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ABSTRAK 

Asviana, Natasyah. 2025. Pengembangan Model Feedforward Neural Network Untuk 

Prediksi Mutasi Data Sekuensial Situs Cleavage Sars-Cov-2. Skripsi. Jurusan 

Matematika Fakultas Sains Dan Teknologi. Universitas Islam Negeri Maulana 

Malik Ibrahim Malang. Pembimbing (1) Dr. Mohammad Jamhuri, M.Si. (2) Erna 

Herawati, M.Pd. 

 

Kata kunci: SARS-CoV-2, furin cleavage site, Feedforward Neural Network, prediksi 

mutasi, data sekuensial. 

 

Mutasi pada protein spike SARS-CoV-2, khususnya pada wilayah furin cleavage site 

(FCS), berperan penting dalam meningkatkan infektivitas virus dan memengaruhi 

dinamika penyebaran varian. Oleh karena itu, diperlukan pendekatan prediksi mutasi 

yang terfokus dan efisien untuk mendukung pemantauan evolusi virus. Penelitian ini 

bertujuan mengembangkan model prediksi mutasi data sekuensial pada situs cleavage 

SARS-CoV-2 menggunakan Feedforward Neural Network (FFNN) serta mengevaluasi 

kinerjanya. Data berupa sekuens protein spike varian Omicron (B.1.1.529) diperoleh dari 

basis data NCBI Virus, kemudian diproses melalui tahap penyelarasan sekuens, ekstraksi 

wilayah FCS, windowing, dan representasi numerik asam amino. Model FFNN dilatih 

menggunakan pembagian data latih, validasi, dan uji, serta dievaluasi dengan metrik 

Mean Squared Error (MSE), Mean Absolute Error (MAE), akurasi, presisi, recall, dan 

F1_score. Hasil penelitian menunjukkan bahwa model FFNN mencapai akurasi prediksi 

posisional rata-rata sebesar 82% pada wilayah FCS, dengan nilai MAE yang relatif 

rendah serta konvergensi loss yang stabil selama pelatihan. Model juga mampu 

mengidentifikasi posisi dengan tingkat kesalahan tinggi yang berpotensi menjadi hotspot 

mutasi. Dengan demikian, FFNN terbukti efektif dalam memodelkan pola mutasi 

sekuensial pada situs cleavage dan berpotensi digunakan sebagai alat bantu analisis 

evolusi SARS-CoV-2.  
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ABSTRACT 

Asviana, Natasyah. 2025. Development of a Feedforward Neural Network Model for 

Predicting Sequential Mutation at the SARS-CoV-2 Cleavage. Thesis. 

Department of Mathematics, Faculty of Science and Tecnology. Universitas Islam 

Negeri Maulana Malik Ibrahim Malang. Supervisors: (1) Dr. Mohammad Jamhuri, 

M.Si. (2) Erna Herawati, M.Pd. 

 

Keywords: SARS-CoV-2, furin cleavage site, Feedforward Neural Network, mutation 

prediction, sequential data. 

 

Mutations in the SARS-CoV-2 spike protein, particularly within the furin cleavage site 

(FCS), play a crucial role in increasing viral infectivity and influencing the evolutionary 

dynamics of emerging variants. Therefore, a focused and efficient mutation prediction 

approach is required to support viral evolution surveillance. This study aims to develop a 

Feedforward Neural Network (FFNN) model for predicting sequential mutation patterns 

at the SARS-CoV-2 cleavage site and to evaluate its performance. The dataset consists of 

spike protein sequences of the Omicron variant (B.1.1.529) obtained from the NCBI 

Virus database and processed through sequence alignment, FCS region extraction, 

windowing, and numerical encoding of amino acids. The FFNN model was trained using 

separated training, validation, and testing datasets and evaluated using Mean Squared 

Error (MSE), Mean Absolute Error (MAE), accuracy, precision, recall, and F1_score 

metrics. The results show that the proposed FFNN achieved an average positional 

prediction accuracy of 82% within the FCS region, with relatively low MAE values and 

stable loss convergence during training. Furthermore, the model successfully identified 

positions with high prediction error that potentially represent mutation hotspots. These 

findings indicate that FFNN is effective in modeling sequential mutation patterns at the 

cleavage site and has potential applications as a computational tool for SARS-CoV-2 

evolutionary analysis. 
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BAB I 

PENDAHULUAN 
 

 

1.1 iLatar Belakang 

SARS-CoV-2 dikenal sebagai virus penyebab pandemi COVID-19 yang 

mulai terdeteksi pada akhir tahun 2019 (Holmes et al., 2021). Mutasi pada protein 

spike dari virus SARS-CoV-2 menjadi faktor utama yang memengaruhi 

penularan, efektivitas vaksin, dan kemampuan virus beradaptasi dengan sistem 

imun (Harvey et al., 2021). Salah satu bagian paling kritis dari protein spike 

tersebut adalah Furin Cleavage Site (FCS), dimana pemotongan protein spike 

oleh enzim furin pada situs S1/S2 sangat penting untuk fusi antar sel dan 

masuknya virus ke dalam sel inang (Hoffmann et al., 2020). Proses ini 

meningkatkan infektivitas virus serta berkontribusi pada penyebaran infeksi 

(Hoffmann et al., 2020). Oleh karena itu, prediksi mutasi pada situs ini sangat 

penting untuk mendukung sistem pemantauan evolusi virus dan pengembangan 

strategi kesehatan masyarakat. 

Upaya prediksi mutasi genom SARS-CoV-2 memerlukan data yang 

bersumber dari repositori terpercaya. Data genom SARS-CoV-2 diambil dari 

repositori NCBI Virus dengan menerapkan filter berdasarkan gen target, kualitas 

sekuens, metadata asal sampel, dan jenis varian untuk memperoleh data yang 

relevan dan valid. NCBI Virus menyediakan sekuens genetik dalam FASTA dan 

nucleotide record hasil pengumpulan global yang dapat digunakan untuk analisis 

bioinformatika (Brister et al., 2015). Basis data ini telah dimanfaatkan secara luas 

dalam ribuan publikasi ilmiah yang meneliti mutasi, filogenetik, dan dinamika 

genom (Brister et al., 2015). Dengan data yang terstandar serta terverifikasi, 
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proses analisis prediktif dapat dilakukan secara lebih akurat dan terarah. Selain 

itu, data genomik bersifat sekuensial karena tersusun atas urutan nukleotida yang 

saling berkaitan, sehingga perubahan basa mengikuti pola tertentu yang dapat 

ditelusuri melalui sejarah mutasinya. 

Feedforward Neural Network (FFNN) diterapkan untuk menganalisis data 

sekuensial dan telah terbukti efektif melalui berbagai penelitian sebelumnya. 

Seperti Yuliandar et al., (2012) menggunakan FFNN untuk memprediksi data 

deret waktu nilai kurs Dolar Australia terhadap Rupiah. Model jaringan saraf 

tiruan ini memiliki arsitektur sederhana, umumnya terdiri dari satu lapisan 

tersembunyi (hidden layer), dan dapat dimanfaatkan untuk prediksi pada deret 

waktu (Azam et al., 2018). Dalam  Feedforward Neural Network, data bergerak 

hanya dalam satu arah (feed-forward) dari lapisan input menuju lapisan output 

tanpa umpan balik, sehingga ini mampu mengenali pola kompleks dan 

menghasilkan pediksi berdasarkan data historis (Septiana & Br Bangun, 2023). 

Dengan demikian, Feedforward Neural Network dapat diterapkan dalam 

pemrosesan data sekuensial. 

Berbagai pendekatan telah dikembangkan untuk memahami mutasi pada 

furin cleavage site (FCS). Tian et al. (2012) memperkenalkan PiTou, alat prediksi 

berbasis hidden Markov model (HMM) dan skor biologis yang berhasil 

mendeteksi keberadaan furin cleavage site dengan sensitivitas dan spesifisitas 

tinggi. Namun, PiTou tidak dirancang untuk memprediksi mutasi, melainkan 

hanya mendeteksi situs pemotongan pada urutan protein yang tetap. Gu, C (2020) 

juga mengembangkan FindFur, alat prediksi berbasis profile hidden Markov 

model (HMM) dan logistic regression untuk mendeteksi situs furin cleavage pada 
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glikoprotein virus berselubung. Hasil penelitian menunjukkan performa baik, 

tetapi pendekatan Gu tidak diarahkan untuk memprediksi mutasi, melainkan 

hanya mendeteksi keberadaan motif furin cleavage site. 

Sementara itu, Maher dan Yousif (2023) mengembangkan sebuah model 

prediktif berbasis meachine learning, khususnya neural network dan fitur 

epidemiologis, untuk memprediksi mutasi SARS-CoV-2 yang berpotensi 

menyebar secara luas. Model ini menggunakan data genomik, evolusi, imunologi, 

serta data spasial dan temporal dari penyebaran mutasi, lalu mengintegrasikannya 

dalam kerangka prediksi mutasi yang berpotensi menjadi bagian dari varian yang 

diwaspadai. Di sisi lain, Saldivar-espinoza et al. (2022) menggunakan Artificial 

Neural Network (ANN) untuk memprediksi recurrent mutations dalam genom 

SARS-CoV-2. Model ini mampu mengidentifikasi mutasi berulang berdasarkan 

fitur-fitur seperti struktur sekunder RNA dan reaktivitas kimia. Walaupun hasil 

prediksi cukup menjanjikan, penelitian ini tidak secara khusus menyasar situs 

furin cleavage, dan lebih menyoroti mutasi global. 

Kemajuan lebih lanjut ditunjukkan oleh Jamhuri et al., (2025) dalam 

disertasinya, yang mengembangkan pendekatan optimasi Gauss-Newton 

terdistribusi untuk meningkatkan efisiensi pelatihan model deep learning dalam 

memprediksi mutasi spike protein SARS-CoV-2. Ia menggunakan kombinasi 

model MLP, CNN, dan LSTM, dan menguji akurasi prediksi mutasi pada 

berbagai varian termasuk Alpha, Beta, Delta, Gamma, dan Omicron. Hasilnya 

menunjukkan bahwa model tersebut mampu mencapai akurasi tinggi hingga 99% 

pada sebagian besar varian. Namun, varian Omicron, yang memiliki kompleksitas 

mutasi paling tinggi dan data terbatas, menyebabkan penurunan akurasi sebesar 1–
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2%, yang menunjukkan tantangan nyata dalam menangani virus yang terus 

berkembang. Di sisi lain, model yang digunakan tergolong kompleks dan tidak 

secara eksplisit ditujukan untuk prediksi mutasi di situs cleavage. 

Dari tinjauan studi tersebut, dapat diketahui bahwa meskipun telah 

dilakukan banyak upaya untuk memodelkan mutasi SARS-CoV-2, masih terdapat 

kekosongan penelitian, yaitu belum adanya pendekatan secara khusus ditujukan 

untuk memprediksi mutasi pada furin cleavage site menggunakan Feedforward 

Neural Network (FFNN). Kekurangan ini mengindikasi perlunya metode yang 

lebih terarah dalam menganalisis mutasi pada bagian penting dari virus tersebut.  

Mengingat pentingnya peran furin cleavage site dalam infektivitas virus dan 

implikasinya terhadap efektivitas vaksin, penelitian ini bertujuan untuk 

mengembangkan sistem prediksi data sekuensial berbasis Feedforward Neural 

Network (FFNN) dalam menganalisis mutasi situs cleavage pada virus SARS-

CoV-2. Model ini diharapkan mampu menangkap pola-pola mutasi yang 

signifikan secara biologis dengan efesien, serta memberikan kontribusi pada 

pengembangan sistem pemantauan evolusi virus yang adaptif dan berkelanjutan. 

Pengembangan ilmu pengetahuan merupakan perintah Islam agar umatnya 

mencari dan mengembangkan ilmu demi kemaslahatan. Hal ini ditegaskan Allah 

SWT dalam QS.Al-Mujadilah ayat 11: 

  ۙ  ۙ

١۝۝ 

 

“..Allah akan meninggikan orang-orang yang beriman di antaramu dan orang-

orang yang diberi ilmu beberapa derajat. Allah melihat pada apa yang kamu 

kerjakan.” (QS.Al-Mujadilah: 11) 
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Ayat ini menegaskan bahwa ilmu pengetahuan memiliki kedudukan yang sangat 

mulia dan menjadi sarana meninggikan derajat manusia di sisi Allah SWT. 

pengembangan ilmu, termasuk penelitian mutasi virus SARS-CoV-2, bernilai 

ibadah ketika diarahkan untuk kemslahatan umat. Dalam konteks ini, 

pengembangan model prediksi berbasis Feedforward Neural Network bukan 

hanya kontribusi terhadap keilmuan modern, tetapi juga bentuk aktualisasi nilai 

Islam yang mendorong pemanfaatan akal demi menjaga jiwa manusia. 

1.2 Rumusan Masalah 

Berdasarkan latar belakang masalah di atas, maka rumusan masalah sebagai 

berikut: 

1. Bagaimana penerapan model prediksi mutasi situs cleavage dari virus SARS 

CoV-2 menggunakan Feedforward Neural Network (FFNN)? 

2. Bagaimana performance model yang dikembangkan dalam memprediksi 

mutasi situs cleavage dari virus SARS CoV-2? 

1.3 Tujuan Penelitian  

Berdasarkan rumusan masalah, tujuan dari penelitian ini sebagai berikut: 

1. Untuk mengembangkan model prediksi mutasi situs cleavage dari virus 

SARS CoV-2 menggunakan Feedforward Neural Network (FFNN). 

2. Untuk mengetahui performance model yang dikembangkan dalam 

memprediksi mutasi situs cleavage dari virus SARS CoV-2. 

1.4 Manfaat Penelitian  

Dalam penelitian ini diharapkan memiliki manfaat sebagai berikut:  

1. Manfaat teoritis 

Manfaat teoritis penelitian ini meliputi hal berikut: 
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a. Memberikan pengembangan model prediksi mutasi situs cleavage SARS-

CoV-2 berbasis Feedforward Neural Network dan memperluas kajian 

mengenai kemampuan FFNN dalam mengolah data sekuensial biologis.  

b. Memperkaya literatur terkait analisis akurasi dan kemampuan 

pembelajaran model pada data sekuensial virus. 

2. Manfaat Praktis 

Manfaat praktis penelitian ini meliputi hal berikut: 

a. Model prediksi berfungsi sebagai alat bantu analisis untuk lembaga riset 

dan instansi kesehatan dalam mendeteksi potensi mutasi atau varian baru 

virus SARS-CoV-2. 

b. Hasil penelitian mendukung pengambilan keputusan yang lebih cepat dan 

akurat dalam pengembangan vaksin, pengawasan epidemiologi, serta 

penentuan strategi respon medis terhadap penyakit menular. 

1.5 Batasan Masalah 

Agar penelitian ini lebih terarah dan fokus, maka dilakukan pembatasan 

permasalahan yaitu penelitian ini hanya menggunakan data sekuens genom dari 

varian SARS-CoV-2 Omicron (B.1.1.529) yang diperoleh dari basis data publik 

NCBI. Analisis difokuskan pada mutasi yang terjadi pada wilayah furin cleavage 

site (FCS) pada protein spike, karena bagian ini memiliki peran penting dalam 

proses infeksi virus.  

1.6 Definisi Istilah 

Dalam penelitian ini digunakan beberapa istilah untuk menghindari 

perbedaan makna dan menyamakan pemahaman terhadap tema serta arah 

penelitian. Definisi istilah pada penelitian ini yaitu sebagai berikut: 
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1. Mutasi  

Perubahan pada urutan nukleotida dalam genom organisme yang dapat 

memengaruhi struktur dan fungsi protein yang dihasilkan. 

2. Prediksi 

Proses memperkirakan nilai atau kejadian di masa depan berdasarkan data 

historis.  

3. SARS-CoV-2 

Virus penyebab COVID-19 yang pertama kali diidentifikasi akhir 2019.  

4. Data Sekuensial  

Data yang disusun dalam urutan tertentu di mana urutan tersebut penting 

untuk analisis. 

5. Artificial Neural Network  

Suatu model komputasional yang terinspirasi dari struktur jaringan saraf 

biologis, terdiri dari lapisan neuron yang saling terhubung untuk memproses 

data dan melakukan prediksi.  

6. FASTA 

Format file standar untuk menyimpan sekuens nukleotida atau protein dalam 

bentuk teks, yang digunakan dalam bioinformatika untuk analisis genomik.  

7. Machine Learning 

Cabang kecerdasan buatan yang melibatkan algoritma yang belajar dari data 

untuk membuat prediksi atau keputusan. 

8. NCBI Virus 

Repositori basis data genomik yang dikelola oleh National Center for 

Biotechnology Information (NCBI), menyediakan sekuens virus global  
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dalam format FASTA untuk analisis bioinformatika. 

9. Protein Spike 

Protein permukaan SARS-CoV-2 yang berperan dalam pengikatan dan 

masuknya virus ke sel inang. 

10. Residu 

Satu unit penyusun sekuens, misalnya satu asam amino dalam sekuens 

protein atau satu nukleotida dalam DNA/RNA. 

11. Furin Cleavage Site 

lokasi spesifik pada protein virus yang harus dipotong oleh enzim protease 

untuk meningkatkan infeksi atau perakitan partikel virus yang matang.  

12. Windowing  

Teknik membagi data berurutan menjadi potongan dengan panjang tertentu 

untuk dianalisis atau diprediksi. 

13. Lag (Jendela) 

Jarak waktu atau urutan antara data sebelumnya dengan data yang 

diprediksi. 
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BAB II   

KAJIAN PUSTAKA 

Subbab ini memuat landasan teoritis yang digunakan dalam penelitian, 

mencakup struktur biologis SARS-CoV-2, karakteristik protein Spike, dan konsep 

situs furin cleavage. Selain itu dibahas prinsip prediksi data sekuensial dengan 

neural network, arsitektur Feedforward Neural Network, serta metrik evaluasi 

yang digunakan dalam menilai kualitas model. 

2.1. Struktur SARS-CoV-2 

SARS-CoV-2 (Severe Acute Resporatory Syndrome Coronavirus 2) adalah 

jenis virus corona baru yang pertama kali diidenfikasi di Wuhan, Tiongkok, pada 

akhir tahun 2019 dan memiliki kemiripan genetik dengan virus penyebab SARS 

pada tahun 2002 (Holmes et al., 2021). Penamaan tersebut diberikan oleh Komite 

Internasional Taksonomi Virus (ICTV). Virus ini adalah virus yang menyebabkan 

penyakit pernafasan pada manusia dan ditularkan dari hewan ke manusia dalam 

bentuk mutasi. Dalam perkembangannya, SARS-CoV-2 menghasilkan sejumlah 

varian yang diklasifikasikan sebagai Variants of Concern (VOC), seperti Alpha 

(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), serta Omicron yang 

awalnya diklasifikasikan sebagai B.1.1.529 dan kemudian berkembang menjadi 

berbagai sublineage BA (Park et al., 2023). 

SARS-CoV-2 dikenal sebagai virus RNA yang beruntai tunggal positif 

(positive-sense single-stranded RNA virus), yang artinya materi genetiknya dapat 

langsung digunakan sebagai cetakan untuk membuat protein virus setelah 

memasuki inang (Naqvi et al., 2020). RNA tersebut dilindungi oleh protein 

neukleokapsid (N) yang berfungsi menjaga stabilitas dan mendukung proses 
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replikasi. Partikel inti virus ini selanjutnya dikelilingi oleh selubung membran luar 

yang terbuat dari lipid (lipid envelope) dengan protein yang disisipkan. Selubung 

ini sangat penting dalam menjaga integritas virus, namun juga menjadi titik lemah 

karena mudah rusak oleh senyawa lipid seperti larutan hidrogen peroksida, 

pemutih hipoklorit, deterjen dan sabun (V’kovski et al., 2021). Inilah alasan 

mengapa mencuci tangan dengan sabun menjadi salah satu langkah pencegahan 

yang efektif terhadap penyebaran virus SARS-CoV-2. 

 

 
Gambar 2.1 Struktur SARS-CoV-2 

(Sumber: www.biophysics.org)  

 

Pada Gambar 2.1 merupakan Ilustrassi struktur SARS-CoV-2. Selubung 

membran luar inti virus berasal dari sel tempat virus terakhir kali dirakit tetapi 

dimodifikasi untuk mengandung protein virus tertentu, termasuk protein spike (S), 

membrane (M), dan envelope (E). Protein spike merupakan komponen kunci 

dalam proses infeksi karena mampu mengenali dan berikatan dengan reseptor 

Angitensin Converting Enzym 2 (ACE2) di permukaan sel manusia, terutama di 

saluran pernapasan (Yan et al., 2020). Protein E dan M juga berperan penting 

dalam siklus hidup virus. Protein E terlibat dalam proses perakitan dan pelepasan 

virus baru dari dalam sel, sementara protein protein M membantu 

http://www.biophysics.org/
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mempertahankan bentuk dan struktur virus secara keseluruhan. Interaksi antar-

protein ini sangat penting dalam membentuk virian yang infektif.  

2.2. Struktur Protein Spike SARS-CoV-2 

Protein spike (S) merupakan glikoprotein tipe I yang terletak di permukaan 

virus SARS-CoV-2. Struktur ini berbentuk seperti paku dan menjadi ciri khas dari 

virus corona yang tampak seperti mahkota di bawah mikroskop elektron. Protein 

spike memliki peran penting dalam proses masuknya virus ke dalam sel inang 

dengan cara menempel pada reseptor sel manusia (Walls et al., 2020).  

Protein spike dari SARS-CoV-2 adalah homotrimer, yang setiap rantainya 

terdiri dari 1273 residu (Sinha et al., 2023). Protein spike memiliki dua subunit 

utama, yaitu S1 (14-685 residu) dan S2 (686-1273 residu) (Huang et al., 2020), 

Subunit S1 mengandung receptor-binding domain (RBD) untuk mengenali dan 

menempel pada reseptor ACE2 pada permukaan sel manusia (Yan et al., 2020). 

Proses pengikatan ini menjadi tahap awal dalam infeksi, karena menentukan 

keberhasilan virus menempel pada sel target. 

Subunit S2 bertanggung jawab dalam mediasi fusi membran virus dengan 

membran sel inang. Bagian ini terdiri atas fusion peptide (FP), heptad repeat 1 

(HR1), heptad repeat 2 (HR2), serta domain transmembran (TM) dan sitoplasmik 

(CT). Setelah subunit S1 berikatan dengan ACE2, S2 mengalami perubahan 

konformasi besar yang memungkinkan FP menyisip ke dalam membran sel target. 

HR1 dan HR2 kemudian berinteraksi membentuk struktur six-helix bundle (6-HB) 

yang menarik membran virus dan membran sel inang menjadi sangat dekat hingga 

akhirnya menyatu (Huang et al., 2020). 
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Aktivasi protein spike membutuhkan proses pemotongan atau cleavage oleh 

protease sel inang pada dua titik utama, yaitu S1/S2 dan S2’. Enzim seperti furin, 

TMPRSS2, dan cathepsin L berperan dalam memediasi pemotongan ini. Secara 

khusus, SARS-CoV-2 memiliki furin cleavage site unik pada batas S1/S2 yang 

tidak ditemukan pada SARS-CoV, sehingga meningkatkan efisiensi pemotongan 

oleh protease inang. Hal ini diduga menjadi salah satu faktor yang membuat 

SARS-CoV-2 memiliki tingkat penularan lebih tinggi dibandingkan virus corona 

sebelumnya (Huang et al., 2020).  

Protein spike tersusun atas rantai asam amino yang direpresentasikan 

sebagai deretan karakter tunggal dalam alfabet protein. Representasi ini 

menggunakan dua puluh asam amino standar yang masing-masing memiliki kode 

satu huruf, yaitu alanin (A), arginin (R), asparagin (N), aspartat (D), sistein (C), 

glutamin (Q), glutamat (E), glisin (G), histidin (H), isoleusin (I), leusin (L), lisin 

(K), metionin (M), fenilalanin (F), prolin (P), serin (S), treonin (T), triptofan (W), 

tirosin (Y), dan valin (V). Sekuens protein diperlakukan sebagai rangkaian simbol, 

sehingga pola residu dapat dianalisis secara komputasional. Pendekatan ini 

memungkinkan identifikasi perubahan huruf dalam sekuens yang 

merepresentasikan substitusi asam amino, sehingga sangat relevan dalam 

memetakan variasi dan mutasi pada protein spike SARS-CoV-2 (Motomura et al., 

2012). 

2.3. Situs Furin Cleavage pada Virus SARS-CoV-2 

Situs furin cleavage adalah lokasi spesifik pada protein virus yang harus 

dipotong oleh enzim protease untuk meningkatkan infeksi atau perakitan partikel 

virus yang matang. Pada SARS-CoV-2, situs cleavage utama terdapat di protein 
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spike, yang digunakan virus untuk berikatan dengan resepto ACE2 di sel manusia. 

Keberadaan furin cleavage site (FCS) pada SARS-CoV-2 membuat virus lebih 

mudah masuk ke dalam sel dibandingkan SARS-CoV versi tahun 2002 (Chan & 

Zhan, 2022).  

 

 
Gambar 2.2 Furin Cleavage site  

(Sumber: www.nature.org) 

 

Pada Gambar 2.2, karakteristik unik SARS-CoV-2 dibandingkan virus 

corona lainnya adalah keberadaan situs furin cleavage pada batas antara subunit 

S1 dan S2. Situs S1/S2 (ditandai merah) adalah lokasi spesifik dimana spike 

dipotong oleh enzim seperti furin. Keberadaan situs ini mempermudah 

pemrosesan dan aktivasi protein spike di berbagai jaringan tubuh manusia, 

sehingga meningkatkan kemampuan penyebaran virus serta memperluas tropisme 

jaringan. Pemotongan ini penting untuk mengungkapkan bagian peptida fusi, 

sehingga memungkinkan terjadinya perubahan konformasi protein spike menuju 

http://www.nature.org/
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struktural post-fusion. Proses ini memfasilitasi fusi membran virus dengan 

membran sel inang. Tanpa aktivasi di kedua situs ini, protein spike tidak dapat 

menjalankan fungsi fusi secara optimal (Hoffmann et al., 2020).. 

Secara spesifik, posisi furin cleavage site (FSC) pada protein spike SARS-

CoV-2 terletak di batasi subunit S1/S2, tepatnya pada residu asam amino 680-685 

dengan urutan motif PRRAR↓SV, di mana tanda panah (↓) menunjukkan titik 

pemotongaan oleh enzin furin. Sisipan empat asam amino PRRA pada posisi ini 

merupakan ciri khas SARS-CoV-2 yang tidak ditemukan pada SARS-CoV klasik 

(Örd et al., 2020). Karena mutasi pada situs ini dapat memengaruhi infektivitas, 

virulensi, dan penyebaran virus, FCS menjadi fokus penting dalam studi evolusi, 

pengembangan vaksin, dan pemodelan prediksi berbasis sekuens. 

2.4. Multiple Sequence Alignment  

Multiple Sequence Alignment (MSA) merupakan proses penyelarasan lebih 

dari dua sekuens biologis untuk mengidentifikasi posisi homolog yang memiliki 

keterkaitan evolusioner. MSA dijelaskan sebagai pengembangan dari pairwise 

alignment, namun dengan kompleksitas matematis yang jauh lebih tinggi sehingga 

perhitungan optimal tidak dapat dilakukan menggunakan dynamic programming 

biasa. Pada pairwise alignment, skor penyelaran dua sekuens 𝐴 = 𝑎𝑖 , … , 𝑎𝑚 

dan 𝐵 = 𝑏𝑖 , … , 𝑏𝑛 dihitung menggunakan formulasi rekursif: 

𝑆𝑖,𝑗 = max{

𝑆𝑖−1,𝑗−1 + 𝑠(𝑎𝑖 , 𝑏𝑗)

𝑆𝑖,𝑗−1 + 𝑠(−, 𝑏𝑗)     

𝑆𝑖−1,𝑗 + 𝑠(𝑎𝑖 , −)      

 

Dengan fungsi skor 𝑠(𝑎, 𝑏) = 1 untuk match, −1 untuk mismatch, dan −1 

untuk gap. Karena perumusan ini hanya efisien untuk dua sekuens, MSA 

menggunakan pendekatan heuristik seperti progressive alignment yang dimulai 
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dari pairwise untuk membentuk distance matrix, kemudian membuat guide tree 

menggunakan metode UPGMA atau Neighbor-Joining. Guide tree tersebut 

menentukan urutan penyelarasan, dan proses selanjutnya melibatkan profile 

alignment ketika sekuens baru diselaraskan dengan kelompok sekuens yang telah 

tersusun. (Singh, 2015). 

MAFFT merupakan salah satu algoritma MSA yang efisien dan akurat, 

dikembangkan oleh Katoh sejak 2002 dan terus disempurnakan. Pada proses 

alignment, MAFFT menambahkan gap (“–”) ketika terdapat sisipan atau 

penghapusan, sehingga panjang seluruh sekuens menjadi seragam dan residu 

dapat sejajar pada kolom yang sama. Penambahan gap berfungsi sebagai penanda 

insersi dan delesi tanpa mengubah urutan residu asli, sehingga posisi residu 

homolog dapat sejajar pada kolom yang sama (Katoh, 2020). Sebagai ilustrasi, 

misalkan lima sekuens awal; 

Sequens 1 : T Q V H R C E 

Sequens 2 : T Q V H C E 

Sequens 3 : S Q V H N D E 

Sequens 4 : Q V H R D E 

Sequens 5 : T Q V H R C E 

Sekuens tersebut memiliki panjang berbeda sehingga posisi homolog tidak 

langsung terlihat. Hasil penyelarasan menggunakan algoritma MSA sebagai 

berikut: 

Sequens 1 : T Q V H R C E 

Sequens 2 : T Q V H – C E 

Sequens 3 : S Q V H N D E 
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Sequens 4 : – Q V H R D E 

Sequens 5 : T Q V H R C E 

Penyesuaian ini memungkinkan setiap residu menempati kolom yang sesuai 

dengan posisi homolognya, sehingga pola kemiripan maupun perbedaan antar 

sekuens dapat diidentifikasi secara lebih akurat. Dengan demikian, MSA tidak 

hanya berfungsi untuk menata sekuens dalam format yang sejajar, tetapi juga 

menyediakan fondasi matematis untuk analisis homologi, inferensi hubungan 

evolusioner, serta identifikasi residu konservatif dalam data biologis. 

2.5. Prediksi Data Sekuensial Berbasis Neural Network 

Neural network merupakan pendekatan populer dalam bidang kecerdasan 

buatan yang terinspirasi dari cara kerja sistem saraf manusia (Lecun et al., 2015). 

Jaringan ini tersusun atas neuron buatan yang saling terhubung dalam beberapa 

lapisan, dan digunakan untuk mempelajari serta mengenali pola dari data 

masukan. Dalam konteks prediksi, neural network telah terbukti efektif, terutama 

pada data yang kompleks dan tidak bersifat linier (Lecun et al., 2015). 

Prediksi data sekuensial, yakni data yang bergantung pada urutan seperti 

teks, sinyal biologis, atau urutan genom, membutuhkan pendekatan khusus karena 

hubungan antar elemen sangat ditentukan oleh posisi dalam rangkaian. Untuk itu, 

dikembangkan arsitektur neural network yang dirancang untuk memahami urutan, 

seperti Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), 

dan Gated Recurrent Unit (GRU) (Greff et al., 2017). Model-model ini 

memungkinkan jaringan menyimpan informasi dari langkah-langkah sebelumnya 

dalam suatu urutan, sehingga sangat cocok untuk tugas seperti analisis sekuens 

genom atau prediksi mutasi virus. 
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Dalam konteks biologi molekuler dan bioinformatika, neural network telah 

digunakan untuk memprediksi interaksi protein, mengenali motif pengikatan asam 

nukleat, serta mendeteksi kemungkinan mutasi pada urutan virus. Sebagai contoh, 

Alipanahi et al. (2015) menggunakan deep learning untuk memprediksi 

spesifisitas pengikatan protein terhadap DNA dan RNA secara akurat. Pendekatan 

ini dapat diterapkan untuk mempelajari situs penting dalam protein virus seperti 

cleavage site, yang berperan dalam infektivitas dan penyebaran virus. 

Pemahaman representasi data biologis dalam konteks prediksi ini 

memerlukan pendekatan yang mampu mengubah sekuens protein menjadi bentuk 

numerik agar dapat diolah oleh model neural network. Pendekatan ini sejalan 

dengan penjelasan yang diberikan oleh Jason Brownlee (2020) dalam bukunya, 

yang menekankan pentingnya proses encoding sekuens menjadi nilai numerik 

sebelum digunakan sebagai input dalam model pembelajaran mesin. Misalkan 

terdapat sekuens furin cleavage dari beberapa virus yang direpresentasikan dalam 

bentuk matriks: 

𝐻 =

[
 
 
 
 
ℎ11

ℎ21

ℎ31

ℎ41

ℎ51

ℎ12

ℎ22

ℎ32

ℎ42

ℎ52

ℎ13

ℎ23

ℎ33

ℎ43

ℎ53]
 
 
 
 

 

Langkah pertama melakukan windowing terhadap matriks H dengan ukuran 

jendela (lag) sebesar 2. Ini berarti setiap pasangan baris berturutan akan diambil 

sebagai input, dan baris berikutnya akan menjadi targetnya. Diperoleh window 

sebagai berikut: 

𝐱1
′ = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23
]    𝑦1 = [ℎ31 ℎ32 ℎ33] 

(1) 

(2) 
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𝐱2
′ = [

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33
]    𝑦2 = [ℎ41 ℎ42 ℎ43] 

𝐱3
′ = [

ℎ31 ℎ32 ℎ33

ℎ41 ℎ42 ℎ43
]    𝑦3 = [ℎ51 ℎ52 ℎ53] 

Langkah berikutnya adalah flattening, yaitu meratakan masing-masing window 

input menjadi satu vektor baris agar dapat digunakan sebagai input pada model 

pembelajaran mesin. Menghasilkan: 

𝐱1 = [ℎ11 ℎ12 ℎ13 ℎ21 ℎ22 ℎ23] 

𝐱2 = [ℎ21 ℎ22 ℎ23 ℎ31 ℎ32 ℎ33] 

𝐱3 = [ℎ31 ℎ32 ℎ33 ℎ41 ℎ42 ℎ43] 

Selanjutnya, menggabungkan input hasil flattening dan target menjadi pasangan 

data. Sehingga didapatkan: 

𝑋 = [

𝑥1

𝑥2

𝑥3

] = [
ℎ11 ℎ12 ℎ13 ℎ21 ℎ22 ℎ23

ℎ21

ℎ31

ℎ22

ℎ32

ℎ23

ℎ33

ℎ31

ℎ41

ℎ32

ℎ42

ℎ33

ℎ43

] 

𝑌 = [

𝑦1

𝑦2

𝑦3

] = [
ℎ31 ℎ32 ℎ33

ℎ41

ℎ51

ℎ42

ℎ52

ℎ43

ℎ53

] 

Maka, hasil akhir data tersebut yaitu; 

𝐷 = {(𝒙1, 𝒚1), (𝒙2, 𝒚2), (𝒙3, 𝒚3)} 

Dengan terbentuknya pasangan data (𝒙𝑖, 𝒚𝑖), maka struktur data sekuensial 

selanjutnya dapat digunakan dalam proses model perediksi berbasis neural 

network.  

2.6. Feedforward Neural Network (FFNN)  

Feedforward Neural Network (FFNN) merupakan salah satu arsitektur 

paling dasar dalam jaringan saraf tiruan (Artifical Neural Network/ANN), di mana 

aliran informasi hanya bergerak maju dari input ke output, tanpa sirkulasi (loop) 

(4) 

(7) 

(9) 

(5) 

(3) 

(6) 

(8) 

(10) 
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atau umpan balik (Malik et al., 2013). Jaringan ini biasanya terdiri dari tiga 

lapisan utama, yaitu input layer, hidden layer dan  output layer. Input layer 

bertugas menerima data awal, hidden layer memproses data melalui kombinasi 

linear dan fungsi aktivasi non-linear, dan output layer memberikan hasil akhir 

berupa prediksi atau klasifikasi (Malik et al., 2013). 

Setiap neuron dalam FFNN bekerja dengan prinsip yang sederhana namun 

kuat. Neuron menerima input berupa vektor fitur  

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

Misalkan 𝑛 = 80 pada vektor input 𝐱, maka;  

𝐱 =  (𝑥1 𝑥2
⋯ 𝑥80) 

Dan bobot sinaptik dinyatakan dalam vektor baris 𝑊, dan bias dinotasikan dengan 

𝒃. Dinotasikan sebagai berikut: 

𝑊 = (

𝑤1,1

𝑤2,1

⋮
𝑤256,1

𝑤1,2

𝑤2,2

⋮
𝑤256,2

⋯
⋯
⋱
⋯

𝑤1,80

𝑤2,80

⋮
𝑤256,80

) ,      𝒃 = (

𝑏1

𝑏2

⋮
𝑏256

) 

Vektor input 𝐱 terlebih dahulu ditranspose untuk menyesuaikan dimensi dengan 

matriks bobot, sehingga proses matriks dapat dilakukan secara matematis sesuai 

kaidah. Dilanjutkan dengan langkah pertama yaitu operasi linear pada hidden 

layer pertama, operasi ini menghasilkan: 

𝐴 = 𝑊𝐱𝑇 + 𝒃 

= (

𝑤1,1
𝑤2,1

⋮
𝑤256,1

𝑤1,2
𝑤2,2

⋮
𝑤256,2

⋯
⋯
⋱
⋯

𝑤1,80
𝑤2,80

⋮
𝑤256,80

)(

𝑥1
𝑥2

⋮
𝑥80

) + (

𝑏1

𝑏2

⋮
𝑏256

) 

= (

𝑤1,1𝑥1 + 𝑤1,2𝑥2 + ⋯+ 𝑤1,80𝑥80 + 𝑏1

𝑤2,1𝑥1 + 𝑤2,2𝑥2 + ⋯+ 𝑤2,80𝑥80 + 𝑏2

⋮
𝑤256,1𝑥1 + 𝑤256,2𝑥2 + ⋯+ 𝑤256,80𝑥80 + 𝑏256

) 

(12) 

(11) 
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= (

𝑎1

𝑎2

⋮
𝑎256

) 

Kemudian dilewatkan ke fungsi aktivasi non-linear, fungsi aktivasi 𝜎 diterapkan 

setiap elemen untuk menghasilkan output non-linear dari hidden layer pertama. 

Output ini menjadi input bagi lapisan berikutnya, maka didapatkan; 

 𝐹 = 𝜎(𝐴) 

= (

𝜎(𝑎1)
𝜎(𝑎2)

⋮
𝜎(𝑎256)

) 

= (

𝑓1
𝑓2
⋮

𝑓256

) 

Langkah selanjutnya yaitu operasi linear pada hidden layer kedua,  misalkan 

bobot untuk lapisan kedua dinyatakan dengan: 

𝑉 = (

𝑣1,1

𝑣2,1

⋮
𝑣128,1

𝑣1,2

𝑣2,2

⋮
𝑣128,2

⋯
⋯
⋱
⋯

𝑣1,256

𝑣1,265

⋮
𝑣128,256

) , 𝒄 = (

𝑐1

𝑐2

⋮
𝑐128

) 

Sehingga, operasi ini menghasilkan:  

 𝐵 = 𝑉𝐹 + 𝒄 

= (

𝑣1,1
𝑣2,1

⋮
𝑣128,1

𝑣1,2
𝑣2,2

⋮
𝑣128,2

⋯
⋯
⋱
⋯

𝑣1,256
𝑣1,265

⋮
𝑣128,256

)

(

 
 

𝑓
1

𝑓
2

⋮
𝑓

256)

 
 

+ (

𝑐1
𝑐2

⋮
𝑐128

) 

= (

𝑣1,1𝑓1 + 𝑣12𝑓2 + ⋯+ 𝑣1,256𝑓256 + 𝑐1

𝑣2,1𝑓1 + 𝑣22𝑓2 + ⋯+ 𝑣2,256𝑓256 + 𝑐2

⋮
𝑣128,1𝑓1 + 𝑣128,2𝑓2 + ⋯+ 𝑣128,256𝑓256 + 𝑐128

) 

(14) 

(13) 

(15) 
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= (

𝑒1

𝑒2

⋮
𝑒128

) 

Kemudian dilewatkan ke fungsi aktivasi non-linear, maka didapatkan: 

 𝐺 = 𝜎(𝐵) 

= (

𝜎(𝑒1)
𝜎(𝑒2)

⋮
𝜎(𝑒128)

) 

= (

𝑔1

𝑔2

⋮
𝑔128

) 

Langkah terakhir, vektor hasil aktivasi 𝐺 dikombinasikan vektor bobot output 𝑢 

dengan bias 𝒅 untuk menghasilkan output akhir prediksi 𝑦̂, sehingga diperoleh:  

𝑦̂  = 𝑢𝐺 + 𝒅 

= (

𝑢1,1

𝑢2,1

⋮
𝑢10,1

𝑢1,2

𝑢2,2

⋮
𝑢10,2

⋯
⋯
⋱
⋯

𝑢1,128

𝑢2,128

⋮
𝑢10,128

)(

𝑔1

𝑔2

⋮
𝑔128

) + (

𝑑1

𝑑2

⋮
𝑑10

) 

= (

𝑦̂1

𝑦̂2

⋮
𝑦̂10

) 

Representasi dari arsitektur FFNN, dapat dilihat pada Gambar 2.4 berikut. 

 

(16) 

(18) 

(17) 
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Gambar 2.3. Arsitektur Feedforward Neural Network 

Gambar 2.4 tersebut merupakan representasi arsitektur FFNN dengan struktur 

berlapis yang terdiri dari satu lapisan input, dua lapisan tersembunyi (hidden 

layer), dan satu lapisan output. Gambar ini secarah utuh menggambarkan alur 

transformasi data dari input mentah hingga menjadi output akhir. 

2.7. Mean Squared Error (MSE) 

Mean Squared Error (MSE) adalah metrik yang digunakan untuk mengukur 

kualitas hasil prediksi model dengan menghitung rata-rata dari kuadrat selisih 

antara nilai prediksi dan nilai aktual. Nilai MSE yang lebih kecil menunjukkan 

bahwa kesalahan prediksi model relatif rendah, sehingga model dianggap 

memiliki performa yang baik (Nugroho et al., 2024). Secara matematis, MSE 

dituliskan sebagai  

MSE =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Pada formula tersebut, 𝑛 adalah jumlah data, 𝑦𝑖 merupakan nilai aktual, dan 

𝑦̂𝑖 merupakan nilai prediksi. Nugroho (2024) menyatakan bahwa MSE digunakan 
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sebagai fungsi kerugian (loss function) saat melatih model karena memberikan 

ukuran yang jelas terhadap kesalahan prediksi, serta sensitif terhadap error yang 

besar sehingga membantu proses konvergensi model secara lebih stabil 

dibandingkan MAE. 

2.8. Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) adalah indikator yang digunakan untuk 

mengevaluasi kinerja model dengan cara menghitung rata-rata besarnya selisih 

antara nilai yang diprediksi dan nilai aktual. Nilai MAE yang semakin kecil 

menunjukkan prediksi model semakin mendekati data sebenarnya, sehingga 

tingkat akuasi semakin baik (Nugroho et al., 2024). Hubungan matematis MAE 

ditulis sebagai berikut: 

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

Berbeda dengan Mean Squared Error (MSE) yang menghitung rata-rata 

kuadrat selisih antara nilai prediksi dan nilai aktual, MAE hanya mengambil nilai 

absolut dari selisih tersebut tanpa mengkuadratkan. Pada MAE, arah kesalahan 

tidak diperhitungkan karena yang diukur hanya besar selisih antara nilai prediksi 

dan nilai aktual. Baik kesalahan bernilai positif maupun negatif akan memiliki 

kontribusi yang sama terhadap nilai MAE (Nugroho et al., 2024).  

2.9. Metrik Evaluasi Model 

Evaluasi dan metrik performa merupakan aspek penting dalam menilai dan 

membandingkan suatu model. Melalui metrik ini, diperoleh gambaran mengenai 

seberapa baik model mampu menyelesaikan tugas yang diberikan, seperti proses 

klasifikasi atau segmentasi (Sathyanarayanan & Tantri, 2024). Menurut 
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Sathyanarayanan & Tantri (2024), beberapa indikator evaluasi yang umum 

digunakan dalam penilaian antara lain sebagai berikut: 

1. Akurasi 

Akurasi merupakan metrik evaluasi yang paling sederhana dan paling 

umum digunakan dalam klasifikasi. Metrik ini mengukur proporsi prediksi 

yang benar baik prediksi positif maupun negatif dari keseluruhan data uji. 

Secara matematis, akurasi dihitung dengan formula berikut: 

Akurasi =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

 

Di mana: 

𝑇𝑃 : True Positive (prediksi benar kelas positif) 

𝑇𝑁 : True Negative (Prediksi benar kelas negatif) 

𝐹𝑃 : False Positive (prediksi salah positif)  

𝐹𝑁 : False Negative (Prediksi salah negatif) 

Meskipun akurasi mampu menunjukkan performa model secara 

keseluruhan, metrik ini berpotensi menimbulkan bias apabila data tidak 

seimbang atau proporsi tiap kelas tidak merata. 

2. Presisi (Precision) 

Presisi mengukur tingkat ketepatan model dalam memprediksi kelas 

positif. Nilai presisi menunjukkan seberapa banyak prediksi yang benar-

benar positif dibandingkan dengan seluruh prediksi positif yang dihasilkan 

model. Formula presisi sebagai berikut: 

Presisi =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
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3. Recall 

Recall mengukur sejauh mana kemampuan model dalam menemukan 

seluruh data positif yang sebenarnya ada pada dataset. Recall tinggi 

menunjukkan bahwa model mampu menangkap sebagian besar kelas positif. 

Formula Recall sebagai berikut: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

4. F1_Score 

F1_score merupakan ukuran gabungan antara presisi dan recall. Nilai 

ini dihitung dengan rata-rata harmonis dari presisi dan recall untuk 

memberikan keseimbangan antara keduanya. Formula F1_score sebagai  

berikut:  

𝐹1_𝑆𝑐𝑜𝑟𝑒 =  
2 × (Presisi × 𝑅𝑒𝑐𝑎𝑙𝑙)

(Presisi + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

2.10. Integrasi Keislaman Prediksi Mutasi dengan Al-Qur’an & Hadits 

Al-Qur’an tidak secara langsung membahas mengenai mutasi virus ataupun 

teknologi prediktif seperti neural network, namun terdapat ayat-ayat yang 

menekankan pentingnya menjaga kesehatan, keselamatan jiwa, dan penggunaan 

akal untuk menyelesaikan berbagai persoalan, termasuk penyakit menular. Dalam 

Islam, tubuh manusia adalah titipan dari Allah SWT. yang harus dirawat dan 

dijaga dengan baik. Hal ini sejalan dengan usaha para ilmuan dalam memprediksi 

penyebaran penyakit melalui pendekatan berbasis teknologi dan sains. Seperti 

disebutkan dalam QS.Al-Baqarah ayat 195:  

  ۙ  ۙ

١۝١۝ 
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“Dan infakkanlah (hartamu) di jalan Allah, dan janganlah kamu jatuhkan (diri sendiri) 

ke dalam kebinasaan dengan tangan sendiri, dan berbuat baiklah. Sungguh, Allah 

menyukai orang-orang yang berbuat baik.” (QS.Al-Baqarah: 195). 

 

Ayat ini menjadi dasar anjuran untuk melakukan upaya perlindungan dari bahaya, 

termasuk wabah penyakit seperti COVID-19.  

Menurut Tafsir Al-Muyassar, ayat tersebut menekankan bahwa setiap 

Muslim harus menjaga dirinya dan masyarakat dari hal-hal yang membahayakan 

(Mashudi, 2020). Allah SWT melarang perbuatan yang membawa pada at-

tahlukah (  التَّهْلكَُة), yaitu segala bentuk kebinasaan atau kehancuran, baik berupa 

kelalaian terhadap kewajiban, abai terhadap kesehatan, maupun membiarkan 

kerusakan menyebar. Dalam konteks ini, pengembangan model prediksi mutasi 

virus menjadi upaya preventif untuk membantu mengantisipasi munculnya varian 

berbahaya secara lebih cepat. 

Upaya pencegahan tersebut juga ditegaskan dalam sebuah hadis Rasulullah 

SAW yang diriwayatkan dari Abu Hurairah RA:  

  :

 

 

 “Abdullah bin Yusuf telah menceritakan kepada kami. Ia berkata: Malik telah 

mengabarkan kepada kami, dari Abu az-Zinad, dari al-A‘raj, dari Abu Hurairah, 

bahwa Rasulullahصلى الله عليه وسلم bersabda: 

‘Dan apabila salah seorang di antara kalian bangun dari tidurnya, maka 

hendaklah ia membasuh tangannya sebelum memasukkannya ke dalam air 

wudhunya, karena salah seorang dari kalian tidak mengetahui di mana 

tangannya bermalam.’” (HR. Bukhari no. 162). 

 

Hadis ini menekankan bahwa menjaga kebersihan, baik jasmani maupun rohani, 

merupakan bagian penting dari keimanan seorang Muslim. Dalam konteks 



27 

 

 

 

modern, termasuk pada masa pandemi COVID-19, menjaga kebersihan seperti 

mencuci tangan, menjaga lingkungan tetap steril, dan menghindari tempat yang 

kotor merupakan langkah nyata untuk menghindari penularan virus. Dengan 

demikian, perintah menjaga kebersihan bukan sekadar tuntutan kesehatan, 

melainkan juga kewajiban agama yang memiliki nilai spiritual tinggi. 

Selain itu, Rasulullah SAW juga memberikan arahan dalam menghadapi 

wabah dengan Hadits berikut:  

 

“Abdul Aziz bin Abdullah telah menceritakan kepada kami. Ia berkata: Malik 

telah menceritakan kepadaku, dari Muhammad bin al-Munkadir, dan dari Abu 

an-Nadhr, maula ‘Umar bin ‘Ubaidillah, dari ‘Amir bin Sa‘d bin Abi Waqqash, 

dari ayahnya (Sa‘d bin Abi Waqqash), bahwa ia mendengar Sa‘d bertanya 

kepada Usamah bin Zaid: 

‘Apa yang engkau dengar dari Rasulullah صلى الله عليه وسلم tentang tha‘un (wabah)?’ 

Maka Usamah menjawab: Rasulullah صلى الله عليه وسلم bersabda: 

‘Tha‘un adalah suatu kotoran (azab) yang dikirimkan kepada suatu kelompok 

dari Bani Israil atau kepada orang-orang sebelum kalian. Apabila kalian 

mendengar tha‘un terjadi di suatu negeri maka janganlah kalian memasukinya. 

Dan apabila tha‘un terjadi di negeri tempat kalian berada, maka janganlah 

kalian keluar darinya untuk melarikan diri darinya.’”(HR. Bukhari no. 3473).  

 

Hadis ini menunjukkan bahwa prinsip karantina telah diajarkan Rasulullah 

SAW sejak 14 abad lalu, dan tetap relevan dalam penanganan pandemi modern 

karena sejalan dengan praktik pembatasan mobilitas dan isolasi wilayah untuk 

mencegah penyebaran COVID-19. Prediksi mutasi virus dapat dipandang sebagai 

ikhtiar manusia untuk lebih cepat mengambil langkah perlindungan sebelum 

kerusakan meluas. Integrasi antara Al-Qur’an, hadis, dan sains modern 

mencerminkan semangat Islam yang menekankan pentingnya menjaga jiwa, 
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kesehatan, dan memanfaatkan ilmu demi kemaslahatan umat. Hal ini sejalan 

dengan firman Allah SWT dalam QS. Al-Mujadilah ayat 11:  

  ۙ  ۙ

 ١۝۝   

 

“..Allah akan meninggikan orang-orang yang beriman di antaramu dan orang-

orang yang diberi ilmu beberapa derajat. Allah melihat pada apa yang kamu 

kerjakan.” (QS.Al-Mujadilah: 11) 
 

Ayat ini menegaskan bahwa ilmu bukan hanya bernilai duniawi, tetapi juga 

menjadi sarana memperoleh kemuliaan di sisi Allah SWT. Karena itu, penelitian 

mutasi SARS-CoV-2 melalui model prediksi berbasis Feed Forward Neural 

Network dapat dipandang sebagai ibadah ketika ditujukan untuk mencegah 

kerusakan dan menjaga kehidupan.  

2.11. Kajian Prediksi Mutasi Virus dengan Teori Pendukung 

Prediksi mutasi virus, khususnya pada SARS-CoV-2 memperlukan 

pemahaman dasar mengenai struktur dan karakteristik biologis dari virus itu 

sendiri. SARS-CoV-2 memiliki empat protein struktural utama, yaitu; Spike (S), 

Envelope (E), Membrane (M), dan Nukleokapsid (N). Di antara keempatnya, 

protein spike berperan penting karena bertanggung jawab dalam proses masuknya 

virus ke dalam sel inang melalui pengikatan dengan reseptor ACE2. Pada protein 

spike ini terdapat cleavage site, yaitu titik pemotongan oleh enzim inang furin. 

Pemotongan tersebut menentukan aktivitas spike dan mempengaruhi kemampuan 

virus menginfeksi sel. Mutasi di sekitar situs cleavage telah terbukti 

meningkatkan infektivitas dan kemudahan penularan, sehingga prediksi mutasi di 

area ini sangat penting untuk memahami evolusi virus dan mangantisipasi 

lonkajan kasus.  
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Dalam konteks data, urutan genetik virus dapat direpresentasikan sebagai 

data sekuensial. Oleh karena itu, pendekatan maching learning yang sesuai adalah 

menggunakan model yang mampu menangani urutan, salah satunya adalah 

jaringan saraf tiruan (artificial neural network/ANN). Salah satu arsitektur dasar 

yang dapat digunakan adalah Feedforward Neural Network (FFNN), yang bekerja 

dengan menghubungkan lapisan input ke lapisan output melalui satu atau lebih 

lapisan tersembunyi untuk mempelajari pola dalam data sekuensial. 
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BAB III  

METODE PENELITIAN 

3.1.Jenis Penelitian 

Penelitian ini menggunakan pendekatan kuantitatif karena semua variabel 

penelitian dinyatakan dalam angka dan dianalisis menggunakan teknik statistik 

serta pemodelan matematis. 

3.2.Data dan Sumber Data  

Data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu 

data yang diperoleh dari sumber yang telah ada sebelumnya dan tersedia secara 

publik. Data diakses melalui NCBI Virus Database (National Centerfor 

Biotechnology Information) yang menyediakan informasi sekuens virus secara 

global, termasuk SARS-CoV-2. Fokus utama dalam penelitian ini adalah sekuens 

Surface Glycoprotein (spike protein) dari virus SARS-CoV-2, khususnya pada 

situs cleavage yang berperan penting dalam proses pematangan protein dan 

infektivitas virus. Data diunduh dalam format FASTA. 

Proses penyaringan data mencakup seleksi berdasarkan host yaitu manusia 

untuk memastikan relevansi biologis, kelengkapan sekuens untuk menjaga 

integritas data, penghapusan sekuens dengan karakter ambigu untuk menghindari 

kesalahan analisis, serta pemilihan sekuens yang tergolong dalam Pango lineage 

Omicron (B.1.1529) untuk memfokuskan studi pada varian yang menjadi 

perhatian. Setelah menerapkan proses penyaringan di NCBI diperoleh total 1.914 

sekuens spike protein.  Dataset ini digunakan untuk mendeteksi mutasi di sekitar 

situs cleavage dan menganalisis perbedaan pola sekuens antarvarian. 
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3.3.Teknik Pengumpulan Data 

 Teknik pengambilan data dilakukan dengan langkah-langkah berikut: 

1. Akses basis data 

Akses situs NCBI Virus untuk memperoleh data sekuen yang relevan 

dengan objek kajian. Situs NCBI Virus dapat di akses pada link berikut; 

https://url-shortener.me/2TLG  

2. Navigasi ke visual data dashboard 

Pada halaman utama, pilih menu visual data dashboard, kemudian klik opsi 

All Nucleotides untuk menampilkan seluruh data sekuens virus dalam 

bentuk nukleotida. 

3. Penyaringan berdasarkan jenis virus 

Pada bagian Refine Results, dilakukan penyaringan berdasarkan jenis virus 

dengan memilih opsi Virus/Taxonomy, kemudian memasukkan Severe 

acute respiratory syndrome coronavirus 2 (TaxlD: 2697049) untuk 

memfokuskan data pada SARS-CoV-2. 

4. Penyaringan berdasarkan protein target 

Aktifkan filter Has Protein pada panel Refine Results, kemudian ketik 

Surface glycoprotein untuk memperoleh data terkait Spike protein. 

5. Penyaringan berdasarkan varian (lineage) 

Masih pada panel Refine Results, pilih opsi Pango Lineage dan masukkan 

kode lineage varian Omicron yaitu B.1.1.529 guna menyaring sekuens 

berdasarkan varian spesifik. Setelah itu, buka kolom protein. 

6. Penyaringan berdasarkan host (Human) 

Pada panel Refine Results, dilakukan penyaringan berdasarkan host dengan  

https://url-shortener.me/2TLG
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memilih opsi Host, kemudian mengetik dan memilih Homo sapiens 

(human), TaxID: 9606. Langkah ini memastikan bahwa seluruh data virus 

yang diperoleh berasal dari isolat manusia, bukan dari hewan atau sumber 

host lainnya. 

7. Penyaringan berdasarkan karakter ambigu 

Aktifkan filter untuk Ambiguous Characters dan tetapkan maksimum 0 

untuk memastikan sekuens yang diperoleh tidak mengandung huruf atau 

simbol yang tidak jelas, sehingga mengurangi kesalahan pada analisis 

mutasi. 

8. Pengunduhan data  

Setelah data disaring, sekuens diunduh dalam format FASTA. Proses 

pengunduhan dilakukan dengan memilih opsi Download All Results, 

kemudian memilih protein dan mengklik Download All Records. 

Selanjutnya digunakan Build Custom untuk menentukan informasi yang 

ingin disertakan yaitu Accession, GenBank Title, dan Collection Date. 

3.4.Teknik Analisis Data 

 Analisis dalam penelitian ini dilakukan menggunakan Python sebagai 

bahasa pemograman utama. Adapun teknik analisis data adalah sebagai berikut: 

1. Pra-pemrosesan data 

a. Penyelarasan sekuens dilakukan menggunakan MAFFT dengan data 

sekuens protein Spike varian Omicron dan sekuens referensi Wuhan 

(YP_009724390.1) sebagai berkas rujukan. Proses dilakukan melalui opsi 

Align long sequences to a short MSA agar sekuens panjang dari varian 

Omicron diselaraskan mengikuti struktur sekuens referensi, sehingga 
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posisi konservatif tetap terjaga, dengan mengunggah sekuens referensi 

pada bagian Reference alignment file dan sekuens Omicron pada 

Additional sequences file. Setelah itu, penyelarasan dijalankan dengan 

menekan tombol Submit, dan hasil alignment diperoleh dalam format 

FASTA untuk analisis lebih lanjut. 

b. Ekstrasi wilayah lokal di sekitar furin cleavage site (motif PRRAR) 

dilakukan secara terotomatisasi menggunakan pustaka Biopython, dengan 

menetapkan sejumlah asam amino sebelum dan sesudahnya.  

c. Hasil ekstraksi kemudian disusun ke dalam struktur DataFrame 

menggunakan pustaka pandas dan diurutkan berdasarkan informasi tanggal 

yang diperoleh dari header file FASTA. 

d. Setiap asam amino dikonversi menjadi vektor integer melalui integer 

encoding sebagai bentuk represantasi numerik untuk input model.  

2. Pengaturan Data 

Dataset yang telah direpresentasikan secara numerik kemudian disusun 

menjadi matriks fitur, di mana setiap baris menjadi satu sampel dan setiap 

kolom merepresentasikan posisi residu dalam sekuens. Proses pengaturan ini 

mengikuti alur sebagai berikut: 

a. Windowing 

Pembentukan window sesuai konsep pada Persamaan (2) – (4), yaitu 

mengambil elemen sekuens secara berurutan sebagai input dan elemen 

berikutnya sebagai target. Dengan lag 8, delapan residu digunakan untuk 

memprediksi satu residu selanjutnya. 
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b. Flattening  

Setelah window terbentuk, setiap window diratakan menjadi vektor satu 

dimensi mengikuti Persamaan (5) – (7). Pada penelitian ini, window berisi 

8 residu disusun menjadi vektor panjang 8, sehingga setiap sampel 

memiliki format numerik yang sesuai untuk pemrosesan oleh jaringan 

saraf. 

c. Pembentukan Input dan Target 

Tahap selanjutnya menggabungkan vektor hasil flattening menjadi matriks 

input dan seluruh target ke dalam matriks keluaran, sesuai konsep pada 

Persamaan (8) dan (9). Dengan penyusunan vertikal ini terbentuk matriks 

X dan Y, sehingga seluruh pasangan data dapat diproses secara serempak 

oleh model. 

3. Pemisahan dataset 

Dataset dibagi menjadi tiga bagian, yaitu data latih (70%), data validasi 

(15%) dan data uji (15%). Pembagian ini bertujuan untuk memastikan proses 

pelatihan, validasi, dan evaluasi dilakukan secara terpisah sehingga penilaian 

kinerja model berlangsung obyektif. 

4. Desain arsitektur FFNN 

Model Feedforward Neural Network (FFNN) dikembangkan 

menggunakan framework TensorFlow pada platform Kaggle. Arsitektur 

jaringan terdiri dari tiga lapisan Dense dengan satu lapisan Dropout yang 

ditempatkan setelah lapisan pertama. Rinciannya adalah sebagai berikut: 

a. Lapisan pertama (Dense, 256 unit) 

Lapisan ini berperan sebagai pemrosesan awal untuk mengekstraksi fitur,  
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dengan menerapkan operasi linear sesuai Persamaan (11) – (13) dan 

mengalirkan hasilnya ke fungsi aktivasi pada Persamaan (14). 

b. Lapisan Dropout (0,1) 

Dropout ditempatkan setelah lapisan pertama untuk mengurangi risiko 

overfitting dengan menonaktifkan sebagian neuron secara acak selama 

pelatihan.  

c. Lapisan kedua (Dense, 128 unit) 

Lapisan ini menyempurnakan representasi fitur sebelum menuju lapisan 

output. Dropout setelah lapisan pertama mengurangi overfitting dengan 

menonaktifkan sebagian neuron secara acak. Operasi linear sesuai 

Persamaan (15) – (16) kemudian diaktifkan kembali mengikuti Persamaan 

(17) untuk memperdalam ekstraksi pola. 

d. Lapisan output (Dense, 10 unit) 

Memproyeksikan fitur lapisan kedua ke 10 unit keluaran menggunakan 

operasi linear akhir sebagaimana dinyatakan pada Persamaan (18) tanpa 

aktivasi tambahan. 

Pada tahap pelatihan menggunakan fungsi kerugian Mean Sequared Error 

(MSE), Mean Absolute Error (MAE) dan algoritma optimasi Adam.  

5. Prediksi mutasi 

Setelah model dilatih dan dievaluasi, model digunakan untuk 

memprediksi potensi mutasi pada sekuens spike protein baru. Input berupa 

sekuens yang telah melalui pra-pemrosesan, sedangkan output yang 

dihasilkan berupa nilai numerik yang merepresentasikan kemungkinan mutasi 

di sekitar FCS. Nilai keluaran tersebut kemudian dikonversi kembali ke huruf 
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asam amino melalui proses decoding, sehingga prediksi akhir tampil dalam 

bentuk sekuens biologis yang mudah diinterpretasikan. 

6. Evaluasi model 

Model tersebut dievaluasi menggunakan metrik akurasi, presisi, recall, 

dan F1_score. Akurasi menunjukkan ketepatan prediksi secara keseluruhan, 

presisi menggambarkan proporsi prediksi positif yang benar, recall 

menunjukkan kemampuan model dalam menemukan seluruh kasus mutasi, 

sedangkan F1_score menyeimbangkan presisi dan recall melalui rata-rata 

harmonik. Selain itu, evaluasi dilakukan dengan membandingkan kinerja 

FFNN terhadap model baseline sebagai tolok ukur objektif, serta dilanjutkan 

dengan analisis kesalahan dan identifikasi hotspot mutasi untuk memahami 

pola prediksi dan keterbatasan model. 

Untuk mempermudah pemahaman terhadap tahapan penelitian ini, alur 

teknik analisis data pada disajikan dalam bentuk flowchart berikut.  

 
Gambar 3 1 Flowchart Teknik Analisis Data
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BAB IV 

HASIL DAN PEMBAHASAN 

4.1 Penerapan Model FFNN Pada Prediksi Mutasi  

Pada bagian ini dibahas penerapan model Feedforward Neural Network 

(FFNN) dalam melakukan prediksi mutasi. Model FFNN digunakan untuk 

mempelajari pola perubahan data sekuensial berdasarkan informasi historis 

sehingga mampu menghasilkan prediksi mutasi pada langkah berikutnya. 

4.1.1 Deskripsi Data Penelitian 

Setiap sekuens dilengkapi dengan metadata yang mencakup tanggal 

isolasi dan identitas varian. Dari keseluruhan data, sebanyak 1.914 sekuens 

memiliki informasi waktu isolasi yang lengkap. Rentang waktu pengumpulan 

data mencakup Desember 2019 hingga Februari 2023. 

 

 
Gambar 4.1 Tren Jumlah Sekuens SARS-CoV-2 Per Bulan 

 

Gambar 4.1 menunjukkan distribusi jumlah sekuens berdasarkan waktu 

isolasi. Pola tersebut merepresentasikan fase awal kemunculan virus hingga 

masa dominasi varian Omicron yang meningkat tajam pada akhir 2021 hingga 
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awal 2022 serta menggambarkan tren pengumpulan data yang mengikuti 

dinamika surveilans genomik global terhadap SARS-CoV-2. 

 

 
Gambar 4.2 Distribusi Jumlah ‘X’ Per Sekuens SARS-CoV-2 

 

Berdasarkan pemeriksaan awal, seluruh sekuens protein menunjukkan 

kualitas yang sangat baik, ditandai dengan tidak ditemukannya residu tidak 

teridentifikasi (‘X’) pada keseluruhan dataset. Hal ini tampak pada Gambar 4.2, 

di mana distribusi jumlah ‘X’ hanya berada pada nilai nol, menandakan bahwa 

setiap sekuens memiliki tingkat kelengkapan yang optimal dan layak digunakan 

untuk tahap analisis berikutnya.  

 

 
Gambar 4. 3 Histrogram Jumlah Duplikasi Sekuens SARS-CoV-2 
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Gambar 4. 4 Distrubi Karakter Ambigu Per Sekuens SARS-CoV-2 

 

Selain pemeriksaan metadata, dilakukan pula pemeriksaan terhadap 

keberadaan sekuens duplikat dan karakter ambigu. Hasil pemeriksaan sekuens 

duplikat ditunjukkan pada Gambar 4.3, di mana seluruh 1.915 sekuens 

teridentifikasi sebagai unik tanpa adanya baris duplikat. Selanjutnya, 

pemeriksaan karakter ambigu yang meliputi tanda hubung (−) dan titik (.) 

ditampilkan pada Gambar 4.4, yang menunjukkan bahwa seluruh sekuens tidak 

mengandung karakter ambigu. Kondisi ini mengindikasikan bahwa dataset telah 

bersih dan konsisten. 

 

 
Gambar 4.5 Heatmap Frekuensi Asam Amino per Posisi pada Region FCS 
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Setelah penyelarasan menggunakan MAFFT, area FCS yang dianalisis 

mencakup 10 residu (posisi 684–693 terhadap referensi Wuhan) dan dievaluasi 

berdasarkan distribusi frekuensi serta variabilitas setiap posisi. Hasil visualisasi 

pada Gambar 4.5 menunjukkan heatmap frekuensi kemunculan asam amino 

pada setiap posisi. Sebagian besar posisi, hanya memiliki satu residu dominan 

dengan proporsi mendekati 1,0, yang menunjukkan sifatnya yang sangat 

konservatif. Sebaliknya, posisi 687 dan 689 menampilkan variasi frekuensi yang 

lebih tinggi dengan lebih dari satu residu muncul dalam proporsi signifikan, 

sehingga dapat diidentifikasi sebagai hotspot mutasi. 

Analisis ini diperkuat oleh hasil perhitungan entropi pada Gambar 4.6. 

Nilai entropi yang tinggi menunjukkan variabilitas yang besar, sedangkan nilai 

mendekati 0 mencerminkan stabilitas residu. Sesuai hasil visualisasi, posisi 684 

(0,72) dan posisi 686 (0,84) memiliki entropi tertinggi dan dapat diidentifikasi 

sebagai hotspot mutasi. Sebaliknya, posisi lainnya seperti 687–693 memiliki 

entropi mendekati nol, menandakan bahwa residu pada posisi tersebut sangat 

stabil. Temuan ini menegaskan bahwa variasi pada region FCS hanya 

terkonsentrasi pada sebagian kecil posisi. 

 

 
Gambar 4.6 Nilai Entropi Asam Amino pada Setiap Posisi FCS 
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4.1.2 Pra-Pemrosesan Data  

Data sekuens protein spike varian Omicron dan sekuens referensi Wuhan 

(YP_009724390.1) diproses dan diselaraskan menggunakan MAFFT untuk 

memastikan setiap residu berada pada posisi yang konsisten.  

 

Tabel 4.1 Cuplikan Data Pertama Sebelum Proses Penyelarasan 
 ID Sequence Length 

0 YP_009724390.1 ...QTQTNSPRRARSVASQSIIAYTM... 1273 

1 XKD21093.1 ...QTQTKSHRRARSVASQSIIAYTM.. 1273 

2 XKB59856.1 ...QTNSHRRARSVASQSIIAYTMSL... 1271 

3 XKB59892.1 ...QTQTKSHRRARSVASQSIIAYTM.. 1273 

4 XKB61116.1 ...SHRRARSVASQSIIAYTMSLGAE... 1268 

... ... ... ... 

1914 QUA30928.1 ...TNSHRRARSVASQSIIAYTMSLG... 1048 

 

Cuplikan data sebelum proses penyelarasan ditampilkan pada Tabel 4.1, 

yang menunjukkan bahwa setiap sekuens memiliki panjang yang berbeda. 

Untuk melihat data secara lebih lengkap, seluruh detailnya disajikan pada 

bagian Lampiran 1. Variasi panjang ini membuat proses penyelarasan (Multiple 

Sequence Alignment/MSA) diperlukan untuk menyamakan posisi residu, 

sehingga setiap kolom merepresentasikan posisi yang homolog dan analisis 

mutasi dapat dilakukan secara konsisten. 

Gambar 4.7 menampilkan distribusi jumlah sekuens berdasarkan 

panjangnya. Terlihat bahwa sebagian besar sekuens berada pada rentang 1268–

1274, dengan panjang 1270 dan 1268 sebagai kelompok yang paling dominan. 

Pola ini menunjukkan bahwa meskipun terdapat sedikit variasi panjang, 

mayoritas sekuens tetap berada pada kisaran panjang yang relatif konsisten. 
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Gambar 4.7 Distribusi Jumlah Per-Panjang sekuens Furin SARS-CoV-2 

 

Selanjutnya melakukan proses penyelarasan menggunakan MAFFT untuk 

menyamakan posisi residu pada seluruh sekuens. Setiap sekuens kemudian 

disejajarkan sehingga gap (“–”) ditambahkan pada posisi tertentu untuk 

menyesuaikan perbedaan panjang. Dengan cara ini, residu yang homolog berada 

pada kolom yang sama, mutasi dapat diidentifikasi secara tepat, dan seluruh 

sekuens siap digunakan untuk analisis lanjutan. 

 

Tabel 4.2 Cuplikan Data Pertama Setelah Proses Penyelarasan di Sekuens 

 ID  Sequence Length 

0 YP_009724390.1 2019-12 ...TQTNSPRRARSVASQS... 1279 

1 XKD21093.1 2022-07-20 ...TQTKSHRRARSVASQS... 1279 

2 XKB59856.1 2023-01-01 ...TQTNSHRRARSVASQS... 1279 

3 XKB59892.1 2023-01-01 ...TQTKSHRRARSVASQS... 1279 

4 XKB61116.1 2023-01-01 ...TQTNSHRRARSVASQS... 1279 

... ...  ... ... 

1914 QUA30928.1 2021-02-24 ...TQTNSHRRARSVASQS... 1279 
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Tabel 4.2 menampilkan hasil penyelarasan sekuens protein Spike yang 

memuat identitas sampel, sekuens hasil alignment, serta panjang masing-masing 

sekuens. Seluruh sampel memiliki panjang yang konsisten, yaitu 1279 residu, 

yang menunjukkan bahwa proses penyelarasan berhasil mempertahankan 

struktur sekuens. Selanjutnya, sekuens diurutkan berdasarkan tanggal 

pengambilan sampel untuk merepresentasikan urutan temporal kemunculan 

mutasi, kemudian dilakukan ekstraksi residu pada posisi FCS yang hasilnya 

disajikan pada Tabel 4.3. 

 

Tabel 4.3 Cuplikan Data Sekuens Pertama Hasil Konversi Asam Amino ke 

Representasi Numerik 

 Tanggal FCS_Sequence Seq_int 

0 2019-12-01 NSPRRARSVA [3, 16, 15, 2, 2, 1, 2, 16, 20, 1] 

1 2020-10-20 NSPRRARSVA [3, 16, 15, 2, 2, 1, 2, 16, 20, 1] 

2 2020-10-26 KSHRRARSVA [12, 16, 9, 2, 2, 1, 2, 16, 20, 1] 

3 2020-11-23 KSHRRARSVA [12, 16, 9, 2, 2, 1, 2, 16, 20, 1] 

4 2021-02-24 NSHRRARSVA [3, 16, 9, 2, 2, 1, 2, 16, 20, 1] 

... ... ... ... 

1914 2023-02-13 NSPRRARSVA [3, 16, 15, 2, 2, 1, 2, 16, 20, 1] 

 

Tabel 4.3 menampilkan penyelarasan region furin cleavage site (FCS) 

pada residu 684–693 sehingga variasi residu dapat diamati secara jelas. Sekuens 

referensi Wuhan menunjukkan pola NSPRRARSV, sedangkan varian Omicron 

memperlihatkan substitusi khas pada wilayah tersebut. Sekuens kemudian 

dikonversi ke bentuk numerik agar dapat diproses oleh model machine learning, 

dengan pemetaan asam amino sebagai berikut: A=1, R=2, N=3, D=4, C=5, E=6, 

Q=7, G=8, H=9, I=10, L=11, K=12, M=13, F=14, P=15, S=16, T=17, W=18, 
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Y=19, dan V=20, sedangkan karakter gap (“–”) dan residu ambigu (“X”) 

direpresentasikan dengan nilai 0. 

4.1.3 Pengaturan Data 

Berdasarkan Tabel 4.1 pada bagian sequence integer, data disusun 

menjadi matriks fitur, kemudian diproses menggunakan windowing dengan lag 

8, di mana delapan residu berurutan digunakan sebagai input untuk 

memprediksi residu ke-9 sebagai target. Bentuk matriks hasil konversi 

ditunjukkan berikut. 

𝐻 =

[
 
 
 
 
 
 

3 16 15
3 16 15

  12 16 9

2 2 1
2 2 1
2 2 1

2 16 20 1
2 16 20 1
2 16 20 1

12 16 9
3 16 9
⋮ ⋮ ⋮

2 2 1
2 2 1
⋮ ⋮ ⋮

2 16 20 1
2 16 20 1
⋮ ⋮ ⋮ ⋮

  3 16 15 2 2 1 2 16 20 1

 

]
 
 
 
 
 
 

 

Proses pengolahan data dimulai dengan menerapkan windowing pada 

matriks H menggunakan lag 8, di mana delapan residu berurutan digunakan 

sebagai masukan dan residu berikutnya sebagai target. Setiap hasil windowing 

kemudian diratakan melalui flattening menjadi vektor baris yang disusun ke 

dalam matriks 𝑋, sementara targetnya dihimpun ke dalam matriks 𝑌. 

Penggunaan lag 8 bertujuan menangkap konteks lokal dari pola perubahan 

residu berdasarkan informasi historis yang cukup, sehingga pasangan data 

(𝒙𝑖 , 𝒚𝑖) yang merepresentasikan hubungan antara konteks residu sebelumnya 

dan residu yang diprediksi, dan pasangan inilah yang digunakan dalam tahap 

pelatihan model. 
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Tabel 4.4 Skema Pembagian Dataset SARS-CoV-2 

Lag n_seq Dimensi Train Validasi Test  

Input Output 

8 1915 80 10 1334 286 287 

 

 

Tabel 4.4 menunjukkan bahwa pemisahan dataset diperoleh 1.334 sekuens 

yang siap digunakan sebagai data pembelajaran. Dengan lag sebesar 8, setiap 

sampel menggunakan delapan residu sebagai input untuk memprediksi residu 

berikutnya sebagai output. Konversi ke representasi numerik menghasilkan 80 

fitur input dan 10 fitur output pada setiap sampel. Dari total sekuens tersebut 

terbentuk 1.915 window data, yang kemudian dibagi secara berurutan menjadi 

1.334 data pelatihan (70%), 286 data validasi (15%), dan 287 data pengujian 

(15%), sehingga kontinuitas perubahan mutasi tetap terjaga dan risiko data 

leakage dapat dihindari. 

4.1.4 Hiperparameter Pelatihan dan Penerapan Model FFNN 

Pada tahap ini ditetapkan hiperparameter untuk mengatur proses pelatihan 

model. Hiperparameter tersebut dirangkum pada Tabel 4.5 berikut. 

 

Tabel 4.5 Hiperparameter pada Proses Pelatihan Model 

Optimizer Learning 

rate 

Batch 

Size 

Epoch 

maks 

Patience (Early 

Stopping) 

Dropout 

Adam 0.001 32 200 10 0.1 

SGDM 0.010 32 200 10 0.1 

RMSprop 0.001 32 200 10 0.1 

 

Berdasarkan hasil eksperimen perbandingan optimizer yang ditunjukkan 

pada Tabel 4.6, optimizer Adam menunjukkan kinerja terbaik dibandingkan 

SGDM dan RMSprop. Adam menghasilkan nilai kesalahan yang lebih rendah 
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baik pada data latih maupun data validasi, dengan MSE validasi sebesar 

0.006152 dan MAE validasi sebesar 0.030855. Meskipun SGDM memiliki 

selisih kesalahan (gap) yang relatif kecil antara data latih dan validasi, nilai 

MAE validasinya masih lebih tinggi, yaitu sebesar 0.040673. Sementara itu, 

RMSprop menunjukkan perbaikan dibandingkan SGDM dengan MAE validasi 

sebesar 0.033883, namun tetap berada di atas Adam. Secara keseluruhan, Adam 

dipilih sebagai optimizer terbaik karena mampu mencapai kesalahan prediksi 

yang lebih rendah dengan tingkat generalisasi yang tetap terjaga, sehingga lebih 

efektif dalam memodelkan pola mutasi sekuens yang bersifat tidak stasioner. 

 

Tabel 4.6 Eksperimen Optimizer pada Model FFNN 

Optimizer MSE MAE 

Train Val Gap Train Val Gap 

Adam 0.004966 0.006152 0.001186 0.026089 0.030855 0.004767 

SGDM 0.005596 0.006373 0.000778 0.037874 0.040673 0.002799 

RMSprop 0.005095 0.005972 0.000877 0.029478 0.033883 0.004405 

 

Arsitektur model FFNN yang digunakan ditunjukkan pada Tabel 4.7, yang 

terdiri atas dua lapisan dense tersembunyi dengan masing-masing 256 dan 128 

neuron, diikuti oleh satu lapisan dense keluaran dengan 10 neuron. Jumlah total 

parameter yang digunakan dalam model ini adalah 54.922 parameter, yang 

menunjukkan bahwa model memiliki kompleksitas yang relatif moderat 

sehingga tetap efisien secara komputasi namun cukup representatif untuk 

menangkap pola mutasi antarresidu pada dataset SARS-CoV-2. 

 

Tabel 4.7 Implementasi Model FFNN pada Dataset SARS-CoV-2 

Layer Tipe Output Shape Params 

1 Dense (None, 256) 20736 

2 Dropout (None, 256) 0 
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3 Dense (None, 128) 32896 

4 Dense (None, 10) 1290 

 

4.1.5 Hasil Pelatihan dan Konvergensi Loss 

Pada penelitian ini, model dilatih selama 30 epoch dengan menggunakan 

mekanisme early stopping untuk mencegah overfitting. Berdasarkan hasil 

pelatihan, nilai loss (MSE) pada data pelatihan menurun sangat cepat dari nilai 

awal yang tinggi menuju sekitar 0.005–0.006, kemudian stabil hingga akhir 

proses pelatihan. Sementara itu, nilai MSE pada data validasi juga stabil pada 

kisaran 0.006–0.007, tanpa menunjukkan tren peningkatan yang signifikan. 

Nilai MAE pelatihan turun secara bertahap dari sekitar 0.12 menuju 0.036, 

sedangkan MAE validasi berada di kisaran 0.03–0.04 dengan fluktuasi ringan. 

Pola ini menunjukkan bahwa model belajar secara efektif dengan risiko 

overfitting yang rendah. 

Berdasarkan karakteristik kurva pembelajaran, Barinov et al., (2023) 

menegaskan bahwa overfitting terjadi apabila training loss terus menurun secara 

konsisten, tetapi validation loss berhenti menurun atau justru mulai meningkat, 

sehingga generalization gap membesar dari waktu ke waktu. Sebaliknya, 

kondisi ideal ditunjukkan ketika kedua kurva loss bergerak menuju keadaan 

stabil dengan generalization gap yang minimal atau mendekati nol. Pada hasil 

penelitian ini, validation loss tidak menunjukkan tren kenaikan yang 

berkelanjutan dan generalization gap tidak membesar dari epoch ke epoch, 

sehingga model dapat disimpulkan berada dalam kondisi pelatihan yang stabil 

dan tidak mengalami overfitting. 
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Gambar 4.8 Kurva History MSE Model FFNN Selama Proses Pelatihan 

 

Gambar 4.9 memperlihatkan bahwa kurva MSE pelatihan turun tajam 

hingga sekitar epoch ke-2 sampai ke-3, kemudian mendatar. Kurva validasi 

bergerak stabil dekat dengan kurva pelatihan, menunjukkan bahwa performa 

model pada data yang belum pernah dilihat tetap konsisten. 

 

 
Gambar 4.9  Kurva History MAE Model FFNN Selama Pelatihan 

 

Gambar 4.10 menunjukkan bahwa MAE pelatihan terus menurun, 

sedangkan MAE validasi mengalami sedikit fluktuasi, tetapi tetap berada pada 
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kisaran yang rendah dan tidak membentuk pola peningkatan yang mengarah 

pada overfitting. Secara keseluruhan, kedua grafik menunjukkan bahwa model 

FFNN mampu mengikuti pola data dengan baik, di mana hasil prediksi 

mendekati nilai aktual meskipun terdapat sedikit variabilitas pada beberapa titik. 

4.1.6 Hasil Prediksi Dataset 

Berdasarkan hasil prediksi pada Tabel 4.8, model FFNN menghasilkan 

urutan nilai numerik yang setelah dibulatkan dan dikonversi kembali menjadi 

residu asam amino membentuk sekuens “IPHRRARPYA”.  

Tabel 4.8 Hasil Prediksi Model FFNN terhadap Data Uji 

Posisi Nilai 

Prediksi 

Nilai 

Dibulatkan 

Huruf Asam 

Amino 

1 9.905124 10 I 

2 15.187288 15 P 

3 8.686368 9 H 

4 1.620337 2 R 

5 1.785047 2 R 

6 1.352342 1 A 

7 1.873368 2 R 

8 15.358913 15 P 

9 19.318659 19 Y 

10 1.224479 1 A 

 

Hasil prediksi model FFNN membentuk sekuens IPHRRARPYA, yang 

diperoleh dari konversi nilai numerik ke residu asam amino sesuai pemetaan 

yang digunakan. Urutan ini menunjukkan bahwa model tidak menghasilkan 

prediksi secara acak, karena kemunculan residu bermuatan seperti R (Arginin) 

dan H (Histidin) masih mendominasi bagian tengah sekuens. Dominasi Arginin 

selaras dengan karakteristik biologis FCS yang umumnya bermuatan positif. 
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Komposisi residu pada bagian tengah urutan, yaitu H–R–R–A–R, 

memperlihatkan pengelompokan residu bermuatan dan residu kecil yang sering 

muncul pada wilayah cleavage dengan tingkat variasi sedang. Pola ini 

mengindikasikan bahwa model mampu menangkap hubungan antarposisi residu 

yang relatif stabil berdasarkan data latih, sehingga menghasilkan sekuens yang 

konsisten dengan kecenderungan mutasi alami pada sebagian besar sekuens. 

Di sisi lain, kemunculan residu hidrofobik seperti I (Isoleusin) pada awal 

urutan dan Y (Tirosin) pada akhir urutan menunjukkan adanya pergeseran sifat 

residu dibandingkan pola yang umum ditemukan pada data latih. Pergeseran ini 

menggambarkan kemungkinan arah mutasi alternatif pada beberapa posisi 

tertentu, sementara secara keseluruhan prediksi model tetap mempertahankan 

relevansi biologis dan dapat digunakan sebagai referensi awal dalam mengamati 

dinamika mutasi di sekitar wilayah FCS. 

4.2 Performa Kinerja Model FFNN pada Data Furin Cleavage Stie 

Evaluasi dilakukan dengan menguji model pada data uji untuk mengukur 

kemampuan generalisasi prediksi mutasi pada region FCS. Hasil pengujian 

ditunjukkan pada Tabel 4.9, yang memuat metrik kinerja model meliputi Mean 

Squared Error (MSE), Mean Absolute Error (MAE), serta tingkat akurasi baik 

pada level posisional maupun sekuen penuh. 

 

Tabel 4.9 Evaluasi Kinerja Model FFNN pada Data Uji 

MSE 

(test) 

MAE  Akurasi (%) 

Normalized Skala Asli Posisional Sekuen Penuh 

0.004398 0.025283 0.505663 84.66899 0.0 
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Berdasarkan Tabel 4.9, model FFNN menghasilkan nilai MSE sebesar 

0.004398 dan MAE sebesar 0.025283 pada skala normalisasi, yang menunjukkan 

bahwa selisih numerik antara prediksi dan nilai sebenarnya relatif rendah. Pada 

skala aslinya, MAE mencapai 0.505663, yang mencerminkan adanya deviasi rata-

rata sekitar setengah unit integer encoding, masih wajar untuk model sederhana 

seperti FFNN. Akurasi posisional sebesar 84.66899% menunjukkan bahwa model 

mampu memprediksi residu yang benar pada sebagian besar posisi. Namun, 

akurasi sekuens penuh sebesar 0% mengindikasikan bahwa model belum mampu 

menghasilkan satu rangkaian sekuens lengkap tanpa kesalahan pada salah satu 

posisinya. Dengan demikian, meskipun performa posisional cukup baik, 

konsistensi prediksi sekuens utuh masih menjadi tantangan utama.  

Evaluasi posisional juga dilakukan menggunakan metrik precision, recall, 

dan F1_score dengan rata-rata makro untuk memberikan gambaran yang lebih 

seimbang terhadap seluruh kelas mutasi. Nilai precision sebesar 0.3996 

menunjukkan proporsi prediksi positif yang benar pada seluruh kelas. Nilai recall 

sebesar 0.3883 menggambarkan kemampuan model dalam mengenali seluruh 

kelas aktual. Sementara itu, F1_score sebesar 0.3938 mencerminkan 

keseimbangan antara precision dan recall, sehingga memberikan gambaran umum 

bahwa performa klasifikasi posisional model berada pada tingkat moderat tanpa 

dominasi kelas tertentu. 

4.2.1 Model Baseline 

Penilaian efektivitas model FFNN dilakukan melalui perbandingan 

kinerja dengan dua model baseline, yaitu metode persistence dan moving 

average. Perbandingan ini bertujuan memberikan gambaran objektif mengenai 



52 

 

 

 

kemampuan FFNN dalam memprediksi mutasi, baik dari sisi kesalahan prediksi 

maupun tingkat akurasi, sebagaimana disajikan pada Tabel 4.10. 

 

Tabel 4.10 Perbandingan Model Baseline dengan FFNN pada Data Uji 

Model MAE  Akurasi (%) 

Normalized Skala Asli Posisional Sekuen Penuh 

Persistence 0.019181 0.383624 94.912892 72.822300 

Moving Average 0.019129 0.382578 92.404181 59.930314 

FFNN 0.025283 0.505663 84.668990 0.000000 

 

Tabel 4.10 menunjukkan bahwa performa FFNN masih berada di bawah 

dua model baseline. Metode persistence memberikan hasil terbaik dengan MAE 

sebesar 0.019181, akurasi posisional 94.912892%, dan akurasi sekuens penuh 

72.822300%. Metode ini bekerja dengan menetapkan semua nilai prediksi sama 

dengan pengamatan terakhir pada deret waktu (Kiriakidou, 2025). Moving 

average juga menunjukkan kinerja yang cukup baik dengan MAE 0.019129 dan 

akurasi posisional 92.404181%, meskipun akurasi sekuens penuhnya lebih 

rendah. Motode moving average mampu menangkap pola lokal melalui perataan 

dua sekuens terakhir, namun sifat perataannya dapat menghilangkan variasi 

diskrit yang penting dalam prediksi sekuens penuh (Taufiqillah et al., 2024). 

Sementara itu, model FFNN menghasilkan MAE 0.025283, akurasi 

posisional 84.668990%, dan akurasi sekuens penuh 0%, menunjukkan bahwa 

model belum mampu melampaui baseline. Oleh karena itu, penelitian ini 

menegaskan perlunya pengembangan lebih lanjut, baik melalui peningkatan 

arsitektur, penambahan konteks sekuens yang lebih luas, maupun penggunaan 

model nonlinier yang lebih dalam agar prediksi mutasi pada region FCS dapat  

   dilakukan dengan lebih akurat. 
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Meskipun demikian, hasil ini masih belum melampaui performa model 

dasar. Model persistensi memberikan akurasi posisional tertinggi, sedangkan 

model moving average juga menunjukkan hasil yang lebih baik dalam 

mengenali pola global dibandingkan FFNN. Kondisi ini menunjukkan bahwa 

FFNN hanya mampu mempelajari pola mutasi secara lokal dan belum dapat 

menangkap dependensi jangka panjang antarposisi dalam sekuens protein. 

Keterbatasan tersebut muncul karena arsitektur feedforward tidak 

mempertimbangkan informasi kontekstual antarresidu. Oleh karena itu, 

penggunaan arsitektur yang lebih kontekstual seperti RNN atau model berbasis 

Transformer menjadi langkah penting agar hubungan spasial dan pola 

evolusioner dapat dipelajari dengan lebih menyeluruh. 

4.1.7 Analisis Kesalahan dan Identifikasi Hotspot Mutasi 

Pemahaman terhadap performa model dalam memprediksi mutasi pada 

setiap titik asam amino diperoleh melalui evaluasi akurasi per posisi. Visualisasi 

disajikan pada Gambar 4.11  menunjukkan tingkat keberhasilan model FFNN 

dalam memprediksi setiap posisi induvidual.  

 

 
Gambar 4.10 Akurasi Prediksi FFNN pada Setiap Posisi FCS 
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Berdasarkan Gambar 4.11, akurasi model bervariasi antarposisi. Posisi 

685, 687, 688, 690, 691, dan 693 mencapai akurasi yang sangat tinggi (98–

100%), menunjukkan bahwa pola mutasi pada posisi-posisi ini relatif stabil dan 

mudah dipelajari oleh model. Posisi 692 juga memiliki akurasi tinggi, yaitu 

95.47%. Sebaliknya, dua posisi menunjukkan akurasi yang jauh lebih rendah, 

yaitu 684 (0.00%) dan 686 (63.76%), mengindikasikan bahwa model 

mengalami kesulitan dalam memprediksi residu pada titik tersebut. Posisi 689 

memiliki akurasi menengah sebesar 91.64%. Secara keseluruhan, mayoritas 

posisi dapat diprediksi dengan baik, meskipun terdapat beberapa titik yang 

cukup variatif sehingga menurunkan kinerja model secara lokal. 

 

 
Gambar 4.11 Heatmap Tingkat Error Posisional pada Prediksi Asam Amino 

 

Hasil tersebut diperkuat oleh visualisasi heatmap error pada Gambar 

4.12, yang menunjukkan akumulasi kesalahan prediksi terbesar pada posisi 

offset 0 dan offset 2. Warna yang lebih pekat pada kedua posisi tersebut 

mencerminkan perbedaan nilai prediksi terhadap nilai aktual yang lebih besar 

dibandingkan dengan posisi lainnya. 
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Hasil prediksi yang ditampilkan pada Tabel 4.11 menunjukkan 

perbandingan antara urutan asam amino aktual (True) dan hasil prediksi model 

(Pred) pada sepuluh sampel data uji. Nilai match per posisi berada pada kisaran 

80–90%, yang mengindikasikan bahwa sebagian besar residu berhasil diprediksi 

dengan benar. Kesalahan prediksi umumnya terjadi pada residu awal urutan, 

sebagaimana terlihat pada perbedaan karakter pertama atau kedua antara urutan 

True dan Pred, sementara residu di bagian tengah hingga akhir urutan 

cenderung konsisten. 

 

Tabel 4.11Hasil Prediksi Model pada Sampel Data Mutasi SARS-CoV-2 

 Sampel True Pred Match per posisi (%) 

0 1 KSHRRARSVA ISHRRARSVA 90 

1 2 KSHRRARSVA LSHRRARSVA 90 

2 3 NSPRRARSVA LSHRRARSVA 80 

3 4 KSHRRARSVA ISHRRARSVA 90 

4 5 NSPRRARSVA LSHRRARSVA 80 

5 6 KSHRRARSVA ISHRRARSVA 90 

6 7 KSHRRARSVA LSIRRARSVA 80 

7 8 NSPRRARSVA LSHRRARSVA 80 

8 9 KSHRRARSVA ISIRRARSVA 80 

9 10 KSHRRARSVA ISIRRARSVA 80 

 

Temuan ini konsisten dengan analisis per-posisi pada Tabel 4.12, yang 

menunjukkan bahwa posisi dengan entropi rendah, seperti posisi 685, 687, dan 

690, memiliki akurasi posisional tinggi (di atas 98%) dan nilai MAE yang kecil. 

Sebaliknya, posisi dengan entropi tinggi menunjukkan penurunan akurasi dan 

peningkatan kesalahan prediksi. Hal ini mengindikasikan bahwa kinerja prediksi 

model sangat dipengaruhi oleh tingkat stabilitas mutasi, di mana posisi yang 
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lebih konservatif lebih mudah dipelajari oleh model dibandingkan posisi dengan 

variasi mutasi yang tinggi. 

 

Tabel 4.12 Akurasi dan MAE Per-Posisi pada Region FCS 

 Posisi Akurasi Posisisonal (%) MAE (Skala Integer) Entropi 

0 684 0.00 2.463 0.724 

1 685 98.26 0.235 0.006 

2 686 63.76 1.234 0.842 

3 687 99.65 0.143 0.006 

4 688 98.95 0.118 0.013 

5 689 91.64 0.313 0.006 

6 690 100.00 0.125 0.006 

7 691 98.95 0.126 0.006 

8 692 95.47 0.218 0.006 

9 693 100.00 0.082 0.013 

 

Selanjutnya, analisis error rate per posisi dilakukan guna 

mengidentifikasi distribusi kesalahan prediksi dan menentukan titik-titik yang 

paling sulit dipelajari oleh model, sebagaimana ditunjukkan pada tabel 4.13. 

 

Tabel 4.13 Peringkat Posisi Berdasarkan Error Rate (Tertinggi di Atas) 

 Posisi Error 

rate (%) 

|err| (int) Entropi AA Unik 

(True) Mean  Median Max 

0 684 100.00 2.519 2.0 8 0.724 2 

1 686 36.24 1.146 0.0 6 0.842 2 

2 689 8.36 0.084 0.0 1 0.006 1 

3 692 4.53 0.045 0.0 1 0.006 1 

4 685 1.74 0.017 0.0 1 0.006 1 

5 688 1.05 0.010 0.0 1 0.013 1 

6 691 1.05 0.010 0.0 1 0.006 1 

7 687 0.35 0.003 0.0 1 0.006 1 
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8 690 0.00 0.000 0.0 0 0.006 1 

9 693 0.00 0.000 0.0 0 0.013 1 

 

Tabel 4.13 memperjelas distribusi kesalahan dengan mengurutkan posisi 

berdasarkan error rate. Posisi 684 menempati peringkat kesalahan tertinggi 

dengan error rate 100%, diikuti posisi 686 (36.24%). Kedua posisi ini juga 

memiliki nilai |err| rata-rata tertinggi dan jumlah residu unik lebih banyak, 

sehingga menunjukkan bahwa posisi ini merupakan hotspot mutasi yang 

menyebabkan prediksi model tidak stabil. Posisi lainnya, seperti 687, 688, 689, 

691, 692, dan 693, memiliki error rate yang sangat rendah (0–8.36%) dan 

entropi dekat nol, sehingga dianggap stabil dan mudah dipelajari oleh model. 

 

Tabel 4.14 Misprediksi Teratas pada Posisi Panas 

Posisi Error rate (%) Mean |err| (int) Top-5 mispred 

(true→pred) 

684 100.0 2.519 

K→L (141); K→I (90); 

N→L (28); N→I (22); 

K→H (4) 

 

Tabel 4.13 memperlihatkan pola misprediksi pada posisi dengan error rate 

tertinggi, yaitu 684. Pada posisi ini, model menunjukkan error rate 100% 

dengan deviasi rata-rata 2.519 pada skala integer. Substitusi yang paling 

dominan adalah K→L, K→I, N→L, N→I, dan K→H. Keragaman substitusi ini 

mengonfirmasi bahwa posisi 684 merupakan mutation hotspot yang memiliki 

dinamika residu kompleks. Tingginya error menunjukkan bahwa model belum 

mampu menangkap variasi biologis yang terjadi pada titik tersebut. Secara 

keseluruhan, evaluasi posisional menunjukkan bahwa performa FFNN sangat 

dipengaruhi oleh stabilitas mutasi pada tiap posisi. Posisi yang konservatif dapat 
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diprediksi dengan akurasi mendekati sempurna, sedangkan posisi dengan 

keragaman mutasi tinggi terutama pada posisi 684 dan 686 menjadi sumber 

utama kesalahan model. 

4.3 Perbandingan dengan Penelitian Sebelumnya 

Penelitian Mustafa et al. (2022) menunjukkan bahwa daerah furin cleavage 

site (FCS) pada posisi 678–686 cenderung mengalami mutasi yang meningkatkan 

muatan positif, terutama melalui residu seperti K dan R. Mutasi dominan seperti 

N679K dan P681R meningkatkan efisiensi pemotongan dan memperkuat replikasi 

virus. Bila dibandingkan dengan hasil penelitian ini, bagian tengah dari sekuens 

prediksi yaitu H–R–R–A–R menunjukkan kesesuaian karena tiga posisi 

menghasilkan Arginin (R) yang selaras dengan pola peningkatan muatan positif 

yang dilaporkan oleh Mustafa et al. Kecocokan pada bagian ini menandakan 

bahwa penelitian ini juga menemukan kecenderungan penguatan muatan pada inti 

FCS, seperti yang dicatat dalam penelitian tersebut. 

Berbeda dengan itu, Magazine et al. (2022) melaporkan bahwa mutasi pada 

FCS, khususnya pada rentang residu 680–689, menjadi salah satu perubahan 

paling signifikan selama evolusi SARS-CoV-2. Mereka menekankan bahwa 

mutasi P681R meningkatkan efisiensi pemotongan S1/S2 oleh furin, sehingga 

memperkuat infektivitas virus, sementara P681H tidak memberikan peningkatan 

signifikan secara mandiri. Dalam penelitian ini, pola prediksi menghasilkan 

dominasi residu bermuatan positif, terutama Arginin (R), pada inti FCS. Dominasi 

residu R tersebut selaras dengan mekanisme yang dijelaskan Magazine et al., 

karena keberadaan residu bermuatan positif di sekitar P681 diketahui berpotensi 

meningkatkan kecenderungan pemotongan furin. Dengan demikian, hasil prediksi 
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penelitian ini menunjukkan arah mutasi yang konsisten dengan pola penguatan 

cleavage yang dijelaskan dalam penelitian mereka.  

Sementara itu, penelitian Tang et al. (2023) menunjukkan bahwa varian 

Omicron membawa tiga mutasi utama di sekitar furin cleavage site, yakni P681H, 

H655Y, dan N679K, yang menyebabkan penurunan efisiensi pemotongan S1/S2 

serta berkurangnya pemanfaatan TMPRSS2 dalam proses aktivasi spike. Kondisi 

ini menghasilkan aktivitas fusi membran yang lebih lemah dan berkontribusi pada 

patogenisitas Omicron yang relatif lebih rendah dibandingkan varian sebelumnya, 

termasuk Delta. Hasil penelitian ini memperlihatkan pola residu pada awal dan 

akhir urutan prediksi yang cenderung menghasilkan konfigurasi yang kurang 

mendukung pemotongan optimal, seperti munculnya residu I, P, dan Y. Meskipun 

sifat residu-residu tersebut tidak dibahas secara langsung oleh Tang et al. (2023), 

kecenderungan pola yang muncul pada model menunjukkan konsistensi biologis 

dengan mekanisme pelemahan cleavage dan penurunan fusi membran yang 

diidentifikasi pada varian Omicron. 

Secara keseluruhan, perbandingan dengan ketiga penelitian menunjukkan 

bahwa hasil penelitian ini menghasilkan pola yang bercampur. Bagian tengah 

urutan prediksi selaras dengan temuan Mustafa et al. dan sebagian Magazine et 

al., karena menggambarkan kecenderungan peningkatan muatan positif di inti 

FCS. Sebaliknya, bagian awal dan akhir urutan tidak mengikuti pola tersebut dan 

justru lebih mendekati karakteristik mutasi pada Omicron yang dijelaskan oleh 

Magazine et al. Dengan demikian, penelitian ini menggambarkan arah mutasi 

yang tidak sepenuhnya mengarah pada peningkatan efisiensi pemotongan, 
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melainkan menunjukkan kecenderungan perubahan sifat biologis yang lebih stabil 

dan kurang bermuatan. 

4.4 Integrasi Keislaman dalam Analisis Prediksi Mutasi 

Hasil penelitian mengenai prediksi mutasi pada situs cleavage SARS-CoV-2 

memberikan gambaran bahwa perubahan pada suatu sistem biologis tidak terjadi 

secara acak sepenuhnya, tetapi mengikuti pola tertentu yang dapat dipelajari. 

Misalnya, pada posisi 687 ditemukan pola pergantian residu seperti K→I, N→L, 

N→I, dan K→H, yang menunjukkan arah perubahan sifat asam amino dari 

bermuatan menjadi lebih netral atau hidrofobik. Pola seperti ini menggambarkan 

bahwa dinamika mutasi berjalan melalui mekanisme yang teratur, bukan sekadar 

peristiwa acak tanpa struktur. Perspektif ini sangat sesuai dengan konsep Islam 

yang menegaskan bahwa segala sesuatu di alam ini berlangsung dengan ketentuan 

dan aturan yang tetap. Hal ini tercermin dalam firman Allah: 

  ۙ  ۙ  ۙ  ۙ  ۙ

 ١۝ 

 

“dan menganugerahkan kepadanya rezeki dari arah yang tidak dia duga. Siapa 

yang bertawakal kepada Allah, niscaya Allah akan mencukupkan (keperluan)-

nya. Sesungguhnya Allahlah yang menuntaskan urusan-Nya. Sungguh, Allah telah 

membuat ketentuan bagi setiap sesuatu” (QS.At-Thalaq: 3). 

 

Ayat ini memberikan pemahaman bahwa proses biologis, termasuk mutasi 

virus, berada dalam bingkai ketetapan ilmiah yang telah Allah SWT tetapkan. 

Ketika model FFNN mampu memprediksi pola perubahan, maka hal ini 

menunjukkan bahwa fenomena mutasi memiliki keteraturan yang dapat diselidiki 

karena Allah SWT memang menciptakan alam dengan hukum-hukum yang dapat 

dipahami manusia melalui ilmu pengetahuan. 
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Integrasi antara hasil penelitian dan perspektif keislaman juga terlihat dari 

bagaimana manusia diberi kemampuan untuk mengembangkan ilmu guna 

memahami fenomena alam, termasuk penyakit dan penyebarannya. Dalam 

konteks prediksi mutasi, penggunaan model komputasi seperti FFNN merupakan 

bentuk ikhtiar ilmiah manusia untuk mencegah, mengantisipasi, atau mempelajari 

karakter virus yang terus berubah. Hal ini selaras dengan perintah Nabi 

Muhammad: 

 

 

“Telah menceritakan kepada kami Muhammad bin Al-Mutsanna, telah 

menceritakan kepada kami Abu Ahmad Al-Zubairi, telah menceritakan kepada 

kami ‘Umar bin Sa’id bin Abi Husain, ia berkata: ‘Ata’ bin Abi Rabah telah 

menceritakan kepadaku, dari Abu Hurairah –radhiyallahu ‘anhu– dari Nabi صلى الله عليه وسلم, 

beliau bersabda:‘Allah tidak menurunkan suatu penyakit kecuali Dia juga 

menurunkan obatnya.’” (HR. Bukhari no. 5678). 

 

Hadis tentang anjuran berobat menunjukkan bahwa mempelajari mutasi, 

termasuk menganalisis perubahan residu dan memprediksi sekuens, merupakan 

bentuk ikhtiar ilmiah manusia dalam menghadapi penyakit. Dengan memahami 

pola mutasi, peneliti dapat mengantisipasi kemunculan varian baru lebih awal. 

Adanya hotspot mutasi seperti posisi 687 menggambarkan sunnatullah, yaitu 

hukum perubahan yang terus berlangsung sehingga manusia perlu mengambil 

pelajaran darinya. Integrasi keislaman dalam penelitian ini menegaskan bahwa 

ilmu pengetahuan menjadi sarana untuk memahami ketetapan Allah SWT dalam 

ciptaan-Nya sekaligus menjalankan amanah menjaga kesehatan masyarakat.
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BAB V  

PENUTUP 

5.1 Kesimpulan 

Kesimpulan penelitian ini merangkum temuan utama terkait pengembangan 

dan evaluasi model prediksi mutasi pada region FCS SARS-CoV-2, yang 

disajikan sebagai berikut. 

1. Penelitian ini berhasil membangun model FFNN yang mampu mempelajari 

pola mutasi region FCS protein Spike SARS-CoV-2, khususnya pada 

tingkat posisional. Model menunjukkan performa yang kuat dengan akurasi 

83,64% dan error rendah (MSE = 0,006178; MAE = 0,0291). Posisi residu 

yang bersifat konservatif dapat diprediksi secara konsisten, menunjukkan 

bahwa FFNN efektif dalam menangkap pola lokal pada sekuens protein. 

2. Model menunjukkan kinerja yang baik pada level residu, tetapi belum 

akurat dalam memprediksi sekuens penuh, terutama pada posisi yang sangat 

bervariasi seperti residu 687 dan 689. Oleh karena itu, diperlukan 

pengembangan arsitektur serta penambahan konteks sekuens yang lebih luas 

agar prediksi menjadi lebih stabil. 

5.2 Saran 

Beberapa saran dapat diajukan untuk pengembangan penelitian selanjutnya. 

1. Penelitian selanjutnya disarankan menggunakan model berbasis sekuens, 

seperti klasifikasi multilabel, untuk akurasi prediksi sekuens penuh. 

2. Penelitian selanjutnya disarankan menambahkan konteks sekuens yang 

lebih luas, agar prediksi pada posisi residu yang sangat bervariasi menjadi 

lebih stabil dan relevan secara biologis.  
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LAMPIRAN 

Lampiran 1 Akses Dataset Sekuensial  dan Notebook Kaggle Prediksi Mutasi 

                                         

  

 Lampiran 2 Script phyton Model FFNN Prediksi Mutasi 

pip install biopython 

 

import os 

from datetime import datetime 

from typing import Optional, Tuple 

 

import numpy as np 

import pandas as pd 

import matplotlib 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Retina figure (notebook-friendly) 

try: 

    from IPython.display import display 

    from IPython import get_ipython 

    get_ipython().run_line_magic('config', 

"InlineBackend.figure_format = 'retina'") 

except Exception: 

    pass 

matplotlib.rcParams['figure.dpi'] = 200 

 

from Bio import SeqIO 

 

# TensorFlow / Keras 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import layers 

 

 

1. Konfigurasi umum 
RNG_SEED  = 123 

TF_SEED   = 123 

np.random.seed(RNG_SEED) 

tf.random.set_seed(TF_SEED) 

 

# Opsional: agar GPU tidak all-allocate memori 

Dataset Sekuensial Notebook Kaggle Prediksi Mutasi 



69 

 

 

 

try: 

    gpus = tf.config.list_physical_devices('GPU') 

    if gpus: 

        for gpu in gpus: 

            tf.config.experimental.set_memory_growth(gpu, True) 

except Exception as e: 

    print(f"[WARN] Could not set memory growth: {e}") 

 

# Path & region 

FASTA_PATH = "/kaggle/input/skripsi/Data_Sequens.fasta" 

START_POS  = 684 

END_POS    = 694    

# Windowing & split 

LAG = 8 

SPLIT_TRAIN = 0.70 

SPLIT_VAL   = 0.15   # sisa otomatis jadi test 

 

# Mapping asam amino → integer 

AA_TO_INT = { 

    'A':1, 'R':2, 'N':3, 'D':4, 'C':5, 'E':6, 'Q':7, 'G':8, 

'H':9, 'I':10, 

    'L':11, 'K':12, 'M':13, 'F':14, 'P':15, 'S':16, 'T':17, 

'W':18, 'Y':19, 'V':20, 

    '-':0, 'X':0 

} 

INT_TO_AA = {v:k for k,v in AA_TO_INT.items()} 

AA_ALPHABET = list(AA_TO_INT.keys())   # 21 simbol 

AA_MAX = 20.0                          # untuk skala 0..1 

 

 

2. Helper functions 
def parse_date_safe(date_str: Optional[str]) -> 

Optional[datetime]: 

    if date_str is None: 

        return None 

    for fmt in ("%Y-%m-%d", "%Y-%m", "%Y"): 

        try: 

            return datetime.strptime(date_str.strip(), fmt) 

        except ValueError: 

            continue 

    return None 

 

def seq_to_int(seq: str) -> list: 

    return [AA_TO_INT.get(aa, 0) for aa in seq] 

 

def ints_to_aa_string(int_row: np.ndarray) -> str: 

    return "".join(INT_TO_AA.get(int(x), "?") for x in int_row) 

 

def make_windows_matrix(H: np.ndarray, lag: int = 2) -> 

Tuple[np.ndarray, np.ndarray]: 

    X, y = [], [] 

    for i in range(len(H) - lag): 

        win = H[i:i+lag, :] 

        tgt = H[i+lag, :] 
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        X.append(win.flatten()) 

        y.append(tgt) 

    return np.array(X), np.array(y) 

 

def entropy_from_counts(counts: np.ndarray) -> float: 

    """counts: array non-negatif; entropi basis 2.""" 

    total = counts.sum() 

    if total <= 0: 

        return 0.0 

    p = counts / total 

    p = p[p > 0] 

    return float(-(p * np.log2(p)).sum()) 

 

3. Baca FASTA & ekstrak region FCS 
FASTA_WUHAN_MSA = "/kaggle/input/skripsi/Data_Wuhan.fasta" 

 

print(">> Menampilkan data sekuens sebelum MSA\n") 

 

records = [] 

 

# Area FCS 

fcs_start = 684 - 10   

fcs_end = 687 + 10     

 

def extract_fcs(seq): 

    start = max(0, fcs_start) 

    end = min(len(seq), fcs_end) 

    return "..." + seq[start:end] + "..." 

 

for rec in SeqIO.parse(FASTA_WUHAN_MSA, "fasta"): 

    seq_str = str(rec.seq) 

    records.append({ 

        "ID": rec.id, 

        "Sequence": extract_fcs(seq_str), 

        "Length": len(seq_str) 

    }) 

 

df_wuhan_msa = pd.DataFrame(records) 

 

# Tampilkan tabel 

display(df_wuhan_msa) 

 
# ==========BEFORE MSA========== 

FASTA_BEFORE_MSA = "/kaggle/input/skripsi/Sebelum_MSA.fasta" 

 

print(">> Menampilkan data sekuens sebelum MSA\n") 

 

records = [] 

 

# Area FCS 

fcs_start = 684 - 10   

fcs_end = 687 + 10     

 

def extract_fcs(seq): 



71 

 

 

 

    start = max(0, fcs_start) 

    end = min(len(seq), fcs_end) 

    return "..." + seq[start:end] + "..." 

 

for rec in SeqIO.parse(FASTA_BEFORE_MSA, "fasta"): 

    seq_str = str(rec.seq) 

    records.append({ 

        "ID": rec.id, 

        "Sequence": extract_fcs(seq_str), 

        "Length": len(seq_str) 

    }) 

 

df_before_msa = pd.DataFrame(records) 

 

# Tampilkan tabel 

display(df_before_msa) 

 
# ==========PLOT JUMLAH SEKUENS PER PANJANG========== 

df_len = df_before_msa[(df_before_msa["Length"] >= 1260) & 

                       (df_before_msa["Length"] <= 1280)] 

 

count_len = df_len["Length"].value_counts().sort_index() 

 

plt.plot(count_len.index, count_len.values, marker="o") 

plt.xticks(rotation=60) 

plt.xlabel("Length (bp)") 

plt.ylabel("Count") 

plt.title("Jumlah Sekuens per Panjang") 

plt.savefig("Jumlah sekuen per panjang", dpi=300, 

bbox_inches="tight") 

plt.show() 

 
# ==========AFTER MSA========== 

FASTA_AFTER_MSA = "/kaggle/input/skripsi/Data_Sequens.fasta" 

 

print(">> Menampilkan data sekuens area FCS setelah MSA\n") 

 

records = [] 

 

# Area FCS 

fcs_start = 684 - 10   

fcs_end = 687 + 10     

 

def extract_fcs(seq): 

    start = max(0, fcs_start) 

    end = min(len(seq), fcs_end) 

    return "..." + seq[start:end] + "..." 

 

for rec in SeqIO.parse(FASTA_AFTER_MSA, "fasta"): 

    seq_str = str(rec.seq) 

    records.append({ 

        "ID": rec.id, 

        "Sequence": extract_fcs(seq_str), 

        "Length": len(seq_str) 
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    }) 

 

df_after_msa = pd.DataFrame(records) 

 

# Tampilkan tabel 

display(df_after_msa) 

 
# ==========CEK DUPLIKAT========== 

# Hitung duplikat berdasarkan ID 

duplikat_id = df_after_msa.duplicated(subset="ID") 

 

# Hitung jumlah duplikat dan unik 

counts = duplikat_id.value_counts()  # True = duplikat, False = 

unik 

 

# Buat plot 

plt.figure(figsize=(4,3)) 

plt.bar(["Unik", "Duplikat"], [counts.get(False,0), 

counts.get(True,0)], color=["skyblue","salmon"]) 

plt.ylabel("Jumlah baris sequens") 

plt.tight_layout() 

plt.savefig("duplikat", dpi=300, bbox_inches="tight") 

plt.show() 

 

 

# ==========CEK AMBIGU KARAKTER========== 

df["Jumlah_Ambigu_Gap"] = df["Region_684_694"].apply( 

    lambda s: s.count("-") + s.count(".") 

) 

 

df["Ada_Ambigu_Gap"] = df["Jumlah_Ambigu_Gap"] > 0 

 

print(df["Ada_Ambigu_Gap"].value_counts()) 

print(df["Jumlah_Ambigu_Gap"].value_counts().sort_index()) 

 

plt.figure(figsize=(5.2, 3.2)) 

sns.histplot( 

    data=df, 

    x="Jumlah_Ambigu_Gap", 

    bins=range(df["Jumlah_Ambigu_Gap"].max() + 2), 

    discrete=True, 

    shrink=0.8 

) 

 

plt.title("Distribusi karakter ambigu per sekuens") 

plt.xlabel("Jumlah karakter ambigu") 

plt.ylabel("Jumlah sekuens") 

plt.tight_layout() 

plt.savefig("Gambar_Distribusi_Karakter_Ambigu.png", dpi=300, 

bbox_inches="tight") 

plt.show() 

 

# ==========CEK SEKUENS TIDAK TERIDENTIFIKASI========== 

df["Jumlah_X"] = df["Region_684_694"].apply(lambda s: 
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s.count("X")) 

 

plt.figure(figsize=(5.2, 3.2)) 

sns.histplot(data=df,x="Jumlah_X",bins=6,discrete=True,shrink=0.8

) 

 

plt.xlim(-0.5, 5.5) 

plt.xticks(range(0, 6)) 

 

plt.title("Distribusi jumlah 'X' per sekuens") 

plt.tight_layout() 

plt.savefig("Gambar_1_Distribusi_Jumlah_X.png", dpi=300, 

bbox_inches="tight") 

plt.show() 

 
# ==========PLOT JUMLAH DATA PER TANGGAL========== 

if len(df_clean) == 0: 

    raise ValueError("Tidak ada sekuens tersisa setelah menghapus 

'X'.") 

 

# Tren waktu (opsional): jumlah per bulan 

print("\n>> Gambar 2. Tren jumlah sekuens per bulan (data dengan 

tanggal)") 

df_with_date = df_clean[df_clean["Date"].notna()].copy() 

 

if len(df_with_date) > 0: 

    df_with_date["YearMonth"] = 

df_with_date["Date"].dt.to_period("M").astype(str) 

    per_month = 

df_with_date.groupby("YearMonth").size().reset_index(name="Count"

) 

 

    plt.figure(figsize=(6.8, 4.0)) 

    sns.lineplot(data=per_month, x="YearMonth", y="Count", 

marker="o") 

 

    # ✅ Set batas Y hingga 300 
    plt.ylim(0, 300)                

    plt.yticks(range(0, 301, 20))   

 

    plt.xticks(rotation=60, ha="right") 

    plt.tight_layout() 

    plt.savefig("Tren Jumlah", dpi=300, bbox_inches="tight") 

    plt.show() 

else: 

    print("(Tidak ada metadata tanggal; plot dilewati.)") 

 

 

4. Statistik deskriptif FCS (frekuensi AA per posisi, entropi) 

 
# ==========DISTRIBUSI ASAM AMINO========== 

H_str = np.array(df_clean["Region_684_694"].tolist())  # (n_seq,) 

of strings 
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seq_len = END_POS - START_POS 

 

# Frekuensi: posisi (rows) × AA (columns) 

freq_mat = np.zeros((seq_len, len(AA_ALPHABET)), dtype=int) 

aa_index = {aa:i for i, aa in enumerate(AA_ALPHABET)} 

for row in H_str: 

    for pos, aa in enumerate(row): 

        freq_mat[pos, aa_index.get(aa, aa_index['-'])] += 1 

 

freq_df = pd.DataFrame(freq_mat, columns=AA_ALPHABET) 

freq_df.insert(0, "Posisi", list(range(START_POS, END_POS))) 

print("\n>> Tabel 2. Distribusi Asam Amino per Posisi 

(frekuensi)") 

pd.DataFrame(freq_df).to_csv("/kaggle/working/Tabel_2.csv", 

index=False) 

display(freq_df) 

  
# ==========Entropi per posisi========== 

entropies = np.apply_along_axis(entropy_from_counts, axis=1, 

arr=freq_mat) 

desc_df = pd.DataFrame({ 

    "Posisi": list(range(START_POS, END_POS)), 

    "Entropi": entropies 

}) 

print("\n>> Tabel 3. Entropi per posisi FCS") 

display(desc_df) 

 

print("\n>> Gambar 4. Entropi per posisi") 

plt.figure(figsize=(6.4,3.0)) 

plt.bar(desc_df["Posisi"].astype(str), desc_df["Entropi"]) 

plt.xticks(rotation=0); plt.ylabel("Entropi (bits)"); 

plt.title("Entropi per Posisi FCS") 

plt.tight_layout();  

plt.savefig("Entropi per Posisi FCS", dpi=300) 

plt.show() 

 

# ==========HEATMAP FREKUENSI========== 

print("\n>> Gambar 3. Heatmap frekuensi AA per posisi") 

plt.figure(figsize=(9, 4.3)) 

sns.heatmap(freq_mat / freq_mat.sum(axis=1, keepdims=True), 

cmap="viridis", 

            cbar_kws={"label": "Proporsi"}, 

xticklabels=AA_ALPHABET, 

            yticklabels=list(range(START_POS, END_POS))) 

plt.xlabel("Asam Amino"); plt.ylabel("Posisi"); 

plt.title("Frekuensi AA per Posisi (proporsi)") 

plt.tight_layout(); 

plt.savefig("Frekuensi_AA_per_Posisi_(proporsi)", dpi=300, 

bbox_inches="tight") 

plt.show() 

 

 

5. Mapping ke integer & windowing 
# Urutkan berdasarkan kolom Date 
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df_clean = df_clean.sort_values(by="Date").reset_index(drop=True) 

 

# Konversi sekuens menjadi integer 

df_clean["Seq_Int"] = 

df_clean["Region_684_694"].apply(seq_to_int) 

 

# Buat array sekuens 

H = np.array(df_clean["Seq_Int"].tolist())  # shape: (n_seq, 

seq_len) 

 

# Cek apakah data cukup untuk windowing 

if H.shape[0] <= LAG: 

    raise ValueError(f"Data tidak cukup untuk windowing. 

n_seq={H.shape[0]} harus > LAG={LAG}.") 

 

# Buat matriks input-output berdasarkan lag 

X, y = make_windows_matrix(H, lag=LAG) 

 

# Scaling 

X_scaled = X / AA_MAX 

y_scaled = y / AA_MAX 

 

# Split berurutan 70/15/15 

n = len(X_scaled) 

n_train = int(SPLIT_TRAIN * n) 

n_val   = int(SPLIT_VAL   * n) 

 

X_train = X_scaled[:n_train] 

y_train = y_scaled[:n_train] 

X_val   = X_scaled[n_train:n_train+n_val] 

y_val   = y_scaled[n_train:n_train+n_val] 

X_test  = X_scaled[n_train+n_val:] 

y_test  = y_scaled[n_train+n_val:] 

 

# Ringkasan split 

print("\n>> Tabel 4. Ringkasan Windowing & Split") 

split_df = pd.DataFrame([{ 

    "Lag": LAG, 

    "n_seq (setelah X-removed)": H.shape[0], 

    "Dimensi input": X.shape[1], 

    "Dimensi output": y.shape[1], 

    "n_train": len(X_train), 

    "n_val": len(X_val), 

    "n_test": len(X_test), 

}]) 

display(split_df) 

 

print("\n>> Contoh sekuens setelah sorting dan konversi 

integer:") 

display(df_clean[["Date", "Region_684_694", "Seq_Int"]]) 
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6. Model FFNN 
def build_ffnn(input_dim: int, output_dim: int) -> keras.Model: 

    model = keras.Sequential([ 

        layers.Input(shape=(input_dim,)), 

        layers.Dense(256, activation="relu"), 

        layers.Dropout(0.10), 

        layers.Dense(128, activation="relu"), 

        layers.Dense(output_dim, activation="linear"), 

    ]) 

    model.compile( 

        optimizer=keras.optimizers.Adam(learning_rate=1e-3), 

        loss="mse", 

        metrics=[keras.metrics.MeanAbsoluteError(name="mae")] 

    ) 

    return model 

 

model = build_ffnn(X_train.shape[1], y_train.shape[1]) 

 

model.summary() 

 

 

7. Baseline Model 
def baseline_persistence_predict(X_matrix: np.ndarray, lag: int, 

seq_len: int) -> np.ndarray: 
    return X_matrix[:, (lag-1)*seq_len : lag*seq_len] 

 

y_pred_base_scaled = baseline_persistence_predict(X_test, LAG, 

seq_len) 

y_pred_base_int = np.rint(y_pred_base_scaled * 

AA_MAX).astype(int).clip(0, 20) 

y_true_int_all  = np.rint(y_test * AA_MAX).astype(int).clip(0, 

20) 

 

acc_pos_base = np.mean(y_pred_base_int == y_true_int_all) 

acc_row_base = np.mean(np.all(y_pred_base_int == y_true_int_all, 

axis=1)) 

mae_base     = np.mean(np.abs(y_pred_base_scaled - y_test)) 

 

base_df = pd.DataFrame([{ 

    "Baseline": "Persistence", 

    "MAE (normalized)": mae_base, 

    "MAE (skala asli)": mae_base * AA_MAX, 

    "Akurasi posisional (%)": acc_pos_base * 100.0, 

    "Akurasi sekuens penuh (%)": acc_row_base * 100.0 

}]) 

 

 

def baseline_moving_average_predict(X_matrix: np.ndarray, lag: 

int, seq_len: int) -> np.ndarray: 

    start = (lag-2) * seq_len 

    end   = lag * seq_len 

    block = X_matrix[:, start:end] 

    block = block.reshape(X_matrix.shape[0], 2, seq_len) 

    return block.mean(axis=1) 
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y_pred_ma_scaled = baseline_moving_average_predict(X_test, LAG, 

seq_len) 

y_pred_ma_int = np.rint(y_pred_ma_scaled * 

AA_MAX).astype(int).clip(0, 20) 

 

acc_pos_ma = np.mean(y_pred_ma_int == y_true_int_all) 

acc_row_ma = np.mean(np.all(y_pred_ma_int == y_true_int_all, 

axis=1)) 

mae_ma     = np.mean(np.abs(y_pred_ma_scaled - y_test)) 

 

print("\n>> Tabel 5. Kinerja Baseline") 

base_df2 = pd.DataFrame([{ 

    "Baseline": "Moving Average", 

    "MAE (normalized)": mae_ma, 

    "MAE (skala asli)": mae_ma * AA_MAX, 

    "Akurasi posisional (%)": acc_pos_ma * 100.0, 

    "Akurasi sekuens penuh (%)": acc_row_ma * 100.0 

}]) 

# ==========Tabel arsitektur sederhana========== 

print("\n>> Tabel 6. Arsitektur Model FFNN") 

layers_info = [] 

total_params = 0 

for i, lyr in enumerate(model.layers, 1): 

    params = lyr.count_params() 

    total_params += params 

    layers_info.append({ 

        "Layer #": i, 

        "Tipe": lyr.__class__.__name__, 

        "Output shape": str(lyr.output.shape), 

        "Params": params 

    }) 

display(pd.DataFrame(layers_info)) 

print(f"Total params: {total_params:,}") 

 

 

 

tabel_baseline = pd.concat([base_df, base_df2], 

ignore_index=True) 

display(tabel_baseline) 

 
# ==========Hiperparameter========== 

print("\n>> Tabel 7. Hiperparameter Pelatihan") 

hp_df = pd.DataFrame([ 

    { 

        "Optimizer": "Adam", 

        "Learning rate": 1e-3, 

        "Batch size": 32, 

        "Epoch maks": 200, 

        "Patience (EarlyStopping)": 10, 

        "Dropout": 0.10 

    }, 

    { 

        "Optimizer": "SGD (Momentum)", 
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        "Learning rate": 1e-2, 

        "Batch size": 32, 

        "Epoch maks": 200, 

        "Patience (EarlyStopping)": 10, 

        "Dropout": 0.10 

    }, 

    { 

        "Optimizer": "RMSprop", 

        "Learning rate": 1e-3, 

        "Batch size": 32, 

        "Epoch maks": 200, 

        "Patience (EarlyStopping)": 10, 

        "Dropout": 0.10 

    } 

]) 

 

display(hp_df) 

 

 

# ==========Latih========== 

callbacks = [ 

    keras.callbacks.EarlyStopping(monitor="val_loss", 

patience=10, restore_best_weights=True) 

] 

history = model.fit( 

    X_train, y_train, 

    validation_data=(X_val, y_val), 

    epochs=30, 

    batch_size=32, 

    verbose=1, 

    callbacks=callbacks 

) 

# ===========Kurva pelatihan============ 

print("\n>> Gambar 5. Kurva pelatihan (MSE)") 

plt.figure(figsize=(6.0,3.5)) 

plt.plot(history.history["loss"], label="Train MSE") 

plt.plot(history.history["val_loss"], label="Val MSE") 

plt.xlabel("Epoch"); plt.ylabel("MSE"); plt.title("History Loss 

(MSE)") 

plt.ylim(0.001, 0.028)  # batas sumbu-y  

plt.legend(); plt.tight_layout() 

plt.savefig("History_Loss_MSE.png", dpi=300)  

plt.show() 

 

 

 

8. Prediksi 
# =========PREDIKSI DATA SAMPEL========  

show_k = min(10, len(X_test)) 

rows = [] 

for i in range(show_k): 

    true_str = ints_to_aa_string(y_true_int_all[i]) 

    pred_str = ints_to_aa_string(y_pred_int[i]) 
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    match_ratio = np.mean(y_true_int_all[i] == y_pred_int[i]) * 

100.0 

    rows.append({"Sampel": i+1, "TRUE": true_str, "PRED": 

pred_str, "Match per posisi (%)": round(match_ratio, 2)}) 

 

print("\n>> Tabel 11. Contoh Prediksi (AA)") 

display(pd.DataFrame(rows)) 

 

print("\nSelesai ✅") 

 

# =============PREDIKSI SEKUENS BERIKUTNYA============ 

def make_window_last(H, lag, n_features): 

    X_last = H[-lag:, :].flatten().astype(np.float32) 

 

    # Penyesuaian panjang fitur 

    if X_last.shape[0] != n_features: 

        X_last = X_last[:n_features] 

        if X_last.shape[0] < n_features: 

            X_last = np.pad(X_last, (0, n_features - 

X_last.shape[0]), 'constant') 

    return X_last.reshape(1, -1) 

 

lag = 8 

n_features = X_train.shape[1] 

# Buat input terakhir untuk prediksi 

X_last = make_window_last(H, lag, n_features) 

 

# Lakukan prediksi 

y_next_pred = model(X_last).numpy() 

 

# Data hasil prediksi 

pred_float = y_next_pred.flatten() 

pred_int = np.round(pred_float).astype(int) 

pred_aa = [INT_TO_AA.get(i, '?') for i in pred_int] 

 

# Buat tabel hasil dalam bentuk DataFrame Pandas 

tabel_prediksi = pd.DataFrame({ 

    'Posisi': range(1, len(pred_float) + 1), 

    'Nilai Prediksi (Float)': pred_float, 

    'Nilai Dibulatkan (Int)': pred_int, 

    'Huruf Asam Amino': pred_aa 

}) 

 

# Tampilkan tabel 

tabel_prediksi.style.set_properties(**{ 

    'text-align': 'center' 

}).set_table_styles([dict(selector='th', props=[('text-align', 

'center')])]) 

 

 

9. Evaluasi Model FFNN 
test_loss, test_mae = model.evaluate(X_test, y_test, verbose=0) 

 

y_pred_scaled = model.predict(X_test) 
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y_pred_int    = np.rint(y_pred_scaled * 

AA_MAX).astype(int).clip(0, 20) 

 

acc_positional = np.mean(y_pred_int == y_true_int_all) * 100.0 

acc_sequence = np.mean(np.all(y_pred_int == y_true_int_all, 

axis=1)) * 100.0 

 

print("\n>> Tabel 8. Kinerja Model (Test)") 

model_perf_df = pd.DataFrame([{ 

    "MSE (test)": test_loss, 

    "MAE (normalized)": test_mae, 

    "MAE (skala asli)": test_mae * AA_MAX, 

    "Akurasi posisional (%)": acc_positional, 

    "Akurasi sekuens penuh (%)": acc_sequence 

}]) 

display(model_perf_df) 

 

# ===========EVALUASI PRECISION, RECALL, F1-SCORE============    

from sklearn.metrics import precision_score, recall_score, 

f1_score 

 

# Flatten data untuk menghitung precision / recall / F1 

y_true_flat = y_true_int_all.flatten() 

y_pred_flat = y_pred_int.flatten() 

 

precision = precision_score(y_true_flat, y_pred_flat, 

average="macro", zero_division=0) 

recall    = recall_score(y_true_flat, y_pred_flat, 

average="macro", zero_division=0) 

f1        = f1_score(y_true_flat, y_pred_flat, average="macro", 

zero_division=0) 

 

print("\n>> Tambahan Metrik Klasifikasi (Posisional)") 

print(f"Precision (macro): {precision:.4f}") 

print(f"Recall (macro):    {recall:.4f}") 

print(f"F1-score (macro):  {f1:.4f}") 

 

# ===========Perbandingan dengan baseline=============== 

print("\n>> Tabel 9. Perbandingan Baseline vs FFNN (Test)") 

compare_df = pd.DataFrame([ 

    {"Model": "Persistence", 

     "MAE (normalized)": mae_base, 

     "MAE (skala asli)": mae_base * AA_MAX, 

     "Akurasi posisional (%)": acc_pos_base * 100.0, 

     "Akurasi sekuens penuh (%)": acc_row_base * 100.0}, 

   {"Model": "Moving Average", 

    "MAE (normalized)": mae_ma, 

    "MAE (skala asli)": mae_ma * AA_MAX, 

    "Akurasi posisional (%)": acc_pos_ma * 100.0, 

    "Akurasi sekuens penuh (%)": acc_row_ma * 100.0}, 

    {"Model": "FFNN", 

     "MAE (normalized)": test_mae, 

     "MAE (skala asli)": test_mae * AA_MAX, 

     "Akurasi posisional (%)": acc_positional , 
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     "Akurasi sekuens penuh (%)": acc_sequence }, 

]) 

display(compare_df) 

 

 

10. Analisis posisional (akurasi & error) 
acc_per_pos = np.mean(y_pred_int == y_true_int_all, axis=0)              

# akurasi per posisi 

mae_per_pos = np.mean(np.abs(y_pred_scaled - y_test), axis=0) * 

AA_MAX   # MAE integer per posisi 

pos_axis    = np.arange(START_POS, END_POS) 

 

print("\n>> Tabel 10. Akurasi & MAE per Posisi") 

pos_df = pd.DataFrame({ 

    "Posisi": pos_axis, 

    "Akurasi posisional (%)": np.round(acc_per_pos * 100.0, 2), 

    "MAE (skala asli)": np.round(mae_per_pos, 3), 

    "Entropi": np.round(entropies, 3) 

}) 

display(pos_df) 

 
print("\n>> Gambar 7. Barplot Akurasi per Posisi") 

 

plt.figure(figsize=(7.0,3.5)) 

bars = plt.bar(pos_df["Posisi"].astype(str), acc_per_pos * 100.0) 

 

plt.ylim(0, 110) 

plt.ylabel("Akurasi (%)") 

plt.title("Akurasi Posisi (FFNN)") 

 

# Tambahkan keterangan nilai di atas tiap batang 

for bar in bars: 

    height = bar.get_height() 

    plt.text( 

        bar.get_x() + bar.get_width()/2,  # posisi x di tengah 

batang 

        height + 1,                       # posisi y sedikit di 

atas batang 

        f"{height:.1f}%",                  # teks, misal "92.5%" 

        ha='center', va='bottom', fontsize=8 

    ) 

 

plt.tight_layout() 

plt.savefig("Akurasi_Posisi_FFNN.png", dpi=300)   

plt.show() 

 
# ==========HEATMAP ERROR=========== 
print("\n>> Gambar 8. Heatmap Error |pred-true| (skala integer)") 

err_int = np.abs(y_pred_int - y_true_int_all)  # (n_test, 

seq_len) 

plt.figure(figsize=(7.2,4.0)) 

sns.heatmap(err_int, cmap="magma_r", cbar_kws={"label": "|pred-

true|"}) 
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plt.xlabel("Posisi (offset)"); plt.ylabel("Sampel Test") 

plt.title("Heatmap Error Posisional (Integer)") 

plt.tight_layout();  

plt.savefig("Heatmap Error Posisional (Integer)", dpi=300) 

plt.show() 
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