

1

zA

H ALAMAN JUDUL

VOICE RECOGNITION PADA SISTEM KONTROL PINTU GARASI PINTAR

MENGGUNAKAN SUPPORT VECTOR MACHINE

SKRIPSI

Oleh :

DIAH AYU RAHMA

NIM. 220605110006

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM

MALANG

2025

ii

HALAMAN PENGAJUAN

VOICE RECOGNITION PADA SISTEM KONTROL PINTU GARASI

PINTAR MENGGUNAKAN SUPPORT VECTOR MACHINE

SKRIPSI

Diajukan kepada:

Universitas Islam Negeri Maulana Malik Ibrahim Malang

Untuk memenuhi Salah Satu Persyaratan dalam

Memperoleh Gelar Sarjana Komputer (S.Kom)

Oleh :

DIAH AYU RAHMA

NIM. 220605110006

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM

MALANG

2025

iii

HALAMAN PERSETUJUAN

iv

HALAMAN PENGESAHAN

v

PERNYATAAN KEASLIAN TULISAN

vi

MOTTO

"Kalau hidup sering 404 atau 500, mungkin itu bagian dari sistem update."

vii

KATA PENGANTAR

Assalamu’alaikum Warahmatullahi Wabarakatuh.

Syukur Alhamdulillah senantiasa penulis panjatkan kepada Allah SWT

karena atas rahmat dan hidayah-Nya, sehingga penulis dapat tuntas menulis skripsi

yang berjudul “Voice Recognition Pada Sistem Kontrol Pintu Garasi Pintar

Menggunakan Support Vector Machine” dengan baik dan lancar.

Penulisan skripsi ini tidak terlepas dari bimbingan, doa, dan dukungan dari

berbagai pihak. Oleh sebab itu, penulis menyampaikan terimakasih kepada :

1. Prof. Dr. Ilfi Nur Diana, M.Si., CAHRM., CRMP., selaku Rektor Universitas

Islam Negeri Maulana Malik Ibrahim Malang.

2. Dr. Agus Mulyono, M.Kes., selaku Dekan Fakultas Sains dan Teknologi

Universitas Islam Negeri Maulana Malik Ibrahim Malang.

3. Bapak Supriyono, M.Kom., selaku Ketua Program Studi Teknik Informatika

Universitas Islam Negeri Maulana Malik Ibrahim Malang

4. Bapak Ajib Hanani, M.T, selaku dosen pembimbing I yang senantiasa

mendukung, membimbing, dan memberikan masukan dengan sabar selama

penulisan.

5. Ibu Roro Inda Melani, M.T, M.Sc, selaku dosen pembimbing II yang telah

memberikan masukan dan bimbingan untuk penulis dalam menyelesaikan

skripsi ini.

6. Bapak Johan Ericka Wahyu Prakasa, M.Kom, selaku dosen penguji I dan

Bapak Shoffin Nahwa Utama, M.T, selaku dosen penguji II yang telah

viii

memberikan saran, masukan, kritik, dan diskusi yang membangun sehingga

penulis dapat menyelesaikan skripsi dengan baik.

7. Nia Faricha S, Si selaku admin Program Studi Teknik Informatika yang selalu

sabar memberikan informasi, membantu, dan memberikan arahan selama

perkuliahan dan proses penulisan skripsi ini.

8. Dosen, laboran, dan jajaran staf Program Studi Teknik Informatika yang telah

memberikan ilmu, pengetahuan, dan dukungan selama penulis menjalani studi.

9. Diri saya sendiri yang telah melewati segala tantangan, kegagalan, dan

kegelisahan karena menjadi pemeran utama dalam perjalanan ini yang tetap

bertahan dan terus berjuang meskipun jalan yang dilalui tak selalu dimudahkan.

10. Orangtua dan adik yang selalu menyertakan doa, dukungan, dan semangat

kepada penulis selama masa perkuliahan dan penyusunan skripsi ini.

11. Teman terdekat, Fina Maslahatul Firhah yang saling mendukung dan

menguatkan serta mendorong penulis untuk terus semangat dan berjuang

bersama.

12. Sahabat sejak SMP, Rachma Pratama yang selalu menjadi pendengar setia dan

memberikan semangat agar penulis terus maju dan tidak menyerah.

13. Keluarga besar “IT Dasaria“, Riza, Aulia, Satrio, Awanda, Indra, Adit, yang

tidak pernah berhenti menyemangati penulis untuk segera menyelesaikan studi.

14. Taufik Ardiansyah Putra yang selalu memberikan motivasi, semangat, serta

menemani penulis dari awal hingga akhir proses penyusunan skripsi ini.

15. Pooky dan Locky, kucing kesayangan yang setia menemani penulis selama

proses penulisan skripsi.

ix

Sebagai penutup, penulis menyadari bahwa skripsi ini bukanlah hasil kerja

keras penulis seorang diri, melainkan hasil dukungan, doa, dan bantuan dari banyak

pihak. Semoga apa yang telah penulis kerjakan dapat bermanfaat bagi diri sendiri

dan orang lain. Penulis berharap, segala usaha dan doa yang tercurah dalam proses

ini dapat memberikan hasil yang maksimal dan menjadi amal jariyah bagi semua

pihak yang terlibat. Akhir kata, penulis memohon maaf atas segala kekurangan

yang mungkin terdapat dalam penyusunan skripsi ini. Semoga Allah swt senantiasa

memberkahi setiap langkah kita dan memberikan kemudahan dalam setiap usaha

yang kita jalani.

Wassalamu’alaikum warahmatullahi wabarakatuh.

Malang, 30 November 2025

 Penulis

x

DAFTAR ISI

HALAMAN JUDUL .. 1

HALAMAN PENGAJUAN .. ii

HALAMAN PERSETUJUAN... iii

HALAMAN PENGESAHAN .. iv

PERNYATAAN KEASLIAN TULISAN ... v

MOTTO .. vi

KATA PENGANTAR ... vii

DAFTAR ISI ... ix

DAFTAR GAMBAR ... xii

DAFTAR TABEL.. xii

ABSTRAK .. xiv

ABSTRACT .. xv

 xvi ... مستخلص البحث

BAB I PENDAHULUAN .. 1

1.1 Latar Belakang ... 1

1.2 Rumusan Masalah .. 4

1.3 Batasan Masalah .. 4

1.4 Tujuan Penelitian ... 5

1.5 Manfaat Penelitian ... 5

BAB II STUDI PUSTAKA ... 6

2.1 Penelitian Terkait ... 6

2.2 Teori Suara ... 9

2.3 Speaker Dependent .. 10

2.4 Voice Recognition .. 11

2.5 Mel-Frequency Cepstral Coefficients (MFCC) ... 11

2.6 Support Vector Machine (SVM) .. 13

2.7 Regular Expression (Regex) .. 13

2.8 Kata Filler .. 14

2.9 Hypertext Transfer Protocol (HTTP) .. 15

2.10 Internet of Things ... 15

2.11 Message Queuing Telemetry Transport (MQTT) .. 16

2.12 Arduino IDE ... 16

2.13 ESP32 ... 17

2.14 Infrared Sensor .. 17

BAB III DESAIN DAN IMPLEMENTASI ... 18

3.1 Desain Penelitian ... 18

3.1.1. Pengumpulan Data .. 20

3.1.2. Desain Sistem ... 23

3.1.2.1. Tahapan Input .. 24

3.1.2.2. Tahapan Process .. 24

3.1.2.3. Tahapan Output.. 25

3.1.2.4. Rangkaian Sistem .. 26

3.1.3. Penerapan Metode .. 29

xi

3.1.3.1. Pra-pemrosesan .. 30

3.1.3.2. Ekstraksi Fitur dengan MFCC ... 31

3.1.3.3. Pengenalan Speaker dengan Support Vector Machine 33

3.1.3.4. Pencocokan Perintah dengan Regex .. 35

3.1.3.5. Eksekusi Perintah .. 35

3.1.4. Uji Coba Sistem .. 36

3.1.4.1. Pengujian Pengenalan Speaker .. 36

3.1.4.2. Pengujian Pencocokkan Perintah Suara .. 37

3.1.5. Hasil Analisis .. 38

HASIL DAN PEMBAHASAN .. 40

4.1. Pengumpulan Data ... 40

4.2. Implementasi Metode .. 41

4.2.1. Pre-Processing Audio ... 41

4.2.1.1. Standarisasi .. 42

4.2.1.2. Normalisasi .. 42

4.2.1.3. Penyeragaman Durasi .. 43

4.2.2. Ekstraksi MFCC ... 44

4.2.2.1. Pre-Emphasis ... 45

4.2.2.2. Convert to Frames ... 46

4.2.2.3. Discrete Fourier Transformation .. 47

4.2.2.4. Log of Amplitude ... 47

4.2.2.5. Mel Scaling .. 47

4.2.2.6. Discrete Cosine Transformation .. 48

4.2.3. Pre-Processing Data ... 50

4.2.3.1. Cleaning .. 51

4.2.3.2. Normalisai ... 52

4.2.4. Pengenalan Speaker dengan SVM .. 54

4.2.4.1. Exploratory Data Analysis (EDA) ... 55

4.2.4.2. Hasil Data Splitting ... 56

4.2.4.3. Hasil Uji Coba Skenario 90:10 .. 57

4.2.4.4. Hasil Uji Coba Skenario 80:20 .. 59

4.2.4.5. Hasil Uji Coba Skenario 70:30 .. 61

4.2.5. Pencocokkan Kata dengan Regex... 62

4.3. Implementasi Komunikasi IoT .. 64

4.4. Implementasi Sistem .. 66

4.4.1. Sistem Software .. 66

4.4.1. Sistem Hardware .. 69

4.5. Hasil Pengujian Sistem .. 72

4.5.1. Pengujian Sistem Kontrol .. 72

4.5.2. Pengujian Error Sistem ... 76

4.6. Integrasi Islam ... 82

BAB V KESIMPULAN DAN SARAN ... 85

5.1 Kesimpulan .. 85

5.2 Saran .. 86

DAFTAR PUSTAKA

LAMPIRAN

xii

DAFTAR GAMBAR

Gambar 3.1. Alur Penelitian.. 18
Gambar 3.2. Alur Pengolahan Suara ... 21
Gambar 3.3. Desain Sistem ... 26
Gambar 3.4. Alur Rangkaian Sistem... 27
Gambar 3.5. Wiring Schema ... 28
Gambar 3.6. Implementasi Rangkaian .. 29
Gambar 3.7. Proses Ekstraksi Fitur MFCC ... 32
Gambar 3.8. Model Arsitektur SVM... 34
Gambar 4.1. Waveform Sinyal Suara Mentah ... 44
Gambar 4.2. Spektogram Suara Mentah ... 45
Gambar 4.3. Perbandingan Sinyal Sebelum dan Sesudah Proses Pre-Emphasis . 46
Gambar 4.4. Spektogram Hasil Transformasi Fourier ... 47
Gambar 4.5. Mel-Spectogram Hasil Pemetaan Frekuensi ke Skala Mel 48
Gambar 4.6. Representasi 13 Koefisien MFFC .. 49
Gambar 4.7. Histogram Fitur MFCC .. 56

Gambar 4.8. Confusion Matrix Skenario 1 ... 58
Gambar 4.9. Confusion Matrix Skenario 2 ... 60
Gambar 4.10. Confusion Matrix Skenario 3 ... 62
Gambar 4.11. Logo HiveMQ .. 64
Gambar 4.12. Tampilan Voice Control ... 67
Gambar 4.13. Tampilan Analytics ... 68
Gambar 4.14. Tampilan Activity Logs... 69
Gambar 4.15. Rangkaian Mikrokontroler dengan Sensor 70
Gambar 4.16. Rangkaian Motor Servo ... 71
Gambar 4.17. Penempatan IR Sensor ... 71
Gambar 4.18. Suara Pengguna dengan Perintah Tidak Terdaftar 73
Gambar 4.19. Suara bukan Pengguna yang sah .. 74
Gambar 4.20. Suara Pengguna dan Perintah Terdaftar ... 75

xiii

DAFTAR TABEL

Tabel 2.1. Penelitian Terkait ... 8
Tabel 2.2. Variasi Kalimat yang Digunakan dalam Pelatihan 22
Tabel 3.1. Hasil Ekstraksi Suara ... 33
Tabel 3.2. Tabel Pengujian Speaker dengan SVM ... 36
Tabel 3.3. Tabel Pengujian Pencocokkan Perintah dengan Regular Expression .. 37
Tabel 3.4. Skenario Pengujian Integrasi Sistem.. 38
Tabel 4.1. Distribusi Data Penelitian .. 41
Tabel 4.2. Karakteristik Sinyal Hasil Pre-Processing .. 43

Tabel 4.3. Hasil Ekstraksi MFCC ... 50
Tabel 4.3. Proses Cleaning pada Data .. 51
Tabel 4.4. Nilai Fitur Sebelum Normalisasi.. 53
Tabel 4.5. Nilai Fitur Setelah Normalisasi .. 53
Tabel 4.6. Hasil Rasio Pembagian Data .. 57

Tabel 4.7. Hasil Evaluasi Pengujian Skenario 1 ... 58
Tabel 4.8. Hasil Evaluasi Pengujian Skenario 2 ... 59
Tabel 4.9. Hasil Evaluasi Pengujian Skenario 3 ... 61
Tabel 4.10. Hasil Pengujian Error Sistem oleh Aulia .. 76
Tabel 4.11. Hasil Pengujian Error Sistem oleh Taufik ... 77
Tabel 4.12. Hasil Pengujian Error Sistem oleh Awanda 77
Tabel 4.13. Hasil Pengujian Error Sistem oleh Satrio .. 78
Tabel 4.14. Hasil Pengujian Error Sistem oleh Aditya .. 78
Tabel 4.15. Hasil Pengujian Error Sistem oleh Markamah 79
Tabel 4.16. Hasil Pengujian Error Sistem oleh Peneliti 80

xiv

ABSTRAK

Rahma, Diah Ayu. 2025. Voice Recognition Pada Sistem Kontrol Pintu Garasi

Pintar Menggunakan Support Vector Machine. Skripsi. Jurusan

Teknik Informatika Fakultas Sains dan Teknologi Universitas Islam

Negeri Maulana Malik Ibrahim Malang. Pembimbing: (I) Ajib Hanani,

M.T (II) Roro Inda Melani, M.T, M.Sc.

Kata kunci: Internet of Things (IoT), Mel Frequency Ceptral Coefficients

(MFCC), Pintu Garasi Pintar, Support Vector Machine, Voice

Recognition.

Penelitian ini mengembangkan sistem pintu garasi pintar berbasis speaker-

dependent voice recognition untuk meningkatkan keamanan dan efisiensi akses

pada lingkungan rumah. Sistem dirancang untuk mengenali identitas pengguna dan

perintah suara menggunakan algoritma Support Vector Machine (SVM) serta

pencocokan pola kata dengan Regular Expression (Regex). Proses pengiriman

rekaman suara dari aplikasi mobile ke backend dilakukan melalui protokol HTTP,

kemudian hasil prediksi diteruskan secara real time ke perangkat ESP32 melalui

MQTT untuk menggerakkan servo, LED, buzzer, dan sensor infrared. Dataset

terdiri dari 540 rekaman yang mencakup tiga jenis ujaran, masing-masing

diklasifikasikan ke dalam kelas Me dan Notme. Model SVM dilatih menggunakan

tiga skenario pembagian data, yaitu 90:10, 80:20, dan 70:30. Hasil pengujian

menunjukkan bahwa model Support Vector Machine (SVM) dengan kernel Radial

Basis Function (RBF), nilai Cost (C) = 10, dan Gamma (γ) = 0,5 memberikan

performa terbaik pada skenario 70:30, dengan tingkat akurasi sebesar 97,53%.

Selain itu, nilai Precision, Recall, dan F1-Score masing-masing mencapai 98%,

yang menunjukkan kemampuan generalisasi model yang kuat. Sistem berhasil

mengenali perintah “buka” dan “tutup” serta mengeksekusinya secara responsif,

meskipun masih ditemukan error sistem sebesar 13,57% yang dipengaruhi oleh

variasi kalimat, kesalahan transkripsi, serta kemiripan karakteristik akustik

antarpenutur. Hasil penelitian menunjukkan bahwa pendekatan speaker-dependent

berbasis SVM mampu memberikan performa tinggi untuk autentikasi suara dan

kontrol perangkat pintar, serta memiliki potensi pengembangan lebih lanjut melalui

perluasan dataset dan penyempurnaan modul pengenalan perintah.

xv

ABSTRACT

Rahma, Diah Ayu. 2025. Voice Recognition for Smart Garage Door Control

System Using Support Vector Machine. Undergraduate Thesis.

Department of Informatics Engineering, Faculty of Science and

Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang.

Advisors: (I) Ajib Hanani, M.T., (II) Roro Inda Melani, M.T., M.Sc.

This research develops a smart garage door system based on speaker-

dependent voice recognition to enhance security and access efficiency in residential

environments. The system is designed to identify users and interpret voice

commands using the Support Vector Machine (SVM) algorithm combined with

pattern matching through Regular Expressions (Regex). Audio recordings are

transmitted from the mobile application to the backend via the HTTP protocol, and

the prediction results are forwarded in real time to the ESP32 through MQTT to

control the servo motor, LEDs, buzzer, and infrared sensor. The dataset consists of

540 audio recordings covering three types of utterances, each classified into Me

and Notme categories. The SVM model was trained using three data-splitting

scenarios: 90:10, 80:20, and 70:30. The experimental results indicate that the

Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel, Cost

(C) = 10, and Gamma (γ) = 0.5 achieved the best performance in the 70:30

scenario, with an accuracy of 97.53%. In addition, the Precision, Recall, and F1-

score values each reached 98%, demonstrating strong generalization capability of

the model. The system successfully recognized the “open” and “close” commands

and executed them responsively, although a system error rate of 13.57% was still

observed, mainly influenced by sentence variations, transcription errors, and

acoustic similarities between speakers. These results indicate that the speaker-

dependent SVM-based approach provides high performance for voice

authentication and smart device control and has strong potential for further

development through dataset expansion and refinement of the command

recognition module.

Key words: Internet of Things (IoT), Mel Frequency Ceptral Coefficients

(MFCC), Smart Door Garage, Support Vector Machine, Voice

Recognition.

xvi

 مستخلص البحث

 ندسة اله. قسم البحث الجامعي. التعرف على الصوت في نظام التحكم في باب الجراج الذكي باستخدام آلة المتجه الداعم . 2025رحمة، دياه أيو.
الماجستير؛ المشرف عجيب حناني، : الأول . المشرفج مالان الإسلامية الحكومية امعة مولانا مالك إبراهيمب ، كلية العلوم والتكنولوجيا علوماتية الم

 الماجستير. ميلاني، هرورو إند :الثاني

بيئة المنزل. تطوير هذا البحث لنظام باب الجراج الذكي القائم على التعرف على الصوت المعتمد على المتحدث يهدف إلى تعزيز الأمان وكفاءة الوصول في

(بالإضافة إلى مطابقة نمط الكلمات SVMتم تصميم النظام للتعرف على هوية المستخدم وأوامر الصوت باستخدام خوارزمية آلة المتجهات الداعمة)
، ثم يتم HTTP(. تتم عملية إرسال تسجيلات الصوت من تطبيق الهاتف المحمول إلى الخادم عبر بروتوكول Regexباستخدام التعبيرات العادية)

، الجرس، ومستشعر الأشعة تحت الحمراء. LEDلتشغيل السيرفو، MQTTعبر بروتوكول ESP32تمرير نتائج التنبؤ في الوقت الفعلي إلى جهاز
 SVM. تم تدريب نموذج Notmeو Meتسجيلاا تشمل ثلاثة أنواع من الكلام، تم تصنيف كل منها إلى فئتين هما 540تتكون مجموعة البيانات من

وهي البيانات، لتقسيم سيناريوهات ثلاث الداعمة . 70:30و 80:20و 90:10باستخدام المتجهات آلة نموذج أن الاختبارات نتائج أظهرت
(SVM باستخدام نواة)Radial Basis Function (RBF) وقيمةCost (C) =10 وقيمةGamma (γ) =0.5 حقق أفضل أداء

٪. نجح النظام في التعرف على 98نسبة F1و Recallو Precision٪، كما بلغت قيم 97.53، حيث بلغت دقة التصنيف 70:30في سيناريو
٪، والذي تأثر بتنوع صياغة الجمل، وأخطاء النسخ، 13.57أوامر »افتح« و»أغلق« وتنفيذها بسرعة، على الرغم من وجود خطأ في النظام بنسبة

قادر على تقديم أداء عالٍ SVMث باستخدام والتشابه في الخصائص الصوتية بين المتحدثين. وتشير نتائج البحث إلى أن المدخل المعتمد على المتحد
رف على في مصادقة الصوت والتحكم في الأجهزة الذكية، كما يمتلك إمكانية للتطوير المستقبلي من خلال توسيع مجموعة البيانات وتحسين وحدة التع

 الأوامر.

تردد سبسترال -(، معاملات ميلIoT(، إنترنت الأشياء)SVMالتعرف على الصوت، آلة المتجهات الداعمة) ية:رئيسالكلمات ال
(MFCC.باب الجراج الذكي ،)

1

BAB I PENDAHULUAN

BAB I

PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknologi di era digital telah mendorong penerapan konsep smart

home sebagai upaya meningkatkan kenyamanan, efisiensi, dan keamanan bagi

pengguna. Salah satu implementasi yang cukup penting adalah sistem garasi

otomatis. Banyak pintu garasi masih dioperasikan secara manual sehingga

memerlukan tenaga tambahan serta tidak praktis ketika kondisi cuaca kurang

mendukung atau ketika pengguna sedang terburu-buru. Kebutuhan akan sistem

yang lebih mudah, aman, dan efisien memunculkan urgensi pengembangan

teknologi garasi otomatis berbasis kontrol suara. Berbagai penelitian sebelumnya

telah merancang sistem garasi otomatis dengan pendekatan berbeda. Ermawati dkk

(2023) menggunakan modul voice recognition berbasis keyword spotting untuk

mengendalikan motor stepper, tetapi masih terbatas pada pengenalan kata tertentu

tanpa kemampuan memahami variasi ucapan pengguna.

Teknologi voice recognition konvensional memiliki sejumlah keterbatasan,

khususnya dalam hal akurasi dan kemampuan beradaptasi terhadap perbedaan

intonasi, artikulasi, dan pola bicara setiap pengguna. Penggunaan metode machine

learning menawarkan peningkatan performa karena memiliki kemampuan

mengenali pola suara secara lebih fleksibel. Beberapa studi menunjukkan bahwa

SVM efektif digunakan pada sistem pengenalan suara karena dapat membedakan

karakteristik suara secara presisi (Nang An et al., 2023). Integrasi SVM dengan

teknologi speech-to-text (STT) memberi kemampuan bagi sistem untuk memahami

2

perintah dalam bentuk kata maupun kalimat sebelum memetakan hasilnya

menjadi instruksi operasional untuk garasi.

Urgensi penelitian ini diperkuat oleh prinsip amanah dalam Islam. QS. An-Nisa

[4]:58 menegaskan pentingnya menunaikan amanah dan melaksanakan tanggung

jawab secara adil.

كَُُوْا بِ ى اهَْلِهَاۙ وَاِذَا حَكََْتُُْ بيََْْ النَّاسِ انَْ تََْ نهتِ اِلٰه َ يأَمُْرُكُُْ انَْ تؤَُدُّوا الَْْمه َ كََنَ اِنَّ الٰلّه ِۗ اِنَّ الٰلّه ا يعَِظُكُُْ بِه َ نِعِمَّ لْعَدْلِِۗ اِنَّ الٰلّه

ا يْعًا ۢ بصَِيًْْ سََِ

“Sesungguhnya Allah menyuruh kamu menyampaikan amanah kepada

pemiliknya. Apabila kamu menetapkan hukum di antara manusia, hendaklah kamu

tetapkan secara adil. Sesungguhnya Allah memberi pengajaran yang paling baik

kepadamu. Sesungguhnya Allah Maha Mendengar lagi Maha Melihat.”.

Menurut tafsir tahlili, ayat ini menegaskan kewajiban menunaikan amanah

kepada pihak yang berhak serta menegakkan hukum dengan adil. Makna amanah

mencakup amanah manusia kepada Allah berupa ketaatan, amanah antar sesama

berupa menjaga titipan, menepati janji, serta amanah terhadap diri sendiri untuk

tidak melakukan hal-hal yang merugikan dunia maupun akhirat. Dalam konteks

penelitian ini, prinsip amanah dapat dimaknai sebagai kewajiban menjaga dan

melindungi harta benda, termasuk kendaraan yang tersimpan di garasi. Dengan

demikian, pengembangan sistem garasi pintar berbasis teknologi tidak hanya

relevan dari sisi efisiensi, tetapi juga sejalan dengan ajaran Islam yang menekankan

pentingnya keamanan dan tanggung jawab dalam kehidupan sehari-hari.

Pada QS. Ali Imran [3]:191 juga menyatakan:

تِ وَالَْْ وه مه مْ وَيتََفكََّرُوْنَ فِِْ خَلْقِ السَّ علَٰه جُنوُْبِِِ قُعُوْدًا وَّ َ قِياَمًا وَّ يْنَ يذَْكُرُوْنَ الٰلّه ِ ذَا الََّّ َّناَ مَا خَلقَْتَ هه رْضِِۚ رَب

نكََ فقَِناَ عذََابَ النَّارِ بْحه بَطِلًًِۚ س ُ

3

“(yaitu) orang-orang yang mengingat Allah sambil berdiri, duduk, atau dalam

keadaan berbaring, dan memikirkan tentang penciptaan langit dan bumi (seraya

berkata), “Ya Tuhan kami, tidaklah Engkau menciptakan semua ini sia-sia.

Mahasuci Engkau. Lindungilah kami dari azab neraka.”.

Menurut tafsir tahlili, ayat ini menggambarkan ciri khas ulul albāb, yakni

orang-orang berakal yang selalu mengambil manfaat dari ciptaan Allah. Mereka

senantiasa berdzikir dalam setiap keadaan berdiri, duduk, maupun berbaring seraya

memikirkan keajaiban penciptaan langit dan bumi. Tafakkur ini melahirkan

kesadaran akan kebesaran Allah, sehingga manusia menyadari bahwa tidak ada satu

pun ciptaan Allah yang sia-sia. Fenomena kompleks seperti penciptaan langit dan

bumi, silih bergantinya malam dan siang hingga keteraturan tata surya, semuanya

menunjukkan kesempurnaan kekuasaan Allah. Hal ini mendorong manusia untuk

senantiasa bersyukur, mengambil hikmah, dan memanfaatkan ciptaan Allah secara

tepat demi kemaslahatan hidup.

Asbari et al. (2025) dalam Journal of Information Systems and Management

menekankan bahwa akal sehat merupakan instrumen penting bagi manusia untuk

merespons perkembangan teknologi di era digital. Ayat tentang ulul albāb tidak

hanya relevan dalam konteks tafakkur atas ciptaan Allah, tetapi juga dapat dimaknai

sebagai dorongan agar manusia menjaga rasionalitas, berpikir kritis, serta

memanfaatkan teknologi secara sehat dan produktif. Dengan demikian,

pemanfaatan akal melalui pengembangan ilmu pengetahuan dan teknologi,

termasuk sistem garasi otomatis berbasis suara, merupakan bentuk aktualisasi

karunia Allah agar ciptaan-Nya membawa manfaat nyata bagi kehidupan Dengan

menggabungkan prinsip amanah (QS. An-Nisa [4]:58) dan prinsip bahwa ciptaan

Allah memiliki manfaat dan tidak diciptakan dengan sia-sia (QS. Ali Imran

4

[3]:191), penelitian ini menegaskan bahwa inovasi teknologi, termasuk sistem

garasi otomatis berbasis suara, bukan hanya relevan dari sisi teknis dan sosial, tetapi

juga memiliki landasan moral dan agama. Dengan demikian, penelitian ini

diharapkan mampu memberikan kontribusi nyata dalam meningkatkan keamanan,

kenyamanan, dan efisiensi bagi pengguna, sekaligus selaras dengan ajaran Islam.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah dijelaskan, maka rumusan masalah dalam

penelitian ini adalah bagaimana mengukur performa sistem pintu garasi pintar

berbasis speaker-dependent voice recognition menggunakan algoritma Support

Vector Machine?

1.3 Batasan Masalah

Penelitian ini memiliki beberapa Batasan masalah di antaranya:

1. Penelitian ini dibatasi pada penggunaan bahasa Indonesia sebagai bahasa

utama dalam pengenalan dan pemrosesan perintah suara. Sistem tidak

dirancang untuk mengenali perintah dalam bahasa lain di luar bahasa

Indonesia.

2. Data penelitian ini diperoleh melalui proses perekaman suara secara mandiri

dari total 19 partisipan, yang terdiri atas 1 pengguna sah (Me) dan 18 penutur

lain (Notme). Seluruh perekaman dilakukan menggunakan mikrofon

eksternal pada jarak sekitar ±20 cm dari mulut di ruangan dengan tingkat

kebisingan rendah hingga sedang.

5

3. Total data mentah yang digunakan dalam penelitian ini berjumlah 540

berkas audio, yang terdiri atas tiga jenis ujaran perintah “Buka”, “Tutup”,

dan filler.

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah untuk mengukur performa sistem garasi pintar

berbasis speaker-dependent voice recognition menggunakan algoritma Support

Vector Machine.

1.5 Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan manfaat dalam beberapa aspek

berikut:

1. Menjadi kontribusi dalam bidang ilmu pengetahuan dan teknologi, khususnya

dalam pengembangan sistem pengenalan suara berbasis machine learning

dengan pendekatan algoritma Support Vector Machine untuk aplikasi asistif.

2. Memberikan solusi yang dapat diimplementasikan pada sistem Pintu Garasi

Pintar sehingga pengguna dapat mengakses dan mengendalikan pintu garasi

secara lebih mudah, aman, dan efisien.

BAB II STUDI PUSTAKA

6

BAB II

STUDI PUSTAKA

2.1 Penelitian Terkait

Penelitian mengenai garasi otomatis telah dilakukan dengan berbagai

pendekatan teknologi. Prayetno (2022) merancang Prototype Pintu Garasi

Otomatis Menggunakan Sensor Suara Berbasis Arduino UNO dengan

memanfaatkan sensor suara FC-04 sebagai penerima perintah. Sistem bekerja

optimal pada frekuensi 3020 Hz (76 dB) dan 3150 Hz (79 dB) dengan tingkat

keberhasilan 100%. Tingkat responsivitasnya tinggi, tetapi mekanisme

pendeteksian masih terbatas pada pengenalan suara berbasis frekuensi sehingga

aspek keamanannya belum memadai. Mohamed Ariff dkk. (2022) melalui

penelitian berjudul Design and Development of a Smart Garage Door System

mengembangkan prototipe garasi otomatis berbasis IoT menggunakan Arduino,

aplikasi Blynk, dan integrasi Google Assistant. Sistem memungkinkan kontrol

pintu garasi melalui smartphone maupun perintah suara jarak jauh dan mampu

beroperasi dengan baik, meskipun ketergantungan pada platform pihak ketiga

membuat fleksibilitas dan kemandiriannya terbatas.

Pengembangan sistem voice recognition pada lingkungan smart home juga

menunjukkan variasi hasil. Ramba dan Aria (2020) merancang sistem home

automation dengan kendali suara berbasis Convolutional Neural Network (CNN)

untuk mengontrol perangkat rumah tangga seperti lampu, pintu, dan kipas angin.

Sistem mencapai akurasi 100% pada kondisi ruangan senyap (24 dB), 67,67% pada

kondisi bising 42 dB, dan 51,67% pada 52 dB. Temuan tersebut menegaskan

7

bahwa CNN mampu mengenali suara dengan baik, meskipun performanya

menurun signifikan pada lingkungan dengan tingkat kebisingan tinggi.

Irugalbandara dkk. (2023) mengembangkan sistem smart home menggunakan on-

device speech recognition yang mencakup VAD, wake word detection, CNN-based

STT dengan CTC decoder, serta BERT-based NLU. Sistem dapat berjalan tanpa

koneksi internet, memberikan respons cepat, meningkatkan keamanan terhadap

serangan siber, dan menyediakan fitur monitoring konsumsi daya. Kelemahannya

terletak pada kebutuhan peningkatan akurasi, perbaikan antarmuka pengguna, dan

penguatan keamanan jaringan Wi-Fi mesh.

Upaya peningkatan kinerja sistem garasi berbasis suara juga dilakukan oleh

Ermawati dkk. (2023) yang merancang prototipe pengendali pintu garasi

menggunakan Arduino dan motor stepper Nema 17, dilengkapi dengan voice

recognition dan kontrol PID. Sistem mampu merespons perintah suara seperti

penuh, setengah, dan tertutup dengan jeda sekitar 1,5 detik. Kinerja tersebut cukup

baik, tetapi cakupan penggunaan masih terbatas pada satu pengguna dan jarak

tertentu.

Rangkaian penelitian di bidang ini menunjukkan bahwa sistem garasi otomatis

masih banyak mengandalkan sensor suara konvensional atau modul sederhana

yang hanya mendukung perintah dasar. Penelitian lain pada ranah smart home

membuka peluang integrasi teknologi speech-to-text dan machine learning untuk

meningkatkan fleksibilitas interaksi pengguna. Penggabungan SVM sebagai

mekanisme otentikasi suara dan Regex sebagai pencocokan perintah menawarkan

8

pendekatan yang lebih aman, adaptif, dan relevan bagi kebutuhan pengguna

modern.

Tabel 2.1. Penelitian Terkait

No. Peneliti Judul Metode Hasil

1. Chandra

Irugalbandara, et al

(2023)

A Secure and

Smart Home

Automation

System with

Speech

Recognition

and Power

Measurement

Capabilities

On-device

speech

recognition

(VAD, wake

word, CNN-

based STT

+ CTC

decoder,

BERT-

based NLU)

Sistem mampu

berfungsi tanpa

internet,

memberikan respon

cepat, aman dari

serangan siber,

serta dilengkapi

fitur tambahan

seperti monitoring

konsumsi daya dan

optimasi perangkat.

Namun, masih

perlu peningkatan

akurasi, UI, dan

keamanan Wi-Fi

mesh.

2. Lery Sakti Aria &

Muhammad Aria

Rajasa Pohan

(2020)

Perancangan

Sistem Home

Automation

Dengan

Kendali

Perintah

Suara

Menggunakan

Deep

Learning

Convolutional

Neural

Network (DL-

CNN)

Deep

Learning -

CNN

Sistem mampu

mengendalikan

perangkat rumah

(lampu, pintu,

kipas) dengan

akurasi 100% di

ruangan senyap (24

dB), 67,67% pada

noise 42 dB, dan

51,67% pada noise

52 dB. Lebih

optimal digunakan

pada ruangan

dengan kebisingan

rendah.

3. Mohamed Ariff &

Mohamed Imran

(2022)

Design and

Development

of a Smart

Garage Door

System

Arduino +

IoT

(aplikasi

Blynk &

Google

Assistant)

Sistem berhasil

melakukan operasi

dasar buka-tutup

garasi secara jarak

jauh melalui

aplikasi mobile dan

perintah suara

Google Assistant.

Memberikan

9

kemudahan dan

efisiensi, meskipun

masih ada

keterbatasan pada

aspek keamanan

dan ketergantungan

pada platform pihak

ketiga.

4. Mochamad Ady

Prayetno (2022)

Prototype

Pintu Garasi

Otomatis

Menggunakan

Sensor Suara

Berbasis

Arduino UNO

Arduino

UNO

dengan

sensor suara

FC-04

Sistem pintu garasi

otomatis bekerja

responsif dengan

tingkat

keberhasilan 100%

pada frekuensi

3020 Hz (76 dB)

dan 3150 Hz (79

dB)

5. Yuli Ermawati, et al

(2023)

Prototype

Pengontrol

Pintu Garasi

Rumah

Dengan

Motor

Stepper

Berbasis

Arduino

Menggunakan

Perintah

Suara

Arduino,

sensor voice

recognition,

motor

stepper

Nema 17

dengan

kontrol PID

Sistem berhasil

merespons perintah

suara (penuh,

setengah, tertutup),

dengan jeda

optimal 1,5 detik

untuk akurasi

respon. Efektif

namun masih

terbatas pada satu

pengguna dan jarak

tertentu.

2.2 Teori Suara

Suara merupakan getaran mekanik yang merambat melalui medium udara dan

dapat didengar oleh telinga manusia. Getaran ini menyebabkan perubahan tekanan

udara secara periodik yang membentuk gelombang longitudinal. Menurut Adler et

al. (2013), suara dihasilkan oleh pita suara dengan kerja sama seluruh organ

penghasil suara, di mana setiap individu memiliki karakteristik dan tingkat

frekuensi yang berbeda-beda. Darmawan (2017) menambahkan bahwa suara

dihasilkan oleh getaran yang terjadi tiap detik pada suatu benda yang merambat

10

melalui udara dan dapat diterima baik oleh telinga manusia maupun alat perekam

seperti mikrofon.

Secara fisik, suara memiliki tiga unsur utama yaitu frekuensi, amplitudo, dan

timbre. Frekuensi adalah jumlah getaran per detik yang menentukan tinggi

rendahnya nada dan diukur dalam satuan Hertz (Hz). Amplitudo menunjukkan

besar kecilnya simpangan getaran yang berpengaruh terhadap keras lembutnya

suara, sedangkan timbre atau warna suara merupakan kualitas khas dari suatu bunyi

yang membedakannya dari bunyi lain meskipun memiliki frekuensi dan amplitudo

yang sama.

Rentang frekuensi pendengaran manusia umumnya berada antara 20 Hz hingga

20.000 Hz, di mana suara di bawah 20 Hz disebut infrasonik dan di atas 20 kHz

disebut ultrasonik. Rentang ini dapat bervariasi tergantung usia dan kondisi

fisiologis seseorang. Dalam Sound Film Book, Darmawan (2017) membagi wilayah

frekuensi suara ke dalam oktaf dengan perbandingan 2:1 antar frekuensi, yang

mencakup hampir sepuluh oktaf pada pendengaran manusia. Wilayah tersebut

dibagi menjadi lima bagian, yaitu Low Bass (20–80 Hz) yang memberikan kesan

berat, Upper Bass (80–320 Hz) yang menambah kekuatan suara, Midrange (320–

2.560 Hz) yang menjadi wilayah utama suara manusia, Upper Midrange (2.560–

5.120 Hz) yang menentukan kejernihan dan artikulasi, serta Treble (5.120–20.480

Hz) yang memberi kesan terang dan detail pada suara.

2.3 Speaker Dependent

Speaker-dependent adalah pendekatan pengenalan suara yang dilatih secara

khusus menggunakan data dari satu pengguna tertentu, sehingga performa sistem

11

menjadi sangat optimal untuk pengguna yang sama. Marini et al.,

(2021)menjelaskan bahwa dalam Automatic Speech Recognition (ASR), model

speaker-dependent memberikan keuntungan karena parameter ekstraksi fitur

seperti ukuran jendela (window size) dan frame shift dapat disesuaikan secara

spesifik dengan karakteristik suara pengguna. Penyesuaian ini memungkinkan

sistem menangkap pola vokal yang lebih konsisten, sehingga mengurangi tingkat

kesalahan pengenalan.

2.4 Voice Recognition

Voice recognition adalah teknologi yang memungkinkan komputer atau

perangkat digital mengenali kata-kata yang diucapkan dengan cara mengubah

sinyal suara menjadi representasi digital, kemudian mencocokkannya dengan pola

suara yang telah disimpan. Voice recognition bekerja melalui proses digitalisasi

sinyal audio, ekstraksi ciri, dan pencocokan pola untuk mengidentifikasi makna

atau perintah yang diucapkan pengguna.

2.5 Mel-Frequency Cepstral Coefficients (MFCC)

MFCC merupakan representasi fitur audio yang mengekstrak pola energi pada

amplop spektral suara atau “sidik jari” karakteristik vokal. Proses ini dilakukan

dengan memetakan spektrum ke skala Mel dan mengompresi hasilnya

menggunakan DCT sehingga koefisien yang dihasilkan lebih ringkas dan tidak

saling berkorelasi. MFCC selaras dengan cara telinga manusia membedakan energi

antar-pita frekuensi sehingga metode ini banyak digunakan pada sistem pengenalan

suara, verifikasi penutur, dan analisis audio.

12

Tahap awal dimulai dari waveform berupa sinyal audio mentah 𝑥[𝑛] (mono)

yang berisi amplitudo terhadap waktu. Sinyal ini kemudian dinormalisasi untuk

menambah keseragaman data, termasuk pengonversian seluruh rekaman ke format

wav 16 kHz, penyelarasan level volume, serta penyeragaman durasi. Pre-emphasis

diterapkan melalui rumus 𝑦[𝑛] = 𝑥[𝑛] − 𝛼𝑥[𝑛 − 1] (α sekitar 0,95–0,98) yang

menonjolkan komponen frekuensi tinggi dan membantu meningkatkan kejelasan

informasi pada proses ekstraksi ciri.

Sifat sinyal wicara yang tidak stasioner membuatnya dibagi ke dalam frame

pendek agar setiap potongan dapat dianggap kuasi-stasioner. Frame berukuran

sekitar 20 ms digunakan untuk melihat perubahan energi secara lokal terhadap

waktu. Spektrum frekuensi diperoleh menggunakan Discrete Fourier Transform

(DFT) sehingga karakter energi dalam setiap frame dapat tergambarkan. Spektrum

yang terbentuk kemudian diubah ke skala logaritmik untuk menyesuaikan karakter

persepsi pendengaran manusia yang lebih sensitif pada perubahan energi di

intensitas rendah.

Pemetaan spektrum log-energi ke skala Mel dilakukan menggunakan rangkaian

filter segitiga (Mel filterbank). Energi pada tiap bin frekuensi dijumlahkan

mengikuti pita-pita Mel sehingga menghasilkan representasi energi yang ringkas

dan relevan secara perseptual. Skala Mel merapat di frekuensi rendah dan

merenggang di frekuensi tinggi sehingga pola yang dihasilkan mencerminkan

karakter pendengaran manusia. Vektor energi Mel yang terbentuk kemudian

dikompresi dengan DCT untuk mengurangi korelasi antar-pita. Proses ini

menghasilkan MFCC sebagaimana dijelaskan oleh Utama dkk. (2025).

13

2.6 Support Vector Machine (SVM)

Support Vector Machine (SVM) adalah metode klasifikasi biner yang

diperkenalkan oleh Vapnik dan banyak digunakan dalam pengenalan suara karena

akurasinya yang tinggi. Prinsip utama SVM adalah membangun hyperplane dengan

margin maksimum yang dapat memisahkan dua kelas secara optimal, sehingga

lebih tahan terhadap kesalahan klasifikasi akibat outlier. Untuk data yang tidak

linier, SVM menggunakan fungsi kernel seperti Linear, Polynomial, Radial Basis

Function (RBF), atau Sigmoid untuk mentransformasikan data ke ruang dimensi

lebih tinggi agar dapat dipisahkan secara linier. Proses klasifikasi pada SVM dapat

dituliskan dengan persamaan:

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 ∑ 𝛼𝑖
𝐿
𝑖=1 . 𝑙𝑖 . 𝐾(𝑥𝑖 , 𝑥) + 𝑏 (2.1)

Dengan 𝛼𝑖 sebagai Lagrange multipliers, 𝑙𝑖 label kelas (−1 atau +1), K fungsi

kernel, dan b nilai bias. Hanya sebagian data latih yang digunakan dalam model,

yaitu support vector (data dengan 𝛼𝑖 > 0). Handoko & Suyanto (2019)

menunjukkan bahwa kombinasi SVM dengan ekstraksi ciri suara menggunakan

MFCC mampu mengklasifikasikan gender dengan akurasi tinggi. Kernel

Polynomial dengan degree = 1 memberikan akurasi terbaik mencapai 99,68% pada

data bersih, meskipun akurasi menurun signifikan ketika data uji diberi noise,

menandakan keterbatasan SVM dalam kondisi noise tinggi.

2.7 Regular Expression (Regex)

Regular Expression (Regex) merupakan algoritma pencocokan pola

(pattern matching) yang digunakan untuk menemukan atau memvalidasi teks

14

tertentu dalam sebuah string. Menurut Bahar & Daniel Yc. Raban (2023), Regex

dapat diaplikasikan dalam berbagai bidang, salah satunya untuk mendeteksi pola

nominal uang kertas Rupiah. Pada penelitian tersebut, kamera smartphone

digunakan untuk mengambil gambar uang kertas, kemudian teks nominal

diekstraksi menggunakan Optical Character Recognition (OCR). Hasil teks ini

selanjutnya diproses oleh Regex untuk mencari pola yang sesuai dengan nilai

nominal. Jika pola cocok ditemukan, sistem memberikan keluaran berupa teks

nominal di layar, getaran khusus sesuai nilai uang, serta suara melalui fitur

Talkback.

Regex bekerja dengan aturan pencocokan berbasis karakter, simbol, dan

urutan tertentu sehingga mampu mengenali pola teks dengan cepat dan akurat.

Keunggulan utamanya adalah fleksibilitas dalam mendeteksi variasi format teks

yang berbeda. Uji coba pada 210 sampel uang kertas dengan melibatkan 10

responden tunanetra menunjukkan akurasi 100%, membuktikan bahwa kombinasi

OCR dan Regex efektif dalam mengenali pola teks nominal. Temuan ini

menegaskan bahwa Regex dapat menjadi metode pendukung yang ringan, efisien,

dan andal dalam sistem pengenalan berbasis teks maupun suara.

2.8 Kata Filler

Dalam linguistik dan pemrosesan suara, filler words atau kata bebas

merupakan bentuk ujaran non-leksikal yang sering muncul dalam percakapan

spontan. Menurut Zhu et al. (2022), kata filler seperti “uh” atau “um” merupakan

bunyi atau kata yang digunakan seseorang untuk menandakan jeda berpikir. Kata-

kata ini tidak menambah makna semantik pada kalimat, tetapi berfungsi sebagai

15

penanda jeda atau refleksi spontan ketika penutur sedang menyusun pikiran atau

mempertahankan giliran berbicara.

Dalam konteks pemrosesan suara otomatis (Automatic Speech

Recognition/ASR), filler termasuk ke dalam kategori speech disfluencies, yaitu

ketidakteraturan dalam ujaran seperti pengulangan, gagap, atau koreksi (Zhu et al.,

2022). Filler dianggap sebagai suara non-leksikal yang tidak memiliki makna

kontekstual, sehingga sering diabaikan atau dihapus dalam proses transkripsi

otomatis. Namun, dalam sistem pengenalan perintah suara, keberadaan filler justru

penting karena dapat digunakan untuk melatih sistem agar mampu membedakan

antara ucapan bermakna (perintah) dan ucapan spontan yang tidak relevan.

2.9 Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol (HTTP) adalah sebuah protokol komunikasi yang

digunakan untuk proses permintaan (request) dan jawaban (response) antara client

dan server pada web. Pada mekanisme ini, client biasanya web browser memulai

komunikasi dengan membuat koneksi TCP/IP ke server pada port tertentu. Setelah

koneksi terbentuk, client mengirimkan kode permintaan, seperti "GET /

HTTP/1.1", yang kemudian dapat disertai header dan body untuk menjelaskan

detail permintaan tersebut. Server yang menerima permintaan tersebut akan

memberikan kode balasan serta mengirimkan data atau halaman web yang diminta

(Zabar & Novianto, 2015).

2.10 Internet of Things

Menurut Susanto et al. (2022) Internet of Things (IoT) merupakan teknologi

yang memungkinkan berbagai objek saling terhubung melalui jaringan internet

16

sehingga memudahkan aktivitas sehari-hari serta meningkatkan efisiensi. IoT

membuat perangkat dapat berinteraksi dan bertukar data secara otomatis, dan

penerapannya kini semakin luas di berbagai bidang, baik skala kecil maupun besar.

Teknologi ini juga mendorong munculnya peluang serta inovasi baru dalam

pengembangan sistem modern.

Megawati (2021) menyebutkan bahwa IoT bekerja dengan memanfaatkan data

digital yang dikumpulkan oleh berbagai sensor seperti RFID, inframerah (IR), atau

GPS. Informasi yang diperoleh diproses lebih lanjut agar perangkat yang saling

terhubung dapat beroperasi, berinteraksi, dan dikendalikan secara lebih efektif.

2.11 Message Queuing Telemetry Transport (MQTT)

MQTT adalah protokol komunikasi ringan berbasis publish/subscribe di

atas TCP/IP yang dirancang untuk perangkat IoT berdaya rendah dan jaringan tak

stabil/ber-latensi tinggi. MQTT bekerja dengan memakai broker sebagai perantara,

publisher mengirim pesan ke sebuah topik, dan subscriber menerima pesan dengan

cara berlangganan topik yang sama. Pendekatan ini membuat sistem longgar

keterikatannya (decoupled) pengirim dan penerima tidak perlu saling tahu

keberadaan atau status masing-masing, sehingga skalabel dan hemat sumber daya

(Hanani & Hariyadi, 2020).

2.12 Arduino IDE

Arduino IDE adalah platform pemrograman berbasis C/C++ yang digunakan

secara luas untuk pengembangan sistem berbasis mikrokontroler. Dalam penelitian

oleh Hercog et al. (2023), Arduino IDE disebut sebagai salah satu alat edukatif dan

prototyping utama dalam pengembangan perangkat ESP32 berbasis sensor.

17

2.13 ESP32

ESP32 adalah mikrokontroler yang memiliki prosesor dual-core dengan

arsitektur Xtensa LX6 serta dilengkapi konektivitas Wi-Fi dan Bluetooth. Menurut

(Hercog et al., 2023) dalam jurnal berjudul Design and Implementation of ESP32-

Based IoT Devices, ESP32 banyak digunakan dalam sistem IoT karena memiliki

kemampuan pemrosesan data cukup tinggi serta kompatibel dengan berbagai

protokol komunikasi seperti UART, I2C, dan SPI. Keunggulannya terletak pada

efisiensi konsumsi daya, biaya produksi yang rendah, dan fleksibilitas tinggi dalam

pengembangan sistem terintegrasi.

2.14 Infrared Sensor

Sensor infrared (IR) adalah instrumen elektronik yang digunakan untuk

mendeteksi karakteristik lingkungan di sekitarnya dengan mengirimkan atau

menerima radiasi infra merah. Sensor ini bekerja dengan menangkap perubahan

energi panas atau pantulan cahaya infrared dari suatu objek. Dalam sistem dasar,

IR LED berfungsi sebagai pemancar, sementara photodiode atau fototransistor

berfungsi sebagai penerima yang sensitif terhadap panjang gelombang IR. Ketika

cahaya infrared mengenai penerima, perubahan resistansi atau tegangan akan

muncul sesuai intensitas cahaya yang diterima, sehingga objek atau hambatan dapat

dideteksi. Sensor IR umum digunakan untuk deteksi objek, pengukuran panas,

pemantauan gerakan, serta berbagai aplikasi otomasi dan perangkat elektronik

(Ajmera, 2017).

18

BAB III

DESAIN DAN IMPLEMENTASI

3.1 Desain Penelitian

Desain penelitian adalah kerangka kerja atau rencana yang digunakan untuk

mengatur, menjalankan, dan mengarahkan sebuah penelitian yang mencangkup

metode, prosedur, dan strategi yang digunakan peneliti untuk menjawab pertanyaan

penelitian atau menguji hipotesis. Adapun jenis penelitian yang digunakan pada

penelitian ini adalah penelitian kuantitatif, yang berarti analisis data yang

digunakan dapat diukur. Alur penelitian terkait dapat dilihat melalui diagram

berikut:

Gambar 3.1. Alur Penelitian

19

Pengumpulan data suara menjadi tahap awal dalam penelitian ini. Sampel

direkam dari pengguna dengan dua instruksi utama, yaitu “Buka” dan “Tutup”.

Rekaman dibuat dalam format .wav menggunakan mikrofon eksternal pada

lingkungan indoor dengan tingkat kebisingan rendah hingga sedang. Dataset terdiri

atas dua kelompok suara, yakni suara pemilik (kelas Me) dan suara non-pemilik

(kelas Notme), untuk mendukung proses identifikasi speaker berbasis metode

speaker-dependent dengan voice recognition.

Desain sistem disusun setelah dataset terkumpul. Proses pemrosesan sinyal suara

dirancang mulai dari ekstraksi ciri menggunakan MFCC hingga tahapan

pengenalan. Hasil ekstraksi fitur diproses dalam dua bagian: identifikasi speaker

menggunakan algoritma SVM untuk membedakan suara pemilik dan non-pemilik,

serta pencocokan instruksi melalui Regex untuk mengenali kata kunci “Buka” dan

“Tutup”. Implementasi metode dilakukan dengan mengintegrasikan seluruh

pipeline pemrosesan suara ke dalam perangkat lunak serta mikrokontroler ESP32.

Model SVM dihubungkan dengan perangkat keras, yaitu motor servo sebagai

penggerak pintu garasi, sensor infrared sebagai pendeteksi halangan, serta LED dan

buzzer sebagai indikator status sistem. Komunikasi berlangsung melalui jaringan

Wi-Fi sehingga hasil prediksi dapat diterjemahkan secara real-time menjadi aksi

fisik pada perangkat keras.

Pengujian sistem dilakukan setelah implementasi selesai. Pengujian mencakup

evaluasi performa identifikasi speaker menggunakan SVM, efektivitas pencocokan

kata kunci dengan Regex, dan pengukuran waktu respons sistem dari masukan

suara hingga perangkat keras bergerak.

20

Analisis hasil menjadi tahap terakhir dalam desain penelitian ini. Evaluasi

dilakukan berdasarkan performa SVM dalam mengenali pengguna, akurasi Regex

dalam membaca instruksi, tingkat error sistem, serta konsistensi respons perangkat

keras. Analisis ini digunakan untuk menilai apakah sistem pintu garasi pintar telah

berfungsi sesuai kebutuhan, mampu menjaga keamanan akses, dan tetap responsif

terhadap variasi suara maupun kondisi lingkungan.

3.1.1. Pengumpulan Data

Pengolahan data dalam penelitian ini dilakukan untuk membangun dataset suara

yang digunakan pada pelatihan dan pengujian sistem Garasi Pintar berbasis voice

recognition. Data yang dikumpulkan terdiri atas dua kategori utama, yaitu

identifikasi pengguna dan pencocokkan perintah suara. Untuk mendukung

pendekatan speaker-dependent, dataset diklasifikasikan ke dalam dua folder, yakni

Me yang berisi suara peneliti sendiri sebagai pengguna terdaftar, dan Notme yang

berisi suara dari orang lain yang tidak terdaftar dalam sistem. Penjelasan lebih

lengkap mengenai alur pengolahan suara dapat dilihat pada Gambar 3.2 di bawah

ini.

21

Gambar 3.2. Alur Pengolahan Suara

22

Dataset terdiri atas tiga jenis ucapan, yaitu “Buka”, “Tutup”, dan filler berupa

kata bebas yang berfungsi sebagai non-perintah. Kategori Me direkam sebanyak 90

sampel untuk kata “Buka”, 90 sampel untuk “Tutup”, dan 90 sampel filler, sehingga

totalnya berjumlah 270 rekaman suara. Kategori Notme disusun dengan jumlah

yang sama untuk menjaga keseimbangan distribusi kelas, yaitu 90 rekaman “Buka”,

90 rekaman “Tutup”, dan 90 rekaman filler, dengan total 270 data. Gabungan kedua

kategori menghasilkan 540 berkas audio yang digunakan pada proses pelatihan dan

pengujian.

Tabel 2.2. Variasi Kalimat yang Digunakan dalam Pelatihan

No Jenis Ucapan Contoh Kalimat Keterangan

1 Buka “buka” Perintah inti

2 Buka “tolong buka pintu garasinya” Variasi Panjang

3 Buka “buka pintunya sekarang” Ungkapan langsung

4 Buka “ayo buka pintunya” Variasi informal

5 Buka “buka pintunya cepat” Aksen cepat

6 Tutup “tutup pintunya dong” Variasi Panjang

7 Tutup “pintunya tolong tutup” Struktur terbalik

8 Tutup “cepat tutup pintunya” Aksen cepat

9 Tutup “tutup” Perintah inti

10 Tutup “tutup pintunya” Variasi intonasi

11 Filler “halo” Ujaran non-perintah

12 Filler Ucapan bebas dari responden Random noise talk

Seluruh suara direkam menggunakan mikrofon eksternal pada jarak ±20 cm

dalam ruangan dengan tingkat kebisingan rendah hingga sedang untuk menjaga

rasio sinyal terhadap noise. Setiap rekaman disimpan dalam format .wav (PCM 16-

bit, 16 kHz) dan dipisahkan ke dalam folder Me dan Notme. Jumlah sampel

dirancang agar memenuhi kebutuhan representasi akustik yang stabil Kinnunen &

Li (2010) menyatakan bahwa sistem speaker verification memerlukan 50–150

sampel per kelas agar distribusi fitur memadai. B. Davis & Mermelstein (1980)

menambahkan bahwa 100–200 sampel per kata cukup untuk membangun model

23

MFCC yang konsisten. Jumlah 460 data yang dibagi seimbang antar kelas dinilai

sesuai untuk melatih model SVM tanpa menimbulkan bias.

Analisis data dilakukan dengan mengekstraksi ciri suara menggunakan MFCC.

Setiap rekaman menghasilkan vektor fitur yang kemudian digunakan sebagai input

model. Data hasil ekstraksi dibagi ke dalam kategori Me dan Notme lalu dilatih

menggunakan SVM untuk memisahkan pola akustik pada ruang fitur multidimensi.

Evaluasi performa dilakukan menggunakan error rate yang dihitung dengan

persamaan berikut:

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑤𝑖𝑡ℎ 𝐸𝑟𝑟𝑜𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 𝑥 100% (3.1)

Jika suara berhasil diverifikasi sebagai Me, maka proses dilanjutkan dengan

pencocokkan perintah menggunakan Regex untuk membedakan antara perintah

“Buka” atau “Tutup”.

3.1.2. Desain Sistem

Desain sistem Garasi Pintar berbasis pengenalan suara dibagi menjadi tiga

tahapan utama, yaitu input, process, dan output. Ketiga tahapan ini menggambarkan

alur kerja sistem mulai dari perintah suara yang diberikan pengguna, tahap

pemrosesan untuk mengenali dan mencocokkan perintah, hingga menghasilkan

keluaran berupa pergerakan pintu garasi. Selain itu, penelitian ini juga menyajikan

rangkaian sistem untuk memperlihatkan keterhubungan antar komponen perangkat

keras.

24

3.1.2.1. Tahapan Input

Tahapan input dimulai dari proses penangkapan suara oleh aplikasi mobile

berbasis Flutter. Pengguna menekan tombol mikrofon untuk merekam perintah

suara seperti “Tolong buka pintu garasi” atau “Tolong tutup pintu garasi”. Rekaman

suara disimpan sementara sebagai file .wav yang kemudian dikirimkan ke backend

machine learning menggunakan protokol HTTP. Penggunaan HTTP memberikan

kemampuan pengiriman file audio dalam bentuk multipart/form-data melalui jalur

komunikasi yang stabil, sehingga backend dapat menerima data suara secara utuh

dan siap diproses. Protokol ini juga memungkinkan proses pengiriman berlangsung

cepat karena karakteristiknya yang berbasis request–response, sehingga aplikasi

dapat mengirimkan satu rekaman suara untuk segera diproses oleh server.

3.1.2.2. Tahapan Process

Tahapan proses merupakan inti dari sistem yang menangani seluruh

pemrosesan data suara untuk menghasilkan keputusan akhir. Backend menerima

file audio dari aplikasi melalui HTTP dan menjalankan rangkaian pre-processing

yang meliputi resampling audio ke 16 kHz mono, normalisasi amplitudo,

penghapusan noise menggunakan metode spectral gating, serta penerapan pre-

emphasis untuk memperjelas komponen frekuensi tinggi. Audio yang telah

dibersihkan diekstraksi menggunakan 13 koefisien MFCC untuk menghasilkan

representasi numerik yang mencerminkan karakteristik suara pengguna. Fitur

tersebut diverifikasi menggunakan algoritma SVM untuk memastikan bahwa suara

berasal dari pengguna yang sah. Proses verifikasi dilanjutkan dengan pencocokan

perintah menggunakan Regex untuk menentukan apakah instruksi yang diberikan

25

adalah “Buka” atau “Tutup”. Hasil dari seluruh proses ini dirumuskan sebagai

keputusan yang kemudian dikirimkan ke perangkat ESP32 menggunakan protokol

MQTT agar dapat dieksekusi oleh perangkat keras.

3.1.2.3. Tahapan Output

Tahapan output merupakan tahap akhir yang mengubah hasil keputusan dari

backend menjadi eksekusi pada perangkat keras. Mikrokontroler ESP32 menerima

pesan MQTT berisi instruksi pembukaan atau penutupan pintu garasi dan

mengeksekusi perintah tersebut melalui komponen mekanik dan indikator visual.

Servo bergerak membuka atau menutup pintu sesuai instruksi yang diterima. LED

utama berfungsi sebagai indikator status alat yang selalu aktif selama sistem

berjalan, sedangkan mode kedip pada LED digunakan untuk menandai bahwa

mekanisme pintu sedang beroperasi, baik dalam proses membuka maupun

menutup. Sistem keselamatan diimplementasikan menggunakan sensor infrared

yang mendeteksi keberadaan objek pada jalur pintu. Buzzer hanya berbunyi ketika

sensor mendeteksi halangan saat proses penutupan berlangsung. Pintu akan

berhenti bergerak selama halangan terdeteksi untuk mencegah tabrakan. Gerakan

menutup dilanjutkan kembali setelah jalur infrared dinyatakan bersih dan tidak ada

objek yang menghalangi.

Untuk lebih jelas dapat dilihat pada desain sistem pada penelitian ini

pada Gambar 3.3 di bawah ini:

26

Gambar 3.3. Desain Sistem

3.1.2.4. Rangkaian Sistem

Rangkaian sistem Garasi Pintar dapat dilihat pada Gambar 3.4, yang

menunjukkan alur integrasi komponen perangkat keras dan perangkat lunak. Proses

perancangan dimulai dengan menentukan kebutuhan komponen utama seperti

mikrofon, mikrokontroler ESP32, motor servo, buzzer, LED, serta sensor infrared.

Setelah itu dilakukan penyusunan rangkaian, kalibrasi, dan pengujian untuk

memastikan fungsi setiap komponen berjalan optimal. Jika terjadi ketidaksesuaian,

dilakukan evaluasi dan penyesuaian sebelum melanjutkan ke tahap integrasi penuh.

27

Gambar 3.4. Alur Rangkaian Sistem

Untuk implementasi fisik, digunakan wiring schema seperti pada Gambar 3.5.

Sistem menggunakan adaptor 5V DC sebagai sumber daya utama, yang dialirkan

ke terminal block untuk distribusi ke berbagai komponen. ESP32 berfungsi sebagai

pusat kendali yang menerima perintah hasil pemrosesan suara dari laptop melalui

jaringan Wi-Fi. Selanjutnya, ESP32 mengirimkan instruksi ke motor servo untuk

membuka atau menutup pintu garasi. Pada saat yang sama, LED menyala sebagai

indikator visual dan buzzer berbunyi sebagai indikator audio. Dengan demikian,

setiap komponen dalam skema rangkaian memiliki fungsi spesifik, adaptor sebagai

sumber daya, terminal block sebagai distribusi, ESP32 sebagai pengendali, motor

servo sebagai aktuator, serta LED dan buzzer sebagai indikator status.

28

Gambar 3.5. Wiring Schema

Untuk memperlihatkan susunan fisik perangkat, implementasi rangkaian

ditunjukkan pada Gambar 3.6. Komponen utama ditempatkan dengan perhitungan

tertentu agar tidak mengganggu mekanisme pintu. ESP32, motor servo, buzzer,

LED, serta sensor infrared diposisikan di bagian atas rangka utama agar mudah

dihubungkan dengan batang pengait pintu. Sumber daya dari adaptor 5V DC

dialirkan melalui terminal block, dengan jalur ground dibuat menyatu untuk

menjaga kestabilan sinyal. Penataan kabel dilakukan secara rapi dengan pengikat

agar aman dan estetis. Motor servo digunakan sebagai aktuator utama yang

memutar batang pengait pintu garasi, sedangkan buzzer dan LED berfungsi sebagai

indikator status sistem. Sensor infrared dipasang di sisi kiri pintu untuk mendeteksi

adanya hambatan, sehingga sistem dapat menghentikan gerakan servo dan

membuka kembali pintu jika terdeteksi objek.

29

Gambar 3.6. Implementasi Rangkaian

Secara keseluruhan, desain dan rangkaian sistem Garasi Pintar tidak hanya

menekankan pada fungsi utama membuka dan menutup pintu berdasarkan perintah

suara, tetapi juga memperhatikan aspek keamanan, kerapian, serta efisiensi

penempatan komponen.

3.1.3. Penerapan Metode

Metode yang digunakan dalam penelitian ini bertujuan untuk merancang sistem

Garasi Pintar berbasis perintah suara yang dapat digunakan secara mandiri,

terutama untuk memudahkan akses dan meningkatkan keamanan pengguna.

30

Penerapan metode mencakup proses pengenalan suara, pencocokkan perintah, serta

pengaktifan perangkat keras berdasarkan hasil pencocokkan tersebut. Seluruh

proses dijalankan pada mikrokontroler ESP32 dan diprogram melalui Arduino IDE.

3.1.3.1. Pra-pemrosesan

Pra-pemrosesan diperlukan untuk menyamakan spesifikasi teknis seluruh data

audio. Setiap berkas dikonversi ke format .wav dengan laju sampel 16 kHz dan

mono channel sehingga memiliki frekuensi sampling yang seragam. Sinyal audio

kemudian diubah menjadi deret diskrit amplitudo berdasarkan frekuensi sampling

16.000 Hz. Tahapan dilanjutkan dengan normalisasi amplitudo dengan membagi

setiap sampel terhadap nilai absolut maksimum sinyal agar amplitudo berada pada

rentang −1 hingga 1.

Durasi minimal input suara mengacu pada praktik umum dalam sistem

pengenalan kata pendek (short utterance). Google Speech Commands Dataset

sebagai standar internasional untuk keyword spotting menggunakan berkas audio

berdurasi satu detik untuk setiap kata perintah (Warden, 2018), sehingga durasi satu

detik dianggap memadai untuk menangkap ucapan tunggal seperti “buka” dan

“tutup”. Penelitian ini menetapkan durasi rekaman maksimal lima detik agar

seluruh variasi perintah, baik kata tunggal maupun kalimat pendek, tetap terekam

tanpa risiko pemotongan (truncation) serta tetap berada dalam rentang optimal

untuk pemrosesan short utterance. Adapun contoh perhitungan sampel sebagai

berikut:

𝑥1 =
−0.000000119

0.6358286
 = - 0.000000187 (3.4)

31

 Pra-pemrosesan dilanjutkan dengan reduksi noise menggunakan metode

spectral gating berbasis ambang amplitudo. Nilai ambang diperoleh dari rata-rata

amplitudo absolut (noise_avg). Sampel dengan amplitudo di bawah

ambangdianggap sebagai noise dan dinolkan, sedangkan sampel di atas ambang

dipertahankan. Persamaan reduksi noise:

𝑥𝑐𝑙𝑒𝑎𝑛[𝑛] = {
0

𝑥𝑛𝑜𝑟𝑚[𝑛],

𝐽𝑖𝑘𝑎 |𝑥𝑛𝑜𝑟𝑚[𝑛] < 𝑛𝑜𝑖𝑐𝑒_𝑎𝑣𝑔

𝐿𝑎𝑖𝑛𝑛𝑦𝑎
} (3.5)

Adapun contoh sampel sebagai berikut:

noice_avg = 0.01933745921

Sampel pertama: 𝑥𝑛𝑜𝑟𝑚[0] = 1.84 𝑥 10−7

|𝑥𝑛𝑜𝑟𝑚[0]| = 0.000000184 < 0.019337

𝑥𝑐𝑙𝑒𝑎𝑛[0] = 0

Sampel ke-7 : 𝑥𝑛𝑜𝑟𝑚[6] = −1.00

|𝑥𝑛𝑜𝑟𝑚[6]| = 1.00 < 0.019337

𝑥𝑐𝑙𝑒𝑎𝑛[6] = 1.00

3.1.3.2. Ekstraksi Fitur dengan MFCC

Tahapan ekstraksi ciri menggunakan Mel-Frequency Cepstral Coefficients

dilakukan setelah reduksi noise. MFCC digunakan karena mampu

merepresentasikan karakteristik spektral suara sesuai skala Mel yang menyerupai

pola persepsi telinga manusia.

32

Gambar 3.7. Proses Ekstraksi Fitur MFCC

Gambar 3.7 menjelaskan urutan proses ekstraksi. Tahapan dimulai dengan

waveform sebagai representasi awal sinyal audio pada domain waktu. Sinyal

kemudian diberi pre-emphasis untuk menonjolkan komponen frekuensi tinggi

sehingga distribusi energi lebih seimbang (Heriyanto et al., 2018). Sinyal hasil filter

dibagi menjadi frame karena sifat suara yang tidak stasioner. Setiap frame

ditransformasikan menggunakan Discrete Fourier Transform (DFT) untuk

memperoleh spektrum frekuensi.

Spektrum frekuensi selanjutnya dikonversi ke skala logaritmik untuk

menyesuaikan persepsi telinga manusia terhadap intensitas suara. Proses berikutnya

dilakukan Mel scaling menggunakan filter bank segitiga berbasis skala Mel untuk

merepresentasikan karakteristik frekuensi sesuai dengan respons pendengaran

manusia (Utama et al., 2025). Hasil proses tersebut kemudian diekstraksi

menggunakan Mel-Frequency Cepstral Coefficients (MFCC). Pada penelitian ini

digunakan 13 koefisien MFCC pada setiap frame, karena koefisien tersebut

merupakan koefisien dominan yang mampu merepresentasikan karakteristik

spektral utama sinyal suara secara efektif. Pemilihan 13 koefisien MFCC juga

33

banyak digunakan dalam penelitian pengenalan identitas penutur karena

memberikan keseimbangan antara representasi fitur yang informatif dan

kompleksitas komputasi yang efisien(Sasongko et al., 2023).

Nilai koefisien MFCC dari setiap frame dihitung rata-ratanya menggunakan

metode mean pooing untuk membentuk vector fitur berukuran tetap yang kemudian

digunakan sebagai masukan ke dalam model SVM. Hasil ekstraksi koefisien

ditunjukkan pada Tabel 3.1 berikut:

Tabel 3.1. Hasil Ekstraksi Suara

Filename Speaker Command MFCC_1 MFCC_... MFCC_12 MFCC_13

Buka

2.wav
Notme Buka -622.924 … -1.92221 -3.31385

Buka

2.wav
Notme Buka -598.953 … 0.128697 -10.9951

Tutup

4.wav
Me Tutup -666.881 … 3.295543 5.607557

Tutup

4.wav
Me Tutup -538.667 … 8.234294 5.244555

Tutup

4.wav
Me Tutup -479.106 … 6.553525 4.489096

3.1.3.3. Pengenalan Speaker dengan Support Vector Machine

Tahap pengenalan speaker bertujuan membedakan apakah suara berasal dari

pengguna sah (Me) atau bukan pengguna (Notme). Rekaman suara dalam format

.wav dikonversi menjadi representasi digital yang siap diekstraksi fiturnya. Setiap

rekaman menghasilkan 13 koefisien MFCC per frame yang direpresentasikan

sebagai karakteristik frekuensi suara. Seluruh koefisien MFCC digabungkan

melalui proses feature aggregation untuk membentuk vektor fitur representatif per

rekaman.

34

Gambar 3.8. Model Arsitektur SVM

Gambar 3.8 menggambarkan arsitektur SVM. Vektor fitur dinormalisasi

menggunakan StandardScaler agar memiliki distribusi dengan rata-rata nol dan

standar deviasi satu. Data kemudian dibagi menjadi data latih dan data uji sebelum

pemodelan dilakukan. Algoritma yang digunakan adalah SVM dengan dua jenis

kernel, yaitu Linear dan Radial Basis Function (RBF). Kernel Linear digunakan

untuk melihat kemampuan pemisahan data dalam ruang fitur yang bersifat

mendekati linear (Handoko & Suyanto, 2019), sedangkan kernel RBF digunakan

untuk mengevaluasi performa ketika pola pemisahan lebih kompleks dan

memerlukan pemetaan ke dimensi yang lebih tinggi. Kedua kernel ini diuji untuk

memperoleh model dengan performa terbaik dalam membedakan suara Me dan

Notme.

Secara matematis, fungsi keputusan SVM dinyatakan sebagai:

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏, 𝑦 = 𝑠𝑖𝑔𝑛(𝑓(𝑥)) (3.6)

Model bekerja dengan menentukan hyperplane terbaik untuk memisahkan suara

Me dan Notme. Fungsi kernel RBF digunakan untuk memetakan data ke ruang

berdimensi lebih tinggi sehingga pola antar kelas lebih mudah dipisahkan. Dengan

pendekatan ini, proses keputusan SVM dilakukan berdasarkan fungsi:

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑁
𝑖=1 (3.7)

35

Jika hasil perhitungan 𝑓(𝑥) bernilai positif maka suara dikenal sebagai Me,

sedangkan jika negatif maka dikenal sebagai Notme. Nilai 𝑓(𝑥) juga dapat

dikonversi menjadi probabilitas untuk menunjukkan seberapa yakin model terhadap

hasil prediksinya. Dengan pendekatan ini, sistem dapat mengidentifikasi speaker

secara real-time, memanfaatkan karakteristik spektrum suara masing-masing

pengguna untuk membedakan suara pengguna yang sah dari suara orang lain.

3.1.3.4. Pencocokan Perintah dengan Regex

Pengenalan perintah dilakukan setelah suara diverifikasi sebagai pengguna sah.

Proses dimulai dari konversi sinyal suara menjadi teks melalui mekanisme Speech-

to-Text (STT). Model akustik, model bahasa, dan proses decoding bekerja bersama

untuk menghasilkan transkripsi. Teks hasil STT dinormalisasi terlebih dahulu untuk

menyamakan format.

Regex digunakan untuk menemukan pola kata atau frasa yang berkaitan dengan

instruksi yang dimaksud, misalnya pola buka dan tutup. Kombinasi STT dan regex

menjadikan proses pemetaan perintah lebih transparan dan mudah ditelusuri apabila

terjadi kesalahan.

3.1.3.5. Eksekusi Perintah

Perintah yang tervalidasi akan diterjemahkan ESP32 menjadi aksi perangkat

keras. Instruksi “Buka” memicu servo untuk membuka pintu, sedangkan instruksi

“Tutup” memicu servo untuk menutupnya. ESP32 mengendalikan servo, LED, dan

buzzer sehingga pengguna mendapatkan umpan balik visual dan audio terhadap

status sistem.

36

3.1.4. Uji Coba Sistem

Pengujian pada penelitian ini dilakukan untuk mengevaluasi kinerja sistem

Garasi Pintar berbasis voice recognition yang dikembangkan menggunakan

algoritma SVM untuk pengenalan pengguna dan Regex untuk pencocokkan

perintah suara. Skenario pengujian dirancang agar dapat menunjukkan sejauh mana

sistem mampu mengenali pola suara pengguna dan menjalankan perintah dengan

benar sesuai konteks.

3.1.4.1. Pengujian Pengenalan Speaker

Tahapan ini bertujuan untuk mengukur kemampuan sistem dalam membedakan

antara suara pengguna sah (kelas Me) dan bukan pengguna (Notme). Model SVM

dilatih menggunakan dataset suara yang telah melalui proses pre-processing dan

ekstraksi fitur MFCC. Dataset dibagi menjadi dua bagian, yaitu data latih (training

set) dan data uji (testing set), dengan beberapa variasi rasio pembagian untuk

melihat kestabilan performa model. Parameter utama yang diuji adalah nilai C

(regularization parameter) dan gamma menggunakan kernel RBF. Pengujian

dilakukan dengan metode grid search dan cross-validation untuk menentukan

konfigurasi terbaik.

Tabel 3.2. Tabel Pengujian Speaker dengan SVM

Skenario
Rasio Data

Latih

Rasio Data

Uji
Nilai C

Nilai

Gamma (𝜸)
Tujuan

1 90% 10% 0.1, 1, 10 0.1, 0.5, 1

Melihat performa

model pada rasio

umum yang sering

digunakan.

2 80% 20% 0.1, 1, 10 0.1, 0.5, 1

Menguji

ketahanan model

dengan data uji

lebih besar.

37

3 70% 30% 0.1, 1, 10 0.1, 0.5, 1

Mengevaluasi

stabilitas model

dengan data latih

yang lebih sedikit.

Hasil prediksi model pada setiap skenario nantinya akan dibandingkan dengan

label aktual dan dievaluasi menggunakan confusion matrix untuk menghitung

metrik accuracy, precision, recall, dan F1-score.

3.1.4.2. Pengujian Pencocokkan Perintah Suara

Tahap ini bertujuan untuk menguji kemampuan sistem dalam mengenali dan

mengeksekusi perintah pengguna melalui mekanisme Regex. Setelah proses

identifikasi speaker berhasil, sistem akan melakukan pencocokan teks hasil speech-

to-text dengan pola Regex yang telah dirancang untuk mengenali kata kunci seperti

“buka” dan “tutup” pada berbagai bentuk kalimat.

Pengujian dilakukan dengan memberikan variasi ucapan yang memiliki makna

sama tetapi dengan struktur kalimat yang berbeda, guna menguji fleksibilitas pola

Regex dalam menangani variasi bahasa alami pengguna.

Tabel 3.3. Tabel Pengujian Pencocokkan Perintah dengan Regular Expression

Skenario Jenis Ucapan Pola Regex Tujuan

1
Ucapan sederhana

(“buka garasi”)
`buka Open’

2

Ucapan kompleks

(“tolong buka pintu

garasi”)

buka.*garasi

Menguji efektivitas

Regex terhadap

kalimat panjang.

3

Ucapan tidak relevan

(“bagaimana

cuacanya”)

—

Menguji mekanisme

fallback terhadap

perintah yang tidak

dikenali.

38

3.1.5. Hasil Analisis

Pengujian ini dilakukan untuk memastikan seluruh komponen sistem, mulai

dari proses perekaman suara, identifikasi pengguna dengan algoritma SVM kernel

linear, pencocokan perintah menggunakan Regex, hingga eksekusi servo pada

garasi, dapat bekerja secara terpadu dan menghasilkan respon yang sesuai.

Uji coba sistem dilakukan secara semi-riil dengan melibatkan 7 responden

sebagai pengguna. Setiap responden memberikan 20 kali input suara yang

mencakup variasi perintah dan kondisi pengujian, sehingga total terdapat 140

sampel pengujian. Tujuan pengujian ini adalah untuk menilai sejauh mana sistem

mampu mengenali perintah secara konsisten dari berbagai karakteristik suara dan

intonasi.

Kondisi pengujian dibagi ke dalam beberapa skenario berikut:

Tabel 3.4. Skenario Pengujian Integrasi Sistem

Skenario Kondisi Lingkungan
Jumlah

Responden

Jumlah Uji

per

Responden

Total

Sampel
Tujuan

1 Suara jelas tanpa noise 7 20 140

Menguji

sistem pada

kondisi

ideal.

2
Suara dengan intonasi

berbeda
7 20 140

Menguji

toleransi

sistem

terhadap

variasi

intonasi.

3
Suara dengan jarak

±0.5 m dari mikrofon
7 20 140

Menguji

pengaruh

jarak

terhadap

pengenalan

suara.

4
Suara dengan latar

belakang noise rendah
7 20 140

Menguji

stabilitas

39

sistem

terhadap

gangguan

lingkungan

ringan.

5

Perintah kompleks

atau tidak langsung

(“tolong buka pintu

garasi”)

7 20 140

Menguji

fleksibilitas

Regex

dalam

mengenali

variasi

kalimat

perintah.

Total seluruh pengujian adalah 140 kali percobaan, yang terdiri atas lima

kondisi berbeda dengan masing-masing melibatkan 7 responden yang masing-

masing memberikan 20 input suara dalam lima kondisi berbeda. Setiap skenario

dirancang untuk merepresentasikan variasi lingkungan dan pola bicara yang

mungkin terjadi pada penggunaan nyata, guna memastikan sistem mampu bekerja

secara andal di berbagai situasi akustik.

40

NBAB IV

HASIL DAN PEMBAHASAN

4.1. Pengumpulan Data

Data penelitian ini diperoleh melalui proses perekaman suara dari 18 partisipan

yang setiap partisipan diminta mengucapkan tiga jenis kalimat, yaitu perintah

“Buka”, “Tutup”, dan kalimat bebas (filler). Seluruh perekaman dilakukan

menggunakan mikrofon eksternal pada jarak sekitar ±20 cm dari mulut di ruangan

dengan tingkat kebisingan rendah hingga sedang. Rekaman suara disimpan dalam

format .m4a sebagai data mentah (raw data), dengan jumlah dan struktur yang

berbeda antara kategori Me (suara pengguna sah) dan Notme (suara penutur lain).

Dataset Me direkam oleh satu orang pengguna utama, sedangkan dataset Notme

berasal dari 18 orang partisipan lain.

Setiap partisipan Notme diminta mengucapkan perintah “Buka” dan “Tutup”

masing-masing sebanyak 5 kali, serta beberapa kalimat bebas (filler) sebanyak ±4–

5 kali. Sementara itu, untuk pengguna sah (Me), perekaman dilakukan dengan

jumlah yang lebih banyak, yaitu 90 kali untuk perintah “Buka”, 90 kali untuk

perintah “Tutup”, dan 90 kalimat filler yang berisi ujaran relevan seperti “Tolong

buka pintunya”.

41

Hasil keseluruhan perekaman mentah ditunjukkan pada Tabel 4.1 berikut.

Tabel 4.1. Distribusi Data Penelitian

Kategori Speaker Jenis Perintah Jumlah Data

Me Buka 90

Me Tutup 90

Me Filler 90

Notme Buka 90

Notme Tutup 90

Notme Filler 90

Total 540

Seluruh data mentah ini kemudian diproses melalui tahap pre-processing yang

mencakup konversi format menjadi .wav mono 16 kHz, pembersihan sinyal melalui

penyaringan dan noise reduction, normalisasi amplitudo, serta penyeragaman

durasi menjadi 5 detik sebelum digunakan dalam proses ekstraksi fitur MFCC dan

pelatihan model.

4.2. Implementasi Metode

Pada penelitian ini, proses identifikasi dilakukan melalui beberapa tahapan

utama, yaitu pre-processing audio, ekstraksi fitur menggunakan MFCC, dan

pengenalan suara menggunakan model berbasis SVM. Setiap tahap memiliki

perannya masing-masing dalam memastikan bahwa sinyal suara yang dianalisis

memiliki kualitas yang baik, fitur yang representatif, serta model yang mampu

membedakan antara suara Me dan Notme secara akurat.

4.2.1. Pre-Processing Audio

Pre-processing dilakukan untuk menyeragamkan dan membersihkan sinyal

sebelum ekstraksi fitur. Pada tahap ini, rekaman diselaraskan ke format yang

konsisten (16 kHz, mono), dikondisikan secara spektral agar fokus pada pita wicara,

bagian hening serta derau latar diturunkan, lalu level dan durasi diseragamkan.

42

Hasilnya adalah sinyal siap pakai yang stabil, homogen, dan representative

sehingga proses ekstraksi MFCC dan tahap berikutnya dapat berjalan lebih akurat

dan terukur.

4.2.1.1. Standarisasi

Seluruh rekaman dikonversi menjadi audio mono dengan laju sampel 16 kHz.

Penyelarasan format ini memastikan setiap sinyal memiliki resolusi dan struktur

yang sama sehingga perbedaan perangkat perekam tidak memengaruhi hasil

analisis. Sinyal kemudian difokuskan pada rentang frekuensi wicara dengan

menerapkan penyaringan pita (band-pass). Frekuensi yang terlalu rendah maupun

terlalu tinggi dihilangkan karena umumnya berisi derau atau komponen non-wicara.

Setelah itu dilakukan pengurangan derau untuk menekan noise latar yang bersifat

statis sehingga bagian ujaran menjadi lebih jelas.

4.2.1.2. Normalisasi

Normalisasi dilakukan untuk menyamakan tingkat energi antarrekaman

sehingga variasi loudness tidak memengaruhi proses ekstraksi fitur. Energi sinyal

dihitung menggunakan Root Mean Square (RMS), kemudian amplitudo

disesuaikan menuju nilai RMS target (𝛾tgt). Dengan cara ini, seluruh rekaman

memiliki level amplitudo yang seragam dan fitur yang dihasilkan menjadi lebih

stabil. Gain normalisasi dihitung menggunakan persamaan:

𝑔 =
𝛾𝑡𝑔𝑡

√
1

𝑁
∑ 𝑥[𝑛]2𝑁

𝑛=1

 (4.1)

Hasil normalisasi memastikan bahwa perbandingan antarrekaman tidak bias

oleh perbedaan volume.

43

4.2.1.3. Penyeragaman Durasi

Setelah dinormalisasi, setiap sinyal diseragamkan panjangnya menjadi 5 detik.

Rekaman yang lebih panjang dipangkas pada bagian akhir, sedangkan rekaman

yang lebih pendek ditambahkan keheningan (zero-padding) hingga mencapai durasi

yang sama. Penyeragaman durasi ini memastikan konsistensi jumlah frame pada

tahap ekstraksi fitur dan memudahkan proses pelatihan model.

Untuk memastikan bahwa hasil pre-processing telah menghasilkan sinyal yang

stabil dan representatif, dilakukan pengukuran terhadap karakteristik dasar seluruh

540 berkas audio yang telah dinormalisasi dan diseragamkan durasinya. Nilai rata-

rata karakteristik sinyal ditunjukkan pada Tabel 4.2 berikut.

Tabel 4.2. Karakteristik Sinyal Hasil Pre-Processing

Parameter Nilai Rata-rata

Amplitudo Maksimum 0.750217

RMS (Root Mean Square) 0.026686

Energi rata-rata (dB) -31.74 dB

Frekuensi Dominan 1379.94 Hz

Berdasarkan hasil tersebut, dapat disimpulkan bahwa sinyal yang telah melalui

tahap pre-processing memiliki tingkat energi dan frekuensi dominan yang berada

dalam rentang karakteristik wicara manusia, yaitu sekitar 300–3400 Hz. Nilai

amplitudo dan RMS yang relatif seragam menunjukkan bahwa proses normalisasi

dan penyeragaman durasi berjalan efektif dalam menghasilkan dataset yang stabil

dan layak digunakan pada tahap ekstraksi fitur MFCC dan proses identifikasi

berikutnya.

44

4.2.2. Ekstraksi MFCC

Sebelum tahap pengenalan suara, setiap sinyal suara dikonversi menjadi

representasi fitur numerik menggunakan Mel-Frequency Cepstral Coefficients

(MFCC). MFCC menangkap bentuk selubung spektrum (spectral envelope) yang

berkorelasi kuat dengan karakteristik artikulatoris dan persepsi manusia.

Proses ekstraksi MFCC diawali dengan pengamatan terhadap sinyal suara

dalam ranah waktu dan frekuensi untuk memahami karakteristik dasar energi

ujaran.

Gambar 4.1. Waveform Sinyal Suara Mentah

Pada Gambar 4.1 ditampilkan waveform sinyal suara mentah dengan durasi

sekitar 5 detik. Sumbu horizontal (sumbu-x) merepresentasikan waktu dalam satuan

detik, sedangkan sumbu vertikal (sumbu-y) menunjukkan amplitudo dari sinyal

audio. Terlihat bahwa pada awal rekaman (0–1 detik) amplitudo berada sangat

dekat dengan nol, yang menandakan adanya bagian hening sebelum penutur mulai

mengucapkan perintah. Aktivitas suara mulai muncul secara jelas pada sekitar detik

ke-1,2 hingga 1,9, ditandai oleh peningkatan amplitudo yang signifikan. Bagian ini

merupakan inti dari ucapan penutur dan berisi energi wicara yang dominan. Setelah

bagian tersebut, amplitudo kembali menurun mendekati nol, menandakan

berakhirnya ujaran dan kembali ke kondisi hening. Pola ini menunjukkan secara

45

jelas kapan ujaran dimulai dan diakhiri, serta distribusi energi pada sepanjang

rekaman.

Gambar 4.2. Spektogram Suara Mentah

Pada Gambar 4.2 ditampilkan spektrogram dari sinyal suara mentah dalam skala

linear. Sumbu horizontal (waktu) menunjukkan perkembangan sinyal sepanjang

durasi 5 detik, sedangkan sumbu vertikal merepresentasikan frekuensi dalam satuan

Hertz (Hz). Warna pada spektrogram menunjukkan intensitas energi frekuensi, di

mana warna lebih cerah menandakan energi yang lebih tinggi dan warna lebih gelap

menunjukkan energi rendah atau bagian yang mendekati keheningan. Terlihat

bahwa aktivitas suara utama terjadi pada rentang waktu sekitar 1.1 hingga 1.9 detik,

ditunjukkan oleh area berwarna lebih terang yang memanjang secara vertikal. Pola

energi yang muncul pada pita frekuensi sekitar 300–4000 Hz yang merupakan ciri

khas komponen wicara manusia.

4.2.2.1. Pre-Emphasis

Pre-emphasis adalah penyaringan linear orde-satu pada ranah waktu untuk

menekankan komponen frekuensi tinggi dan menyelaraskan level frekuensi

46

rendah–tinggi. Digunakan untuk mengurangi derau, memperbaiki SNR pita tinggi,

dan menyiapkan sinyal ke tahap berikutnya.

Gambar 4.3. Perbandingan Sinyal Sebelum dan Sesudah Proses Pre-Emphasis

Pada Gambar 4.3 ditampilkan perbandingan bentuk sinyal suara sebelum

dan sesudah diterapkan pre-emphasis. Pada bagian sebelum pre-emphasis,

gelombang tampak lebih “halus” dan energi lebih terkonsentrasi pada komponen

amplitudo besar yang berasal dari frekuensi rendah. Setelah proses pre-emphasis

diterapkan, terlihat bahwa kontur gelombang menjadi lebih tajam dan lebih padat,

terutama pada bagian transisi cepat dari sinyal. Hal ini menunjukkan peningkatan

energi pada komponen frekuensi tinggi.

4.2.2.2. Convert to Frames

Convert to Frames merupakan pemotongan sinyal hasil pre-emphasis

menjadi bingkai berdurasi pendek (±20–40 ms) dengan overlap, sehingga tiap

bingkai dapat dianggap quasi-stasioner. Digunakan untuk memungkinkan analisis

spektral yang representatif per interval waktu.

47

4.2.2.3. Discrete Fourier Transformation

Discrete Fourier Transformation merupakan transformasi dari domain

waktu ke domain frekuensi untuk memperoleh spektrum (magnitudo/daya) tiap

frame. Digunakan untuk memetakan kandungan sinusoidal sebagai dasar

pemfilteran pada skala Mel.

Gambar 4.4. Spektogram Hasil Transformasi Fourier

4.2.2.4. Log of Amplitude

Log of Amplitude merupakan pemetaan energi spektral (atau energi pita-

Mel) ke skala log/dB. Digunakan untuk menyelaraskan rentang dinamis dengan

persepsi manusia dan menormalkan kontribusi puncak energi sebelum DCT.

4.2.2.5. Mel Scaling

Mel Scaling merupakan proses pemetaan spektrum linier hasil transformasi

Fourier ke dalam skala perseptual Mel yang lebih menyerupai cara telinga manusia

mendengar suara. Dalam skala Mel, resolusi frekuensi dibuat lebih rapat pada

frekuensi rendah dan lebih renggang pada frekuensi tinggi, karena manusia lebih

sensitif terhadap perubahan nada di pita rendah (sekitar 300–1000 Hz)

dibandingkan pita tinggi.

Proses ini dilakukan menggunakan sekumpulan filter segitiga tumpang

tindih (Mel filter bank), di mana masing-masing filter menghitung energi rata-rata

48

pada rentang frekuensi tertentu. Energi dari hasil Discrete Fourier Transformation

(DFT) yang semula masih linier kemudian diproyeksikan ke skala Mel untuk

menekankan komponen-komponen yang lebih relevan secara fisiologis terhadap

persepsi manusia.

Gambar 4.5. Mel-Spectogram Hasil Pemetaan Frekuensi ke Skala Mel

Gambar 4.5 menunjukkan Mel-Spectrogram dari sinyal suara setelah

spektrum linier diproyeksikan ke skala Mel. Warna yang lebih terang

menggambarkan energi yang lebih tinggi pada frekuensi tertentu. Pola energi utama

terlihat pada rentang sekitar 500–4000 Hz, yaitu daerah yang paling relevan untuk

komponen wicara manusia. Pada rentang waktu 1,2–1,9 detik, tampak pita energi

yang jelas sebagai bagian inti dari ujaran. Dibandingkan spektrogram linier, Mel-

Spectrogram menampilkan detail yang lebih padat pada frekuensi rendah dan lebih

ringkas pada frekuensi tinggi, sehingga pola formant dan karakteristik artikulasi

lebih mudah diamati dan lebih representatif untuk proses ekstraksi MFCC.

4.2.2.6. Discrete Cosine Transformation

Discrete Cosine Transformation merupakan transformasi yang berfungsi

untuk mendekorrelasi log-energi hasil Mel-Spectrogram dan memadatkannya

menjadi sejumlah kecil koefisien yang merepresentasikan bentuk selubung spektral

49

dari sinyal suara. Dengan demikian, DCT mengubah informasi energi dalam

domain frekuensi menjadi representasi cepstral yang lebih kompak, stabil, dan

mudah dianalisis untuk proses identifikasi speaker. Dalam penelitian ini digunakan

13 koefisien MFCC sebagai fitur utama, di mana setiap koefisien menggambarkan

variasi spektrum pada tingkat tertentu. Koefisien-ke-1 mewakili energi

keseluruhan, sedangkan koefisien selanjutnya menangkap perbedaan karakteristik

suara antar frekuensi yang bersifat unik.

Gambar 4.6. Representasi 13 Koefisien MFFC

Gambar 4.6 memperlihatkan representasi 13 koefisien MFCC yang

dihasilkan dari sinyal berdurasi 5 detik. Sumbu horizontal menunjukkan waktu,

sedangkan sumbu vertikal menunjukkan indeks koefisien MFCC. Warna pada

gambar menggambarkan nilai masing-masing koefisien, di mana warna merah

menunjukkan nilai yang lebih tinggi dan warna biru menunjukkan nilai yang lebih

rendah. Pola perubahan warna sepanjang waktu mencerminkan dinamika artikulasi

penutur selama mengucapkan perintah, terutama pada rentang waktu sekitar 1.2

hingga 1.9 detik, ketika energi wicara muncul. Koefisien-koefisien inilah yang

merangkum bentuk selubung spektral suara dan menjadi dasar bagi sistem untuk

membedakan karakteristik suara antara kelas Me dan Notme pada tahap pengenalan

speaker.

50

Tabel 4.3. Hasil Ekstraksi MFCC

Index_sample MFCC_1 MFCC_2 MFCC_3 … MFCC_13 Kelas

0 0.000000114 0.000000000 -0.000000009 … 0.000000000 Me

1 -0.000000418 0.000000057 -0.000000066 … 0.000000019 Me

2 0.000000304 -0.000000076

-0.000000026 … 0.000000000 Me

Tabel 4.3 menampilkan contoh hasil ekstraksi fitur MFCC dalam bentuk

nilai numerik. Setiap kolom MFCC_1 hingga MFCC_13 merepresentasikan satu

dimensi fitur cepstral yang dihasilkan dari proses DCT terhadap energi Mel-

Spectrogram. Nilai pada masing-masing koefisien menunjukkan kontribusi relatif

komponen spektral pada tingkat orde tertentu, di mana perbedaan nilai antar

koefisien dan antar sampel membentuk pola karakteristik suara penutur. Koefisien

MFCC_1 hingga MFCC_3 merepresentasikan komponen global selubung spektral,

sehingga nilai-nilainya cenderung lebih stabil dan mencerminkan bentuk spektrum

secara umum. Koefisien MFCC_4 hingga MFCC_7 menangkap variasi resonansi

spektral yang berkaitan dengan karakteristik saluran vokal, yang menyebabkan

nilai-nilainya bervariasi antar penutur. Sementara itu, koefisien MFCC_8 hingga

MFCC_13 merepresentasikan detail spektral yang lebih halus, dengan nilai yang

relatif kecil namun tetap berkontribusi dalam membedakan pola suara pada proses

klasifikasi.

4.2.3. Pre-Processing Data

 Tahap pre-processing merupakan langkah penting untuk menyiapkan data

sebelum proses pelatihan model pengenalan suara. Tahapan ini memastikan data

dalam kondisi bersih, seimbang, serta berada dalam skala yang seragam sehingga

dapat diolah secara optimal oleh algoritma SVM.

51

 Proses pre-processing ini dilakukan setelah tahap ekstraksi ciri (feature

extraction) menggunakan MFCC, sehingga setiap berkas audio telah diubah

menjadi representasi numerik fitur yang siap diproses oleh model pembelajaran

mesin.

4.2.3.1. Cleaning

Tahap cleaning bertujuan memastikan hanya data yang valid dan relevan

yang digunakan dalam proses training. Data hasil ekstraksi MFCC sering kali

mengandung nilai kosong (missing values) atau label yang tidak sesuai akibat

kesalahan anotasi atau kegagalan ekstraksi suara. Proses cleaning dilakukan dengan

cara:

1. Menghapus baris data yang memiliki nilai kosong (NaN) pada kolom label

maupun fitur.

2. Menyaring hanya label yang valid, yaitu Me dan Notme, dan menghapus label

lain seperti “unknown” atau hasil pengenalan yang gagal.

3. Semua nilai pada kolom label_speaker diseragamkan ke huruf kecil untuk

menghindari inkonsistensi format, misalnya perbedaan penulisan “Me”, “me”,

atau “ME”.

Adapun hasil dari sebelum dan sesudah dilakukan cleaning adalah sebagai

berikut:

Tabel 4.3. Proses Cleaning pada Data

Sebelum Cleaning Setelah Cleaning

Jumlah

Data
Data Hilang (NaN)

Jumlah

Data
Data Hilang (NaN)

Label Me 270
0

270
0

Label Notme 270 270

Total Data 540 540

52

Berdasarkan hasil pada Tabel 4.3, jumlah data awal sebanyak 540 sampel,

terdiri dari 270 data kelas Me dan 270 data kelas Notme. Tidak ditemukan data yang

hilang (missing value), sehingga jumlah data sebelum dan sesudah pembersihan

tetap sama.

4.2.3.2. Normalisai

Normalisasi fitur adalah proses penskalaan agar skala antar dimensi fitur

setara. Tujuan normalisasi adalah mencegah fitur beramplitudo besar. Penelitian ini

menggunakan StandardScaler (Z-Score Normalization) karena SVM peka terhadap

skala dan z-score menjaga informasi jarak relatif dengan memusatkan data pada nol

dan menyetarakan standar deviasi menjadi satu.

𝑧𝑗 =
𝑥𝑗−𝜇𝑗

𝜎𝑗
 (4.2)

Keterangan:

𝑧𝑗 : fitur yang telah dinormalisai

𝑥𝑗 : nilai fitur pada dimensi ke-j

𝜇𝑗 : rata-rata fitur ke-j

𝜎𝑗 : simpangan baku fitur ke-j

Contoh perhitungan:

𝑧𝑚𝑓𝑐𝑐13 =
−0.000000019 − 0.0000000322127

0.0000000322127
= −0.61 (4.3)

Proses normalisasi dapat dilihat melalui pseudocode berikut:

Algoritma Normalisasi_Fitur_MFCC

Input : Dataset hasil cleaning dengan kolom MFCC₁–MFCC₁₃ dan

label_speaker

Output : Dataset hasil normalisasi dengan skala rata-rata 0 dan

simpangan baku 1

53

Langkah-langkah:

1. Membaca dataset hasil cleaning dari direktori penyimpanan.

2. Pilih kolom fitur utama (MFCC₁ sampai MFCC₁₃) sebagai input untuk
normalisasi.

3. Terapkan metode StandardScaler (Z-Score Normalization)

menggunakan rumus:

 z_j = (x_j - μ_j) / σ_j

 di mana:

 z_j = nilai fitur setelah normalisasi

 x_j = nilai asli fitur ke-j

 μ_j = rata-rata fitur ke-j

 σ_j = simpangan baku fitur ke-j

4. Bentuk dataset baru yang berisi hasil normalisasi seluruh fitur

MFCC dan kolom label asli.

5. Simpan hasil normalisasi dalam dua berkas:

 - tabel10_sebelum_normalisasi.csv → data asli sebelum

penskalaan

 - tabel11_sesudah_normalisasi.csv → data setelah penskalaan

6. Tampilkan contoh nilai sebelum dan sesudah normalisasi untuk

verifikasi.

Selesai

Tabel 4.4. Nilai Fitur Sebelum Normalisasi

Index_sample MFCC_1 MFCC_2 MFCC_3 … MFCC_13 Kelas

0 0.000000114 0.000000000 -0.000000009 … 0.000000000 Me

1 -0.000000418 0.000000057 -0.000000066 … 0.000000019 Me

2 0.000000304 -0.000000076

-0.000000026 … 0.000000000 Me

Tabel 4.4 menunjukkan contoh hasil ekstraksi fitur MFCC sebelum dilakukan

normalisasi, sementara Tabel 4.5 menampilkan hasil setelah normalisasi:

Tabel 4.5. Nilai Fitur Setelah Normalisasi

Index_sample MFCC_1 MFCC_2 MFCC_3 … MFCC_13 Kelas

0 0.4899 0.0236 −0.2616 … −0.3355 Me

1 −1.8617 1.3753 −1.7760 … −0.6099 Me

2 1.3297 - −1.7786

−0.7033 … −0.0206 Me

54

Nilai-nilai yang semula sangat kecil (di bawah 10⁻⁶) telah ditransformasi ke

skala standar (rata-rata 0 dan simpangan baku 1), sehingga setiap fitur memiliki

kontribusi yang seimbang terhadap proses pelatihan model SVM.

4.2.4. Pengenalan Speaker dengan SVM

Support Vector Machine digunakan sebagai algoritma utama untuk

melakukan pengenalan speaker antara dua kelas, yaitu Me (pengguna utama) dan

Notme (penutur lain). SVM bekerja dengan membentuk sebuah fungsi keputusan

(decision function) yang memaksimalkan jarak pemisah (maximum margin) antara

dua kelas pada ruang fitur berdimensi tinggi.

Pada penelitian ini, setiap sampel suara direpresentasikan sebagai sebuah

vektor fitur berdimensi 13 yang berasal dari koefisien MFCC₁ hingga MFCC₁₃.

Vektor fitur tersebut dipetakan ke dalam ruang fitur SVM untuk membentuk

hyperplane optimal yang memisahkan distribusi karakteristik suara kelas Me dan

Notme. Selain menghasilkan label klasifikasi, SVM juga menghasilkan nilai

keputusan (decision score) yang merepresentasikan jarak relatif suatu vektor fitur

terhadap hyperplane pemisah. Nilai keputusan ini digunakan sebagai dasar

penerapan mekanisme threshold untuk meningkatkan keandalan sistem dalam

membedakan penutur sah dan tidak sah.

Penentuan nilai threshold dilakukan berdasarkan analisis Receiver

Operating Characteristic (ROC), dengan memilih titik ambang pada False

Acceptance Rate (FAR) sebesar 5%. Pemilihan FAR 5% bertujuan untuk menekan

risiko penerimaan penutur tidak sah, mengingat sistem ini digunakan untuk

mengontrol akses fisik pada pintu garasi.

55

Berdasarkan threshold tersebut, wilayah keputusan SVM dibagi menjadi

tiga zona, yaitu TH_high, TH_low, dan zona ambigu. Jika nilai keputusan berada di

atas TH_high, maka sampel suara diklasifikasikan sebagai Me dan sistem

memberikan akses. Jika nilai keputusan berada di bawah TH_low, maka sampel

suara diklasifikasikan sebagai Notme dan akses ditolak. Adapun nilai keputusan

yang berada di antara TH_low dan TH_high dikategorikan sebagai kondisi ambigu,

di mana sistem tidak langsung memberikan akses untuk meminimalkan kesalahan

pengenalan.

Pendekatan dua ambang (dual-threshold) ini memungkinkan sistem

mengontrol trade-off antara keamanan dan kenyamanan pengguna secara lebih

fleksibel. Dengan adanya zona ambigu, sistem dapat menghindari keputusan yang

bersifat tidak pasti, sehingga risiko kesalahan penerimaan (false acceptance)

maupun kesalahan penolakan (false rejection) dapat ditekan secara lebih efektif.

4.2.4.1. Exploratory Data Analysis (EDA)

Exploratory Data Analysis dilakukan dengan memvisualisasikan histogram

masing-masing fitur MFCC untuk memeriksa bentuk distribusi dan memastikan

tidak terdapat nilai ekstrim atau pola yang tidak wajar.

56

Gambar 4.7. Histogram Fitur MFCC

Gambar 4.7 menunjukkan bahwa setiap fitur MFCC₁–MFCC₁₃ memiliki

distribusi yang mendekati bentuk kurva normal dan berpusat di sekitar nol setelah

proses normalisasi. Tidak ditemukan outlier ekstrem atau penyebaran nilai yang

tidak simetris. Distribusi yang konsisten ini menandakan bahwa keseluruhan fitur

berada dalam kondisi yang baik dan siap digunakan sebagai input bagi model SVM,

yang sangat bergantung pada skala dan kestabilan fitur untuk menghasilkan

hyperplane pemisah yang optimal.

4.2.4.2. Hasil Data Splitting

Proses pembagian data menghasilkan dua bagian, yaitu data latih dan data

uji. Pembagian dilakukan secara acak terkontrol menggunakan parameter

random_state dan stratified split untuk menjaga proporsi kelas pada data latih dan

uji tetap konsisten. Tabel 4.6 menampilkan hasil pembagian data untuk tiga rasio

yang berbeda.

57

Tabel 4.6. Hasil Rasio Pembagian Data

Skenario Jumlah Data Latih Jumlah Data Uji

90:10 486 54

80:20 432 108

70:30 378 162

4.2.4.3. Hasil Uji Coba Skenario 90:10

Pengujian pada skenario pembagian data 90:10 dilakukan untuk mengevaluasi

performa model SVM setelah melalui tahap ekstraksi fitur MFCC dan normalisasi

Z-score. Dari total 540 sampel, diperoleh 486 data latih dan 54 data uji, masing-

masing tetap menjaga proporsi kelas Me dan Notme menggunakan stratified split.

Distribusi data uji terdiri dari 27 sampel Me dan 27 sampel Notme, sehingga kedua

kelas berada dalam kondisi seimbang. Kondisi ini memastikan bahwa proses

evaluasi tidak dipengaruhi oleh bias distribusi kelas dan memberikan gambaran

performa model secara objektif.

Pada pengujian ini, model SVM dievaluasi menggunakan dua jenis kernel, yaitu

RBF dan Linear, dengan variasi hyperparameter Cost (C) dan Gamma (γ).

Kernel RBF bekerja dengan memetakan data ke ruang berdimensi lebih tinggi

menggunakan fungsi Gaussian, sehingga mampu menangkap hubungan non-linear

antara fitur suara. Sebaliknya, kernel Linear berfokus pada pencarian hyperplane

optimal yang secara linear memisahkan dua kelas data (Me dan Notme) dengan cara

memaksimalkan margin antar support vector.

Proses tuning hyperparameter dilakukan secara grid search untuk mencari

kombinasi C dan γ terbaik berdasarkan nilai F1-Score. Evaluasi performa dilakukan

menggunakan confusion matrix dengan perhitungan metrik Accuracy, Precision,

58

Recall, dan F1-Score, yang menggambarkan kemampuan model dalam

membedakan identitas antara Me dan Notme.

Tabel 4.7. Hasil Evaluasi Pengujian Skenario 1

Perco

baan
Kernel

Hyperparameter Evaluasi

Cost (C)
Gamma

(𝜸)

Accuracy

(%)

Precision

(%)
Recall (%) F1-Score(%)

1

RBF

0.1

0.1 92.6 92.59 92.59 92.59

2 0.5 90.75 90.74 90.74 90.74

3 1 90.75 90.74 90.74 90.74

4

1

0.1 96.3 96.15 96.3 96.22

5 0.5 96.3 96.15 96.3 96.22

6 1 96.3 96.15 96.3 96.22

7

10

0.1 96.3 3.7 96.15 96.3

8 0.5 96.3 3.70 96.30 96.30

9 1 94.45 5.55 94.44 94.44

10

Linear

0,1 96.3 96.15 96.3 96.22

11 1 96.3 96.15 96.3 96.22

12 10 96.3 96.15 96.3 96.22

Berdasarkan hasil evaluasi yang ditunjukkan pada Tabel 4.7, konfigurasi terbaik

diperoleh pada model SVM dengan kernel RBF, nilai Cost (C) = 10, dan Gamma

(γ) = 0.5. Kombinasi ini memberikan performa yang paling stabil dibandingkan

konfigurasi lainnya, dengan nilai akurasi sebesar 96.30%, serta nilai Precision,

Recall, dan F1-Score masing-masing sebesar 96.30%. Nilai akurasi yang tinggi ini

menunjukkan bahwa model mampu mengklasifikasikan suara Me dan Notme secara

konsisten dengan tingkat kesalahan yang rendah.

Gambar 4.8. Confusion Matrix Skenario 1

59

Hasil confusion matrix pada Gambar 4.8 menunjukkan bahwa model

mampu mengklasifikasikan suara dengan sangat baik. Dari total 54 data uji,

terdapat 26 sampel Me dan 26 sampel Notme yang berhasil diklasifikasikan dengan

benar. Kesalahan hanya terjadi pada dua sampel, yaitu satu sampel Notme yang

salah dikenali sebagai Me dan satu sampel Me yang salah dikenali sebagai Notme.

4.2.4.4. Hasil Uji Coba Skenario 80:20

Pengujian pada skenario pembagian data 80:20 dilakukan untuk

mengevaluasi konsistensi performa model SVM saat porsi data latih dikurangi dan

data uji diperbesar. Dari total 540 sampel, proses pembagian menghasilkan 432 data

latih dan 108 data uji, dengan proporsi kelas tetap dijaga menggunakan stratified

split. Distribusi data uji terdiri dari 54 sampel Me dan 54 sampel Notme, sehingga

kedua kelas tetap berada dalam kondisi seimbang dan bebas bias distribusi.

Seperti pada skenario sebelumnya, model SVM dievaluasi menggunakan

dua jenis kernel, yaitu RBF dan Linear, yang masing-masing diuji dengan variasi

hyperparameter Cost (C) dan Gamma (γ). Kernel RBF memetakan fitur ke ruang

berdimensi tinggi untuk menangkap hubungan non-linear, sementara kernel Linear

mencari garis batas pemisah terbaik pada ruang asli. Hasil pengujian seluruh

kombinasi ditampilkan pada Tabel 4.8.

Tabel 4.8. Hasil Evaluasi Pengujian Skenario 2

Perco

baan
Kernel

Hyperparameter Evaluasi

Cost (C)
Gamma

(𝜸)

Accuracy

(%)

Precision

(%)
Recall (%) F1-Score(%)

1

RBF

0.1

0.1 92.59 92.59 92.59 92.59

2 0.5 90.74 90.74 90.74 90.74

3 1 90.74 90.74 90.74 90.74

4

1

0.1 96.3 96.15 96.3 96.22

5 0.5 96.3 96.15 96.3 96.22

6 1 96.3 96.15 96.3 96.22

7 10 0.1 96.3 96.15 96.3 96.22

60

8 0.5 96.3 96.3 96.3 96.3

9 1 94.45 94.44 94.44 94.44

10

Linear

0,1 96.3 96.15 96.3 96.22

11 1 96.3 96.15 96.3 96.22

12 10 96.3 96.15 96.3 96.22

Berdasarkan hasil evaluasi pada Tabel 4.8, konfigurasi terbaik diperoleh

pada model SVM dengan kernel RBF, nilai Cost (C) = 10, dan Gamma (γ) = 0.1.

Model ini memberikan performa paling optimal pada skenario pembagian data

80:20 dengan nilai akurasi sebesar 96.30%, serta nilai Precision, Recall, dan F1-

Score masing-masing sebesar 96.30%. Konsistensi nilai evaluasi tersebut

menunjukkan bahwa model tetap mampu mengenali pola suara Me dan Notme

dengan baik meskipun proporsi data uji lebih besar.

Gambar 4.9. Confusion Matrix Skenario 2

Confusion matrix pada Gambar 4.9 menunjukkan bahwa model SVM

dengan konfigurasi terbaik (kernel RBF, C = 10, γ = 0.1) mampu melakukan

klasifikasi dengan tingkat akurasi yang sangat tinggi. Dari total 108 data uji,

sebanyak 52 sampel Notme berhasil diklasifikasikan dengan benar sebagai Notme,

dan 52 sampel Me juga terklasifikasi benar sebagai Me. Kesalahan prediksi hanya

terjadi pada 4 sampel, yang terdiri dari 2 sampel Notme yang salah dikenali sebagai

Me, serta 2 sampel Me yang salah diklasifikasikan sebagai Notme.

61

4.2.4.5. Hasil Uji Coba Skenario 70:30

Pengujian pada skenario pembagian data 70:30 dilakukan untuk mengukur

kemampuan generalisasi model SVM ketika jumlah data uji tiga kali lebih besar

dibandingkan skenario 90:10. Dari total 540 sampel, diperoleh 378 data latih dan

162 data uji menggunakan stratified split, sehingga proporsi kelas Me dan Notme

tetap terjaga secara seimbang. Pada data uji, terdapat 81 sampel Me dan 81 sampel

Notme, yang memastikan bahwa evaluasi performa model berlangsung tanpa bias

distribusi kelas.

Pada pengujian ini, model SVM diuji menggunakan kernel RBF dan Linear

dengan berbagai kombinasi hyperparameter Cost (C) dan Gamma (γ). Kernel RBF

digunakan untuk menangani pola hubungan non-linear antar fitur suara, sedangkan

kernel Linear digunakan untuk memisahkan kelas secara linear dengan margin

optimal.

Tabel 4.9. Hasil Evaluasi Pengujian Skenario 3

Perco

baan
Kernel

Hyperparameter Evaluasi

Cost (C)
Gamma

(𝜸)

Accuracy

(%)

Precision

(%)
Recall (%) F1-Score(%)

1

RBF

0.1

0.1 90.12 90.12 90.12 90.12

2 0.5 88.89 88.89 88.89 88.89

3 1 88.89 88.89 88.89 88.89

4

1

0.1 95.06 95.06 95.06 95.06

5 0.5 95.06 95.06 95.06 95.06

6 1 95.06 95.06 95.06 95.06

7

10

0.1 96.3 96.3 96.3 96.3

8 0.5 97.53 98 98 98

9 1 93.83 93.83 93.83 93.83

10

Linear

0,1 95.06 95.06 95.06 95.06

11 1 95.06 95.06 95.06 95.06

12 10 95.06 95.06 95.06 95.06

Berdasarkan hasil evaluasi pada Tabel 4.9, konfigurasi terbaik diperoleh

pada model SVM dengan kernel RBF, nilai Cost (C) = 10, dan Gamma (γ) = 0.5.

Kombinasi ini menghasilkan nilai akurasi sebesar 97.53%, serta nilai Precision,

62

Recall, dan F1-Score masing-masing sebesar 98%. Hasil ini menunjukkan bahwa

model mampu mempertahankan performa yang sangat stabil pada kedua kelas,

dengan tingkat kesalahan yang rendah dalam membedakan suara pengguna (Me)

dan penutur lain (Notme) pada skenario pembagian data 70:30.

Gambar 4.10. Confusion Matrix Skenario 3

Confusion matrix pada skenario 70:30 menampilkan hasil klasifikasi terhadap

162 data uji, yang terdiri dari 81 data Me dan 81 data Notme. Berdasarkan

visualisasi pada Gambar 4.10, model menunjukkan performa yang sangat baik

dengan tingkat kesalahan yang sangat rendah. Tercatat bahwa 79 sampel Me dan 79

sampel Notme berhasil diklasifikasikan dengan benar, sedangkan hanya terjadi

empat kesalahan, yaitu masing-masing dua sampel Me yang salah dikenali sebagai

Notme, dan dua sampel Notme yang salah dikenali sebagai Me.

4.2.5. Pencocokkan Kata dengan Regex

Pada tahap ini, sistem menggunakan regex sebagai mekanisme pengambilan

keputusan deterministik berdasarkan teks hasil transkripsi dari modul Speech-to-

Text (STT). Setelah sinyal suara melewati proses pra-pemrosesan serta dinyatakan

sebagai pengguna sah (Me) oleh model SVM, sistem memanggil layanan speech

63

recognition untuk mendapatkan teks transkripsi. Dari teks inilah proses intent

detection dilakukan menggunakan dua pola regex utama:

RE_BUKA = \b(buka)\b

RE_TUTUP = \b(tutup)\b

Kedua pola ini bersifat case-insensitive dan menggunakan batas kata (\b) agar

tidak salah mengenali kata serupa (misalnya “bukan” tidak dihitung sebagai

“buka”). Setelah transkrip tersedia, sistem menelusuri seluruh kecocokan

menggunakan fungsi finditer() untuk memperoleh posisi dan isi kata yang cocok,

kemudian mengurutkannya berdasarkan urutan kemunculan dalam kalimat.

Keputusan intent dibuat secara deterministik dari urutan hit tersebut: jika token

pertama yang cocok adalah “buka”, intent ditetapkan buka, jika “tutup”, intent

menjadi tutup, dan jika tidak ada kecocokan sama sekali, sistem mengembalikan

label filler. Perintah hanya dieksekusi jika dua kondisi terpenuhi bersamaan:

1) Pengguna terverifikasi sebagai Me oleh model SVM

2) Hasil regex termasuk salah satu perintah valid (“buka” atau “tutup”).

Proses pencocokkan perintah dapat dilihat melalui pseudocode berikut:

Input : Teks hasil transkripsi dari modul Speech-to-Text (STT)

Output : Label perintah (“buka”, “tutup”, atau “filler”)

Langkah-langkah:

1. Inisialisasi dua pola regular expression (Regex):

• RE_BUKA ← \b(buka)\b

• RE_TUTUP ← \b(tutup)\b

2. Terima input berupa hasil transkripsi teks.

 Jika teks kosong → kembalikan “filler”.

64

3. Lakukan pencocokan terhadap kedua pola menggunakan

finditer().

 Simpan setiap kecocokan ke dalam daftar matches dengan

atribut kata dan posisi.

4. Urutkan daftar matches berdasarkan posisi kemunculan pertama.

5. Tentukan hasil deteksi:

a. Jika ditemukan kata “buka” atau “open” → command ← “buka”.

b. Jika ditemukan kata “tutup” atau “close” → command ←

“tutup”.

c. Jika tidak ditemukan keduanya → command ← “filler”.

6. Kembalikan hasil deteksi (command, daftar kecocokan, dan kata

terpilih).

7. Gunakan hasil ini bersama keluaran model SVM untuk menentukan

tindakan akhir sistem.

Selesai

4.3. Implementasi Komunikasi IoT

Implementasi komunikasi IoT pada sistem ini menggunakan protokol

MQTT dengan HiveMQ Cloud sebagai broker. HiveMQ (broker MQTT) adalah

layanan perantara yang menerima pesan dari pihak yang menerbitkan (publisher),

lalu merutekannya ke pihak yang berlangganan (subscriber) berdasarkan topik

dengan dukungan koneksi aman (TLS), kontrol akses pengguna/topik, dan opsi

QoS untuk menjamin pengantaran.

Gambar 4.11. Logo HiveMQ

65

Pada sisi PC yang menangani akuisisi suara, pemrosesan machine learning,

dan klien MQTT, sistem menghasilkan keputusan perintah dalam bentuk payload

JSON yang dikirim ke topik perintah pada broker. ESP32 sebagai perangkat

pengendali berlangganan topik tersebut, membaca status pintu terakhir

(buka/tutup), kemudian menentukan apakah diperlukan aksi berdasarkan indikator

“flag”. Aturannya tetap instruksi “buka” hanya dijalankan ketika pintu berada pada

kondisi tertutup, dan instruksi “tutup” dieksekusi ketika pintu berada pada kondisi

terbuka. Kasus Notme atau filler menghasilkan flag bernilai 0 sehingga tidak ada

pergerakan. Perangkat kemudian mempublikasikan status singkat sebagai informasi

real-time untuk pemantauan sistem.

Pemilihan QoS disesuaikan dengan kebutuhan operasional. Perintah dikirim

menggunakan QoS 1 tanpa opsi retain untuk mencegah penyimpanan perintah lama

pada broker. Status, event ringan, dan telemetry menggunakan QoS 0 agar beban

jaringan tetap rendah. Seluruh keluaran machine learning, baik perintah valid

maupun non-perintah seperti filler atau prediksi dengan kepercayaan rendah, dicatat

dalam basis data sebagai log. Telemetry disimpan sebagai deret waktu, sedangkan

status perangkat terkini diperbarui menggunakan mekanisme upsert agar selalu

menampilkan kondisi terbaru. Setiap payload memuat penanda waktu dan

corr_id (UUID) untuk memudahkan pelacakan dan mencegah terjadinya

duplikasi aksi akibat pengiriman ulang. Koneksi menuju broker diamankan dengan

TLS dan kredensial pengguna serta dapat dilengkapi fitur keep-alive dan Last-Will

untuk mendeteksi putus sambungan secara otomatis.

66

4.4. Implementasi Sistem

Implementasi sistem pada penelitian ini menggabungkan aplikasi mobile,

server machine learning, dan perangkat mikrokontroler ESP32. Aplikasi digunakan

untuk merekam suara dan mengirimkannya ke server. Server kemudian memproses

audio menggunakan model SVM dan Regex untuk menentukan identitas pengguna

serta jenis perintah. Hasil keputusan dikirimkan melalui MQTT ke ESP32, yang

selanjutnya menggerakkan motor servo, membaca sensor IR, dan menampilkan

status melalui LED dan buzzer. Integrasi ini memungkinkan kontrol pintu garasi

berjalan secara otomatis dan real-time.

4.4.1. Sistem Software

Sistem software pada penelitian ini berfungsi sebagai antarmuka pengguna

(user interface) dan pengelola komunikasi data antara sistem pengenalan suara

berbasis machine learning dengan perangkat mikrokontroler yang mengendalikan

pintu garasi. Aplikasi ini dikembangkan menggunakan framework Flutter dengan

arsitektur client–server, di mana aplikasi berperan sebagai client yang mengirimkan

data suara pengguna ke server untuk diproses dan kemudian menerima hasil berupa

identitas pengguna (Me atau Notme) serta perintah yang dikenali (Buka, Tutup, atau

Filler).

Aplikasi ini juga terhubung dengan broker MQTT sebagai media komunikasi

antara sistem software dan perangkat hardware ESP32. Pesan hasil pengenalan

perintah suara dikirimkan melalui topik tertentu dan diteruskan ke mikrokontroler

untuk mengeksekusi aksi fisik membuka atau menutup pintu garasi. Tampilan

antarmuka aplikasi dirancang dengan prinsip sederhana dan fungsional agar

67

pengguna dapat dengan mudah merekam suara, mendaftarkan data suara baru,

memantau aktivitas sistem, serta melihat analisis performa pengenalan suara.

Gambar 4.12. Tampilan Voice Control

Gambar 4.12 menunjukkan tampilan utama aplikasi Smart Door Garage –

Voice Control. Halaman ini berfungsi sebagai antarmuka utama untuk melakukan

perekaman suara pengguna. Pengguna dapat menekan ikon mikrofon di tengah

layar untuk mulai merekam perintah suara seperti “Buka” atau “Tutup”. Setelah

proses perekaman selesai, file audio akan dikirim ke server backend (machine

learning) melalui protokol HTTP untuk diproses menggunakan model pengenalan

suara berbasis SVM dan Regex. Hasil pemrosesan kemudian menentukan apakah

suara tersebut dikenali sebagai pengguna sah (Me) dan perintah yang diucapkan

valid.

68

Gambar 4.13. Tampilan Analytics

Gambar 4.13 menampilkan halaman Analytics, yang berfungsi untuk

menyajikan hasil analisis aktivitas sistem secara visual. Halaman ini terdiri atas tiga

bagian utama. Bagian pertama yaitu Statistik Aktivitas Pintu, ditampilkan dalam

bentuk diagram batang yang memperlihatkan frekuensi perintah “Buka” dan

“Tutup” yang diterima sistem. Bagian kedua adalah Deteksi Speaker, yang

menunjukkan jumlah deteksi suara berdasarkan identitas pengguna, baik Speaker

Me maupun Speaker Notme. Bagian ketiga yaitu Keberhasilan Deteksi dan

Perintah, yang ditampilkan dalam bentuk diagram lingkaran (pie chart) untuk

menggambarkan persentase keberhasilan sistem dalam mengenali kombinasi antara

identitas pengguna dan jenis perintah yang benar. Fitur pada halaman ini membantu

pengguna maupun pengembang dalam mengevaluasi performa sistem secara

69

keseluruhan, baik dari sisi efektivitas pengenalan suara maupun tingkat

keberhasilan eksekusi perintah.

Gambar 4.14. Tampilan Activity Logs

Gambar 4.14 memperlihatkan halaman Activity Logs, yang berfungsi untuk

menampilkan riwayat aktivitas sistem dalam mendeteksi perintah suara.

Setiap entri log menampilkan jenis perintah yang diucapkan, identitas pengguna

yang dikenali (Me atau Notme), serta waktu kejadian (timestamp) secara kronologis.

Halaman ini memungkinkan pengguna untuk memantau jejak aktivitas sistem,

termasuk perintah yang berhasil atau gagal dikenali, sehingga dapat digunakan

untuk proses debugging dan evaluasi performa sistem secara real-time.

4.4.1. Sistem Hardware

Rangkaian hardware yang digunakan dalam Sistem Kontrol Pintu Garasi

Pintar berbasis Internet of Things (IoT) ini terdiri dari beberapa komponen utama

70

yang saling terhubung untuk menjalankan fungsi kendali pintu garasi secara

otomatis berdasarkan perintah suara. Sistem ini dirancang dengan menggunakan

mikrokontroler ESP32 sebagai pusat pengendali, servo motor MG996R sebagai

aktuator mekanik, sensor inframerah (IR obstacle sensor) untuk mendeteksi kondisi

pintu, LED indikator sebagai penanda status sistem, dan buzzer sebagai alarm bunyi

atau notifikasi proses.

Gambar 4.15. Rangkaian Mikrokontroler dengan Sensor

ESP32 berfungsi sebagai unit pengendali utama yang menerima perintah

dari server backend melalui protokol MQTT. Setiap kali sistem menerima perintah

suara dari pengguna yang dikenali sebagai “Buka” atau “Tutup”, data dikirim

melalui broker MQTT ke ESP32. Mikrokontroler kemudian mengontrol servo

motor MG996R yang dipasang di sisi kanan poros penggulung pintu. Servo ini

berputar secara sinkron untuk menarik atau menurunkan daun pintu sesuai instruksi

yang diterima.

71

Gambar 4.16. Rangkaian Motor Servo

Sensor IR ditempatkan di bagian bawah pintu untuk mendeteksi apakah

pintu sudah tertutup sempurna. Sensor bekerja berdasarkan pantulan sinar

inframerah ketika sinyal pantulan terhalang oleh pintu, sensor akan mengirimkan

sinyal logika LOW ke ESP32, menandakan bahwa pintu telah menutup penuh.

Gambar 4.17. Penempatan IR Sensor

LED indikator berfungsi menunjukkan status sistem selama beroperasi.

LED menyala stabil sebagai tanda bahwa perangkat berada dalam kondisi aktif,

sedangkan mode kedip digunakan ketika servo sedang bergerak baik pada proses

membuka maupun menutup pintu. Buzzer berfungsi sebagai indikator keamanan

dan hanya berbunyi ketika sensor infrared mendeteksi adanya halangan saat pintu

72

sedang menutup. Bunyi berhenti ketika jalur kembali bersih dan servo melanjutkan

proses penutupan. Seluruh komponen dirakit menggunakan breadboard dan

dihubungkan melalui kabel jumper sesuai rancangan pinout ESP32. Sumber daya

sistem berasal dari adaptor 5V DC yang menyalakan servo, sensor IR, LED, dan

buzzer.

4.5. Hasil Pengujian Sistem

Pengujian sistem dilakukan untuk memastikan bahwa integrasi antara modul

pengenalan suara, server machine learning, dan perangkat ESP32 dapat bekerja

secara konsisten pada kondisi nyata.

4.5.1. Pengujian Sistem Kontrol

Pengujian sistem kontrol dilakukan untuk memastikan bahwa perangkat keras

(hardware) dan perangkat lunak (software) dapat berfungsi secara terpadu dalam

menjalankan proses pembukaan dan penutupan pintu garasi berdasarkan hasil

pengenalan suara pengguna. Pengujian ini mencakup proses komunikasi antara

ESP32 sebagai pengendali utama, server machine learning sebagai pemroses suara,

dan broker MQTT sebagai media pertukaran data.

Seluruh perangkat diuji dalam kondisi terkoneksi ke jaringan hotspot eksternal

yang berbeda dari jaringan pengembang untuk memastikan sistem dapat bekerja

pada lingkungan jaringan yang bervariasi. ESP32 terhubung ke broker MQTT

menggunakan protokol TLS (port 8883) untuk menjamin keamanan data,

sedangkan server backend mengirimkan pesan perintah ke topik garasi/perintah

berdasarkan hasil klasifikasi model.

73

Gambar 4.18. Suara Pengguna dengan Perintah Tidak Terdaftar

Gambar 4.18 menunjukkan hasil pengujian ketika pengguna sah (Me)

memberikan perintah suara yang tidak terdaftar dalam sistem. Pada kondisi ini,

sistem berhasil mengenali identitas suara pengguna sebagai Me, namun gagal

mengenali perintah yang diucapkan karena tidak sesuai dengan pola Regex yang

telah didefinisikan sebelumnya (yaitu “Buka” dan “Tutup”). Sebagai hasilnya,

sistem tidak mengirimkan pesan perintah ke ESP32 dan servo motor tidak bergerak,

yang menandakan bahwa fungsi validasi perintah bekerja dengan baik untuk

mencegah eksekusi yang tidak sah.

74

Gambar 4.19. Suara bukan Pengguna yang sah

Gambar 4.19 menampilkan kondisi saat sistem menerima input suara dari

pengguna yang tidak terdaftar (Notme). Berdasarkan hasil pengujian, sistem

berhasil membedakan suara tersebut dari pengguna sah dengan akurasi tinggi.

Model SVM mengklasifikasikan suara sebagai Notme, sehingga backend tidak

meneruskan perintah apapun ke broker MQTT. Hal ini menunjukkan bahwa

mekanisme otentikasi berbasis suara (speaker verification) bekerja dengan baik

dalam menolak input dari pihak yang tidak berwenang, sehingga keamanan sistem

dapat terjaga.

75

Gambar 4.20. Suara Pengguna dan Perintah Terdaftar

Gambar 4.20 memperlihatkan kondisi ketika pengguna sah (Me)

mengucapkan perintah suara yang terdaftar dalam sistem, yaitu “Buka” atau

“Tutup”. Dalam skenario ini, sistem berhasil mengenali identitas pengguna dan

mencocokkan perintah melalui metode Regex. Setelah validasi berhasil, server

mengirim pesan MQTT ke topik garasi/perintah, yang kemudian diterima oleh

ESP32 untuk menggerakkan servo motor membuka atau menutup pintu sesuai

perintah. Selain itu, LED indikator menyala dan buzzer berbunyi singkat sebagai

tanda bahwa sistem telah mengeksekusi perintah dengan sukses. Respon sistem

yang cepat dan akurat ini membuktikan bahwa integrasi antara pengenalan suara,

backend, dan kontrol perangkat keras berjalan dengan baik.

76

4.5.2. Pengujian Error Sistem

Pengujian error sistem dilakukan untuk mengukur sejauh mana tingkat

kesalahan yang terjadi dalam sistem dalam mengenali pengguna dan perintah suara

yang diberikan oleh pengguna. Pengujian ini melibatkan 1 orang pengguna yang

sah dan 6 orang pengguna yang tidak sah. Masing-masing pengguna diminta untuk

memberikan 20 kali input perintah suara untuk sistem yang dibuat. Setiap input

perintah suara dicatat dan dievaluasi untuk melihat sejauh mana sistem dapat

mengenali perintah secara tepat atau terjadi error dalam pemrosesan suara tersebut.

Berikut hasil pengujian error sistem yang peneliti tuangkan dalam beberapa tabel.

Tabel 4.10. Hasil Pengujian Error Sistem oleh Aulia

HASIL PENGUJIAN ERROR SISTEM

Aulia

No. Perintah Hasil Perintah
Respon Sistem

Merespon Tidak Merespon

1. “buka” “buka” ✓

2. “tutup” “tutup” ✓

3. “tolong tutup pintunya” “tolong tutup pintunya” ✓

4. “tutup dong pintunya” “tutup dong pintunya” ✓

5. “cepat tutup pintunya” “cepat tutup pintunya” ✓

6. “tolong buka gerbangnya” “tolong buka gerbangnya” ✓

7. “buka pintu sekarang” “buka pintu sekarang” ✓

8. “woy tutup woy” “woi tutup woi” ✓

9. “buka pelan-pelan” “buka pelan-pelan” ✓

10. “tutup aja dulu” “tutup aja dulu” ✓

11. “ayo buka pintunya” “ayo buka pintu” ✓

12. “pintunya ditutup dong” “pintunya ditutup dong” ✓

13. “buka pintunya dong” “buka pintunya dong” ✓

14, “tolong buka cepat” “tolong buka cepat” ✓

15. “tutup sekarang” “tutup sekarang” ✓

16. “buka pintu depan” “buka pintu depan” ✓

17. “buka cepetan” “buka cepat” ✓

18. “tutup pelan-pelan” “tutup pelan-pelan” ✓

19. “buka pintunya ya” “buka pintunya ya” ✓

20. “pintunya tolong tutup” “pintunya tolong tutup” ✓

Total Error Sistem 4

77

Tabel 4.11. Hasil Pengujian Error Sistem oleh Taufik

HASIL PENGUJIAN ERROR SISTEM

Taufik

No. Perintah Hasil Perintah
Respon Sistem

Merespon Tidak Merespon

1. “buka” “buka” ✓

2. “tutup” “tutup” ✓

3. “buka dong gerbangnya” “buka dong gerbangnya” ✓

4. “buka gerbangnya” “buka gerbangnya” ✓

5. “tutup gerbangnya dong” “tutup gerbangnya dong” ✓

6. “ayo buka cepat” “ayo buka cepat” ✓

7. “buka pintunya sekarang” “buka pintunya sekarang” ✓

8. “tutup dulu” “tutup dulu” ✓

9. “tolong buka pintunya” “tolong buka pintunya” ✓

10. “tutup rapat pintunya” “tutup rapat pintunya” ✓

11. “buka gerbang depan” “buka gerbang depan” ✓

12. “gerbang tolong buka” “gerbang tolong buka” ✓

13. “tutup cepat” “tutup cepat” ✓

14, “buka pintu rumah” “buka pintu rumah” ✓

15. “tutup sekarang” “tutup sekarang” ✓

16. “buka pelan-pelan” “buka pelan-pelan” ✓

17. “tutup aja” “tutup aja” ✓

18. “buka pintunya dong” “buka pintunya dong” ✓

19. “tutup gerbang cepat” “tutup gerbang cepat” ✓

20. “buka pintu gerbang” “buka pintu gerbang” ✓

Total Error Sistem 3

Tabel 4.12. Hasil Pengujian Error Sistem oleh Awanda

HASIL PENGUJIAN ERROR SISTEM

Awanda

No. Perintah Hasil Perintah
Respon Sistem

Merespon Tidak Merespon

1. “buka” “buka” ✓

2. “tutup” “tutup” ✓

3. “bre buka bre” “free buka free” ✓

4. “bukaaa” “buka” ✓

5. “woy buka woy” “woi buka woi” ✓

6. “cepat tutup pintu” “cepat tutup pintu” ✓

7. “buka dulu” “buka dulu” ✓

8. “tolong buka sekarang” “tolong buka sekarang” ✓

9. “tutup pelan” “tutup pelan” ✓

10. “buka dong” “bukain dong” ✓

11. “tutup aja” “tutup aja” ✓

12. “ayo buka pintunya” “ayo buka pintunya” ✓

13. “gerbangnya tutup” “gerbangnya tutup” ✓

78

14, “buka pintu depan” “buka pintu depan” ✓

15. “tutup cepat” “tutup cepat” ✓

16. “tolong tutup dulu” “tolong tutup dulu” ✓

17. “buka pintu pelan” “buka pintu pelan” ✓

18. “buka gerbang” “buka gerbang” ✓

19. “tutup pintunya dong” “tutup pintunya dong” ✓

20. “buka sekarang” “buka sekarang” ✓

Total Error Sistem 2

Tabel 4.13. Hasil Pengujian Error Sistem oleh Satrio

HASIL PENGUJIAN ERROR SISTEM

Satrio

No. Perintah Hasil Perintah
Respon Sistem

Merespon Tidak Merespon

1. “buka” “buka” ✓

2. “tutup” “tutup” ✓

3. “stop” “stop” ✓

4. “bang fik buka bang fik”
“bang fiq buka bank

feed”

✓

5. “le minta tolong bukakan”
“le minta tolong

bukakan”

✓

6. “buka dong” “buka dong” ✓

7. “tutup dulu” “tutup dulu” ✓

8. “buka pintu” “buka pintu” ✓

9. “tutup cepat” “tutup cepat” ✓

10. “buka pelan-pelan” “buka pelan-pelan” ✓

11. “tolong buka” “tolong buka” ✓

12. “gerbang buka” “gerbang buka” ✓

13. “buka pintunya dong” “buka pintunya dong” ✓

14, “tutup aja dulu” “tutup aja dulu” ✓

15. “tolong tutup” “tolong tutup” ✓

16. “ayo buka sekarang” “ayo buka sekarang” ✓

17. “buka cepat” “buka cepat” ✓

18. “buka gerbang depan” “buka gerbang depan” ✓

19. “pintunya tolong tutup” “pintunya tolong tutup” ✓

20. “buka aja dulu” “buka aja dulu” ✓

Total Error Sistem 2

Tabel 4.14. Hasil Pengujian Error Sistem oleh Aditya

HASIL PENGUJIAN ERROR SISTEM

Aditya

No. Perintah Hasil Perintah
Respon Sistem

Merespon Tidak Merespon

1. “buka” “buka”

2. “tutup” “tutup” ✓

79

3. “buka dong” “bukain dong” ✓

4. “tutup coy” “tutup coy” ✓

5. “tutupin dong” “tutupin dong” ✓

6. “ayo buka pintunya” “ayo buka pintunya” ✓

7. “buka sekarang” “buka sekarang” ✓

8. “tolong tutup dulu” “tolong tutup dulu” ✓

9. “buka pintu gerbang” “buka pintu gerbang” ✓

10. “tutup pintu cepat” “tutup pintu cepat” ✓

11. “buka depan” “buka depan” ✓

12. “tutup aja dulu” “tutup aja dulu” ✓

13. “tolong buka” “tolong buka” ✓

14, “buka cepat” “buka cepat” ✓

15. “gerbang tolong buka” “gerbang tolong buka” ✓

16. “tutup pelan” “tutup pelan” ✓

17. “buka pintunya dong” “buka pintunya dong” ✓

18. “buka aja” “buka aja” ✓

19. “tutup sekarang” “tutup sekarang” ✓

20. “buka pelan-pelan” “buka pelan-pelan” ✓

Total Error Sistem 3

Tabel 4.15. Hasil Pengujian Error Sistem oleh Markamah

HASIL PENGUJIAN ERROR SISTEM

Markamah

No. Perintah Hasil Perintah
Respon Sistem

Merespon Tidak Merespon

1. “buka” “buka” ✓

2. “tutup” “tutup” ✓

3. “tolong tutup pintunya” “tolong tutup pintunya” ✓

4. “tolong buka pintu” “tolong buka pintu” ✓

5. “bukain pintunya dong” “bukain pintunya” ✓

6. “buka pelan-pelan” “buka pelan-pelan” ✓

7. “tutup sekarang” “tutup sekarang” ✓

8. “ayo buka cepat” “ayo buka cepat” ✓

9. “tolong tutup dulu” “tolong tutup dulu” ✓

10. “buka aja dulu” “buka aja dulu” ✓

11. “tutup pintu depan” “tutup pintu depan” ✓

12. “buka dong” “buka dong” ✓

13. “tutup pelan” “tutup pelan” ✓

14, “gerbang tolong buka” “gerbang tolong buka” ✓

15. “buka pintunya cepat” “buka pintunya cepat” ✓

16. “tutup aja” “tutup aja” ✓

17. “buka pintu gerbang” “buka pintu gerbang” ✓

18. “tolong buka gerbang” “tolong buka gerbang” ✓

19. “tutup cepat” “tutup cepat” ✓

20. “buka sekarang” “buka sekarang” ✓

80

Total Error Sistem 3

Tabel 4.16. Hasil Pengujian Error Sistem oleh Peneliti

HASIL PENGUJIAN ERROR SISTEM

Peneliti

No. Perintah Hasil Perintah
Respon Sistem

Merespon Tidak Merespon

1. “buka” “buka” ✓

2. “tutup” “tutup” ✓

3. “tolong buka pintunya” “tolong buka pintunya” ✓

4. “tolong tutup pintunya” “tolong tutup pintunya” ✓

5. “buka dong” “buka dong” ✓

6. “tutup dong” “tutup dong” ✓

7. “buka pintu garasi” “buka pintu garasi” ✓

8. “tutup garasi sekarang” “tutup garasi sekarang” ✓

9. “ayo buka cepat” “ayo buka cepat” ✓

10. “cepat tutup pintunya” “cepat tutup pintu” ✓

11. “buka pelan-pelan” “buka pelan-pelan” ✓

12. “tutup perlahan-lahan” “tutup perlahan-lahan” ✓

13.
“tolong segera buka pintu

garasi”

“tolong segera buka pintu

garasi”

✓

14,
“tolong segera tutup pintu

garasi”

“tolong segera tutup pintu

garasi”

✓

15. “buka gerbang depan” “buka gerbang depan” ✓

16. “tutup gerbang depan” “tutup gerbang depan” ✓

17.
“aku mau keluar, tolong

buka pintunya”

“aku mau keluar, tolong

buka pintunya”

✓

18.
“aku sudah sampai, tolong

tutup gerbang”

“aku sudah sampai, tolong

tutup gerbang”

✓

19.
“hai, ini percobaan buka

pintu”
“hai, ini percobaan buka”

✓

20.
“hari ini uji coba tutup

pintu garasi”

“hari ini uji coba tutup pintu

garasi”

✓

Total Error Sistem 2

Berdasarkan hasil pengujian yang dilakukan sebanyak 140 kali oleh 7

pengguna, ditemukan bahwa error sistem terjadi sebanyak 19 kali. Tingkat error

dapat dihitung menggunakan rumus berikut:

𝜇 =
∑ 𝐸𝑖

𝑛
× 100%

𝜇 =
19

140
× 100%

81

𝜇 = 13.57% (4.4)

Hasil ini menunjukkan bahwa sistem umumnya responsif dan mampu

mengeksekusi perintah suara dengan baik, namun masih terdapat sejumlah kondisi

yang menyebabkan sistem gagal merespons secara tepat. Faktor penyebab utama

error meliputi variasi kalimat perintah yang tidak tercakup dalam kamus perintah,

seperti “tutup aja”, “buka cepat”, atau frasa bebas lain yang membuat regex tidak

menemukan token buka atau tutup, kesalahan transkripsi dari modul Speech-to-Text

(STT), terutama pada kata seru atau slang yang menghasilkan teks berbeda

sehingga tidak cocok dengan pola regex, penolakan perintah karena skor verifikasi

speaker berada di bawah threshold keamanan, menyebabkan beberapa suara sah

dianggap bukan pengguna demi menghindari false accept, serta kualitas sinyal yang

dipengaruhi cara pengguna berbicara, seperti terlalu cepat, terlalu pelan, atau

adanya kebisingan yang mengacaukan ciri akustik MFCC sehingga sistem kesulitan

mengenali speaker.

Selain itu, kondisi lingkungan seperti percakapan sekitar, gema ruangan,

atau noise kecil dapat menyebabkan pergeseran fitur suara dan meningkatkan

kemungkinan false accept maupun false reject, terutama apabila nada suara penutur

lain mirip dengan pengguna sah. Untuk mengurangi error di masa mendatang,

beberapa perbaikan yang dapat dilakukan meliputi memperluas kamus perintah

agar lebih toleran terhadap variasi ujaran, menambahkan mekanisme fallback

berbasis pencarian kata kunci utama (“buka”, “tutup”), menambah data pelatihan

dengan variasi gaya bicara dan intonasi, menerapkan noise reduction yang lebih

82

kuat, serta melakukan training dengan contoh audio ber-noise agar model lebih

robust terhadap kondisi lingkungan nyata.

4.6. Integrasi Islam

Pemanfaatan teknologi dalam sistem garasi otomatis berbasis pengenalan suara

dapat dianalisis melalui kerangka Maqashid Syariah sebagai prinsip etika dalam

pengembangan ilmu pengetahuan. Maqashid Syariah, sebagaimana dijelaskan oleh

para ulama ushul seperti al-Ghazali dan kemudian disistematisasi secara

komprehensif oleh Imam al-Syatibi dalam al-Muwāfaqāt, bertujuan menjaga

kemaslahatan manusia melalui lima unsur pokok al-dharūriyyāt: menjaga agama,

jiwa, akal, keturunan, dan harta. Pembagian lima kebutuhan dasar ini dijelaskan

secara eksplisit sebagai bagian dari maslahah dharuriyyah yang menjadi inti tujuan

syariat (Kurniawan & Hudafi, 2021). Konsep tersebut dipertegas kembali oleh

kajian kontemporer yang menyebutkan bahwa al-Syatibi menjadikan maslahah

sebagai dasar utama dalam seluruh pemikiran ushul fiqhnya, sehingga Maqāshid

Syariah berfungsi sebagai kerangka untuk memahami dan menilai manfaat suatu

penerapan hukum maupun teknologi (Milhan, 2022).

Implementasi sistem dalam penelitian ini berkaitan langsung dengan tujuan

hifzh al-māl melalui peningkatan keamanan harta. Sistem identifikasi suara yang

hanya menerima perintah dari pemilik sah mampu meminimalkan risiko pencurian,

akses tidak sah, dan potensi penyalahgunaan sehingga sejalan dengan prinsip

perlindungan terhadap kepemilikan.

Aspek hifzh an-nafs tercermin dari kemampuan sistem meningkatkan

keselamatan penghuni rumah. Pengamanan yang lebih selektif mengurangi potensi

83

ancaman fisik akibat upaya pembobolan atau manipulasi pintu garasi. Perlindungan

terhadap jiwa termasuk bagian dari tujuan syariat yang menekankan pentingnya

keselamatan manusia dalam setiap aktivitas dan pemanfaatan teknologi.

Aspek hifzh al-‘aql terlihat melalui proses penelitian dan perancangan sistem

yang memanfaatkan potensi akal sebagai instrumen untuk menghasilkan solusi

yang bermanfaat. Pengolahan sinyal suara, penerapan machine learning, dan

integrasi perangkat keras mencerminkan pemanfaatan akal yang selaras dengan

etika keilmuan dalam Islam. Penggunaan teknologi sebagai hasil pemikiran ilmiah

menjadi bagian dari pengembangan akal yang bernilai positif selama diarahkan

pada kemaslahatan.

Aspek hifzh an-nasl terwujud melalui perlindungan privasi dan keamanan

keluarga. Sistem yang mampu menolak perintah dari pihak yang tidak berwenang

membantu menjaga ketenteraman rumah dan mengurangi risiko ancaman terhadap

anggota keluarga. Keamanan ruang tempat tinggal termasuk bagian dari penjagaan

keturunan dan kehormatan dalam perspektif syariat.

Aspek hifzh ad-din tercermin melalui penerapan nilai amanah dan tanggung

jawab dalam pemanfaatan teknologi. Sistem yang dirancang dengan tujuan

keamanan dan kemanfaatan menunjukkan upaya menjaga etika penggunaan

teknologi agar tidak menimbulkan kerusakan. Prinsip amanah menjadi dasar moral

dalam pengembangan sistem yang memberikan manfaat dan mengurangi potensi

mudarat.

Integrasi kelima aspek Maqāshid Syariah tersebut menunjukkan bahwa

penelitian ini tidak hanya menghasilkan inovasi teknologi, tetapi juga memenuhi

84

prinsip kemaslahatan dalam Islam. Sistem garasi otomatis berbasis pengenalan

suara yang dikembangkan mencerminkan upaya pemanfaatan teknologi secara

bertanggung jawab dengan tetap memperhatikan nilai-nilai Maqāshid syariah yang

relevan bagi kehidupan modern.

85

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan implementasi dan pengujian yang dilakukan, sistem Kontrol Pintu

Garasi berbasis pengenalan suara menggunakan SVM dan Regex telah bekerja

dengan baik dalam mengenali identitas speaker (Me dan Notme) serta perintah

“buka” dan “tutup”. Dari tiga skenario pembagian data (90:10, 80:20, dan 70:30),

model SVM dengan kernel RBF secara konsisten memberikan performa terbaik

pada skenario 70:30, dengan akurasi mencapai 97.53% serta nilai Precision, Recall,

dan F1-Score yang sama-sama mencapai 98%. Hasil ini menunjukkan kemampuan

generalisasi model yang kuat dalam mengenali suara pengguna. Arsitektur sistem

mendukung integrasi penuh melalui penggunaan protokol HTTP sebagai jalur

komunikasi antara aplikasi mobile dan backend machine learning, sehingga setiap

rekaman perintah dapat dikirim, diproses, dan dikembalikan hasil prediksinya

secara terstruktur. Integrasi tersebut dihubungkan dengan pencocokan Regex dan

komunikasi MQTT untuk melakukan eksekusi perintah secara real time pada

ESP32. Meskipun demikian, masih ditemukan error sistem sebesar 13.57%,

terutama disebabkan oleh variasi kalimat, kesalahan transkripsi, serta kemiripan

karakteristik suara, sehingga dibutuhkan perluasan dataset dan penyempurnaan

mekanisme deteksi agar sistem semakin robust di kondisi nyata.

86

5.2 Saran

Penelitian ini masih dapat dikembangkan lebih lanjut, terutama dalam hal

peningkatan variasi data dan metode klasifikasi. Disarankan agar jumlah partisipan

dan kondisi lingkungan diperluas agar model dapat beradaptasi lebih baik terhadap

berbagai karakter suara dan tingkat kebisingan. Penggunaan metode deep learning

seperti CNN atau RNN dapat dipertimbangkan untuk meningkatkan akurasi

pengenalan suara. Selain itu, sistem dapat ditingkatkan dari sisi keamanan

komunikasi MQTT dengan menambahkan autentikasi dan enkripsi, serta

dikembangkan menjadi aplikasi mobile dengan fitur notifikasi real-time agar

pengguna dapat memantau pintu garasi dari jarak jauh.

Dari sisi perangkat keras, pengembangan selanjutnya dapat mempertimbangkan

penggunaan sensor jarak yang lebih presisi. Pada penelitian ini, sensor infrared

digunakan sebagai pendeteksi keberadaan objek dengan keluaran logika biner

(terdeteksi atau tidak terdeteksi), sehingga jarak deteksi tidak dapat ditentukan

secara kuantitatif. Untuk aplikasi yang membutuhkan pengukuran jarak dalam

satuan tertentu, sensor ultrasonik dapat digunakan sebagai alternatif karena mampu

memberikan nilai jarak secara numerik dan lebih fleksibel dalam penentuan

ambang batas deteksi.

DAFTAR PUSTAKA

Adler, J., Azhar, M., & Supatmi, S. (2013). Identifikasi Suara dengan MATLAB

sebagai Aplikasi Jaringan Syaraf Tiruan. 1(1).

Adnan, F., & Amelia, I. (2022). Implementasi Voice Recognition Berbasis Machine

Learning. 11.

Ajmera, P. (2017). A Review Paper on Infrared sensor. International Journal of

Engineering Research, 5(23).

Akrimni, I. D., Akbi, D. R., & Sari, Z. (2024). Rancang Bangun Pintu Otomatis

Berbasis Arduino RFID dan Voice Recognition Arduino. Jurnal Repositor,

6(1). https://doi.org/10.22219/repositor.v6i1.31073

As Sarofi, M. A., Irhamah, I., & Mukarromah, A. (2020). Identifikasi Genre Musik

dengan Menggunakan Metode Random Forest. Jurnal Sains dan Seni ITS,

9(1). https://doi.org/10.12962/j23373520.v9i1.51311

Asbari, M., Jum’a, H., & Wulandari, Y. (n.d.). Ketika Dakwah Bertemu Teknologi:

Ikhtiar Menjaga Akal Sehat Di Era Digital.

B. Davis, S., & Mermelstein, P. (1980). Comparison of Parametric Representations

for Monosyllabic Word Recognition in Continuously Spoken Sentences. 4.

https://courses.physics.illinois.edu/ece417/fa2017/

Bahar, B., & Daniel Yc. Raban, R. (2023). Penerapan Algoritme Regular

Expression Dalam Aplikasi Pendeteksi Nominal Uang Kertas. Progresif:

Jurnal Ilmiah Komputer, 19(2), 725.

https://doi.org/10.35889/progresif.v19i2.1518

Darmawan, I. (2017). Sound Film. Pusat Pengembangan Perfilman Kementerian

Pendidikan dan Kebudayaan.

Eray, O., Tokat, S., & Iplikci, S. (2018). An application of speech recognition with

support vector machines. 2018 6th International Symposium on Digital

Forensic and Security (ISDFS), 1–6.

https://doi.org/10.1109/ISDFS.2018.8355321

Ermawati, Y., Purba, A., Despa, D., Z, F., & P, I. (2023). Prototype Pengontrol Pintu

Garasi Rumah Dengan Motor Stepper Berbasis Arduino Menggunakan

Perintah Suara. Seminar Nasional Insinyur Profesional (SNIP), 3(2).

https://doi.org/10.23960/snip.v3i2.460

Fathur Rizky, R., Turmudi Zy, A., & Sunge, A. S. (2023). Sistem Smart Door Lock

Menggunakan Voice Recognition Berbasis Arduino. Bulletin of Information

Technology (BIT), 4(2), 239–244. https://doi.org/10.47065/bit.v4i2.696

Gourisaria, M. K., Agrawal, R., Sahni, M., & Singh, P. K. (2024). Comparative

analysis of audio classification with MFCC and STFT features using

machine learning techniques. Discover Internet of Things, 4(1), 1.

https://doi.org/10.1007/s43926-023-00049-y

Hanani, A., & Hariyadi, M. A. (2020). Smart Home Berbasis IoT Menggunakan

Suara Pada Google Assistant. Jurnal Ilmiah Teknologi Informasi Asia,

14(1), 49–56. https://doi.org/10.32815/jitika.v14i1.456

Handoko, R. B., & Suyanto, S. (2019). Klasifikasi Gender Berdasarkan Suara

Menggunakan Support Vector Machine. Indonesian Journal on Computing

(Indo-JC), 4(1), 9. https://doi.org/10.21108/INDOJC.2019.4.1.244

Hercog, D., Lerher, T., Truntič, M., & Težak, O. (2023). Design and Implementation

of ESP32-Based IoT Devices. Sensors, 23(15), 6739.

https://doi.org/10.3390/s23156739

Heriyanto, H., Hartati, S., & Putra, A. E. (2018). EKSTRAKSI CIRI MEL

FREQUENCY CEPSTRAL COEFFICIENT (MFCC) DAN RERATA

COEFFICIENT UNTUK PENGECEKAN BACAAN AL-QUR’AN.

Telematika, 15(2), 99. https://doi.org/10.31315/telematika.v15i2.3123

Hutasoit, M. (2021). Rancang Bangun Prototipe Pengontrol Pintu Garasi Berbasis

Internet of Things (IoT) Dengan Platform Android. EINSTEIN, 9(1), 1.

https://doi.org/10.24114/eins.v9i1.33760

Irugalbandara, C., Naseem, A. S., Perera, S., Kiruthikan, S., & Logeeshan, V.

(2023). A Secure and Smart Home Automation System with Speech

Recognition and Power Measurement Capabilities. Sensors, 23(13), 5784.

https://doi.org/10.3390/s23135784

Jefiza, A., Puspita, W. R., Firdaus, F., Sihombing, F. A., Setiawan, A., Herlina, G.,

Milala, G. I. L. S., & Fernanda, H. (2024). Smart home: Pintu Otomatis

Berbasis Voice Recognition. JURNAL INTEGRASI, 16(1), 62–67.

https://doi.org/10.30871/ji.v16i1.7400

Jun, Z. (2021). The Development and Application of Support Vector Machine.

Journal of Physics: Conference Series, 1748(5), 052006.

https://doi.org/10.1088/1742-6596/1748/5/052006

Kasaraneni, P. P., Venkata Pavan Kumar, Y., Moganti, G. L. K., & Kannan, R.

(2022). Machine Learning-Based Ensemble Classifiers for Anomaly

Handling in Smart Home Energy Consumption Data. Sensors, 22(23), 9323.

https://doi.org/10.3390/s22239323

Khadar Nawas, K., Kumar Barik, M., & Nayeemulla Khan, A. (2021). Speaker

Recognition using Random Forest. ITM Web of Conferences, 37, 01022.

https://doi.org/10.1051/itmconf/20213701022

Kinnunen, T., & Li, H. (2010). An overview of text-independent speaker

recognition: From features to supervectors. Speech Communication, 52(1),

12–40. https://doi.org/10.1016/j.specom.2009.08.009

Kurniawan, A., & Hudafi, H. (2021). KONSEP MAQASHID SYARIAH IMAM ASY-

SYATIBI DALAM KITAB AL-MUWAFAQAT. 15(1).

Marini, M., Vanello, N., & Fanucci, L. (2021). Optimising Speaker-Dependent

Feature Extraction Parameters to Improve Automatic Speech Recognition

Performance for People with Dysarthria. Sensors, 21(19), 6460.

https://doi.org/10.3390/s21196460

Martin, R. S., Dewanto, D. Y., & Suryadarma, U. M. (2023). PROTOTIPE KUNCI

PINTU OTOMATIS MENGGUNAKANSENSOR KAMERA BERBASIS

RASPBERRY. 12.

Megawati, S. (2021). Pengembangan Sistem Teknologi Internet of Things Yang

Perlu Dikembangkan Negara Indonesia. Journal of Information

Engineering and Educational Technology, 5(1), 19–26.

https://doi.org/10.26740/jieet.v5n1.p19-26

Milhan, M. (2022). MAQASHID SYARI‘AH MENURUT IMAM SYATIBI DAN

DASAR TEORI PEMBENTUKANNYA. Al-Usrah : Jurnal Al Ahwal As

Syakhsiyah, 9(2). https://doi.org/10.30821/al-usrah.v9i2.12335

Mohamed Ariff, M. I., Mohamad Fadzir, F. D., Arshad, N. I., Ahmad, S., Salleh, K.

A., & Wahab, J. A. (2022). Design and Development of a smart garage door

system. 2022 IEEE International IOT, Electronics and Mechatronics

Conference (IEMTRONICS), 1–6.

https://doi.org/10.1109/IEMTRONICS55184.2022.9795768

Nang An, N., Thanh Trung, T., Kim Hoan, T., Tuan Anh, N., & Minh Doanh, P.

(2023). Integrate deep neural network and support vector machine to

improve the quality of voice processing in internet of things devices. Vinh

University Journal of Science, 52(1A), 5–16.

https://doi.org/10.56824/vujs.2023a005

Plaza R, M. A. J. & Hanum Maghfiro Risky Ningtias. (2023). PENERAPAN

INTERNET OF THINGS PADA PROTOTYPE SMART HOME

MENGGUNAKAN POLA SUARA DENGAN MIKROKONTROLER

NODEMCU. Sienna, 4(2), 87–96. https://doi.org/10.47637/sienna.v4i2.981

Prafanto, A., Budiman, E., Widagdo, P. P., Putra, G. M., & Wardhana, R. (2021).

Pendeteksi Kehadiran menggunakan ESP32 untuk Sistem Pengunci Pintu

Otomatis. JTT (Jurnal Teknologi Terapan), 7(1), 37.

https://doi.org/10.31884/jtt.v7i1.318

Prayetno, M. A. (2022). Automatic Garage Door Prototype Using Arduino UNO-

Based Sound Sensor. JTECS : Jurnal Sistem Telekomunikasi Elektronika

Sistem Kontrol Power Sistem dan Komputer, 2(1), 37.

https://doi.org/10.32503/jtecs.v2i1.2299

Ramba, L. S., & Aria, M. (2020). Design Of A Voice Controlled Home Automation

System Using Deep Learning Convolutional Neural Network (DL-CNN).

Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika

Terapan, 8(1), 57–73. https://doi.org/10.34010/telekontran.v8i1.3078

Ridwansyah, M. A., & Rizal, A. (n.d.). DESIGN OF SMART DOOR KEY SYSTEM

BASED ON VOICE RECOGNITION USING MEL FREQUENCY

CEPSTRAL COEFFICIENT (MFCC) AND K-NEAREST NEIGHBOR (K-

NN).

Sari, I. P., Hazidar, A. H., Basri, M., Ramadhani, F., & Manurung, A. A. (2023).

Penerapan Palang Pintu Otomatis Jarak Jauh Berbasis RFID di Perumahan.

Blend Sains Jurnal Teknik, 2(1), 16–25.

https://doi.org/10.56211/blendsains.v2i1.246

Sasongko, S. M. A., Tsaury, S., Ariessaputra, S., & Ch, S. (2023). Mel Frequency

Cepstral Coefficients (MFCC) Method and Multiple Adaline Neural

Network Model for Speaker Identification.

Susanto, F., Prasiani, N. K., & Darmawan, P. (2022). IMPLEMENTASI

INTERNET OF THINGS DALAM KEHIDUPAN SEHARI-HARI. Jurnal

Imagine, 2(1), 35–40. https://doi.org/10.35886/imagine.v2i1.329

Swastika, W., Widodo, R. B., & Oepojo, A. A. (2023). Perbandingan Akurasi

Deteksi Emosi Pada Suara Menggunakan Multilayer Perceptron, Random

Forest, Decision Tree dan K-NN. Journal of Intelligent System and

Computation, 5(1), 17–22. https://doi.org/10.52985/insyst.v5i1.264

Utama, S. N., Prakasa, J. E. W., & Hariyanto, W. (2025). Klasifikasi Irama Bacaan

Al-Qur’an Menggunakan Algoritma CNN. 7(1).

Zabar, A. A., & Novianto, F. (2015). KEAMANAN HTTP DAN HTTPS

BERBASIS WEB MENGGUNAKAN SISTEM OPERASI KALI LINUX.

Komputa : Jurnal Ilmiah Komputer dan Informatika, 4(2), 69–74.

https://doi.org/10.34010/komputa.v4i2.2427

Zhu, G., Caceres, J.-P., & Salamon, J. (2022). Filler Word Detection and

Classification: A Dataset and Benchmark. Interspeech 2022, 3769–3773.

https://doi.org/10.21437/Interspeech.2022-10992

LAMPIRAN

Lampiran 1. Video Demonstrasi Sistem

Video Demonstrasi dapat diakses melalui tautan berikut:

https://bit.ly/DemoSDG

https://bit.ly/DemoSDG

Lampiran 2. Lembar Pengujian Error Sistem

Lampiran 3. Dokumentasi Pengujian

Lampiran 4. Kode Program Pre-Processing Audio

from pathlib import Path

import numpy as np

import librosa

import soundfile as sf

import noisereduce as nr

from scipy.signal import butter, filtfilt

from tqdm import tqdm

SOURCE_BASE = Path(r"D:\Skripsi\SC2\sgd-backend\sdg-bakcend\dataset")

OUTPUT_BASE = Path(r"D:\Skripsi\SC2\sgd-backend\sdg-

bakcend\dataset_processed3")

SR = 16000

FIXED_DURATION = 5.0

PRE_EMPH_COEF = 0.97

NR_PROP_DECREASE = 0.6

TARGET_RMS = 0.05

BP_LOW_HZ = 50

BP_HIGH_HZ = 7900

BP_ORDER = 4

def ensure_dir(path: Path):

 path.mkdir(parents=True, exist_ok=True)

def load_wav(path: Path, sr=SR):

 y, _ = librosa.load(path, sr=sr, mono=True)

 return y.astype(np.float32), sr

def save_wav(path: Path, y, sr=SR):

 sf.write(str(path), np.clip(y, -1.0, 1.0), sr, subtype="PCM_16")

def bandpass_filter(y, sr=SR, low=BP_LOW_HZ, high=BP_HIGH_HZ,

order=BP_ORDER):

 nyq = sr * 0.5

 b, a = butter(order, [low / nyq, high / nyq], btype="band")

 return filtfilt(b, a, y).astype(np.float32)

def pre_emphasis(y, coef=PRE_EMPH_COEF):

 return np.append(y[0], y[1:] - coef * y[:-1]).astype(np.float32)

def rms_normalize(y, target_rms=TARGET_RMS):

 rms = np.sqrt(np.mean(y ** 2) + 1e-12)

 return np.clip(y * (target_rms / rms), -1.0,

1.0).astype(np.float32)

def smart_denoise(y, sr=SR):

 if len(y) < int(sr * 0.25):

 return y

 noise_clip = y[:int(sr * 0.25)]

 try:

 return nr.reduce_noise(

 y=y, sr=sr, y_noise=noise_clip,

 stationary=True, prop_decrease=NR_PROP_DECREASE

).astype(np.float32)

 except Exception:

 return y

def pad_to_fixed(y, sr=SR, target_dur=FIXED_DURATION):

 target_len = int(target_dur * sr)

 if len(y) >= target_len:

 return y[:target_len]

 return np.concatenate([y, np.zeros(target_len - len(y),

dtype=np.float32)])

def process_audio(fp: Path, outdir: Path):

 ensure_dir(outdir)

 y, _ = load_wav(fp)

 if len(y) < SR * 0.3:

 print(f" Skip (too short): {fp.name}")

 return

 y = bandpass_filter(y)

 y = pre_emphasis(y)

 y = smart_denoise(y)

 y = rms_normalize(y)

 y = pad_to_fixed(y)

 save_wav(outdir / "processed.wav", y)

def main():

 files = list(SOURCE_BASE.rglob("*.wav"))

 print(f" Total files: {len(files)}")

 for file in tqdm(files, desc="Processing dataset"):

 rel = file.relative_to(SOURCE_BASE).parts[:-1]

 out_dir = OUTPUT_BASE.joinpath(*rel) / file.stem

 process_audio(file, out_dir)

 print("\n DONE — Dataset berhasil diproses konsisten (NO VAD).")

if __name__ == "__main__":

 main()

Lampiran 5. Kode Program Ekstraksi MFCC

import librosa

import numpy as np

import pandas as pd

from pathlib import Path

from tqdm import tqdm

SR = 16000

N_MFCC = 13

DATASET_PROCESSED = Path(

 r"D:\Skripsi\SC2\sgd-backend\sdg-bakcend\dataset_processed3"

)

OUTPUT_CSV = Path(

 r"D:\Skripsi\SC2\sgd-backend\sdg-

bakcend\infrastructure\storage\result\Features\mfcc_extract_processed3.

csv"

)

def extract_mfcc_52(y, sr=SR):

 rms = np.sqrt(np.mean(y ** 2) + 1e-12)

 if rms > 0:

 y = y / rms

 mfcc = librosa.feature.mfcc(

 y=y, sr=sr, n_mfcc=N_MFCC,

 n_fft=400, hop_length=160,

 fmin=50, fmax=7900

)

 mfcc = (mfcc - np.mean(mfcc, axis=1, keepdims=True)) / (

 np.std(mfcc, axis=1, keepdims=True) + 1e-8

)

 feats = np.concatenate([

 np.mean(mfcc, axis=1),

 np.std(mfcc, axis=1),

 np.quantile(mfcc, 0.10, axis=1),

 np.quantile(mfcc, 0.90, axis=1),

])

 return feats

def process_dataset():

 rows = []

 files = list(DATASET_PROCESSED.rglob("processed.wav"))

 for fp in tqdm(files, desc="Extracting MFCC"):

 y, sr = librosa.load(fp, sr=SR)

 feats = extract_mfcc_52(y)

 speaker = fp.parts[-4].lower()

 cmd = fp.parts[-3].lower()

 rows.append({

 "file_path": str(fp),

 "label_speaker": speaker,

 "label_cmd": cmd,

 **{f"f_{i}": feats[i] for i in range(52)}

 })

 df = pd.DataFrame(rows)

 df.to_csv(OUTPUT_CSV, index=False)

if __name__ == "__main__":

 process_dataset()

Lampiran 6. Kode Program Pre-Processing Data

import pandas as pd

from sklearn.preprocessing import StandardScaler

from pathlib import Path

CSV_PATH = Path(

 r"D:\Skripsi\SC2\sgd-backend\sdg-

bakcend\infrastructure\storage\result\Features\mfcc_extract_mfcc13.csv"

)

def clean_dataset(csv_path: Path):

 df = pd.read_csv(csv_path)

 df["label_speaker"] =

df["label_speaker"].astype(str).str.strip().str.lower()

 df = df.dropna()

 df = df[df["label_speaker"].isin(["me", "notme"])]

 df = df.reset_index(drop=True)

 return df

def normalize_features(df: pd.DataFrame):

 exclude = ["file_path", "label_speaker", "label_cmd"]

 feat_cols = [c for c in df.columns if c not in exclude]

 X = df[feat_cols].values

 scaler = StandardScaler()

 X_scaled = scaler.fit_transform(X)

 df_scaled = pd.DataFrame(X_scaled, columns=feat_cols)

 df_scaled["label"] = df["label_speaker"].map({"me": 1, "notme":

0}).astype(int)

 return df_scaled, scaler

if __name__ == "__main__":

 df_clean = clean_dataset(CSV_PATH)

 df_scaled, scaler = normalize_features(df_clean)

 OUT_PATH = CSV_PATH.parent / "mfcc_preprocessed2.csv"

 df_scaled.to_csv(OUT_PATH, index=False)

 print("Preprocessing selesai.")

Lampiran 7. Kode Program Training Model SVM

import pandas as pd

import numpy as np

import joblib

import time

from pathlib import Path

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import classification_report, roc_auc_score,

roc_curve

DATASET = Path(

 r"D:\Skripsi\SC2\sgd-backend\sdg-

bakcend\infrastructure\storage\result\Features\mfcc_extract_mfcc13.csv"

)

MODEL_OUT = Path(

 r"D:\Skripsi\SC2\sgd-backend\sdg-

bakcend\infrastructure\storage\result\Model\svm_me_notme_mfcc13_1.jobli

b"

)

TEST_SIZE = 0.2

RANDOM_STATE = 42

TARGET_FAR = 0.05

BEST_C = 10

BEST_GAMMA = 0.1

def train_svm():

 start = time.time()

 df = pd.read_csv(DATASET)

 df["label_speaker"] = df["label_speaker"].map({"me": 1, "notme":

0})

 y = df["label_speaker"].values

 feat_cols = [c for c in df.columns if c.startswith("f_")]

 X = df[feat_cols].values

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, stratify=y, test_size=TEST_SIZE,

random_state=RANDOM_STATE

)

 model = SVC(

 C=BEST_C,

 gamma=BEST_GAMMA,

 kernel="rbf",

 probability=True,

 random_state=RANDOM_STATE

)

 model.fit(X_train, y_train)

 y_proba = model.predict_proba(X_test)[:, 1]

 y_pred = model.predict(X_test)

 print(classification_report(y_test, y_pred, digits=4))

 print("ROC-AUC:", roc_auc_score(y_test, y_proba))

 fpr, tpr, thr = roc_curve(y_test, y_proba)

 idx = np.argmin(abs(fpr - TARGET_FAR))

 base_thr = float(thr[idx])

 t_low = base_thr - 0.40

 t_high = base_thr - 0.16

 bundle = {

 "model": model,

 "threshold": base_thr,

 "threshold_safe_low": t_low,

 "threshold_safe_high": t_high,

 "feature_columns": feat_cols,

 "best_params": {"C": BEST_C, "gamma": BEST_GAMMA}

 }

 MODEL_OUT.parent.mkdir(parents=True, exist_ok=True)

 joblib.dump(bundle, MODEL_OUT)

 print("Model saved:", MODEL_OUT)

 print("Training time:", (time.time() - start)/60, "minutes")

if __name__ == "__main__":

 train_svm()

Lampiran 8. Kode Program Implementasi Regex

import os

import re

import tempfile

from contextlib import suppress

from pathlib import Path

from typing import Tuple, List, Dict, Optional

from pydub import AudioSegment

import speech_recognition as sr

COMMAND_PATTERNS = {

 "buka": re.compile(r"\b(buka|open)\b", re.IGNORECASE),

 "tutup": re.compile(r"\b(tutup|close)\b", re.IGNORECASE),

}

def transcribe_audio(file_path: str | Path) -> str:

 recognizer = sr.Recognizer()

 try:

 # Konversi ke format WAV 16kHz mono

 audio = AudioSegment.from_file(file_path)

 audio = audio.set_channels(1).set_frame_rate(16000)

 with tempfile.NamedTemporaryFile(delete=False, suffix=".wav")

as tmp_wav:

 audio.export(tmp_wav.name, format="wav", parameters=["-

acodec", "pcm_s16le"])

 wav_path = tmp_wav.name

 with sr.AudioFile(wav_path) as src:

 audio_data = recognizer.record(src)

 text = recognizer.recognize_google(audio_data, language="id-

ID").lower()

 return text

 except sr.UnknownValueError:

 return ""

 except sr.RequestError as e:

 print(f”Gagal menghubungi API Speech: {e}")

 return ""

 except Exception as e:

 print(f"Error transkripsi: {e}")

 return ""

 finally:

 with suppress(FileNotFoundError):

 os.remove(wav_path)

def regex_decide(text: str) -> Tuple[str, List[Dict[str, str]],

Optional[str]]:

 if not text or not text.strip():

 return "filler", [], None

 matches = []

 for cmd, pattern in COMMAND_PATTERNS.items():

 for m in pattern.finditer(text):

 matches.append({

 "command": cmd,

 "word": m.group(1).lower(),

 "span": (m.start(), m.end())

 })

 matches.sort(key=lambda x: x["span"][0])

 chosen = matches[0]["command"] if matches else None

 command = chosen if chosen in ("buka", "tutup") else "filler"

 return command, matches, chosen

Lampiran 9. Kode Program Integrasi MQTT

import os

import json

import time

import paho.mqtt.client as mqtt

from dotenv import load_dotenv

from typing import Dict

load_dotenv()

MQTT_BROKER = os.getenv("MQTT_BROKER")

MQTT_PORT = int(os.getenv("MQTT_PORT", "8883"))

MQTT_TOPIC_COMMAND = os.getenv("MQTT_TOPIC_COMMAND", "garasi/perintah")

MQTT_TOPIC_STATUS = os.getenv("MQTT_TOPIC_STATUS", "garasi/status/ml")

MQTT_USERNAME = os.getenv("MQTT_USERNAME")

MQTT_PASSWORD = os.getenv("MQTT_PASSWORD")

if not all([MQTT_BROKER, MQTT_USERNAME, MQTT_PASSWORD]):

 raise EnvironmentError("Variabel lingkungan MQTT belum lengkap.

Pastikan .env berisi konfigurasi yang benar.")

def _mk_mqtt_client() -> mqtt.Client:

 client = mqtt.Client(client_id=f"ml-{int(time.time())}",

protocol=mqtt.MQTTv311)

 client.username_pw_set(MQTT_USERNAME, MQTT_PASSWORD)

 client.tls_set() # TLS aktif (karena port 8883)

 client.will_set(MQTT_TOPIC_STATUS, payload="offline", qos=1,

retain=True)

 client.connect(MQTT_BROKER, MQTT_PORT, keepalive=30)

 client.loop_start()

 client.publish(MQTT_TOPIC_STATUS, "online", qos=1, retain=True)

 return client

def publish_command(payload: Dict) -> bool:

 client = None

 try:

 client = _mk_mqtt_client()

 msg = json.dumps(payload, ensure_ascii=False)

 info = client.publish(MQTT_TOPIC_COMMAND, msg, qos=1,

retain=False)

 info.wait_for_publish()

 except Exception as e:

 return False

 finally:

 if client:

 time.sleep(0.2)

 client.loop_stop()

 client.disconnect()

if __name__ == "__main__":

 sample_payload = {

 "isMe": True,

 "command": "buka",

 "decision": True,

 "proba": {"Me": 0.91, "NotMe": 0.09},

 }

 publish_command(sample_payload)

Lampiran 10. Kode Program Implementasi Mikrokontroler (ESP32)

#include <ESP32Servo.h>

#include <WiFi.h>

#include <WiFiClientSecure.h>

#include <PubSubClient.h>

#include <ArduinoJson.h>

const char* WIFI_SSID = "____";

const char* WIFI_PASSWORD = "____";

const char* MQTT_BROKER = "____";

const int MQTT_PORT = ____;

const char* MQTT_USER = "____";

const char* MQTT_PASS = "____";

const char* TOPIC_CMD = "garasi/perintah";

const char* TOPIC_STATUS = "garasi/status";

const char* TOPIC_STATUS_ESP= "garasi/status/esp";

const int SERVO_PIN = 18;

const int SERVO_STOP_US = 1500;

const int SERVO_OPEN_US = 2200;

const int SERVO_CLOSE_US = 800;

const unsigned long RUN_MS = 16000;

const int IR_PIN = 34;

const bool IR_ACTIVE_LOW = true;

const unsigned long IR_DEBOUNCE_MS = 120;

bool irLastState = false;

unsigned long irLastChangeMs= 0;

enum State { STOPPED, RUN_OPEN, RUN_CLOSE };

enum DoorPos { UNKNOWN, OPEN, CLOSED };

State currentState = STOPPED;

DoorPos doorPos = UNKNOWN;

DoorPos desiredDoorPos = UNKNOWN;

unsigned long stateStartMs = 0;

unsigned long stateBudgetMs = 0;

unsigned long pausedRemainingMs = 0;

bool waitingForClear = false;

const int LED1_PIN = 25;

const int LED2_PIN = 26;

const unsigned long LED_BLINK_MS = 300;

bool ledState = false;

unsigned long lastBlinkMs= 0;

const int BUZZER_PIN = 27;

Servo servoMotor;

WiFiClientSecure tls;

PubSubClient mqtt(tls);

void updateLeds() {

 unsigned long now = millis();

 if (currentState == RUN_OPEN || currentState == RUN_CLOSE) {

 if (now - lastBlinkMs >= LED_BLINK_MS) {

 lastBlinkMs = now;

 ledState = !ledState;

 digitalWrite(LED1_PIN, ledState);

 digitalWrite(LED2_PIN, ledState);

 }

 } else {

 digitalWrite(LED1_PIN, HIGH);

 digitalWrite(LED2_PIN, HIGH);

 }

}

void servoStop() { servoMotor.writeMicroseconds(SERVO_STOP_US); }

void servoOpen() { servoMotor.writeMicroseconds(SERVO_CLOSE_US); }

void servoClose() { servoMotor.writeMicroseconds(SERVO_OPEN_US); }

void enterState(State s, const char* reason = nullptr) {

 currentState = s;

 stateStartMs = millis();

 stateBudgetMs = RUN_MS;

 switch (s) {

 case STOPPED: servoStop(); break;

 case RUN_OPEN: servoOpen(); desiredDoorPos = OPEN; break;

 case RUN_CLOSE: servoClose(); desiredDoorPos = CLOSED; break;

 }

 if (reason) Serial.printf("[STATE] %s\n", reason);

}

void finishRunAndStop() {

 if (desiredDoorPos != UNKNOWN) doorPos = desiredDoorPos;

 enterState(STOPPED, "auto_stop");

}

bool isIrBlocked() {

 bool raw = digitalRead(IR_PIN);

 bool blocked = IR_ACTIVE_LOW ? (raw == LOW) : (raw == HIGH);

 if (blocked != irLastState) {

 irLastState = blocked;

 irLastChangeMs = millis();

 }

 bool stable = (millis() - irLastChangeMs) > IR_DEBOUNCE_MS;

 return stable ? irLastState : !irLastState;

}

const char* doorPosStr(DoorPos p) {

 switch (p) {

 case OPEN: return "OPEN";

 case CLOSED: return "CLOSED";

 default: return "UNKNOWN";

 }

}

const char* stateStr(State s) {

 switch (s) {

 case STOPPED: return "STOPPED";

 case RUN_OPEN: return "RUN_OPEN";

 case RUN_CLOSE: return "RUN_CLOSE";

 default: return "?";

 }

}

void publishStatus(const char* reason=nullptr, bool obstacle=false) {

 DynamicJsonDocument doc(256);

 doc["state"] = stateStr(currentState);

 doc["door_pos"] = doorPosStr(doorPos);

 doc["busy"] = (currentState != STOPPED);

 doc["obstacle"] = obstacle;

 if (reason) doc["reason"] = reason;

 char buf[256];

 size_t n = serializeJson(doc, buf);

 mqtt.publish(TOPIC_STATUS, buf, n);

}

void onMqtt(char* topic, byte* payload, unsigned int length) {

 DynamicJsonDocument doc(1024);

 if (deserializeJson(doc, payload, length)) return;

 bool isMe = doc["prediction"]["isMe"] | false;

 String cmd = String((const char*)doc["prediction"]["command"]);

 cmd.toLowerCase();

 if (!isMe) { publishStatus("rejected_notme"); return; }

 if (cmd != "buka" && cmd != "tutup") { publishStatus("invalid_cmd");

return; }

 if (cmd == "buka" && doorPos == OPEN) {

publishStatus("already_open"); return; }

 if (cmd == "tutup" && doorPos == CLOSED) {

publishStatus("already_closed"); return; }

 if (cmd == "buka") enterState(RUN_OPEN, "cmd_buka");

 if (cmd == "tutup") enterState(RUN_CLOSE, "cmd_tutup");

 publishStatus(cmd.c_str());

}

void setupWifi() {

 WiFi.begin(WIFI_SSID, WIFI_PASSWORD);

 while (WiFi.status() != WL_CONNECTED) delay(300);

}

void ensureMqtt() {

 if (mqtt.connected()) return;

 while (!mqtt.connected()) {

 String cid = "ESP32-" + String((uint32_t)ESP.getEfuseMac(), HEX);

 if (mqtt.connect(cid.c_str(), MQTT_USER, MQTT_PASS)) {

 mqtt.subscribe(TOPIC_CMD);

 publishStatus("online");

 } else {

 delay(5000);

 }

 }

}

void tryProgress() {

 bool blocked = isIrBlocked();

 if (currentState == RUN_CLOSE && blocked) {

 unsigned long elapsed = millis() - stateStartMs;

 pausedRemainingMs = (elapsed >= stateBudgetMs) ? 1 : stateBudgetMs

- elapsed;

 waitingForClear = true;

 servoStop();

 digitalWrite(BUZZER_PIN, HIGH);

 publishStatus("paused_obstacle", true);

 enterState(STOPPED);

 return;

 }

 if (waitingForClear && !blocked) {

 waitingForClear = false;

 digitalWrite(BUZZER_PIN, LOW);

 enterState(RUN_CLOSE, "resume_after_obstacle");

 stateBudgetMs = pausedRemainingMs;

 pausedRemainingMs = 0;

 publishStatus("resumed_after_clear");

 return;

 }

 if ((currentState == RUN_OPEN || currentState == RUN_CLOSE) &&

 millis() - stateStartMs >= stateBudgetMs) {

 finishRunAndStop();

 }

}

void setup() {

 Serial.begin(115200);

 pinMode(LED1_PIN, OUTPUT);

 pinMode(LED2_PIN, OUTPUT);

 pinMode(IR_PIN, INPUT_PULLUP);

 irLastState = isIrBlocked();

 pinMode(BUZZER_PIN, OUTPUT);

 digitalWrite(BUZZER_PIN, LOW);

 servoMotor.attach(SERVO_PIN, 500, 2500);

 servoStop();

 tls.setInsecure();

 mqtt.setServer(MQTT_BROKER, MQTT_PORT);

 mqtt.setCallback(onMqtt);

 mqtt.setBufferSize(1024);

 setupWifi();

 currentState = STOPPED;

 publishStatus("boot_idle");

}

void loop() {

 ensureMqtt();

 mqtt.loop();

 tryProgress();

 updateLeds();

}

