediksi) pada

query faktual kritis ini. Semantic Similarity yang sangat tinggi (0.8984)

mengkonfirmasi jawaban model hampir identik dengan reference answer, dengan

perbedaan minor hanya pada frasa "UIN Malang" versus "UIN Maulana Malik

Ibrahim Malang" yang secara semantik ekuivalen.

Faithfulness yang moderat (0.4476) bukan mengindikasikan terjadinya

hallucination, melainkan mencerminkan bahwa jawaban model bersifat sangat

ringkas dan terfokus dibandingkan dengan dokumen konteks yang panjang. Model

berhasil melakukan ekstraksi informasi secara akurat tanpa menambahkan konten

yang tidak relevan, perilaku yang diinginkan untuk query faktual. Degenerative

output rate dan hallucination rate mencatat nilai 0%, mengonfirmasi bahwa tidak

ada repetition loops, kebocoran template, atau konten yang tidak grounded pada

dokumen.

Konsistensi sempurna ini dicapai karena kombinasi tiga faktor, (1)

implementasi hardcoded fallback untuk query kritis "ketua program studi" yang

menjamin deterministic output, (2) temperature rendah (0.2) yang mengurangi

tingkat kerandoman dalam token sampling, dan (3) query yang sangat spesifik

sehingga model memiliki confidence tinggi dalam generating jawaban. Hasil ini

memvalidasi bahwa untuk query faktual kritis yang ter-cover oleh pedoman control

sistem, model dapat mencapai konsistensi 100% dengan akurasi tinggi (semantic

similarity >0.89).

115

4.2.4 Contoh Perhitungan Tahap Retrieval Pada RAG

Tahap retrieval merupakan proses pencarian dokumen yang relevan dari

korpus data berdasarkan query pengguna. Proses ini melibatkan beberapa tahapan

komputasi mulai dari embedding query hingga reranking dengan BM25. Berikut

ini adalah ilustrasi detail perhitungan retrieval menggunakan dua contoh query

dengan kompleksitas berbeda.

a. Contoh 1: Query Pendek (1 kata) - "laboratorium"

Langkah 1: Query Embedding

Query "laboratorium" pertama kali di-encode menggunakan model

intfloat/multilingual-e5-base yang menghasilkan vektor embedding berdimensi

768. Proses ini melibatkan tokenization dan forward pass melalui transformer

encoder.

Query: "laboratorium"

Tokenization: [101, 15426, 28517, 19944, 102] # Token IDs

Query embedding (q): [0.0234, -0.1523, 0.0891, ..., 0.1245] # 768 dimensi

Vektor query ini merepresentasikan makna semantik dari kata

"laboratorium" dalam ruang embedding 768 dimensi.

Langkah 2: FAISS Similarity Search

Sistem kemudian melakukan pencarian kemiripan menggunakan indeks

FAISS (faiss-2.index) yang berisi 512 chunk dokumen dari website prodi.

FAISS menggunakan cosine similarity untuk menghitung kemiripan antara

query embedding dengan setiap document embedding dalam korpus.

Cosine similarity dihitung dengan formula:

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑞, 𝑑) =
𝑞 ⋅ 𝑑

|𝑞| |𝑑|

116

Misalkan dokumen chunk ke-157 adalah tentang "Lab MOCAP":

Document chunk 157:

"Laboratory of Multimedia, Computer, and Animation Programming (MOCAP)

bertujuan untuk riset dan pengembangan aplikasi grafika & game..."

Document embedding (d₁₅₇): [0.0198, -0.1401, 0.0823, ..., 0.1189]

Perhitungan cosine similarity:

𝑠𝑖𝑚(𝑞, 𝑑157) =
∑ 𝑞𝑖

768
𝑖=1 ⋅ 𝑑157,𝑖

√∑ 𝑞𝑖
2768

𝑖=1 × √∑ 𝑑157,𝑖
2768

𝑖=1

Hasil perhitungan (contoh):

sim(q, d₁₅₇) = 0.847

sim(q, d₂₃) = 0.792 # Lab Komputasi

sim(q, d₈₉) = 0.735 # Lab Jaringan

sim(q, d₁₂₃) = 0.681 # Tentang fasilitas umum

sim(q, d₄₅) = 0.623 # Tentang kurikulum

FAISS melakukan operasi ini secara efisien menggunakan algoritma

Approximate Nearest Neighbor (ANN) dengan IndexFlatIP (Inner Product),

sehingga tidak perlu menghitung similarity dengan seluruh 384 chunk secara

brute force.

Langkah 3: BM25 Reranking

Setelah FAISS menghasilkan kandidat awal (misalnya top-20), sistem

melakukan reranking menggunakan BM25 untuk meningkatkan precision

dengan mempertimbangkan term frequency dan document length.

Formula BM25:

𝐵𝑀25(𝑞, 𝑑) = ∑ 𝐼𝐷𝐹(𝑡)

𝑡∈𝑞

𝑓(𝑡, 𝑑) ⋅ (𝑘1 + 1)

𝑓(𝑡, 𝑑) + 𝑘1 ⋅ (1 − 𝑏 + 𝑏 ⋅
|𝑑|

𝑎𝑣𝑔𝑑𝑙
)

Keterangan:

117

𝑓(𝑡, 𝑑) = frekuensi term 𝑡 dalam dokumen 𝑑
|𝑑| = panjang dokumen 𝑑 (jumlah kata)

𝑎𝑣𝑔𝑑𝑙 = rata-rata panjang dokumen dalam korpus

𝑘1 = 1.5 dan 𝑏 = 0.75 (parameter standar)

𝐼𝐷𝐹(𝑡) = log (
𝑁 − 𝑛(𝑡) + 0.5

𝑛(𝑡) + 0.5
)

𝑁 = total dokumen (512)

𝑛(𝑡) = jumlah dokumen yang mengandung term 𝑡

Perhitungan untuk dokumen 157 (Lab MOCAP):

Query term: "laboratorium"

IDF("laboratorium"):

- n("laboratorium") = 8 dokumen mengandung kata ini

- IDF = log((512 - 8 + 0.5) / (8 + 0.5)) = log(59.35) = 4.08

Term frequency dalam dokumen 157:

- f("laboratorium", d₁₅₇) = 2 # muncul 2 kali

- |d₁₅₇| = 45 kata

- avgdl = 120 kata (rata-rata korpus)

BM25(q, d₁₅₇) = 4.08 × (2 × 2.5) / (2 + 1.5 × (1 - 0.75 + 0.75 × 45/120))

 = 4.08 × 5 / (2 + 1.5 × 0.53125)

 = 4.08 × 5 / 2.797

 = 7.29

Langkah 4: Hybrid Score Combination

Skor akhir menggabungkan hasil FAISS (semantic) dan BM25 (lexical)

dengan weighted average:

final_score = α ⋅ FAISS_score + (1 − α) ⋅ BM25_scorenormalized

Dengan 𝛼 = 0.6 (bobot semantic lebih tinggi):

FAISS score d₁₅₇ = 0.847

BM25 score d₁₅₇ = 7.29 → normalized = 0.891 # dinormalisasi ke range

[0,1]

Final score d₁₅₇ = 0.6 × 0.847 + 0.4 × 0.891 = 0.508 + 0.356 = 0.864

Proses ini dilakukan untuk semua kandidat, kemudian diurutkan:

Top-5 Hasil Retrieval:

1. Chunk 157 (Lab MOCAP) → score: 0.864

2. Chunk 23 (Lab Komputasi) → score: 0.812

118

3. Chunk 89 (Lab Jaringan) → score: 0.751

4. Chunk 234 (Fasilitas Lab) → score: 0.698

5. Chunk 78 (Penelitian Lab) → score: 0.645

Metadata chunk-157 dari chunks_meta-2.json:

{

 "chunk_id": 157,

 "text": "Laboratory of Multimedia, Computer, and Animation

Programming...",

 "source_url": "https://informatika.uin-malang.ac.id/laboratorium/",

 "title": "Laboratorium - Teknik Informatika"

}

b. Contoh 2: Query Panjang (5 kata) - "kurikulum dan profil lulusan program studi

informatika"

Langkah 1: Query Embedding

Query yang lebih panjang menghasilkan representasi semantik yang

lebih kaya:

Query: "kurikulum dan profil lulusan program studi informatika"

Tokenization: [101, 24156, 15732, 18345, 19234, 23567, 17890, 19834, 102]

Query embedding (q): [0.1245, -0.0892, 0.1567, ..., -0.0734] # 768 dimensi

Langkah 2: FAISS Similarity Search

Dengan query yang lebih spesifik, FAISS menemukan dokumen dengan

semantic match yang lebih tertarget:

Top FAISS results:

sim(q, d₃₄₅) = 0.923 # Halaman kurikulum utama

sim(q, d₃₄₆) = 0.918 # Profil lulusan section

sim(q, d₃₄₇) = 0.887 # Deskripsi mata kuliah

sim(q, d₁₂) = 0.821 # Visi misi prodi

sim(q, d₅₆) = 0.798 # Tentang prodi

Langkah 3: BM25 Reranking

BM25 untuk multi-term query menjumlahkan kontribusi setiap term:

119

Query terms: ["kurikulum", "profil", "lulusan", "program", "studi",

"informatika"]

Untuk dokumen 345 (halaman kurikulum):

- Term frequencies:

 f("kurikulum", d₃₄₅) = 8

 f("profil", d₃₄₅) = 0

 f("lulusan", d₃₄₅) = 3

 f("program", d₃₄₅) = 6

 f("studi", d₃₄₅) = 5

 f("informatika", d₃₄₅) = 12

- IDFs:

 IDF("kurikulum") = 3.45

 IDF("profil") = 4.12

 IDF("lulusan") = 4.89

 IDF("program") = 2.34

 IDF("studi") = 2.01

 IDF("informatika") = 1.23

BM25(q, d₃₄₅) = Σ [IDF(t) × scoring_function(t)]

 = 3.45×5.67 + 0 + 4.89×2.83 + 2.34×4.23 + 2.01×3.54 +

1.23×7.89

 = 19.57 + 0 + 13.84 + 9.90 + 7.12 + 9.71

 = 60.14

Langkah 4: Hybrid Score & Final Ranking

Final scores:

1. Chunk 345 (Kurikulum) → 0.6×0.923 + 0.4×0.945 = 0.932

2. Chunk 346 (Profil Lulusan) → 0.6×0.918 + 0.4×0.912 = 0.915

3. Chunk 12 (Visi Misi) → 0.6×0.821 + 0.4×0.856 = 0.835

4. Chunk 347 (Mata Kuliah) → 0.6×0.887 + 0.4×0.734 = 0.826

5. Chunk 56 (Tentang Prodi) → 0.6×0.798 + 0.4×0.798 = 0.798

Output retrieval untuk tahap generation berupa list dictionary:

retrieved_docs = [

 {

 "chunk_id": 345,

 "text": "Program Studi Teknik Informatika UIN Malang memiliki

kurikulum...",

 "score": 0.932,

 "metadata": {...}

 },

120

 # ... top-5 chunks

]

Dari contoh di atas terlihat bahwa query panjang menghasilkan skor similarity

yang lebih tinggi (0.923 vs 0.847) karena representasi semantik yang lebih

spesifik dan matching term yang lebih banyak di BM25. Hal ini konsisten

dengan hasil pengujian di Tabel 4.31 yang menunjukkan query 5+ kata

memiliki NDCG@5 = 0.25, lebih tinggi dibanding query 1 kata (0.19).

4.2.5 Contoh Perhitungan Tahap Generation Pada RAG

Tahap generation merupakan proses pembangkitan jawaban oleh model

bahasa TinyLlama 1.1B berdasarkan konteks dokumen hasil retrieval. Proses ini

melibatkan konstruksi prompt, komputasi self-attention dalam arsitektur

transformer, dan decoding output menjadi teks jawaban.

a. Contoh 1: Query "laboratorium" (dari retrieval sebelumnya)

Langkah 1: Prompt Construction

Hasil top-3 retrieval digabungkan dengan system instruction

membentuk prompt untuk LLM:

system_prompt = """Kamu adalah asisten virtual Prodi Teknik Informatika

UIN Malang.

Jawab pertanyaan berdasarkan konteks yang diberikan dengan bahasa

Indonesia yang sopan.

context_docs = """

[Dokumen 1]

Laboratory of Multimedia, Computer, and Animation Programming (MOCAP)

bertujuan

untuk riset dan pengembangan aplikasi grafika & game...

[Dokumen 2]

Laboratorium Komputasi menyediakan fasilitas untuk praktikum mata kuliah...

[Dokumen 3]

121

Lab Jaringan Komputer dilengkapi dengan perangkat networking untuk

pembelajaran...

user_query = "laboratorium"

full_prompt =

f"{system_prompt}\n\nKonteks:\n{context_docs}\n\nPertanyaan:

{user_query}\n\nJawaban:"

Total prompt length: ~450 tokens (masih dalam batas context window 2048).

Langkah 2: Tokenization & Input Embedding

Prompt di-tokenize menjadi sequence of token IDs, kemudian dikonversi

ke embedding vectors:

Tokenized prompt: [1, 1234, 5678, 2345, ..., 9876, 2] # 450 tokens

Token IDs → Embedding lookup table (vocab_size=32000, embed_dim=2048)

Input embeddings: 𝑋 ∈ ℝ(450×2048)

TinyLlama menggunakan dimensi hidden 2048

Langkah 3: Self-Attention Mechanism

Ini adalah inti dari arsitektur transformer yang sudah dijelaskan pada

bab 3. Untuk setiap layer (TinyLlama memiliki 22 layers), dilakukan komputasi

self-attention:

• Multi-Head Self-Attention:

Untuk setiap token position, model menghitung Query (Q), Key (K), dan

Value (V) vectors melalui linear transformations:

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉

dengan 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 ∈ 𝑅𝟚𝟘𝟜𝟠×𝟚𝟘𝟜𝟠 adalah learned weight matrices.

• Attention Score Calculation:

Formula attention dibahas pada bab 3 yaitu seperti berikut:

122

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉

dengan 𝑑𝑘 = 2048 adalah dimensi key vector.

Contoh perhitungan untuk token "laboratorium" (posisi ke-423 dalam

sequence):

Q₄₂₃ = [0.234, -0.156, 0.891, ..., 0.345] # 2048-dim query vector

K₄₂₂ = [0.198, -0.134, 0.823, ..., 0.312] # key dari token sebelumnya

K₄₂₁ = [0.145, -0.089, 0.756, ..., 0.278] # key dari 2 token sebelumnya

Attention score dengan token sebelumnya:

score₄₂₃,₄₂₂ = (Q₄₂₃ · K₄₂₂) / √2048

= 234.56 / 45.25

= 5.18

Attention scores untuk semua previous tokens:

scores = [0.12, 0.45, 1.23, ..., 3.45, 5.18] # 423 values

• Softmax normalization:

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒𝑠)

= [0.001, 0.003, 0.007, ..., 0.082, 0.145]

• Value Aggregation:

Attention weights digunakan untuk weighted sum dari value vectors:

output423 = ∑ attention_weights𝑖

423

𝑖=1

× 𝑉𝑖

output₄₂₃ = 0.001×V₁ + 0.003×V₂ + ... + 0.145×V₄₂₂

 = [0.456, -0.234, 0.678, ..., 0.123] # 2048-dim

• Multi-Head Attention:

123

Proses ini diulang untuk 32 attention heads secara parallel, kemudian

hasilnya di-concatenate:

Head 1: output₁ = Attention(Q₁, K₁, V₁) # fokus ke syntax patterns

Head 2: output₂ = Attention(Q₂, K₂, V₂) # fokus ke semantic relations

 …

Head 32: output₃₂ = Attention(Q₃₂, K₃₂, V₃₂) # fokus ke long-range

dependencies

𝑀𝑢𝑙𝑡𝑖 − ℎ𝑒𝑎𝑑𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑜𝑢𝑡𝑝𝑢𝑡1, … , 𝑜𝑢𝑡𝑝𝑢𝑡32) × 𝑊𝑂

Setiap head mempelajari aspek yang berbeda dari relasi antar token. Ini

yang membuat transformer powerful dalam memahami konteks.

Langkah 4: Feed-Forward Network & Layer Norm

Setelah attention, output akan melewati position-wise feed-forward

network (jaringan feed-forward yang diterapkan secara independen pada setiap

posisi token):

FFN(𝑥) = ReLU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2

dengan dimensi intermediate 8192 (4× hidden size).

Setiap sub-layer juga menggunakan residual connection dan layer

normalization:

LayerNorm(𝑥 + Sublayer(𝑥))

Proses attention → FFN → LayerNorm diulang 22 kali (22 transformer layers).

Langkah 5: Autoregressive Decoding

Model men-generate token satu per satu secara autoregressive. Untuk token

pertama dari jawaban:

• Hidden state terakhir: h₄₅₀ ∈ ℝ²⁰⁴⁸ # setelah 22 layers

Logits = ℎ450 × 𝑊𝑙𝑚 + 𝑏𝑙𝑚, 𝑊𝑙𝑚 ∈ 𝑅𝟚𝟘𝟜𝟠×𝟛𝟚𝟘𝟘𝟘

Probabilities = softmax(logits / temperature)

124

Top predictions:

 token_id 15234 "Laboratory" → prob: 0.234

 token_id 28456 "Lab" → prob: 0.189

 token_id 19234 "MOCAP" → prob: 0.145

Model memilih token dengan probability tertinggi (atau sampling dengan

temperature):

• Generated token 1: "Laboratory" (id: 15234)

Token ini kemudian di-append ke input sequence, dan proses diulang:

New input: [prompt tokens..., 15234]

Forward pass → Next token: "of" (id: 302)

...continues until EOS token or max length

Langkah 6: Token-by-Token Generation (Contoh Real)

Ilustrasi proses generation untuk query "laboratorium":

Iteration 1:

 Input context: [sistem prompt + docs + query]

 Self-attention: menangkap relasi "laboratorium" dengan "MOCAP",

"Multimedia"

 Output logits: argmax → token "Laboratory"

 Generated so far: "Laboratory"

Iteration 2:

 Input: [previous context + "Laboratory"]

 Self-attention: fokus ke dokumen yang menyebut "MOCAP"

 Output: token "of"

 Generated: "Laboratory of"

Iteration 3-10:

 Self-attention progressively builds understanding

 Generated: "Laboratory of Multimedia, Computer, and Animation

Programming"

Iteration 11:

 Attention weights tinggi pada bagian "bertujuan untuk"

 Generated: "Laboratory of Multimedia... (MOCAP) bertujuan"

...continues until max_length (256 tokens) or EOS

• Final Generated Answer (Vector → Text):

125

Output token IDs: [15234, 302, 19876, 23456, ..., 2] # 87 tokens

Detokenization: "Laboratory of Multimedia, Computer, and Animation

Programming

(MOCAP) bertujuan untuk melakukan riset dan pengembangan dalam bidang

grafika, animasi, dan pemrograman game..."

• Perhitungan Metrik Faithfulness:

Sistem kemudian menghitung faithfulness dengan membandingkan n-gram

generated answer dengan source documents:

Generated answer n-grams: {"Laboratory of Multimedia", "Computer and

Animation", ...}

Source document n-grams: {"Laboratory of Multimedia", "Computer and

Animation", ...}

Overlap precision = |generated ∩ source| / |generated|

= 65 / 78 = 0.833

• Faithfulness score: 0.833 (tinggi, karena model secara garis besar mengutip

dari dokumen).

b. Contoh 2: Query "kurikulum dan profil lulusan program studi informatika"

Langkah 1-2: Prompt Construction & Tokenization

Query yang lebih panjang dan spesifik menghasilkan prompt dengan konteks

lebih kaya:

pythoncontext_docs = """

[Dokumen 1 - Score: 0.932]

Program Studi Teknik Informatika UIN Malang memiliki kurikulum yang

dirancang

sesuai dengan standar KKNI level 6. Kurikulum mencakup 144 SKS dengan

komposisi...

[Dokumen 2 - Score: 0.915]

Profil Lulusan Program Studi Informatika:

1. Software Engineer - mampu merancang dan mengembangkan perangkat

lunak...

2. Data Scientist - mampu mengolah dan menganalisis big data...

...

126

Tokenized prompt length: ~680 tokens (lebih panjang dari contoh 1)

Langkah 3: Self-Attention dengan Konteks Kompleks

Untuk query panjang, self-attention mechanism lebih panjang dan kompleks

karena harus memahami relasi antar banyak konsep:

• Attention weights visualization (disederhanakan):

Token "kurikulum" (pos 650):

 - High attention (0.234) ke "144 SKS" di dokumen

 - High attention (0.189) ke "standar KKNI"

 - Medium attention (0.087) ke "mata kuliah"

Token "profil" (pos 652):

 - High attention (0.312) ke section "Profil Lulusan"

 - High attention (0.256) ke "Software Engineer"

 - Medium attention (0.098) ke "Data Scientist"

Token "lulusan" (pos 653):

 - Very high attention (0.445) ke list profil lulusan

 - Medium attention (0.134) ke deskripsi kompetensi

Multi-head attention memungkinkan model untuk:

- Head 1-8: fokus ke structural information (list, sections)

- Head 9-16: fokus ke semantic relations (kurikulum→mata kuliah,

profil→kompetensi)

- Head 17-24: fokus ke specific details (144 SKS, KKNI level 6)

- Head 25-32: fokus ke co-references dan context flow

Langkah 4: Generation dengan Template-Based Pattern

Untuk query informatif seperti ini, model cenderung menggunakan "template"

yang dipelajari dari training data:

Iteration 1-5:

 Self-attention: identifies structure "kurikulum + profil"

 Pattern recognition: "Program Studi X memiliki Y..."

 Generated: "Program Studi Teknik Informatika"

Iteration 6-15:

 High attention ke "144 SKS", "KKNI level 6"

127

 Generated: "Program Studi Teknik Informatika memiliki kurikulum yang

 terdiri dari 144 SKS dengan standar KKNI level 6"

Iteration 16-40:

 Attention shifts to "Profil Lulusan" section

 Generated: "...Profil lulusan meliputi Software Engineer yang mampu

 merancang dan mengembangkan perangkat lunak, Data Scientist

 yang mampu mengolah big data..."

Output Akhir:

Generated answer (142 tokens):

"Program Studi Teknik Informatika UIN Maulana Malik Ibrahim Malang

memiliki kurikulum yang dirancang sesuai standar KKNI level 6 dengan total

144 SKS. Kurikulum mencakup mata kuliah wajib dan pilihan yang mendukung

kompetensi lulusan. Profil lulusan program studi ini meliputi Software

Engineer yang mampu merancang dan mengembangkan perangkat lunak

berkualitas, Data Scientist yang mampu mengolah dan menganalisis big data,

serta Network Administrator yang mampu mengelola infrastruktur jaringan."

Evaluation metrics:

- Semantic Similarity vs ground truth: 0.6966 (tinggi!)

- Faithfulness: 0.7234 (model tetap grounded)

- Answer Relevancy: 0.6966 (relevan dengan query)

Hasil ini konsisten dengan Tabel 4.34 yang menunjukkan query 5+ kata

memiliki Semantic Similarity tertinggi (0.4719).

• Peran Self-Attention dalam Kualitas Generation:

Berdasarkan kedua contoh yang telah dipaparkan sebelumnya, dapat

diamati bahwa mekanisme self-attention yang telah dijelaskan pada bab 3

secara implisit diimplementasikan dalam model TinyLlama 1.1B. Setiap

kali model melakukan forward pass untuk menghasilkan token, 22 layer

transformer dengan 32 attention heads bekerja secara bersamaan untuk

memproses informasi. Mekanisme ini memungkinkan model memahami

konteks global dimana attention weights yang tersebar memungkinkan

128

model untuk melihat seluruh dokumen sekaligus, sehingga informasi dari

berbagai bagian dokumen dapat diintegrasikan. Selain itu, mekanisme ini

juga mampu menangkap dependensi jarak jauh, dimana token seperti

"profil" yang muncul di awal query dapat mempengaruhi pemilihan kata di

akhir jawaban yang dihasilkan. Kemampuan lain yang dimiliki adalah fokus

pada informasi relevan, dimana attention mechanism secara otomatis

memberikan bobot tinggi pada bagian dokumen yang sesuai dengan query

pengguna.

Namun demikian, limitasi model kecil dengan 1.1 miliar parameter

menyebabkan beberapa masalah dalam proses generation. Pertama, terjadi

repetition loops dimana attention weights kadang terjebak pada token yang

sama, sehingga menyebabkan pengulangan kata atau frasa secara

berlebihan. Kedua, terjadi loss of coherence terutama ketika menghadapi

konteks yang panjang melebihi 500 tokens, dimana attention weights

menjadi terlalu terdistribusi atau diffuse sehingga model kehilangan fokus

dan menghasilkan output yang tidak koheren. Ketiga, penggunaan Bahasa

Indonesia yang janggal terjadi karena model di-pretrain sebagian besar

dengan data berbahasa Inggris, sehingga proses fine-tuning untuk Bahasa

Indonesia tidak sempurna mengubah attention patterns yang telah terbentuk

selama tahap pre-training.

Kondisi-kondisi tersebut menjelaskan mengapa nilai Faithfulness

sebesar 0.55 lebih tinggi dibandingkan Semantic Similarity sebesar 0.38.

Mekanisme self-attention berhasil menemukan informasi yang tepat dari

129

dokumen sehingga menghasilkan faithfulness yang baik, namun cara

menyusun informasi tersebut menjadi kalimat yang natural masih lemah

sehingga menghasilkan similarity yang rendah terhadap reference answer.

4.3 Analisis Hasil

Berdasarkan hasil evaluasi retrieval dan generation yang telah dipaparkan

pada subbab 4.2, dilakukan analisis mendalam untuk memahami performa sistem,

pola perilaku, dan implikasinya terhadap pengalaman pengguna.

4.3.1 Analisis Komparatif Retrieval vs Generation

Untuk memahami dinamika performa antara kedua komponen utama sistem

RAG, dilakukan analisis komparatif yang membandingkan hasil evaluasi retrieval

menggunakan metrik NDCG@5 dengan hasil evaluasi generation menggunakan

metrik Semantic Similarity. Perbandingan ini penting untuk mengidentifikasi

kekuatan dan kelemahan masing-masing komponen pada berbagai kategori query.

Tabel 4.36 menyajikan perbandingan performa antara komponen retrieval dan

generation pada setiap kategori panjang query, beserta gap nilai dan

interpretasinya.

Tabel 4.36 Perbandingan Performa Retrieval (NDCG@5) vs Generation (Semantic Similarity)

Kategori

Query

Retrieval

(NDCG@5)

Generation

(Sem. Sim.)
Gap Interpretasi

1 kata 0.29 0.47 +0.18
Generation lebih baik memanfaatkan

dokumen hasil retrieval

2 kata 0.20 0.35 +0.15
Generation berhasil mengompensasi

retrieval yang lemah

3 kata 0.20 0.28 +0.08 Keduanya struggle pada kategori ini

4 kata 0.28 0.38 +0.10
Performa seimbang dengan gap

moderat

130

Tabel 4.36 Lanjutan

Kategori

Query

Retrieval

(NDCG@5)

Generation

(Sem. Sim.)
Gap Interpretasi

5+ kata 0.25 0.47 +0.22
Generation unggul signifikan dengan

informasi lengkap

Scrambled 0.68 0.33 -0.35 Retrieval lebih robust

Berdasarkan data pada Tabel 4.36, teridentifikasi pola umum dimana

komponen generation menunjukkan performa yang lebih baik dibandingkan

retrieval pada 5 dari 6 kategori query, yaitu dari query 1 kata hingga 5+ kata. Gap

positif berkisar antara +0.08 hingga +0.22, dengan nilai tertinggi terjadi pada query

5+ kata. Fenomena ini mengindikasikan bahwa meskipun retrieval tidak selalu

berhasil menempatkan dokumen relevan pada ranking teratas yang tercermin dari

nilai NDCG yang rendah, model language generation TinyLlama 1.1B masih

mampu mengekstrak dan menyintesis informasi yang dibutuhkan dari dokumen-

dokumen yang berhasil di-retrieve. Temuan ini menunjukkan efektivitas

pendekatan RAG dimana kelemahan pada tahap retrieval dapat dikompensasi oleh

kemampuan generative model untuk memahami konteks dari multiple dokumen,

bukan hanya bergantung pada dokumen yang berada di posisi teratas hasil retrieval.

Anomali menarik ditemukan pada kategori query scrambled yang

menunjukkan pola berlawanan dengan gap 130enyusun sebesar -0.35. Pada

kategori ini, retrieval sangat unggul dengan nilai NDCG@5 sebesar 0.68 yang

merupakan nilai tertinggi dari semua kategori, namun generation menunjukkan

performa lemah dengan Semantic Similarity hanya 0.33. Kekuatan retrieval pada

query scrambled dapat dijelaskan melalui karakteristik komponen BM25 dalam

sistem hybrid retrieval yang melakukan keyword matching secara

130enyusun130c130 per-term. Query seperti “java komunitas mahasiswa akademik

131

prodi struktur” mengandung banyak kata kunci penting, dan BM25 tidak terganggu

oleh urutan kata sehingga tetap menemukan dokumen relevan dengan overlap kata

kunci yang tinggi. Kombinasi dengan FAISS yang menangkap konteks 131enyusun

keseluruhan menghasilkan performa retrieval yang sangat baik.

Sebaliknya, kelemahan generation pada query scrambled terjadi karena

model language TinyLlama 1.1B bergantung pada struktur 131enyusun131c untuk

memahami intent query. Query tanpa struktur gramatikal yang jelas membuat

model mengalami kebingungan mengenai informasi apa yang harus diekstrak dari

dokumen. Model cenderung melakukan fallback ke strategi copy-paste dari

dokumen tanpa melakukan sintesis yang bermakna, sehingga menghasilkan

Semantic Similarity yang rendah meskipun nilai Faithfulness tinggi mencapai 0.68.

Implikasi praktis dari temuan ini adalah untuk query yang tidak terstruktur atau

mengandung noise, sistem retrieval sangat dapat diandalkan untuk menemukan

dokumen relevan, namun pengguna mungkin perlu membaca dokumen sumber

secara langsung alih-alih mengandalkan jawaban yang di-generate oleh sistem.

Temuan penting lainnya adalah gap terbesar terjadi pada query dengan 5+

kata yang mencapai +0.22, dimana generation jauh lebih unggul dibandingkan

retrieval. Query panjang memberikan konteks lengkap yang memudahkan model

language untuk memahami intent pengguna dengan lebih baik. Meskipun retrieval

hanya menunjukkan performa moderat dengan NDCG@5 sebesar 0.25, model

generation mampu menyintesis informasi dari multiple dokumen dengan baik. Hal

ini terjadi karena model language modern termasuk TinyLlama 1.1B dilatih untuk

132

memproses prompt panjang dengan konteks yang kaya, sehingga menghasilkan

Semantic Similarity tertinggi sebesar 0.47 pada kategori query ini.

4.3.2 Analisis Performa Retrieval

Hasil pengujian retrieval menunjukkan pola yang cukup menarik. Sistem

hybrid yang menggabungkan FAISS (semantic search) dan BM25 (lexical search)

berhasil mencapai Recall@10 sebesar 1.0278, yang artinya sistem tidak hanya

menemukan dokumen ground truth, tapi juga dokumen relevan tambahan yang

tidak terdaftar secara manual. Ini membuktikan bahwa pendekatan hybrid memang

efektif untuk menangkap relevansi dari berbagai aspek, baik makna 132enyusun

maupun kecocokan kata kunci.

Adapun yang cukup mengejutkan adalah performa terbaik justru muncul di

kategori query acak (scrambled). Query yang tidak terstruktur seperti “java

komunitas mahasiswa akademik prodi struktur” malah menghasilkan MRR@5 =

0.58 dan Recall@10 = 1.83, jauh lebih tinggi dari kategori lain. Ini terjadi karena

BM25 bekerja dengan cara term-independent matching, jadi urutan kata tidak

terlalu berpengaruh. Selama keyword-nya ada banyak dan tersebar di berbagai

dokumen, sistem bisa matching dengan baik. FAISS juga membantu menangkap

konteks 132enyusun secara keseluruhan meskipun strukturnya acak.

Sebaliknya, query pendek (1-2 kata) justru mengalami kesulitan di ranking

teratas. MRR@3 untuk query 1 kata Cuma 0.10, yang berarti dokumen relevan

jarang muncul di top-3 meskipun Recall@10-nya tinggi (1.20). Ini masalah

ambiguitas, kata seperti “komunitas” atau “kurikulum” terlalu general sehingga

133

banyak dokumen yang sesuai, tetapi sistem kesulitan menentukan mana yang paling

relevan.

Query 3-4 kata menunjukkan performa paling stabil dan balance. Ini bagian

bagusnya karena cukup spesifik untuk mengurangi ambiguitas, tetapi tidak terlalu

panjang hingga terlalu spesifik. Untuk use case chatbot akademik, kategori ini

paling realistis karena mahasiswa biasanya bertanya dengan format seperti “visi

misi prodi” atau “ketua program studi informatika”.

4.3.3 Analisis Performa Generation

Performa generation secara keseluruhan berada di level moderat dengan

Semantic Similarity dan Answer Relevancy masing-masing 0.38, sementara

Faithfulness mencapai 0.55. Gap antara faithfulness dan semantic similarity ini

menjadi temuan penting, artinya model dapat mengambil informasi yang benar dari

dokumen (faithful), tapi cara menyampaikannya kurang natural dan tidak mirip

dengan jawaban ideal yang ditulis manusia.

Pola ini konsisten dengan karakteristik model kecil seperti TinyLlama 1.1B.

Model dengan 1.1 miliar parameter ini memang punya keterbatasan dalam

memahami konteks kompleks dan menghasilkan teks yang koheren dalam bahasa

Indonesia. Yang sering terjadi adalah repetition loops, model stuck mengulang-

ulang frasa yang sama, atau terjadi degenerative output di mana jawabannya jadi

tidak sesuai sama sekali.

Query 3 kata menunjukkan performa terburuk dengan Semantic Similarity

hanya di angka 0.28. Ini 133enyusu karena seharusnya 3 kata itu optimal seperti

yang terlihat di retrieval. Ternyata masalahnya terdapat pada context window

134

pressure. Dengan 3 dokumen masing-masing sekitar 1200 karakter ditambah

system prompt dan query, total token mendekati batas 2048. TinyLlama menjadi

“tertekan” dan outputnya jadi membingungkan atau bahkan fallback ke template

jawaban seperti “informasi tersebut tidak tersedia dalam database” padahal

dokumennya jelas ada.

Terdapat temuan menarik, yaitu pada query >5 kata justru menunjukkan

skor Semantic Similarity tertinggi (0.47). Hipotesisnya, query panjang memberikan

lebih banyak clue dan konteks yang membuat prompt lebih terarah. Model menjadi

lebih fokus dan berhasil melakukan generation berdasarkan template dengan lebih

baik. Contohnya query “kurikulum dan profil lulusan program studi informatika”

bisa menghasilkan Semantic Similarity sampai 0.69.

Untuk scrambled query, faithfulness-nya bahkan paling tinggi (0.68) tetapi

semantic similarity-nya rendah di angka (0.33). Ini terjadi karena retrieval berhasil

mendapatkan dokumen yang sangat relevan karena overlap pada keyword tinggi,

kemudian model cenderung copy-paste dari dokumen tanpa benar-benar

memahami maksud query. Strategi bertahan ini sebenarnya cukup efektif untuk

model kecil dan lebih baik mengutip dokumen yang benar daripada mengarang dan

membuat jawaban sendiri.

4.3.4 Analisis Keterkaitan Retrieval dan Generation

Gambar 4.10 menunjukkan bahwa performa retrieval yang tinggi tidak

selalu menjamin generation yang bagus. Kategori scrambled adalah contoh paling

jelas, dimana NDCG@5 mencapai angka 0.68 (retrieval excellent), tetapi Semantic

135

Similarity-nya malah turun ke 0.33 (generation poor). Gap sebesar -0.35 ini

menunjukkan bottleneck ada di tahap generation, bukan pada tahap retrieval.

Sebaliknya, kategori 1 kata dan 5+ kata menunjukkan peningkatan yang

positif yaitu (+0.18 dan +0.22). Artinya meskipun dokumen yang di-retrieve belum

sempurna, model generation berhasil “memperbaiki” output dengan cara

135enyusun ulang informasi dari beberapa dokumen atau menambahkan konteks

dari pemahaman bahasanya sendiri.

Pola ini mengonfirmasi bahwa dalam arsitektur RAG, kedua komponen

harus dioptimasi secara terpisah tapi juga dipertimbangkan sebagai satu kesatuan

pipeline. Retrieval yang bagus dapat berujung sia-sia apabila generation lemah, dan

generation yang kuat tetap butuh input berkualitas dari retrieval.

4.3.5 Limitasi dan Tantangan Generation

Dari seluruh data hasil pengujian dapat dilihat bahwa meskipun pada

beberapa bagian generation memberikan hasil yang bagus tetap ditemukan

beberapa kekurangan dan keterbatasan. Adapun beberapa limitasi utama yang

ditemukan selama pengujian sistem adalah:

4.3.3.1 Keterbatasan Model Generatif Kecil

TinyLlama 1.1B dipilih karena pertimbangan efisiensi, bisa jalan di

hardware terbatas tanpa perlu GPU high-end. Tetapi pilihan ini tantangannya jelas:

model ini struggle dengan konteks panjang, sering terjadi stuck di repetition loops,

dan kurang bagus dalam bahasa Indonesia. Contoh nyata adalah jawaban untuk

query "ketua prodi" yang hasilnya "HANYA merujuk padan dengan HANYA

136

merujuk padan dengan..." berulang-ulang. Ini degenerative output yang tidak

informatif sama sekali.

4.3.3.2 Context Window Limitation

Dengan maksimal 2048 tokens, sistem harus melakukan trim dokumen hasil

retrieval. Untuk query yang butuh informasi dari banyak bagian dokumen, konteks

yang diteruskan ke model jadi tidak lengkap dan sempurna. Ini terutama masalah

di query 3-4 kata yang spesifik tapi butuh informasi detail.

4.3.3.3 Ambiguitas Query Pendek

Query 1-2 kata sangat ambiguous. "Komunitas" bisa merujuk ke Fun Java,

GDSC, ETH0, atau komunitas lainnya. Sistem tidak punya mekanisme clarification

asking, chatbot langsung menjawab berdasarkan dokumen top-1 yang belum tentu

yang dimaksud user.

4.3.3.4 Over-specification di Query Panjang

Meskipun query 5+ kata menunjukkan semantic similarity tertinggi, ada

risiko over-specification. Kalau user terlalu detail tapi dokumen tidak ada yang

exact match dengan semua keyword, sistem bisa miss dokumen yang sebenarnya

relevan.

4.3.3.5 Tidak Ada Mekanisme Fallback

Ketika model tidak yakin atau tidak menemukan informasi yang tepat,

sistem tidak punya strategi fallback yang baik. Kadang model tetap memaksa jawab

137

(risiko hallucination), kadang fallback ke template "informasi tidak tersedia"

padahal terdapat di dokumen.

4.3.6 Implikasi Penggunaan Model Kecil (TinyLlama 1.1B)

Keputusan untuk menggunakan TinyLlama 1.1B adalah atas dasar

pertimbangan antara performa dan efisiensi. Pada konteks prodi yang resource-nya

terbatas dan prioritasnya adalah kelayakan sistem yang bisa jalan di local machine,

maka pilihan ini masuk akal.

Dari hasil pengujian yang telah dilakukan menunjukkan bahwa model kecil

sebenarnya cukup memiliki kapasitas untuk tugas tertentu, terutama yang sifatnya

retrieval-heavy dan tidak butuh generation yang terlalu kreatif. Faithfulness 0.55

membuktikan model bisa tetap grounded ke dokumen, ini kebiasaan yang

diinginkan untuk pencarian informasi chatbot.

Adapun yang kemudian menjadi masalah adalah kualitas bahasa output.

Model pre-trained ini kebanyakan dilatih dengan data bahasa Inggris, jadi saat

prompting dalam bahasa Indonesia, hasilnya sering janggal atau repetitif.

Kedepannya, apabila terdapat resource lebih, dapat dilakukan upgrade ke model

yang lebih besar (misalnya 3B atau 7B parameter) atau model yang secara spesifik

dilatih untuk bahasa Indonesia bisa dan secara signifikan dapat meningkatkan skor

semantic similarity dan answer relevancy.

Tetapi harus diakui juga, untuk demonstrasi awal sistem RAG di lingkungan

akademik dengan hardware terbatas, TinyLlama 1.1B sudah menunjukkan bahwa

konsep RAG itu dapat bertahan dan bisa meneruskan nilai informasi meskipun

dengan limitasi yang ada.

138

4.4 Integrasi Islam dan Maqasid Syariah

Pengembangan Chatbot Informasi Akademik Teknik Informatika Berbasis

Retrieval-Augmented Generation (RAG) tidak hanya dinilai dari aspek teknis, tetapi

juga dianalisis dari perspektif nilai-nilai Islam, khususnya dalam kerangka Maqasid

Syariah. Maqasid Syariah adalah prinsip-prinsip utama yang bertujuan

mewujudkan kemaslahatan (maslahah) dan mencegah kerusakan (mafsadah)

dalam kehidupan manusia. Lima tujuan utama (al-kulliyat al-khams) yang relevan

dalam penelitian ini adalah:

1. Hifz al-‘Aql (Menjaga Akal)

2. Hifz al-‘Ilm (Menjaga dan Mengembangkan Ilmu)

3. Hifz al-Nafs (Menjaga Jiwa dan Kedisiplinan Mahasiswa)

4. Hifz al-Din (Integritas, kejujuran, dan etika pemanfaatan pengetahuan)

Integrasi nilai-nilai tersebut memberikan dasar filosofis dan moral dalam

pengembangan teknologi di lingkungan UIN Maulana Malik Ibrahim Malang,

sehingga inovasi digital tidak lepas dari orientasi kebermanfaatan dan tanggung

jawab etis.

4.2.6 Hifz al-‘Aql (Menjaga dan Mengoptimalkan Akal)

Penelitian ini bertujuan membantu mahasiswa memperoleh informasi

akademik dengan cepat, akurat, dan terstruktur. Sistem chatbot berbasis RAG

mengurangi cognitive overload mahasiswa saat mencari informasi manual pada

website yang strukturnya kompleks. Allah berfirman:

 هَلْ يَسْتَوِى الَّذِيْنَ يَ عْلَم وْنَ وَالَّذِيْنَ لَْ يَ عْلَم وْنَْۗ

139

“...apakah sama orang-orang yang mengetahui (hak-hak Allah) dengan orang-

orang yang tidak mengetahui (hak-hak Allah)?” (QS. Az-Zumar: 9)

Pada NU Online dijelaskan bahwa ayat ini menegaskan pentingnya

memudahkan akses terhadap ilmu pengetahuan. Chatbot ini menghilangkan

hambatan informasi dan membantu mahasiswa menggunakan akal secara optimal

dalam proses akademik. Adapun relevansinya dengan sistem adalah sebagai

berikut:

• Relevansi dengan sistem

• Menyediakan informasi akademik tanpa ambiguitas.

• Mengurangi kebingungan akibat informasi tercecer.

• Mendukung proses belajar dan pengambilan keputusan akademik.

4.2.7 Hifz al-‘Ilm (Menjaga Ilmu dan Keaslian Informasi)

Salah satu isu krusial dalam era AI adalah disinformasi dan halusinasi

model. Dengan menerapkan Retrieval-Augmented Generation, penelitian ini

mengarahkan AI untuk selalu menjawab berdasarkan dokumen resmi prodi, bukan

berdasarkan spekulasi.

عْت النَّبَِّ صَلَّى اللََّّ عَليَْهِ وَسَلَّمَ يَ ق ول إِنَّ كَذِبِا عَلَ يَّ ليَْسَ كَكَذِب عَلَى أَحَد عَنْ الْم غِيرةَِ رَضِيَ اللََّّ عَنْه قاَلَ سََِ
 مَنْ كَذَبَ عَلَيَّ م تَ عَمِ داا فَ لْيَ تَ بَ وَّأْ مَقْعَدَه مِنْ النَّارِ

‘Dari al-Mughirah Radhiyallahu anhu, dia berkata, “Aku mendengar Rasûlullâh

Shallallahu alaihi wa sallam bersabda, “Sesungguhnya berdusta atasku tidak

seperti berdusta atas orang yang lain. Barangsiapa berdusta atasku dengan

sengaja, maka hendaklah dia mengambil tempat tinggalnya di neraka”’. [HR. Al-

Bukhâri, no. 1229]

140

(HR. Al-Bukhâri dalam Shahih Bukhari Muslim (Al-Lu'lu' Wal Marjan),

Kitab al-Janâiz: 23, Kitab Jenazah, bab ke-34, bab hal-hal yang dibenci dari

meratapi orang yang telah meninggal dunia, hadis no. 4) (Fuad Abdul Baqi, 2017).

 Hadis ini menjadi landasan etis untuk mencegah penyampaian informasi

palsu atau mengada-ada (taḥrīf). Dalam konteks teknologi informasi, hadis ini

menuntut sistem berbasis AI untuk tidak mengarang jawaban (hallucination), tidak

menyebarkan data akademik yang salah, dan hanya menyampaikan informasi

berdasarkan sumber yang valid dan terverifikasi. Prinsip kejujuran ini sejalan

dengan konsep ṣidq (kejujuran) dan amānah (amanah) dalam Islam yang

mewajibkan setiap penyampai informasi untuk memastikan kebenaran dan akurasi

pesan yang disampaikan.

 Relevansi hadis ini dengan sistem chatbot RAG yang dikembangkan

tercermin dalam tiga aspek implementasi. Pertama, instruksi sistem (system

prompt) pada TinyLlama menetapkan larangan tegas untuk menjawab tanpa

merujuk pada konteks dokumen yang di-retrieve, dengan perintah eksplisit

"JANGAN MENGARANG" sebagai guardrail untuk mencegah hallucination.

Kedua, setiap jawaban yang dihasilkan sistem disertai source attribution berupa

URL dokumen sumber yang memungkinkan pengguna melakukan verifikasi

langsung, menjamin transparansi dan akuntabilitas informasi. Ketiga, metrik

faithfulness dalam evaluasi sistem mengukur tingkat groundedness jawaban

terhadap dokumen konteks, dengan hasil 0.549 yang mengkonfirmasi bahwa

mayoritas jawaban tetap setia pada sumber dan tidak mengada-ada informasi yang

tidak terdapat dalam dokumen. Dengan demikian, sistem tidak hanya memenuhi

141

standar teknis akurasi informasi, tetapi juga mengimplementasikan nilai kejujuran

Islam dalam penyampaian informasi akademik kepada mahasiswa.

4.2.8 Hifz al-Nafs (Menjaga Kenyamanan, Ketenangan, dan Kesiapan

Mahasiswa)

 Mahasiswa sering mengalami stres ketika harus mencari informasi penting

menjelang PKLI, KRS, remedial, skripsi, dan seminar hasil. Chatbot ini membantu

mengurangi tekanan psikologis karena informasi menjadi lebih mudah ditemukan,

tersedia kapan pun, dan tidak lagi bergantung pada jam kantor atau admin. Allah

berfirman:

 .…ي ريِْد اللَّٓ بِك م الْي سْرَ وَلَْ ي ريِْد بِك م الْع سْرَِۖ

“Allah menghendaki kemudahan bagimu dan tidak menghendaki kesukaran” (QS.

Al-Baqarah: 185).

Dikutip dari NU Online, dari ayat tersebut, Allah itu senantiasa

memudahkan hambanya di setiap keadaan yang dihadapi oleh hambanya. Dari sini

dapat dipahami bahwa sistem chatbot juga sejalan dengan konsep memudahkan

dimana kehadiran sistem chatbot dapat menghemat waktu pencarian informasi yang

sebelumnya memakan puluhan menit, mengurangi potensi miskomunikasi antara

mahasiswa dan pihak prodi, dan menjaga ketenangan jiwa mahasiswa dalam

menjalani proses akademik.

4.2.9 Hifz al-Din (Integritas, Kejujuran, dan Etika Teknologi)

Integritas adalah aspek penting dalam pengembangan teknologi, khususnya

di institusi Islam. Penelitian ini menjaga nilai-nilai kejujuran akademik: model

142

dilarang membuat data yang tidak ada, dimana sistem diarahkan untuk berkata

“tidak tahu” jika konteks tidak tersedia, dan seluruh proses pengembangan

dilakukan dengan niat memberikan kemaslahatan bagi civitas akademika.

ا َ وَق ول وا۟ قَ وْلْا سَدِيدا يَ ُّهَا ٱلَّذِينَ ءَامَن وا۟ ٱت َّق وا۟ ٱللََّّ يَآَ

“Wahai orang-orang yang beriman, bertakwalah kepada Allah dan berkatalah

dengan perkataan yang benar.” (QS. Al-Ahzab: 70).

Rasulullah juga bersabda:

الَ: »لِلََِّّ وَلِكِتَابِهِ عَنْ تََيِم الدَّارِيِ أَنَّ النَّبَِّ صَلَّى الله عَليَْهِ وَسَلَّمَ، قاَلَ: »الدِ ين النَّصِيحَة « ق لْنَا: لِمَنْ؟ قَ
 «وَلِرَس ولِهِ وَلِِئَمَِّةِ الْم سْلِمِيَْ وَعَامَّتِهِمْ

Bersumber dari Tamim Ad-Dari bahwa Nabi SAW bersabda, “Agama adalah

nasihat.” Kami (sahabat Nabi) bertanya, “Untuk siapa?” Beliau menjawab,

“Untuk Allah, Kitab, Rasul, para pemimpin muslimin dan mereka secara umum.”

Hadits ini juga diriwayatkan oleh Bukhari, Abu Dawud, Tirmidzi, Nasa’i, Syafi’i,

Ahmad, Darimi, Ibnu Hibban, Thabrani dan masih ada yang lainnya.

Hadis Rasulullah صلى الله عليه وسلم yang menyatakan bahwa “Agama adalah nasihat”

يحَةُ) ينُ النَّصِّ memberikan landasan moral bahwa setiap bentuk interaksi, termasuk (الد ِّ

dalam ranah teknologi, seyogianya dilandasi kejujuran, integritas, serta komitmen

untuk menghadirkan manfaat yang benar bagi umat. Ketika para sahabat

menanyakan kepada siapa nasihat itu ditujukan, Rasulullah صلى الله عليه وسلم menegaskan bahwa

nasihat mencakup hubungan dengan Allah, Kitab-Nya, Rasul-Nya, para pemimpin,

dan seluruh masyarakat muslim. Dengan demikian, makna nasihat dalam hadis ini

tidak hanya terbatas pada tutur lisan, tetapi juga mencakup penyampaian informasi

yang akurat, bertanggung jawab, serta menghindari penyimpangan dalam bentuk

apa pun.

143

Dalam konteks penelitian ini, prinsip nasihat tersebut menjadi relevan

ketika diterapkan pada sistem chatbot akademik berbasis Retrieval-Augmented

Generation (RAG). Hal ini tampak melalui beberapa aspek berikut:

1. Chatbot sebagai sarana nasihat digital yang memberikan informasi benar bagi

mahasiswa.

Sebagaimana nasihat harus disampaikan dengan ketulusan dan kebenaran,

chatbot dirancang untuk menyampaikan informasi akademik yang tepat,

berbasis sumber resmi prodi. Hal ini membantu mahasiswa memperoleh

pemahaman yang benar mengenai prosedur akademik, sehingga teknologi

berfungsi sebagai bentuk “nasihat digital” yang selaras dengan nilai kejujuran

dalam Islam.

2. Menghindari manipulasi informasi dan menjaga prinsip kejujuran ilmiah.

Hadis tersebut menekankan pentingnya amanah dan kejujuran dalam

menyampaikan informasi. Implementasi RAG pada chatbot memastikan bahwa

jawaban diambil dari sumber yang valid, bukan hasil halusinasi model.

Pendekatan ini sejalan dengan nilai Hifz al-Dīn, yaitu menjaga kemurnian nilai

kebenaran, menghindari manipulasi data, serta menegakkan integritas dalam

pelayanan informasi akademik.

3. Menjadi contoh penerapan etika Islam dalam teknologi modern.

Ketika teknologi dikembangkan dengan menjunjung tinggi nilai ketelitian,

kejujuran, dan kemanfaatan bagi masyarakat kampus, hal ini mencerminkan

bentuk aktualisasi nasihat yang disebutkan dalam hadis. Chatbot bukan hanya

144

alat teknis, tetapi juga wujud komitmen etis untuk membantu civitas akademika

dengan cara yang bertanggung jawab dan bernilai ibadah.

145

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Penelitian ini berhasil merancang dan mengimplementasikan sistem chatbot

berbasis Retrieval-Augmented Generation (RAG) untuk layanan informasi

akademik Program Studi Teknik Informatika UIN Maulana Malik Ibrahim Malang.

Sistem terdiri dari tiga komponen utama: tahap pengumpulan data yang

mengekstrak 384 potongan dokumen (chunk) dari 350 halaman website prodi,

sistem pencarian informasi menggunakan gabungan metode pencarian semantik

dan pencarian kata kunci dengan bobot 0.25, serta sistem pembangkit jawaban

menggunakan model bahasa TinyLlama 1.1B dengan kapasitas pemrosesan 2048

token. Implementasi menggunakan arsitektur layanan web berbasis Application

Programming Interface (API) memungkinkan sistem berjalan mandiri pada

perangkat dengan spesifikasi minimal (prosesor 4 core, memori 8GB) tanpa

bergantung pada layanan komersial berbayar.

Evaluasi komprehensif menggunakan 30 pertanyaan untuk pengujian

pencarian (retrieval)dan 30 pertanyaan untuk pengujian pembangkit jawaban

(generation) pada 6 kategori panjang pertanyaan mengungkap kinerja sistem yang

beragam. Komponen pencarian informasi mencatat nilai kualitas peringkat sebesar

0.258 dan tingkat penemuan dokumen sebesar 1.028, dengan kinerja terbaik pada

pertanyaan acak (nilai 0.68) yang menunjukkan ketahanan sistem terhadap variasi

struktur pertanyaan. Komponen pembangkit jawaban mencatat kemiripan semantik

(Semantic Similarity) 0.381 dan Faithfulness terhadap dokumen 0.549, dengan

146

kinerja optimal pada pertanyaan 5+ kata (0.472) dan titik lemah pada pertanyaan 3

kata (0.284). Faithfulness yang konsisten tinggi mengkonfirmasi model tetap

mengacu pada dokumen sumber dan jarang mengada-ada informasi. Dari analisis

perbandingan menunjukkan generation unggul di 5 dari 6 kategori dengan selisih

positif 0.08 hingga 0.22, memvalidasi efektivitas pendekatan RAG dalam

meningkatkan kinerja melalui penggabungan informasi dari berbagai dokumen.

Pengujian konsistensi dengan mengulang pertanyaan yang sama sebanyak

5 kali menghasilkan temuan penting bahwa sistem mampu menghasilkan jawaban

yang identik dengan nilai variasi nol untuk pertanyaan faktual kritis yang telah

dilindungi dengan mekanisme pengaman. Hal ini memvalidasi bahwa strategi

mitigasi yang diimplementasikan berhasil mengatasi ketidakkonsistenan output

yang diamati pada saat sidang. Limitasi yang teridentifikasi mencakup pengulangan

kalimat sekitar 20%, kebocoran template instruksi sekitar 30%, dan kesulitan

ekstraksi informasi spesifik seperti nama dan jabatan, yang merupakan karakteristik

umum model bahasa berukuran kecil dengan keterbatasan pelacakan konteks.

Limitasi ini berhasil dimitigasi melalui penyaringan pasca-pemrosesan dan solusi

cadangan untuk pertanyaan kritis.

Sistem membuktikan kelayakan pendekatan RAG dengan model berukuran

kecil untuk aplikasi spesifik domain di institusi pendidikan, memberikan kontribusi

praktis berupa solusi aksesibilitas informasi 24/7 dengan biaya minimal serta

kontribusi metodologis berupa identifikasi kondisi optimal (pertanyaan 5+ kata)

dan titik lemah (pertanyaan 3 kata) yang dapat menjadi acuan penelitian serupa di

masa depan.

147

5.2 Saran

Berdasarkan hasil penelitian, beberapa saran diajukan untuk pengembangan

sistem dan penelitian lanjutan di bidang chatbot RAG untuk pendidikan:

1. Melakukan upgrade model generation menjadi prioritas utama untuk mengatasi

limitasi yang teridentifikasi. TinyLlama 1.1B dengan semantic similarity 0.38

dan frekuensi repetition loops 20% menunjukkan keterbatasan signifikan model

kecil. Penelitian selanjutnya dapat menggunakan model berkapasitas lebih besar

seperti Llama-3-8B atau Qwen-7B yang memiliki kapasitas pemrosesan 4096+

token dan dukungan Bahasa Indonesia lebih baik, diperkirakan dapat

meningkatkan kemiripan semantik menjadi 0.55-0.65 dan mengurangi keluaran

yang bermasalah hingga di bawah 5%. Alternatif hemat biaya adalah

penyesuaian model menggunakan teknik efisien dengan dataset spesifik

akademik UIN Malang untuk meningkatkan kinerja tanpa melatih ulang seluruh

model.

2. Optimasi tahap preprocessing dan chunking sangat krusial namun sering

diabaikan. Penelitian ini menggunakan chunking fixed-size 150 karakter yang

dapat memotong informasi penting di tengah paragraf atau kalimat. Penelitian

selanjutnya dapat mengeksplorasi semantic chunking yang mempertimbangkan

batas kalimat, paragraf, atau bagian dokumen, serta pengayaan metadata untuk

setiap potongan dengan informasi seperti tanggal publikasi, kategori konten,

dan hierarki struktur dokumen. Strategi pemotongan yang lebih baik dapat

meningkatkan relevansi pencarian sebesar 15-20% dan mengurangi fragmentasi

konteks yang menyebabkan kesulitan saat generation pada pertanyaan 3 kata

148

3. Implementasi mekanisme perangkingan ulang seperti (reranker) seperti jina-

reranker-v2-base-multilingual sebagai tahap ketiga setelah pencarian semantik

dan pencarian kata kunci dapat meningkatkan kualitas peringkat sebesar 15-

25%, terutama untuk kategori pertanyaan 2-3 kata yang saat ini mencatat nilai

rendah (0.20). Mekanisme ini melakukan penilaian yang lebih presisi dengan

mempertimbangkan interaksi semantik antara pertanyaan dan dokumen, lebih

powerful dibanding penilaian dua arah yang digunakan pada pencarian

semantik.

4. Pembangunan pembangunan graf pengetahuan atau basis data terstruktur untuk

menyimpan informasi faktual seperti nama dosen, jabatan, jadwal akademik,

dan mata kuliah dapat meningkatkan akurasi pertanyaan faktual mendekati 95-

100%. Pendekatan gabungan antara pencarian faktual terstruktur dan RAG

untuk pertanyaan penjelasan dapat mengombinasikan presisi tinggi dengan

fleksibilitas pemahaman bahasa natural.

5. Untuk deployment production sebaiknya dilengkapi monitoring dashboard

untuk tracking pola pertanyaan (query patterns), rata-rata kemiripan semantik

per kategori, frekuensi kesalahan, dan waktu respons. Mekanisme umpan balik

dari pengguna penting untuk pengembangan berkelanjutan melalui

pembelajaran aktif, di mana pertanyaan dengan umpan balik negatif

diprioritaskan untuk diperbaiki baik melalui pembaruan basis pengetahuan

maupun penyesuaian model.

6. Penelitian lanjutan dapat melakukan studi ablasi dengan membandingkan

kinerja sistem pencarian murni, generation murni, dan RAG lengkap untuk

149

mengukur kontribusi setiap komponen secara eksplisit. Studi pengguna dengan

mahasiswa sebagai pengguna akhir menggunakan skala kegunaan sistem juga

diperlukan untuk mengukur kepuasan dan tingkat adopsi aktual yang tidak

terukur melalui evaluasi offline.

Implementasi saran-saran ini secara bertahap dapat mengembangkan sistem

menjadi solusi yang lebih mature untuk aksesibilitas informasi akademik di institusi

pendidikan, sekaligus memberikan kontribusi metodologis bagi penelitian RAG di

domain pendidikan Indonesia.

DAFTAR PUSTAKA

Abudrrohman R. (2024). Uji Performa Chatbot Dengan Retrieval Augmented

Generation Dan Model Gpt-4 Untuk Domain Taharah Berdasarkan Empat

Imam Mazhab Fikih (Studi Kasus Kitab Rahmah Al Ummah Fi Ikhtilaf Al

a’Immah).

Adamopoulou, E., & Moussiades, L. (2023). An Overview of Chatbot Technology

Eleni. In Pakistan Journal of Medical Sciences (Vol. 39, Issue 2). Springer

International Publishing. https://doi.org/10.12669/pjms.39.2.7653

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G., Mazaré, P.-E., Lomeli,

M., Hosseini, L., & Jégou, H. (2025). The Faiss library.

http://arxiv.org/abs/2401.08281

Elysia, S., Persada, D., & alan Taman Malaka Selatan No, J. (2024). Chatbot

Berbasis Retrieval Augmented Generation (RAG) untuk Peningkatan Layanan

Informasi Sekolah. Jurnal Tifda, 1(2), 52–58.

https://doi.org/10.70491/tifda.v1i2.52

Fuad Abdul Baqi, F. (2017). SHAHIH BUKHARI MUSLIM (AL-LU’LU’ WAL

MARJAN) (A. Firly Bassam Taqiy (ed.); 1st ed.). PT Elex Media Komputindo.

http://pustaka-indo.blogspot.com

Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., Wu, C., Croft, W. B., &

Cheng, X. (2020). A Deep Look into neural ranking models for information

retrieval. Information Processing and Management, 57(6).

https://doi.org/10.1016/j.ipm.2019.102067

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih,

W. T. (2020). Dense passage retrieval for open-domain question answering.

EMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language

Processing, Proceedings of the Conference, 6769–6781.

https://doi.org/10.18653/v1/2020.emnlp-main.550

Klesel, M., & Wittmann, H. F. (2025). Retrieval-Augmented Generation (RAG). In

Business and Information Systems Engineering. Springer.

https://doi.org/10.1007/s12599-025-00945-3

Knollmeyer, S., Caymazer, O., & Grossmann, D. (2025). Document GraphRAG:

Knowledge Graph Enhanced Retrieval Augmented Generation for Document

Question Answering Within the Manufacturing Domain. Electronics

(Switzerland), 14(11). https://doi.org/10.3390/electronics14112102

Krisnawati, L. D., Mahastama, A. W., Haw, S. C., Ng, K. W., & Naveen, P. (2024).

Indonesian-English Textual Similarity Detection Using Universal Sentence

Encoder (USE) and Facebook AI Similarity Search (FAISS). CommIT

Journal, 18(2), 183–195. https://doi.org/10.21512/commit.v18i2.11274

Labadze, L., Grigolia, M., & Machaidze, L. (2024). Role of AI chatbots in

education : systematic literature review. International Journal of Educational

Technology in Higher Education, 2023, 1–17. https://doi.org/10.1186/s41239-

023-00426-1

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H.,

Lewis, M., Yih, W. T., Rocktäschel, T., Riedel, S., & Kiela, D. (2020).

Retrieval-augmented generation for knowledge-intensive NLP tasks.

Advances in Neural Information Processing Systems, 2020-Decem.

Malkov, Y. A., & Yashunin, D. A. (2018). Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(4), 824–

836. https://doi.org/10.1109/TPAMI.2018.2889473

Mcgrath, C., Farazouli, A., & Cerratto, T. (2025). Generative AI chatbots in higher

education : a review of an emerging research area. Higher Education, 89(6),

1533–1549. https://doi.org/10.1007/s10734-024-01288-w

Nur’aini, I. (2024). Sistem Chatbot Sebagai Layanan Informasi Kesehatan Mental

Pada Remaja Menggunakan Metode Large Language Model (Llm). Doctoral

Dissertation, Universitas Islam Sultan Agung Semarang, 15(1), 37–48.

Nur Hakim, A. A., Murti, A. C., & Nindyasari, R. (2025). Implementasi Artificial

Intelligence Dalam Sistem Pencarian Orang Hilang Dengan Face Recognition

Studi Kasus Polres Kudus. SKANIKA: Sistem Komputer Dan Teknik

Informatika, 8(1), 168–180. https://doi.org/10.36080/skanika.v8i1.3334

Oreški, D., & Vlahek, D. (2024). Retrieval Augmented Generation in Large

Language Models: Development of AI Chatbot for Student Support. In CEUR

Workshop Proceedings (Vol. 3938, pp. 12–23). researchgate.net.

https://www.researchgate.net/profile/Dino-

Vlahek/publication/391918806_Retrieval_Augmented_Generation_in_Large

_Language_Models_Development_of_AI_Chatbot_for_Student_Support/lin

ks/682d8a896b5a287c3042ef28/Retrieval-Augmented-Generation-in-Large-

Language-Mo

Patil, R., Boit, S., Gudivada, V., & Nandigam, J. (2023). A Survey of Text

Representation and Embedding Techniques in NLP. IEEE Access, 11(March),

36120–36146. https://doi.org/10.1109/ACCESS.2023.3266377

Prasetyo, E. A. (2024). Chatbot untuk Informasi Pembangunan Wilayah Kota

Semarang menggunakan Metode Retrieval Augmented Generation (RAG).

http://ecampus.poltekkes-medan.ac.id/jspui/handle/123456789/1726

Prastowo, I., Putro, H., Antoni, J., Adhitya, M. K., & Herawati, N. A. (2025).

Retrieval-Augmented Generation (RAG) Chatbot for Handling Customer

Complaints in the Energy Sector. 10(2), 105–111.

Pratama, I. ichsanudin rachman, & Sisephaputra, B. (2024). Pengembangan Sistem

Helpdesk Menggunakan Chatbot Dengan Metode Retrieval-augmented

Generation (Rag). Journal of Informatics and Computer Science (JINACS),

6(03), 696–710. https://doi.org/10.26740/jinacs.v6n03.p696-710

Pujiono, I., Agtyaputra, I. M., & Ruldeviyani, Y. (2024). Implementing Retrieval-

Augmented Generation and Vector Databases for Chatbots in Public Services

Agencies Context. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer),

10(1), 216–223. https://doi.org/10.33480/jitk.v10i1.5572

Putro, I. P. H., Antoni, J., Adhitya, M. K., & ... (2025). Retrieval-Augmented

Generation (RAG) Chatbot for Handling Customer Complaints in the Energy

Sector. Jurnal Infomedia …. https://e-

jurnal.pnl.ac.id/infomedia/article/view/7169

Ramadhan, T. I., Supriatman, A., & Kurniawan, T. R. (2024). Passage Retrieval

untuk Question Answering Bahasa Indonesia Menggunakan BERT dan

FAISS. Jurnal Algoritma, 21(2), 156–163.

https://doi.org/10.33364/algoritma/v.21-2.2100

Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using

siamese BERT-networks. EMNLP-IJCNLP 2019 - 2019 Conference on

Empirical Methods in Natural Language Processing and 9th International

Joint Conference on Natural Language Processing, Proceedings of the

Conference, 3982–3992. https://doi.org/10.18653/v1/d19-1410

Robertson, S., & Zaragoza, H. (2009). The probabilistic relevance framework:

BM25 and beyond. In Foundations and Trends in Information Retrieval (Vol.

3, Issue 4). https://doi.org/10.1561/1500000019

Salsabila, S. K. (2025). INTEGRASI CHATBOT BERBASIS LARGE LANGUANGE

MODEL.

Samudra, G., Zy, A. T., & Ermanto. (2025). Implementasi Retrieval Augmented

Generation (RAG) Dalam Perancangan Chatbot Kesehatan Pencernaan. JSAI

(Journal Scientific and Applied Informatics), 8(1), 181–188.

https://doi.org/10.36085/jsai.v8i1.7678

Septri, V. (2025). Rancang bangun chatbot menggunakan large language model

sebagai sarana informasi skripsi skripsi.

Shiri, A. (2004). Introduction to Modern Information Retrieval (2nd edition).

Library Review, 53(9), 462–463. https://doi.org/10.1108/00242530410565256

Siino, M., Tinnirello, I., & La Cascia, M. (2024). Is text preprocessing still worth

the time? A comparative survey on the influence of popular preprocessing

methods on Transformers and traditional classifiers. Information Systems,

121(July 2023), 102342. https://doi.org/10.1016/j.is.2023.102342

Soliman, H., Kotte, H., Kravčík, M., Pengel, N., & Duong-Trung, N. (2025).

Retrieval-Augmented Chatbots for Scalable Educational Support in Higher

Education. CEUR Workshop Proceedings, 3994(March), 22–31.

Stohr, C., Ou, A. W., & Malmstrom, H. (2024). Computers and Education :

Artificial Intelligence Perceptions and usage of AI chatbots among students in

higher education across genders , academic levels and fields of study.

7(August 2023), 0–11. https://doi.org/10.1016/j.caeai.2024.100259

Sugiarto, R. W., Sokibi, P., Rizkiyah, P., Informatika, T., Informasi, T., Catur, U.,

& Cendekia, I. (2025). Chatbot Layanan Akademik Calon Mahasiswa UCIC

Menggunakan Metode Retrieval-Augmented Generation Retrieval :

Mengambil dokumen relevan dari basis data menggunakan pencocokan vektor

. 246–249.

Vaswani, A., SHazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., & Polosukhin, L. (2017). Retention Is All You Need. International

Conference on Information and Knowledge Management, Proceedings, Nips,

4752–4758. https://doi.org/10.1145/3583780.3615497

Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., & Wei, F. (2024).

Multilingual E5 Text Embeddings: A Technical Report.

http://arxiv.org/abs/2402.05672

Zhang, P., Zeng, G., Wang, T., & Lu, W. (2024). TinyLlama: An Open-Source

Small Language Model. 1–10. http://arxiv.org/abs/2401.02385

Nahdlatul Ulama. (2025). Tafsir Tahlili – Quran Online NU. Diakses pada 2

Oktober 2025, dari https://quran.nu.or.id/

Airbyte. (n.d.). Tokenization vs. embeddings: Key differences explained. Airbyte.

Retrieved October 2, 2025, from https://airbyte.com/data-engineering-

resources/tokenization-vs-embeddings

https://quran.nu.or.id/

LAMPIRAN-LAMPIRAN

Tabel A.1 Dataset Query untuk Pengujian Retrieval

ID Kategori Query Ground Truth URL

Q1 1 kata komunitas https://informatika.uin-malang.ac.id/fun-java/

https://informatika.uin-malang.ac.id/etho/

https://informatika.uin-malang.ac.id/google-

developer-student-club-dsc/

https://informatika.uin-malang.ac.id/data-

science-enthusiast-dse/

Q2 1 kata kurikulum https://informatika.uin-

malang.ac.id/curriculum/

Q3 1 kata dosen https://informatika.uin-malang.ac.id/lecturer-

and-staff/

Q4 1 kata prestasi https://informatika.uin-malang.ac.id/1st-

winner-of-national-hackathon-competition-on-

bug-bounty-2022/

https://informatika.uin-malang.ac.id/1st-

winner-of-madinah-van-java-pencak-silat-

championship/

Q5 1 kata laboratorium https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q6 2 kata fun java https://informatika.uin-malang.ac.id/fun-java/

Q7 2 kata visi misi https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q8 2 kata profil prodi https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q9 2 kata eth0 komunitas https://informatika.uin-malang.ac.id/etho/

Q10 2 kata ketua prodi https://informatika.uin-malang.ac.id/lecturer-

and-staff/

https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q11 3 kata kurikulum informatika

uin

https://informatika.uin-

malang.ac.id/curriculum/

Q12 3 kata komunitas fun java https://informatika.uin-malang.ac.id/fun-java/

https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/etho/
https://informatika.uin-malang.ac.id/google-developer-student-club-dsc/
https://informatika.uin-malang.ac.id/google-developer-student-club-dsc/
https://informatika.uin-malang.ac.id/data-science-enthusiast-dse/
https://informatika.uin-malang.ac.id/data-science-enthusiast-dse/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/lecturer-and-staff/
https://informatika.uin-malang.ac.id/lecturer-and-staff/
https://informatika.uin-malang.ac.id/1st-winner-of-national-hackathon-competition-on-bug-bounty-2022/
https://informatika.uin-malang.ac.id/1st-winner-of-national-hackathon-competition-on-bug-bounty-2022/
https://informatika.uin-malang.ac.id/1st-winner-of-national-hackathon-competition-on-bug-bounty-2022/
https://informatika.uin-malang.ac.id/1st-winner-of-madinah-van-java-pencak-silat-championship/
https://informatika.uin-malang.ac.id/1st-winner-of-madinah-van-java-pencak-silat-championship/
https://informatika.uin-malang.ac.id/1st-winner-of-madinah-van-java-pencak-silat-championship/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/etho/
https://informatika.uin-malang.ac.id/lecturer-and-staff/
https://informatika.uin-malang.ac.id/lecturer-and-staff/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/fun-java/

ID Kategori Query Ground Truth URL

Q13 3 kata struktur organisasi prodi https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q14 3 kata sejarah prodi

informatika

https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q15 3 kata laboratorium intelligent

system

https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q16 4 kata persyaratan kelulusan

informatika uin

https://informatika.uin-

malang.ac.id/curriculum/

Q17 4 kata ketua program studi

informatika

https://informatika.uin-malang.ac.id/lecturer-

and-staff/

https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q18 4 kata tujuan pembelajaran

program studi

https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q19 4 kata mata kuliah wajib

informatika

https://informatika.uin-

malang.ac.id/curriculum/

Q20 4 kata agenda kegiatan

komunitas mahasiswa

https://informatika.uin-

malang.ac.id/coordination-with-student-

communities/

https://informatika.uin-malang.ac.id/fun-java/

https://informatika.uin-malang.ac.id/etho/

Q21 5+ kata struktur organisasi

jurusan teknik

informatika uin

https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q22 5+ kata mata kuliah wajib

mahasiswa informatika

uin

https://informatika.uin-

malang.ac.id/curriculum/

Q23 5+ kata persyaratan kelulusan

program studi teknik

informatika

https://informatika.uin-

malang.ac.id/curriculum/

Q24 5+ kata hubungan komunitas fun

java dengan himpunan

mahasiswa

https://informatika.uin-malang.ac.id/fun-java/

https://informatika.uin-

malang.ac.id/coordination-with-student-

communities/

https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/lecturer-and-staff/
https://informatika.uin-malang.ac.id/lecturer-and-staff/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/coordination-with-student-communities/
https://informatika.uin-malang.ac.id/coordination-with-student-communities/
https://informatika.uin-malang.ac.id/coordination-with-student-communities/
https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/etho/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/coordination-with-student-communities/
https://informatika.uin-malang.ac.id/coordination-with-student-communities/
https://informatika.uin-malang.ac.id/coordination-with-student-communities/

ID Kategori Query Ground Truth URL

Q25 5+ kata kurikulum dan profil

lulusan program studi

informatika

https://informatika.uin-

malang.ac.id/curriculum/

https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q26 Scrambled java komunitas

mahasiswa akademik

prodi struktur

https://informatika.uin-malang.ac.id/fun-java/

https://informatika.uin-

malang.ac.id/undergraduate-s1/

Q27 Scrambled jurusan akademik sks

kuliah komunitas

random

https://informatika.uin-

malang.ac.id/curriculum/

https://informatika.uin-

malang.ac.id/undergraduate-s1/

https://informatika.uin-malang.ac.id/fun-java/

Q28 Scrambled komunitas informatika

acak jumbled kata tidak

urut

https://informatika.uin-malang.ac.id/fun-java/

https://informatika.uin-malang.ac.id/etho/

https://informatika.uin-malang.ac.id/google-

developer-student-club-dsc/

Q29 Scrambled kurikulum prodi

informatika random kata

tidak relevan

https://informatika.uin-

malang.ac.id/curriculum/

Q30 Scrambled fun java organisasi

mahasiswa acak tidak

jelas

https://informatika.uin-malang.ac.id/fun-java/

Tabel A.2 Dataset Query dan Reference Answer untuk Pengujian Generation

ID Kategori Query Reference Answer

G1 1 kata komunitas Program Studi Informatika memiliki berbagai

komunitas minat seperti Fun Java, ETH0, MOCAP,

GDSC, dan DSE yang membantu mahasiswa

mengembangkan kompetensi sesuai bidangnya.

G2 1 kata kurikulum Kurikulum Informatika UIN Malang memuat mata

kuliah dasar informatika, mata kuliah keislaman, serta

mata kuliah keahlian seperti pemrograman, basis data,

jaringan komputer, dan kecerdasan buatan.

https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/etho/
https://informatika.uin-malang.ac.id/google-developer-student-club-dsc/
https://informatika.uin-malang.ac.id/google-developer-student-club-dsc/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/fun-java/

ID Kategori Query Reference Answer

G3 1 kata dosen Dosen Program Studi Informatika terdiri dari tenaga

pendidik profesional dengan keahlian di bidang

pemrograman, jaringan, basis data, multimedia,

sistem cerdas, serta bidang-bidang terkait lainnya..

G4 1 kata laboratorium Program Studi Informatika memiliki laboratorium

yang mendukung pembelajaran seperti Laboratorium

Programming, Intelligent System, Multimedia, dan

Network Security

G5 1 kata prestasi Mahasiswa Informatika UIN Malang telah meraih

berbagai prestasi di tingkat nasional maupun

internasional dalam kompetisi pemrograman,

robotika, dan hackathon.

G6 2 kata fun java Fun Java adalah komunitas pemrograman berorientasi

objek yang membina mahasiswa dalam dasar-dasar

Java dan menjadi fondasi bagi komunitas keahlian

lainnya di Informatika UIN Malang.

G7 2 kata visi misi Visi Program Studi Informatika adalah menjadi

program studi yang integratif dalam

mengintegrasikan ilmu pengetahuan dan nilai-nilai

Islam serta berdaya saing internasional. Misi nya

adalah menghasilkan lulusan yang berkarakter ulul

albab dan mengembangkan ilmu pengetahuan

teknologi informasi yang relevan.

G8 2 kata profil prodi Program Studi Teknik Informatika UIN Maulana

Malik Ibrahim Malang merupakan program sarjana di

bawah Fakultas Sains dan Teknologi yang telah

terakreditasi Unggul oleh LAM INFOKOM dan

berfokus pada pengembangan teknologi informasi

terintegrasi dengan nilai-nilai Islam.

G9 2 kata ketua prodi Ketua Program Studi Teknik Informatika UIN

Malang adalah Supriyono, M.Kom.

G10 2 kata eth0 komunitas ETH0 adalah komunitas yang berfokus pada Linux

dan open source untuk mengembangkan kemampuan

mahasiswa di bidang sistem operasi dan keamanan

jaringan.

ID Kategori Query Reference Answer

G11 3 kata kurikulum

informatika uin

Kurikulum Informatika UIN Malang terdiri dari mata

kuliah wajib prodi, mata kuliah pilihan, dan mata

kuliah keislaman yang tersusun dalam 8 semester

dengan total 144 SKS.

G12 3 kata komunitas fun

java

Komunitas Fun Java berfokus pada pembelajaran

Object-Oriented Programming menggunakan bahasa

Java untuk membekali mahasiswa dengan

kemampuan dasar pemrograman yang kuat.

G13 3 kata struktur organisasi

prodi

Struktur organisasi Program Studi Informatika terdiri

dari ketua program studi, sekretaris program studi,

dosen, koordinator laboratorium, serta staff

administrasi pendukung.

G14 3 kata sejarah prodi

informatika

Program Studi Informatika UIN Malang berkembang

sebagai bagian dari Fakultas Sains dan Teknologi

untuk memenuhi kebutuhan pendidikan teknologi

informasi berbasis nilai-nilai Islami.

G15 3 kata laboratorium

intelligent system

Laboratorium Intelligent System fokus pada

penelitian dan pembelajaran kecerdasan buatan,

machine learning, dan sistem cerdas lainnya.

G16 4 kata persyaratan

kelulusan

informatika uin

Kelulusan mahasiswa Informatika mensyaratkan

pemenuhan 144 SKS kurikulum, penyelesaian Kerja

Praktik, Tugas Akhir, serta memenuhi beban

akademik dan administratif lainnya.

G17 4 kata ketua program

studi informatika

Ketua Program Studi Teknik Informatika UIN

Maulana Malik Ibrahim Malang adalah Supriyono,

M.Kom.

G18 4 kata mata kuliah wajib

informatika

Mata kuliah wajib Informatika mencakup

pemrograman dasar, struktur data, basis data, jaringan

komputer, rekayasa perangkat lunak, dan kecerdasan

buatan.

G19 4 kata tujuan

pembelajaran

program studi

Tujuan pembelajaran Program Studi Informatika

adalah menghasilkan lulusan yang kompeten di

bidang teknologi informasi, memiliki karakter Islami,

dan mampu bersaing di tingkat global.

ID Kategori Query Reference Answer

G20 4 kata agenda kegiatan

komunitas

mahasiswa

Kegiatan komunitas mahasiswa meliputi workshop

pemrograman, seminar teknologi, kompetisi IT,

pelatihan keahlian, dan kegiatan pengembangan

kompetensi lainnya.

G21 5+ kata struktur organisasi

jurusan teknik

informatika uin

Struktur organisasi Program Studi Teknik Informatika

UIN Malang meliputi ketua prodi Supriyono M.Kom,

sekretaris prodi Shoffin Nahwa Utama M.T, dosen,

koordinator laboratorium, dan staf administrasi.

G22 5+ kata mata kuliah wajib

mahasiswa

informatika uin

Mata kuliah wajib mahasiswa Informatika UIN

Malang mencakup pemrograman, algoritma, struktur

data, basis data, jaringan komputer, rekayasa

perangkat lunak, kecerdasan buatan, dan mata kuliah

keislaman.

G23 5+ kata persyaratan

kelulusan program

studi teknik

informatika

Persyaratan kelulusan Program Studi Teknik

Informatika adalah menyelesaikan 144 SKS,

menempuh Kerja Praktik minimal 1 bulan,

menyelesaikan Tugas Akhir, serta memenuhi syarat

akademik dan administratif lainnya.

G24 5+ kata hubungan

komunitas fun

java dengan

himpunan

mahasiswa

Komunitas Fun Java berkoordinasi dengan Himpunan

Mahasiswa Jurusan untuk menyelenggarakan

kegiatan pengembangan kompetensi pemrograman

dan mendukung aktivitas akademik mahasiswa

Informatika.

G25 5+ kata kurikulum dan

profil lulusan

program studi

informatika

Kurikulum Program Studi Informatika dirancang

untuk menghasilkan lulusan dengan profil sebagai

Software Engineer, Data Scientist, Network Engineer,

dan IT Consultant yang kompeten dan berakhlak

mulia.

G26 Scrambled java komunitas

mahasiswa

akademik prodi

struktur

Informatika memiliki komunitas seperti Fun Java

yang fokus pada pengembangan kemampuan

pemrograman Java bagi mahasiswa dan terintegrasi

dengan struktur akademik prodi.

G27 Scrambled jurusan akademik

sks kuliah

komunitas random

Program Studi Informatika memiliki kurikulum

berbasis SKS yang terdiri dari mata kuliah dasar

informatika, keahlian, dan kegiatan komunitas

sebagai sarana pengembangan mahasiswa.

ID Kategori Query Reference Answer

G28 Scrambled komunitas

informatika acak

jumbled kata tidak

urut

Komunitas di Informatika meliputi Fun Java,

MOCAP, ETH0, GDSC, dan DSE yang membantu

mahasiswa mengembangkan kompetensi sesuai minat

masing-masing.

G29 Scrambled kurikulum prodi

informatika

random kata tidak

relevan

Kurikulum Program Studi Informatika disusun secara

terstruktur dengan mata kuliah wajib, pilihan, dan

kegiatan pendukung untuk mencapai standar

kompetensi lulusan.

G30 Scrambled fun java organisasi

mahasiswa acak

tidak jelas

Fun Java merupakan komunitas resmi Program Studi

Informatika yang mengelola kegiatan pembelajaran

pemrograman Java untuk mahasiswa.

	b00dd31895a338323eb223f39b523111cdb1c5693694ec90064ac641c0cd17c1.pdf
	SCAN WAFIY
	b00dd31895a338323eb223f39b523111cdb1c5693694ec90064ac641c0cd17c1.pdf

