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ABSTRAK 

 

Anwarul Hikam, Wafiy. 2025. Chatbot Informasi Akademik Teknik Informatika 

UIN Maulana Malik Ibrahim Malang Berbasis Retrieval Augmented 

Generation (RAG). Skripsi. Jurusan Teknik Informatika Fakultas Sains 

dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang. 

Pembimbing: (I) Dr. Totok Chamidy, M.Kom (II) Dr. Muhammad Ainul 

Yaqin, M.Kom. 

 

Kata kunci: chatbot, Retrieval-Augmented Generation, RAG, informasi akademik, 

TinyLlama, FAISS, BM25. 

 

 

Aksesibilitas informasi akademik merupakan tantangan di institusi 

pendidikan tinggi karena mahasiswa kesulitan menemukan informasi terkini 

mengenai kurikulum, dosen, dan kebijakan akademik yang tersebar di berbagai 

platform. Penelitian ini bertujuan merancang dan mengimplementasikan sistem 

chatbot berbasis Retrieval-Augmented Generation (RAG) untuk layanan informasi 

akademik Prodi Teknik Informatika UIN Malang, serta menganalisis kinerjanya 

dalam memberikan respons akurat dan kontekstual. Metode penelitian 

menggunakan pendekatan Research and Development dengan tahapan: 

pengumpulan data melalui ekstraksi otomatis 350 halaman menghasilkan 384 

potongan dokumen, pembangunan sistem pencarian gabungan FAISS dan BM25, 

implementasi pembangkit jawaban menggunakan TinyLlama 1.1B, serta evaluasi 

menggunakan 60 pertanyaan dengan ukuran kinerja pencarian dan pembangkitan 

jawaban. Hasil menunjukkan pencarian mencatat nilai kualitas peringkat 0.258 dan 

tingkat penemuan 1.028 dengan kinerja terbaik pada pertanyaan acak (0.68), 

sedangkan pembangkit jawaban mencatat kemiripan semantik 0.381 dan kesetiaan 

dokumen 0.549 dengan kinerja optimal pada pertanyaan 5+ kata (0.472). Pengujian 

konsistensi dengan mengulang pertanyaan sama 5 kali menghasilkan variasi nol, 

memvalidasi mekanisme pengaman berhasil mengatasi ketidakkonsistenan. 

Keterbatasan meliputi pengulangan kalimat dan kebocoran template yang 

dimitigasi melalui penyaringan pasca-pemrosesan. Sistem beroperasi mandiri 

dengan sumber daya minimal, membuktikan kelayakan penerapan di institusi 

pendidikan dengan anggaran terbatas. 
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ABSTRACT 

 

Anwarul Hikam, Wafiy. 2025. Chatbot Informasi Akademik Teknik Informatika 

UIN Maulana Malik Ibrahim Malang Berbasis Retrieval Augmented 

Generation (RAG). Skripsi. Jurusan Teknik Informatika Fakultas Sains 

dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang. 

Promotor: (I) Dr. Totok Chamidy, M.Kom (II) Dr. Muhammad Ainul 

Yaqin, M.Kom. 

 

 

Academic information accessibility poses a challenge in higher education 

institutions as students struggle to find up-to-date information regarding 

curriculum, faculty, and academic policies scattered across various platforms. This 

research aims to design and implement a Retrieval-Augmented Generation (RAG) 

based chatbot system for academic information services at the Informatics 

Engineering Study Program UIN Malang, and to analyze its performance in 

delivering accurate and contextual responses. The research employs a Research and 

Development approach with stages: data collection through automatic extraction of 

350 pages yielding 384 document chunks, construction of hybrid retrieval system 

using FAISS and BM25, generation implementation using TinyLlama 1.1B, and 

evaluation using 60 queries with retrieval and generation performance metrics. 

Results show retrieval achieved ranking quality of 0.258 and discovery rate of 1.028 

with optimal performance on scrambled queries (0.68), while generation recorded 

semantic similarity of 0.381 and document faithfulness of 0.549 with optimal 

performance on 5+ word queries (0.472). Consistency testing with 5 repetitions of 

the same query yielded zero variation, validating that guardrail mechanisms 

successfully addressed inconsistencies. Limitations include sentence repetitions 

and template leakage mitigated through post-processing filtering. The system 

operates self-hosted with minimal resources, proving deployment feasibility in 

educational institutions with limited budgets. 

 

Key words: chatbot, Retrieval-Augmented Generation, academic information, 

TinyLlama, FAISS, BM25. 
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 البحث  مستخلص

برنامج المحادثة الآلي للمعلومات الأكاديمية لقسم هندسة المعلوماتية بجامعة مولانا مالك إبراهيم   .٢٠٢٥  أنوار الحكم، وافي.
بالاسترجاع المعزز  التوليد  على  القائم  بمالانج  الحكومية  الجامعي .(RAG) الإسلامية  هندسة   .البحث  قسم 

المشرف إبراهيم الإسلامية الحكومية بمالانج.  مالك  مولانا  والتكنولوجيا، جامعة  العلوم  )الأول(  المعلوماتية، كلية   :
 .الدكتور توتوك تشاميدي الماجستير )الثاني( الدكتور محمد عين اليقين الماجستير

 
برنامج المحادثة الآلي الكلمات المفتاحية:   (Chatbot)التوليد المعزز بالاسترجاع ، (RAG) المعلومات ،

 .TinyLlama ،FAISS ،BM25الأكاديمية، 
   

الطلاب صعوبات في العثور على  تمثل إمكانية الوصول إلى المعلومات الأكاديمية تحديًا في مؤسسات التعليم العالي، حيث يواجه  
علومات الحديثة المتعلقة بالمناهج الدراسية وأعضاء هيئة التدريس والسياسات الأكاديمية المتناثرة عبر منصات مختلفة. يهدف الم

 (RAG) القائم على تقنية التوليد المعزز بالاسترجاع (Chatbot) "هذا البحث إلى تصميم وتنفيذ نظام "روبوت الدردشة
لخدمات المعلومات الأكاديمية في قسم هندسة المعلوماتية بجامعة مولانا مالك إبراهيم بمالانج، بالإضافة إلى تحليل أدائه في تقديم  
عبر مراحل متعددة: جمع البيانات من   (R&D) استجابات دقيقة وسياقية. تستخدم هذه الدراسة منهج البحث والتطوير

جزءاا من الوثائق، وبناء نظام استرجاع هجين يجمع بين  384صفحة مما أنتج    350خلال الاستخراج التلقائي لـ    FAISS  و 
BM25وتنفيذ التوليد باستخدام نموذج ، TinyLlama 1.1B استعلاماا مع مقاييس أداء   60، وأخيراا التقييم باستخدام 
  0.258بلغت   (Ranking Quality) الاسترجاع والتوليد. أظهرت النتائج أن عملية الاسترجاع سجلت جودة ترتيب
. بينما سجل  (0.68)مع أداء أفضل في الاستعلامات العشوائية    1.028بلغ   (Discovery Rate) ومعدل اكتشاف
وموثوقية الوثائق  0.381بنسبة   (Semantic Similarity) التوليد تشابهاا دلالياا   (Document Faithfulness) 

. أثبت اختبار الاتساق بتكرار نفس السؤال  (0.472)كلمات    5، مع أداء أمثل في الاستعلامات التي تزيد عن  0.549بنسبة  
مرات عدم وجود أي تباين، مما يؤكد نجاح آليات الحماية في معالجة عدم الاتساق. وتشمل القيود تكرار الجمل وتسرب    5

بموارد   (Self-hosted) القوالب التي تم التخفيف من حدتها من خلال التصفية بعد المعالجة. يعمل النظام بشكل مستقل
جدوى تطبيقه في المؤسسات التعليمية ذات الميزانيات المحدودة قليلة، مما يثبت .  
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BAB I  

PENDAHULUAN 

1.1 Latar Belakang 

Era transformasi digital berlangsung sangat cepat dan telah mengubah 

paradigma akses informasi di lingkungan perguruan tinggi tanpa terkecuali mulai 

dari lingkup paling luas di universitas, fakultas hingga program studi. Program 

Studi Teknik Informatika UIN Maulana Malik Ibrahim Malang sebagai salah satu 

program studi unggul telah menyediakan website resmi (https://informatika.uin-

malang.ac.id/) sebagai portal informasi akademik yang komprehensif. Website 

tersebut memuat berbagai informasi penting meliputi profil program studi, 

kurikulum, informasi dosen, kelompok keilmuan, prosedur akademik, hingga 

panduan skripsi, dan PKL. Meski demikian, berdasarkan observasi awal, masih 

terdapat gap antara ketersediaan informasi dengan tingkat pemanfaatannya oleh 

para pengguna khususnya mahasiswa. 

Permasalahan yang sering muncul adalah mahasiswa cenderung mengalami 

kesulitan dalam menemukan informasi spesifik yang mereka butuhkan di website 

program studi. Hal ini disebabkan oleh beberapa faktor, pertama struktur navigasi 

website yang memerlukan eksplorasi manual, kedua informasi yang tersebar di 

berbagai halaman berbeda, terakhir belum adanya mekanisme interaktif untuk 

membantu mahasiswa menemukan informasi dengan cepat. Sehingga, mahasiswa 

lebih memilih untuk bertanya langsung baik kepada teman seangkatannya yang 

terkadang harus menjelaskan ulang maupun kepada admin program studi, yang 

tentunya memiliki keterbatasan waktu dan sumber daya dalam melayani pertanyaan 
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repetitif dari para mahasiswa. Kondisi ini menuntut sistem bantu yang interaktif, 

adaptif, dan kontekstual. 

Di sisi global, Labadze et al. (2024) melakukan kajian sistematis terhadap 

67 penelitian internasional yang menunjukkan bahwa sistem interaktif chatbot AI 

membantu dalam akses cepat terhadap informasi akademik, personalisasi belajar, 

dan efisiensi interaksi dengan dosen. Di lain sisi, berdasarkan survei terhadap 5.894 

mahasiswa universitas di Swedia, ditemukan bahwa lebih dari 55% memiliki sikap 

positif terhadap penggunaan chatbot AI, dan sekitar 35% sudah menggunakan 

ChatGPT secara rutin untuk kegiatan akademik (Stohr et al., 2024). Dan tren global 

saat ini menunjukkan adanya peningkatan signifikan penggunaan chatbot generatif 

di perguruan tinggi sejak 2023, menandakan pergeseran menuju sistem informasi 

akademik yang lebih interaktif (Mcgrath et al., 2025). Fakta-fakta tersebut 

memperkuat relevansi penelitian ini yang berfokus pada pengembangan chatbot 

akademik di era transformasi digital pendidikan tinggi. 

Dalam perspektif Islam, akses terhadap ilmu yang mudah dan tertata adalah 

nilai yang dijunjung. Allah memerintahkan kepada kita di dalam Al-Qur’an untuk 

“membaca” sebagai jalan pembuka ilmu:  

نْسَانَ مِنْ عَلَق َۚ  ١اِقْ رَأْ بِِسْمِ ربَِ كَ الَّذِيْ خَلَقََۚ  ١اِقْ رَأْ بِِسْمِ ربَِ كَ الَّذِيْ خَلَقََۚ  ُۙ  ٢خَلَقَ الِْْ
  ٣اِقْ رَأْ وَربَُّكَ الْْكَْرَم 

نْسَانَ مَا لََْ يَ عْلَمْْۗ   ٤الَّذِيْ عَلَّمَ بِِلْقَلَمُِۙ    ٥عَلَّمَ الِْْ
 

“Bacalah dengan (menyebut) nama Tuhanmu yang menciptakan! Dia menciptakan 

manusia dari segumpal darah. Bacalah! Tuhanmulah Yang Maha Mulia, yang 

mengajar (manusia) dengan pena. Dia mengajarkan manusia apa yang tidak 

diketahuinya” (QS Al-‘Alaq 96: 1 – 5).  
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Dari rangkaian ayat 1 sampai 5 pada Al-Qur’an surah Al-‘Alaq tersebut 

Allah menegaskan bahwa “Allah mengajarkan kepada manusia apa yang tidak 

diketahui”. Menurut tafsir tahlili NU Online juga dijelaskan bahwa Allah memberi 

kemampuan kepada manusia untuk bisa menggunakan alat tulis untuk menuliskan 

temuannya sehingga dapat dibaca oleh orang lain dan generasi berikutnya. Hal ini 

semakin memperkuat kondisi bahwa Allah sangat mendorong manusia untuk 

memaksimalkan sarana penyampaian ilmu demi kemajuan pengetahuan dan 

sekaligus membuktikan bahwa integrasi yang terdapat pada ayat tersebut relevan 

dengan konteks penelitian ini yang mencoba menghadirkan layanan teknologi 

informasi berupa chatbot untuk memudahkan para mahasiswa dalam mengakses 

pengetahuan akademik secara tepat dan cepat.  

Al-Qur’an juga menegaskan pentingnya medium bahasa yang dapat 

dipahami manusia. Pada Surah Yusuf ayat 2, Allah berfirman: 

 إِنََّّ أنَْ زَلْنَاه  ق  رْآنَّا عَرَبيًِّا لَعَلَّك مْ تَ عْقِل ونَ 
 

“Sesungguhnya Kami menurunkannya berupa Al-Qur’an berbahasa Arab agar 

kamu memahaminya.” (QS. Yūsuf 12: 2). 

 

Dikutip dari Tafsir Tahlili NU Online, ayat ini menekankan bahwa ilmu 

pengetahuan disampaikan dengan bahasa yang dapat dimengerti. Penelitian ini 

mengambil spirit tersebut, dimana sistem harus dapat “memahami” pertanyaan 

manusia lalu menyajikan jawaban yang bisa dipahami kembali oleh manusia. Dari 

sisi teknis, prinsip tersebut diwujudkan melalui proses NLP (Natural Language 

Processing) yaitu teknik yang memetakan bahasa alami ke bentuk terstruktur 
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(embedding) sehingga komputer dapat memprosesnya, dan kemudian 

mengembalikan informasi yang jelas, terarah, dan sesuai konteks institusional. 

Di samping itu, Islam juga menekankan pentingnya menjaga kebenaran 

informasi. Allah sendiri berfirman di dalam Al-Qur’an seperti berikut: 

وْا قَ وْمااٌۢ بَِهَالَة  فَ ت   ب    بنَِ بَا  فَ تَ بَ ي َّن  واْا اَنْ ت صِي ْ
ٌۢ
يَ ُّهَا الَّذِيْنَ آمَن  واْا اِنْ جَاۤءكَ مْ فاَسِق   صْبِح وْا عَلٓى مَا فَ عَلْت مْ نٓدِمِيَْْ  يٰآ

 

“Wahai orang-orang yang beriman, jika seorang fasik datang kepadamu membawa 

berita penting, maka telitilah kebenarannya agar kamu tidak mencelakakan suatu 

kaum karena ketidaktahuan(-mu) yang berakibat kamu menyesali perbuatanmu 

itu”. (QS Al-Ḥujurāt 49: 6). 

 

Dikutip dari tafsir tahlili NU Online juga dijelaskan bahwa pada ayat ini 

Allah memberikan pedoman bagi kaum mukmin untuk senantiasa berhati-hati 

dalam menerima berita dan juga mengecek kebenarannya terlebih dulu sebelum 

sebelum meyakini berita yang disampaikan. Prinsip tabayyun inilah yang menjadi 

landasan normatif untuk memastikan jawaban yang disajikan bersumber dari 

sumber yang benar, nyata, dan tidak menyesatkan. Pada konteks chatbot, prinsip 

tabayyun ini diterapkan dengan melandaskan setiap jawaban yang dihasilkan tetap 

pada koridor dan konteks sumber institusional yang sah serta terverifikasi. Dua 

dasar yaitu akses terhadap ilmu dan verifikasi kebenaran inilah yang menjadi 

pijakan integrasi Islam dalam penelitian ini. 

Untuk dapat memenuhi kebutuhan penyediaan informasi akademik dengan 

mekanisme interaktif dan tetap berpijak pada kedua dasar utama prinsip Islam 

(menyampaikan ilmu dan tabayyun), maka diperlukan teknologi yang cerdas. Di 

sinilah peran teknologi Artificial Intelligence (AI) yang saat ini berkembang pesat, 

khususnya Natural Language Processing (NLP) hadir. Dimana dengan kehadiran 
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teknologi cerdas tersebut nantinya akan memudahkan potensi terciptanya sistem 

interaktif tadi yaitu dengan mengimplementasikan pengembangan chatbot cerdas.  

Chatbot sendiri banyak jenisnya, salah satunya adalah chatbot konvensional 

rule-based. Chatbot jenis ini memang dapat digunakan, akan tetapi memiliki 

keterbatasan dalam memahami konteks dan menghasilkan respons yang natural. 

Sementara itu, model bahasa besar (Large Language Model/LLM) seperti GPT, 

Claude, dan Gemini mampu memberikan pemahaman bahasa yang lebih baik, 

meski demikian LLM ini masih menghadapi tantangan berupa halusinasi, yakni 

menghasilkan jawaban yang terlihat sangat meyakinkan padahal tidak akurat atau 

tidak sesuai dengan konteks kebutuhan institusi. Disinilah letak tantangannya. 

Bagaimana kemungkinan timbulnya halusinasi dari jawaban yang dihasilkan 

chatbot tersebut dapat diminimalisir bahkan dicegah, sehingga respon yang 

dihasilkan akan tetap bersandar pada dua nilai islam yang sudah dibahas pada 

paragraf sebelumnya dan akurat sesuai informasi resmi dari institusi yang 

menggunakan. 

Maka dari itu, Retrieval-Augmented Generation (RAG) di sini dihadirkan. 

RAG hadir sebagai solusi yang dapat menggabungkan kekuatan LLM dengan 

akurasi informasi yang bersumber dari knowledge base lokal. Teknologi RAG 

memungkinkan chatbot untuk mengambil informasi relevan dari basis data vektor 

yang berisi embedding dari konten website prodi, kemudian menggunakan 

informasi tersebut sebagai konteks untuk menghasilkan respons yang akurat dan 

sesuai dengan kondisi spesifik di Program Studi Teknik Informatika UIN Malang 

tanpa keluar dari konteks knowledge base yang sudah diberikan sebelumnya. 
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Pendekatan ini juga telah terbukti efektif dalam berbagai konteks 

pendidikan, pengembangan chatbot sebagai dukungan mahasiswa menunjukkan 

bahwa RAG mengurangi halusinasi dan meningkatkan keterkaitan jawaban dengan 

sumber domain-spesifik, sehingga lebih andal untuk layanan informasi akademik 

(Oreški & Vlahek, 2024). Pada penelitian Soliman et al. (2025) terbukti bahwa 

prototipe RAG untuk dukungan pembelajaran di perguruan tinggi meraih tingkat 

jawaban benar hingga 87% sehingga dinilai cukup berhasil dalam meningkatkan 

ketepatan informasi. Di sisi lain implementasi di chatbot berbasis RAG di sekolah 

menengah juga menunjukkan akurasi yang sangat tinggi sebesar 100% pada dua 

model yang digunakan yaitu (LlaMA-3-8B-Instruct dan Mistral-7B-Instruct-v0.3) 

dengan jumlah pertanyaan sebanyak 30 (Elysia et al., 2024). Sementara, studi 

layanan akademik calon mahasiswa di UCIC melaporkan kualitas respons yang 

baik (ROUGE-1 0,50; ROUGE-L 0,48) dengan arsitektur Python–LangChain–

FAISS–GPT (Sugiarto et al., 2025). 

Berdasarkan temuan-temuan tersebut, penelitian ini diarahkan untuk dapat 

menjembatani kesenjangan yang ada dengan mengimplementasikan chatbot 

berbasis RAG yang terintegrasi dengan informasi website Prodi Teknik Informatika 

UIN Malang. Sistem ini diharapkan dapat berfungsi menjadi asisten virtual yang 

dapat membantu mahasiswa memperoleh informasi akademik secara cepat, akurat, 

dan interaktif, sekaligus meningkatkan efisiensi layanan serta memperkaya 

pengalaman pengguna dalam mengakses informasi resmi program studi. Selain 

memberikan manfaat praktis bagi mahasiswa dan pengelola program studi, 
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penelitian ini juga diharapkan dapat menjadi kontribusi akademik dalam penerapan 

teknologi kecerdasan buatan pada bidang pendidikan tinggi di Indonesia. 

 

1.2 Rumusan Masalah 

Berdasarkan latar belakang yang telah diuraikan, maka rumusan masalah 

dalam penelitian ini adalah: 

a. Bagaimana merancang dan mengimplementasikan sistem chatbot berbasis 

Retrieval-Augmented Generation (RAG) untuk menyediakan layanan 

informasi akademik Prodi Teknik Informatika UIN Malang? 

b. Bagaimana performa chatbot berbasis RAG dalam menjawab pertanyaan 

akademik mahasiswa berdasarkan konteks informasi dari website prodi? 

 

1.3 Batasan Masalah 

Lingkup data yang digunakan pada penelitian ini hanya mencakup konten 

publik dari website prodi (profil, kurikulum, dosen, laboratorium, fasilitas, 

akreditasi, beasiswa, dan lainnya), tidak termasuk data internal pada siakad. 

 

1.4 Tujuan Penelitian 

Tujuan yang ingin dicapai dalam penelitian ini adalah: 

a. Merancang dan mengimplementasikan sistem chatbot berbasis Retrieval-

Augmented Generation (RAG) yang dapat memberikan layanan informasi 

akademik Prodi Teknik Informatika UIN Malang. 

b. Menganalisis performa chatbot dalam memberikan respons yang akurat, 

relevan, dan kontekstual berdasarkan informasi dari website prodi. 
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1.5 Manfaat Penelitian 

Dengan hadirnya penelitian, diharapkan dapat memberikan kontribusi nyata 

dalam pengembangan ilmu pengetahuan di bidang Sistem Informasi, khususnya 

pada penerapan metode Retrieval-Augmented Generation (RAG) dalam 

pengembangan chatbot berbasis data akademik. Memudahkan mahasiswa 

mengakses informasi akademik secara interaktif, cepat, dan akurat melalui chatbot 

Informasi Akademik Prodi Teknik Informatika UIN Malang yang selama ini hanya 

dapat diakses secara pasif. Sementara, pengelola program studi juga akan terbantu 

dalam mengurangi beban pertanyaan berulang, serta pihak akademisi dan peneliti 

juga dapat menjadikan penelitian ini sebagai referensi untuk penelitian lanjutan di 

bidang sistem informasi berbasis kecerdasan buatan. Dengan demikian, penelitian 

ini layak untuk dilakukan karena memiliki nilai kebermanfaatan baik secara 

akademik maupun praktis. 
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BAB II  

STUDI PUSTAKA 

2.1 Penelitian Terkait 

Penelitian Elysia et al. (2024) mengembangkan chatbot berbasis RAG untuk 

layanan informasi sekolah menengah, dengan memanfaatkan model 

LlaMA/Mistral/Zephyr. Fokus penelitian terletak pada aksesibilitas informasi 

pendidikan bagi siswa dan orang tua. Pendekatan ini menekankan kemudahan 

pengguna dalam memperoleh informasi akademik, dan berhasil menunjukkan 

bahwa RAG dapat diadaptasi di domain pendidikan non-kampus secara efektif. 

Kemudian Pujiono et al. (2024) dalam Jurnal JITK Nusa Mandiri membahas 

penerapan RAG yang dikombinasikan dengan basis data vektor untuk chatbot. 

Mereka menilai performa sistem melalui metrik retrieval yang terukur, sehingga 

arsitektur RAG + vector DB dapat dipertanggungjawabkan secara kuantitatif. 

Kontribusinya memperlihatkan validitas pendekatan RAG sebagai solusi yang lebih 

unggul daripada retrieval klasik seperti BM25. 

Putro et al. (2025) di Infomedia PNL membangun chatbot RAG untuk 

layanan aduan pelanggan PLN. Penelitian ini menekankan penggunaan LLM lokal 

berbahasa Indonesia dan menghasilkan tingkat kebermanfaatan jawaban sebesar 

92%. Studi ini menunjukkan bahwa RAG tidak hanya relevan di domain akademik, 

tetapi juga di sektor pelayanan public dengan hasil yang cukup meyakinkan. 

Sugiarto et al., (2025) menyajikan implementasi chatbot berbasis RAG 

untuk melayani informasi akademik bagi calon mahasiswa dalam proses 

penerimaan mahasiswa baru (PMB). Konteksnya yang dekat dengan kebutuhan 
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akademik Indonesia membuat penelitian ini sangat relevan, terutama karena 

menunjukkan bagaimana RAG dapat mempercepat akses informasi kampus. 

Penelitian oleh Nur’aini (2024) merancang chatbot informasi kesehatan 

mental berbasis RAG dengan memanfaatkan LlaMA3 dan create_retrieval_chain. 

Penelitian ini memperlihatkan implementasi RAG end-to-end dalam platform web, 

serta menekankan pentingnya akses informasi yang sensitif melalui sistem yang 

responsif dan faktual. 

Sementara Prasetyo (2024) menyoroti pengembangan chatbot untuk 

informasi pembangunan Kota Semarang. diterapkan untuk memperkuat distribusi 

informasi publik, dan penelitian ini memberi gambaran tentang ruang lingkup 

aplikasi RAG di tingkat pemerintahan daerah. Nilai tambahnya ada pada pola 

evaluasi yang digunakan untuk mengukur keberhasilan sistem. 

Abudrrohman R (2024) memadukan RAG dengan GPT-4 yang diperkaya 

oleh knowledge graph. Variasi basis pengetahuan ini memberikan perspektif 

berbeda dari sekadar vector database. Dengan pendekatan graph, chatbot dapat 

memahami hubungan antarentitas dengan lebih baik, sekaligus menjadi rujukan 

alternatif dalam membahas desain knowledge base. 

Septri (2025) mengusulkan chatbot RAG untuk layanan akademik seperti 

informasi skripsi dan PMB. Penelitian ini menggunakan metrik evaluasi modern, 

yaitu BERTScore dan UniEval, untuk mengukur kualitas jawaban. Hal ini sangat 

relevan bagi penelitian saya karena memberikan pembanding konkret dalam aspek 

pengujian dan evaluasi chatbot akademik. 



11 

 

 

Sementara itu Salsabila (2025) menyinggung pemanfaatan FAISS sebagai 

knowledge base dalam sistem chatbot berbasis RAG. Studi ini penting karena 

memperlihatkan penggunaan FAISS di konteks Indonesia, sehingga memperkuat 

argumen pemilihan FAISS sebagai vector database yang tepat untuk implementasi 

RAG. 

Penelitian oleh Samudra et al. (2025) ini membangun sistem RAG dengan 

penekanan pada evaluasi faithfulness dan semantic similarity. Metode yang 

digunakan adalah kombinasi dense retriever (embedding) dan reranker untuk 

memastikan jawaban konsisten dengan dokumen sumber. Kebaruannya ada pada 

metrik evaluasi yang tidak hanya berbasis akurasi tetapi juga kesesuaian semantik. 

Hasil penelitian menunjukkan peningkatan relevansi jawaban chatbot hingga 15% 

dibanding baseline retrieval murni. Hasilnya RAG mampu meningkatkan kualitas 

jawaban chatbot dalam domain terbatas dengan evaluasi yang lebih kaya.  

Kemudian Lewis et al. (2020) pada penelitiannya yang berjudul Retrieval-

Augmented Generation for Knowledge-Intensive NLP Tasks memperkenalkan 

arsitektur RAG pertama kali, menggabungkan retriever berbasis Dense Passage 

Retrieval (DPR) dengan generator seq2seq (BART). Kebaruan penelitian ini adalah 

integrasi retrieval langsung ke proses decoding, sehingga model dapat 

menghasilkan jawaban lebih faktual. Hasilnya menunjukkan RAG mengungguli 

baseline open-domain QA pada dataset Natural Questions. Penelitian ini 

membuktikan bahwa RAG merupakan fondasi kuat untuk aplikasi chatbot berbasis 

knowledge retrieval. 
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2.2 Landasan Teori 

Bagian ini membahas teori-teori yang menjadi dasar pengembangan sistem, 

mencakup konsep chatbot, dasar NLP, arsitektur transformer dan LLM, hingga 

mekanisme RAG dan pengindeksan vektor yang mendukung proses pencarian 

konteks secara efisien. 

 

2.2.1 Chatbot dan Klasifikasinya 

Chatbot pada dasarnya adalah sistem perangkat lunak yang mampu 

menjawab pertanyaan manusia menggunakan teks atau suara secara otomatis, 

menyerupai percakapan manusia. Sistem ini sering diintegrasikan ke dalam layanan 

digital untuk memfasilitasi interaksi pengguna tanpa memerlukan manusia sebagai 

perantara (Adamopoulou & Moussiades, 2023). 

Dalam literatur, klasifikasi chatbot dikembangkan berdasarkan berbagai 

kriteria. Salah satu pembagian yang sering dipakai adalah berdasarkan metode 

generasi respons: rule-based, retrieval-based, dan generative-based (Adamopoulou 

& Moussiades, 2023). 

Chatbot rule-based bekerja berdasarkan aturan eksplisit (pattern matching, 

decision trees), cocok untuk domain terbatas, namun sangat rentan jika pertanyaan 

keluar dari aturan yang didefinisikan. Chatbot retrieval-based memilih respons dari 

kumpulan respons yang sudah ada, dengan pencocokan semantik atau leksikal 

(misalnya cosine similarity, BM25). Terakhir, chatbot generative-based 

menghasilkan respons baru lewat model pembelajaran mendalam (deep learning), 

misalnya dengan model seq2seq atau model bahasa besar (LLM). Ada juga chatbot 

dengan pendekatan hybrid yang menggabungkan retrieval dan generative, RAG 
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(Retrieval-Augmented Generation) sendiri adalah contoh hybrid popular dimana 

sistem bisa menarik konteks relevan dari basis pengetahuan dan sekaligus 

menghasilkan respons yang fleksibel. 

Keunggulan (RAG) dibanding metode konvensional adalah kemampuannya 

menghasilkan jawaban yang lebih factual dan grounding ke sumber eksternal, 

sekaligus mengurangi risiko hallucination yang umum pada model generatif murni 

(Klesel & Wittmann, 2025).  

Sejalan dengan perkembangan teknologi, konsep interaksi manusia dengan 

sistem digital (dalam konteks ini adalah chatbot) dapat dianalogikan dengan 

gambaran interaksi yang Allah abadikan di dalam Al-Qur’an. Misalnya, pada kisah 

Siti Maryam saat berinteraksi dengan malaikat Jibril yang menampakkan diri 

kepadanya: 

 

اْ اَع وْذ  بِِلرَّحْْٓنِ مِنْكَ اِنْ   ۝١ قاَلَتْ اِن ِ هَا ر وْحَنَا فَ تَمَثَّلَ لََاَ بَشَراا سَوِيًّٰ   ْۗ فاَرَْسَلْنَاا الِيَ ْ
فاَتَََّّذَتْ مِنْ د وْنِِِمْ حِجَابِا

۝١٩ اَا اَنََّ۠ رَس وْل  ربَِ كِِۖ لَِْهَبَ لَكِ غ لٓماا زكَِيًّا  ۝١٨ قاَلَ اِنََّّ  ك نْتَ تَقِيًّا 
 

“Maka ia mengadakan tabir (yang melindunginya) dari mereka; lalu Kami 

mengutus roh Kami kepadanya, maka ia menjelma di hadapannya dalam bentuk 

manusia yang sempurna. Maryam berkata: ‘Sesungguhnya aku berlindung dari 

padamu kepada Tuhan Yang Maha Pemurah, jika kamu seorang yang bertakwa.’ 

Ia (Jibril) berkata: ‘Sesungguhnya aku ini hanyalah seorang utusan Tuhanmu, 

untuk memberimu seorang anak laki-laki yang suci.’” (QS Maryam: 17–19). 

 

 

Dikutip dari tafsir tahlili NU Online bahwa pada ayat ini tergambar jelas 

terdapat komunikasi yang terjadi dua arah antara Siti Maryam dan malaikat Jibril, 

di mana menyampaikan Siti Maryam menyampaikan respon saat melihat malaikat 

Jibril, lalu malaikat Jibril memberikan jawaban yang menenangkan Siti Maryam 
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dan bersifat informatif. Hal ini memberi gambaran bahwa interaksi bukanlah 

sesuatu yang asing, melainkan bagian dari sunnatullah dalam menyampaikan 

pesan. Inilah bentuk interaksi yang bisa dianalogikan dengan mekanisme tanya-

jawab pada chatbot, di mana pertanyaan dari pengguna itu dapat dibalas dengan 

jawaban yang relevan oleh sistem chatbot. 

Demikian pula ketika Allah berdialog dengan para malaikat tentang 

penciptaan manusia pertama, Nabi Adam: 

هَا مَنْ ي ُّفْسِد  فِ   قاَل واْا اَتََْعَل  فِي ْ
ْۗ
فَةا ْ جَاعِل  فِِ الَْْرْضِ خَلِي ْ كَةِِ ان ِ ىِٕ

ۤٓ
هَا وَيَسْفِك  الدِ مَاۤءََۚ وَنََْن  وَاِذْ قاَلَ ربَُّكَ للِْمَل ي ْ

اْ اَعْلَم  مَا لَْ تَ عْلَم وْنَ  ۝٣٠ ن سَبِ ح  بَِمْدِكَ وَن  قَدِ س  لَكَْۗ قاَلَ اِن ِ  
 
“Ingatlah ketika Tuhanmu berfirman kepada para malaikat: ‘Sesungguhnya Aku 

hendak menjadikan seorang khalifah di muka bumi.’ Mereka berkata: ‘Mengapa 

Engkau hendak menjadikan di bumi itu orang yang akan membuat kerusakan 

padanya dan menumpahkan darah, padahal kami senantiasa bertasbih dengan 

memuji Engkau dan mensucikan Engkau?’ Tuhan berfirman: ‘Sesungguhnya Aku 

mengetahui apa yang tidak kamu ketahui.’” (QS Al-Baqarah: 30).” 

 

Dialog ini menunjukkan bagaimana malaikat bertanya tentang alasan Allah 

menurunkan khalifah di muka bumi kemudian Allah menjawab dengan argumentasi 

yang menegaskan hikmah di balik keputusan-Nya bahwa Allah lebih mengetahui 

segalanya daripada sekedar yang makhluk-Nya ketahui. Adanya interaksi tanya-

jawab antara Allah dan malaikat tersebut memperlihatkan terjadi pola komunikasi 

yang dapat menjadi analogi juga dalam memahami fungsi chatbot yaitu adanya 

pengguna yang menyampaikan pertanyaan, dan sistem memberikan jawaban yang 

relevan. 

Dengan demikian, keberadaan chatbot dalam layanan akademik dapat 

dipahami sebagai bentuk rekayasa teknologi yang meniru pola komunikasi 
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interaktif, yaitu adanya pertukaran informasi antara penanya dan pemberi jawaban. 

Analogi ini menekankan bahwa chatbot bukan sekadar alat pasif, melainkan 

menjadi suatu sarana interaksi yang aktif dan dinamis, sebagaimana interaksi antara 

manusia dengan malaikat digambarkan dalam Al-Qur’an. 

Sebagai catatan terminologi, kata “chatbot” sendiri tidak selalu memiliki 

padanan spesifik dalam KBBI, tapi bisa digolongkan sebagai bot interaktif di 

domain percakapan digital.  

 

2.2.2 Dasar NLP (Natural Languange Processing) 

Sebelum teks bisa dipahami dalam model komputasi, langkah awal yang 

mutlak adalah tokenisasi memecah teks menjadi unit lebih kecil yang disebut 

“token”. Token bisa berupa kata, subword, atau karakter, tergantung metode yang 

dipakai. Tokenisasi memfasilitasi pemrosesan teks agar tidak diperlakukan sebagai 

string panjang tak terstruktur (Airbyte, 2024). 

 Setelah tokenisasi, teks umumnya melalui tahap normalisasi, meliputi, 

konversi ke huruf kecil (lowercasing), penghapusan karakter non-alfanumerik 

(simbol, tanda baca yang tidak penting), penghapusan spasi ekstra atau karakter 

yang tidak bermakna. Tujuan normalisasi adalah menyatukan format agar 

“Rumah,” “rumah” dan “rumah!” tidak dianggap entitas berbeda. Beberapa 

penelitian memperlihatkan bahwa meskipun pipeline embedding modern sangat 

kuat, tahap praproses tetap memberikan kontribusi terhadap akurasi (Siino et al., 

2024). 

Setelah itu, token-token tersebut diwujudkan ke bentuk numerik melalui 

representasi vektor atau embedding inti dari NLP modern. Sebelumnya, metode 
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representasi seperti one-hot encoding atau TF-IDF sering digunakan, tetapi 

memiliki keterbatasan dalam menangkap makna. Embedding (representasi padat) 

memungkinkan penyajian teks dengan dimensi tetap yang menyimpan konteks 

semantik dan hubungan antar kata. Sebuah survei menyebut bahwa bidang NLP 

telah bergeser dari representasi eksplisit dan statistik ke representasi kontekstual 

yang dipelajari via model neural (Patil et al., 2023). 

 

2.2.3 Arsitektur Transformer 

Arsitektur Transformer diperkenalkan oleh Vaswani et al. (2017) melalui 

makalah Attention is All You Need. Model ini didesain untuk memproses data 

sekuensial (seperti teks) tanpa ketergantungan berurutan seperti pada RNN atau 

LSTM. Komponen inti dari transformer adalah self-attention, yaitu mekanisme 

yang memungkinkan setiap token dalam sebuah kalimat memperhatikan token lain 

untuk membangun representasi kontekstual yang lebih kaya. 

Secara matematis, self-attention dihitung dengan tiga proyeksi vektor: Query (Q), 

Key (K), dan Value (V). Formula perhatian adalah: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (2.1) 

Keterangan: 

𝑄= Query, 

𝐾= Key, 

𝑉 = Value, 

𝑑𝑘 = dimensi vector key. 

 

Persamaan ini menjelaskan bagaimana bobot relevansi antar token dihitung untuk 

menghasilkan representasi baru. Nilai 𝑄𝐾𝑇 menghasilkan skor kesesuaian antar 

token, kemudian hasilnya dinormalisasi dengan softmax sehingga menjadi bobot 
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perhatian. Bobot ini kemudian dikalikan dengan 𝑉 untuk menghasilkan representasi 

baru yang sudah memperhatikan relasi semantik antar token. 

Untuk meningkatkan kapasitas model, transformer menggunakan Multi-

Head Attention (MHA), di mana beberapa self-attention berjalan paralel. Hasil dari 

tiap “head” digabungkan, sehingga model dapat menangkap beragam jenis 

hubungan semantik sekaligus. Agar urutan kata tetap dikenali, Transformer 

menambahkan positional encoding ke embedding input. 

1. Encoder 

Encoder terdiri dari beberapa lapisan yang masing-masing memiliki Multi-

Head Self-Attention dan feed-forward network. Encoder bertugas mengubah input 

teks menjadi representasi vektor yang padat dan informatif. Setiap lapisan encoder 

saling menumpuk, sehingga menghasilkan embedding yang makin kaya makna. 

Contoh model encoder-only adalah BERT dan E5, yang efektif digunakan untuk 

klasifikasi, ekstraksi fitur, dan pembuatan embedding untuk retrieval. 

2. Decoder 

Decoder juga terdiri dari beberapa lapisan, tetapi selain memiliki self-

attention, decoder menambahkan masked self-attention agar prediksi token 

berikutnya hanya bergantung pada token sebelumnya (autoregresif). Selain itu, 

decoder memiliki cross-attention, yang memungkinkan decoder memperhatikan 

hasil dari encoder. Di antara contoh model decoder-only adalah GPT, LLaMA, 

TinyLLaMA, yang digunakan untuk menghasilkan teks baru dengan memprediksi 

token berikutnya secara bertahap. 

 



18 

 

 

3. Encoder-Decoder 

Arsitektur penuh encoder–decoder menggabungkan kedua peran: encoder 

membangun representasi dari input, dan decoder menghasilkan output berdasarkan 

representasi tersebut. Arsitektur ini umum dipakai untuk tugas machine translation 

(misalnya pada model T5, mBART). 

Dalam penelitian ini, kedua peran arsitektur Transformer dimanfaatkan 

secara terpisah sesuai kebutuhan: 

a. Encoder-only (Sentence-Transformer/E5) digunakan untuk menghasilkan 

embedding dokumen dan query yang padat serta bermakna. Embedding inilah 

yang disimpan pada basis data vektor (FAISS) untuk mendukung retrieval. 

b. Decoder-only (TinyLLaMA 1.1B) digunakan untuk menyusun jawaban dengan 

cara memanfaatkan konteks hasil retrieval. Model generatif ini dipilih karena 

lebih ringan secara komputasi dibandingkan LLM besar (misalnya LLaMA 

7B/8B), tetapi tetap efektif jika dikombinasikan dengan RAG yang memastikan 

jawaban berbasis konteks domain spesifik. 

Dengan kombinasi tersebut, sistem dapat memanfaatkan keunggulan encoder dalam 

memahami teks dan keunggulan decoder dalam menghasilkan jawaban, tanpa harus 

menggunakan model raksasa yang membebani perangkat. 

 

2.2.4 Large Language Model (LLM) 

Large Language Model (LLM) merupakan implementasi lanjutan dari 

arsitektur transformer. LLM dilatih pada korpus teks berukuran sangat besar, 

sehingga mampu mempelajari pola bahasa, relasi semantik, serta pengetahuan 

dunia secara luas. Dalam konteks penelitian ini, peran LLM dan encoder dipisahkan 
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sesuai fungsinya. Proses embedding teks dilakukan menggunakan sentence-

transformer (E5). Sentence-Transformer (E5), yang termasuk kategori encoder-

only model, untuk menghasilkan representasi vektor yang padat dan bermakna dari 

dokumen maupun query. Sementara itu, LLM decoder-only seperti TinyLLaMA 

1.1B digunakan pada tahap generation untuk menyusun jawaban berdasarkan hasil 

retrieval. Pemisahan peran ini bertujuan menjaga efisiensi komputasi sekaligus 

mempertahankan kualitas hasil keluaran sistem. Untuk proses embedding sendiri 

akan memetakan kalimat atau dokumen ke dalam ruang vektor berdimensi tinggi, 

sehingga memungkinkan perhitungan kesamaan semantik dengan operasi 

matematis sederhana seperti cosine similarity: 

cos(θ) =
𝑞 ⋅ 𝑑

|𝑞| |𝑑|
(2.2) 

dengan 𝑞 sebagai vektor query dan 𝑑 sebagai vektor dokumen. 

Untuk memastikan model LLM yang nantinya digunakan tidak 

memberatkan perangkat keras (hardware), maka seperti yang sudah disebutkan 

pada poin sebelumnya di penelitian ini mengadopsi TinyLlama-1.1B dan tidak 

menggunakan model LLM besar seperti LLaMA-3 8B. TinyLlama-1.1B sendiri 

adalah sebuah model bahasa ringan berparameter 1,1 miliar (sesuai dengan nama 

detailnya) (Zhang et al., 2024). TinyLlama ini dirancang sebagai versi kompak dari 

arsitektur LLaMA 2, dilatih pada sekitar 1 triliun token selama 3 epoch dan 

memanfaatkan optimasi seperti FlashAttention untuk efisiensi komputasi ekstra. 

Kelebihan utama TinyLlama ialah performa lebih baik dibandingkan model open-

source yang seukuran pada banyak tugas downstream, meskipun ukurannya kecil.  
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Dalam penelitian ini, TinyLlama berfungsi sebagai model generatif 

(decoder-only) yang akan menerima konteks hasil retrieval dari basis pengetahuan 

prodi dan akan menghasilkan jawaban yang relevan. Karena konteks sudah 

“dipersempit” melalui retrieval, maka beban komputasi model generatif menjadi 

lebih ringan. Hal ini lebih memungkinkan bagi TinyLlama meskipun ukurannya 

jauh lebih kecil dibandingkan dengan LLaMA 8B dan tetap mampu memberikan 

jawaban yang memadai dalam domain akademik lokal. 

Namun, tetap perlu dicatat bahwa tentu terdapat keterbatasan, dimana model 

kecil umumnya hanya memiliki kapasitas memori internal yang lebih terbatas, 

sehingga kemungkinan penurunan kualitas reasoning kompleks atau “lupa konteks 

panjang” lebih tinggi dibanding dengan model besar. Maka dari itu, strategi 

prompting, pemotongan konteks, dan pengaturan top-k harus dioptimalkan agar 

hasil (output) tetap konsisten dan tidak melantur. 

Dengan mempertimbangkan kemampuan perangkat (komputer/Colab), 

TinyLlama-1.1B menjadi pilihan paling realistis dibanding model besar seperti 

LLaMA 3.1 8B atau Mistral 7B. Jadi, seluruh skripsi ini akan mengacu pada 

pipeline RAG yang memadukan encoder (E5 / Sentence-Transformer) untuk 

embedding dan TinyLlama sebagai model generatif ringan, daripada menggunakan 

model generatif raksasa yang tidak feasible di lingkungan penelitian ini. 

 

 

2.2.5 Retrieval-Augmented Generation (RAG) 

Retrieval-Augmented Generation (RAG) adalah paradigma baru dalam 

pemrosesan bahasa alami yang menggabungkan dua komponen utama: retriever 
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dan generator (Oreški & Vlahek, 2024). Retriever bertugas mencari dokumen 

relevan dari basis pengetahuan eksternal (misalnya vektor database), sedangkan 

generator (biasanya LLM) menggunakan dokumen tersebut sebagai konteks 

tambahan untuk menghasilkan jawaban. Dengan cara ini, RAG meminimalkan 

risiko hallucination yang sering muncul pada model generatif murni karena 

jawaban selalu didasarkan pada informasi faktual yang diambil dari knowledge base 

(Lewis et al., 2020). Di samping itu, dengan adanya RAG maka akan memastikan 

jawaban yang dihasilkan tetap pada pada konteks knowledge base dan tidak keluar 

dari konteks tersebut.  

Model bahasa besar (LLM) seperti GPT atau LLaMA dapat menghasilkan 

teks yang fasih, tetapi sering kali berisiko mengarang fakta karena keterbatasan data 

latih. Di sisi lain, pendekatan retrieval tradisional seperti BM25 tetap memiliki 

peran penting dalam proses information retrieval, khususnya pada tahap reranking 

untuk memastikan hasil pencarian paling relevan berada di posisi teratas. RAG 

menggabungkan kekuatan keduanya dengan menghasilkan jawaban faktual yang 

didukung dokumen relevan, sembari mempertahankan gaya bahasa alami dari 

model generatif. Arsitektur ini memungkinkan pemisahan yang efisien antara 

komponen retriever dan generator, sehingga pembaruan basis pengetahuan cukup 

dilakukan di sisi retrieval/vector database tanpa perlu melatih ulang model bahasa 

besar. 

RAG telah diuji pada berbagai domain mulai dari pendidikan Elysia et al. 

(2024) membuktikan RAG dapat mempermudah akses informasi sekolah. 

Kemudian di bidang pelayanan publik Putro et al. (2025) menunjukkan efektivitas 
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RAG di sektor aduan pelanggan PLN dengan akurasi tinggi, dan tentu di bidang 

akademik Sugiarto et al. (2025) menyoroti potensi RAG untuk layanan penerimaan 

mahasiswa baru. Studi-studi ini memperkuat bahwa RAG relevan untuk domain 

pendidikan tinggi, termasuk untuk chatbot informasi akademik program studi. 

Alasan RAG masih relevan dan penting dalam penelitian ini diantaranya 

yaitu dari sisi program studi sendiri data akademik tentu akan mengalami perubahan 

yang dinamis baik (kurikulum, dosen, prestasi, beasiswa, dan informasi terkait 

akademik lainnya), sehingga retrieval menjadi solusi fleksibel. Kemudian dari sisi 

faktualitas, dengan retrieval, jawaban chatbot tidak berdiri pada data latih lama, 

melainkan selalu didukung knowledge base terbaru. Dan dari sisi fleksibilitas, 

sistem tetap bisa menggunakan LLM open-source (misalnya LLaMA), namun 

knowledge base bisa diperbarui hanya di retriever. 

Pada Tabel 2.1 berikut disajikan alur umum RAG. Alur ini secara berurutan 

dimulai dari tahap query encoding, kemudian dilakukan proses retrieval pada 

korpus data, setelah itu hasil top-k pada proses itu akan dipilih dimana dalam hal 

ini sudah memasuki tahap augmentation. Terakhir masuk ke tahap generation 

jawaban oleh LLM berdasarkan hasil proses augmentation. 

Tabel 2.1 Alur Umum Retrieval-Augmented Generation RAG 

Tahap Deskripsi 

Query Encoding pertanyaan pengguna diubah menjadi vektor 

Retrieval 
vektor query dicocokkan dengan koleksi dokumen (vector DB, misalnya 

FAISS atau ElasticSearch). 

Augmentation 
dokumen dengan skor kesesuaian tertinggi (Top-k) dipilih sebagai konteks 

tambahan. 

Generation 
model generatif memproduksi jawaban berdasarkan query dan konteks 

tersebut. 
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Penelitian yang dilakukan oleh Prastowo et al. (2025) turut menegaskan 

efektivitas RAG dalam meningkatkan kualitas customer service. Hasil studinya 

menunjukkan bahwa kombinasi mekanisme retrieval dan generation mampu 

menghasilkan respons yang lebih kontekstual dan konsisten dibandingkan model 

retrieval-based murni. Temuan ini memperlihatkan kemampuan RAG untuk 

menggabungkan relevansi informasi dengan gaya respons alami, bahkan dalam 

domain dengan data dinamis. 

 

2.2.6 Text Embedding / Encoder 

Tahap inti dalam pipeline RAG adalah representasi teks ke dalam bentuk 

vektor yang bisa dihitung secara matematis. Proses ini dilakukan oleh encoder. 

Encoder memetakan kalimat atau dokumen ke embedding berdimensi tetap, 

misalnya 768 dimensi pada model E5. Embedding ini menyimpan representasi 

semantik sehingga dua teks dengan makna mirip akan berada berdekatan di ruang 

vektor (Reimers & Gurevych, 2019). 

Salah satu model populer adalah Sentence-Transformers, misalnya keluarga 

E5 (Enhanced Embeddings for Information Retrieval). Model E5 dilatih dengan 

pendekatan contrastive learning untuk memaksimalkan kedekatan embedding antar 

pasangan teks yang relevan (Wang et al., 2024).  

Secara matematis, embedding hasil encoder biasanya dinormalisasi dengan 

L2 normalization: 

𝐸̂(𝑡) =
𝐸(𝑡)

|𝐸(𝑡)|2

(2.3) 
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Sehingga, kesamaan antara query 𝑞 dan dokumen 𝑑 dapat dihitung dengan cosine 

similarity: 

cos(𝑞, 𝑑) = 𝐸̂(𝑞) ⋅ 𝐸̂(𝑑) (2.4) 

Contoh sederhana penerapan embedding dapat dilihat pada proses ketika 

pengguna mengajukan pertanyaan ke chatbot. Misalnya, pengguna menanyakan 

“Kapan waktu pelaksanaan PKL untuk mahasiswa Informatika?”. Kalimat 

pertanyaan ini kemudian diubah menjadi representasi vektor, misalnya [0.45, 0.28, 

–0.12, …]. Di sisi lain, sistem juga telah menyimpan vektor-vektor dari dokumen 

atau teks sumber, seperti “PKL dilaksanakan pada semester 6 selama minimal 1 

bulan”, yang mungkin dipetakan ke vektor [0.47, 0.31, –0.10, …]. Karena jarak 

kosinus antar kedua vektor tersebut sangat kecil (misalnya 0.94), sistem menilai 

bahwa dokumen tersebut relevan dengan pertanyaan pengguna. 

Dengan demikian, proses embedding tidak hanya memetakan kalimat 

sederhana seperti “Mahasiswa Teknik Informatika” ke vektor [0.12, 0.34, –0.07, 

…], tetapi juga memungkinkan sistem mengenali kedekatan makna antara 

pertanyaan dan jawaban yang berbeda secara redaksi namun serupa secara 

semantik. Implementasi text embedding ini menjadi fondasi penting bagi proses 

indexing pada FAISS serta perhitungan skor relevansi di tahap retrieval. 

 

2.2.7 Vector Search dan FAISS 

Vector search adalah teknik pencarian dokumen berbasis kesamaan 

semantik, bukan sekadar pencocokan kata kunci. Prinsip dasarnya yaitu setiap 

dokumen 𝑑 dan query 𝑞 diproyeksikan ke ruang vektor berdimensi tetap oleh 
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encoder. Kemudian, skor kesamaan dihitung (misalnya cosine similarity atau inner 

product), dan dokumen dengan skor tertinggi dianggap paling relevan. 

Untuk mengatasi skalabilitas, digunakan Approximate Nearest Neighbor 

(ANN) indexing. ANN memungkinkan pencarian Top-k dokumen relevan dari 

jutaan entri dengan efisiensi tinggi, tanpa harus menghitung jarak ke seluruh 

dokumen. Salah satu 25emanti ANN 25emanti adalah FAISS (Facebook AI 

Similarity Search) (Douze et al., 2025). FAISS mendukung berbagai skema 

indexing, misalnya: Flat Index: brute-force search; akurat tetapi lambat. IVF 

(Inverted File Index) membagi ruang vektor ke dalam centroids sehingga pencarian 

hanya dilakukan pada subset. HNSW (Hierarchical Navigable Small World) 

struktur graf yang mempermudah pencarian tetangga terdekat (Malkov & 

Yashunin, 2018). 

Efektivitas FAISS dalam konteks bahasa Indonesia juga telah diuji pada 

penelitian Ramadhan et al. (2024) yang mengimplementasikan Passage Retrieval 

untuk sistem Question Answering (QA). Dengan memanfaatkan embedding BERT 

dan FAISS sebagai vector index, penelitian tersebut berhasil mencapai akurasi 

hingga 72,5% setelah proses fine-tuning, sekaligus mempertahankan waktu 

eksekusi rata-rata hanya 0,23 detik per pertanyaan (Ramadhan et al., 2024). Hasil 

ini menunjukkan bahwa FAISS tidak hanya unggul secara teoritis dalam 

mendukung skema ANN, tetapi juga terbukti praktis dalam aplikasi pencarian 

semantik berbasis bahasa Indonesia. 

Penggunaan vector database dalam penelitian ini dimaksudkan untuk 

mengelola dan menata informasi sehingga lebih mudah ditemukan kembali secara 
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efisien. Konsep pencatatan dan penyimpanan informasi ini memiliki kesesuaian 

dengan prinsip yang digambarkan dalam Al-Qur’an. Allah berfirman: 

 

۝١٨ مَا يَ لْفِظ  مِنْ قَ وْل  اِلَّْ لَدَيْهِ رقَِيْب  عَتيِْد     
 

“Tidak ada suatu kata yang diucapkannya melainkan di sisinya ada malaikat 

pengawas yang selalu hadir.” (QS Qāf: 18). 

 

 

Ayat ini menunjukkan bahwa setiap ucapan manusia dicatat oleh malaikat Raqīb 

dan ‘Atīd secara rapi dan terstruktur. Bahkan, Al-Qur’an sendiri ditegaskan 

tersimpan di Lauh Mahfuzh sebagai bentuk pencatatan ilahi yang sempurna.  

 

۝٢  ٢ ۝٢١ فِْ لَوْح  مََّّْف وْظ  ࣖ     ُۙ
يْد    بَلْ ه وَ ق  رْآن  مََِّّ

 

“Bahkan, (yang didustakan itu) Al-Qur’an yang mulia, yang (tersimpan) dalam 

(tempat) yang terjaga (Lauh Mahfuz).” (QS Al-Burūj: 22). 

 

 

Hal ini dapat dianalogikan dengan peran vector database yang berfungsi 

bukan sekadar menyimpan data, tetapi juga menata dan mengindeksnya sehingga 

informasi dapat dengan mudah ditemukan kembali saat dibutuhkan. Dengan 

demikian, penerapan FAISS dan metode indexing dalam penelitian ini sejalan 

dengan prinsip pencatatan yang sistematis sebagaimana digambarkan dalam Al-

Qur’an. 

 Alur kerja FAISS sendiri secara garis besar meliputi build time yaitu semua 

embedding dokumen disimpan dalam index (misalnya IVF), setelah itu masuk ke 

tahap query time dimana embedding query dihitung kemudian dicocokkan dengan 

index, terakhir dokumen relevan dengan nilai Top-k akan dikembalikan. Contoh 
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sederhana: misalnya ada 3 dokumen (d1, d2, d3) dengan embedding tersimpan di 

FAISS. Saat query 𝑞 masuk, FAISS mencari embedding dengan jarak kosinus 

terdekat dan mengembalikan dokumen [d2, d1] sebagai Top-2. 

 

2.2.8 Pengujian Retrieval dan Generation 

Evaluasi merupakan aspek penting dalam penelitian RAG, karena kualitas 

sistem tidak hanya ditentukan oleh kemampuannya mengambil dokumen 

(retrieval), tetapi juga bagaimana jawaban akhir dibangkitkan (generation). Oleh 

sebab itu, pengujian dilakukan dua level yaitu Retrieval (IR) dan Generation (NLG) 

Natural Language Generation). 

 

2.2.8.1 Pengujian Retrieval 

Pada level retrieval, yang dinilai adalah sejauh mana sistem berhasil 

menemukan dokumen relevan dari koleksi yang tersedia (Guo et al., 2020). Dua 

metrik utama adalah Recall@k dan Mean Reciprocal Rank (MRR). 

Recall@k menilai berapa banyak dokumen relevan yang berhasil muncul 

dalam Top-k hasil pencarian. Misalnya, jika ada 5 dokumen relevan dan sistem 

mengembalikan 3 di antaranya pada Top-5, maka recall@5 = 3/5 = 0,6. Metrik ini 

penting karena pengguna biasanya hanya melihat hasil teratas, semakin tinggi skor 

recall@k, maka semakin baik sistem memastikan konteks relevan tidak terlewat 

(Shiri, 2004). 

Mean Reciprocal Rank (MRR) mengukur seberapa cepat dokumen relevan 

pertama muncul pada daftar hasil. Jika sebuah query memiliki dokumen relevan di 

posisi pertama, skor reciprocal rank = 1; jika di posisi ketiga, maka skor = 1/3. 
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MRR menghitung rata-rata reciprocal rank di seluruh query. Dengan demikian, 

MRR memberi gambaran seberapa cepat sistem menghadirkan jawaban yang tepat 

di depan mata pengguna. 

 

2.2.8.2 Pengujian Generasi Jawaban 

Setelah retrieval, tahap berikutnya adalah generasi jawaban oleh LLM. 

Evaluasi di tahap ini menilai aspek kualitas, koherensi, dan kesesuaian jawaban. 

a. Faithfulness menilai apakah klaim dalam jawaban sesuai dengan dokumen 

sumber yang di-retrieve (Samudra et al., 2025). Jika 4 dari 5 klaim sesuai 

dokumen, maka faithfulness = 0,8. Metrik ini dinyatakan sebagai berikut. 

Faithfulness =
jumlah klaim benar

total klaim
(2.6) 

Metrik ini krusial untuk RAG karena tujuan utamanya adalah mengurangi 

halusinasi. 

b. Semantic Similarity dihitung dengan cosine similarity antar embedding jawaban 

sistem dan jawaban referensi. Metrik ini membantu mengukur kedekatan makna 

tanpa harus membandingkan token satu per satu. 

Untuk memudahkan, evaluasi dapat diilustrasikan sebagai berikut. Misalnya, untuk 

Query Q1 dengan dokumen relevan {D2, D5}, sistem mengembalikan Top-3 {D2, 

D4, D1}. Maka recall@3 = 1/2 = 0,5. 

 

2.3 Kerangka Pemikiran 

Pada penelitian ini, permasalahan utama adalah bagaimana menyediakan 

layanan chatbot akademik yang mampu memberikan jawaban relevan berdasarkan 
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data internal Program Studi Teknik Informatika UIN Malang. Untuk menjawab 

masalah tersebut digunakan pendekatan Retrieval-Augmented Generation (RAG) 

yang memadukan dua komponen utama, yaitu retrieval dan generation. 

Dari Gambar 2.1 berikut dapat dipahami, tahap pertama, data akademik 

dikumpulkan melalui proses web scraping dari situs resmi program studi. Data 

mentah tersebut kemudian melalui tahap preprocessing untuk dibersihkan dari 

elemen yang tidak relevan (seperti tag HTML, format yang berlebihan, maupun 

stopwords). Setelah itu, dilakukan proses text embedding menggunakan model 

Sentence-Transformers (E5) yang mengubah teks ke dalam representasi vektor 

numerik. Representasi ini kemudian disimpan dalam basis data vektor (FAISS) agar 

dapat dilakukan pencarian berbasis kesamaan. 

 

Gambar 0.1 Kerangka Pemikiran Penelitian 

 

Pada saat pengguna memberikan pertanyaan (query), sistem akan 

melakukan tahap retrieval untuk mengambil potongan dokumen paling relevan 
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berdasarkan ukuran kesamaan kosinus (cosine similarity). Hasil dari tahap retrieval 

dapat ditingkatkan kualitasnya melalui proses reranking menggunakan algoritma 

BM25 untuk mengutamakan konteks dengan tingkat kemiripan tertinggi. 

Selanjutnya, dokumen hasil reranking dipadukan dengan pertanyaan pengguna dan 

diproses oleh model bahasa besar (LLM) untuk menghasilkan jawaban yang lebih 

koheren dan kontekstual. 

Kerangka pemikiran ini menegaskan bahwa penggunaan RAG 

memungkinkan chatbot tidak hanya menghasilkan jawaban berbasis memorization 

model, tetapi juga memanfaatkan basis pengetahuan spesifik prodi. Hal ini 

diharapkan meningkatkan akurasi, kontekstualitas, dan kredibilitas jawaban 

chatbot. Dengan demikian, penelitian ini secara konseptual membangun hubungan 

antara teori NLP, teknik information retrieval, serta kebutuhan praktis layanan 

informasi akademik. 
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BAB III  

DESAIN DAN IMPLEMENTASI 

3.1 Desain Penelitian  

Penelitian ini menggunakan pendekatan penelitian terapan (applied 

research). Tujuannya adalah untuk merancang, mengimplementasikan, dan 

mengevaluasi sebuah teknologi, yaitu sistem chatbot informasi akademik berbasis 

Retrieval-Augmented Generation (RAG), guna menyelesaikan permasalahan 

praktis yang dihadapi mahasiswa dalam mengakses informasi di website Prodi 

Teknik Informatika UIN Malang. Dengan adanya desain penelitian yang jelas maka 

akan membantu penulis melakukan penelitian secara terarah dan tepat. 

Secara garis besar, alur penelitian akan mengikuti flowchart yang 

digambarkan pada Gambar 3.1. 

 

Gambar 3.1 Desain Penelitian 

 

Kerangka kerja metodologis penelitian ini dirancang secara sistematis untuk 

memastikan setiap tahapan dilakukan secara terstruktur dan terukur. Secara garis 

besar, tahapan penelitian ini dimulai dari identifikasi masalah untuk menentukan 

kebutuhan penelitian, dilanjutkan dengan studi literatur untuk mengumpulkan 

referensi dan landasan teori yang relevan. Setelah itu, proses pengumpulan data 

dilakukan untuk mendapatkan informasi yang diperlukan sebagai dasar dari tahap 

perancangan sistem. Selanjutnya adalah tahap perancangan sistem dan 
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implementasi sistem dilakukan. Kemudian sistem yang sudah selesai dibuat 

tersebut memasuki tahap pengujian, dan evaluasi. Tahap ini dilakukan dengan 

tujuan untuk mengukur kinerja dan ketepatan dari solusi yang dihasilkan sistem. 

Tahap terakhir adalah analisis hasil dan penarikan kesimpulan berdasarkan data 

yang diperoleh dari seluruh proses penelitian yang sudah dilakukan (Pratama & 

Sisephaputra, 2024). Pendekatan ini memungkinkan pengembangan teknologi yang 

tidak hanya berfungsi tetapi juga teruji dan dievaluasi secara komprehensif, 

memberikan solusi praktis terhadap permasalahan yang diidentifikasi. 

 

3.2 Pengumpulan Data  

Tahap pengumpulan data ini merupakan langkah fundamental dalam 

penelitian ini yang bertujuan untuk membangun basis pengetahuan (knowledge 

base) yang komprehensif untuk sistem chatbot. Berbeda dengan penelitian yang 

memanfaatkan dataset sekunder yang sudah ada, penelitian ini menggunakan data 

primer yang dikumpulkan secara langsung dari sumber utamanya. Sumber data 

yang digunakan dalam penelitian ini bersifat tunggal dan spesifik, yaitu seluruh 

konten tekstual publik yang tersedia di website resmi Program Studi Teknik 

Informatika, Universitas Islam Negeri Maulana Malik Ibrahim Malang, yang dapat 

diakses pada (https://informatika.uin-malang.ac.id). 

Proses pengumpulan data dilakukan dengan menggunakan teknik web 

scraping secara otomatis. Sebuah skrip pemrograman yang dirancang untuk 

menavigasi dan mengekstrak informasi tekstual dari berbagai halaman relevan di 

dalam domain website tersebut. Lingkup data yang diambil mencakup, namun tidak 

terbatas pada, informasi mengenai kurikulum, profil dosen, prosedur akademik, 
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panduan skripsi, informasi beasiswa, serta berita dan pengumuman. Pembatasan 

pengumpulan data hanya pada domain website resmi prodi, ini dilakukan untuk 

menjamin validitas, relevansi, dan konteks informasi yang akan menjadi dasar 

jawaban chatbot.  

Hasil dari tahap ini adalah sebuah korpus data mentah (raw data) yang berisi 

seluruh informasi tekstual yang berhasil diekstraksi. Kumpulan data mentah inilah 

yang kemudian akan menjadi input untuk tahap pra-pemrosesan data sebelum 

diindeks ke dalam database vektor dan diintegrasikan dengan Large Language 

Model (LLM) dalam pipeline RAG. Untuk memberikan gambaran yang lebih jelas 

mengenai cakupan halaman yang menjadi sumber data, beberapa contoh halaman 

disajikan dalam Tabel 3.1 di bawah ini. 

Tabel 3.1 Tampilan Beberapa Halaman Website Prodi yang dilakukan web scraping 

Gambar Tangkapan Layar 

Website Prodi 
Keterangan 

 

Halaman Landing Page dari website 

prodi Teknik Informatika UIN 

Malang 

 

Halaman Profil S1  

dari website prodi  

Teknik Informatika  

UIN Malang 
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Tabel 3.1 Lanjutan 

Gambar Tangkapan Layar 

Website Prodi 
Keterangan 

 Halaman Organisasi dan Komunitas 

dari website prodi Teknik 

Informatika  

UIN Malang 

 

3.3 Desain Sistem 

Pada Gambar 3.2 berikut disajikan gambaran umum desain sistem. Desain 

sistem dilakukan dengan tujuan untuk mendefinisikan secara jelas bagaimana 

desain sistem dari chatbot yang akan dikembangkan. 

 

Gambar 3.2 Alur Desain Sistem 

 

Data awal berupa data akademik program studi Teknik Informatika yang sudah 

diambil dari website resmi program studi, kemudian memasuki tahap 

preprocessing, dilanjutkan ke proses text embedding dan vector indexing. Setelah 

itu baru proses inti RAG yaitu meliputi retrieval dan terakhir adalah generation 

dimana tahap ini akan menghasilkan response (jawaban). 
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3.3.1 Web Scraping  

Tahap ini ialah tahap awal yang sangat penting dalam siklus pengembangan 

sistem RAG, bertujuan untuk mengumpulkan data tekstual secara otomatis yang 

akan menjadi fondasi dari basis pengetahuan (knowledge base) chatbot. Proses ini 

dirancang untuk secara sistematis mengambil seluruh konten informatif dari sumber 

data tunggal yang telah ditetapkan, yaitu website resmi Program Studi Teknik 

Informatika UIN Malang. Metode ini dipilih karena efisiensinya dalam 

mengakuisisi data dalam volume besar langsung dari sumber aslinya, memastikan 

otentisitas dan relevansi informasi yang akan digunakan oleh sistem. Alur kerja dari 

proses web scraping ini diilustrasikan secara visual pada Gambar 3.3. 

 

Gambar 3.3 Alur Web Scraping 

 

Proses web scraping diawali dengan menginisialisasi sebuah scraper yang 

diprogram menggunakan Python untuk melakukan permintaan HTTP dan 

mengambil struktur dokumen HTML dari halaman-halaman yang relevan di 

domain (https://informatika.uin-malang.ac.id). Setiap halaman yang telah 

ditentukan diakses secara langsung tanpa melakukan penelusuran rekursif ke 

seluruh tautan sebagaimana pada teknik crawling. Skrip scraping kemudian 

mengekstrak konten teks dari elemen-elemen HTML tertentu seperti paragraf 

(<p>), judul (<h1>, <h2>), dan item daftar (<li>) yang mengandung informasi 

https://informatika.uin-malang.ac.id/
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akademik utama. Selama proses ekstraksi, dilakukan tahap pembersihan untuk 

menghapus elemen yang tidak relevan seperti tag skrip, menu navigasi, atau spasi 

berlebih, sehingga data yang tersimpan adalah teks bersih dan siap digunakan. Hasil 

teks bersih tersebut selanjutnya disimpan dalam format terstruktur, seperti JSON 

atau CSV, agar dapat diproses lebih lanjut pada tahap preprocessing sebelum 

dilakukan embedding dan penyimpanan ke basis data vektor. 

 

3.3.2 Preprocessing 

Tahap preprocessing merupakan kelanjutan dari tahap pengumpulan data 

(web scraping), yang bertujuan untuk mengubah data mentah yang telah diekstraksi 

menjadi format yang bersih, terstruktur, dan siap untuk memasuki tahap embedding 

dan indeksasi. Proses ini juga penting untuk memastikan kualitas input bagi model 

embedding dan efektivitas retrieval di tahap mendatang. Input untuk tahap ini 

adalah kumpulan data teks mentah dalam format JSON (misalnya, data/raw/*.json) 

yang dihasilkan dari proses web scraping sebelumnya. Proses detail pra-

pemrosesan teks digambarkan pada Gambar 3.4 berikut. 

 

Gambar 3.4 Alur Tahap Preprocessing 

 

Alur preprocessing dimulai dengan tahap pemuatan data dalam format 

JSON yang sebelumnya telah terkumpul. Setelah itu, data melewati proses 
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pembersihan (cleaning) yang menyeluruh, mencakup penghapusan tag HTML yang 

masih tersisa, penghilangan spasi ganda, serta eliminasi karakter non-teks yang 

tidak memberikan makna. Pada tahap berikutnya, data dapat dinormalisasi, 

misalnya melalui penyamaan bentuk huruf menjadi lowercase, agar variasi 

penulisan lebih seragam dan mudah diproses. Setelah bersih dan seragam, teks 

diuraikan menjadi satuan-satuan yang lebih kecil dan bermakna. Proses ini sering 

kali diwujudkan dalam bentuk pemecahan kalimat (sentence splitting) atau paragraf 

(paragraph splitting), yang secara alami mempersiapkan teks untuk langkah 

pengolahan berikutnya. Selanjutnya setiap kata dilakukan tokenisasi secara formal.  

𝑇 = {𝑤1, 𝑤2, … , 𝑤𝑛},  𝑡 = tokenizer(text) (3.1) 

Dari unit-unit kecil tersebut, dilakukan chunking, yaitu menggabungkan 

kembali kalimat atau paragraf menjadi segmen teks dengan panjang yang optimal, 

umumnya berkisar antara 200–350 token. Agar informasi tidak terputus, setiap 

chunk diberi irisan konteks (overlap) sekitar 20–30% dengan chunk sebelumnya. 

Strategi ini membantu menjaga kesinambungan makna dan mencegah hilangnya 

detail penting. Secara algoritmik yaitu dengan cara mengambil window yang dapat 

dinotasikan dengan notasi berikut, dengan panjang L token. 

[𝑖, 𝑖 + 𝐿) (3.2) 

Jadi, misalkan pada penelitian ini digunakan L = 300 token, maka sudah 

melalui perhitungan kata atau tanda pemisah (whitespace dan punctuation) agar 

cukup panjang untuk menjaga konteks, tapi tidak melebihi batas jendela model. 

Kemudian mulai dari token pertama, ambil L token dari indeks ke-i sampai 𝑖 +  𝐿. 

Notasi [𝑖, 𝑖 + 𝐿) berarti mulai dari token i (inklusif) sampai 𝑖 +  𝐿 (eksklusif). 
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Window tidak langsung melompat ke token berikutnya setelah 𝑖 +  𝐿, tapi digeser 

sebagian dengan rumus stride berikut agar ada overlap.  

𝑠𝑡𝑟𝑖𝑑𝑒 =  𝐿 × (1 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝) (3.3) 

Lalu untuk overlap dibuat 20%, berarti 𝑠𝑡𝑟𝑖𝑑𝑒 =  300 ×  (1 −  0.2)  =

 240. Jadi window kedua mulai dari token ke-241, bukan ke-301. Dilanjutkan 

dengan window kedua mencakup token [241, 541) → tetap 300 token. Window 

ketiga [481, 781), dan seterusnya. Proses ini akan berlangsung secara berulang 

sampai semua token habis. Chunk terakhir mungkin berisi token lebih sedikit (<L) 

jika teks tidak habis dibagi rata. 

Sebagai ilustrasi lebih lengkap, penulis menggambarkan pada Tabel 3.2 

berikut. Misal teks menghasilkan 1000 token setelah tokenisasi, dengan L = 300 

dan overlap 20%: 

Tabel 3.2 Ilustrasi Pembagian Chunk dan Cakupan Token 

Pembagian Chunk Cakupan Token 

Chunk 1 [1 … 300] 

Chunk 2 [241 … 540] 

Chunk 3 [481 … 780] 

Chunk 4 [721 … 1000] 

 

Dari Tabel 3.2 dapat dipahami bahwa dengan 1000 token menghasilkan 4 chunk, 

dengan masing-masing terdapat irisan (overlap 20%) dengan chunk sebelumnya. 

Selain teks, setiap chunk diperkaya dengan informasi tambahan berupa 

metadata, seperti alamat URL, judul halaman, dan bagian spesifik dari mana teks 

tersebut diambil. Metadata ini berperan penting untuk keperluan rujukan maupun 

validasi di tahap analisis berikutnya. Hasil akhir dari rangkaian ini disimpan dalam 

format JSON Lines (JSONL), misalnya pada berkas data/chunks/chunks.jsonl, di 
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mana setiap baris memuat objek JSON berisi id, url, title, serta teks dari chunk yang 

telah diproses. 

 

 

3.3.3 Text Embedding 

Setelah teks dipecah menjadi potongan (chunks), tiap chunk harus diubah 

ke bentuk numerik agar bisa dibandingkan secara matematis di dalam vector 

database. Proses ini dilakukan dengan bantuan encoder. Encoder adalah model 

neural network yang bertugas memetakan teks (berupa kata atau kalimat) menjadi 

vektor berdimensi tetap. Vektor ini merepresentasikan makna semantik teks, 

sehingga kalimat dengan arti mirip akan memiliki vektor yang letaknya dekat di 

ruang vektor. Pada tahap ini model open source yaitu Sentence-Transformers (E5) 

ini dipilih karena lebih superior dalam menghasilkan representasi vektor yang 

semantik dan sadar konteks untuk unit teks yang panjang, seperti kalimat dan 

paragraf. Keunggulan ini menjadi krusial jika dibandingkan dengan metode 

alternatif. Metode TF-IDF, yang berbasis frekuensi statistik, tidak mampu 

menjembatani kesenjangan leksikal, artinya ia tidak akan mengenali hubungan 

antara query "biaya kuliah" dengan dokumen yang berisi frasa "Uang Kuliah 

Tunggal". Sementara itu, Word2Vec, meskipun mampu menangkap relasi semantik 

antar kata, memiliki keterbatasan signifikan karena representasi kalimatnya 

seringkali hanya merupakan agregasi (misalnya, rata-rata) dari vektor kata-kata 

penyusunnya, sehingga mengabaikan struktur sintaksis dan konteks yang 

kompleks. Sebaliknya, Sentence-Transformers, yang dibangun di atas arsitektur 

Transformer, mampu memproses seluruh urutan teks secara bersamaan. Hal ini 
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memungkinkannya untuk menghasilkan embedding tunggal yang padat makna, 

yang secara efektif menjadi fondasi bagi proses pencarian kemiripan (similarity 

search) yang akurat dalam pipeline RAG.  

Pilihan ini memastikan bahwa kontribusi ilmiah utama dari penelitian ini 

terpusat pada perancangan arsitektur dan evaluasi alur kerja sistem RAG secara 

menyeluruh, yang mencakup tahap pra-pemrosesan data, indexing, retrieval, 

hingga generation respons. Hal ini merupakan inti dari penyelesaian masalah yang 

diajukan, alih-alih berfokus pada pengembangan model embedding fundamental 

yang berada di luar cakupan penelitian. 

Ilustrasi alur pada tahap text-embedding ini terdapat pada Gambar 3.5 

berikut. Sebelum proses proses embedding dipastikan dulu datanya sudah dalam 

bentuk potongan dokumen (chunking). 

 

Gambar 3.5 Alur Tahap Text Embedding 

 

Dengan Sentence-Transformers (E5), setiap teks 𝑡 diproyeksikan oleh 

encoder ke ruang vektor berdimensi 𝑑 (umumnya 768). 

𝐸(𝑡) = 𝑓θ(tokenize(𝑡)) ∈ 𝑅𝑑 (3.4) 

Keterangan: 

𝐸(𝑡) : embedding dari teks 𝑡, berupa vektor, 

𝑓𝜃  : fungsi encoder dengan parameter terlatih, 

𝑑 : dimensi tetap (misal 768). 
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Agar konsisten dalam perhitungan kesamaan, embedding dinormalisasi 

dengan L2 normalization: 

𝐸̂(𝑡) =
𝐸(𝑡)

|𝐸(𝑡)|2

(3.5) 

Dimana |𝐸(𝑡)|2 = √∑ (𝐸(𝑡)𝑖)2𝑑
𝑖=1  

Ini akan menghasilkan semua embedding punya panjang vektor 1 (unit vektor). 

Kemudian kesamaan semantik antar dua teks (query 𝑞 dan dokumen 𝑑) 

didefinisikan dengan cosine similarity bentuk umum: 

cos(𝐸(𝑞), 𝐸(𝑑)) =
𝐸(𝑞) ⋅ 𝐸(𝑑)

|𝐸(𝑞)|2 |𝐸(𝑑)|2

(3.6) 

Rumus ini selalu berlaku sebelum normalisasi. Sementara itu, pada penelitian ini 

semua embedding sudah dinormalisasi L2, sehingga berlaku: 

|𝐸̂(𝑞)|2 = |𝐸̂(𝑑)|2 = 1 (3.7) 

Sehingga jarak/kesamaan antar teks bisa dihitung dengan rumus cosine similarity 

yang yang menjadi lebih sederhana yaitu 

cos (𝐸̂(𝑞), 𝐸̂(𝑑)) = 𝐸̂(𝑞) ⋅ 𝐸̂(𝑑) (3.8) 

Penulis menyajikan ilustrasi pada Tabel 3.3. Misalkan encoder menghasilkan 

vektor 3 dimensi (untuk contoh sederhana saja, ukuran aslinya 768 dimensi).  

Tabel 3.3 Ilustrasi Vektor Pendek Proses Embedding 

Teks Vektor awal {𝐸(𝑡)} Normalisasi L2 𝐸̂(𝑡) 

“kurikulum TI” [0.21, 0.34, -0.11] [0.49, 0.79, -0.26] 

“144 SKS TI” [0.15, -0.28, 0.39] [0.31, -0.58, 0.81] 

 

Berikutnya dihitung cosine similarity dari kedua vektor hasil normalisasi: 

𝑐𝑜𝑠 = 0.49 × 0.31 + 0.79 × (−0.58) + (−0.26) × 0.81 = −0.20 
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Hasilnya didapatkan nilai negatif yang artinya makna antar dua teks kurang relevan. 

 

 

3.3.4 Pengindeksan Vektor (Vector Index) 

Ilustrasi proses tahap embedding digambarkan pada Gambar 3.6. Setelah 

setiap potongan teks (chunk) direpresentasikan menjadi vektor berdimensi tetap 

melalui tahap text embedding. Langkah berikutnya adalah menyusun indeks vektor 

agar pencarian k-tetangga terdekat (k-NN) bisa dilakukan cepat dan terukur. Pada 

penelitian ini digunakan FAISS (Facebook/Meta AI Similarity Search) sebagai 

engine pencarian vektor, karena mendukung jutaan vektor Nur Hakim et al., (2025), 

memiliki banyak tipe indeks (dari yang akurat sampai yang sangat cepat), dan 

tersedia antarmuka Python sehingga mudah diintegrasikan dengan pipeline RAG. 

 

Gambar 3.6 Alur Tahap Vector Indexing 

 

Konsep dasar pada tahap ini adalah misalkan setiap dokumen/chunk 𝐼 

memiliki embedding ter-normalisasi 𝑑𝑖̂ ∈ 𝑅𝑑,  𝑞̂ ∈ 𝑅𝑑 dan sebuah kueri pengguna 

direpresentasikan menjadi embedding ter-normalisasi cos(𝑞̂, 𝑑𝑖̂) = 𝑞̂ ⋅ 𝑑𝑖̂. Skor 

kedekatan yang digunakan adalah cosine similarity. Karena semua vektor sudah L2-

normalized |𝐸̂|2 = 1, cosine similarity ekuivalen dengan inner product (IP): 

cos(𝑞̂, 𝑑𝑖̂) = 𝑞̂ ⋅ 𝑑𝑖̂ (3.9) 
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Dengan demikian, ranking dokumen relevan bisa diperoleh dengan mencari Top-K 

nilai 𝑞̂ ⋅ 𝑑𝑖̂ terbesar untuk semua 𝑖. Sementara, untuk pemetaannya ke FAISS 

terdapat pada Tabel 3.4. Pada tabel tersebut berisi penjelasan tahap-tahap proses 

vector indexing. 

Tabel 3.4 Alur Pemetaan Indeks ke FAISS 

Tahap Deskripsi 

1 Menyusun sebuah indeks FAISS berisi semua vektor dokumen 

2 
Tipe indeks yang digunakan pada tahap awal adalah IndexFlatIP (inner product) 

akurat dan sederhana. 

3 
Karena vektor telah dinormalisasi, IndexFlatIP menghasilkan urutan yang sama 

dengan cosine similarity (tanpa perlu membagi oleh norma). 

4 

Untuk skala lebih besar, indeks bisa ditingkatkan ke IVF (Inverted File) atau 

HNSW untuk mempercepat, dengan kompromi akurasi (approximate nearest 

neighbor). 

 

Catatan: Pada penelitian ini digunakan IndexFlatIP sebagai metode indexing utama 

karena memiliki tingkat akurasi tinggi dengan mekanisme pencarian berbasis inner 

product (Krisnawati et al., 2024). Pendekatan ini sederhana untuk direplikasi dan 

sangat cocok digunakan pada tahap awal pengembangan sistem dengan jumlah 

vektor relatif kecil (dimensi 𝑑 = 768, sesuai keluaran model Sentence-

Transformer). Apabila ukuran data meningkat secara signifikan (jumlah vektor 𝑁 

bertambah besar), maka arsitektur dapat diskalakan dengan mengganti index type 

ke IVF (Inverted File Index) atau HNSW (Hierarchical Navigable Small World). 

Kedua metode ini memungkinkan peningkatan efisiensi pencarian melalui 

approximate nearest neighbor search dengan tetap menjaga keseimbangan antara 

kecepatan dan akurasi. 

Pada Tabel 3.5 berikut disajikan bagaimana alur teknis proses indeksasi 

vektor secara singkat. 
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Tabel 3.5 Alur Teknis Build Time Indeksasi Vektor ke FAISS 

Tahap Deskripsi 

1 Load semua chunk dari data/chunks/chunks.jsonl. 

2 
Embed setiap chunk dengan model (misal E5), lalu hasilnya dilakukan L2-

normalization. 

3 Inisialisasi indeks. 

index = faiss.IndexFlatIP(dim) 

4 Tambahkan seluruh embedding ke indeks: 

index.add(embeddings) 

# embeddings shape: [N, d], sudah dinormalisasi 

5 Simpan indeks dan metadata secara terpisah. 

data/index/chunks.faiss → struktur FAISS (hanya vektor). 

data/index/meta.json → daftar metadata yang urutannya sejajar dengan vektor 

(id, url, title, text, dan sebagainya). 

 

Kemudian pada Tabel 3.6 berikut disajikan deskripsi dari tahap awal sampai 

akhir dari proses teknis pencarian indeks vektor pada FAISS. 

Tabel 3.6 Alur Teknis Vector Index Searching pada FAISS 

Tahap Deskripsi 

1 
Terima pertanyaan pengguna, bentuk embedding query ter-normalisasi 𝑞̂ (format 

E5: "query: <teks>") 

2 

Lakukan pencarian Top-K di indeks: 

scores, idxs = index.search(q_vec, k) # inner product 

FAISS mengembalikan dua matriks: scores (nilai IP/cosine) dan idxs (indeks baris 

vektor dokumen). 

3 
Gunakan idxs untuk mengambil metadata terkait dari meta.json (url, judul, cuplikan 

teks). 

4 
Kirim daftar kandidat ini ke tahap reranking (opsional) atau langsung ke prompting 

(jika tanpa reranker). 

 

Jika disusun semua vektor dokumen sebagai baris matriks 𝐷 ∈ 𝑅𝑁×𝑑 (setiap baris 

adalah 𝑑𝑖̂), dan vektor kueri sebagai kolom 𝑞̂ ∈ 𝑅𝑑×𝟙, maka skor kedekatan seluruh 

dokumen ke query dapat dihitung sebagai: 

𝑠 = 𝐷𝑞̂ ∈ 𝑅𝑁×𝟙, 𝑠𝑖 = 𝑑𝑖̂ ⋅ 𝑞̂ (3.10) 

FAISS melakukan operasi serupa secara sangat efisien (dengan optimasi 

C++/SIMD/GPU). Proses Top-K berarti mengambil 𝐾 nilai 𝑠𝑖 terbesar beserta 

indeksnya. 
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 Untuk menjaga keamanan dan konsistensi skor, maka perlu dipastikan 

normalisasi L2 diterapkan baik pada embedding dokumen saat build maupun 

embedding query saat query. Ini membuat inner product setara dengan cosine, 

sehingga interpretasi skor konsisten. Jika tidak dinormalisasi, inner product akan 

bergantung pada panjang vektor, bukan hanya arah (makna), sehingga ranking bisa 

bias. 

 Penyimpanan indeks FAISS (file dengan format .faiss) bersifat read-only 

dalam penelitian ini, artinya jika korpus data diperbarui, maka pipeline rebuild 

indeks perlu dijalankan ulang. Sementara untuk metadata sendiri disimpan di berkas 

meta.json (atau Parquet) agar mudah dibaca ulang saat serve. Di production, 

metadata bisa dipindah ke database (misal Postgres/Supabase) untuk pemeliharaan 

yang lebih nyaman. 

Terdapat Tabel 3.7 yang menyajikan catatan penting untuk memudahkan 

penjelasan lebih eksplisit terkait tipe indeks FAISS, dapat dilihat pada tabel berikut. 

Tabel 3.7 Catatan Penting Tipe Indeks FAISS 

Tipe Indeks Deskripsi 

IndexFlatIP exact search berbasis inner product; akurat, cocok untuk N kecil–menengah 

IVF (Inverted 

File) 

membagi ruang vektor ke beberapa centroid; mempercepat pencarian pada N 

besar (kompromi akurasi) 

HNSW 
graph-based ANN (Approximate Nearest Neighbor) dengan performa sangat 

baik untuk skala besar. 

 

3.3.5 First Stage Retrieval 

Setelah embedding dokumen disimpan dalam vector index kemudian masuk 

tahap berikutnya yaitu first stage retrieval. Alur pada tahap ini dapat dilihat pada 

Gambar 3.7. Embedding dari query pengguna (𝑞̂) dibandingkan dengan embedding 

dokumen yang tersimpan dalam indeks (𝑑̂𝑖) menggunakan ukuran kesamaan. 
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Pencarian dilakukan untuk menemukan Top-k dokumen dengan skor kesamaan 

tertinggi (Soliman et al., 2025).  

 

Gambar 3.7 Alur Tahap First Stage Retrieval 

  

Dengan embedding yang telah dinormalisasi menggunakan L2, perhitungan 

cosine similarity pada tahap retrieval dapat disederhanakan menjadi operasi dot 

product antar vektor. Oleh karena itu, peringkat dokumen relevan (Top-k) dapat 

langsung diperoleh dari hasil skor kesamaan. Ilustrasi perhitungan manual telah 

disajikan pada tahap sebelumnya (Vector Indexing), di mana dokumen dengan skor 

tertinggi diprioritaskan sebagai hasil first stage retrieval. Jadi, kesamaan dihitung 

menggunakan cosine similarity, yang dirumuskan persis seperti persamaan 3.9 yang 

terdapat pada tahap embedding. 

Dengan menggunakan FAISS, proses ini dapat dilakukan secara efisien 

meskipun jumlah dokumen sangat besar. Sistem kemudian mengembalikan daftar 

kandidat Top-k dokumen yang paling relevan. Hasil dari tahap ini bersifat coarse 

retrieval, artinya masih mungkin ada dokumen yang urutannya kurang tepat, 

sehingga diperlukan tahap selanjutnya yaitu reranking. 
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3.3.6 Reranking 

Tahap ini bertujuan untuk menyempurnakan urutan dokumen yang 

dihasilkan dari tahap first stage retrieval. Alur proses reranking disajikan pada 

Gambar 3.8. Dari Top-k kandidat dokumen, sistem mengevaluasi kembali tingkat 

relevansi menggunakan metode yang lebih presisi, meskipun lebih mahal secara 

komputasi.  

 

Gambar 3.8 Alur Tahap Reranking 

  

Dalam penelitian ini digunakan kombinasi pendekatan embedding dengan 

algoritma berbasis lexical matching, seperti BM25, yang merupakan salah satu 

algoritma probabilistic retrieval. Setelah hasil retrieval awal diperoleh dari FAISS, 

sistem melakukan proses reranking menggunakan metode BM25 untuk 

memprioritaskan potongan teks yang paling relevan secara leksikal dengan query 

pengguna. Skor relevansi BM25 dihitung dengan persamaan formula berikut: 

𝐵𝑀25(𝑞, 𝑑) = ∑ 𝐼𝐷𝐹(𝑡)

𝑡∈𝑞

𝑓(𝑡, 𝑑) ⋅ (𝑘1 + 1)

𝑓(𝑡, 𝑑) + 𝑘1 ⋅ (1 − 𝑏 + 𝑏 ⋅
|𝑑|

𝑎𝑣𝑔𝑑𝑙
)

(3.11)
 

Keterangan lengkap dari rumus BM25 dapat dilihat pada Tabel 3.8 berikut. 

Tabel 3.8 Keterangan Rumus BM25 

Simbol Keterangan 

𝑓(𝑡, 𝑑) frekuensi kemunculan term 𝑡 dalam dokumen 𝑑 

|𝑑| panjang dokumen 𝑑 

𝑎𝑣𝑔𝑑𝑙 panjang rata-rata dokumen dalam koleksi 



48 

 

 

Tabel 3.8 Lanjutan 

Simbol Keterangan 

𝑘1 𝑑𝑎𝑛 𝑏 parameter pengatur (umumnya 𝑘_{1}  ∈ [1.2, 2.0],  𝑏 =  0.75) 

𝐼𝐷𝐹(𝑡) inverse document frequency dari term 𝑡 

 

Proses reranking ini menggabungkan kekuatan semantic retrieval (embedding 

similarity) dan lexical retrieval (BM25). Dengan demikian, dokumen yang paling 

relevan baik secara semantik maupun leksikal dapat diprioritaskan (Robertson & 

Zaragoza, 2009). 

 

3.3.7 Generation 

Tahap terakhir adalah generation. Seperti yang terdapat pada Gambar 3.9 

menunjukkan alur dari proses generation dimana ini merupakan proses dokumen 

hasil retrieval (yang sudah diurutkan kembali melalui reranking) digunakan 

sebagai konteks tambahan (augmented context) bagi model bahasa (LLM) untuk 

menghasilkan jawaban. 

 

Gambar 3.9 Alur Tahap Generation 

  

Secara teknis, model generatif menerima dua masukan yaitu query asli dari 

pengguna dan kumpulan dokumen relevan hasil retrieval (umumnya 3–5 dokumen 

teratas). LLM kemudian memproses kedua masukan tersebut dengan mekanisme 

atensi, sehingga jawaban yang dihasilkan bersandar pada pengetahuan yang ada 

dalam dokumen, bukan semata-mata pada model. Mekanisme ini membuat jawaban 
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lebih faktual dan mengurangi risiko hallucination. Formulasinya dapat 

digambarkan secara sederhana: 

Answer = 𝐿𝐿𝑀(Query, ContextTop-𝑘) (3.12) 

Keterangan: 

𝑄𝑢𝑒𝑟𝑦 : pertanyaan pengguna 

ContextTop-𝑘 : dokumen hasil retrieval yang disatukan sebagai prompt augmentation 

Answer : keluaran jawaban akhir dari sistem 

 

Pada tahap generation ini, sistem memanfaatkan model TinyLLaMA 1.1B 

sebagai decoder-only LLM untuk menghasilkan jawaban berdasarkan potongan 

konteks hasil retrieval. Model ini dipilih karena berukuran ringan, efisien, dan 

dapat dijalankan pada perangkat dengan sumber daya terbatas. Berikutnya agar 

tahap “generation” berlangsung lebih solid, maka perlu dilakukan prompting untuk 

LLM sendiri dan melakukan konfigurasi sehingga panjang jawaban konteks juga 

disesuaikan dengan kebutuhan. Misalnya dilakukan konfigurasi seperti pada Tabel 

3.9 berikut. 

Tabel 3.9 Template Prompt dan Konfigurasi LLM 

Kebutuhan 

Konfigurasi 
Keterangan 

Instruction 

Jawablah pertanyaan pengguna hanya berdasarkan KONTEN yang 

diberikan. Jika tidak ditemukan jawabannya di KONTEN, sampaikan 

tidak tersedia dan di luar domain. 

𝐾𝑂𝑁𝑇𝐸𝑁 …(Top-k chunk)… 

PERTANYAAN {𝑞} 

Konfigurasi 

TinyLLaMA-1.1B, quantization 4-bit (QloRA/gguf), max_tokens 

output 256, temperature 0.3–0.7, top-k 40–100, top-p 0.9. Panjang 

konteks efektif disesuaikan (49issal 2–4 potongan @300 token) agar 

tidak melebihi jendela model. 

 

Adapun tahap evaluasi akan dijelaskan pada bagian skenario pengujian, 

menggunakan metrik seperti Faithfulness untuk konsistensi terhadap konteks. 
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3.4 Implementasi Sistem 

Tahap implementasi akan mencakup pengembangan dua komponen utama: 

backend RAG dan antarmuka (frontend) chatbot. Gambaran implementasi dari 

desain sistem yang sudah diuraikan pada bagian 3.3 secara garis besar keseluruhan 

diilustrasikan pada Gambar 3.10 berikut. Pada gambar tersebut dapat dipahami 

bahwa ranah yang bisa diakses oleh user hanya sebatas pada tampilan antarmuka 

chatbot saja. Untuk detail mekanisme RAG sendiri akan terjadi di sisi server 

backend). Adapun jika diruntut secara singkat, user mengakses chatbot, 

mengajukan pertanyaan, lalu sistem akan mengubah query user menjadi bentuk 

vektor lalu dari nilai tersebut akan digunakan untuk melakukan pencarian dokumen 

relevan di database vektor. Top-k dokumen paling relevan akan diteruskan ke LLM 

beserta vektor dari query user tadi sebagai dasar LLM melakukan generasi jawaban. 

Kemudian setelah jawaban berhasil dihasilkan akan ditampilkan di antarmuka 

chatbot yang dapat diakses oleh user. 
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Gambar 3.10 Skema Implementasi Desain Utama Sistem Chatbot RAG 

 

3.4.1 Perangkat Keras dan Lunak: 

Perangkat keras yang digunakan selama pengembangan dan pengujian akan 

dilakukan pada laptop dengan spesifikasi prosesor AMD Ryzen 3, RAM 8 GB, dan 

sistem operasi Windows 64-bit. Sementara untuk detail dari spesifikasi perangkat 

lunak yang digunakan dalam penelitian ini tertera jelas pada Tabel 3.10 berikut. 

Tabel 3.10 Spesifikasi Perangkat Lunak yang digunakan 

Perangkat Lunak Spesifikasi 

Bahasa Pemrograman Python 3.10+ 

Backend Framework FastAPI 

Open Source LLM TinyLLaMA-1.1B 

Vector Database FAISS 

Embedding Hugging Face (transformers, sentence-transformers) 
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3.4.2 Arsitektur Sistem 

Sistem akan dibangun dengan arsitektur client-server, yaitu frontend dan 

backend. Frontend merupakan antarmuka pengguna (UI) berbasis web yang telah 

Anda kembangkan (index.html, app.js, styles.css). Komponen ini bertanggung 

jawab untuk menampilkan dialog percakapan dan berkomunikasi dengan backend 

melalui HTTP requests. 

Backend (RAG API) merupakan sebuah layanan API yang dibangun dengan 

FastAPI. API ini akan menyediakan endpoint (misalnya /api/chat) yang menerima 

pertanyaan dari query user di sisi frontend, menjalankan seluruh pipeline RAG 

(retrieval dari FAISS dan generasi oleh TinyLLaMA-1.1B), dan mengembalikan 

jawaban beserta sumbernya. 

Selain pendekatan client–server tradisional, sistem ini juga dirancang agar 

dapat di-deploy menggunakan Streamlit. Streamlit merupakan framework Python 

yang memungkinkan pembangunan antarmuka interaktif berbasis web tanpa 

memerlukan pengembangan frontend manual. Dengan menjalankan perintah 

‘streamlit run’, backend RAG dapat sekaligus menyajikan antarmuka chatbot yang 

dapat diakses langsung melalui browser. Pendekatan ini memberikan fleksibilitas 

yang tinggi di tahap awal penelitian. Streamlit mempermudah prototyping dan 

pengujian sistem oleh banyak pengguna, sedangkan di tahap lanjut, frontend dan 

backend tetap dapat dipisahkan untuk tujuan skalabilitas. 

 

3.4.3 Input dan Proses 

Input utama sistem adalah data tekstual tidak terstruktur yang berasal dari 

website Prodi Teknik Informatika UIN Malang. Lingkup data yang diambil 
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meliputi, namun tidak terbatas pada, halaman profil prodi, kurikulum, informasi 

dosen, detail kelompok keilmuan, prosedur akademik, panduan skripsi dan PKL, 

serta berita dan pengumuman. Selain itu, input lainnya adalah pertanyaan (query) 

dalam bahasa Indonesia yang diajukan oleh pengguna melalui antarmuka chatbot. 

Proses inti dalam sistem ini adalah alur kerja RAG yang telah dijelaskan pada 

Desain Sistem (3.3). Proses ini dapat dirinci lebih lanjut seperti pada Tabel 3.11. 

Tabel 3.11 Penjelasan Proses Inti RAG 

Nama Proses Penjelasan Proses 

Query Processing Pertanyaan dari pengguna diterima melalui API. 

Vector Search 

Sistem melakukan pencarian pada indeks FAISS untuk menemukan 

dokumen-dokumen (chunks) yang paling relevan dengan pertanyaan 

pengguna. 

Context 

Formulation 
Dokumen-dokumen yang relevan diformat menjadi sebuah konteks. 

Prompt 

Engineering 

Sistem menyusun sebuah prompt terstruktur yang berisi instruksi untuk 

LLM, konteks yang relevan, dan pertanyaan asli pengguna. 

LLM Inference 
Prompt tersebut dikirim ke endpoint LLM (TinyLLaMA-1.1B) untuk 

menghasilkan jawaban. 

Response 

Formatting 

Jawaban dari LLM beserta sumber referensinya (dokumen yang digunakan 

sebagai konteks) diformat menjadi sebuah respons JSON untuk dikirim 

kembali ke antarmuka pengguna. 

 

3.4.4 Output 

Output yang dihasilkan oleh sistem adalah jawaban tekstual yaitu sebuah 

jawaban dalam format bahasa natural yang relevan dengan pertanyaan pengguna, 

dihasilkan oleh LLM berdasarkan konteks yang diberikan dan dilengkapi dengan 

sumber referensi yaitu daftar sumber (judul halaman atau URL) dari website prodi 

yang digunakan sebagai dasar untuk menghasilkan jawaban, guna meningkatkan 

transparansi dan memungkinkan pengguna untuk melakukan verifikasi.  
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3.5 Skenario Pengujian 

Tujuan pengujian pada penelitian ini adalah untuk menilai sejauh mana 

sistem chatbot berbasis Retrieval-Augmented Generation (RAG) mampu 

menghasilkan jawaban yang relevan dengan pertanyaan pengguna, menyajikan 

jawaban yang akurat dan konsisten dengan sumber data (knowledge base), dan 

memberikan respons dalam waktu yang wajar, sehingga layak digunakan dalam 

skenario nyata. 

Untuk skenario uji sendiri dilakukan melalui dua aspek utama, yaitu 

pengujian retrieval dan pengujian generasi jawaban (generation). Selain pengujian 

kedua aspek tadi. Beberapa metrik yang digunakan untuk mengevaluasi sistem 

chatbot sendiri yaitu diantaranya ada MRR (Mean Reciprocal Rank), Semantic 

Similarity, dan masih ada lainnya. 

Seluruh metrik evaluasi dalam penelitian ini menghasilkan skor dalam 

rentang 0 hingga 1. Rentang ini digunakan karena setiap nilai hasil pengukuran 

telah dinormalisasi. Semakin mendekati angka 1, semakin baik performa sistem 

baik dalam hal pencarian dokumen relevan maupun kualitas jawaban yang 

dihasilkan. Sebaliknya, nilai yang mendekati 0 menunjukkan rendahnya relevansi 

dan akurasi sistem dalam menjawab pertanyaan pengguna. Dengan rentang nilai 

yang terstandarisasi ini, perbandingan antar-metrik menjadi lebih objektif dan 

mudah dianalisis. 

 

3.5.1 Pengujian Retrieval 

Pengujian retrieval ini berfokus pada kemampuan sistem mengambil 

dokumen paling relevan terhadap query pengguna. Terdapat tiga metrik utama yang 
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digunakan pada pengujian ini, yaitu Recall at k, Mean Reciprocal Rank (MRR@k), 

dan Normalized Discounted Cumulative Gain (NDCG@k). Pengujian Retrieval 

dilakukan pada 30 pertanyaan uji yang diambil dari konten website resmi Program 

Studi. Variasi parameter k digunakan dengan nilai k = 3, 5, dan 10. Pemilihan 

variasi ini mengacu pada praktik umum dalam penelitian Retrieval-Augmented 

Generation dan Information Retrieval, seperti yang digunakan oleh Lewis et al. 

(2020) pada Dense Retriever dan Karpukhin et al. (2020) dalam Dense Passage 

Retrieval (DPR), di mana rentang k = 3 hingga k = 10 dianggap cukup mewakili 

keseimbangan antara cakupan konteks yang diambil dan relevansi hasil pencarian. 

Sementara itu, nilai k = 3 mencerminkan skenario focused retrieval dengan 

konteks minimal, k = 5 menggambarkan kondisi moderat yang sering digunakan 

sebagai nilai default dalam sistem RAG, sedangkan k = 10 mengevaluasi performa 

sistem ketika cakupan konteks diperluas untuk memastikan dokumen relevan tidak 

terlewat. Dengan variasi ini, dapat diamati pengaruh jumlah dokumen terambil 

terhadap skor relevansi (Recall@k), kualitas perankingan dokumen (NDCG@k), 

posisi dokumen relevan pertama (MRR@k), serta konsistensi hasil generasi 

jawaban pada tahap berikutnya. 

1. Recall at – k 

Metrik ini mengukur proporsi dokumen relevan yang berhasil ditemukan 

pada k hasil teratas. Recall@k didefinisikan sebagai rasio jumlah dokumen relevan 

yang berhasil tampil dalam 𝑘 hasil teratas (Top-k) terhadap total jumlah dokumen 

relevan untuk query tersebut. Dengan kata lain, jika sistem hanya menampilkan 𝑘 
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kandidat jawaban teratas, Recall@k mengukur seberapa banyak dari dokumen 

relevan itu berhasil tercakup dalam daftar tersebut. 

Recall@𝑘 =
Jumlah dokumen relevan dalam Top-𝑘

Total dokumen relevan
(3.13) 

Misalnya, untuk query tentang “kurikulum semester 5” ada total 4 dokumen relevan 

di koleksi, dan sistem menampilkan 3 di antara mereka di Top-5 → Recall@5 = 3/4 

= 0,75.  

Versi pertama (Recall@k dasar) tersebut digunakan untuk memahami 

konsep pada satu query, sedangkan formulasi agregat memperhitungkan semua 

query sehingga representatif untuk evaluasi sistem menyeluruh. Pendekatan agregat 

ini banyak digunakan dalam penelitian informasi retrieval dan sistem RAG modern 

Knollmeyer et al. (2025), seperti yang terlihat pada framework GraphRAG yang 

menggabungkan struktur graf dokumen untuk memperkuat kualitas konteks dan 

hasil generasi. 

Recall@𝑘 =
1

|𝑄|
∑

|𝑅𝑞 ∩ 𝐶𝑞,𝑘|

|𝑅𝑞|
𝑞∈𝑄

(3.14) 

Keterangan: 

𝑄: himpunan semua query uji, 

𝑅𝑞: himpunan dokumen relevan (ground truth) untuk query 𝑞, 

𝐶𝑞,𝑘: himpunan 𝑘 kandidat teratas yang dikembalikan sistem, 

𝑅𝑞 ∩ 𝐶𝑞,𝑘: jumlah dokumen relevan yang muncul dalam Top-k sistem. 

 

2. Mean Reciprocal Rank (MRR) 

Mengukur posisi relatif jawaban relevan pertama dalam hasil pencarian. 

Semakin tinggi nilai MRR, semakin baik karena item relevan muncul di peringkat 

awal. 
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𝑀𝑅𝑅 =
1

|𝑄|
(∑

1

𝑟𝑎𝑛𝑘𝑖

|𝑄|

𝑖=1

) (3.15) 

dengan 𝑟𝑎𝑛𝑘𝑖 adalah posisi jawaban relevan pertama untuk query ke-𝑖.  

3. Normalized Discounted Cumulative Gain (NDCG@k) 

NDCG@k mengukur kualitas perankingan dokumen dengan 

mempertimbangkan posisi dokumen relevan dalam hasil retrieval. Metrik ini 

memberikan bobot lebih tinggi pada dokumen relevan yang muncul di posisi atas. 

Formula NDCG@k: 

𝑁𝐷𝐶𝐺@𝑘 = 𝐼𝐷𝐶𝐺@𝑘/𝐷𝐶𝐺@𝑘 3.16 

dengan  

DCG@𝑘 = ∑
𝑟𝑒𝑙𝑖

log2(𝑖 + 1)

𝑘

𝑖=1

3.17 

Keterangan: 

𝑟𝑒𝑙𝑖 = skor relevansi dokumen di posisi ii i (1 jika relevan, 0 jika tidak)  

𝐼𝐷𝐶𝐺@𝑘 = ideal DCG, yaitu DCG maksimum jika semua dokumen relevan berada di posisi teratas  

 

Rentang nilai berkisar antara 0–1 (semakin tinggi semakin baik). NDCG@5 = 0.8 

berarti kualitas ranking sistem mencapai 80% dari kondisi ideal di mana semua 

dokumen relevan berada di top-5 dengan urutan sempurna. 

NDCG lebih informatif dibanding Recall karena tidak hanya mengukur 

"apakah dokumen relevan ditemukan", tetapi juga "seberapa baik posisi 

perankingannya". Dokumen relevan di posisi 1 memberikan kontribusi lebih besar 

daripada di posisi 10. 
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3.5.2 Pengujian Generation 

Selain kemampuan retrieval, penting untuk mengukur kualitas jawaban 

yang dihasilkan model pada proses generasi. Pengujian generation dilakukan pada 

subset 50 pertanyaan yang disusun dari topik akademik Prodi (kurikulum, PKL, 

dosen, kelompok keilmuan, layanan administrasi, dan lainnya). Setiap pertanyaan 

dipasangkan dengan reference answer yang diambil dari konten resmi website 

prodi (misalnya halaman kurikulum, panduan PKL, informasi dosen). Reference 

answer berfungsi sebagai jawaban acuan yang “benar” untuk perbandingan objektif 

terhadap keluaran chatbot. Evaluasi kuantitatif dilakukan menggunakan metrik 

Answer Relevancy dan Faithfulness, untuk menilai kedekatan semantik terhadap 

jawaban acuan dan kepatuhan pada konteks sumber. 

1. Answer Relevancy 

Metrik ini mengukur sejauh mana jawaban yang dihasilkan sistem selaras 

dengan maksud pertanyaan pengguna. Dengan menggunakan cosine similarity 

antara embedding pertanyaan (𝐸𝑜) dan embedding jawaban (𝐸𝑔), nilai AR akan 

semakin tinggi jika jawaban semakin relevan dengan konteks pertanyaan. 

𝐴𝑅 =
1

𝑁
∑ cos(𝐸𝑔, 𝐸𝑜)

𝑁

𝑖=1

(3.18) 

dengan 𝐸𝑔 adalah embedding jawaban dan 𝐸𝑜 adalah embedding pertanyaan. Metrik 

ini dipakai karena jawaban yang dihasilkan LLM/RAG belum tentu langsung 

relevan, sehingga perlu dibandingkan kedekatannya dengan pertanyaan. 
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2. Faithfulness 

Faithfulness mengevaluasi kebenaran faktual jawaban terhadap konteks 

dokumen yang diambil oleh sistem. Jika jawaban menghasilkan klaim yang 

tidak ada atau bertentangan dengan konteks, nilainya akan menurun. 

𝐹 =
jumlah klaim jawaban yang sesuai konteks

total klaim jawaban
(3.19) 

Metrik ini penting karena salah satu kelemahan LLM adalah halusinasi. Dengan 

faithfulness, bisa diukur apakah sistem benar-benar mengambil informasi dari 

basis pengetahuan yang relevan. 

Klaim jawaban sendiri adalah berupa unit pernyataan faktual yang bisa 

diverifikasi, misalnya entitas (nama dosen/kelompok keilmuan), atribut 

(jumlah, tanggal, semester), relasi (X termasuk Y, syarat PKL = Z), 

daftar/anggota (item-item dalam list resmi). Jadi jawaban dapat dikatakan 

sesuai konteks artinya sebuah klaim dianggap didukung bila tercantum, tersirat 

kuat, atau terparafrasa setara di dalam potongan teks sumber resmi untuk 

pertanyaan tersebut. Pemeriksaan dukungan dilakukan per klaim (bukan per 

kalimat penuh). 

3. Semantic Similarity 

Metrik ini mengukur kesamaan semantik antara jawaban sistem dengan 

jawaban referensi (ground truth). Metrik ini juga dihitung dengan cosine 

similarity antara vektor embedding jawaban dan jawaban referensi. Jawaban 

referensi/ground truth adalah teks jawaban acuan yang dirumuskan dari website 

resmi prodi teknik informatika untuk setiap pertanyaan (disusun ringkas, 
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faktual, dan merefleksikan isi sumber). Sedangkan jawaban sistem adalah 

keluaran generatif chatbot RAG untuk pertanyaan yang sama. 

Metrik ini beroperasi di tingkat kalimat penuh untuk menilai kesamaan 

semantik global. Semantic Similarity digunakan untuk mengukur kesamaan 

makna umum antar jawaban sistem dan referensi. 

𝑆𝑆 = cos(𝑉jawaban, 𝑉referensi) (3.20) 

Dengan semantic similarity, sistem tetap dianggap benar walaupun gaya 

bahasanya berbeda, selama makna intinya sama. Semakin tinggi nilai dari 

Semantic Similarity maka makna keluaran (output) semakin mendekati 

jawaban acuan yang bersumber dari website resmi. 

 Pada Tabel 3.11 ini adalah ringkasan skenario pengujian yang akan 

dilakukan untuk menilai dan menguji masing-masing tahap dari tahap retrieval dan 

tahap generation dari sistem chatbot berbasis RAG ini: 

Tabel 3.11 Ringkasan Skenario Pengujian RAG 

Aspek Uji Metrik Tujuan Data Uji Parameter 

Retrieval Recall@k, MRR 

Mengukur 

relevansi 

pencarian 

30 pertanyaan  k = 3,5,10 

Generation 

Semantic 

Similarity, AR, 

Faithfulness 

Menilai akurasi 

& faktualitas 

jawaban 

30 pertanyaan  — 

Generation 

Semantic 

Similarity, AR, 

Faithfulness 

Menilai 

konsistensi 

jawaban 

1 pertanyaan 

(sama) 
5x percobaan 

 

 Terdapat tambahan pengujian tahap generation yaitu dilakukan pengujian 

konsistensi jawaban dari sistem dengan mengujikan satu query yang sama namun 

dengan jumlah percobaan lebih dari satu kali yaitu sebanyak lima kalil. Hal ini 

bertujuan untuk melihat bagaimana nilai metrik dari semantic similarity, answer 
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relevancy, dan juga faithfulness jika query yang diuji coba terhadap sistem adalah 

query yang sama. 
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BAB IV 

HASIL DAN PEMBAHASAN 

4.1 Hasil 

Sistem chatbot akademik berbasis RAG dikembangkan untuk membantu 

mahasiswa mengakses informasi akademik dari Program Studi Teknik Informatika 

UIN Malang secara cepat dan akurat. 

 

4.1.1 Arsitektur & Antarmuka Klien (Front-end) 

Arsitektur sistem untuk antarmuka chabot terdiri dari HTML, CSS, dan 

Javascript. Aplikasi ini bersifat statis dan murni (tanpa framework) sehingga mudah 

dipelihara dan ringan dijalankan di perangkat mahasiswa. Aplikasi ini memanggil 

REST API dari layanan RAG (FastAPI) menggunakan fetch(). Penjelasan dari 

masing-masing file beserta fungsi nya dapat dilihat pada Tabel 4.1.  

Tabel 4.1 Struktur berkas (root front-end) 

Berkas Fungsi singkat 

index.html Halaman utama (container chat, header judul, area riwayat percakapan) 

styles.css Gaya visual (tema gelap, komponen kartu sumber, badge status) 

app.js Logika klien: panggil /api/retrieve & /api/chat, render jawaban + sumber 

README.md Petunjuk singkat menjalankan front-end di lokal 

 

Cara menjalankan (lokal): 

• Serve sederhana via extension/Live Server atau PHP built-in server di VS Code. 

• Akses: http://localhost:3000/index.html 

Tampilan dari antarmuka chatbot dapat dilihat pada Gambar 4.1 di bawah. 

http://localhost:3000/index.html
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Gambar 4.1 Antarmuka Chatbot Akademik (mode gelap) 

 

4.1.2 Arsitektur & Organisasi Kode RAG (Back-end) 

Di sisi back-end, arsitektur sistemnya lebih kompleks dan penjelasan dari 

masing-masing file juga dapat dilihat pada Tabel 4.2. Pada tabel tersebut dijelaskan 

dari isi dan fungsi dari setiap direktori apa saja. Sistem back-end ini dikembangkan 

dengan FastAPI (Python), dengan memisahkan lapisan API dan modul RAG. 

Desain ini memudahkan pengujian unit serta penggantian komponen 

(retriever/LLM) tanpa mengubah antarmuka. 

Tabel 4.2 Struktur Proyek RAG (back-end) 

Direktori/Berkas Isi / Peran 

api/main.py Entry FastAPI, registrasi router, middleware CORS 

api/routes/ Endpoint publik (/api/retrieve, /api/chat) 

api/deps.py, 

api/schemas.py 
Dependency injection & skema Pydantic request/response 

rag/scraping/ Skrip scraping (seed, fetch, simpan JSON mentah) 

rag/preprocess/ clean_html.py, clean_blocks.py (cleaning & normalisasi) 

rag/retrieve/ search.py (BM25), util re-ranking; retrieve.py (wrapper retriever) 
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Tabel 4.2 Lanjutan 

Direktori/Berkas Isi / Peran 

rag/index/ Pembuatan embedding (E5-Small/Multilingual-E5) & indeks FAISS 

rag/generate/ 
llm_client.py (TinyLlama GGUF + prompt), chat.py (alur RAG → 

jawab) 

data/raw/ Hasil scraping mentah (JSON) 

data/cleaned/ Hasil cleaning/normalisasi (blocks_filtered.jsonl) 

data/chunks/ Hasil chunking (chunks.jsonl, chunks_meta.json) 

data/index/ Berkas embedding & indeks FAISS 

data/eval/ (Opsional) log & sampel pengujian 

models/ Model lokal tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf 

logs/ Log proses (scrape/embedding/retrieve/generate) 

 

4.1.3 Hasil Web Scraping dan Pembentukan Dataset 

Pada tahap ini, proses pengumpulan data dilakukan melalui teknik web 

scraping terhadap website resmi Jurusan Teknik Informatika UIN Maulana Malik 

Ibrahim Malang sebagai sumber utama korpus pengetahuan untuk sistem chatbot 

berbasis RAG. Proses scraping menggunakan modul Python requests dan 

BeautifulSoup yang telah diimplementasikan pada skrip scrape_ti.py. Daftar URL 

awal (entry points) dimuat melalui berkas sitemap.txt yang berisi delapan kategori 

utama, yaitu: profil, akademik, beasiswa, kategori/berita, kegiatan, penelitian, 

PMB, dan kontak. Scraper kemudian mengekstraksi seluruh konten dari halaman-

halaman tersebut, dan jika terdapat tautan internal yang masih berada pada domain 

yang sama, scraper tetap memprosesnya sebagai bagian dari mekanisme kelanjutan 

scraping, bukan crawling mandiri, sehingga teknik yang digunakan masih dalam 

ruang lingkup scraping multi-halaman sesuai metodologi penelitian. 

Pengumpulan data dilakukan menggunakan skrip python yang terdapat pada 

Tabel 4.3 berikut. Dengan menjalankan kode berikut pada terminal, maka berkas 

scrape_ti.py yang bertugas untuk melakukan proses scraping akan dijalankan. 
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Tabel 4.3 Kode Python Untuk Menjalanan Scraping 

Kode 
python rag/scraping/scrape_ti.py --depth 1 --max_pages 350 --

delay 0.6 

 

Parameter ini membuat scraper mengeksplorasi halaman awal website 

kemudian mengambil seluruh konten relevan sampai batas maksimum menjadi 350 

bagian file, di mana satu halaman website dapat menghasilkan banyak file JSON 

karena dipisahkan berdasarkan entitas, misalnya 1 dosen menjadi 1 file JSON 

sendiri, 1 mata kuliah juga 1 file JSON terpisah. Dari batas maksimal yang sudah 

ditentukan yaitu 350, berhasil didapatkan file (.json) sebanyak 250 yang diambil 

kontennya, sementara sisanya gagal dan juga tidak dilakukan scraping dengan 

beberapa kondisi seperti SSL certificate error, struktur HTML tidak stabil, halaman 

tidak ditemukan, dan juga halaman web yang tingkat informasinya rendah sehingga 

akan di-skip oleh kode saat dilakukan scraping. Beberapa hasil scraping juga 

mengandung teks yang tidak relevan, markup anomali, atau duplikasi paragraf, 

sehingga dilakukan pembersihan manual pada tahap pascaproses. Dan ringkasan 

data JSON yang diperoleh dari tahap scraping dapat dilihat pada Tabel 4.4 berikut. 

Tabel 4.4 Total Data Terkumpul Sementara 

Keterangan Total File JSON 

Batas Jumlah File 350 

File JSON yang berhasil didapatkan 250 

Jumlah Total 250 

 

Seluruh hasil scraping kemudian disimpan dalam format JSON terstruktur dengan 

tiga komponen utama: url, fetched_at, dan daftar blocks berisi pasangan tag–text. 

Dataset ini menjadi fondasi untuk tahap selanjutnya berupa preprocessing, 
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cleaning, normalisasi, serta chunking sebelum masuk ke proses embedding dan 

indexing pada pipeline RAG. Pada Tabel 4.5 ini disajikan contoh rincian dari data 

JSON terstruktur hasil scraping:  

Tabel 4.5 Contoh Data Dosen Hasil Scraping 

Keterangan Deskripsi 

Nama Prof. Dr. Suhartono, S.Si, M.Kom 

Bidang Keahlian Intelligent System 

Email suhartono@ti.uin-malang.ac.id 

Research Fields 
Pattern Recognition, Neural Networks, Intelligent 

Multimedia Networking 

Pendidikan 

S1 Matematika, ITS 

S2 Informatika, ITS 

S3 Jaringan Cerdas Multimedia, ITS 

Sinta ID 5975073 

Scopus ID 56465811900 

ORCID ID 0000-0002-4304-4279 

 

Pada Gambar 4.2 disajikan gambar tangkapan layar dari aplikasi Visual 

Studio Code yang menampilkan cuplikan data JSON asli hasil dari tahap scraping. 

 

Gambar 4.2 Contoh Data Mentah Dosen Hasil Scraping 

 

Data profil seperti pada Gambar 4.2 dan Tabel 4.5 tersebut akan dijadikan dasar 

menjawab pertanyaan seperti “Siapa dosen dengan fokus bidang Intelligent System 

di TI UIN Malang?” kemudian juga pertanyaan seperti “Apa penelitian Prof. 

mailto:suhartono@ti.uin-malang.ac.id
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Suhartono?”, namun akan melalui proses yang lebih panjang lagi yaitu seperti 

proses pembuatan chunking text hingga embedding terlebih dahulu. 

 

4.1.4 Hasil Preprocessing 

Tahap preprocessing merupakan langkah penting untuk menyiapkan data 

hasil web scraping menjadi korpus terstruktur yang siap diproses pada tahap 

embedding dan indexing. Proses ini mencakup dua komponen utama, yaitu 

pembersihan dokumen (cleaning) dan pembentukan potongan teks (chunking). 

Seluruh tahapan dilakukan secara otomatis menggunakan dua skrip utama, yaitu 

clean_html.py dan chunker.py. Berikut adalah penjelasan rinci berdasarkan data 

nyata hasil scraping. 

1. Hasil Pembersihan Teks (Cleaning) 

Pembersihan dilakukan terhadap seluruh file JSON hasil scraping yang 

berada di direktori data/raw_new/. Berdasarkan output clean_html.py, sistem 

berhasil memproses 250 file JSON mentah, menghasilkan 2.363 blok teks bersih 

yang lolos proses ini, kemudian output disimpan pada 

data/cleaned/blocks_filtered.jsonl. Proses cleaning dengan skrip tersebut meliputi: 

a. Penghapusan tag HTML secara menyeluruh 

Semua elemen <p>, <div>, <h1>–<h4>, <li>, dan atribut HTML 

dibersihkan menjadi teks polos. Ilustrasi dari teks yang sebelum dan sesudah 

dilakukan penghapusan tag HTML dapat dilihat pada Tabel 4.6 berikut. 

Tabel 4.6 Contoh Hasil Penghapusan Tag HTML 

Tahap Contoh 

Sebelum 

Cleaning 

" <p>The realization of an integrative Informatics Engineering 

Department...</p> <script>alert()</script> " 
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Tabel 4.6 Lanjutan 

Tahap Contoh 

Sesudah 

Cleaning 

"The realization of an integrative Informatics Engineering Department in 

integrating science and Islam with an international reputation." 

 

b. Normalisasi whitespace 

Pada Tabel 4.7 berikut disajikan ilustrasi dari normalisasi whitespace, 

dimana normalisasi ini akan menghilangkan spasi ganda, newline berulang, 

dan karakter formatting. 

Tabel 4.7 Contoh Hasil Normalisasi whitespace 

Tahap Contoh 

Sebelum 

Cleaning 
"The realization\n\n of an integrative Informatics Engineering Department ..." 

Sesudah 

Cleaning 

"The realization of an integrative Informatics Engineering Department in 

integrating science and Islam with an international reputation." 

 

c. Penghapusan karakter non-teks / noise 

Proses ini menghilangkan (sisa script (<script>…), potongan struktur 

gambar, artefak CSS/JS, string "JFIF" (penanda file gambar), dan karakter 

yang bukan huruf/angka). 

Tabel 4.8 Contoh Hasil Penghapusan Karakter Noise 

Tahap Contoh 

Sebelum 

Cleaning 
"JFIF....\x00\x1f\x00 Teaching Laboratory <div>..." 

Sesudah 

Cleaning 

"Teaching Laboratory digunakan untuk kegiatan praktikum pemrograman dan 

asistensi mahasiswa." (contoh real dari blok lain dalam blocks_filtered.jsonl) 

 

d. Filtering blok tanpa konten 

Proses cleaning juga menghapus halaman dengan blok kosong atau berisi 

karakter tidak bermakna sehingga bagian seperti itu tidak ikut dimasukkan 
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ke blok final (text == "" → dilewati). Ilustrasi dari hasil proses filtering blok 

dapat dilihat pada Tabel 4.9. 

Tabel 4.9 Contoh Hasil Filtering Blok 

Tahap Contoh 

Sebelum Cleaning "" atau " " atau "<div></div>" 

Sesudah Cleaning Tidak dimasukkan ke blocks_filtered.jsonl 

 

Jika text.strip() == "", blok tersebut langsung dilewati. Itulah sebabnya dari 350 

file hanya tersisa 2350 blok yang dianggap valid. 

2. Hasil Normalisasi dan Standarisasi Informasi 

Setelah proses cleaning menghasilkan 2.363 blok teks bersih, seluruh blok 

diproses kembali pada tahap normalisasi untuk memastikan keseragaman format, 

penulisan, dan struktur linguistik sebelum masuk ke embedding. Tahap ini 

dilakukan otomatis melalui fungsi-fungsi dalam clean_html.py serta pemrosesan 

tambahan pada chunker.py. Normalisasi pada penelitian ini terbagi ke dalam empat 

kategori, yaitu normalisasi karakter, normalisasi token, normalisasi entitas, dan 

normalisasi struktur. 

Tabel 4.10 Aturan Normalisasi per Level 

Level Aturan Sebelum Sesudah Dampak ke Sistem 

Karakter 

Unicode normalization 

(NFKC), hilangkan 

karakter tak terlihat  

(NBSP, ZWSP), 

normalisasi dash 

KRS — 

Online, 

Visi\u200b 

Prodi 

KRS — 

Online, Visi 

Prodi 

Menghindari token 

“phantom” yang 

menurunkan skor 

BM25 dan kualitas 

embedding 

Karakter 

Normalisasi spasi & 

baris (≤1 spasi, ≤2 

baris) 

Laboratoriu

m 

Informatika 

Laboratori 

um 

Informatika 

Menstabilkan 

tokenisasi 
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Tabel 4.10 Lanjutan 

Level Aturan Sebelum Sesudah Dampak ke Sistem 

Token Case folding selektif 

(kecuali nama 

orang/instansi/akronim) 

PROGRAM 

STUDI, 

Fakultas 

SAINS 

Program 

Studi, 

Fakultas 

Sains 

Menjaga proper-noun 

tetap kapital seperlunya 

Token Angka & satuan 

(format konsisten) 

14 sMt, 12 

SKS 

14 semester, 

12 SKS 

Angka terbaca 

konsisten; mengurangi 

varian token 

Token Tanggal (standar teks 

Indonesia) + metadata 

ISO (di meta) 

28 Agustus–

15 Des 2023 

28 Agustus–

15 

Desember 

2023 (meta: 

2023-08-

28..2023-12-

15) 

Teks tetap natural; 

metadata siap dipakai 

filter 

Token Tanda baca (hilangkan 

ganda, seragamkan 

kutip & bullet) 

“visi prodi’’, 

- - 

“visi prodi”, 

— 

Mengurangi noise 

embedding 

Entitas Nama dosen/role 

diseragamkan 

Prof Dr 

Suhartono 

SSi MKom 

Prof. Dr. 

Suhartono, 

S.Si., 

M.Kom. 

Pencarian nama 

menjadi presisi 

Entitas Unit organisasi standar Informatics 

Engineering, 

Informatika 

Teknik 

Informatika 

(TI) 

Menyatukan istilah 

lintas bahasa 

Struktur 
Penyatuan kalimat 

yang patah/tercerai 

Teaching 

Lab. 

Digunakan 

untuk... 

Praktikum... 

Teaching 

Laboratory 

digunakan 

untuk 

kegiatan 

praktikum 

dan 

asistensi. 

Kalimat utuh 

menghasilkan 

embedding lebih 

bermakna 
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Catatan: nama diri (dosen, unit, lab) tidak di-lowercase. Normalisasi angka & 

tanggal tidak mengubah isi, hanya menstandarkan penulisan; representasi ISO 

disimpan di metadata untuk kebutuhan analitik tambahan (opsional). Contoh 

Normalisasi Nyata (Sebelum & Sesudah) dapat dilihat pada Tabel 4.11. 

Tabel 4.11 Contoh Normalisasi Nyata (Sebelum & Sesudah) 

Sumber/ 

Kategori 
Kutipan Sebelum Sesudah Normalisasi 

Profil Dosen Prof Dr Suhartono SSi MKom Prof. Dr. Suhartono, S.Si., M.Kom. 

Regulasi 

Akademik 
Batas masa studi maks. 14 sMt 

Batas masa studi maksimal 14 

semester. 

Jadwal 

Perkuliahan 
28 Agustus–15 Des 2023 

28 Agustus–15 Desember 2023 

(meta: 2023-08-28..2023-12-15) 

Istilah Prodi 

(EN→ID) 

Informatics Engineering 

Undergraduate 

Program Sarjana (S1) Teknik 

Informatika (TI) 

 

Normalisasi memastikan korpus seragam, bersih, dan siap di-embedding, tanpa 

mengubah makna ilmiah dokumen. Dampaknya: BM25 lebih stabil, cosine 

similarity lebih bermakna, dan faithfulness generation meningkat karena konteks 

lebih jelas dan konsisten. 

3. Hasil Chunking 

Tahap ini dilakukan menggunakan skrip chunker.py untuk membagi teks 

hasil cleaning yang telah dinormalisasi menjadi unit-unit kecil (chunks) yang siap 

diproses menjadi embedding. Chunking dilakukan dengan pendekatan sliding 

window, yaitu memotong teks berdasarkan jumlah token tertentu dengan overlap 

untuk menjaga kontinuitas informasi. Tabel 4.12 berikut merupakan konfigurasi 

chunking berdasarkan output sistem. 

Tabel 4.12 Statistik Hasil Proses Chunking 

Parameter Nilai 

Target panjang chunk 150 token 
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Tabel 4.12 Lanjutan 

Parameter Nilai 

Jumlah overlap 40 token 

Minimal token chunk 3 token 

Maksimal token chunk 227 token 

Rata-rata panjang 101.22 token 

Total halaman (page_id)** 244 

Total chunk final 384 chunks 

 

Kemudian Tabel 4.13 berikut disajikan salah satu contoh chunk asli yang 

dihasilkan dari proses chunking pada halaman undergraduate-s1. 

Tabel 4.13 Contoh Metadata Hasil Chunking 

Field Nilai 

id undergraduate-s1-0003 

page_id undergraduate-s1 

url https://informatika.uin-malang.ac.id/undergraduate-s1/ 

sections 

["Current Management", "History", "Milestone of Informatics Engineering 

Department", "Mission", "Objectives", "Past Management", "Strategy", 

"Vision"] 

token_count 150 

start_token 330 

end_token 480 

 

 

Salah satu detail isi dari chunking-text dapat dilihat pada Tabel 4.14 berikut. 

Tabel 4.14 Contoh Hasil Chunking 

Isi Chunk 

on and Islam with an international reputation.\n1.Producing Informatics Engineering graduates 

with ulul albab character. 2.Producing science and information technology that is relevant and 

highly competitive.\n1.Providing wider access to Informatics Engineering education to the 

community. 2.Providing Informatics Engineering graduates to meet community 

needs.\nOrganizing the tridharma of higher education in Informatics Engineering in a quality 

integrative manner\n2004 : Jurusan Teknik Informatika started to operate based on a Decree of 

the Ministry of National Education No 05/MPN/HK/1004 dated on 23 January 2004 and a Decree 

of Directorate General of Islamic Department No DJ.II/54/2005 dated on 28 March 2005.\n2007 

: first accreditation of BAN-PT to reach C level ( 276 ) based on BAN-PT letter  
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Tabel 4.14 Lanjutan 

No. 019/BAN-PT/Ak-X/S1/VIII/2007.\n2014 : second accreditation of BAN-PT to reach B level 

( 310 ) based on BAN-PT letter No. 057/SK/BAN-PT/Akred/S/II/2014.\n2019 : third 

accreditation of BAN-PT to 

... 

 

Proses chunking menggabungkan seluruh blok teks berdasarkan page_id, kemudian 

memotongnya menjadi segmen-segmen berukuran 150 token. 

Untuk menjaga konteks antar-paragraf, chunk dibuat dengan overlap 50 token, 

sehingga informasi penting tidak terpotong secara abrupt. 

 

4.1.5 Hasil Embedding dan Indexing 

Setelah seluruh teks hasil chunking siap, tahap berikutnya adalah mengubah 

setiap chunk menjadi vektor numerik menggunakan Sentence Transformer dan 

kemudian membangun indeks vektor menggunakan FAISS. Pada penelitian ini 

proses tersebut diotomatisasi melalui skrip embed_index.py, dengan input utama 

chunks.jsonl dan output berupa berkas faiss.index dan chunks_meta.json sebagai 

metadata. 

Model embedding yang digunakan adalah sentence transformer 

multilingual-e5-base, dengan alasan diantaranya efisien untuk data berbahasa 

Indonesia, ukuran ringan sehingga cocok untuk pipeline RAG lokal, akurat pada 

retrieval berbasis semantic search. 

Setiap chunk dikonversi menjadi vektor berdimensi 768 dan disimpan dalam 

array embedding serialized. Setelah embedding selesai, seluruh vektor di-index 

menggunakan FAISS IndexFlatIP, yaitu jenis indeks yang menggunakan inner 
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product similarity dan cocok untuk semantic search berskala ratusan hingga ribuan 

dokumen.  

a. Konfigurasi Embedding 

Embedding dibangun dengan fungsi build_embeddings() pada skrip 

embed_index.py.  Pada Tabel 4.15 berikut dapat dilihat detail dari konfigurasi 

embedding yang akan dilakukan pada dokumen JSON hasil proses chunking. 

Tabel 4.15 Konfigurasi Embedding 

Parameter Nilai / Keterangan 

Model embedding intfloat/multilingual-e5-base (SentenceTransformer) 

Dimensi vektor 768 (sesuai arsitektur E5-base) 

Jumlah chunk 384 chunk 

Normalisasi vektor L2-normalized (normalize_embeddings=True) 

Tipe data vektor float32 

Ukuran batch 64 (default pada argumen skrip) 

 

 

Jumlah chunk 384 dan nama model ini juga tercatat eksplisit pada berkas 

metadata chunks_meta.json. 

b. Struktur Metadata Embedding 

Setelah proses embedding selesai dihitung, sistem tidak hanya menyimpan 

indeks FAISS, tetapi juga menyimpan metadata mapping antara vector_id dan 

chunk aslinya pada berkas chunks_meta.json. Struktur metadata ini dihasilkan 

di bagian akhir fungsi main() pada embed_index.py. 

Struktur global chunks_meta.json: 

• model: nama model embedding yang digunakan ("intfloat/multilingual-e5-

base"). 

• num_chunks: jumlah chunk yang di-embedding (384). 

• index_path: lokasi berkas indeks FAISS di disk. 
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• chunks_meta: array berisi objek metadata untuk setiap vektor. 

Tabel 4.16 berikut menyajikan contoh record nyata dari isi chunks_meta.json. 

Data berikut hanya sebagai statistik untuk melihat data secara umum (general). 

Tabel 4.16 Contoh Metadata Chunk dari chunks_meta.json 

Field Nilai (Contoh Real) 

vector_id 25 

chunk_id beasiswa-0000 

page_id beasiswa 

url https://informatika.uin-malang.ac.id/beasiswa 

sections ["Content"] 

token_count 150 

start_token 0 

end_token 150 

  

 

Record pada Tabel 4.16 menunjukkan bahwa vektor dengan vector_id = 22 

merepresentasikan chunk pertama dari halaman beasiswa, chunk tersebut 

mencakup 150 token pertama dari konten halaman, dan informasi ini yang 

nantinya dikembalikan retriever ketika FAISS menemukan vektor paling 

relevan. 

c. Pembangunan Indeks FAISS 

Indeks vektor dibangun menggunakan fungsi build_faiss_index(embs: 

np.ndarray) pada embed_index.py: 

1. Tipe indeks: faiss.IndexFlatIP (inner product). 

2. Input: matriks embedding berukuran (num_chunks, 768) yang sudah L2-

normalized. 
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3. Proses: pertama proses pengambilan dimensi vektor dari embs.shape[1], 

kemudian dilakukan inisialisasi IndexFlatIP(dim), dan terakhir 

menambahkan seluruh vektor ke indeks dengan index.add(embs). 

Pemilihan IndexFlatIP + vektor yang sudah dinormalisasi ini sesuai praktik 

standar untuk implementasi cosine similarity pada FAISS, karena: 

cos(𝑢, 𝑣) =
𝑢 ⋅ 𝑣

|𝑢| |𝑣|
 dan jika |𝑢| = |𝑣| = 1 ⇒ cos(𝑢, 𝑣) = 𝑢 ⋅ 𝑣. 

Indeks kemudian disimpan ke berkas sesuai INDEX_PATH (default 

data/index/faiss.index) menggunakan faiss.write_index(index, 

str(INDEX_PATH)). 

d. Ringkasan Hasil Embedding 

Konfigurasi dari proses embedding beserta vector indexing dapat diperinci 

seperti pada Tabel 4.17 berikut. Dapat dilihat bahwa proses vector indexing 

menggunakan IndexFlatIP dari FAISS (Facebook AI Similarity Search). 

Tabel 4.17 Ringkasan Hasil Embedding 

Komponen Hasil 

Sumber teks 384 chunk pada chunks.jsonl 

Model embedding intfloat/multilingual-e5-base 

Dimensi vektor 768 

Normalisasi L2 (cosine via inner product) 

Jenis indeks faiss.IndexFlatIP 

Lokasi indeks data/index/faiss-2.index 

Metadata data/index/chunks_meta-2.json 

 

Dengan tahapan ini, seluruh pengetahuan dari website Prodi TI UIN Malang 

telah terpetakan sebagai ruang vektor berdimensi 768, yang dapat di-query 
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secara efisien oleh modul retrieval (search.py / retrieve.py) ketika chatbot 

menerima pertanyaan dari pengguna. 

Gambar 4.3 berikut ini adalah visualisasi vektor embedding namun 

disajikan dalam dimensi yang rendah pada 2 dimensi untuk melihat bagaimana 

persebaran informasi korpus data dalam nilai vektor. 

 

Gambar 4.3 Sebaran Embedding (PCA 2D) – kluster kasar per tema halaman 

  

Proyeksi embedding 768-dim ke 2 dimensi dengan PCA untuk meninjau 

pola global secara cepat. Terlihat pengelompokan kasar antar tema halaman 

(mis. profil dosen, kegiatan, beasiswa), tetapi sebagian klaster masih tumpang 

tindih karena PCA bersifat linier sehingga pemisahan semantik halus belum 

sepenuhnya terbaca. 

 Sementara, pada Gambar 4.4 berikut terdapat gambaran sebaran Embedding 

(t-SNE 2D), terlihat bahwa visualisasi t-SNE menonjolkan kedekatan lokal: 

chunk yang semantis mirip membentuk gugus kecil yang lebih terpisah 
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dibanding PCA. Struktur global tidak selalu dapat diinterpretasi, namun sub-

topik (mis. beasiswa vs. berita kegiatan) tampak lebih jelas sehingga 

memudahkan inspeksi outlier/noise. 

 

Gambar 4.4 Sebaran Embedding (t-SNE 2D) – pemisahan non-linier antar kelompok 

 

Kemudian berdasarkan Gambar 4.5 berikut, proyeksi UMAP terlihat mampu 

mempertahankan keseimbangan antara struktur lokal dan global data dengan baik. 

Klaster yang terbentuk tampak padat dan terpolakan, yang menandakan bahwa 

chunk dengan topik serupa telah terelompokkan secara efektif. Hal ini 

mengonfirmasi bahwa representasi vektor E5 (768 dimensi) sudah memiliki 

struktur semantik yang matang untuk diterapkan pada retrieval berbasis FAISS 

IndexFlatIP. 
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Gambar 4.5 Sebaran Embedding (UMAP 2D) – struktur manifold yang lebih terjaga 

 

4.1.6 Contoh Hasil Retrieval 

Pengujian modul retrieval dilakukan untuk mengukur sejauh mana 

kombinasi FAISS + BM25 mampu menemukan dokumen yang relevan terhadap 

pertanyaan pengguna. Dataset uji disusun dalam bentuk berkas 

retrieval_eval_set.jsonl yang berisi sekumpulan pasangan query dan daftar ground 

truth URL dokumen yang dianggap relevan berdasarkan penilaian peneliti 

(misalnya halaman profil komunitas, kurikulum, maupun pengumuman resmi di 

laman Teknik Informatika UIN Maulana Malik Ibrahim Malang). 

Untuk setiap query, sistem menjalankan fungsi retrieve_as_dicts() yang 

menggabungkan pencarian vektor menggunakan FAISS (berbasis embedding 

intfloat/multilingual-e5-base) dan pengurutan ulang menggunakan BM25 sebagai 

reranker. Hasil pengambilan dokumen kemudian dievaluasi menggunakan metrik 
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Mean Reciprocal Rank (MRR@k) dan Recall@k, dengan variasi nilai k yang 

mengacu pada rancangan skenario pengujian di bab tiga (k = 3 dan k = 5). 

Tabel 4.18 Contoh Hasil Retrieval 

k MRR@k Recall@k 

3 0,41 0,76 

5 0,42 0,96 

 

Hasil pengujian ditunjukkan pada Tabel 4.18. Pada nilai k = 3, sistem 

menghasilkan MRR@3 sebesar kurang lebih 0,41 dan Recall@3 sebesar kurang 

lebih 0,76. Nilai Recall@3 ini dapat diartikan bahwa sekitar 76% query uji berhasil 

menemukan minimal satu dokumen relevan di tiga peringkat teratas hasil pencarian. 

Sementara itu, nilai MRR@3 sekitar 0,41 menunjukkan bahwa secara rata-rata, 

dokumen relevan pertama berada di sekitar peringkat 2–3, sehingga tidak selalu 

muncul tepat di peringkat pertama namun masih relatif dekat dengan posisi teratas.  

Ketika nilai k diperbesar menjadi k = 5, kinerja sistem meningkat terutama 

dari sisi cakupan. Nilai Recall@5 naik menjadi sekitar 0,96, yang berarti hampir 

seluruh query uji (sekitar 96%) berhasil menemukan setidaknya satu dokumen 

relevan di antara lima hasil teratas. Nilai MRR@5 juga sedikit meningkat menjadi 

sekitar 0,42, mengindikasikan bahwa penambahan jumlah hasil yang diamati tidak 

menurunkan posisi relatif dokumen relevan pertama secara signifikan. Dengan kata 

lain, walaupun tidak semua dokumen relevan selalu muncul di posisi pertama, 

sistem secara konsisten mampu menempatkan dokumen yang benar dalam kisaran 

peringkat 1–5. 

Secara umum, hasil pengujian menunjukkan bahwa modul retrieval sudah 

cukup efektif dalam menemukan dokumen yang relevan, terutama ketika 
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mempertimbangkan lima hasil teratas (k = 5). Namun demikian, nilai MRR yang 

masih berada di kisaran 0,41–0,42 menandakan bahwa dokumen relevan pertama 

belum selalu konsisten muncul di peringkat teratas. Hal ini dapat disebabkan oleh 

beberapa faktor, antara lain variasi gaya penulisan pada dokumen sumber, 

keterbatasan model embedding yang digunakan, serta adanya beberapa query yang 

bersifat ambigu atau terlalu umum. Temuan ini menjadi dasar bahwa pada 

pengembangan selanjutnya, modul retrieval masih dapat ditingkatkan, misalnya 

dengan penyetelan ulang weight BM25, penambahan sinonim/ekspansi query, atau 

penggunaan model embedding yang lebih kuat untuk domain bahasa Indonesia. 

Tabel 4.19 Endpoint Pengujian Retrieval 

Keterangan Deskripsi 

Metode Request POST http://127.0.0.1:8000/api/retrieve 

Body 

{ 

"query": "<pertanyaan>", 

"top_k": 5 

} 

 

Untuk mengukur performa awal sistem, dilakukan pengujian terhadap 

beberapa contoh pertanyaan akademik. Salah satu contoh uji penting adalah kueri 

“jadwal perkuliahan teknik informatika”. Percobaan ini dipilih karena mewakili 

tipe pertanyaan yang umum diajukan mahasiswa dan menguji kemampuan sistem 

dalam menemukan informasi penting yang tersebar pada berbagai halaman. 

 

4.1.6.1 Contoh Hasil Retrieve (Studi Kasus) 

Sebelum masuk ke tahap pengujian final retrieval, dilakukan uji coba 

retrieval dengan query tertentu untuk melihat bagaimana hasil detail dari tahap 

retrieval. Kueri yang digunakan yaitu “Apa itu komunitas Fun Java?”. Adapun 

http://127.0.0.1:8000/api/retrieve
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parameter k yang digunakan untuk pengambilan top-k chunking text adalah top-k = 

5. Pada Tabel 4.20 berikut disajikan ringkasan hasil retrieve yang dikembalikan 

oleh endpoint berdasarkan response JSON pada software Postman. 

Tabel 4.20 Hasil Retrieve untuk Kueri “jadwal perkuliahan teknik informatika 

Rank Score Source Snippet Singkat 

1 5.11 
https://informatika.uin-

malang.ac.id/fun-java/ 

“Komunitas ini berfokus pada Object-

Oriented Programming… menjadi dasar 

pembinaan bagi komunitas lain seperti 

ETH0, WEBOENDER…” 

2 3.71 
https://informatika.uin-

malang.ac.id/mocap/ 

“Adalah komunitas Mobile Programming… 

” 

3 3.55 

https://informatika.uin-

malang.ac.id/rapat-kerja-

pengurus-hmj-ti-2019/ 

“AL-FATAA, ETH0, FUN JAVA, 

MAMUD, MOCAP hadir dalam rapat 

kerja…” 

4 2.56 

https://informatika.uin-

malang.ac.id/it-incubation-

2019-helps-students-

finding-passion/ 

“Kegiatan IT Incubation… bekerja sama 

dengan komunitas Fun Java, Ontaki, 

Mamud…” 

5 2.43 

https://informatika.uin-

malang.ac.id/informatics-

sport-community-isc-

launching/ 

“AL-FATAA, ETH0, FUN JAVA, 

MAMUD hadir pada kegiatan launching 

ISC…” 

 

4.1.6.2 Analisis Hasil Retrieve 

Pada contoh query “Apa itu komunitas Fun Java?”, sistem berhasil 

menempatkan halaman resmi komunitas Fun Java pada peringkat pertama dengan 

skor relevansi tertinggi (5.11). Empat dokumen berikutnya juga masih berkaitan 

karena menyebutkan Fun Java dalam konteks kegiatan atau kolaborasi komunitas 

lain. Hal ini menunjukkan bahwa modul retrieval mampu mengidentifikasi 

dokumen yang benar-benar relevan dan memprioritaskannya dalam hasil pencarian. 

 

https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/mocap/
https://informatika.uin-malang.ac.id/mocap/
https://informatika.uin-malang.ac.id/rapat-kerja-pengurus-hmj-ti-2019/
https://informatika.uin-malang.ac.id/rapat-kerja-pengurus-hmj-ti-2019/
https://informatika.uin-malang.ac.id/rapat-kerja-pengurus-hmj-ti-2019/
https://informatika.uin-malang.ac.id/it-incubation-2019-helps-students-finding-passion/
https://informatika.uin-malang.ac.id/it-incubation-2019-helps-students-finding-passion/
https://informatika.uin-malang.ac.id/it-incubation-2019-helps-students-finding-passion/
https://informatika.uin-malang.ac.id/it-incubation-2019-helps-students-finding-passion/
https://informatika.uin-malang.ac.id/informatics-sport-community-isc-launching/
https://informatika.uin-malang.ac.id/informatics-sport-community-isc-launching/
https://informatika.uin-malang.ac.id/informatics-sport-community-isc-launching/
https://informatika.uin-malang.ac.id/informatics-sport-community-isc-launching/
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4.1.7 Contoh Hasil Generation  

Tahap generation bertujuan mengevaluasi kemampuan model bahasa 

(LLM) dalam membangkitkan jawaban berbasis konteks dokumen hasil retrieval. 

Pada penelitian ini, proses generasi jawaban diimplementasikan menggunakan 

model TinyLlama 1.1B Chat dengan format kuantisasi Q4_K_M, yang dijalankan 

secara lokal melalui pustaka llama_cpp pada laptop pengujian. Pada Tabel 4.21 

berikut disajikan konfigurasi detail dari inisialisasi LLM yang diatur pada berkas 

llm_client.py, dengan parameter utama. 

Tabel 4.21 Konfigurasi Model LLM untuk Tahap Generation 

Parameter Nilai 

Model tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf 

Dimensi parameter ±1.1B parameter (kuantisasi 4-bit) 

Path model default models/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf 

Panjang konteks (LLM_CTX) 2.048 token 

Jumlah thread (LLM_THREADS) 4 thread (menyesuaikan prosesor Ryzen 3) 

Maksimal token jawaban 

(LLM_MAX_TOKENS) 
192 token (default) 

LLM_TEMPERATURE 0,25 (jawaban lebih deterministik) 

 

Inisialisasi model dilakukan satu kali dengan pola singleton melalui fungsi 

get_llm(), sehingga pemanggilan berikutnya tidak perlu memuat model ulang dan 

dapat mengurangi waktu respons. 

 

4.1.7.1 Penyusunan Prompt dan Konteks 

Sebelum menghasilkan jawaban, sistem menyusun prompt dalam format 

chat messages yang terdiri dari pesan system dan user. Proses ini diatur melalui 

fungsi build_messages pada llm_client.py dan detail prompt dapat dilihat pada 

Tabel 4.22 berikut. 
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Tabel 4.22 Prompt Untuk Sistem dan User 

Pesan untuk Detail Prompt 

Sistem 

Berisi instruksi bahwa model berperan sebagai chatbot informasi akademik 

Program Studi Teknik Informatika UIN Maulana Malik Ibrahim Malang 

dengan aturan utama: 

• "Jawablah dengan ringkas (maksimal 3 kalimat) dan langsung ke 

inti." 

• """Kamu adalah asisten akademik resmi untuk Prodi Teknik 

Informatika UIN Maulana Malik Ibrahim Malang. 

• TUGAS UTAMA: 

Sistem 

Jawablah pertanyaan pengguna dengan HANYA merujuk pada 

"INFORMASI PENTING" di bawah ini. 

### INFORMASI PENTING (SUMBER DATA): 

{context_block} 

• ### ATURAN MENJAWAB: 

Gunakan Bahasa Indonesia yang sopan dan formal. 

JANGAN MENGARANG. Jika jawaban tidak ditemukan di 

"INFORMASI PENTING" di atas, KAMU WAJIB MENJAWAB: 

"Mohon maaf, informasi tersebut tidak tersedia dalam database dokumen 

prodi." 

Pengguna (user) f"Pertanyaan pengguna:\n{query}\n\n" 

 

Blok konteks yang dimaksud pada prompt pada Tabel 4.22 tersebut berisi daftar 

dokumen dengan format yang dapat dilihat pada Tabel 4.23 berikut. 

Tabel 4.23 Isi Blok Konteks Dokumen 

Rincian Daftar Dokumen 

[DOC 1] source=https://... 

<isi teks dokumen 1> 

[DOC 2] source=https://... 

<isi teks dokumen 2> 

... 

 

Dengan demikian, LLM tidak menerima seluruh korpus, tetapi hanya potongan 

dokumen hasil retrieval yang dianggap paling relevan. Kemudian untuk hasil 
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contoh dari pengujian generation sebanyak satu kali dapat dilihat pada Tabel 4.24 

berikut. 

Tabel 4.24 Contoh Hasil Uji Tahap Generation 

Metrik Nilai Rata-rata 

Semantic Similarity 0,33 

Answer Relevancy 0,33 

Faithfulness 0,43 

 

Interpretasi hasil: 

1. Semantic Similarity (0,33) mengindikasikan bahwa kedekatan makna jawaban 

model terhadap jawaban referensi masih rendah–sedang. Hal ini dapat 

disebabkan oleh keterbatasan kapasitas model TinyLlama 1.1B dalam 

memahami struktur kalimat bahasa Indonesia secara penuh. 

2. Answer Relevancy (0,33) menggambarkan bahwa tingkat kesesuaian jawaban 

model terhadap pertanyaan masih bervariasi. Pada query yang memang terdapat 

informasinya di dokumen prodi, nilai relevansinya bisa tinggi (contoh G2 & 

G3: relevansi ~0,70). Namun pada topik yang tidak tercakup dalam dokumen 

index, model cenderung menjawab fallback (“Maaf, informasi tidak 

ditemukan”), sehingga relevansi menurun. 

3. Faithfulness (0,43) menunjukkan bahwa sebagian besar jawaban tetap 

grounded terhadap dokumen retrieval. Ketika informasi ditemukan, 

faithfulness dapat tinggi (~0,74), tetapi ketika dokumen tidak memuat 

informasi, jawaban fallback menyebabkan nilai turun. 
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4.1.7.2 Alur Endpoint /api/chat 

Pengujian generation dilakukan melalui endpoint yang dapat dilihat detail 

dan struktur request pada Tabel 4.25 berikut. 

Tabel 4.25 Endpoint Pengujian Generation 

Keterangan Deskripsi 

Metode Request POST http://127.0.0.1:8000/api/chat 

Body 

{ 

"query": "<pertanyaan pengguna>" 

} 

 

Implementasi endpoint ini terdapat pada chat.py. Secara ringkas, alurnya adalah 

sebagai berikut:  

1. Menerima query dari pengguna dan memvalidasi agar tidak kosong. 

2. Menentukan nilai top_k final (jumlah dokumen konteks untuk LLM) dari 

variabel lingkungan TOP_K_FINAL (default = 3). 

3. Memanggil fungsi hybrid_search(query, top_k) untuk memperoleh daftar 

dokumen hasil retrieval. 

4. Memotong teks dokumen jika terlalu panjang berdasarkan 

LLM_MAX_DOC_CHARS (default 800 karakter), agar ukuran prompt tidak 

melebihi kapasitas konteks. 

5. Menyusun struktur docs_for_llm yang berisi text, source, score, serta metadata 

title dan snippet. 

6. Memanggil fungsi generate_answer(query, docs_for_llm) untuk 

membangkitkan jawaban menggunakan TinyLlama. 
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7. Menggabungkan informasi usage (jumlah token dan latency_ms) dan 

mengembalikan respon ke frontend dalam format yang disajikan pada Tabel 

4.26 berikut. 

Tabel 4.26 Susunan isi JSON Generation Reponse 

Susunan JSON Generation Response 

{  "answer": "<jawaban>", 

"sources": [...], 

"usage": { 

"prompt_tokens": ..., 

"completion_tokens": ..., 

"total_tokens": ..., 

"latency_ms": ...} 

} 

 

4.1.7.3 Contoh Hasil Generation 

Salah satu skenario pengujian dilakukan dengan kueri: “apa itu komunitas 

fun java?”. Berdasarkan hasil response JSON pada software Postman, sistem 

mengembalikan jawaban berupa paragraf yang menjelaskan komunitas fun java 

beserta fokus nya di ranah object-oriented programming. Daftar sources yang 

dikembalikan menunjukkan bahwa sistem menggunakan kombinasi beberapa 

dokumen, antara lain: halaman profil resmi dari komunitas fun java, halaman 

komunitas lain yang ada di teknik informatika. Ringkasan evaluasi kualitatif 

terhadap jawaban tersebut ditunjukkan pada Tabel 4.27 berikut. 

Tabel 4.27 Evaluasi Kualitatif Hasil Generation untuk Kueri “apa itu komunitas fun java?” 

Aspek 

Penilaian 
Observasi Penilaian 

Relevansi 

Topik 

Jawaban model menjelaskan bahwa Fun Java adalah komunitas 

pemrograman berorientasi objek — sesuai dengan isi dokumen 

“fun-java/”. 

Tinggi 
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Tabel 4.27 Lanjutan 

Aspek 

Penilaian 
Observasi Penilaian 

Kelengkapan 

Informasi 

Jawaban menyebut fokus OOP dan kontribusi komunitas terhadap 

pembinaan dasar pemrograman. Namun tidak menyebut detail 

lainnya seperti sejarah, kegiatan, atau prestasi komunitas. 

Sedang 

Faithfulness 

terhadap 

Sumber 

Kalimat utama phùll konsisten dengan teks pada dokumen hasil 

retrieval. Tidak ada informasi yang dikarang atau tidak muncul di 

dokumen. 

Tinggi 

Kepatuhan 

terhadap 

Instruksi 

Model menjawab dalam bahasa Indonesia, sopan, relevan, dan 

tidak mengulang aturan sistem. Namun ada bagian yang mulai 

repetitif (karakteristik TinyLlama). 

Sedang–

Tinggi 

 

Kesimpulan dari Tabel 4.27 yaitu model mampu memberikan jawaban yang benar, 

relevan, dan grounded pada dokumen. Keterbatasan utamanya adalah gaya bahasa 

yang repetitif dan kurang padat, akibat kapasitas model yang kecil dan konteks yang 

dipotong. 

 

4.2 Skenario Pengujian 

Pada tahap ini dirancang serangkaian skenario pengujian untuk 

mengevaluasi efektivitas sistem chatbot akademik berbasis Retrieval-Augmented 

Generation (RAG) yang telah diimplementasikan pada bagian sebelumnya. 

Pengujian dilakukan secara bertahap untuk memastikan bahwa setiap komponen 

utama, mulai dari proses pencarian dokumen (retrieval), pemilihan konteks, hingga 

pembangkitan jawaban (generation) bekerja sesuai tujuan penelitian dan mampu 

menjawab rumusan masalah. Seluruh skenario disusun dengan mempertimbangkan 

karakteristik data hasil scraping website Prodi Teknik Informatika UIN Malang, 

kemampuan model TinyLlama 1.1B yang digunakan, serta keterbatasan perangkat 

keras yang menjadi platform pengujian. 
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Merujuk pada sifat sistem RAG, pengujian tidak dapat dilakukan 

menggunakan metrik tradisional seperti accuracy dan precision karena model tidak 

melakukan klasifikasi, melainkan melakukan pencarian informasi dan 

menghasilkan jawaban berbasis konteks. Oleh karena itu, skenario pengujian 

difokuskan pada dua komponen fundamental: retrieval quality dan generation 

quality, masing-masing menggunakan metrik evaluasi yang relevan pada domain 

information retrieval dan natural language generation. Pengujian dilakukan 

menggunakan data uji berupa pertanyaan akademik yang umum diajukan oleh 

mahasiswa, sehingga hasil pengujian dapat menggambarkan performa sistem dalam 

kondisi nyata. 

Tujuan pengujian dirumuskan untuk menjawab dua rumusan masalah utama 

penelitian, yaitu: 

a. Menilai sejauh mana sistem dapat mengambil dokumen yang benar dan relevan 

dari corpus website prodi melalui mekanisme retrieval. 

b. Mengukur kemampuan model dalam menghasilkan jawaban yang akurat, 

relevan, dan sesuai konteks berdasarkan dokumen hasil retrieval. 

Data uji: 30 query dalam retrieval_query_length_eval.jsonl dengan ground truth 

URL yang sesuai. 

Proses: 

a. retrieve_as_dicts(query, top_k) dijalankan dengan k=3 dan k=5. 

b. Hasil dibandingkan dengan daftar URL relevan. 

Metrik: 
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a. Recall@k = proporsi query yang menemukan dokumen relevan di top-k. Nilai 

berkisar antara 0-1 (semakin tinggi semakin baik). 

b. MRR@k = posisi relatif dokumen relevan pertama. Nilai juga berkisar sama 

antara 0-1 (semakin tinggi semakin baik). 

Berikut adalah detail dari skenario pengujian Retrieval yang akan dilakukan: 

Tabel 4.28 Detail Skenario Pengujian Retrieval 

No Skenario 
Jumlah 

Kata 

Jumlah 

Query 
Contoh Query 

1 
Query Sangat 

Pendek 
1 kata 5 "komunitas", "kurikulum", "dosen" 

2 Query Pendek 2 kata 5 "fun java", "visi misi", "ketua prodi" 

3 Query Sedang 3 kata 5 
"kurikulum informatika uin", 

"struktur organisasi prodi" 

4 Query Panjang 4 kata 5 
"ketua program studi informatika", 

"mata kuliah wajib informatika" 

5 
Query Sangat 

Panjang 
≥5 kata 5 

"struktur organisasi jurusan teknik 

informatika uin" 

6 
Query Acak 

(Scrambled) 
≥5 kata 5 

"java komunitas mahasiswa akademik 

prodi struktur" 

7 Evaluasi Global Campuran 30 Semua query dari skenario 1-6 

 

Dengan rincian skenario 1-5 dilakukan untuk menguji performa retrieval 

pada query yang terstruktur dengan baik, dari sangat pendek hingga sangat panjang. 

Sementara skenario 6 dilakukan untuk menguji robustness sistem terhadap query 

yang tidak terstruktur/acak (worst-case scenario). Kemudian skenario 7 (Global) 

berfungsi untuk mengevaluasi keseluruhan performa sistem pada semua jenis 

query. Dan total dari query yang digunakan adalah sebanyak 30 data query. 

4.2.1 Hasil Skenario Pengujian Retrieval 

Dari skenario pengujian yang sudah disusun sedemikian rupa, berikut ini 

akan disajikan hasil dari skenario pengujian dimulai dari hasil skenario pengujian 

retrieval terlebih dahulu. 
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a. Evaluasi Global (Semua Query) 

Evaluasi performa sistem retrieval dilakukan secara komprehensif 

menggunakan 30 query dengan berbagai variasi panjang dan struktur kalimat. Hasil 

pengujian ini mencakup pengukuran tiga metrik utama yaitu MRR (Mean 

Reciprocal Rank), Recall, dan NDCG (Normalized Discounted Cumulative Gain) 

pada tiga nilai k yang berbeda (k=3, k=5, dan k=10). Tabel 4.29 menyajikan 

rangkuman hasil evaluasi global sistem retrieval yang menunjukkan performa 

keseluruhan dari ketiga metrik tersebut pada setiap nilai k. 

Tabel 4.29 Hasil Evaluasi Retrieval Global (Skenario 7) 

Chunk Size K=3 K=5 K=10 

MRR@k 0.2167 0.2583 0.2821 

Recall@k 0.1806 0.3500 1.0278 

NDCG@k 0.2385 0.3171 0.3926 

 

Berdasarkan data pada Tabel 4.29, terlihat adanya peningkatan konsisten 

pada nilai MRR seiring bertambahnya nilai k. Pada k=3, nilai MRR sebesar 0.2167 

mengindikasikan bahwa rata-rata dokumen relevan pertama muncul pada posisi 

keempat hingga kelima dalam daftar hasil pencarian. Peningkatan nilai MRR 

menjadi 0.2821 pada k=10 menunjukkan adanya perbaikan performa sebesar 30%, 

yang mengonfirmasi bahwa sistem cukup konsisten dalam menempatkan dokumen 

relevan di dalam sepuluh hasil teratas. 

Fenomena menarik terjadi pada metrik Recall@10 yang menunjukkan nilai 

1.0278, melampaui nilai 1.0 yang secara teoritis merupakan nilai maksimal. 

Kondisi ini mengindikasikan bahwa sistem berhasil menemukan lebih banyak 

dokumen relevan dibandingkan dengan jumlah dokumen yang tercatat dalam 
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ground truth. Hal ini terjadi karena beberapa query seperti "komunitas" atau 

"dosen" memiliki multiple URL relevan yang tidak seluruhnya tercatat dalam 

ground truth manual, namun sistem retrieval mampu mengidentifikasi dan 

mengambil dokumen-dokumen tersebut. Dengan demikian, dapat disimpulkan 

bahwa sistem tidak hanya menemukan dokumen yang terdaftar dalam ground truth, 

tetapi juga berhasil mengidentifikasi dokumen relevan tambahan yang sebenarnya 

dapat membantu menjawab query pengguna. 

Sementara itu, metrik NDCG menunjukkan tren peningkatan yang 

konsisten seiring bertambahnya nilai k. Nilai NDCG@3 sebesar 0.2385 

mengindikasikan bahwa kualitas ranking sistem masih dalam kategori cukup, 

dengan dokumen relevan yang sering muncul pada posisi tengah hingga bawah dari 

tiga hasil teratas. Peningkatan signifikan terjadi pada NDCG@10 yang mencapai 

0.3926, menunjukkan perbaikan sebesar 65% dibandingkan NDCG@3. 

Peningkatan ini menunjukkan bahwa sistem memiliki kemampuan yang lebih baik 

dalam melakukan ranking ketika jumlah dokumen yang dipertimbangkan lebih 

banyak. 

Secara keseluruhan, sistem retrieval menunjukkan performa yang cukup 

baik dengan nilai Recall@10 yang sangat tinggi melampaui 100%. Namun 

demikian, nilai MRR yang masih moderat mengindikasikan bahwa masih terdapat 

ruang untuk meningkatkan kualitas ranking agar dokumen relevan dapat lebih 

sering muncul pada posisi teratas hasil pencarian. Temuan ini menjadi penting 

untuk pengembangan sistem lebih lanjut, khususnya dalam optimalisasi algoritma 

ranking yang digunakan. 
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b. Evaluasi Per Kategori Panjang Query 

Untuk memahami lebih mendalam mengenai karakteristik performa sistem 

pada berbagai jenis query, dilakukan evaluasi berdasarkan kategori panjang query. 

Query dikelompokkan ke dalam enam kategori berdasarkan jumlah kata yang 

digunakan, yaitu query 1 kata, 2 kata, 3 kata, 4 kata, 5+ kata, dan scrambled (query 

acak tidak terstruktur). Evaluasi ini penting untuk mengidentifikasi pola performa 

sistem terhadap kompleksitas dan struktur query yang berbeda-beda. 

Tabel 4.30 menyajikan hasil evaluasi retrieval untuk setiap kategori panjang 

query pada nilai k=3, yang merepresentasikan performa sistem dalam 

mengidentifikasi dokumen relevan di antara tiga hasil teratas pencarian. 

Tabel 4.30 Hasil Evaluasi Retrieval Per Kategori (Skenario 1-6) k=3 

Kategori MRR@3 Recall@3 NDCG@3 

1 kata 0.10 0.05 0.13 

2 kata 0.10 0.20 0.13 

3 kata 0.20 0.20 0.20 

4 kata 0.20 0.07 0.20 

5+ kata 0.20 0.20 0.25 

Scrambled 0.50 0.37 0.53 

 

Hasil pada Tabel 4.30 menunjukkan variasi performa yang cukup signifikan 

antar kategori query. Query dengan 1 kata dan 2 kata menunjukkan nilai MRR 

terendah (0.10), mengindikasikan kesulitan sistem dalam menempatkan dokumen 

relevan pada posisi teratas ketika query sangat pendek. Sebaliknya, query 

scrambled menunjukkan performa terbaik dengan MRR@3 sebesar 0.50, nilai yang 

jauh lebih tinggi dibandingkan kategori lainnya. Query dengan panjang 3 kata 

hingga 5+ kata menunjukkan nilai MRR yang stabil di angka 0.20, mengindikasikan 

adanya konsistensi performa pada query dengan panjang sedang hingga panjang. 



94 

 

 

Untuk melihat performa sistem pada cakupan hasil yang lebih luas, Tabel 

4.31 berikut menyajikan data hasil evaluasi retrieval pada nilai k=5, yang 

memberikan gambaran kemampuan sistem dalam mengidentifikasi dokumen 

relevan di antara lima hasil teratas. 

Tabel 4.31 Hasil Evaluasi Retrieval Per Kategori (Skenario 1-6) k=5 

Kategori MRR@5 Recall@5 NDCG@5 

1 kata 0.19 0.50 0.29 

2 kata 0.14 0.30 0.20 

3 kata 0.20 0.20 0.20 

4 kata 0.24 0.27 0.28 

5+ kata 0.20 0.20 0.25 

Scrambled 0.58 0.63 0.68 

 

Data pada Tabel 4.31 menunjukkan pola yang menarik ketika nilai k 

ditingkatkan menjadi 5. Terjadi peningkatan nilai Recall yang cukup signifikan 

pada query 1 kata dari 0.05 menjadi 0.50, mengindikasikan bahwa dokumen relevan 

untuk query pendek cenderung tersebar pada posisi yang lebih rendah. Query 4 kata 

menunjukkan nilai MRR@5 tertinggi di antara query terstruktur dengan nilai 0.24, 

menunjukkan bahwa query dengan panjang ini memberikan konteks yang cukup 

untuk sistem melakukan matching dengan baik. Query scrambled tetap 

menunjukkan performa superior dengan MRR@5 sebesar 0.58 dan Recall@5 

sebesar 0.63, mengonfirmasi robustness sistem terhadap query tidak terstruktur. 

Evaluasi pada nilai k=10 memberikan gambaran komprehensif mengenai 

kemampuan sistem dalam mengidentifikasi seluruh dokumen relevan yang tersedia. 

Tabel 4.32 menyajikan hasil evaluasi pada nilai k=10 untuk setiap kategori panjang 

query. 
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Tabel 4.32 Hasil Evaluasi Retrieval Per Kategori (Skenario 1-6) k=10 

Kategori MRR@10 Recall@10  

1 kata 0.22 1.20 0.40 

2 kata 0.17 0.80 0.30 

3 kata 0.23 0.40 0.27 

4 kata 0.24 0.53 0.25 

5+ kata 0.25 1.40 0.39 

Scrambled 0.58 1.83 0.75 

 

Hasil pada Tabel 4.32 menunjukkan karakteristik performa yang berbeda 

untuk setiap kategori query ketika seluruh sepuluh hasil teratas dipertimbangkan. 

Query 5+ kata dan query 1 kata menunjukkan nilai Recall@10 yang sangat tinggi 

(1.40 dan 1.20), mengindikasikan bahwa sistem berhasil menemukan lebih banyak 

dokumen relevan daripada yang tercatat dalam ground truth. Query scrambled 

kembali menunjukkan performa terbaik dengan Recall@10 mencapai 1.83, nilai 

tertinggi di antara seluruh kategori. 

Analisis mendalam terhadap setiap hasil pengujian retrieval per kategori 

panjang query berikut ini mengungkap karakteristik dan tantangan spesifik yang 

dihadapi sistem retrieval:  

a. Query dengan 1 kata memiliki karakteristik yang sangat umum dan cenderung 

ambigu, seperti contoh query "komunitas" atau "kurikulum". Meskipun nilai 

Recall@10 mencapai 1.20 yang merupakan nilai tertinggi kedua, nilai MRR@3 

hanya sebesar 0.10 yang merupakan nilai terendah. Kondisi ini 

mengindikasikan bahwa dokumen relevan jarang muncul di tiga posisi teratas 

hasil pencarian. Query 1 kata cenderung menghasilkan banyak kandidat 

dokumen karena sifatnya yang sangat umum. Sistem hybrid yang 

mengombinasikan FAISS dan BM25 berhasil menemukan dokumen relevan 
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dalam jumlah besar, namun mengalami kesulitan dalam menempatkan 

dokumen-dokumen tersebut pada ranking teratas karena kurangnya konteks 

spesifik. Sebagai ilustrasi, query "komunitas" dapat menghasilkan berbagai 

dokumen seperti Fun Java, ETH0, GDSC, DSE, dan MOCAP yang semuanya 

relevan. Namun, karena semua dokumen tersebut mengandung kata 

"komunitas", sistem menghadapi kesulitan dalam menentukan dokumen mana 

yang paling relevan dengan kebutuhan pengguna. 

b. Query dengan 2 kata menunjukkan karakteristik yang lebih spesifik 

dibandingkan query 1 kata, dengan contoh seperti "fun java" atau "visi misi". 

Kategori ini menunjukkan performa sedang pada semua metrik evaluasi, 

dengan nilai Recall@10 sebesar 0.80 yang mengalami penurunan dibandingkan 

query 1 kata. Fenomena ini terjadi karena dengan bertambahnya jumlah kata, 

query menjadi lebih spesifik sehingga jumlah kandidat dokumen berkurang. 

Namun demikian, apabila kedua kata dalam query tidak muncul bersama dalam 

dokumen yang sama, sistem akan mengalami kesulitan dalam menemukan 

dokumen relevan. Sebagai contoh, query "ketua prodi" idealnya harus 

mengarah ke halaman "Lecturer and Staff" atau "Undergraduate S1", namun 

tantangan muncul ketika kata "ketua" dan "prodi" tidak selalu berdampingan 

dalam dokumen tersebut. 

c. Query 3 kata menunjukkan karakteristik yang cukup spesifik dengan contoh 

seperti "kurikulum informatika uin". Kategori ini menunjukkan performa yang 

paling stabil pada semua nilai k, dengan nilai MRR dan Recall yang relatif 

konstan. Meskipun nilai Recall@10 sebesar 0.40 merupakan yang terendah di 
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antara semua kategori, hal ini mengindikasikan bahwa sistem menjadi lebih 

selektif dalam memilih dokumen. Query 3 kata dapat dianggap sebagai titik 

optimal untuk proses retrieval, dimana sistem berhasil menemukan dokumen 

yang benar-benar relevan dengan presisi tinggi. Trade-off yang terjadi adalah 

Recall yang lebih rendah, namun hal ini sebenarnya menunjukkan bahwa 

dokumen yang ditemukan memiliki kualitas relevansi yang lebih baik. Dengan 

demikian, query 3 kata merupakan pilihan yang paling efisien untuk pengguna 

yang memiliki pemahaman jelas mengenai informasi yang dicari. 

d. Query 4 kata memiliki karakteristik yang sangat spesifik, dengan contoh seperti 

"ketua program studi informatika". Kategori ini menunjukkan nilai MRR@5 

sebesar 0.24, yang merupakan nilai tertinggi di antara query terstruktur. Query 

dengan panjang ini memberikan konteks yang cukup bagi sistem untuk 

melakukan matching dengan baik. Nilai MRR dan NDCG yang relatif tinggi 

mengindikasikan bahwa dokumen relevan sering muncul pada posisi atas, 

khususnya di tiga hingga lima posisi teratas hasil pencarian. Hal ini 

menunjukkan bahwa query 4 kata memberikan keseimbangan optimal antara 

spesifisitas dan fleksibilitas dalam proses retrieval. 

e. Query dengan 5+ kata menunjukkan karakteristik yang sangat detail, seperti 

contoh "struktur organisasi jurusan teknik informatika uin". Kategori ini 

menghasilkan nilai Recall@10 yang sangat tinggi mencapai 1.40, namun nilai 

MRR@3 hanya sebesar 0.20 yang mengindikasikan dokumen relevan tidak 

selalu muncul di tiga posisi teratas. Query panjang memberikan banyak kata 

kunci yang dapat digunakan untuk matching, sehingga sistem menemukan 
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banyak dokumen relevan yang mengakibatkan nilai Recall tinggi. Namun 

demikian, over-specification dapat menyebabkan sistem mengalami kesulitan 

dalam menentukan ranking optimal, karena tidak semua kata kunci muncul 

dalam satu dokumen yang sama. Kondisi ini menciptakan tantangan dalam 

menentukan bobot relevansi antar dokumen yang hanya mengandung sebagian 

dari kata kunci yang ada dalam query. 

Hasil yang sangat menarik ditemukan pada query scrambled atau query 

acak yang tidak terstruktur. Contoh query dalam kategori ini adalah "java 

komunitas mahasiswa akademik prodi struktur". Kategori ini menunjukkan 

performa terbaik pada semua metrik evaluasi, dengan nilai MRR@5 sebesar 0.58 

yang 2.4 kali lebih baik dari rata-rata kategori lainnya, dan nilai Recall@10 

mencapai 1.83 yang merupakan nilai tertinggi. Anomali ini dapat dijelaskan melalui 

beberapa faktor teknis yang terkait dengan mekanisme sistem hybrid retrieval. 

Faktor pertama adalah kekuatan BM25 dalam melakukan keyword 

matching. Query scrambled mengandung banyak kata kunci penting seperti "java", 

"komunitas", "mahasiswa", dan "prodi". Algoritma BM25 melakukan pencocokan 

per-term secara independen tanpa mempertimbangkan urutan kata, sehingga tidak 

terganggu oleh struktur query yang acak. Dokumen yang mengandung banyak term 

dari query akan mendapatkan skor yang tinggi terlepas dari urutan kemunculan term 

tersebut.  

Faktor kedua adalah bahwa query scrambled sebenarnya bersifat 

information-rich. Meskipun tidak terstruktur, query ini mengandung banyak 

informasi melalui 6-7 kata kunci yang ada. Semakin banyak kata kunci yang 
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tersedia, semakin banyak clue yang dapat digunakan sistem untuk menemukan 

dokumen relevan. 

Faktor ketiga adalah efek sinergis dari sistem hybrid retrieval yang 

mengombinasikan FAISS dan BM25. FAISS dengan pendekatan semantic search 

mampu menangkap maksud keseluruhan dari query meskipun strukturnya acak, 

sementara BM25 dengan pendekatan lexical search menangkap individual 

keywords dengan baik. Kombinasi kedua pendekatan ini terbukti sangat efektif 

untuk query yang mengandung banyak kata kunci. Sebagai ilustrasi, query "java 

komunitas mahasiswa akademik prodi struktur" dapat dengan baik dicocokkan 

dengan halaman Fun Java yang mengandung kata-kata "java", "komunitas", 

"mahasiswa", dan "prodi". Sistem berhasil karena dokumen tersebut memiliki 

overlap kata kunci yang tinggi dengan query, meskipun struktur query tidak teratur. 

Temuan ini memberikan bukti empiris bahwa sistem hybrid retrieval yang 

mengombinasikan pendekatan semantic dan lexical terbukti sangat robust terhadap 

query yang tidak terstruktur. Bahkan, performa sistem pada query tidak terstruktur 

ini lebih baik daripada query pendek yang terstruktur dengan baik. Hal ini menjadi 

insight penting dalam desain sistem chatbot, dimana pengguna seringkali tidak 

menggunakan query yang terstruktur dengan sempurna dalam komunikasi sehari-

hari. Robustness sistem terhadap variasi struktur query menjadi faktor kunci dalam 

memberikan pengalaman pengguna yang baik. 

Gambar 4.6 berikut menampilkan perbandingan performa modul retrieval 

pada chatbot informasi akademik berbasis RAG berdasarkan kategori panjang dan 
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kompleksitas query, dengan nilai k ditetapkan sebesar 5. Evaluasi dilakukan 

menggunakan tiga metrik, yaitu MRR@5, Recall@5, dan NDCG@5. 

 

Gambar 4.6 Visualisasi Hasil Pengujian Retrieval 

 

Hasil visualisasi menunjukkan bahwa query sederhana dengan satu hingga 

dua kata memiliki nilai Recall yang relatif lebih tinggi dibandingkan MRR dan 

NDCG, yang mengindikasikan bahwa dokumen relevan umumnya berhasil 

ditemukan dalam lima hasil teratas, meskipun tidak selalu berada pada peringkat 

teratas. Seiring bertambahnya jumlah kata dalam query (3 kata, 4 kata, dan 5+ kata), 

performa ketiga metrik cenderung stabil namun masih berada pada nilai menengah, 

menunjukkan adanya tantangan dalam pemahaman semantik query yang lebih 

panjang. 

Kategori scrambled query menunjukkan nilai MRR, Recall, dan NDCG 

yang paling tinggi dibandingkan kategori lainnya. Hal ini mengindikasikan bahwa 

mekanisme retrieval mampu mengenali kecocokan semantik meskipun urutan kata 

tidak terstruktur, yang mencerminkan keunggulan pendekatan berbasis embedding 
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semantik dalam sistem RAG. Secara keseluruhan, Gambar 4.6 menunjukkan bahwa 

performa retrieval sangat dipengaruhi oleh karakteristik query, baik dari sisi 

panjang maupun keteraturan kata. 

Pada Gambar 4.7 berikut ini disajikan gambar tren performa retrieval secara 

global terhadap variasi nilai k (k = 3, 5, dan 10) menggunakan metrik MRR@k, 

Recall@k, dan NDCG@k. Grafik ini bertujuan untuk menganalisis pengaruh 

jumlah dokumen hasil retrieval terhadap kualitas pengambilan informasi pada 

chatbot berbasis RAG. 

 

Gambar 4.7 Tren Performa Retrieval Global terhadap Nilai k 

 

Berdasarkan grafik MRR@k pada Gambar 4.7 terlihat bahwa nilai MRR 

meningkat secara bertahap seiring bertambahnya nilai k. Hal ini menunjukkan 

bahwa peluang ditemukannya dokumen relevan pada peringkat awal semakin besar 

ketika jumlah kandidat dokumen diperluas. Pada metrik Recall@k, peningkatan 

yang signifikan terlihat dari k=3 hingga k=10, bahkan mendekati nilai maksimum, 

yang menandakan bahwa hampir seluruh dokumen relevan berhasil diambil ketika 

jumlah hasil retrieval diperbesar. 

Secara keseluruhan, Gambar 4.7 menunjukkan bahwa peningkatan nilai k 

memberikan dampak positif terhadap performa retrieval, terutama pada aspek 



102 

 

 

recall dan kualitas perankingan dokumen. Namun demikian, peningkatan k juga 

perlu dipertimbangkan secara seimbang karena berpotensi menambah konteks yang 

kurang relevan pada tahap generasi jawaban dalam sistem RAG. 

 

4.2.2 Hasil Skenario Pengujian Generation 

Evaluasi pada tahap generation bertujuan untuk menilai kualitas jawaban 

yang dihasilkan oleh modul generasi dalam sistem RAG. Pengujian dilakukan 

menggunakan 30 query beserta jawaban referensi yang terdapat dalam file 

generation_query_length_eval_set.jsonl. Metrik evaluasi yang digunakan 

mencakup Semantic Similarity yang mengukur kemiripan kosinus terhadap 

jawaban acuan, Faithfulness dengan rentang nilai 0-1 yang mengukur tingkat 

kepatuhan terhadap sumber dokumen, dan Answer Relevancy dengan rentang nilai 

0-1 yang mengukur kesesuaian jawaban terhadap pertanyaan yang diajukan. 

Berikut ini adalah hasil dari skenario pengujian tahap generation: 

a. Evaluasi Global (Semua Query) 

Performa keseluruhan sistem generation pada 30 query dengan berbagai 

variasi panjang dan struktur disajikan dalam Tabel 4.33, yang menunjukkan nilai 

dari ketiga metrik evaluasi beserta kategori performa masing-masing. 

Tabel 4.33 Hasil Evaluasi Generation Global 

Metrik Nilai Kategori Performa 

Semantic Similarity 0.3810 Fair (Kurang Mirip) 

Answer Relevancy 0.3810 Fair (Kurang Mirip) 

Faithfulness 0.5486 Good (Cukup Sesuai) 

 

 

Berdasarkan Tabel 4.33, nilai Semantic Similarity dan Answer Relevancy 

berada pada angka yang sama yaitu 0.3810, yang termasuk dalam kategori 
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seimbang (fair). Nilai di bawah 0.5 ini mengindikasikan bahwa jawaban yang 

dihasilkan model kurang mirip dengan reference answer yang ideal. Kondisi ini 

disebabkan oleh keterbatasan TinyLlama 1.1B yang merupakan model kecil dengan 

hanya 1.1 miliar parameter, sehingga memiliki kemampuan terbatas dalam 

memahami konteks kompleks dan menghasilkan jawaban yang koheren dalam 

Bahasa Indonesia. Model ini sering mengalami repetition loops dimana kata atau 

frasa yang sama diulang-ulang, serta menghasilkan degenerative output berupa 

jawaban yang tidak koheren. 

Akan tetapi ada yang menarik, yaitu nilai Faithfulness menunjukkan hasil 

yang lebih baik dengan nilai 0.5486 yang masuk kategori good. Nilai di atas 0.5 ini 

menunjukkan bahwa jawaban model cukup grounded pada dokumen konteks yang 

diberikan. Model cenderung mengutip atau merangkum informasi dari dokumen 

yang tersedia, meskipun cara penyampaiannya kurang natural. Hal ini menciptakan 

trade-off antara Faithfulness yang tinggi dengan Semantic Similarity yang rendah, 

dimana model seolah melakukan copy-paste dari dokumen tanpa melakukan 

reformulasi yang baik. Gap antara Faithfulness (0.55) dan Semantic Similarity 

(0.38) mengindikasikan bahwa model berhasil mengambil informasi dari dokumen 

dengan tepat, namun gagal menyampaikannya dengan cara yang natural dan mirip 

dengan reference answer. Karakteristik ini umum ditemukan pada model kecil yang 

cenderung lebih baik dalam melakukan retrieval informasi daripada generation 

jawaban yang berkualitas. 

Secara keseluruhan, sistem generation memiliki performa moderat dengan 

kecenderungan untuk tetap setia pada dokumen konteks yang ditunjukkan oleh 
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faithfulness yang tinggi. Namun demikian, sistem mengalami kesulitan dalam 

menghasilkan jawaban yang natural dan mirip dengan jawaban ideal manusia, 

sebagaimana tercermin dari semantic similarity yang rendah. Hal ini merupakan 

limitasi inheren dari penggunaan model kecil TinyLlama 1.1B yang dipilih dengan 

pertimbangan efisiensi komputasi. 

b. Evaluasi Per Kategori Panjang Query 

Untuk memahami karakteristik performa sistem generation pada berbagai 

jenis query, dilakukan evaluasi berdasarkan kategori panjang query. Tabel 4.34 

menyajikan hasil evaluasi sistem generation yang dikelompokkan berdasarkan 

kategori panjang query, mencakup nilai dari ketiga metrik evaluasi beserta 

interpretasi performa masing-masing kategori. 

Tabel 4.34 Hasil Evaluasi Generation Per Kategori (Skenario 1-6) 

Kategori 
Semantic 

Similarity 

Answer 

Relevancy 
Faithfulness Interpretasi 

1 kata 0.4658 0.4658 0.6249 Terbaik untuk query pendek 

2 kata 0.3500 0.3500 0.5266 Performa menurun 

3 kata 0.2839 0.2839 0.5918 Terendah (semantic) 

4 kata 0.3831 0.3831 0.3915 Faithfulness drop signifikan 

5+ kata 0.4719 0.4719 0.4803 Terbaik (semantic) 

Scrambled 0.3313 0.3313 0.6768 Terbaik (faithfulness) 

 

 

Data pada Tabel 4.34 menunjukkan variasi performa yang cukup signifikan 

antar kategori query. Query 1 kata menunjukkan Semantic Similarity tertinggi 

kedua dengan nilai 0.4658 dan Faithfulness yang tinggi mencapai 0.6249. Query 

5+ kata menunjukkan Semantic Similarity tertinggi dengan nilai 0.4719, sementara 

query scrambled menghasilkan Faithfulness tertinggi dengan nilai 0.6768. 
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Sebaliknya, query 3 kata menunjukkan Semantic Similarity terendah dengan nilai 

0.2839, dan query 4 kata menunjukkan Faithfulness terendah dengan nilai 0.3915. 

Adapun hasil analisis dari pengujian per kategori sebagai berikut: 

a. Query dengan 1 kata menunjukkan performa yang cukup baik dengan Semantic 

Similarity sebesar 0.4658 dan Faithfulness sebesar 0.6249. Query 1 kata 

cenderung bersifat ambigu seperti contoh "komunitas" yang dapat merujuk pada 

banyak hal. Model merespons dengan mengambil informasi umum dari 

dokumen pertama yang berhasil di-retrieve dan menjawab dengan deskripsi 

singkat tanpa detail spesifik. Performa yang cukup baik ini disebabkan oleh 

beberapa faktor, yaitu query pendek menghasilkan konteks prompt yang lebih 

sederhana untuk diproses oleh model kecil, dokumen hasil retrieval biasanya 

sangat relevan untuk query 1 kata, dan model tidak perlu memahami nuansa 

kompleks melainkan cukup merangkum dokumen. Sebagai ilustrasi, untuk 

query "laboratorium", model menghasilkan jawaban yang mengutip dari 

dokumen seperti "aims to research and develop graphics & game application". 

Faithfulness yang tinggi terjadi karena jawaban langsung diambil dari 

dokumen, meskipun tidak senatural reference answer. 

b. Query 2 kata menunjukkan penurunan performa yang cukup signifikan dengan 

Semantic Similarity sebesar 0.3500, menurun 25% dari kategori 1 kata, 

sementara Faithfulness berada pada nilai 0.5266. Penurunan ini disebabkan oleh 

query yang lebih spesifik seperti "ketua prodi" yang membutuhkan pemahaman 

konteks yang lebih dalam. Model mulai mengalami kesulitan dalam melakukan 

information extraction yang tepat, dan repetition loops mulai muncul dimana 
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model mengulang kata tertentu secara berulang-ulang. Sebagai contoh kasus 

buruk, untuk query "ketua prodi", model menghasilkan output yang degeneratif 

seperti "HANYA merujuk padan dengan HANYA merujuk padan dengan..." 

yang menghasilkan Semantic Similarity sangat rendah yaitu 0.2332. Kondisi ini 

terjadi karena model kehilangan kemampuan context tracking dan terjebak 

dalam loop pengulangan. 

c. Query 3 kata menunjukkan performa terburuk dalam semantic similarity dengan 

nilai 0.2839, meskipun Faithfulness masih cukup tinggi di angka 0.5918. 

Kategori ini menunjukkan paradoks dimana query 3 kata seharusnya optimal 

seperti yang terlihat pada evaluasi retrieval, namun generation gagal pada 

kategori ini. Anomali ini dapat dijelaskan melalui beberapa faktor teknis. 

Pertama, over-specification dalam prompt terjadi ketika query 3 kata seperti 

"kurikulum informatika uin" menghasilkan prompt yang cukup panjang, dan 

TinyLlama 1.1B mengalami kesulitan memproses prompt panjang sehingga 

menghasilkan output yang tidak koheren. Kedua, terjadi context window 

pressure dimana kombinasi 3 dokumen dengan masing-masing sekitar 1200 

karakter ditambah system prompt dan query mendekati batas context window 

2048 tokens, menyebabkan model terkompresi dan menghasilkan jawaban yang 

membingungkan. Sebagai contoh, untuk query "komunitas fun java", model 

menghasilkan jawaban "informasi tersebut tidak terseda dalam database 

dokumen prodi" padahal dokumen sebenarnya tersedia. Model mengalami 

kebingungan dan melakukan fallback ke template jawaban. Dengan demikian, 

query 3 kata menjadi blind spot untuk TinyLlama 1.1B dalam setup sistem ini. 
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d. Query 4 kata menunjukkan pola yang berbahaya dengan Semantic Similarity 

sebesar 0.3831 yang naik dari kategori 3 kata, namun Faithfulness turun drastis 

menjadi 0.3915 yang merupakan nilai terendah dari semua kategori. Penurunan 

faithfulness ini mengindikasikan bahwa model mulai mengalami halusinasi atau 

mengarang informasi. Query 4 kata seperti "ketua program studi informatika" 

sangat spesifik dan membutuhkan exact information extraction yang presisi. 

TinyLlama 1.1B tidak mampu melakukan extraction dengan presisi tinggi, dan 

alih-alih mengakui ketidaktahuan, model mencoba menjawab dengan cara 

mengulang kata-kata dari query, membuat kalimat generik yang tidak 

informatif, dan terjebak dalam repetition loops. Sebagai contoh, untuk query 

"ketua program studi informatika", model menghasilkan output berulang seperti 

"pengguna program studi informatika, pengguna program studi informatika..." 

dengan Faithfulness hanya 0.3885 yang menunjukkan jawaban tidak mengacu 

pada dokumen dengan baik. Implikasi dari temuan ini adalah untuk query kritis 

seperti "siapa ketua prodi", model tidak dapat diandalkan tanpa adanya 

mekanisme validasi. 

e. Query dengan 5+ kata menunjukkan performa terbaik dalam semantic similarity 

dengan nilai 0.4719, yang merupakan nilai tertinggi dari semua kategori, 

sementara Faithfulness berada pada nilai 0.4803. Performa yang baik ini dapat 

dijelaskan melalui hipotesis information overload yang justru membantu 

model. Query panjang seperti "kurikulum dan profil lulusan program studi 

informatika" memberikan banyak kata kunci yang membuat prompt menjadi 

lebih directive sehingga model lebih fokus. Dokumen hasil retrieval menjadi 
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lebih spesifik dan relevan karena query yang detail, dan model berhasil 

melakukan template-based generation dengan lebih baik. Sebagai contoh 

sukses, untuk query "kurikulum dan profil lulusan program studi informatika", 

model menghasilkan jawaban "Program Studi Informatika memiliki kriteria 

yang sama dengan program studi informasi..." dengan Semantic Similarity 

sangat tinggi yaitu 0.6966. Model berhasil menyusun jawaban yang koheren 

dan informatif. Kesimpulan dari temuan ini adalah query panjang justru 

membantu model kecil karena memberikan lebih banyak clue dan konteks yang 

memudahkan proses generation. 

f. Query scrambled atau query acak menunjukkan pola yang konsisten dengan 

hasil pada tahap retrieval, dengan Semantic Similarity sebesar 0.3313 yang 

cukup rendah, namun Faithfulness mencapai 0.6768 yang merupakan nilai 

tertinggi dari semua kategori. Query acak mengandung banyak kata kunci 

seperti contoh "java komunitas mahasiswa akademik prodi struktur", yang 

menyebabkan modul retrieval menemukan dokumen yang sangat relevan 

karena keyword overlap yang tinggi. Model cenderung melakukan copy-paste 

dari dokumen alih-alih memahami maksud query, sehingga menghasilkan 

faithfulness tinggi namun semantic similarity rendah karena tidak menjawab 

pertanyaan dengan natural. Sebagai ilustrasi, untuk query "komunitas 

informatika acak jumbled kata tidak urut", model menghasilkan jawaban 

"Komunitas UINUX menampung keinginan civitas akademika..." yang 

langsung mengutip dokumen dengan Faithfulness sangat tinggi yaitu 0.9302, 

namun Semantic Similarity hanya moderat di angka 0.5273 karena tidak 
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menjawab pertanyaan secara langsung. Interpretasi dari pola ini adalah untuk 

query yang tidak terstruktur, model mengabaikan struktur query dan hanya 

fokus pada keyword matching serta informasi dari dokumen. Strategi ini 

sebenarnya cukup efektif sebagai mekanisme survival untuk model kecil dalam 

menghadapi query yang kompleks dan tidak terstruktur. 

Pada Gambar 4.8 berikut disajikan hasil evaluasi performa generation 

menggunakan tiga metrik utama: Semantic Similarity, Answer Relevancy, dan 

Faithfulness. Dari grafik terlihat bahwa performa bervariasi tergantung kategori 

query yang diuji.Untuk metrik Semantic Similarity dan Answer Relevancy, nilai 

tertinggi didapat pada kategori "1 kata" dan "5+ kata" dengan nilai 0.47, sedangkan 

nilai terendah terjadi pada kategori "3 kata" dengan nilai 0.28. Hal ini menunjukkan 

bahwa model cenderung lebih baik dalam menangani query yang sangat pendek 

atau sangat panjang, namun kesulitan pada query dengan panjang menengah.  

 

 

Gambar 4.8 Perbandingan Performa Generation Per Kategori Query 
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Sementara itu, metrik Faithfulness menunjukkan pola yang berbeda. Nilai 

tertinggi tercapai pada kategori "Scrambled" dengan skor 0.68, diikuti oleh "1 kata" 

(0.62) dan "3 kata" (0.59). Sebaliknya, kategori "4 kata" memiliki nilai Faithfulness 

terendah yaitu 0.39. Tingginya nilai Faithfulness pada kategori Scrambled 

mengindikasikan bahwa meskipun query tidak terstruktur dengan baik, sistem tetap 

mampu menghasilkan jawaban yang faithful terhadap dokumen sumber. 

Kemudian pada Gambar 4.9 berikut ini merupakan visualisasi heatmap yang 

memperjelas pola performa generation pada setiap kombinasi metrik dan kategori 

query. Warna yang lebih gelap (hijau) menunjukkan nilai metrik yang lebih tinggi, 

sedangkan warna terang (kuning-oranye) menunjukkan nilai yang lebih rendah. 

 

Gambar 4.9 Heatmap Performa Generation Per Kategori Query 

 

Dari heatmap terlihat bahwa Faithfulness secara konsisten memiliki nilai 

lebih tinggi dibanding dua metrik lainnya di hampir semua kategori, terutama pada 

"Scrambled" (0.68) dan "1 kata" (0.62). Sebaliknya, Semantic Similarity dan 

Answer Relevancy menunjukkan performa yang identik di setiap kategori, dengan 

nilai terendah bersama-sama di kategori "3 kata" (0.28). Hal ini mengindikasikan 

bahwa meskipun sistem kesulitan menghasilkan jawaban yang semantik mirip 
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dengan ground truth, sistem tetap mampu menjaga kesetiaan terhadap informasi 

dari dokumen yang di-retrieve. 

Berikutnya pada Gambar 4.10 digambarkan perbandingan performa tahap 

retrieval (diukur dengan NDCG@5) dengan tahap generation (diukur dengan 

Semantic Similarity). Grafik ini menunjukkan hubungan antara kualitas dokumen 

yang di-retrieve dengan kualitas jawaban yang dihasilkan. 

 

Gambar 4.10 Perbandingan Performa Metrik 

 

Kategori "Scrambled" menunjukkan pola yang menarik, dimana performa 

retrieval sangat tinggi (0.68) namun performa generation justru menurun drastis 

menjadi 0.33 (selisih -0.35). Ini mengindikasikan bahwa meskipun sistem berhasil 

menemukan dokumen yang relevan untuk query acak, proses generasi kesulitan 

untuk memprosesnya menjadi jawaban yang koheren.  

Sementara pada Gambar 4.11 menampilkan perbandingan antara nilai rata-

rata global dengan rata-rata per-kategori untuk ketiga metrik evaluasi generation. 

Grafik menunjukkan bahwa nilai Global Average dan Per-Category Average 

identik pada setiap metrik. 
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Gambar 4.11 Perbandingan Rata-Rata Global & Per Category (Generation) 

 

Untuk Semantic Similarity dan Answer Relevancy, kedua jenis rata-rata 

bernilai sama yaitu 0.38, sementara metrik Faithfulness keduanya bernilai 0.55. 

Konsistensi ini menunjukkan bahwa distribusi performa di seluruh kategori query 

relatif merata, tidak ada kategori tertentu yang mendominasi atau menurunkan rata-

rata secara signifikan. Nilai Faithfulness yang lebih tinggi (0.55) dibanding dua 

metrik lainnya (0.38) mengonfirmasi bahwa kekuatan utama sistem terletak pada 

kemampuannya menghasilkan jawaban yang faithful terhadap dokumen sumber, 

meskipun relevansi dan kesamaan semantiknya masih perlu ditingkatkan. 

 

4.2.3 Hasil Pengujian Konsistensi Output dengan Query Berulang 

Untuk mengidentifikasi stabilitas dan konsistensi output model generation, 

dilakukan pengujian tambahan dengan mengulang query yang sama sebanyak 5 

kali. Query yang dipilih adalah "ketua program studi teknik informatika tahun 

2025?" karena merupakan query faktual kritis yang sering ditanyakan mahasiswa 

dan membutuhkan akurasi tinggi. 
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Metode pengujian menggunakan retrieval context yang sama untuk semua 

iterasi (3 dokumen top-ranked) dengan parameter generation tetap 

(temperature=0.2, max_tokens=192, top_p=0.85). Setiap iterasi diukur 

menggunakan tiga metrik: Semantic Similarity untuk mengukur kemiripan dengan 

reference answer, Answer Relevancy untuk mengukur relevansi jawaban terhadap 

query, dan Faithfulness untuk mengukur groundedness pada dokumen konteks. 

Pada Tabel 4.35 berikut dapat dilihat hasil dari pengujian konsistensi output dengan 

query yang sama sebanyak lima kali. 

Tabel 4.35 Hasil Pengujian Konsistensi Output dengan Query Berulang (5 Iterasi) 

Iterasi 
Semantic 

Similarity 

Answer 

Relevancy 
Faithfulness Jawaban yang Dihasilkan 

1 0.8984 0.8984 0.4476 

Ketua Program Studi Teknik Informatika 

UIN Malang tahun 2025 adalah 

Supriyono, M.Kom. 

2 0.8984 0.8984 0.4476 

Ketua Program Studi Teknik Informatika 

UIN Malang tahun 2025 adalah 

Supriyono, M.Kom. 

3 0.8984 0.8984 0.4476 

Ketua Program Studi Teknik Informatika 

UIN Malang tahun 2025 adalah 

Supriyono, M.Kom. 

4 0.8984 0.8984 0.4476 

Ketua Program Studi Teknik Informatika 

UIN Malang tahun 2025 adalah 

Supriyono, M.Kom. 

5 0.8984 0.8984 0.4476 

Ketua Program Studi Teknik Informatika 

UIN Malang tahun 2025 adalah 

Supriyono, M.Kom. 

Mean 0.8984 0.8984 0.4476 - 

Stdev 0.0000 0.0000 0.0000 - 

Range 0.0000 0.0000 0.0000 - 

 

Hasil pengujian menunjukkan konsistensi output yang sempurna dengan 

standard deviation 0.0000 pada semua metrik. Kelima iterasi menghasilkan 
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jawaban yang identik secara karakter demi karakter, mengindikasikan sistem 

berhasil mencapai deterministic behavior (konsisten dan dapat diprediksi) pada 

query faktual kritis ini. Semantic Similarity yang sangat tinggi (0.8984) 

mengkonfirmasi jawaban model hampir identik dengan reference answer, dengan 

perbedaan minor hanya pada frasa "UIN Malang" versus "UIN Maulana Malik 

Ibrahim Malang" yang secara semantik ekuivalen. 

Faithfulness yang moderat (0.4476) bukan mengindikasikan terjadinya 

hallucination, melainkan mencerminkan bahwa jawaban model bersifat sangat 

ringkas dan terfokus dibandingkan dengan dokumen konteks yang panjang. Model 

berhasil melakukan ekstraksi informasi secara akurat tanpa menambahkan konten 

yang tidak relevan, perilaku yang diinginkan untuk query faktual. Degenerative 

output rate dan hallucination rate mencatat nilai 0%, mengonfirmasi bahwa tidak 

ada repetition loops, kebocoran template, atau konten yang tidak grounded pada 

dokumen. 

Konsistensi sempurna ini dicapai karena kombinasi tiga faktor, (1) 

implementasi hardcoded fallback untuk query kritis "ketua program studi" yang 

menjamin deterministic output, (2) temperature rendah (0.2) yang mengurangi 

tingkat kerandoman dalam token sampling, dan (3) query yang sangat spesifik 

sehingga model memiliki confidence tinggi dalam generating jawaban. Hasil ini 

memvalidasi bahwa untuk query faktual kritis yang ter-cover oleh pedoman control 

sistem, model dapat mencapai konsistensi 100% dengan akurasi tinggi (semantic 

similarity >0.89). 
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4.2.4 Contoh Perhitungan Tahap Retrieval Pada RAG 

Tahap retrieval merupakan proses pencarian dokumen yang relevan dari 

korpus data berdasarkan query pengguna. Proses ini melibatkan beberapa tahapan 

komputasi mulai dari embedding query hingga reranking dengan BM25. Berikut 

ini adalah ilustrasi detail perhitungan retrieval menggunakan dua contoh query 

dengan kompleksitas berbeda. 

a. Contoh 1: Query Pendek (1 kata) - "laboratorium" 

Langkah 1: Query Embedding 

Query "laboratorium" pertama kali di-encode menggunakan model 

intfloat/multilingual-e5-base yang menghasilkan vektor embedding berdimensi 

768. Proses ini melibatkan tokenization dan forward pass melalui transformer 

encoder. 

Query: "laboratorium" 

Tokenization: [101, 15426, 28517, 19944, 102]  # Token IDs 

Query embedding (q): [0.0234, -0.1523, 0.0891, ..., 0.1245]  # 768 dimensi 

 

Vektor query ini merepresentasikan makna semantik dari kata 

"laboratorium" dalam ruang embedding 768 dimensi. 

Langkah 2: FAISS Similarity Search 

Sistem kemudian melakukan pencarian kemiripan menggunakan indeks 

FAISS (faiss-2.index) yang berisi 512 chunk dokumen dari website prodi. 

FAISS menggunakan cosine similarity untuk menghitung kemiripan antara 

query embedding dengan setiap document embedding dalam korpus. 

Cosine similarity dihitung dengan formula: 

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑞, 𝑑) =
𝑞 ⋅ 𝑑

|𝑞| |𝑑|
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Misalkan dokumen chunk ke-157 adalah tentang "Lab MOCAP": 

Document chunk 157: 

"Laboratory of Multimedia, Computer, and Animation Programming (MOCAP) 

bertujuan untuk riset dan pengembangan aplikasi grafika & game..." 

Document embedding (d₁₅₇): [0.0198, -0.1401, 0.0823, ..., 0.1189] 

 

Perhitungan cosine similarity: 

𝑠𝑖𝑚(𝑞, 𝑑157) =
∑ 𝑞𝑖

768
𝑖=1 ⋅ 𝑑157,𝑖

√∑ 𝑞𝑖
2768

𝑖=1  ×  √∑ 𝑑157,𝑖
2768

𝑖=1

 

Hasil perhitungan (contoh): 

sim(q, d₁₅₇) = 0.847 

sim(q, d₂₃)  = 0.792  # Lab Komputasi 

sim(q, d₈₉)  = 0.735  # Lab Jaringan 

sim(q, d₁₂₃) = 0.681  # Tentang fasilitas umum 

sim(q, d₄₅)  = 0.623  # Tentang kurikulum 

 

FAISS melakukan operasi ini secara efisien menggunakan algoritma 

Approximate Nearest Neighbor (ANN) dengan IndexFlatIP (Inner Product), 

sehingga tidak perlu menghitung similarity dengan seluruh 384 chunk secara 

brute force. 

Langkah 3: BM25 Reranking 

Setelah FAISS menghasilkan kandidat awal (misalnya top-20), sistem 

melakukan reranking menggunakan BM25 untuk meningkatkan precision 

dengan mempertimbangkan term frequency dan document length. 

Formula BM25: 

𝐵𝑀25(𝑞, 𝑑) = ∑ 𝐼𝐷𝐹(𝑡)

𝑡∈𝑞

𝑓(𝑡, 𝑑) ⋅ (𝑘1 + 1)

𝑓(𝑡, 𝑑) + 𝑘1 ⋅ (1 − 𝑏 + 𝑏 ⋅
|𝑑|

𝑎𝑣𝑔𝑑𝑙
)

 

Keterangan: 
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𝑓(𝑡, 𝑑) = frekuensi term 𝑡 dalam dokumen 𝑑  
|𝑑| = panjang dokumen 𝑑 (jumlah kata) 

𝑎𝑣𝑔𝑑𝑙 = rata-rata panjang dokumen dalam korpus 

𝑘1 = 1.5 dan 𝑏 =  0.75 (parameter standar) 

𝐼𝐷𝐹(𝑡) = log (
𝑁 − 𝑛(𝑡) + 0.5

𝑛(𝑡) + 0.5
) 

𝑁 = total dokumen (512)  

𝑛(𝑡) = jumlah dokumen yang mengandung term 𝑡 

 

Perhitungan untuk dokumen 157 (Lab MOCAP): 

Query term: "laboratorium" 

IDF("laboratorium"): 

- n("laboratorium") = 8 dokumen mengandung kata ini 

- IDF = log((512 - 8 + 0.5) / (8 + 0.5)) = log(59.35) = 4.08 

 

Term frequency dalam dokumen 157: 

- f("laboratorium", d₁₅₇) = 2  # muncul 2 kali 

- |d₁₅₇| = 45 kata 

- avgdl = 120 kata (rata-rata korpus) 

BM25(q, d₁₅₇) = 4.08 × (2 × 2.5) / (2 + 1.5 × (1 - 0.75 + 0.75 × 45/120)) 

              = 4.08 × 5 / (2 + 1.5 × 0.53125) 

              = 4.08 × 5 / 2.797 

              = 7.29 

 

Langkah 4: Hybrid Score Combination 

Skor akhir menggabungkan hasil FAISS (semantic) dan BM25 (lexical) 

dengan weighted average: 

final_score = α ⋅ FAISS_score + (1 − α) ⋅ BM25_scorenormalized 

Dengan 𝛼 = 0.6 (bobot semantic lebih tinggi):  

FAISS score d₁₅₇  = 0.847 

BM25 score d₁₅₇   = 7.29 → normalized = 0.891  # dinormalisasi ke range 

[0,1] 

 

Final score d₁₅₇ = 0.6 × 0.847 + 0.4 × 0.891 = 0.508 + 0.356 = 0.864 

 

Proses ini dilakukan untuk semua kandidat, kemudian diurutkan: 

Top-5 Hasil Retrieval: 

1. Chunk 157 (Lab MOCAP)      → score: 0.864 

2. Chunk 23  (Lab Komputasi)  → score: 0.812 
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3. Chunk 89  (Lab Jaringan)   → score: 0.751 

4. Chunk 234 (Fasilitas Lab)  → score: 0.698 

5. Chunk 78  (Penelitian Lab) → score: 0.645 

 

Metadata chunk-157 dari chunks_meta-2.json: 

{ 

  "chunk_id": 157, 

  "text": "Laboratory of Multimedia, Computer, and Animation 

Programming...", 

  "source_url": "https://informatika.uin-malang.ac.id/laboratorium/", 

  "title": "Laboratorium - Teknik Informatika" 

} 

 

b. Contoh 2: Query Panjang (5 kata) - "kurikulum dan profil lulusan program studi 

informatika" 

Langkah 1: Query Embedding 

Query yang lebih panjang menghasilkan representasi semantik yang 

lebih kaya: 

Query: "kurikulum dan profil lulusan program studi informatika"  

Tokenization: [101, 24156, 15732, 18345, 19234, 23567, 17890, 19834, 102] 

Query embedding (q): [0.1245, -0.0892, 0.1567, ..., -0.0734] # 768 dimensi 

 

Langkah 2: FAISS Similarity Search 

Dengan query yang lebih spesifik, FAISS menemukan dokumen dengan 

semantic match yang lebih tertarget: 

Top FAISS results: 

sim(q, d₃₄₅) = 0.923  # Halaman kurikulum utama 

sim(q, d₃₄₆) = 0.918  # Profil lulusan section 

sim(q, d₃₄₇) = 0.887  # Deskripsi mata kuliah 

sim(q, d₁₂)  = 0.821  # Visi misi prodi 

sim(q, d₅₆)  = 0.798  # Tentang prodi 

 

Langkah 3: BM25 Reranking 

BM25 untuk multi-term query menjumlahkan kontribusi setiap term: 
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Query terms: ["kurikulum", "profil", "lulusan", "program", "studi", 

"informatika"] 

 

Untuk dokumen 345 (halaman kurikulum): 

- Term frequencies: 

  f("kurikulum", d₃₄₅) = 8 

  f("profil", d₃₄₅) = 0 

  f("lulusan", d₃₄₅) = 3 

  f("program", d₃₄₅) = 6 

  f("studi", d₃₄₅) = 5 

  f("informatika", d₃₄₅) = 12 

 

- IDFs: 

  IDF("kurikulum") = 3.45 

  IDF("profil") = 4.12 

  IDF("lulusan") = 4.89 

  IDF("program") = 2.34 

  IDF("studi") = 2.01 

  IDF("informatika") = 1.23 

 

BM25(q, d₃₄₅) = Σ [IDF(t) × scoring_function(t)] 

              = 3.45×5.67 + 0 + 4.89×2.83 + 2.34×4.23 + 2.01×3.54 + 

1.23×7.89 

              = 19.57 + 0 + 13.84 + 9.90 + 7.12 + 9.71 

              = 60.14 

 

Langkah 4: Hybrid Score & Final Ranking 

Final scores: 

1. Chunk 345 (Kurikulum)       → 0.6×0.923 + 0.4×0.945 = 0.932 

2. Chunk 346 (Profil Lulusan)  → 0.6×0.918 + 0.4×0.912 = 0.915 

3. Chunk 12  (Visi Misi)       → 0.6×0.821 + 0.4×0.856 = 0.835 

4. Chunk 347 (Mata Kuliah)     → 0.6×0.887 + 0.4×0.734 = 0.826 

5. Chunk 56  (Tentang Prodi)   → 0.6×0.798 + 0.4×0.798 = 0.798 

 

Output retrieval untuk tahap generation berupa list dictionary: 

retrieved_docs = [ 

    { 

        "chunk_id": 345, 

        "text": "Program Studi Teknik Informatika UIN Malang memiliki 

kurikulum...", 

        "score": 0.932, 

        "metadata": {...} 

    }, 
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    # ... top-5 chunks 

] 

 

Dari contoh di atas terlihat bahwa query panjang menghasilkan skor similarity 

yang lebih tinggi (0.923 vs 0.847) karena representasi semantik yang lebih 

spesifik dan matching term yang lebih banyak di BM25. Hal ini konsisten 

dengan hasil pengujian di Tabel 4.31 yang menunjukkan query 5+ kata 

memiliki NDCG@5 = 0.25, lebih tinggi dibanding query 1 kata (0.19). 

 

4.2.5 Contoh Perhitungan Tahap Generation Pada RAG 

Tahap generation merupakan proses pembangkitan jawaban oleh model 

bahasa TinyLlama 1.1B berdasarkan konteks dokumen hasil retrieval. Proses ini 

melibatkan konstruksi prompt, komputasi self-attention dalam arsitektur 

transformer, dan decoding output menjadi teks jawaban. 

a. Contoh 1: Query "laboratorium" (dari retrieval sebelumnya) 

Langkah 1: Prompt Construction 

Hasil top-3 retrieval digabungkan dengan system instruction 

membentuk prompt untuk LLM: 

system_prompt = """Kamu adalah asisten virtual Prodi Teknik Informatika 

UIN Malang. 

Jawab pertanyaan berdasarkan konteks yang diberikan dengan bahasa 

Indonesia yang sopan. 

 

context_docs = """ 

[Dokumen 1] 

Laboratory of Multimedia, Computer, and Animation Programming (MOCAP) 

bertujuan  

untuk riset dan pengembangan aplikasi grafika & game... 

[Dokumen 2] 

Laboratorium Komputasi menyediakan fasilitas untuk praktikum mata kuliah... 

[Dokumen 3] 
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Lab Jaringan Komputer dilengkapi dengan perangkat networking untuk 

pembelajaran... 

user_query = "laboratorium" 

 

full_prompt = 

f"{system_prompt}\n\nKonteks:\n{context_docs}\n\nPertanyaan: 

{user_query}\n\nJawaban:" 

 

Total prompt length: ~450 tokens (masih dalam batas context window 2048). 

Langkah 2: Tokenization & Input Embedding 

Prompt di-tokenize menjadi sequence of token IDs, kemudian dikonversi 

ke embedding vectors: 

Tokenized prompt: [1, 1234, 5678, 2345, ..., 9876, 2]  # 450 tokens 

Token IDs → Embedding lookup table (vocab_size=32000, embed_dim=2048) 

Input embeddings: 𝑋 ∈ ℝ(450×2048) 

 

TinyLlama menggunakan dimensi hidden 2048 

Langkah 3: Self-Attention Mechanism 

Ini adalah inti dari arsitektur transformer yang sudah dijelaskan pada 

bab 3. Untuk setiap layer (TinyLlama memiliki 22 layers), dilakukan komputasi 

self-attention: 

• Multi-Head Self-Attention: 

Untuk setiap token position, model menghitung Query (Q), Key (K), dan 

Value (V) vectors melalui linear transformations: 

𝑄 = 𝑋𝑊𝑄 ,  𝐾 = 𝑋𝑊𝐾 ,  𝑉 = 𝑋𝑊𝑉 

dengan 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 ∈ 𝑅𝟚𝟘𝟜𝟠×𝟚𝟘𝟜𝟠 adalah learned weight matrices. 

 

• Attention Score Calculation: 

Formula attention dibahas pada bab 3 yaitu seperti berikut: 
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Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 

dengan 𝑑𝑘 = 2048 adalah dimensi key vector. 

Contoh perhitungan untuk token "laboratorium" (posisi ke-423 dalam 

sequence): 

Q₄₂₃ = [0.234, -0.156, 0.891, ..., 0.345]  # 2048-dim query vector 

K₄₂₂ = [0.198, -0.134, 0.823, ..., 0.312]  # key dari token sebelumnya 

K₄₂₁ = [0.145, -0.089, 0.756, ..., 0.278]  # key dari 2 token sebelumnya 

 

Attention score dengan token sebelumnya: 

score₄₂₃,₄₂₂ = (Q₄₂₃ · K₄₂₂) / √2048 

= 234.56 / 45.25 

= 5.18 

Attention scores untuk semua previous tokens: 

scores = [0.12, 0.45, 1.23, ..., 3.45, 5.18]  # 423 values 

 

• Softmax normalization: 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒𝑠) 

= [0.001, 0.003, 0.007, ..., 0.082, 0.145] 

• Value Aggregation: 

Attention weights digunakan untuk weighted sum dari value vectors: 

output423 = ∑ attention_weights𝑖

423

𝑖=1

× 𝑉𝑖 

output₄₂₃ = 0.001×V₁ + 0.003×V₂ + ... + 0.145×V₄₂₂ 

   = [0.456, -0.234, 0.678, ..., 0.123]  # 2048-dim 

 

 

 

• Multi-Head Attention: 



123 

 

 

Proses ini diulang untuk 32 attention heads secara parallel, kemudian 

hasilnya di-concatenate: 

Head 1: output₁ = Attention(Q₁, K₁, V₁)  # fokus ke syntax patterns 

Head 2: output₂ = Attention(Q₂, K₂, V₂)  # fokus ke semantic relations 

      … 

Head 32: output₃₂ = Attention(Q₃₂, K₃₂, V₃₂)  # fokus ke long-range 

dependencies 

𝑀𝑢𝑙𝑡𝑖 − ℎ𝑒𝑎𝑑𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑜𝑢𝑡𝑝𝑢𝑡1, … , 𝑜𝑢𝑡𝑝𝑢𝑡32) × 𝑊𝑂 

 

Setiap head mempelajari aspek yang berbeda dari relasi antar token. Ini 

yang membuat transformer powerful dalam memahami konteks. 

Langkah 4: Feed-Forward Network & Layer Norm 

Setelah attention, output akan melewati position-wise feed-forward 

network (jaringan feed-forward yang diterapkan secara independen pada setiap 

posisi token): 

FFN(𝑥) = ReLU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 

dengan dimensi intermediate 8192 (4× hidden size). 

Setiap sub-layer juga menggunakan residual connection dan layer 

normalization: 

LayerNorm(𝑥 + Sublayer(𝑥)) 

Proses attention → FFN → LayerNorm diulang 22 kali (22 transformer layers). 

Langkah 5: Autoregressive Decoding 

Model men-generate token satu per satu secara autoregressive. Untuk token 

pertama dari jawaban: 

• Hidden state terakhir: h₄₅₀ ∈ ℝ²⁰⁴⁸  # setelah 22 layers 

Logits = ℎ450 × 𝑊𝑙𝑚 + 𝑏𝑙𝑚,  𝑊𝑙𝑚 ∈ 𝑅𝟚𝟘𝟜𝟠×𝟛𝟚𝟘𝟘𝟘 

Probabilities = softmax(logits / temperature) 
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Top predictions: 

  token_id 15234 "Laboratory" → prob: 0.234 

  token_id 28456 "Lab"        → prob: 0.189 

  token_id 19234 "MOCAP"      → prob: 0.145 

 

Model memilih token dengan probability tertinggi (atau sampling dengan 

temperature): 

• Generated token 1: "Laboratory" (id: 15234) 

 

Token ini kemudian di-append ke input sequence, dan proses diulang: 

New input: [prompt tokens..., 15234] 

Forward pass → Next token: "of" (id: 302) 

...continues until EOS token or max length 

 

Langkah 6: Token-by-Token Generation (Contoh Real) 

Ilustrasi proses generation untuk query "laboratorium": 

Iteration 1: 

  Input context: [sistem prompt + docs + query] 

  Self-attention: menangkap relasi "laboratorium" dengan "MOCAP", 

"Multimedia" 

  Output logits: argmax → token "Laboratory" 

  Generated so far: "Laboratory" 

 

Iteration 2: 

  Input: [previous context + "Laboratory"] 

  Self-attention: fokus ke dokumen yang menyebut "MOCAP" 

  Output: token "of" 

  Generated: "Laboratory of" 

 

Iteration 3-10: 

  Self-attention progressively builds understanding 

  Generated: "Laboratory of Multimedia, Computer, and Animation 

Programming" 

 

Iteration 11: 

  Attention weights tinggi pada bagian "bertujuan untuk" 

  Generated: "Laboratory of Multimedia... (MOCAP) bertujuan" 

 

...continues until max_length (256 tokens) or EOS 

• Final Generated Answer (Vector → Text): 
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Output token IDs: [15234, 302, 19876, 23456, ..., 2]  # 87 tokens 

Detokenization: "Laboratory of Multimedia, Computer, and Animation 

Programming  

(MOCAP) bertujuan untuk melakukan riset dan pengembangan dalam bidang  

grafika, animasi, dan pemrograman game..." 

 

• Perhitungan Metrik Faithfulness: 

Sistem kemudian menghitung faithfulness dengan membandingkan n-gram 

generated answer dengan source documents: 

Generated answer n-grams: {"Laboratory of Multimedia", "Computer and 

Animation", ...} 

Source document n-grams: {"Laboratory of Multimedia", "Computer and 

Animation", ...} 

 

Overlap precision = |generated ∩ source| / |generated| 

= 65 / 78 = 0.833 

 

• Faithfulness score: 0.833 (tinggi, karena model secara garis besar mengutip 

dari dokumen). 

b. Contoh 2: Query "kurikulum dan profil lulusan program studi informatika" 

Langkah 1-2: Prompt Construction & Tokenization 

Query yang lebih panjang dan spesifik menghasilkan prompt dengan konteks 

lebih kaya: 

pythoncontext_docs = """ 

[Dokumen 1 - Score: 0.932] 

Program Studi Teknik Informatika UIN Malang memiliki kurikulum yang 

dirancang  

sesuai dengan standar KKNI level 6. Kurikulum mencakup 144 SKS dengan 

komposisi... 

 

[Dokumen 2 - Score: 0.915] 

Profil Lulusan Program Studi Informatika: 

1. Software Engineer - mampu merancang dan mengembangkan perangkat 

lunak... 

2. Data Scientist - mampu mengolah dan menganalisis big data... 

... 
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Tokenized prompt length: ~680 tokens (lebih panjang dari contoh 1) 

Langkah 3: Self-Attention dengan Konteks Kompleks 

Untuk query panjang, self-attention mechanism lebih panjang dan kompleks 

karena harus memahami relasi antar banyak konsep: 

• Attention weights visualization (disederhanakan): 

Token "kurikulum" (pos 650): 

  - High attention (0.234) ke "144 SKS" di dokumen 

  - High attention (0.189) ke "standar KKNI" 

  - Medium attention (0.087) ke "mata kuliah" 

 

Token "profil" (pos 652): 

  - High attention (0.312) ke section "Profil Lulusan" 

  - High attention (0.256) ke "Software Engineer" 

  - Medium attention (0.098) ke "Data Scientist" 

 

Token "lulusan" (pos 653): 

  - Very high attention (0.445) ke list profil lulusan 

  - Medium attention (0.134) ke deskripsi kompetensi 

 

Multi-head attention memungkinkan model untuk: 

- Head 1-8: fokus ke structural information (list, sections) 

- Head 9-16: fokus ke semantic relations (kurikulum→mata kuliah, 

profil→kompetensi) 

- Head 17-24: fokus ke specific details (144 SKS, KKNI level 6) 

- Head 25-32: fokus ke co-references dan context flow 

 

Langkah 4: Generation dengan Template-Based Pattern 

Untuk query informatif seperti ini, model cenderung menggunakan "template" 

yang dipelajari dari training data: 

Iteration 1-5: 

  Self-attention: identifies structure "kurikulum + profil" 

  Pattern recognition: "Program Studi X memiliki Y..." 

  Generated: "Program Studi Teknik Informatika" 

 

 

Iteration 6-15: 

  High attention ke "144 SKS", "KKNI level 6" 
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  Generated: "Program Studi Teknik Informatika memiliki kurikulum yang  

              terdiri dari 144 SKS dengan standar KKNI level 6" 

 

Iteration 16-40: 

  Attention shifts to "Profil Lulusan" section 

  Generated: "...Profil lulusan meliputi Software Engineer yang mampu  

              merancang dan mengembangkan perangkat lunak, Data Scientist  

              yang mampu mengolah big data..." 

 

Output Akhir: 

Generated answer (142 tokens): 

"Program Studi Teknik Informatika UIN Maulana Malik Ibrahim Malang 

memiliki kurikulum yang dirancang sesuai standar KKNI level 6 dengan total 

144 SKS. Kurikulum mencakup mata kuliah wajib dan pilihan yang mendukung 

kompetensi lulusan. Profil lulusan program studi ini meliputi Software 

Engineer yang mampu merancang dan mengembangkan perangkat lunak 

berkualitas, Data Scientist yang mampu mengolah dan menganalisis big data, 

serta Network Administrator yang mampu mengelola infrastruktur jaringan." 

 

Evaluation metrics: 

- Semantic Similarity vs ground truth: 0.6966 (tinggi!) 

- Faithfulness: 0.7234 (model tetap grounded) 

- Answer Relevancy: 0.6966 (relevan dengan query) 

 

Hasil ini konsisten dengan Tabel 4.34 yang menunjukkan query 5+ kata 

memiliki Semantic Similarity tertinggi (0.4719). 

• Peran Self-Attention dalam Kualitas Generation: 

Berdasarkan kedua contoh yang telah dipaparkan sebelumnya, dapat 

diamati bahwa mekanisme self-attention yang telah dijelaskan pada bab 3 

secara implisit diimplementasikan dalam model TinyLlama 1.1B. Setiap 

kali model melakukan forward pass untuk menghasilkan token, 22 layer 

transformer dengan 32 attention heads bekerja secara bersamaan untuk 

memproses informasi. Mekanisme ini memungkinkan model memahami 

konteks global dimana attention weights yang tersebar memungkinkan 
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model untuk melihat seluruh dokumen sekaligus, sehingga informasi dari 

berbagai bagian dokumen dapat diintegrasikan. Selain itu, mekanisme ini 

juga mampu menangkap dependensi jarak jauh, dimana token seperti 

"profil" yang muncul di awal query dapat mempengaruhi pemilihan kata di 

akhir jawaban yang dihasilkan. Kemampuan lain yang dimiliki adalah fokus 

pada informasi relevan, dimana attention mechanism secara otomatis 

memberikan bobot tinggi pada bagian dokumen yang sesuai dengan query 

pengguna. 

Namun demikian, limitasi model kecil dengan 1.1 miliar parameter 

menyebabkan beberapa masalah dalam proses generation. Pertama, terjadi 

repetition loops dimana attention weights kadang terjebak pada token yang 

sama, sehingga menyebabkan pengulangan kata atau frasa secara 

berlebihan. Kedua, terjadi loss of coherence terutama ketika menghadapi 

konteks yang panjang melebihi 500 tokens, dimana attention weights 

menjadi terlalu terdistribusi atau diffuse sehingga model kehilangan fokus 

dan menghasilkan output yang tidak koheren. Ketiga, penggunaan Bahasa 

Indonesia yang janggal terjadi karena model di-pretrain sebagian besar 

dengan data berbahasa Inggris, sehingga proses fine-tuning untuk Bahasa 

Indonesia tidak sempurna mengubah attention patterns yang telah terbentuk 

selama tahap pre-training. 

Kondisi-kondisi tersebut menjelaskan mengapa nilai Faithfulness 

sebesar 0.55 lebih tinggi dibandingkan Semantic Similarity sebesar 0.38. 

Mekanisme self-attention berhasil menemukan informasi yang tepat dari 
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dokumen sehingga menghasilkan faithfulness yang baik, namun cara 

menyusun informasi tersebut menjadi kalimat yang natural masih lemah 

sehingga menghasilkan similarity yang rendah terhadap reference answer. 

 

4.3 Analisis Hasil 

Berdasarkan hasil evaluasi retrieval dan generation yang telah dipaparkan 

pada subbab 4.2, dilakukan analisis mendalam untuk memahami performa sistem, 

pola perilaku, dan implikasinya terhadap pengalaman pengguna. 

 

4.3.1 Analisis Komparatif Retrieval vs Generation 

Untuk memahami dinamika performa antara kedua komponen utama sistem 

RAG, dilakukan analisis komparatif yang membandingkan hasil evaluasi retrieval 

menggunakan metrik NDCG@5 dengan hasil evaluasi generation menggunakan 

metrik Semantic Similarity. Perbandingan ini penting untuk mengidentifikasi 

kekuatan dan kelemahan masing-masing komponen pada berbagai kategori query. 

Tabel 4.36 menyajikan perbandingan performa antara komponen retrieval dan 

generation pada setiap kategori panjang query, beserta gap nilai dan 

interpretasinya. 

Tabel 4.36 Perbandingan Performa Retrieval (NDCG@5) vs Generation (Semantic Similarity) 

Kategori 

Query 

Retrieval 

(NDCG@5) 

Generation 

(Sem. Sim.) 
Gap Interpretasi 

1 kata 0.29 0.47 +0.18 
Generation lebih baik memanfaatkan 

dokumen hasil retrieval 

2 kata 0.20 0.35 +0.15 
Generation berhasil mengompensasi 

retrieval yang lemah 

3 kata 0.20 0.28 +0.08 Keduanya struggle pada kategori ini 

4 kata 0.28 0.38 +0.10 
Performa seimbang dengan gap 

moderat 
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Tabel 4.36 Lanjutan 

Kategori 

Query 

Retrieval 

(NDCG@5) 

Generation 

(Sem. Sim.) 
Gap Interpretasi 

5+ kata 0.25 0.47 +0.22 
Generation unggul signifikan dengan 

informasi lengkap 

Scrambled 0.68 0.33 -0.35 Retrieval lebih robust 

 

Berdasarkan data pada Tabel 4.36, teridentifikasi pola umum dimana 

komponen generation menunjukkan performa yang lebih baik dibandingkan 

retrieval pada 5 dari 6 kategori query, yaitu dari query 1 kata hingga 5+ kata. Gap 

positif berkisar antara +0.08 hingga +0.22, dengan nilai tertinggi terjadi pada query 

5+ kata. Fenomena ini mengindikasikan bahwa meskipun retrieval tidak selalu 

berhasil menempatkan dokumen relevan pada ranking teratas yang tercermin dari 

nilai NDCG yang rendah, model language generation TinyLlama 1.1B masih 

mampu mengekstrak dan menyintesis informasi yang dibutuhkan dari dokumen-

dokumen yang berhasil di-retrieve. Temuan ini menunjukkan efektivitas 

pendekatan RAG dimana kelemahan pada tahap retrieval dapat dikompensasi oleh 

kemampuan generative model untuk memahami konteks dari multiple dokumen, 

bukan hanya bergantung pada dokumen yang berada di posisi teratas hasil retrieval. 

Anomali menarik ditemukan pada kategori query scrambled yang 

menunjukkan pola berlawanan dengan gap 130enyusun sebesar -0.35. Pada 

kategori ini, retrieval sangat unggul dengan nilai NDCG@5 sebesar 0.68 yang 

merupakan nilai tertinggi dari semua kategori, namun generation menunjukkan 

performa lemah dengan Semantic Similarity hanya 0.33. Kekuatan retrieval pada 

query scrambled dapat dijelaskan melalui karakteristik komponen BM25 dalam 

sistem hybrid retrieval yang melakukan keyword matching secara 

130enyusun130c130 per-term. Query seperti “java komunitas mahasiswa akademik 
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prodi struktur” mengandung banyak kata kunci penting, dan BM25 tidak terganggu 

oleh urutan kata sehingga tetap menemukan dokumen relevan dengan overlap kata 

kunci yang tinggi. Kombinasi dengan FAISS yang menangkap konteks 131enyusun 

keseluruhan menghasilkan performa retrieval yang sangat baik. 

Sebaliknya, kelemahan generation pada query scrambled terjadi karena 

model language TinyLlama 1.1B bergantung pada struktur 131enyusun131c untuk 

memahami intent query. Query tanpa struktur gramatikal yang jelas membuat 

model mengalami kebingungan mengenai informasi apa yang harus diekstrak dari 

dokumen. Model cenderung melakukan fallback ke strategi copy-paste dari 

dokumen tanpa melakukan sintesis yang bermakna, sehingga menghasilkan 

Semantic Similarity yang rendah meskipun nilai Faithfulness tinggi mencapai 0.68. 

Implikasi praktis dari temuan ini adalah untuk query yang tidak terstruktur atau 

mengandung noise, sistem retrieval sangat dapat diandalkan untuk menemukan 

dokumen relevan, namun pengguna mungkin perlu membaca dokumen sumber 

secara langsung alih-alih mengandalkan jawaban yang di-generate oleh sistem. 

Temuan penting lainnya adalah gap terbesar terjadi pada query dengan 5+ 

kata yang mencapai +0.22, dimana generation jauh lebih unggul dibandingkan 

retrieval. Query panjang memberikan konteks lengkap yang memudahkan model 

language untuk memahami intent pengguna dengan lebih baik. Meskipun retrieval 

hanya menunjukkan performa moderat dengan NDCG@5 sebesar 0.25, model 

generation mampu menyintesis informasi dari multiple dokumen dengan baik. Hal 

ini terjadi karena model language modern termasuk TinyLlama 1.1B dilatih untuk 
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memproses prompt panjang dengan konteks yang kaya, sehingga menghasilkan 

Semantic Similarity tertinggi sebesar 0.47 pada kategori query ini. 

 

4.3.2 Analisis Performa Retrieval 

Hasil pengujian retrieval menunjukkan pola yang cukup menarik. Sistem 

hybrid yang menggabungkan FAISS (semantic search) dan BM25 (lexical search) 

berhasil mencapai Recall@10 sebesar 1.0278, yang artinya sistem tidak hanya 

menemukan dokumen ground truth, tapi juga dokumen relevan tambahan yang 

tidak terdaftar secara manual. Ini membuktikan bahwa pendekatan hybrid memang 

efektif untuk menangkap relevansi dari berbagai aspek, baik makna 132enyusun 

maupun kecocokan kata kunci. 

Adapun yang cukup mengejutkan adalah performa terbaik justru muncul di 

kategori query acak (scrambled). Query yang tidak terstruktur seperti “java 

komunitas mahasiswa akademik prodi struktur” malah menghasilkan MRR@5 = 

0.58 dan Recall@10 = 1.83, jauh lebih tinggi dari kategori lain. Ini terjadi karena 

BM25 bekerja dengan cara term-independent matching, jadi urutan kata tidak 

terlalu berpengaruh. Selama keyword-nya ada banyak dan tersebar di berbagai 

dokumen, sistem bisa matching dengan baik. FAISS juga membantu menangkap 

konteks 132enyusun secara keseluruhan meskipun strukturnya acak. 

Sebaliknya, query pendek (1-2 kata) justru mengalami kesulitan di ranking 

teratas. MRR@3 untuk query 1 kata Cuma 0.10, yang berarti dokumen relevan 

jarang muncul di top-3 meskipun Recall@10-nya tinggi (1.20). Ini masalah 

ambiguitas, kata seperti “komunitas” atau “kurikulum” terlalu general sehingga 
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banyak dokumen yang sesuai, tetapi sistem kesulitan menentukan mana yang paling 

relevan. 

Query 3-4 kata menunjukkan performa paling stabil dan balance. Ini bagian 

bagusnya karena cukup spesifik untuk mengurangi ambiguitas, tetapi tidak terlalu 

panjang hingga terlalu spesifik. Untuk use case chatbot akademik, kategori ini 

paling realistis karena mahasiswa biasanya bertanya dengan format seperti “visi 

misi prodi” atau “ketua program studi informatika”. 

 

4.3.3 Analisis Performa Generation 

Performa generation secara keseluruhan berada di level moderat dengan 

Semantic Similarity dan Answer Relevancy masing-masing 0.38, sementara 

Faithfulness mencapai 0.55. Gap antara faithfulness dan semantic similarity ini 

menjadi temuan penting, artinya model dapat mengambil informasi yang benar dari 

dokumen (faithful), tapi cara menyampaikannya kurang natural dan tidak mirip 

dengan jawaban ideal yang ditulis manusia. 

Pola ini konsisten dengan karakteristik model kecil seperti TinyLlama 1.1B. 

Model dengan 1.1 miliar parameter ini memang punya keterbatasan dalam 

memahami konteks kompleks dan menghasilkan teks yang koheren dalam bahasa 

Indonesia. Yang sering terjadi adalah repetition loops, model stuck mengulang-

ulang frasa yang sama, atau terjadi degenerative output di mana jawabannya jadi 

tidak sesuai sama sekali. 

Query 3 kata menunjukkan performa terburuk dengan Semantic Similarity 

hanya di angka 0.28. Ini 133enyusu karena seharusnya 3 kata itu optimal seperti 

yang terlihat di retrieval. Ternyata masalahnya terdapat pada context window 
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pressure. Dengan 3 dokumen masing-masing sekitar 1200 karakter ditambah 

system prompt dan query, total token mendekati batas 2048. TinyLlama menjadi 

“tertekan” dan outputnya jadi membingungkan atau bahkan fallback ke template 

jawaban seperti “informasi tersebut tidak tersedia dalam database” padahal 

dokumennya jelas ada. 

Terdapat temuan menarik, yaitu pada query >5 kata justru menunjukkan 

skor Semantic Similarity tertinggi (0.47). Hipotesisnya, query panjang memberikan 

lebih banyak clue dan konteks yang membuat prompt lebih terarah. Model menjadi 

lebih fokus dan berhasil melakukan generation berdasarkan template dengan lebih 

baik. Contohnya query “kurikulum dan profil lulusan program studi informatika” 

bisa menghasilkan Semantic Similarity sampai 0.69. 

Untuk scrambled query, faithfulness-nya bahkan paling tinggi (0.68) tetapi 

semantic similarity-nya rendah di angka (0.33). Ini terjadi karena retrieval berhasil 

mendapatkan dokumen yang sangat relevan karena overlap pada keyword tinggi, 

kemudian model cenderung copy-paste dari dokumen tanpa benar-benar 

memahami maksud query. Strategi bertahan ini sebenarnya cukup efektif untuk 

model kecil dan lebih baik mengutip dokumen yang benar daripada mengarang dan 

membuat jawaban sendiri. 

 

 

4.3.4 Analisis Keterkaitan Retrieval dan Generation 

Gambar 4.10 menunjukkan bahwa performa retrieval yang tinggi tidak 

selalu menjamin generation yang bagus. Kategori scrambled adalah contoh paling 

jelas, dimana NDCG@5 mencapai angka 0.68 (retrieval excellent), tetapi Semantic 
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Similarity-nya malah turun ke 0.33 (generation poor). Gap sebesar -0.35 ini 

menunjukkan bottleneck ada di tahap generation, bukan pada tahap retrieval. 

Sebaliknya, kategori 1 kata dan 5+ kata menunjukkan peningkatan yang 

positif yaitu (+0.18 dan +0.22). Artinya meskipun dokumen yang di-retrieve belum 

sempurna, model generation berhasil “memperbaiki” output dengan cara 

135enyusun ulang informasi dari beberapa dokumen atau menambahkan konteks 

dari pemahaman bahasanya sendiri. 

Pola ini mengonfirmasi bahwa dalam arsitektur RAG, kedua komponen 

harus dioptimasi secara terpisah tapi juga dipertimbangkan sebagai satu kesatuan 

pipeline. Retrieval yang bagus dapat berujung sia-sia apabila generation lemah, dan 

generation yang kuat tetap butuh input berkualitas dari retrieval. 

 

4.3.5 Limitasi dan Tantangan Generation 

Dari seluruh data hasil pengujian dapat dilihat bahwa meskipun pada 

beberapa bagian generation memberikan hasil yang bagus tetap ditemukan 

beberapa kekurangan dan keterbatasan. Adapun beberapa limitasi utama yang 

ditemukan selama pengujian sistem adalah: 

 

4.3.3.1 Keterbatasan Model Generatif Kecil 

TinyLlama 1.1B dipilih karena pertimbangan efisiensi, bisa jalan di 

hardware terbatas tanpa perlu GPU high-end. Tetapi pilihan ini tantangannya jelas: 

model ini struggle dengan konteks panjang, sering terjadi stuck di repetition loops, 

dan kurang bagus dalam bahasa Indonesia. Contoh nyata adalah jawaban untuk 

query "ketua prodi" yang hasilnya "HANYA merujuk padan dengan HANYA 
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merujuk padan dengan..." berulang-ulang. Ini degenerative output yang tidak 

informatif sama sekali. 

 

4.3.3.2 Context Window Limitation 

Dengan maksimal 2048 tokens, sistem harus melakukan trim dokumen hasil 

retrieval. Untuk query yang butuh informasi dari banyak bagian dokumen, konteks 

yang diteruskan ke model jadi tidak lengkap dan sempurna. Ini terutama masalah 

di query 3-4 kata yang spesifik tapi butuh informasi detail. 

  

4.3.3.3 Ambiguitas Query Pendek 

Query 1-2 kata sangat ambiguous. "Komunitas" bisa merujuk ke Fun Java, 

GDSC, ETH0, atau komunitas lainnya. Sistem tidak punya mekanisme clarification 

asking, chatbot langsung menjawab berdasarkan dokumen top-1 yang belum tentu 

yang dimaksud user. 

  

4.3.3.4 Over-specification di Query Panjang 

Meskipun query 5+ kata menunjukkan semantic similarity tertinggi, ada 

risiko over-specification. Kalau user terlalu detail tapi dokumen tidak ada yang 

exact match dengan semua keyword, sistem bisa miss dokumen yang sebenarnya 

relevan. 

 

4.3.3.5 Tidak Ada Mekanisme Fallback 

Ketika model tidak yakin atau tidak menemukan informasi yang tepat, 

sistem tidak punya strategi fallback yang baik. Kadang model tetap memaksa jawab 
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(risiko hallucination), kadang fallback ke template "informasi tidak tersedia" 

padahal terdapat di dokumen. 

 

4.3.6 Implikasi Penggunaan Model Kecil (TinyLlama 1.1B) 

Keputusan untuk menggunakan TinyLlama 1.1B adalah atas dasar 

pertimbangan antara performa dan efisiensi. Pada konteks prodi yang resource-nya 

terbatas dan prioritasnya adalah kelayakan sistem yang bisa jalan di local machine, 

maka pilihan ini masuk akal. 

Dari hasil pengujian yang telah dilakukan menunjukkan bahwa model kecil 

sebenarnya cukup memiliki kapasitas untuk tugas tertentu, terutama yang sifatnya 

retrieval-heavy dan tidak butuh generation yang terlalu kreatif. Faithfulness 0.55 

membuktikan model bisa tetap grounded ke dokumen, ini kebiasaan yang 

diinginkan untuk pencarian informasi chatbot. 

Adapun yang kemudian menjadi masalah adalah kualitas bahasa output. 

Model pre-trained ini kebanyakan dilatih dengan data bahasa Inggris, jadi saat 

prompting dalam bahasa Indonesia, hasilnya sering janggal atau repetitif. 

Kedepannya, apabila terdapat resource lebih, dapat dilakukan upgrade ke model 

yang lebih besar (misalnya 3B atau 7B parameter) atau model yang secara spesifik 

dilatih untuk bahasa Indonesia bisa dan secara signifikan dapat meningkatkan skor 

semantic similarity dan answer relevancy. 

Tetapi harus diakui juga, untuk demonstrasi awal sistem RAG di lingkungan 

akademik dengan hardware terbatas, TinyLlama 1.1B sudah menunjukkan bahwa 

konsep RAG itu dapat bertahan dan bisa meneruskan nilai informasi meskipun 

dengan limitasi yang ada. 
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4.4 Integrasi Islam dan Maqasid Syariah 

Pengembangan Chatbot Informasi Akademik Teknik Informatika Berbasis 

Retrieval-Augmented Generation (RAG) tidak hanya dinilai dari aspek teknis, tetapi 

juga dianalisis dari perspektif nilai-nilai Islam, khususnya dalam kerangka Maqasid 

Syariah. Maqasid Syariah adalah prinsip-prinsip utama yang bertujuan 

mewujudkan kemaslahatan (maslahah) dan mencegah kerusakan (mafsadah) 

dalam kehidupan manusia. Lima tujuan utama (al-kulliyat al-khams) yang relevan 

dalam penelitian ini adalah: 

1. Hifz al-‘Aql (Menjaga Akal) 

2. Hifz al-‘Ilm (Menjaga dan Mengembangkan Ilmu) 

3. Hifz al-Nafs (Menjaga Jiwa dan Kedisiplinan Mahasiswa) 

4. Hifz al-Din (Integritas, kejujuran, dan etika pemanfaatan pengetahuan) 

Integrasi nilai-nilai tersebut memberikan dasar filosofis dan moral dalam 

pengembangan teknologi di lingkungan UIN Maulana Malik Ibrahim Malang, 

sehingga inovasi digital tidak lepas dari orientasi kebermanfaatan dan tanggung 

jawab etis. 

 

4.2.6 Hifz al-‘Aql (Menjaga dan Mengoptimalkan Akal) 

Penelitian ini bertujuan membantu mahasiswa memperoleh informasi 

akademik dengan cepat, akurat, dan terstruktur. Sistem chatbot berbasis RAG 

mengurangi cognitive overload mahasiswa saat mencari informasi manual pada 

website yang strukturnya kompleks. Allah berfirman: 

 هَلْ يَسْتَوِى الَّذِيْنَ يَ عْلَم وْنَ وَالَّذِيْنَ لَْ يَ عْلَم وْنَْۗ 
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“...apakah sama orang-orang yang mengetahui (hak-hak Allah) dengan orang-

orang yang tidak mengetahui (hak-hak Allah)?” (QS. Az-Zumar: 9) 

 

Pada NU Online dijelaskan bahwa ayat ini menegaskan pentingnya 

memudahkan akses terhadap ilmu pengetahuan. Chatbot ini menghilangkan 

hambatan informasi dan membantu mahasiswa menggunakan akal secara optimal 

dalam proses akademik. Adapun relevansinya dengan sistem adalah sebagai 

berikut: 

• Relevansi dengan sistem 

• Menyediakan informasi akademik tanpa ambiguitas. 

• Mengurangi kebingungan akibat informasi tercecer. 

• Mendukung proses belajar dan pengambilan keputusan akademik. 

 

4.2.7 Hifz al-‘Ilm (Menjaga Ilmu dan Keaslian Informasi) 

Salah satu isu krusial dalam era AI adalah disinformasi dan halusinasi 

model. Dengan menerapkan Retrieval-Augmented Generation, penelitian ini 

mengarahkan AI untuk selalu menjawab berdasarkan dokumen resmi prodi, bukan 

berdasarkan spekulasi. 

عْت  النَّبَِّ صَلَّى اللََّّ  عَليَْهِ وَسَلَّمَ يَ ق ول  إِنَّ كَذِبِا عَلَ  يَّ ليَْسَ كَكَذِب  عَلَى أَحَد   عَنْ الْم غِيرةَِ رَضِيَ اللََّّ  عَنْه  قاَلَ سََِ
 مَنْ كَذَبَ عَلَيَّ م تَ عَمِ داا فَ لْيَ تَ بَ وَّأْ مَقْعَدَه  مِنْ النَّارِ 

 

‘Dari al-Mughirah Radhiyallahu anhu, dia berkata, “Aku mendengar Rasûlullâh 

Shallallahu alaihi wa sallam bersabda, “Sesungguhnya berdusta atasku tidak 

seperti berdusta atas orang yang lain. Barangsiapa berdusta atasku dengan 

sengaja, maka hendaklah dia mengambil tempat tinggalnya di neraka”’. [HR. Al-

Bukhâri, no. 1229] 
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(HR. Al-Bukhâri dalam Shahih Bukhari Muslim (Al-Lu'lu' Wal Marjan), 

Kitab al-Janâiz: 23, Kitab Jenazah, bab ke-34, bab hal-hal yang dibenci dari 

meratapi orang yang telah meninggal dunia, hadis no. 4) (Fuad Abdul Baqi, 2017). 

 Hadis ini menjadi landasan etis untuk mencegah penyampaian informasi 

palsu atau mengada-ada (taḥrīf). Dalam konteks teknologi informasi, hadis ini 

menuntut sistem berbasis AI untuk tidak mengarang jawaban (hallucination), tidak 

menyebarkan data akademik yang salah, dan hanya menyampaikan informasi 

berdasarkan sumber yang valid dan terverifikasi. Prinsip kejujuran ini sejalan 

dengan konsep ṣidq (kejujuran) dan amānah (amanah) dalam Islam yang 

mewajibkan setiap penyampai informasi untuk memastikan kebenaran dan akurasi 

pesan yang disampaikan. 

 Relevansi hadis ini dengan sistem chatbot RAG yang dikembangkan 

tercermin dalam tiga aspek implementasi. Pertama, instruksi sistem (system 

prompt) pada TinyLlama menetapkan larangan tegas untuk menjawab tanpa 

merujuk pada konteks dokumen yang di-retrieve, dengan perintah eksplisit 

"JANGAN MENGARANG" sebagai guardrail untuk mencegah hallucination. 

Kedua, setiap jawaban yang dihasilkan sistem disertai source attribution berupa 

URL dokumen sumber yang memungkinkan pengguna melakukan verifikasi 

langsung, menjamin transparansi dan akuntabilitas informasi. Ketiga, metrik 

faithfulness dalam evaluasi sistem mengukur tingkat groundedness jawaban 

terhadap dokumen konteks, dengan hasil 0.549 yang mengkonfirmasi bahwa 

mayoritas jawaban tetap setia pada sumber dan tidak mengada-ada informasi yang 

tidak terdapat dalam dokumen. Dengan demikian, sistem tidak hanya memenuhi 
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standar teknis akurasi informasi, tetapi juga mengimplementasikan nilai kejujuran 

Islam dalam penyampaian informasi akademik kepada mahasiswa. 

 

4.2.8 Hifz al-Nafs (Menjaga Kenyamanan, Ketenangan, dan Kesiapan 

Mahasiswa) 

 Mahasiswa sering mengalami stres ketika harus mencari informasi penting 

menjelang PKLI, KRS, remedial, skripsi, dan seminar hasil. Chatbot ini membantu 

mengurangi tekanan psikologis karena informasi menjadi lebih mudah ditemukan, 

tersedia kapan pun, dan tidak lagi bergantung pada jam kantor atau admin. Allah 

berfirman: 

 .…ي ريِْد  اللَّٓ   بِك م  الْي سْرَ وَلَْ ي ريِْد  بِك م  الْع سْرَِۖ 
 

“Allah menghendaki kemudahan bagimu dan tidak menghendaki kesukaran” (QS. 

Al-Baqarah: 185). 

 

 

Dikutip dari NU Online, dari ayat tersebut, Allah itu senantiasa 

memudahkan hambanya di setiap keadaan yang dihadapi oleh hambanya. Dari sini 

dapat dipahami bahwa sistem chatbot juga sejalan dengan konsep memudahkan 

dimana kehadiran sistem chatbot dapat menghemat waktu pencarian informasi yang 

sebelumnya memakan puluhan menit, mengurangi potensi miskomunikasi antara 

mahasiswa dan pihak prodi, dan menjaga ketenangan jiwa mahasiswa dalam 

menjalani proses akademik. 

 

4.2.9 Hifz al-Din (Integritas, Kejujuran, dan Etika Teknologi)  

Integritas adalah aspek penting dalam pengembangan teknologi, khususnya 

di institusi Islam. Penelitian ini menjaga nilai-nilai kejujuran akademik: model 
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dilarang membuat data yang tidak ada, dimana sistem diarahkan untuk berkata 

“tidak tahu” jika konteks tidak tersedia, dan seluruh proses pengembangan 

dilakukan dengan niat memberikan kemaslahatan bagi civitas akademika.  

ا  َ وَق ول وا۟ قَ وْلْا سَدِيدا يَ ُّهَا ٱلَّذِينَ ءَامَن وا۟ ٱت َّق وا۟ ٱللََّّ   يَآَ
 

“Wahai orang-orang yang beriman, bertakwalah kepada Allah dan berkatalah 

dengan perkataan yang benar.” (QS. Al-Ahzab: 70). 

 

Rasulullah juga bersabda:  

الَ: »لِلََِّّ وَلِكِتَابِهِ  عَنْ تََيِم  الدَّارِيِ  أَنَّ النَّبَِّ صَلَّى الله  عَليَْهِ وَسَلَّمَ، قاَلَ: »الدِ ين  النَّصِيحَة « ق  لْنَا: لِمَنْ؟ قَ 
  «وَلِرَس ولِهِ وَلِِئَمَِّةِ الْم سْلِمِيَْ وَعَامَّتِهِمْ 

 

Bersumber dari Tamim Ad-Dari bahwa Nabi SAW bersabda, “Agama adalah 

nasihat.” Kami (sahabat Nabi) bertanya, “Untuk siapa?” Beliau menjawab, 

“Untuk Allah, Kitab, Rasul, para pemimpin muslimin dan mereka secara umum.” 

Hadits ini juga diriwayatkan oleh Bukhari, Abu Dawud, Tirmidzi, Nasa’i, Syafi’i, 

Ahmad, Darimi, Ibnu Hibban, Thabrani dan masih ada yang lainnya.  

 

Hadis Rasulullah صلى الله عليه وسلم yang menyatakan bahwa “Agama adalah nasihat” 

يحَةُ ) ينُ النَّصِّ  memberikan landasan moral bahwa setiap bentuk interaksi, termasuk (الد ِّ

dalam ranah teknologi, seyogianya dilandasi kejujuran, integritas, serta komitmen 

untuk menghadirkan manfaat yang benar bagi umat. Ketika para sahabat 

menanyakan kepada siapa nasihat itu ditujukan, Rasulullah  صلى الله عليه وسلم menegaskan bahwa 

nasihat mencakup hubungan dengan Allah, Kitab-Nya, Rasul-Nya, para pemimpin, 

dan seluruh masyarakat muslim. Dengan demikian, makna nasihat dalam hadis ini 

tidak hanya terbatas pada tutur lisan, tetapi juga mencakup penyampaian informasi 

yang akurat, bertanggung jawab, serta menghindari penyimpangan dalam bentuk 

apa pun. 
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Dalam konteks penelitian ini, prinsip nasihat tersebut menjadi relevan 

ketika diterapkan pada sistem chatbot akademik berbasis Retrieval-Augmented 

Generation (RAG). Hal ini tampak melalui beberapa aspek berikut: 

1. Chatbot sebagai sarana nasihat digital yang memberikan informasi benar bagi 

mahasiswa. 

Sebagaimana nasihat harus disampaikan dengan ketulusan dan kebenaran, 

chatbot dirancang untuk menyampaikan informasi akademik yang tepat, 

berbasis sumber resmi prodi. Hal ini membantu mahasiswa memperoleh 

pemahaman yang benar mengenai prosedur akademik, sehingga teknologi 

berfungsi sebagai bentuk “nasihat digital” yang selaras dengan nilai kejujuran 

dalam Islam. 

2. Menghindari manipulasi informasi dan menjaga prinsip kejujuran ilmiah. 

Hadis tersebut menekankan pentingnya amanah dan kejujuran dalam 

menyampaikan informasi. Implementasi RAG pada chatbot memastikan bahwa 

jawaban diambil dari sumber yang valid, bukan hasil halusinasi model. 

Pendekatan ini sejalan dengan nilai Hifz al-Dīn, yaitu menjaga kemurnian nilai 

kebenaran, menghindari manipulasi data, serta menegakkan integritas dalam 

pelayanan informasi akademik. 

3. Menjadi contoh penerapan etika Islam dalam teknologi modern. 

Ketika teknologi dikembangkan dengan menjunjung tinggi nilai ketelitian, 

kejujuran, dan kemanfaatan bagi masyarakat kampus, hal ini mencerminkan 

bentuk aktualisasi nasihat yang disebutkan dalam hadis. Chatbot bukan hanya 
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alat teknis, tetapi juga wujud komitmen etis untuk membantu civitas akademika 

dengan cara yang bertanggung jawab dan bernilai ibadah. 
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BAB V  

KESIMPULAN DAN SARAN

5.1 Kesimpulan 

Penelitian ini berhasil merancang dan mengimplementasikan sistem chatbot 

berbasis Retrieval-Augmented Generation (RAG) untuk layanan informasi 

akademik Program Studi Teknik Informatika UIN Maulana Malik Ibrahim Malang. 

Sistem terdiri dari tiga komponen utama: tahap pengumpulan data yang 

mengekstrak 384 potongan dokumen (chunk) dari 350 halaman website prodi, 

sistem pencarian informasi menggunakan gabungan metode pencarian semantik 

dan pencarian kata kunci dengan bobot 0.25, serta sistem pembangkit jawaban 

menggunakan model bahasa TinyLlama 1.1B dengan kapasitas pemrosesan 2048 

token. Implementasi menggunakan arsitektur layanan web berbasis Application 

Programming Interface (API) memungkinkan sistem berjalan mandiri pada 

perangkat dengan spesifikasi minimal (prosesor 4 core, memori 8GB) tanpa 

bergantung pada layanan komersial berbayar. 

Evaluasi komprehensif menggunakan 30 pertanyaan untuk pengujian 

pencarian (retrieval)dan 30 pertanyaan untuk pengujian pembangkit jawaban 

(generation) pada 6 kategori panjang pertanyaan mengungkap kinerja sistem yang 

beragam. Komponen pencarian informasi mencatat nilai kualitas peringkat sebesar 

0.258 dan tingkat penemuan dokumen sebesar 1.028, dengan kinerja terbaik pada 

pertanyaan acak (nilai 0.68) yang menunjukkan ketahanan sistem terhadap variasi 

struktur pertanyaan. Komponen pembangkit jawaban mencatat kemiripan semantik 

(Semantic Similarity) 0.381 dan Faithfulness terhadap dokumen 0.549, dengan 
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kinerja optimal pada pertanyaan 5+ kata (0.472) dan titik lemah pada pertanyaan 3 

kata (0.284). Faithfulness yang konsisten tinggi mengkonfirmasi model tetap 

mengacu pada dokumen sumber dan jarang mengada-ada informasi. Dari analisis 

perbandingan menunjukkan generation unggul di 5 dari 6 kategori dengan selisih 

positif 0.08 hingga 0.22, memvalidasi efektivitas pendekatan RAG dalam 

meningkatkan kinerja melalui penggabungan informasi dari berbagai dokumen. 

Pengujian konsistensi dengan mengulang pertanyaan yang sama sebanyak 

5 kali menghasilkan temuan penting bahwa sistem mampu menghasilkan jawaban 

yang identik dengan nilai variasi nol untuk pertanyaan faktual kritis yang telah 

dilindungi dengan mekanisme pengaman. Hal ini memvalidasi bahwa strategi 

mitigasi yang diimplementasikan berhasil mengatasi ketidakkonsistenan output 

yang diamati pada saat sidang. Limitasi yang teridentifikasi mencakup pengulangan 

kalimat sekitar 20%, kebocoran template instruksi sekitar 30%, dan kesulitan 

ekstraksi informasi spesifik seperti nama dan jabatan, yang merupakan karakteristik 

umum model bahasa berukuran kecil dengan keterbatasan pelacakan konteks. 

Limitasi ini berhasil dimitigasi melalui penyaringan pasca-pemrosesan dan solusi 

cadangan untuk pertanyaan kritis. 

Sistem membuktikan kelayakan pendekatan RAG dengan model berukuran 

kecil untuk aplikasi spesifik domain di institusi pendidikan, memberikan kontribusi 

praktis berupa solusi aksesibilitas informasi 24/7 dengan biaya minimal serta 

kontribusi metodologis berupa identifikasi kondisi optimal (pertanyaan 5+ kata) 

dan titik lemah (pertanyaan 3 kata) yang dapat menjadi acuan penelitian serupa di 

masa depan. 
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5.2 Saran  

Berdasarkan hasil penelitian, beberapa saran diajukan untuk pengembangan 

sistem dan penelitian lanjutan di bidang chatbot RAG untuk pendidikan: 

1. Melakukan upgrade model generation menjadi prioritas utama untuk mengatasi 

limitasi yang teridentifikasi. TinyLlama 1.1B dengan semantic similarity 0.38 

dan frekuensi repetition loops 20% menunjukkan keterbatasan signifikan model 

kecil. Penelitian selanjutnya dapat menggunakan model berkapasitas lebih besar 

seperti Llama-3-8B atau Qwen-7B yang memiliki kapasitas pemrosesan 4096+ 

token dan dukungan Bahasa Indonesia lebih baik, diperkirakan dapat 

meningkatkan kemiripan semantik menjadi 0.55-0.65 dan mengurangi keluaran 

yang bermasalah hingga di bawah 5%. Alternatif hemat biaya adalah 

penyesuaian model menggunakan teknik efisien dengan dataset spesifik 

akademik UIN Malang untuk meningkatkan kinerja tanpa melatih ulang seluruh 

model. 

2. Optimasi tahap preprocessing dan chunking sangat krusial namun sering 

diabaikan. Penelitian ini menggunakan chunking fixed-size 150 karakter yang 

dapat memotong informasi penting di tengah paragraf atau kalimat. Penelitian 

selanjutnya dapat mengeksplorasi semantic chunking yang mempertimbangkan 

batas kalimat, paragraf, atau bagian dokumen, serta pengayaan metadata untuk 

setiap potongan dengan informasi seperti tanggal publikasi, kategori konten, 

dan hierarki struktur dokumen. Strategi pemotongan yang lebih baik dapat 

meningkatkan relevansi pencarian sebesar 15-20% dan mengurangi fragmentasi 

konteks yang menyebabkan kesulitan saat generation pada pertanyaan 3 kata 
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3. Implementasi mekanisme perangkingan ulang seperti (reranker) seperti jina-

reranker-v2-base-multilingual sebagai tahap ketiga setelah pencarian semantik 

dan pencarian kata kunci dapat meningkatkan kualitas peringkat sebesar 15-

25%, terutama untuk kategori pertanyaan 2-3 kata yang saat ini mencatat nilai 

rendah (0.20). Mekanisme ini melakukan penilaian yang lebih presisi dengan 

mempertimbangkan interaksi semantik antara pertanyaan dan dokumen, lebih 

powerful dibanding penilaian dua arah yang digunakan pada pencarian 

semantik.  

4. Pembangunan pembangunan graf pengetahuan atau basis data terstruktur untuk 

menyimpan informasi faktual seperti nama dosen, jabatan, jadwal akademik, 

dan mata kuliah dapat meningkatkan akurasi pertanyaan faktual mendekati 95-

100%. Pendekatan gabungan antara pencarian faktual terstruktur dan RAG 

untuk pertanyaan penjelasan dapat mengombinasikan presisi tinggi dengan 

fleksibilitas pemahaman bahasa natural. 

5. Untuk deployment production sebaiknya dilengkapi monitoring dashboard 

untuk tracking pola pertanyaan (query patterns), rata-rata kemiripan semantik 

per kategori, frekuensi kesalahan, dan waktu respons. Mekanisme umpan balik 

dari pengguna penting untuk pengembangan berkelanjutan melalui 

pembelajaran aktif, di mana pertanyaan dengan umpan balik negatif 

diprioritaskan untuk diperbaiki baik melalui pembaruan basis pengetahuan 

maupun penyesuaian model. 

6. Penelitian lanjutan dapat melakukan studi ablasi dengan membandingkan 

kinerja sistem pencarian murni, generation murni, dan RAG lengkap untuk 
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mengukur kontribusi setiap komponen secara eksplisit. Studi pengguna dengan 

mahasiswa sebagai pengguna akhir menggunakan skala kegunaan sistem juga 

diperlukan untuk mengukur kepuasan dan tingkat adopsi aktual yang tidak 

terukur melalui evaluasi offline. 

Implementasi saran-saran ini secara bertahap dapat mengembangkan sistem 

menjadi solusi yang lebih mature untuk aksesibilitas informasi akademik di institusi 

pendidikan, sekaligus memberikan kontribusi metodologis bagi penelitian RAG di 

domain pendidikan Indonesia. 
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LAMPIRAN-LAMPIRAN

Tabel A.1 Dataset Query untuk Pengujian Retrieval 

ID Kategori Query Ground Truth URL 

Q1 1 kata komunitas https://informatika.uin-malang.ac.id/fun-java/ 

https://informatika.uin-malang.ac.id/etho/ 

https://informatika.uin-malang.ac.id/google-

developer-student-club-dsc/ 

https://informatika.uin-malang.ac.id/data-

science-enthusiast-dse/ 

Q2 1 kata kurikulum https://informatika.uin-

malang.ac.id/curriculum/ 

Q3 1 kata dosen https://informatika.uin-malang.ac.id/lecturer-

and-staff/ 

Q4 1 kata prestasi https://informatika.uin-malang.ac.id/1st-

winner-of-national-hackathon-competition-on-

bug-bounty-2022/ 

https://informatika.uin-malang.ac.id/1st-

winner-of-madinah-van-java-pencak-silat-

championship/ 

Q5 1 kata laboratorium https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q6 2 kata fun java https://informatika.uin-malang.ac.id/fun-java/ 

Q7 2 kata visi misi https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q8 2 kata profil prodi https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q9 2 kata eth0 komunitas https://informatika.uin-malang.ac.id/etho/ 

Q10 2 kata ketua prodi https://informatika.uin-malang.ac.id/lecturer-

and-staff/ 

https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q11 3 kata kurikulum informatika 

uin 

https://informatika.uin-

malang.ac.id/curriculum/ 

Q12 3 kata komunitas fun java https://informatika.uin-malang.ac.id/fun-java/ 
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https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/etho/
https://informatika.uin-malang.ac.id/lecturer-and-staff/
https://informatika.uin-malang.ac.id/lecturer-and-staff/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/fun-java/


 

 

ID Kategori Query Ground Truth URL 

Q13 3 kata struktur organisasi prodi https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q14 3 kata sejarah prodi 

informatika 

https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q15 3 kata laboratorium intelligent 

system 

https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q16 4 kata persyaratan kelulusan 

informatika uin 

https://informatika.uin-

malang.ac.id/curriculum/ 

Q17 4 kata ketua program studi 

informatika 

https://informatika.uin-malang.ac.id/lecturer-

and-staff/ 

https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q18 4 kata tujuan pembelajaran 

program studi 

https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q19 4 kata mata kuliah wajib 

informatika 

https://informatika.uin-

malang.ac.id/curriculum/ 

Q20 4 kata agenda kegiatan 

komunitas mahasiswa 

https://informatika.uin-

malang.ac.id/coordination-with-student-

communities/ 

https://informatika.uin-malang.ac.id/fun-java/ 

https://informatika.uin-malang.ac.id/etho/ 

Q21 5+ kata struktur organisasi 

jurusan teknik 

informatika uin 

https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q22 5+ kata mata kuliah wajib 

mahasiswa informatika 

uin 

https://informatika.uin-

malang.ac.id/curriculum/ 

Q23 5+ kata persyaratan kelulusan 

program studi teknik 

informatika 

https://informatika.uin-

malang.ac.id/curriculum/ 

Q24 5+ kata hubungan komunitas fun 

java dengan himpunan 

mahasiswa 

https://informatika.uin-malang.ac.id/fun-java/ 

https://informatika.uin-

malang.ac.id/coordination-with-student-

communities/ 

 

https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
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https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/lecturer-and-staff/
https://informatika.uin-malang.ac.id/lecturer-and-staff/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
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https://informatika.uin-malang.ac.id/coordination-with-student-communities/
https://informatika.uin-malang.ac.id/coordination-with-student-communities/
https://informatika.uin-malang.ac.id/fun-java/
https://informatika.uin-malang.ac.id/etho/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/undergraduate-s1/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
https://informatika.uin-malang.ac.id/curriculum/
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https://informatika.uin-malang.ac.id/coordination-with-student-communities/
https://informatika.uin-malang.ac.id/coordination-with-student-communities/
https://informatika.uin-malang.ac.id/coordination-with-student-communities/


 

 

ID Kategori Query Ground Truth URL 

Q25 5+ kata kurikulum dan profil 

lulusan program studi 

informatika 

https://informatika.uin-

malang.ac.id/curriculum/ 

https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q26 Scrambled java komunitas 

mahasiswa akademik 

prodi struktur 

https://informatika.uin-malang.ac.id/fun-java/ 

https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

Q27 Scrambled jurusan akademik sks 

kuliah komunitas 

random 

https://informatika.uin-

malang.ac.id/curriculum/ 

https://informatika.uin-

malang.ac.id/undergraduate-s1/ 

https://informatika.uin-malang.ac.id/fun-java/ 

Q28 Scrambled komunitas informatika 

acak jumbled kata tidak 

urut 

https://informatika.uin-malang.ac.id/fun-java/ 

https://informatika.uin-malang.ac.id/etho/ 

https://informatika.uin-malang.ac.id/google-

developer-student-club-dsc/ 

Q29 Scrambled kurikulum prodi 

informatika random kata 

tidak relevan 

https://informatika.uin-

malang.ac.id/curriculum/ 

Q30 Scrambled fun java organisasi 

mahasiswa acak tidak 

jelas 

https://informatika.uin-malang.ac.id/fun-java/ 

 

Tabel A.2 Dataset Query dan Reference Answer untuk Pengujian Generation 

ID Kategori Query Reference Answer 

G1 1 kata komunitas Program Studi Informatika memiliki berbagai 

komunitas minat seperti Fun Java, ETH0, MOCAP, 

GDSC, dan DSE yang membantu mahasiswa 

mengembangkan kompetensi sesuai bidangnya. 

G2 1 kata kurikulum Kurikulum Informatika UIN Malang memuat mata 

kuliah dasar informatika, mata kuliah keislaman, serta 

mata kuliah keahlian seperti pemrograman, basis data, 

jaringan komputer, dan kecerdasan buatan. 
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ID Kategori Query Reference Answer 

G3 1 kata dosen Dosen Program Studi Informatika terdiri dari tenaga 

pendidik profesional dengan keahlian di bidang 

pemrograman, jaringan, basis data, multimedia, 

sistem cerdas, serta bidang-bidang terkait lainnya.. 

G4 1 kata laboratorium Program Studi Informatika memiliki laboratorium 

yang mendukung pembelajaran seperti Laboratorium 

Programming, Intelligent System, Multimedia, dan 

Network Security 

G5 1 kata prestasi Mahasiswa Informatika UIN Malang telah meraih 

berbagai prestasi di tingkat nasional maupun 

internasional dalam kompetisi pemrograman, 

robotika, dan hackathon. 

G6 2 kata fun java Fun Java adalah komunitas pemrograman berorientasi 

objek yang membina mahasiswa dalam dasar-dasar 

Java dan menjadi fondasi bagi komunitas keahlian 

lainnya di Informatika UIN Malang. 

G7 2 kata visi misi Visi Program Studi Informatika adalah menjadi 

program studi yang integratif dalam 

mengintegrasikan ilmu pengetahuan dan nilai-nilai 

Islam serta berdaya saing internasional. Misi nya 

adalah menghasilkan lulusan yang berkarakter ulul 

albab dan mengembangkan ilmu pengetahuan 

teknologi informasi yang relevan. 

G8 2 kata profil prodi Program Studi Teknik Informatika UIN Maulana 

Malik Ibrahim Malang merupakan program sarjana di 

bawah Fakultas Sains dan Teknologi yang telah 

terakreditasi Unggul oleh LAM INFOKOM dan 

berfokus pada pengembangan teknologi informasi 

terintegrasi dengan nilai-nilai Islam. 

G9 2 kata ketua prodi Ketua Program Studi Teknik Informatika UIN 

Malang adalah Supriyono, M.Kom. 

G10 2 kata eth0 komunitas ETH0 adalah komunitas yang berfokus pada Linux 

dan open source untuk mengembangkan kemampuan 

mahasiswa di bidang sistem operasi dan keamanan 

jaringan. 



 

 

ID Kategori Query Reference Answer 

G11 3 kata kurikulum 

informatika uin 

Kurikulum Informatika UIN Malang terdiri dari mata 

kuliah wajib prodi, mata kuliah pilihan, dan mata 

kuliah keislaman yang tersusun dalam 8 semester 

dengan total 144 SKS. 

G12 3 kata komunitas fun 

java 

Komunitas Fun Java berfokus pada pembelajaran 

Object-Oriented Programming menggunakan bahasa 

Java untuk membekali mahasiswa dengan 

kemampuan dasar pemrograman yang kuat. 

G13 3 kata struktur organisasi 

prodi 

Struktur organisasi Program Studi Informatika terdiri 

dari ketua program studi, sekretaris program studi, 

dosen, koordinator laboratorium, serta staff 

administrasi pendukung. 

G14 3 kata sejarah prodi 

informatika 

Program Studi Informatika UIN Malang berkembang 

sebagai bagian dari Fakultas Sains dan Teknologi 

untuk memenuhi kebutuhan pendidikan teknologi 

informasi berbasis nilai-nilai Islami. 

G15 3 kata laboratorium 

intelligent system 

Laboratorium Intelligent System fokus pada 

penelitian dan pembelajaran kecerdasan buatan, 

machine learning, dan sistem cerdas lainnya. 

G16 4 kata persyaratan 

kelulusan 

informatika uin 

Kelulusan mahasiswa Informatika mensyaratkan 

pemenuhan 144 SKS kurikulum, penyelesaian Kerja 

Praktik, Tugas Akhir, serta memenuhi beban 

akademik dan administratif lainnya. 

G17 4 kata ketua program 

studi informatika 

Ketua Program Studi Teknik Informatika UIN 

Maulana Malik Ibrahim Malang adalah Supriyono, 

M.Kom. 

G18 4 kata mata kuliah wajib 

informatika 

Mata kuliah wajib Informatika mencakup 

pemrograman dasar, struktur data, basis data, jaringan 

komputer, rekayasa perangkat lunak, dan kecerdasan 

buatan. 

G19 4 kata tujuan 

pembelajaran 

program studi 

Tujuan pembelajaran Program Studi Informatika 

adalah menghasilkan lulusan yang kompeten di 

bidang teknologi informasi, memiliki karakter Islami, 

dan mampu bersaing di tingkat global. 

 



 

 

ID Kategori Query Reference Answer 

G20 4 kata agenda kegiatan 

komunitas 

mahasiswa 

Kegiatan komunitas mahasiswa meliputi workshop 

pemrograman, seminar teknologi, kompetisi IT, 

pelatihan keahlian, dan kegiatan pengembangan 

kompetensi lainnya. 

G21 5+ kata struktur organisasi 

jurusan teknik 

informatika uin 

Struktur organisasi Program Studi Teknik Informatika 

UIN Malang meliputi ketua prodi Supriyono M.Kom, 

sekretaris prodi Shoffin Nahwa Utama M.T, dosen, 

koordinator laboratorium, dan staf administrasi. 

G22 5+ kata mata kuliah wajib 

mahasiswa 

informatika uin 

Mata kuliah wajib mahasiswa Informatika UIN 

Malang mencakup pemrograman, algoritma, struktur 

data, basis data, jaringan komputer, rekayasa 

perangkat lunak, kecerdasan buatan, dan mata kuliah 

keislaman. 

G23 5+ kata persyaratan 

kelulusan program 

studi teknik 

informatika 

Persyaratan kelulusan Program Studi Teknik 

Informatika adalah menyelesaikan 144 SKS, 

menempuh Kerja Praktik minimal 1 bulan, 

menyelesaikan Tugas Akhir, serta memenuhi syarat 

akademik dan administratif lainnya. 

G24 5+ kata hubungan 

komunitas fun 

java dengan 

himpunan 

mahasiswa 

Komunitas Fun Java berkoordinasi dengan Himpunan 

Mahasiswa Jurusan untuk menyelenggarakan 

kegiatan pengembangan kompetensi pemrograman 

dan mendukung aktivitas akademik mahasiswa 

Informatika. 

G25 5+ kata kurikulum dan 

profil lulusan 

program studi 

informatika 

Kurikulum Program Studi Informatika dirancang 

untuk menghasilkan lulusan dengan profil sebagai 

Software Engineer, Data Scientist, Network Engineer, 

dan IT Consultant yang kompeten dan berakhlak 

mulia. 

G26 Scrambled java komunitas 

mahasiswa 

akademik prodi 

struktur 

Informatika memiliki komunitas seperti Fun Java 

yang fokus pada pengembangan kemampuan 

pemrograman Java bagi mahasiswa dan terintegrasi 

dengan struktur akademik prodi. 

G27 Scrambled jurusan akademik 

sks kuliah 

komunitas random 

Program Studi Informatika memiliki kurikulum 

berbasis SKS yang terdiri dari mata kuliah dasar 

informatika, keahlian, dan kegiatan komunitas 

sebagai sarana pengembangan mahasiswa. 



 

 

ID Kategori Query Reference Answer 

G28 Scrambled komunitas 

informatika acak 

jumbled kata tidak 

urut 

Komunitas di Informatika meliputi Fun Java, 

MOCAP, ETH0, GDSC, dan DSE yang membantu 

mahasiswa mengembangkan kompetensi sesuai minat 

masing-masing. 

G29 Scrambled kurikulum prodi 

informatika 

random kata tidak 

relevan 

Kurikulum Program Studi Informatika disusun secara 

terstruktur dengan mata kuliah wajib, pilihan, dan 

kegiatan pendukung untuk mencapai standar 

kompetensi lulusan. 

G30 Scrambled fun java organisasi 

mahasiswa acak 

tidak jelas 

Fun Java merupakan komunitas resmi Program Studi 

Informatika yang mengelola kegiatan pembelajaran 

pemrograman Java untuk mahasiswa. 
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