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ABSTRAK

Asviana, Natasyah. 2025. Pengembangan Model Feedforward Neural Network Untuk
Prediksi Mutasi Data Sekuensial Situs Cleavage Sars-Cov-2. Skripsi. Jurusan
Matematika Fakultas Sains Dan Teknologi. Universitas Islam Negeri Maulana
Malik lbrahim Malang. Pembimbing (1) Dr. Mohammad Jamhuri, M.Si. (2) Erna
Herawati, M.Pd.

Kata kunci: SARS-CoV-2, furin cleavage site, Feedforward Neural Network, prediksi
mutasi, data sekuensial.

Mutasi pada protein spike SARS-CoV-2, khususnya pada wilayah furin cleavage site
(FCS), berperan penting dalam meningkatkan infektivitas virus dan memengaruhi
dinamika penyebaran varian. Oleh karena itu, diperlukan pendekatan prediksi mutasi
yang terfokus dan efisien untuk mendukung pemantauan evolusi virus. Penelitian ini
bertujuan mengembangkan model prediksi mutasi data sekuensial pada situs cleavage
SARS-CoV-2 menggunakan Feedforward Neural Network (FFNN) serta mengevaluasi
kinerjanya. Data berupa sekuens protein spike varian Omicron (B.1.1.529) diperoleh dari
basis data NCBI Virus, kemudian diproses melalui tahap penyelarasan sekuens, ekstraksi
wilayah FCS, windowing, dan representasi numerik asam amino. Model FFNN dilatih
menggunakan pembagian data latih, validasi, dan uji, serta dievaluasi dengan metrik
Mean Squared Error (MSE), Mean Absolute Error (MAE), akurasi, presisi, recall, dan
F1 score. Hasil penelitian menunjukkan bahwa model FFNN mencapai akurasi prediksi
posisional rata-rata sebesar 82% pada wilayah FCS, dengan nilai MAE yang relatif
rendah serta konvergensi loss yang stabil selama pelatihan. Model juga mampu
mengidentifikasi posisi dengan tingkat kesalahan tinggi yang berpotensi menjadi hotspot
mutasi. Dengan demikian, FFNN terbukti efektif dalam memodelkan pola mutasi
sekuensial pada situs cleavage dan berpotensi digunakan sebagai alat bantu analisis
evolusi SARS-CoV-2.
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ABSTRACT

Asviana, Natasyah. 2025. Development of a Feedforward Neural Network Model for
Predicting Sequential Mutation at the SARS-CoV-2 Cleavage. Thesis.
Department of Mathematics, Faculty of Science and Tecnology. Universitas Islam
Negeri Maulana Malik Ibrahim Malang. Supervisors: (1) Dr. Mohammad Jamhuri,
M.Si. (2) Erna Herawati, M.Pd.

Keywords: SARS-CoV-2, furin cleavage site, Feedforward Neural Network, mutation
prediction, sequential data.

Mutations in the SARS-CoV-2 spike protein, particularly within the furin cleavage site
(FCS), play a crucial role in increasing viral infectivity and influencing the evolutionary
dynamics of emerging variants. Therefore, a focused and efficient mutation prediction
approach is required to support viral evolution surveillance. This study aims to develop a
Feedforward Neural Network (FFNN) model for predicting sequential mutation patterns
at the SARS-CoV-2 cleavage site and to evaluate its performance. The dataset consists of
spike protein sequences of the Omicron variant (B.1.1.529) obtained from the NCBI
Virus database and processed through sequence alignment, FCS region extraction,
windowing, and numerical encoding of amino acids. The FFNN model was trained using
separated training, validation, and testing datasets and evaluated using Mean Squared
Error (MSE), Mean Absolute Error (MAE), accuracy, precision, recall, and F1_score
metrics. The results show that the proposed FFNN achieved an average positional
prediction accuracy of 82% within the FCS region, with relatively low MAE values and
stable loss convergence during training. Furthermore, the model successfully identified
positions with high prediction error that potentially represent mutation hotspots. These
findings indicate that FFNN is effective in modeling sequential mutation patterns at the
cleavage site and has potential applications as a computational tool for SARS-CoV-2
evolutionary analysis.
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BAB |
PENDAHULUAN

1.1 iLatar Belakang

SARS-CoV-2 dikenal sebagai virus penyebab pandemi COVID-19 yang
mulai terdeteksi pada akhir tahun 2019 (Holmes et al., 2021). Mutasi pada protein
spike dari virus SARS-CoV-2 menjadi faktor utama yang memengaruhi
penularan, efektivitas vaksin, dan kemampuan virus beradaptasi dengan sistem
imun (Harvey et al., 2021). Salah satu bagian paling kritis dari protein spike
tersebut adalah Furin Cleavage Site (FCS), dimana pemotongan protein spike
oleh enzim furin pada situs S1/S2 sangat penting untuk fusi antar sel dan
masuknya virus ke dalam sel inang (Hoffmann et al., 2020). Proses ini
meningkatkan infektivitas virus serta berkontribusi pada penyebaran infeksi
(Hoffmann et al., 2020). Oleh karena itu, prediksi mutasi pada situs ini sangat
penting untuk mendukung sistem pemantauan evolusi virus dan pengembangan
strategi kesehatan masyarakat.

Upaya prediksi mutasi genom SARS-CoV-2 memerlukan data yang
bersumber dari repositori terpercaya. Data genom SARS-CoV-2 diambil dari
repositori NCBI Virus dengan menerapkan filter berdasarkan gen target, kualitas
sekuens, metadata asal sampel, dan jenis varian untuk memperoleh data yang
relevan dan valid. NCBI Virus menyediakan sekuens genetik dalam FASTA dan
nucleotide record hasil pengumpulan global yang dapat digunakan untuk analisis
bioinformatika (Brister et al., 2015). Basis data ini telah dimanfaatkan secara luas
dalam ribuan publikasi ilmiah yang meneliti mutasi, filogenetik, dan dinamika

genom (Brister et al., 2015). Dengan data yang terstandar serta terverifikasi,



proses analisis prediktif dapat dilakukan secara lebih akurat dan terarah. Selain
itu, data genomik bersifat sekuensial karena tersusun atas urutan nukleotida yang
saling berkaitan, sehingga perubahan basa mengikuti pola tertentu yang dapat
ditelusuri melalui sejarah mutasinya.

Feedforward Neural Network (FFNN) diterapkan untuk menganalisis data
sekuensial dan telah terbukti efektif melalui berbagai penelitian sebelumnya.
Seperti Yuliandar et al., (2012) menggunakan FFNN untuk memprediksi data
deret waktu nilai kurs Dolar Australia terhadap Rupiah. Model jaringan saraf
tiruan ini memiliki arsitektur sederhana, umumnya terdiri dari satu lapisan
tersembunyi (hidden layer), dan dapat dimanfaatkan untuk prediksi pada deret
waktu (Azam et al., 2018). Dalam Feedforward Neural Network, data bergerak
hanya dalam satu arah (feed-forward) dari lapisan input menuju lapisan output
tanpa umpan balik, sehingga ini mampu mengenali pola kompleks dan
menghasilkan pediksi berdasarkan data historis (Septiana & Br Bangun, 2023).
Dengan demikian, Feedforward Neural Network dapat diterapkan dalam
pemrosesan data sekuensial.

Berbagai pendekatan telah dikembangkan untuk memahami mutasi pada
furin cleavage site (FCS). Tian et al. (2012) memperkenalkan PiTou, alat prediksi
berbasis hidden Markov model (HMM) dan skor biologis yang berhasil
mendeteksi keberadaan furin cleavage site dengan sensitivitas dan spesifisitas
tinggi. Namun, PiTou tidak dirancang untuk memprediksi mutasi, melainkan
hanya mendeteksi situs pemotongan pada urutan protein yang tetap. Gu, C (2020)
juga mengembangkan FindFur, alat prediksi berbasis profile hidden Markov

model (HMM) dan logistic regression untuk mendeteksi situs furin cleavage pada



glikoprotein virus berselubung. Hasil penelitian menunjukkan performa baik,
tetapi pendekatan Gu tidak diarahkan untuk memprediksi mutasi, melainkan
hanya mendeteksi keberadaan motif furin cleavage site.

Sementara itu, Maher dan Yousif (2023) mengembangkan sebuah model
prediktif berbasis meachine learning, khususnya neural network dan fitur
epidemiologis, untuk memprediksi mutasi SARS-CoV-2 yang berpotensi
menyebar secara luas. Model ini menggunakan data genomik, evolusi, imunologi,
serta data spasial dan temporal dari penyebaran mutasi, lalu mengintegrasikannya
dalam kerangka prediksi mutasi yang berpotensi menjadi bagian dari varian yang
diwaspadai. Di sisi lain, Saldivar-espinoza et al. (2022) menggunakan Atrtificial
Neural Network (ANN) untuk memprediksi recurrent mutations dalam genom
SARS-CoV-2. Model ini mampu mengidentifikasi mutasi berulang berdasarkan
fitur-fitur seperti struktur sekunder RNA dan reaktivitas kimia. Walaupun hasil
prediksi cukup menjanjikan, penelitian ini tidak secara khusus menyasar situs
furin cleavage, dan lebih menyoroti mutasi global.

Kemajuan lebih lanjut ditunjukkan oleh Jamhuri et al., (2025) dalam
disertasinya, yang mengembangkan pendekatan optimasi Gauss-Newton
terdistribusi untuk meningkatkan efisiensi pelatihan model deep learning dalam
memprediksi mutasi spike protein SARS-CoV-2. la menggunakan kombinasi
model MLP, CNN, dan LSTM, dan menguji akurasi prediksi mutasi pada
berbagai varian termasuk Alpha, Beta, Delta, Gamma, dan Omicron. Hasilnya
menunjukkan bahwa model tersebut mampu mencapai akurasi tinggi hingga 99%
pada sebagian besar varian. Namun, varian Omicron, yang memiliki kompleksitas

mutasi paling tinggi dan data terbatas, menyebabkan penurunan akurasi sebesar 1—



2%, yang menunjukkan tantangan nyata dalam menangani virus yang terus
berkembang. Di sisi lain, model yang digunakan tergolong kompleks dan tidak
secara eksplisit ditujukan untuk prediksi mutasi di situs cleavage.

Dari tinjauan studi tersebut, dapat diketahui bahwa meskipun telah
dilakukan banyak upaya untuk memodelkan mutasi SARS-CoV-2, masih terdapat
kekosongan penelitian, yaitu belum adanya pendekatan secara khusus ditujukan
untuk memprediksi mutasi pada furin cleavage site menggunakan Feedforward
Neural Network (FFNN). Kekurangan ini mengindikasi perlunya metode yang
lebih terarah dalam menganalisis mutasi pada bagian penting dari virus tersebut.

Mengingat pentingnya peran furin cleavage site dalam infektivitas virus dan
implikasinya terhadap efektivitas vaksin, penelitian ini bertujuan untuk
mengembangkan sistem prediksi data sekuensial berbasis Feedforward Neural
Network (FFNN) dalam menganalisis mutasi situs cleavage pada virus SARS-
CoV-2. Model ini diharapkan mampu menangkap pola-pola mutasi yang
signifikan secara biologis dengan efesien, serta memberikan kontribusi pada
pengembangan sistem pemantauan evolusi virus yang adaptif dan berkelanjutan.

Pengembangan ilmu pengetahuan merupakan perintah Islam agar umatnya
mencari dan mengembangkan ilmu demi kemaslahatan. Hal ini ditegaskan Allah

SWT dalam QS.Al-Mujadilah ayat 11:
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“.Allah akan meninggikan orang-orang yang beriman di antaramu dan orang-
orang yang diberi ilmu beberapa derajat. Allah melihat pada apa yang kamu
kerjakan.” (QS.Al-Mujadilah: 11)



Ayat ini menegaskan bahwa ilmu pengetahuan memiliki kedudukan yang sangat
mulia dan menjadi sarana meninggikan derajat manusia di sisi Allah SWT.
pengembangan ilmu, termasuk penelitian mutasi virus SARS-CoV-2, bernilai
ibadah ketika diarahkan untuk kemslahatan umat. Dalam konteks ini,
pengembangan model prediksi berbasis Feedforward Neural Network bukan
hanya kontribusi terhadap keilmuan modern, tetapi juga bentuk aktualisasi nilai
Islam yang mendorong pemanfaatan akal demi menjaga jiwa manusia.
1.2 Rumusan Masalah
Berdasarkan latar belakang masalah di atas, maka rumusan masalah sebagai
berikut:
1. Bagaimana penerapan model prediksi mutasi situs cleavage dari virus SARS
CoV-2 menggunakan Feedforward Neural Network (FFNN)?
2. Bagaimana performance model yang dikembangkan dalam memprediksi
mutasi situs cleavage dari virus SARS CoV-2?
1.3 Tujuan Penelitian
Berdasarkan rumusan masalah, tujuan dari penelitian ini sebagai berikut:
1. Untuk mengembangkan model prediksi mutasi situs cleavage dari virus
SARS CoV-2 menggunakan Feedforward Neural Network (FFNN).
2. Untuk mengetahui performance model yang dikembangkan dalam
memprediksi mutasi situs cleavage dari virus SARS CoV-2.
1.4 Manfaat Penelitian
Dalam penelitian ini diharapkan memiliki manfaat sebagai berikut:
1. Manfaat teoritis

Manfaat teoritis penelitian ini meliputi hal berikut:



a. Memberikan pengembangan model prediksi mutasi situs cleavage SARS-
CoV-2 berbasis Feedforward Neural Network dan memperluas kajian
mengenai kemampuan FFNN dalam mengolah data sekuensial biologis.

b. Memperkaya literatur terkait analisis akurasi dan kemampuan
pembelajaran model pada data sekuensial virus.

2. Manfaat Praktis
Manfaat praktis penelitian ini meliputi hal berikut:

a. Model prediksi berfungsi sebagai alat bantu analisis untuk lembaga riset
dan instansi kesehatan dalam mendeteksi potensi mutasi atau varian baru
virus SARS-CoV-2.

b. Hasil penelitian mendukung pengambilan keputusan yang lebih cepat dan
akurat dalam pengembangan vaksin, pengawasan epidemiologi, serta
penentuan strategi respon medis terhadap penyakit menular.

1.5 Batasan Masalah

Agar penelitian ini lebih terarah dan fokus, maka dilakukan pembatasan
permasalahan yaitu penelitian ini hanya menggunakan data sekuens genom dari
varian SARS-CoV-2 Omicron (B.1.1.529) yang diperoleh dari basis data publik
NCBI. Analisis difokuskan pada mutasi yang terjadi pada wilayah furin cleavage
site (FCS) pada protein spike, karena bagian ini memiliki peran penting dalam
proses infeksi virus.
1.6 Definisi Istilah

Dalam penelitian ini digunakan beberapa istilah untuk menghindari
perbedaan makna dan menyamakan pemahaman terhadap tema serta arah

penelitian. Definisi istilah pada penelitian ini yaitu sebagai berikut:



Mutasi

Perubahan pada urutan nukleotida dalam genom organisme yang dapat
memengaruhi struktur dan fungsi protein yang dihasilkan.

Prediksi

Proses memperkirakan nilai atau kejadian di masa depan berdasarkan data
historis.

SARS-CoV-2

Virus penyebab COVID-19 yang pertama kali diidentifikasi akhir 2019.
Data Sekuensial

Data yang disusun dalam urutan tertentu di mana urutan tersebut penting
untuk analisis.

Artificial Neural Network

Suatu model komputasional yang terinspirasi dari struktur jaringan saraf
biologis, terdiri dari lapisan neuron yang saling terhubung untuk memproses
data dan melakukan prediksi.

FASTA

Format file standar untuk menyimpan sekuens nukleotida atau protein dalam
bentuk teks, yang digunakan dalam bioinformatika untuk analisis genomik.
Machine Learning

Cabang kecerdasan buatan yang melibatkan algoritma yang belajar dari data
untuk membuat prediksi atau keputusan.

NCBI Virus

Repositori basis data genomik yang dikelola oleh National Center for

Biotechnology Information (NCBI), menyediakan sekuens virus global



10.

11.

12.

13.

dalam format FASTA untuk analisis bioinformatika.

Protein Spike

Protein permukaan SARS-CoV-2 yang berperan dalam pengikatan dan
masuknya virus ke sel inang.

Residu

Satu unit penyusun sekuens, misalnya satu asam amino dalam sekuens
protein atau satu nukleotida dalam DNA/RNA.

Furin Cleavage Site

lokasi spesifik pada protein virus yang harus dipotong oleh enzim protease
untuk meningkatkan infeksi atau perakitan partikel virus yang matang.
Windowing

Teknik membagi data berurutan menjadi potongan dengan panjang tertentu
untuk dianalisis atau diprediksi.

Lag (Jendela)

Jarak waktu atau urutan antara data sebelumnya dengan data yang

diprediksi.
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Subbab ini memuat landasan teoritis yang digunakan dalam penelitian,
mencakup struktur biologis SARS-CoV-2, karakteristik protein Spike, dan konsep
situs furin cleavage. Selain itu dibahas prinsip prediksi data sekuensial dengan
neural network, arsitektur Feedforward Neural Network, serta metrik evaluasi
yang digunakan dalam menilai kualitas model.

2.1. Struktur SARS-CoV-2

SARS-CoV-2 (Severe Acute Resporatory Syndrome Coronavirus 2) adalah
jenis virus corona baru yang pertama kali diidenfikasi di Wuhan, Tiongkok, pada
akhir tahun 2019 dan memiliki kemiripan genetik dengan virus penyebab SARS
pada tahun 2002 (Holmes et al., 2021). Penamaan tersebut diberikan oleh Komite
Internasional Taksonomi Virus (ICTV). Virus ini adalah virus yang menyebabkan
penyakit pernafasan pada manusia dan ditularkan dari hewan ke manusia dalam
bentuk mutasi. Dalam perkembangannya, SARS-CoV-2 menghasilkan sejumlah
varian yang diklasifikasikan sebagai Variants of Concern (VOC), seperti Alpha
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), serta Omicron yang
awalnya diklasifikasikan sebagai B.1.1.529 dan kemudian berkembang menjadi
berbagai sublineage BA (Park et al., 2023).

SARS-CoV-2 dikenal sebagai virus RNA yang beruntai tunggal positif
(positive-sense single-stranded RNA virus), yang artinya materi genetiknya dapat
langsung digunakan sebagai cetakan untuk membuat protein virus setelah
memasuki inang (Nagvi et al., 2020). RNA tersebut dilindungi oleh protein

neukleokapsid (N) yang berfungsi menjaga stabilitas dan mendukung proses
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replikasi. Partikel inti virus ini selanjutnya dikelilingi oleh selubung membran luar
yang terbuat dari lipid (lipid envelope) dengan protein yang disisipkan. Selubung
ini sangat penting dalam menjaga integritas virus, namun juga menjadi titik lemah
karena mudah rusak oleh senyawa lipid seperti larutan hidrogen peroksida,
pemutih hipoklorit, deterjen dan sabun (V’kovski et al., 2021). Inilah alasan
mengapa mencuci tangan dengan sabun menjadi salah satu langkah pencegahan

yang efektif terhadap penyebaran virus SARS-CoV-2,

Coronavirus Structure

Spike (S)

Nucleocapsid (N)

Membrane (M)

Envelope (E)

RNA viral genome

Gambar 2.1 Struktur SARS-CoV-2
(Sumber: www.biophysics.org)

Pada Gambar 2.1 merupakan llustrassi struktur SARS-CoV-2. Selubung
membran luar inti virus berasal dari sel tempat virus terakhir kali dirakit tetapi
dimodifikasi untuk mengandung protein virus tertentu, termasuk protein spike (S),
membrane (M), dan envelope (E). Protein spike merupakan komponen kunci
dalam proses infeksi karena mampu mengenali dan berikatan dengan reseptor
Angitensin Converting Enzym 2 (ACE2) di permukaan sel manusia, terutama di
saluran pernapasan (Yan et al., 2020). Protein E dan M juga berperan penting
dalam siklus hidup virus. Protein E terlibat dalam proses perakitan dan pelepasan

virus baru dari dalam sel, sementara protein protein M membantu
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mempertahankan bentuk dan struktur virus secara keseluruhan. Interaksi antar-
protein ini sangat penting dalam membentuk virian yang infektif.
2.2. Struktur Protein Spike SARS-CoV-2

Protein spike (S) merupakan glikoprotein tipe | yang terletak di permukaan
virus SARS-CoV-2. Struktur ini berbentuk seperti paku dan menjadi ciri khas dari
virus corona yang tampak seperti mahkota di bawah mikroskop elektron. Protein
spike memliki peran penting dalam proses masuknya virus ke dalam sel inang
dengan cara menempel pada reseptor sel manusia (Walls et al., 2020).

Protein spike dari SARS-CoV-2 adalah homotrimer, yang setiap rantainya
terdiri dari 1273 residu (Sinha et al., 2023). Protein spike memiliki dua subunit
utama, yaitu S1 (14-685 residu) dan S2 (686-1273 residu) (Huang et al., 2020),
Subunit S1 mengandung receptor-binding domain (RBD) untuk mengenali dan
menempel pada reseptor ACE2 pada permukaan sel manusia (Yan et al., 2020).
Proses pengikatan ini menjadi tahap awal dalam infeksi, karena menentukan
keberhasilan virus menempel pada sel target.

Subunit S2 bertanggung jawab dalam mediasi fusi membran virus dengan
membran sel inang. Bagian ini terdiri atas fusion peptide (FP), heptad repeat 1
(HR1), heptad repeat 2 (HR2), serta domain transmembran (TM) dan sitoplasmik
(CT). Setelah subunit S1 berikatan dengan ACE2, S2 mengalami perubahan
konformasi besar yang memungkinkan FP menyisip ke dalam membran sel target.
HR1 dan HR2 kemudian berinteraksi membentuk struktur six-helix bundle (6-HB)
yang menarik membran virus dan membran sel inang menjadi sangat dekat hingga

akhirnya menyatu (Huang et al., 2020).
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Aktivasi protein spike membutuhkan proses pemotongan atau cleavage oleh
protease sel inang pada dua titik utama, yaitu S1/S2 dan S2’. Enzim seperti furin,
TMPRSS2, dan cathepsin L berperan dalam memediasi pemotongan ini. Secara
khusus, SARS-CoV-2 memiliki furin cleavage site unik pada batas S1/S2 yang
tidak ditemukan pada SARS-CoV, sehingga meningkatkan efisiensi pemotongan
oleh protease inang. Hal ini diduga menjadi salah satu faktor yang membuat
SARS-CoV-2 memiliki tingkat penularan lebih tinggi dibandingkan virus corona
sebelumnya (Huang et al., 2020).

Protein spike tersusun atas rantai asam amino yang direpresentasikan
sebagai deretan karakter tunggal dalam alfabet protein. Representasi ini
menggunakan dua puluh asam amino standar yang masing-masing memiliki kode
satu huruf, yaitu alanin (A), arginin (R), asparagin (N), aspartat (D), sistein (C),
glutamin (Q), glutamat (E), glisin (G), histidin (H), isoleusin (1), leusin (L), lisin
(K), metionin (M), fenilalanin (F), prolin (P), serin (S), treonin (T), triptofan (W),
tirosin (), dan valin (V). Sekuens protein diperlakukan sebagai rangkaian simboll,
sehingga pola residu dapat dianalisis secara komputasional. Pendekatan ini
memungkinkan identifikasi  perubahan  huruf dalam sekuens yang
merepresentasikan substitusi asam amino, sehingga sangat relevan dalam
memetakan variasi dan mutasi pada protein spike SARS-CoV-2 (Motomura et al.,
2012).

2.3. Situs Furin Cleavage pada Virus SARS-CoV-2

Situs furin cleavage adalah lokasi spesifik pada protein virus yang harus

dipotong oleh enzim protease untuk meningkatkan infeksi atau perakitan partikel

virus yang matang. Pada SARS-CoV-2, situs cleavage utama terdapat di protein
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spike, yang digunakan virus untuk berikatan dengan resepto ACE2 di sel manusia.

Keberadaan furin cleavage site (FCS) pada SARS-CoV-2 membuat virus lebih

mudah masuk ke dalam sel dibandingkan SARS-CoV versi tahun 2002 (Chan &

Zhan, 2022).

SARS-CoV HTVSLL----%SQKB
MERS-CoV LPDTPSTLTPRSV PGEM
SARS-CoV2 BENIQTQTNSPRRA Asal
SARSr-CoV RaTG1 BERIQTQTNS - - - -[EA sl

Gambar 2.2 Furin Cleavage site
(Sumber: www.nature.org)

Pada Gambar 2.2, karakteristik unik SARS-CoV-2 dibandingkan virus

corona lainnya adalah keberadaan situs furin cleavage pada batas antara subunit

S1 dan S2. Situs S1/S2 (ditandai merah) adalah lokasi spesifik dimana spike

dipotong oleh enzim seperti furin.

Keberadaan situs

mempermudah

pemrosesan dan aktivasi protein spike di berbagai jaringan tubuh manusia,

sehingga meningkatkan kemampuan penyebaran virus serta memperluas tropisme

jaringan. Pemotongan ini penting untuk mengungkapkan bagian peptida fusi,

sehingga memungkinkan terjadinya perubahan konformasi protein spike menuju


http://www.nature.org/
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struktural post-fusion. Proses ini memfasilitasi fusi membran virus dengan
membran sel inang. Tanpa aktivasi di kedua situs ini, protein spike tidak dapat
menjalankan fungsi fusi secara optimal (Hoffmann et al., 2020)..

Secara spesifik, posisi furin cleavage site (FSC) pada protein spike SARS-
CoV-2 terletak di batasi subunit S1/S2, tepatnya pada residu asam amino 680-685
dengan urutan motif PRRAR|SV, di mana tanda panah (}) menunjukkan titik
pemotongaan oleh enzin furin. Sisipan empat asam amino PRRA pada posisi ini
merupakan ciri khas SARS-CoV-2 yang tidak ditemukan pada SARS-CoV klasik
(Ord et al., 2020). Karena mutasi pada situs ini dapat memengaruhi infektivitas,
virulensi, dan penyebaran virus, FCS menjadi fokus penting dalam studi evolusi,
pengembangan vaksin, dan pemodelan prediksi berbasis sekuens.

2.4. Multiple Sequence Alignment

Multiple Sequence Alignment (MSA) merupakan proses penyelarasan lebih
dari dua sekuens biologis untuk mengidentifikasi posisi homolog yang memiliki
keterkaitan evolusioner. MSA dijelaskan sebagai pengembangan dari pairwise
alignment, namun dengan kompleksitas matematis yang jauh lebih tinggi sehingga
perhitungan optimal tidak dapat dilakukan menggunakan dynamic programming
biasa. Pada pairwise alignment, skor penyelaran dua sekuens A = a;, ..., a;,
dan B = b, ..., b,, dihitung menggunakan formulasi rekursif:

Si—1,j-1 +s(a;, by)
S;j = maxq Sjj-1 + s(—, bj)
Si—l,j + s(ai, —)

Dengan fungsi skor s(a,b) = 1 untuk match, —1 untuk mismatch, dan —1
untuk gap. Karena perumusan ini hanya efisien untuk dua sekuens, MSA

menggunakan pendekatan heuristik seperti progressive alignment yang dimulai
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dari pairwise untuk membentuk distance matrix, kemudian membuat guide tree
menggunakan metode UPGMA atau Neighbor-Joining. Guide tree tersebut
menentukan urutan penyelarasan, dan proses selanjutnya melibatkan profile
alignment ketika sekuens baru diselaraskan dengan kelompok sekuens yang telah
tersusun. (Singh, 2015).

MAFFT merupakan salah satu algoritma MSA yang efisien dan akurat,
dikembangkan oleh Katoh sejak 2002 dan terus disempurnakan. Pada proses
alignment, MAFFT menambahkan gap (“-”) ketika terdapat sisipan atau
penghapusan, sehingga panjang seluruh sekuens menjadi seragam dan residu
dapat sejajar pada kolom yang sama. Penambahan gap berfungsi sebagai penanda
insersi dan delesi tanpa mengubah urutan residu asli, sehingga posisi residu
homolog dapat sejajar pada kolom yang sama (Katoh, 2020). Sebagai ilustrasi,
misalkan lima sekuens awal;

Sequens1l: TQVHRCE

Sequens2: TQVHCE

Sequens3:SQVHNDE

Sequens4:QVHRDE

Sequens5: TQVHRCE

Sekuens tersebut memiliki panjang berbeda sehingga posisi homolog tidak
langsung terlihat. Hasil penyelarasan menggunakan algoritma MSA sebagai
berikut:

Sequens1l: TQVHRCE

Sequens2: TQVH-CE

Sequens3:SQVHNDE
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Sequens4:-QVHRDE

Sequens5: TQVHRCE

Penyesuaian ini memungkinkan setiap residu menempati kolom yang sesuai
dengan posisi homolognya, sehingga pola kemiripan maupun perbedaan antar
sekuens dapat diidentifikasi secara lebih akurat. Dengan demikian, MSA tidak
hanya berfungsi untuk menata sekuens dalam format yang sejajar, tetapi juga
menyediakan fondasi matematis untuk analisis homologi, inferensi hubungan
evolusioner, serta identifikasi residu konservatif dalam data biologis.
2.5. Prediksi Data Sekuensial Berbasis Neural Network

Neural network merupakan pendekatan populer dalam bidang kecerdasan
buatan yang terinspirasi dari cara kerja sistem saraf manusia (Lecun et al., 2015).
Jaringan ini tersusun atas neuron buatan yang saling terhubung dalam beberapa
lapisan, dan digunakan untuk mempelajari serta mengenali pola dari data
masukan. Dalam konteks prediksi, neural network telah terbukti efektif, terutama
pada data yang kompleks dan tidak bersifat linier (Lecun et al., 2015).

Prediksi data sekuensial, yakni data yang bergantung pada urutan seperti
teks, sinyal biologis, atau urutan genom, membutuhkan pendekatan khusus karena
hubungan antar elemen sangat ditentukan oleh posisi dalam rangkaian. Untuk itu,
dikembangkan arsitektur neural network yang dirancang untuk memahami urutan,
seperti Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM),
dan Gated Recurrent Unit (GRU) (Greff et al., 2017). Model-model ini
memungkinkan jaringan menyimpan informasi dari langkah-langkah sebelumnya
dalam suatu urutan, sehingga sangat cocok untuk tugas seperti analisis sekuens

genom atau prediksi mutasi virus.
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Dalam konteks biologi molekuler dan bioinformatika, neural network telah
digunakan untuk memprediksi interaksi protein, mengenali motif pengikatan asam
nukleat, serta mendeteksi kemungkinan mutasi pada urutan virus. Sebagai contoh,
Alipanahi et al. (2015) menggunakan deep learning untuk memprediksi
spesifisitas pengikatan protein terhadap DNA dan RNA secara akurat. Pendekatan
ini dapat diterapkan untuk mempelajari situs penting dalam protein virus seperti
cleavage site, yang berperan dalam infektivitas dan penyebaran virus.

Pemahaman representasi data biologis dalam konteks prediksi ini
memerlukan pendekatan yang mampu mengubah sekuens protein menjadi bentuk
numerik agar dapat diolah oleh model neural network. Pendekatan ini sejalan
dengan penjelasan yang diberikan oleh Jason Brownlee (2020) dalam bukunya,
yang menekankan pentingnya proses encoding sekuens menjadi nilai numerik
sebelum digunakan sebagai input dalam model pembelajaran mesin. Misalkan
terdapat sekuens furin cleavage dari beberapa virus yang direpresentasikan dalam

bentuk matriks:

|h21 hyz  has |
H= |h31 hzz  ha3 | 1)
har  haz  hys

Langkah pertama melakukan windowing terhadap matriks H dengan ukuran
jendela (lag) sebesar 2. Ini berarti setiap pasangan baris berturutan akan diambil
sebagai input, dan baris berikutnya akan menjadi targetnya. Diperoleh window
sebagai berikut:

’ hll h12 h13
= = [h h h
X4 h21 h22 h23 B4t [ 31 32 33] (2)
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l h21 h22 h23]

X3 hay hap has V2 = [ha1  hay  hys] 3)
, _[hs1 hs R

%= R ] =l ke sl @

Langkah berikutnya adalah flattening, yaitu meratakan masing-masing window
input menjadi satu vektor baris agar dapat digunakan sebagai input pada model

pembelajaran mesin. Menghasilkan:

Xy =[h1 hiz hiz har hap hps] (5)
X, = [hy1 hyy haz har hsz  has] (6)
x3=[h31 hsz hzz har hay hys] (7

Selanjutnya, menggabungkan input hasil flattening dan target menjadi pasangan

data. Sehingga didapatkan:

X1 hi1 hiz his har Ry hys
X =|[X2[=|ha1 hzz hpz3 hz1 hay h33 (8)
X3 hzy hzz haz hgy hgy hys
V1 h3y  hzy  hss
Y=|Y2[=|h4y1 hsz hus (©)
Y3 hsy  hsy hs3
Maka, hasil akhir data tersebut yaitu;
D= {(xll yl): (x2J yZ)' (X3, y3)} (10)

Dengan terbentuknya pasangan data (x;, y;), maka struktur data sekuensial
selanjutnya dapat digunakan dalam proses model perediksi berbasis neural
network.

2.6. Feedforward Neural Network (FFNN)

Feedforward Neural Network (FFNN) merupakan salah satu arsitektur

paling dasar dalam jaringan saraf tiruan (Artifical Neural Network/ANN), di mana

aliran informasi hanya bergerak maju dari input ke output, tanpa sirkulasi (loop)
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atau umpan balik (Malik et al., 2013). Jaringan ini biasanya terdiri dari tiga
lapisan utama, yaitu input layer, hidden layer dan output layer. Input layer
bertugas menerima data awal, hidden layer memproses data melalui kombinasi
linear dan fungsi aktivasi non-linear, dan output layer memberikan hasil akhir
berupa prediksi atau klasifikasi (Malik et al., 2013).

Setiap neuron dalam FFNN bekerja dengan prinsip yang sederhana namun
kuat. Neuron menerima input berupa vektor fitur

X = (X1,X2, ., Xp)
Misalkan n = 80 pada vektor input x, maka;
x= (x; x, " Xgo) (11)

Dan bobot sinaptik dinyatakan dalam vektor baris W, dan bias dinotasikan dengan

b. Dinotasikan sebagai berikut:

Wi,1 Wiz ... Wigo b,
W21 Wa2 ... Wzgo b
W= : : g : , b= :2 (12)
Was6,1 W2s62 ' W256,80 b,se

Vektor input x terlebih dahulu ditranspose untuk menyesuaikan dimensi dengan
matriks bobot, sehingga proses matriks dapat dilakukan secara matematis sesuai
kaidah. Dilanjutkan dengan langkah pertama yaitu operasi linear pada hidden

layer pertama, operasi ini menghasilkan:

A=wx"+b
Wi Wiz ... Wigo X1 by
W21 W22 ... W2g0 Xy b,
= : : - : : + .
W2s61 W2s62 7" W2s680/ \X80 byse

Wy 1X1 + Wy X5 + -+ Wy goXge + by
Wy 1X1 + Wy Xy + - + Wy goXgo + b

W3s6,1X1 + Was62X2 + - + Was6 80Xg0 + D256
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a,
a;

(13)

A256
Kemudian dilewatkan ke fungsi aktivasi non-linear, fungsi aktivasi o diterapkan
setiap elemen untuk menghasilkan output non-linear dari hidden layer pertama.
Output ini menjadi input bagi lapisan berikutnya, maka didapatkan;
F=0(4)

o(ay)
g (flz)

o (az56)

fi
_| f2 (14)

f256
Langkah selanjutnya yaitu operasi linear pada hidden layer kedua, misalkan

bobot untuk lapisan kedua dinyatakan dengan:

V11 Vi2 -« V1256 C1
V21 V22 ... V1265 cy

V= : : : , €= : (15)
V281 Vi2g2 °°° V128256 C128

Sehingga, operasi ini menghasilkan:

B=VF +c
Vi1 V12 .. V1256 fi \ C1
| V21 V22 ... V1265 | f, L[ €2
Vi1 Vizg2 ™ V128,256 \fzse.) C128

V11f1 + Vi2fo + o+ V12s6f256 + €1
Vy1f1 + Vaafo + 0+ Vaasefa56 T C2

Vi2g1f1 + Vi2s2f2 + " + V1i28256/256 T C128
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€1
_| € (16)

€128

Kemudian dilewatkan ke fungsi aktivasi non-linear, maka didapatkan:

G =o(B)

a(ey)
U(.ez)

0-(9.128)

91
Qz (17)

Y9128
Langkah terakhir, vektor hasil aktivasi G dikombinasikan vektor bobot output u

dengan bias d untuk menghasilkan output akhir prediksi y, sehingga diperoleh:

y =uG+d
U1 Uz ... Uji2g g1 dq
U1 Uz ... U128 g2 + d,

U101 U102 °°° Uq0,128 J128 dio

Y1
(18)

Representasi dari arsitektur FFNN, dapat dilihat pada Gambar 2.4 berikut.
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Gambar 2.4 tersebut merupakan representasi arsitektur FFNN dengan struktur
berlapis yang terdiri dari satu lapisan input, dua lapisan tersembunyi (hidden
layer), dan satu lapisan output. Gambar ini secarah utuh menggambarkan alur
transformasi data dari input mentah hingga menjadi output akhir.

2.7. Mean Squared Error (MSE)

Mean Squared Error (MSE) adalah metrik yang digunakan untuk mengukur
kualitas hasil prediksi model dengan menghitung rata-rata dari kuadrat selisih
antara nilai prediksi dan nilai aktual. Nilai MSE yang lebih kecil menunjukkan
bahwa kesalahan prediksi model relatif rendah, sehingga model dianggap
memiliki performa yang baik (Nugroho et al., 2024). Secara matematis, MSE

dituliskan sebagai
n
1 5.)2
MSE = ;Z(}’i — )
i=1

Pada formula tersebut, n adalah jumlah data, y; merupakan nilai aktual, dan

¥; merupakan nilai prediksi. Nugroho (2024) menyatakan bahwa MSE digunakan
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sebagai fungsi kerugian (loss function) saat melatih model karena memberikan
ukuran yang jelas terhadap kesalahan prediksi, serta sensitif terhadap error yang
besar sehingga membantu proses konvergensi model secara lebih stabil
dibandingkan MAE.

2.8. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) adalah indikator yang digunakan untuk
mengevaluasi kinerja model dengan cara menghitung rata-rata besarnya selisih
antara nilai yang diprediksi dan nilai aktual. Nilai MAE yang semakin kecil
menunjukkan prediksi model semakin mendekati data sebenarnya, sehingga
tingkat akuasi semakin baik (Nugroho et al., 2024). Hubungan matematis MAE

ditulis sebagai berikut:
n
MAE = 1Z| A
'y ’ Vi = Vi
=

Berbeda dengan Mean Squared Error (MSE) yang menghitung rata-rata
kuadrat selisih antara nilai prediksi dan nilai aktual, MAE hanya mengambil nilai
absolut dari selisih tersebut tanpa mengkuadratkan. Pada MAE, arah kesalahan
tidak diperhitungkan karena yang diukur hanya besar selisih antara nilai prediksi
dan nilai aktual. Baik kesalahan bernilai positif maupun negatif akan memiliki
kontribusi yang sama terhadap nilai MAE (Nugroho et al., 2024).

2.9. Metrik Evaluasi Model

Evaluasi dan metrik performa merupakan aspek penting dalam menilai dan
membandingkan suatu model. Melalui metrik ini, diperoleh gambaran mengenai
seberapa baik model mampu menyelesaikan tugas yang diberikan, seperti proses

klasifikasi atau segmentasi (Sathyanarayanan & Tantri, 2024). Menurut
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Sathyanarayanan & Tantri (2024), beberapa indikator evaluasi yang umum
digunakan dalam penilaian antara lain sebagai berikut:
1. Akurasi
Akurasi merupakan metrik evaluasi yang paling sederhana dan paling
umum digunakan dalam klasifikasi. Metrik ini mengukur proporsi prediksi
yang benar baik prediksi positif maupun negatif dari keseluruhan data uji.
Secara matematis, akurasi dihitung dengan formula berikut:

(TP + TN)
(TP + FP + TN + FN)

Akurasi =

Di mana:
TP: True Positive (prediksi benar kelas positif)
TN : True Negative (Prediksi benar kelas negatif)
FP : False Positive (prediksi salah positif)
FN . False Negative (Prediksi salah negatif)

Meskipun akurasi mampu menunjukkan performa model secara
keseluruhan, metrik ini berpotensi menimbulkan bias apabila data tidak
seimbang atau proporsi tiap kelas tidak merata.

2. Presisi (Precision)

Presisi mengukur tingkat ketepatan model dalam memprediksi kelas
positif. Nilai presisi menunjukkan seberapa banyak prediksi yang benar-
benar positif dibandingkan dengan seluruh prediksi positif yang dihasilkan

model. Formula presisi sebagai berikut:

TP

p i =
resisli (TP n FP)
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3. Recall
Recall mengukur sejauh mana kemampuan model dalam menemukan
seluruh data positif yang sebenarnya ada pada dataset. Recall tinggi
menunjukkan bahwa model mampu menangkap sebagian besar kelas positif.

Formula Recall sebagai berikut:

TP
(TP + FN)

Recall =

4. F1_Score
F1_score merupakan ukuran gabungan antara presisi dan recall. Nilai
ini dihitung dengan rata-rata harmonis dari presisi dan recall untuk
memberikan keseimbangan antara keduanya. Formula F1_score sebagai

berikut:

2 X (Presisi X Recall)

F1_S =
~eore (Presisi + Recall)

2.10. Integrasi Keislaman Prediksi Mutasi dengan Al-Qur’an & Hadits
Al-Qur’an tidak secara langsung membahas mengenai mutasi virus ataupun
teknologi prediktif seperti neural network, namun terdapat ayat-ayat yang
menekankan pentingnya menjaga kesehatan, keselamatan jiwa, dan penggunaan
akal untuk menyelesaikan berbagai persoalan, termasuk penyakit menular. Dalam
Islam, tubuh manusia adalah titipan dari Allah SWT. yang harus dirawat dan
dijaga dengan baik. Hal ini sejalan dengan usaha para ilmuan dalam memprediksi
penyebaran penyakit melalui pendekatan berbasis teknologi dan sains. Seperti

disebutkan dalam QS.Al-Bagarah ayat 195:

E £ o8 o~

o q\ \W\j S8 Sl LAl A g o A
@Ho : M>= :JQ\
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“Dan infakkanlah (hartamu) di jalan Allah, dan janganlah kamu jatuhkan (diri sendiri)
ke dalam kebinasaan dengan tangan sendiri, dan berbuat baiklah. Sungguh, Allah
menyukai orang-orang yang berbuat baik.” (QS.Al-Bagarah: 195).

Ayat ini menjadi dasar anjuran untuk melakukan upaya perlindungan dari bahaya,
termasuk wabah penyakit seperti COVID-19.

Menurut Tafsir Al-Muyassar, ayat tersebut menekankan bahwa setiap
Muslim harus menjaga dirinya dan masyarakat dari hal-hal yang membahayakan
(Mashudi, 2020). Allah SWT melarang perbuatan yang membawa pada at-
tahlukah (&), yaitu segala bentuk kebinasaan atau kehancuran, baik berupa
kelalaian terhadap kewajiban, abai terhadap kesehatan, maupun membiarkan
kerusakan menyebar. Dalam konteks ini, pengembangan model prediksi mutasi
virus menjadi upaya preventif untuk membantu mengantisipasi munculnya varian
berbahaya secara lebih cepat.

Upaya pencegahan tersebut juga ditegaskan dalam sebuah hadis Rasulullah

SAW yang diriwayatkan dari Abu Hurairah RA:

g g s or A - - g0 g s s - 2 ° B

Q\ ‘°J"J'AL5’\ cC}&Y\d&ch)\@ f(g_/ULﬂLJJ.‘}\JU cwj.:J:AU\ML:Jo-

///J//o aJJ/////

/} 2 A8 0 oo o0p IR

(\'\Y LSJBLJ\ o\jj) o-\.: oSl J;\ ngJgYVfJo-\ ub csuf,pjugl_@_&},\_,

“Abdullah bin Yusuf telah menceritakan kepada kami. la berkata: Malik telah
mengabarkan kepada kami, dari Abu az-Zinad, dari al-4 raj, dari Abu Hurairah,
bahwa Rasulullah# bersabda:

‘Dan apabila salah seorang di antara kalian bangun dari tidurnya, maka
hendaklah ia membasuh tangannya sebelum memasukkannya ke dalam air
wudhunya, karena salah seorang dari kalian tidak mengetahui di mana
tangannya bermalam.’” (HR. Bukhari no. 162).

Hadis ini menekankan bahwa menjaga kebersihan, baik jasmani maupun rohani,

merupakan bagian penting dari keimanan seorang Muslim. Dalam konteks
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modern, termasuk pada masa pandemi COVID-19, menjaga kebersihan seperti
mencuci tangan, menjaga lingkungan tetap steril, dan menghindari tempat yang
kotor merupakan langkah nyata untuk menghindari penularan virus. Dengan
demikian, perintah menjaga kebersihan bukan sekadar tuntutan kesehatan,
melainkan juga kewajiban agama yang memiliki nilai spiritual tinggi.

Selain itu, Rasulullah SAW juga memberikan arahan dalam menghadapi

wabah dengan Hadits berikut:

crp_J\ L5;\ J") QJM\JMJ}QJ\.A GA.:J\;— JU M.U\MUJJJJAJ\M\:J\;-

‘X.U\ J}MJ JU"\;LM:\ JLA.B df@\@&w)”&\éﬁadﬂ\ Jj.w) QUAW\A\J Jq)

2 Ro o - - g - 20 o~ ° o & o~

\)\}3 \j"f” )’\3 \.G_: r...v) U’pJL C@J \J\j (.4\...1.9 \‘j.ﬁu\.ﬁ.i )/\3 u,aj\_idu r..m.w \JU (.(,&L}

(Y EVY ng\.xJ\ o\)J) 4

“Abdul Aziz bin Abdullah telah menceritakan kepada kami. la berkata. Malzk
telah menceritakan kepadaku, dari Muhammad bin al-Munkadir, dan dari Abu
an-Nadhr, maula ‘Umar bin ‘Ubaidillah, dari ‘Amir bin Sa‘d bin Abi Waqqash,
dari ayahnya (Sa‘d bin Abi Wagqqash), bahwa ia mendengar Sa‘d bertanya
kepada Usamah bin Zaid:

‘Apa yang engkau dengar dari Rasulullah # tentang tha ‘un (wabah)?’

Maka Usamah menjawab: Rasulullah #bersabda:

‘Tha ‘un adalah suatu kotoran (azab) yang dikirimkan kepada suatu kelompok
dari Bani Israil atau kepada orang-orang sebelum kalian. Apabila kalian
mendengar tha ‘un terjadi di suatu negeri maka janganlah kalian memasukinya.
Dan apabila tha‘un terjadi di negeri tempat kalian berada, maka janganlah
kalian keluar darinya untuk melarikan diri darinya.’”(HR. Bukhari no. 3473).

Hadis ini menunjukkan bahwa prinsip karantina telah diajarkan Rasulullah
SAW sejak 14 abad lalu, dan tetap relevan dalam penanganan pandemi modern
karena sejalan dengan praktik pembatasan mobilitas dan isolasi wilayah untuk
mencegah penyebaran COVID-19. Prediksi mutasi virus dapat dipandang sebagai
ikhtiar manusia untuk lebih cepat mengambil langkah perlindungan sebelum
kerusakan meluas. Integrasi antara Al-Qur’an, hadis, dan sains modern

mencerminkan semangat Islam yang menekankan pentingnya menjaga jiwa,
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kesehatan, dan memanfaatkan ilmu demi kemaslahatan umat. Hal ini sejalan
dengan firman Allah SWT dalam QS. Al-Mujadilah ayat 11:

EV_LJ; el I ey YV_<._,, oo J,\J\ ] o RN SENER

/ O ‘oo 5 G,
“.Allah akan meninggikan orang-orang yang beriman di antaramu dan orang-
orang yang diberi ilmu beberapa derajat. Allah melihat pada apa yang kamu
kerjakan.” (QS.Al-Mujadilah: 11)

Ayat ini menegaskan bahwa ilmu bukan hanya bernilai duniawi, tetapi juga
menjadi sarana memperoleh kemuliaan di sisi Allah SWT. Karena itu, penelitian
mutasi SARS-CoV-2 melalui model prediksi berbasis Feed Forward Neural
Network dapat dipandang sebagai ibadah ketika ditujukan untuk mencegah
kerusakan dan menjaga kehidupan.

2.11. Kajian Prediksi Mutasi Virus dengan Teori Pendukung

Prediksi mutasi virus, khususnya pada SARS-CoV-2 memperlukan
pemahaman dasar mengenai struktur dan karakteristik biologis dari virus itu
sendiri. SARS-CoV-2 memiliki empat protein struktural utama, yaitu; Spike (S),
Envelope (E), Membrane (M), dan Nukleokapsid (N). Di antara keempatnya,
protein spike berperan penting karena bertanggung jawab dalam proses masuknya
virus ke dalam sel inang melalui pengikatan dengan reseptor ACE2. Pada protein
spike ini terdapat cleavage site, yaitu titik pemotongan oleh enzim inang furin.
Pemotongan tersebut menentukan aktivitas spike dan mempengaruhi kemampuan
virus menginfeksi sel. Mutasi di sekitar situs cleavage telah terbukti
meningkatkan infektivitas dan kemudahan penularan, sehingga prediksi mutasi di

area ini sangat penting untuk memahami evolusi virus dan mangantisipasi

lonkajan kasus.
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Dalam konteks data, urutan genetik virus dapat direpresentasikan sebagai
data sekuensial. Oleh karena itu, pendekatan maching learning yang sesuai adalah
menggunakan model yang mampu menangani urutan, salah satunya adalah
jaringan saraf tiruan (artificial neural network/ANN). Salah satu arsitektur dasar
yang dapat digunakan adalah Feedforward Neural Network (FFNN), yang bekerja
dengan menghubungkan lapisan input ke lapisan output melalui satu atau lebih

lapisan tersembunyi untuk mempelajari pola dalam data sekuensial.
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3.1.Jenis Penelitian

Penelitian ini menggunakan pendekatan kuantitatif karena semua variabel
penelitian dinyatakan dalam angka dan dianalisis menggunakan teknik statistik
serta pemodelan matematis.
3.2.Data dan Sumber Data

Data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu
data yang diperoleh dari sumber yang telah ada sebelumnya dan tersedia secara
publik. Data diakses melalui NCBI Virus Database (National Centerfor
Biotechnology Information) yang menyediakan informasi sekuens virus secara
global, termasuk SARS-CoV-2. Fokus utama dalam penelitian ini adalah sekuens
Surface Glycoprotein (spike protein) dari virus SARS-CoV-2, khususnya pada
situs cleavage yang berperan penting dalam proses pematangan protein dan
infektivitas virus. Data diunduh dalam format FASTA.

Proses penyaringan data mencakup seleksi berdasarkan host yaitu manusia
untuk memastikan relevansi biologis, kelengkapan sekuens untuk menjaga
integritas data, penghapusan sekuens dengan karakter ambigu untuk menghindari
kesalahan analisis, serta pemilihan sekuens yang tergolong dalam Pango lineage
Omicron (B.1.1529) untuk memfokuskan studi pada varian yang menjadi
perhatian. Setelah menerapkan proses penyaringan di NCBI diperoleh total 1.914
sekuens spike protein. Dataset ini digunakan untuk mendeteksi mutasi di sekitar

situs cleavage dan menganalisis perbedaan pola sekuens antarvarian.

30
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3.3.Teknik Pengumpulan Data
Teknik pengambilan data dilakukan dengan langkah-langkah berikut:
1. Akses basis data
Akses situs NCBI Virus untuk memperoleh data sekuen yang relevan
dengan objek kajian. Situs NCBI Virus dapat di akses pada link berikut;

https://url-shortener.me/2TLG

2. Navigasi ke visual data dashboard
Pada halaman utama, pilih menu visual data dashboard, kemudian klik opsi
All Nucleotides untuk menampilkan seluruh data sekuens virus dalam
bentuk nukleotida.

3. Penyaringan berdasarkan jenis virus
Pada bagian Refine Results, dilakukan penyaringan berdasarkan jenis virus
dengan memilih opsi Virus/Taxonomy, kemudian memasukkan Severe
acute respiratory syndrome coronavirus 2 (TaxID: 2697049) untuk
memfokuskan data pada SARS-CoV-2.

4. Penyaringan berdasarkan protein target
Aktifkan filter Has Protein pada panel Refine Results, kemudian ketik
Surface glycoprotein untuk memperoleh data terkait Spike protein.

5. Penyaringan berdasarkan varian (lineage)
Masih pada panel Refine Results, pilih opsi Pango Lineage dan masukkan
kode lineage varian Omicron yaitu B.1.1.529 guna menyaring sekuens
berdasarkan varian spesifik. Setelah itu, buka kolom protein.

6. Penyaringan berdasarkan host (Human)

Pada panel Refine Results, dilakukan penyaringan berdasarkan host dengan


https://url-shortener.me/2TLG
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memilih opsi Host, kemudian mengetik dan memilih Homo sapiens

(human), TaxID: 9606. Langkah ini memastikan bahwa seluruh data virus

yang diperoleh berasal dari isolat manusia, bukan dari hewan atau sumber

host lainnya.

7. Penyaringan berdasarkan karakter ambigu

Aktifkan filter untuk Ambiguous Characters dan tetapkan maksimum 0

untuk memastikan sekuens yang diperoleh tidak mengandung huruf atau

simbol yang tidak jelas, sehingga mengurangi kesalahan pada analisis

mutasi.

8. Pengunduhan data

Setelah data disaring, sekuens diunduh dalam format FASTA. Proses

pengunduhan dilakukan dengan memilih opsi Download All Results,

kemudian memilih protein dan mengklik Download All Records.

Selanjutnya digunakan Build Custom untuk menentukan informasi yang

ingin disertakan yaitu Accession, GenBank Title, dan Collection Date.

3.4.Teknik Analisis Data
Analisis dalam penelitian ini dilakukan menggunakan Python sebagai
bahasa pemograman utama. Adapun teknik analisis data adalah sebagai berikut:
1. Pra-pemrosesan data
a. Penyelarasan sekuens dilakukan menggunakan MAFFT dengan data

sekuens protein Spike varian Omicron dan sekuens referensi Wuhan
(YP_009724390.1) sebagai berkas rujukan. Proses dilakukan melalui opsi
Align long sequences to a short MSA agar sekuens panjang dari varian

Omicron diselaraskan mengikuti struktur sekuens referensi, sehingga
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posisi konservatif tetap terjaga, dengan mengunggah sekuens referensi
pada bagian Reference alignment file dan sekuens Omicron pada
Additional sequences file. Setelah itu, penyelarasan dijalankan dengan
menekan tombol Submit, dan hasil alignment diperoleh dalam format
FASTA untuk analisis lebih lanjut.

b. Ekstrasi wilayah lokal di sekitar furin cleavage site (motif PRRAR)
dilakukan secara terotomatisasi menggunakan pustaka Biopython, dengan
menetapkan sejumlah asam amino sebelum dan sesudahnya.

c. Hasil ekstraksi kemudian disusun ke dalam struktur DataFrame
menggunakan pustaka pandas dan diurutkan berdasarkan informasi tanggal
yang diperoleh dari header file FASTA.

d. Setiap asam amino dikonversi menjadi vektor integer melalui integer
encoding sebagai bentuk represantasi numerik untuk input model.

. Pengaturan Data

Dataset yang telah direpresentasikan secara numerik kemudian disusun
menjadi matriks fitur, di mana setiap baris menjadi satu sampel dan setiap
kolom merepresentasikan posisi residu dalam sekuens. Proses pengaturan ini
mengikuti alur sebagai berikut:

a. Windowing
Pembentukan window sesuai konsep pada Persamaan (2) — (4), yaitu
mengambil elemen sekuens secara berurutan sebagai input dan elemen
berikutnya sebagai target. Dengan lag 8, delapan residu digunakan untuk

memprediksi satu residu selanjutnya.
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b. Flattening
Setelah window terbentuk, setiap window diratakan menjadi vektor satu
dimensi mengikuti Persamaan (5) — (7). Pada penelitian ini, window berisi
8 residu disusun menjadi vektor panjang 8, sehingga setiap sampel
memiliki format numerik yang sesuai untuk pemrosesan oleh jaringan
saraf.
c. Pembentukan Input dan Target
Tahap selanjutnya menggabungkan vektor hasil flattening menjadi matriks
input dan seluruh target ke dalam matriks keluaran, sesuai konsep pada
Persamaan (8) dan (9). Dengan penyusunan vertikal ini terbentuk matriks
X dan Y, sehingga seluruh pasangan data dapat diproses secara serempak
oleh model.
3. Pemisahan dataset
Dataset dibagi menjadi tiga bagian, yaitu data latih (70%), data validasi
(15%) dan data uji (15%). Pembagian ini bertujuan untuk memastikan proses
pelatihan, validasi, dan evaluasi dilakukan secara terpisah sehingga penilaian
kinerja model berlangsung obyektif.
4. Desain arsitektur FFNN
Model Feedforward Neural Network (FFNN) dikembangkan
menggunakan framework TensorFlow pada platform Kaggle. Arsitektur
jaringan terdiri dari tiga lapisan Dense dengan satu lapisan Dropout yang
ditempatkan setelah lapisan pertama. Rinciannya adalah sebagai berikut:
a. Lapisan pertama (Dense, 256 unit)

Lapisan ini berperan sebagai pemrosesan awal untuk mengekstraksi fitur,
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dengan menerapkan operasi linear sesuai Persamaan (11) — (13) dan
mengalirkan hasilnya ke fungsi aktivasi pada Persamaan (14).
b. Lapisan Dropout (0,1)
Dropout ditempatkan setelah lapisan pertama untuk mengurangi risiko
overfitting dengan menonaktifkan sebagian neuron secara acak selama
pelatihan.
c. Lapisan kedua (Dense, 128 unit)
Lapisan ini menyempurnakan representasi fitur sebelum menuju lapisan
output. Dropout setelah lapisan pertama mengurangi overfitting dengan
menonaktifkan sebagian neuron secara acak. Operasi linear sesuai
Persamaan (15) — (16) kemudian diaktifkan kembali mengikuti Persamaan
(17) untuk memperdalam ekstraksi pola.
d. Lapisan output (Dense, 10 unit)
Memproyeksikan fitur lapisan kedua ke 10 unit keluaran menggunakan
operasi linear akhir sebagaimana dinyatakan pada Persamaan (18) tanpa
aktivasi tambahan.
Pada tahap pelatihan menggunakan fungsi kerugian Mean Sequared Error
(MSE), Mean Absolute Error (MAE) dan algoritma optimasi Adam.
5. Prediksi mutasi
Setelah model dilatih dan dievaluasi, model digunakan untuk
memprediksi potensi mutasi pada sekuens spike protein baru. Input berupa
sekuens yang telah melalui pra-pemrosesan, sedangkan output yang
dihasilkan berupa nilai numerik yang merepresentasikan kemungkinan mutasi

di sekitar FCS. Nilai keluaran tersebut kemudian dikonversi kembali ke huruf
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asam amino melalui proses decoding, sehingga prediksi akhir tampil dalam
bentuk sekuens biologis yang mudah diinterpretasikan.
6. Evaluasi model
Model tersebut dievaluasi menggunakan metrik akurasi, presisi, recall,
dan F1_score. Akurasi menunjukkan ketepatan prediksi secara keseluruhan,
presisi menggambarkan proporsi prediksi positif yang benar, recall
menunjukkan kemampuan model dalam menemukan seluruh kasus mutasi,
sedangkan F1_score menyeimbangkan presisi dan recall melalui rata-rata
harmonik. Selain itu, evaluasi dilakukan dengan membandingkan kinerja
FFNN terhadap model baseline sebagai tolok ukur objektif, serta dilanjutkan
dengan analisis kesalahan dan identifikasi hotspot mutasi untuk memahami
pola prediksi dan keterbatasan model.
Untuk mempermudah pemahaman terhadap tahapan penelitian ini, alur

teknik analisis data pada disajikan dalam bentuk flowchart berikut.

Mulai Pengambilan Data Sekuens Multiple Sequence Alignment
b (NCBI Virus, FASTA) (MAFFT + Referensi Wuhan)

Konversi Asam Amino : Ekstraksi Wilayah
ke Numerik Furin Cleavage Site (FCS)

Windowing | Flattening Matriks Input (X)

(Lag = 8) ‘ (Vektor 1 Dimensi) dan Target (Y)

. L 1 PENN Pemisahan Dataset

’ Pelatihan Model F—{ Perancangan Model FFNN F—{ T e ]

Penyusunan Data
dan Pengurutan Tanggal

Evaluasi Model
MSE, MAE, Akurasi

Selesai

Gambar 3 1 Flowchart Teknik Analisis Data



BAB IV
HASIL DAN PEMBAHASAN

4.1 Penerapan Model FFNN Pada Prediksi Mutasi
Pada bagian ini dibahas penerapan model Feedforward Neural Network
(FFNN) dalam melakukan prediksi mutasi. Model FFNN digunakan untuk
mempelajari pola perubahan data sekuensial berdasarkan informasi historis
sehingga mampu menghasilkan prediksi mutasi pada langkah berikutnya.
4.1.1 Deskripsi Data Penelitian

Setiap sekuens dilengkapi dengan metadata yang mencakup tanggal
isolasi dan identitas varian. Dari keseluruhan data, sebanyak 1.914 sekuens
memiliki informasi waktu isolasi yang lengkap. Rentang waktu pengumpulan

data mencakup Desember 2019 hingga Februari 2023.

Tren Jumlah Sekuens per Bulan
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Gambar 4.1 Tren Jumlah Sekuens SARS-CoV-2 Per Bulan

Gambar 4.1 menunjukkan distribusi jumlah sekuens berdasarkan waktu
isolasi. Pola tersebut merepresentasikan fase awal kemunculan virus hingga

masa dominasi varian Omicron yang meningkat tajam pada akhir 2021 hingga
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awal 2022 serta menggambarkan tren pengumpulan data yang mengikuti

dinamika surveilans genomik global terhadap SARS-CoV-2.

Distribusi jumlah 'X' per sekuens
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Gambar 4.2 Distribusi Jumlah ‘X’ Per Sekuens SARS-CoV-2

Berdasarkan pemeriksaan awal, seluruh sekuens protein menunjukkan
kualitas yang sangat baik, ditandai dengan tidak ditemukannya residu tidak
teridentifikasi (‘X’) pada keseluruhan dataset. Hal ini tampak pada Gambar 4.2,
di mana distribusi jumlah ‘X’ hanya berada pada nilai nol, menandakan bahwa
setiap sekuens memiliki tingkat kelengkapan yang optimal dan layak digunakan

untuk tahap analisis berikutnya.
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Gambar 4. 3 Histrogram Jumlah Duplikasi Sekuens SARS-CoV-2
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Distribusi karakter ambigu per sekuens
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Gambar 4. 4 Distrubi Karakter Ambigu Per Sekuens SARS-CoV-2

Selain pemeriksaan metadata, dilakukan pula pemeriksaan terhadap
keberadaan sekuens duplikat dan karakter ambigu. Hasil pemeriksaan sekuens
duplikat ditunjukkan pada Gambar 4.3, di mana seluruh 1.915 sekuens
teridentifikasi sebagai unik tanpa adanya baris duplikat. Selanjutnya,
pemeriksaan karakter ambigu yang meliputi tanda hubung (—) dan titik (.)
ditampilkan pada Gambar 4.4, yang menunjukkan bahwa seluruh sekuens tidak
mengandung karakter ambigu. Kondisi ini mengindikasikan bahwa dataset telah

bersih dan konsisten.

Frekuensi AA per Posisi (proporsi)
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Gambar 4.5 Heatmap Frekuensi Asam Amino per Posisi pada Region FCS
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Setelah penyelarasan menggunakan MAFFT, area FCS yang dianalisis
mencakup 10 residu (posisi 684—-693 terhadap referensi Wuhan) dan dievaluasi
berdasarkan distribusi frekuensi serta variabilitas setiap posisi. Hasil visualisasi
pada Gambar 4.5 menunjukkan heatmap frekuensi kemunculan asam amino
pada setiap posisi. Sebagian besar posisi, hanya memiliki satu residu dominan
dengan proporsi mendekati 1,0, yang menunjukkan sifatnya yang sangat
konservatif. Sebaliknya, posisi 687 dan 689 menampilkan variasi frekuensi yang
lebih tinggi dengan lebih dari satu residu muncul dalam proporsi signifikan,
sehingga dapat diidentifikasi sebagai hotspot mutasi.

Analisis ini diperkuat oleh hasil perhitungan entropi pada Gambar 4.6.
Nilai entropi yang tinggi menunjukkan variabilitas yang besar, sedangkan nilai
mendekati 0 mencerminkan stabilitas residu. Sesuai hasil visualisasi, posisi 684
(0,72) dan posisi 686 (0,84) memiliki entropi tertinggi dan dapat diidentifikasi
sebagai hotspot mutasi. Sebaliknya, posisi lainnya seperti 687-693 memiliki
entropi mendekati nol, menandakan bahwa residu pada posisi tersebut sangat
stabil. Temuan ini menegaskan bahwa variasi pada region FCS hanya

terkonsentrasi pada sebagian kecil posisi.
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Gambar 4.6 Nilai Entropi Asam Amino pada Setiap Posisi FCS
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4.1.2 Pra-Pemrosesan Data
Data sekuens protein spike varian Omicron dan sekuens referensi Wuhan
(YP_009724390.1) diproses dan diselaraskan menggunakan MAFFT untuk

memastikan setiap residu berada pada posisi yang konsisten.

Tabel 4.1 Cuplikan Data Pertama Sebelum Proses Penyelarasan
ID Sequence Length

YP_009724390.1 |..QTQTNSPRRARSVASQSIIAYTM...| 1273
XKD21093.1 |..QTQTKSHRRARSVASQSIIAYTM..| 1273
XKB59856.1 |..QTNSHRRARSVASQSIIAYTMSL...| 1271
XKB59892.1 |..QTQTKSHRRARSVASQSIIAYTM..| 1273
XKB61116.1 |..SHRRARSVASQSIIAYTMSLGAE...| 1268

A W N k| O

1914] QUA30928.1 |..TNSHRRARSVASQSIIAYTMSLG...| 1048

Cuplikan data sebelum proses penyelarasan ditampilkan pada Tabel 4.1,
yang menunjukkan bahwa setiap sekuens memiliki panjang yang berbeda.
Untuk melihat data secara lebih lengkap, seluruh detailnya disajikan pada
bagian Lampiran 1. Variasi panjang ini membuat proses penyelarasan (Multiple
Sequence Alignment/MSA) diperlukan untuk menyamakan posisi residu,
sehingga setiap kolom merepresentasikan posisi yang homolog dan analisis
mutasi dapat dilakukan secara konsisten.

Gambar 4.7 menampilkan distribusi jumlah sekuens berdasarkan
panjangnya. Terlihat bahwa sebagian besar sekuens berada pada rentang 1268
1274, dengan panjang 1270 dan 1268 sebagai kelompok yang paling dominan.
Pola ini menunjukkan bahwa meskipun terdapat sedikit variasi panjang,

mayoritas sekuens tetap berada pada kisaran panjang yang relatif konsisten.
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Gambar 4.7 Distribusi Jumlah Per-Panjang sekuens Furin SARS-CoV-2

Selanjutnya melakukan proses penyelarasan menggunakan MAFFT untuk

menyamakan posisi residu pada seluruh sekuens. Setiap sekuens kemudian

disejajarkan sehingga gap (

(32

) ditambahkan pada posisi tertentu untuk

menyesuaikan perbedaan panjang. Dengan cara ini, residu yang homolog berada

pada kolom yang sama, mutasi dapat diidentifikasi secara tepat, dan seluruh

sekuens siap digunakan untuk analisis lanjutan.

Tabel 4.2 Cuplikan Data Pertama Setelah Proses Penyelarasan di Sekuens

ID Sequence Length
0 |YP_009724390.1| 2019-12 |..TQTNSPRRARSVASQS...| 1279
1 XKD21093.1 2022-07-20 |...TQTKSHRRARSVASQS...| 1279
2 XKB59856.1 2023-01-01 |...TQTNSHRRARSVASQS...| 1279
3 XKB59892.1 2023-01-01 |...TQTKSHRRARSVASQS...| 1279
4 XKB61116.1 2023-01-01 |...TQTNSHRRARSVASQS...| 1279
1914 QUA30928.1 2021-02-24 |.. TQTNSHRRARSVASQS...| 1279
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Tabel 4.2 menampilkan hasil penyelarasan sekuens protein Spike yang
memuat identitas sampel, sekuens hasil alignment, serta panjang masing-masing
sekuens. Seluruh sampel memiliki panjang yang konsisten, yaitu 1279 residu,
yang menunjukkan bahwa proses penyelarasan berhasil mempertahankan
struktur sekuens. Selanjutnya, sekuens diurutkan berdasarkan tanggal
pengambilan sampel untuk merepresentasikan urutan temporal kemunculan
mutasi, kemudian dilakukan ekstraksi residu pada posisi FCS yang hasilnya

disajikan pada Tabel 4.3.

Tabel 4.3 Cuplikan Data Sekuens Pertama Hasil Konversi Asam Amino ke
Representasi Numerik

Tanggal FCS_Sequence Seq_int
2019-12-01 | NSPRRARSVA | [3,16,15,2,2,1, 2,16, 20, 1]
2020-10-20 | NSPRRARSVA | [3,16, 15,2, 2,1, 2, 16, 20, 1]
2020-10-26 | KSHRRARSVA | [12,16,9,2,2,1, 2, 16, 20, 1]
2020-11-23 | KSHRRARSVA | [12,16,9,2,2,1, 2,16, 20, 1]
2021-02-24 | NSHRRARSVA | [3,16,9,2,2,1, 2, 16, 20, 1]

| Wl N | O

1914 | 2023-02-13 | NSPRRARSVA | [3,16, 15,2, 2,1, 2, 16, 20, 1]

Tabel 4.3 menampilkan penyelarasan region furin cleavage site (FCS)
pada residu 684—693 sehingga variasi residu dapat diamati secara jelas. Sekuens
referensi Wuhan menunjukkan pola NSPRRARSV, sedangkan varian Omicron
memperlihatkan substitusi khas pada wilayah tersebut. Sekuens kemudian
dikonversi ke bentuk numerik agar dapat diproses oleh model machine learning,
dengan pemetaan asam amino sebagai berikut: A=1, R=2, N=3, D=4, C=5, E=6,

Q=7, G=8, H=9, I=10, L=11, K=12, M=13, F=14, P=15, S=16, T=17, W=18,
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Y=19, dan V=20, sedangkan karakter gap (“-”) dan residu ambigu (“X”)
direpresentasikan dengan nilai 0.
4.1.3 Pengaturan Data

Berdasarkan Tabel 4.1 pada bagian sequence integer, data disusun
menjadi matriks fitur, kemudian diproses menggunakan windowing dengan lag
8, di mana delapan residu berurutan digunakan sebagai input untuk
memprediksi residu ke-9 sebagai target. Bentuk matriks hasil konversi

ditunjukkan berikut.

3 16 15 2 2 1 2 16 20 17

3 16 15 2 2 1 2 16 20 1

12 16 9 2 2 1 2 16 20 1
H=[12 16 9 2 2 1 2 16 20 1
3 16 9 2 2 1 2 16 20 1

L3 16 15 2 2 1 2 16 20 1-

Proses pengolahan data dimulai dengan menerapkan windowing pada
matriks H menggunakan lag 8, di mana delapan residu berurutan digunakan
sebagai masukan dan residu berikutnya sebagai target. Setiap hasil windowing
kemudian diratakan melalui flattening menjadi vektor baris yang disusun ke
dalam matriks X, sementara targetnya dihimpun ke dalam matriks Y.
Penggunaan lag 8 bertujuan menangkap konteks lokal dari pola perubahan
residu berdasarkan informasi historis yang cukup, sehingga pasangan data
(x;,y;) yang merepresentasikan hubungan antara konteks residu sebelumnya
dan residu yang diprediksi, dan pasangan inilah yang digunakan dalam tahap

pelatihan model.
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Tabel 4.4 Skema Pembagian Dataset SARS-CoV-2
Lag | n_seq Dimensi Train | Validasi | Test

Input | Output
8 1915 80 10 1334 286 287

Tabel 4.4 menunjukkan bahwa pemisahan dataset diperoleh 1.334 sekuens
yang siap digunakan sebagai data pembelajaran. Dengan lag sebesar 8, setiap
sampel menggunakan delapan residu sebagai input untuk memprediksi residu
berikutnya sebagai output. Konversi ke representasi numerik menghasilkan 80
fitur input dan 10 fitur output pada setiap sampel. Dari total sekuens tersebut
terbentuk 1.915 window data, yang kemudian dibagi secara berurutan menjadi
1.334 data pelatihan (70%), 286 data validasi (15%), dan 287 data pengujian
(15%), sehingga kontinuitas perubahan mutasi tetap terjaga dan risiko data
leakage dapat dihindari.

4.1.4 Hiperparameter Pelatihan dan Penerapan Model FFNN
Pada tahap ini ditetapkan hiperparameter untuk mengatur proses pelatihan

model. Hiperparameter tersebut dirangkum pada Tabel 4.5 berikut.

Tabel 4.5 Hiperparameter pada Proses Pelatihan Model

Optimizer | Learning | Batch | Epoch | Patience (Early | Dropout
rate Size maks Stopping)
Adam 0.001 32 200 10 0.1
SGDM 0.010 32 200 10 0.1
RMSprop | 0.001 32 200 10 0.1

Berdasarkan hasil eksperimen perbandingan optimizer yang ditunjukkan
pada Tabel 4.6, optimizer Adam menunjukkan kinerja terbaik dibandingkan

SGDM dan RMSprop. Adam menghasilkan nilai kesalahan yang lebih rendah
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baik pada data latih maupun data validasi, dengan MSE validasi sebesar
0.006152 dan MAE validasi sebesar 0.030855. Meskipun SGDM memiliki
selisih kesalahan (gap) yang relatif kecil antara data latih dan validasi, nilai
MAE validasinya masih lebih tinggi, yaitu sebesar 0.040673. Sementara itu,
RMSprop menunjukkan perbaikan dibandingkan SGDM dengan MAE validasi
sebesar 0.033883, namun tetap berada di atas Adam. Secara keseluruhan, Adam
dipilih sebagai optimizer terbaik karena mampu mencapai kesalahan prediksi
yang lebih rendah dengan tingkat generalisasi yang tetap terjaga, sehingga lebih

efektif dalam memodelkan pola mutasi sekuens yang bersifat tidak stasioner.

Tabel 4.6 Eksperimen Optimizer pada Model FFNN

Optimizer

MSE

MAE

Train

Val

Gap

Train

Val

Gap

Adam

0.004966

0.006152

0.001186

0.026089

0.030855

0.004767

SGDM

0.005596

0.006373

0.000778

0.037874

0.040673

0.002799

RMSprop

0.005095

0.005972

0.000877

0.029478

0.033883

0.004405

Arsitektur model FFNN yang digunakan ditunjukkan pada Tabel 4.7, yang
terdiri atas dua lapisan dense tersembunyi dengan masing-masing 256 dan 128
neuron, diikuti oleh satu lapisan dense keluaran dengan 10 neuron. Jumlah total
parameter yang digunakan dalam model ini adalah 54.922 parameter, yang
menunjukkan bahwa model memiliki kompleksitas yang relatif moderat
sehingga tetap efisien secara komputasi namun cukup representatif untuk

menangkap pola mutasi antarresidu pada dataset SARS-CoV-2.

Tabel 4.7 Implementasi Model FFNN pada Dataset SARS-CoV-2

Layer Tipe Output Shape | Params
1 Dense (None, 256) 20736
2 Dropout (None, 256) 0
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3 Dense (None, 128) 32896
4 Dense (None, 10) 1290

4.1.5 Hasil Pelatihan dan Konvergensi Loss

Pada penelitian ini, model dilatih selama 30 epoch dengan menggunakan
mekanisme early stopping untuk mencegah overfitting. Berdasarkan hasil
pelatihan, nilai loss (MSE) pada data pelatihan menurun sangat cepat dari nilai
awal yang tinggi menuju sekitar 0.005-0.006, kemudian stabil hingga akhir
proses pelatihan. Sementara itu, nilai MSE pada data validasi juga stabil pada
kisaran 0.006-0.007, tanpa menunjukkan tren peningkatan yang signifikan.
Nilai MAE pelatihan turun secara bertahap dari sekitar 0.12 menuju 0.036,
sedangkan MAE validasi berada di kisaran 0.03-0.04 dengan fluktuasi ringan.
Pola ini menunjukkan bahwa model belajar secara efektif dengan risiko
overfitting yang rendah.

Berdasarkan karakteristik kurva pembelajaran, Barinov et al., (2023)
menegaskan bahwa overfitting terjadi apabila training loss terus menurun secara
konsisten, tetapi validation loss berhenti menurun atau justru mulai meningkat,
sehingga generalization gap membesar dari waktu ke waktu. Sebaliknya,
kondisi ideal ditunjukkan ketika kedua kurva loss bergerak menuju keadaan
stabil dengan generalization gap yang minimal atau mendekati nol. Pada hasil
penelitian ini, validation loss tidak menunjukkan tren kenaikan yang
berkelanjutan dan generalization gap tidak membesar dari epoch ke epoch,
sehingga model dapat disimpulkan berada dalam kondisi pelatihan yang stabil

dan tidak mengalami overfitting.
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History Loss (MSE)
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Gambar 4.8 Kurva History MSE Model FFNN Selama Proses Pelatihan

Gambar 4.9 memperlihatkan bahwa kurva MSE pelatihan turun tajam
hingga sekitar epoch ke-2 sampai ke-3, kemudian mendatar. Kurva validasi
bergerak stabil dekat dengan kurva pelatihan, menunjukkan bahwa performa

model pada data yang belum pernah dilihat tetap konsisten.
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Gambar 4.9 Kurva History MAE Model FFNN Selama Pelatihan

Gambar 4.10 menunjukkan bahwa MAE pelatihan terus menurun,

sedangkan MAE validasi mengalami sedikit fluktuasi, tetapi tetap berada pada
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kisaran yang rendah dan tidak membentuk pola peningkatan yang mengarah
pada overfitting. Secara keseluruhan, kedua grafik menunjukkan bahwa model
FFNN mampu mengikuti pola data dengan baik, di mana hasil prediksi
mendekati nilai aktual meskipun terdapat sedikit variabilitas pada beberapa titik.
4.1.6 Hasil Prediksi Dataset

Berdasarkan hasil prediksi pada Tabel 4.8, model FFNN menghasilkan
urutan nilai numerik yang setelah dibulatkan dan dikonversi kembali menjadi
residu asam amino membentuk sekuens “IPHRRARPY A”.

Tabel 4.8 Hasil Prediksi Model FFNN terhadap Data Uji

Posisi Nilai Nilai Huruf Asam
Prediksi Dibulatkan Amino
1 9.905124 10 I
2 15.187288 15 P
3 8.686368 9 H
4 1.620337 2 R
5 1.785047 2 R
6 1.352342 1 A
7 1.873368 2 R
8 15.358913 15 P
9 19.318659 19 Y
10 1.224479 1 A

Hasil prediksi model FFNN membentuk sekuens IPHRRARPYA, yang
diperoleh dari konversi nilai numerik ke residu asam amino sesuai pemetaan
yang digunakan. Urutan ini menunjukkan bahwa model tidak menghasilkan
prediksi secara acak, karena kemunculan residu bermuatan seperti R (Arginin)
dan H (Histidin) masih mendominasi bagian tengah sekuens. Dominasi Arginin

selaras dengan karakteristik biologis FCS yang umumnya bermuatan positif.
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Komposisi residu pada bagian tengah urutan, yaitu H-R-R-A-R,
memperlihatkan pengelompokan residu bermuatan dan residu kecil yang sering
muncul pada wilayah cleavage dengan tingkat variasi sedang. Pola ini
mengindikasikan bahwa model mampu menangkap hubungan antarposisi residu
yang relatif stabil berdasarkan data latih, sehingga menghasilkan sekuens yang
konsisten dengan kecenderungan mutasi alami pada sebagian besar sekuens.

Di sisi lain, kemunculan residu hidrofobik seperti I (Isoleusin) pada awal
urutan dan Y (Tirosin) pada akhir urutan menunjukkan adanya pergeseran sifat
residu dibandingkan pola yang umum ditemukan pada data latih. Pergeseran ini
menggambarkan kemungkinan arah mutasi alternatif pada beberapa posisi
tertentu, sementara secara keseluruhan prediksi model tetap mempertahankan
relevansi biologis dan dapat digunakan sebagai referensi awal dalam mengamati
dinamika mutasi di sekitar wilayah FCS.

4.2 Performa Kinerja Model FFNN pada Data Furin Cleavage Stie

Evaluasi dilakukan dengan menguji model pada data uji untuk mengukur
kemampuan generalisasi prediksi mutasi pada region FCS. Hasil pengujian
ditunjukkan pada Tabel 4.9, yang memuat metrik kinerja model meliputi Mean
Squared Error (MSE), Mean Absolute Error (MAE), serta tingkat akurasi baik

pada level posisional maupun sekuen penuh.

Tabel 4.9 Evaluasi Kinerja Model FFNN pada Data Uji
MSE MAE Akurasi (%)

(test) | Normalized Skala Asli Posisional |Sekuen Penuh
0.004398 | 0.025283 0.505663 84.66899 0.0
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Berdasarkan Tabel 4.9, model FFNN menghasilkan nilai MSE sebesar
0.004398 dan MAE sebesar 0.025283 pada skala normalisasi, yang menunjukkan
bahwa selisih numerik antara prediksi dan nilai sebenarnya relatif rendah. Pada
skala aslinya, MAE mencapai 0.505663, yang mencerminkan adanya deviasi rata-
rata sekitar setengah unit integer encoding, masih wajar untuk model sederhana
seperti FFNN. Akurasi posisional sebesar 84.66899% menunjukkan bahwa model
mampu memprediksi residu yang benar pada sebagian besar posisi. Namun,
akurasi sekuens penuh sebesar 0% mengindikasikan bahwa model belum mampu
menghasilkan satu rangkaian sekuens lengkap tanpa kesalahan pada salah satu
posisinya. Dengan demikian, meskipun performa posisional cukup baik,
konsistensi prediksi sekuens utuh masih menjadi tantangan utama.

Evaluasi posisional juga dilakukan menggunakan metrik precision, recall,
dan F1_score dengan rata-rata makro untuk memberikan gambaran yang lebih
seimbang terhadap seluruh kelas mutasi. Nilai precision sebesar 0.3996
menunjukkan proporsi prediksi positif yang benar pada seluruh kelas. Nilai recall
sebesar 0.3883 menggambarkan kemampuan model dalam mengenali seluruh
kelas aktual. Sementara itu, F1 score sebesar 0.3938 mencerminkan
keseimbangan antara precision dan recall, sehingga memberikan gambaran umum
bahwa performa klasifikasi posisional model berada pada tingkat moderat tanpa
dominasi kelas tertentu.

4.2.1Model Baseline
Penilaian efektivitas model FFNN dilakukan melalui perbandingan
kinerja dengan dua model baseline, yaitu metode persistence dan moving

average. Perbandingan ini bertujuan memberikan gambaran objektif mengenai
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kemampuan FFNN dalam memprediksi mutasi, baik dari sisi kesalahan prediksi

maupun tingkat akurasi, sebagaimana disajikan pada Tabel 4.10.

Tabel 4.10 Perbandingan Model Baseline dengan FFNN pada Data Uji

Model MAE Akurasi (%)
Normalized | Skala Asli | Posisional |Sekuen Penuh
Persistence 0.019181 0.383624 | 94.912892 | 72.822300
Moving Average 0.019129 0.382578 | 92.404181 | 59.930314
FFENN 0.025283 | 0.505663 | 84.668990 | 0.000000

Tabel 4.10 menunjukkan bahwa performa FFNN masih berada di bawah
dua model baseline. Metode persistence memberikan hasil terbaik dengan MAE
sebesar 0.019181, akurasi posisional 94.912892%, dan akurasi sekuens penuh
72.822300%. Metode ini bekerja dengan menetapkan semua nilai prediksi sama
dengan pengamatan terakhir pada deret waktu (Kiriakidou, 2025). Moving
average juga menunjukkan kinerja yang cukup baik dengan MAE 0.019129 dan
akurasi posisional 92.404181%, meskipun akurasi sekuens penuhnya lebih
rendah. Motode moving average mampu menangkap pola lokal melalui perataan
dua sekuens terakhir, namun sifat perataannya dapat menghilangkan variasi
diskrit yang penting dalam prediksi sekuens penuh (Taufigillah et al., 2024).

Sementara itu, model FFNN menghasilkan MAE 0.025283, akurasi
posisional 84.668990%, dan akurasi sekuens penuh 0%, menunjukkan bahwa
model belum mampu melampaui baseline. Oleh karena itu, penelitian ini
menegaskan perlunya pengembangan lebih lanjut, baik melalui peningkatan
arsitektur, penambahan konteks sekuens yang lebih luas, maupun penggunaan
model nonlinier yang lebih dalam agar prediksi mutasi pada region FCS dapat

dilakukan dengan lebih akurat.



53

Meskipun demikian, hasil ini masih belum melampaui performa model
dasar. Model persistensi memberikan akurasi posisional tertinggi, sedangkan
model moving average juga menunjukkan hasil yang lebih baik dalam
mengenali pola global dibandingkan FFNN. Kondisi ini menunjukkan bahwa
FFNN hanya mampu mempelajari pola mutasi secara lokal dan belum dapat
menangkap dependensi jangka panjang antarposisi dalam sekuens protein.
Keterbatasan tersebut muncul karena arsitektur feedforward tidak
mempertimbangkan informasi kontekstual antarresidu. Oleh karena itu,
penggunaan arsitektur yang lebih kontekstual seperti RNN atau model berbasis
Transformer menjadi langkah penting agar hubungan spasial dan pola
evolusioner dapat dipelajari dengan lebih menyeluruh.

4.1.7 Analisis Kesalahan dan Identifikasi Hotspot Mutasi

Pemahaman terhadap performa model dalam memprediksi mutasi pada
setiap titik asam amino diperoleh melalui evaluasi akurasi per posisi. Visualisasi
disajikan pada Gambar 4.11 menunjukkan tingkat keberhasilan model FFNN

dalam memprediksi setiap posisi induvidual.

Akurasi Posisi (FFNN)

99.7%  99.0% 100.0% 99.0% 100.0%
95.5%

100 A 98.3%

80 -

60 -

Akurasi (%)

40 -

20 A

684 685 686 687 688 689 690 691 692 693
Gambar 4.10 Akurasi Prediksi FFNN pada Setiap Posisi FCS



54

Berdasarkan Gambar 4.11, akurasi model bervariasi antarposisi. Posisi
685, 687, 688, 690, 691, dan 693 mencapai akurasi yang sangat tinggi (98—
100%), menunjukkan bahwa pola mutasi pada posisi-posisi ini relatif stabil dan
mudah dipelajari oleh model. Posisi 692 juga memiliki akurasi tinggi, yaitu
95.47%. Sebaliknya, dua posisi menunjukkan akurasi yang jauh lebih rendah,
yaitu 684 (0.00%) dan 686 (63.76%), mengindikasikan bahwa model
mengalami kesulitan dalam memprediksi residu pada titik tersebut. Posisi 689
memiliki akurasi menengah sebesar 91.64%. Secara keseluruhan, mayoritas
posisi dapat diprediksi dengan baik, meskipun terdapat beberapa titik yang

cukup variatif sehingga menurunkan kinerja model secara lokal.
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Gambar 4.11 Heatmap Tingkat Error Posisional pada Prediksi Asam Amino
Hasil tersebut diperkuat oleh visualisasi heatmap error pada Gambar
4.12, yang menunjukkan akumulasi kesalahan prediksi terbesar pada posisi
offset 0 dan offset 2. Warna yang lebih pekat pada kedua posisi tersebut
mencerminkan perbedaan nilai prediksi terhadap nilai aktual yang lebih besar

dibandingkan dengan posisi lainnya.
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Hasil prediksi yang ditampilkan pada Tabel 4.11 menunjukkan
perbandingan antara urutan asam amino aktual (True) dan hasil prediksi model
(Pred) pada sepuluh sampel data uji. Nilai match per posisi berada pada kisaran
80-90%, yang mengindikasikan bahwa sebagian besar residu berhasil diprediksi
dengan benar. Kesalahan prediksi umumnya terjadi pada residu awal urutan,
sebagaimana terlihat pada perbedaan karakter pertama atau kedua antara urutan
True dan Pred, sementara residu di bagian tengah hingga akhir urutan

cenderung konsisten.

Tabel 4.11Hasil Prediksi Model pada Sampel Data Mutasi SARS-CoV-2

Sampel True Pred Match per posisi (%)
0 1 KSHRRARSVA | ISHRRARSVA 90
1 2 KSHRRARSVA | LSHRRARSVA 90
2 3 NSPRRARSVA | LSHRRARSVA 80
3 4 KSHRRARSVA | ISHRRARSVA 90
4 5 NSPRRARSVA | LSHRRARSVA 80
5 6 KSHRRARSVA | ISHRRARSVA 90
6 7 KSHRRARSVA | LSIRRARSVA 80
7 8 NSPRRARSVA | LSHRRARSVA 80
8 9 KSHRRARSVA | ISIRRARSVA 80
9 10 KSHRRARSVA | ISIRRARSVA 80

Temuan ini konsisten dengan analisis per-posisi pada Tabel 4.12, yang
menunjukkan bahwa posisi dengan entropi rendah, seperti posisi 685, 687, dan
690, memiliki akurasi posisional tinggi (di atas 98%) dan nilai MAE yang kecil.
Sebaliknya, posisi dengan entropi tinggi menunjukkan penurunan akurasi dan
peningkatan kesalahan prediksi. Hal ini mengindikasikan bahwa kinerja prediksi

model sangat dipengaruhi oleh tingkat stabilitas mutasi, di mana posisi yang
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lebih konservatif lebih mudah dipelajari oleh model dibandingkan posisi dengan

variasi mutasi yang tinggi.

Tabel 4.12 Akurasi dan MAE Per-Posisi pada Region FCS

Posisi | Akurasi Posisisonal (%) | MAE (Skala Integer) | Entropi
0| 684 0.00 2.463 0.724
1| 685 98.26 0.235 0.006
2 | 686 63.76 1.234 0.842
3| 687 99.65 0.143 0.006
4 | 688 98.95 0.118 0.013
5| 689 91.64 0.313 0.006
6| 690 100.00 0.125 0.006
7| 691 98.95 0.126 0.006
8| 692 95.47 0.218 0.006
9| 693 100.00 0.082 0.013

Selanjutnya, analisis error rate per posisi dilakukan guna

mengidentifikasi distribusi kesalahan prediksi dan menentukan titik-titik yang

paling sulit dipelajari oleh model, sebagaimana ditunjukkan pada tabel 4.13.

Tabel 4.13 Peringkat Posisi Berdasarkan Error Rate (Tertinggi di Atas)

Posisi Error lerr| (int) Entropi | AA Unik
rate (%) | Mean | Median | Max (True)
0| 684 100.00 | 2.519 2.0 8 0.724 2
1| 686 36.24 1.146 0.0 6 0.842 2
2 | 689 8.36 0.084 0.0 1 0.006 1
3| 692 4.53 0.045 0.0 1 0.006 1
4 | 685 1.74 0.017 0.0 1 0.006 1
5| 688 1.05 0.010 0.0 1 0.013 1
6 | 691 1.05 0.010 0.0 1 0.006 1
7 | 687 0.35 0.003 0.0 1 0.006 1
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8 | 690 0.00 0.000 0.0 0 0.006 1
9| 693 0.00 0.000 0.0 0 0.013 1

Tabel 4.13 memperjelas distribusi kesalahan dengan mengurutkan posisi
berdasarkan error rate. Posisi 684 menempati peringkat kesalahan tertinggi
dengan error rate 100%, diikuti posisi 686 (36.24%). Kedua posisi ini juga
memiliki nilai |err| rata-rata tertinggi dan jumlah residu unik lebih banyak,
sehingga menunjukkan bahwa posisi ini merupakan hotspot mutasi yang
menyebabkan prediksi model tidak stabil. Posisi lainnya, seperti 687, 688, 689,
691, 692, dan 693, memiliki error rate yang sangat rendah (0-8.36%) dan

entropi dekat nol, sehingga dianggap stabil dan mudah dipelajari oleh model.

Tabel 4.14 Misprediksi Teratas pada Posisi Panas
Posisi | Error rate (%) | Mean |err| (int) Top-5 mispred
(true—pred)
K—L (141); K—I(90);
684 100.0 2.519 N—L (28); N—I(22);
K—H (4)

Tabel 4.13 memperlihatkan pola misprediksi pada posisi dengan error rate
tertinggi, yaitu 684. Pada posisi ini, model menunjukkan error rate 100%
dengan deviasi rata-rata 2.519 pada skala integer. Substitusi yang paling
dominan adalah K—L, K—I, N—L, N—I, dan K—H. Keragaman substitusi ini
mengonfirmasi bahwa posisi 684 merupakan mutation hotspot yang memiliki
dinamika residu kompleks. Tingginya error menunjukkan bahwa model belum
mampu menangkap variasi biologis yang terjadi pada titik tersebut. Secara
keseluruhan, evaluasi posisional menunjukkan bahwa performa FFNN sangat

dipengaruhi oleh stabilitas mutasi pada tiap posisi. Posisi yang konservatif dapat
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diprediksi dengan akurasi mendekati sempurna, sedangkan posisi dengan

keragaman mutasi tinggi terutama pada posisi 684 dan 686 menjadi sumber

utama kesalahan model.
4.3 Perbandingan dengan Penelitian Sebelumnya

Penelitian Mustafa et al. (2022) menunjukkan bahwa daerah furin cleavage
site (FCS) pada posisi 678-686 cenderung mengalami mutasi yang meningkatkan
muatan positif, terutama melalui residu seperti K dan R. Mutasi dominan seperti
N679K dan P681R meningkatkan efisiensi pemotongan dan memperkuat replikasi
virus. Bila dibandingkan dengan hasil penelitian ini, bagian tengah dari sekuens
prediksi yaitu H-R-R-A-R menunjukkan kesesuaian karena tiga posisi
menghasilkan Arginin (R) yang selaras dengan pola peningkatan muatan positif
yang dilaporkan oleh Mustafa et al. Kecocokan pada bagian ini menandakan
bahwa penelitian ini juga menemukan kecenderungan penguatan muatan pada inti
FCS, seperti yang dicatat dalam penelitian tersebut.
Berbeda dengan itu, Magazine et al. (2022) melaporkan bahwa mutasi pada

FCS, khususnya pada rentang residu 680-689, menjadi salah satu perubahan
paling signifikan selama evolusi SARS-CoV-2. Mereka menekankan bahwa
mutasi P681R meningkatkan efisiensi pemotongan S1/S2 oleh furin, sehingga
memperkuat infektivitas virus, sementara P681H tidak memberikan peningkatan
signifikan secara mandiri. Dalam penelitian ini, pola prediksi menghasilkan
dominasi residu bermuatan positif, terutama Arginin (R), pada inti FCS. Dominasi
residu R tersebut selaras dengan mekanisme yang dijelaskan Magazine et al.,
karena keberadaan residu bermuatan positif di sekitar P681 diketahui berpotensi

meningkatkan kecenderungan pemotongan furin. Dengan demikian, hasil prediksi



59

penelitian ini menunjukkan arah mutasi yang konsisten dengan pola penguatan
cleavage yang dijelaskan dalam penelitian mereka.

Sementara itu, penelitian Tang et al. (2023) menunjukkan bahwa varian
Omicron membawa tiga mutasi utama di sekitar furin cleavage site, yakni P681H,
H655Y, dan N679K, yang menyebabkan penurunan efisiensi pemotongan S1/S2
serta berkurangnya pemanfaatan TMPRSS2 dalam proses aktivasi spike. Kondisi
ini menghasilkan aktivitas fusi membran yang lebih lemah dan berkontribusi pada
patogenisitas Omicron yang relatif lebih rendah dibandingkan varian sebelumnya,
termasuk Delta. Hasil penelitian ini memperlihatkan pola residu pada awal dan
akhir urutan prediksi yang cenderung menghasilkan konfigurasi yang kurang
mendukung pemotongan optimal, seperti munculnya residu I, P, dan Y. Meskipun
sifat residu-residu tersebut tidak dibahas secara langsung oleh Tang et al. (2023),
kecenderungan pola yang muncul pada model menunjukkan konsistensi biologis
dengan mekanisme pelemahan cleavage dan penurunan fusi membran yang
diidentifikasi pada varian Omicron.

Secara keseluruhan, perbandingan dengan ketiga penelitian menunjukkan
bahwa hasil penelitian ini menghasilkan pola yang bercampur. Bagian tengah
urutan prediksi selaras dengan temuan Mustafa et al. dan sebagian Magazine et
al., karena menggambarkan kecenderungan peningkatan muatan positif di inti
FCS. Sebaliknya, bagian awal dan akhir urutan tidak mengikuti pola tersebut dan
justru lebih mendekati karakteristik mutasi pada Omicron yang dijelaskan oleh
Magazine et al. Dengan demikian, penelitian ini menggambarkan arah mutasi

yang tidak sepenuhnya mengarah pada peningkatan efisiensi pemotongan,
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melainkan menunjukkan kecenderungan perubahan sifat biologis yang lebih stabil
dan kurang bermuatan.
4.4 Integrasi Keislaman dalam Analisis Prediksi Mutasi

Hasil penelitian mengenai prediksi mutasi pada situs cleavage SARS-CoV-2
memberikan gambaran bahwa perubahan pada suatu sistem biologis tidak terjadi
secara acak sepenuhnya, tetapi mengikuti pola tertentu yang dapat dipelajari.
Misalnya, pada posisi 687 ditemukan pola pergantian residu seperti K—I, N—L,
N—I, dan K—H, yang menunjukkan arah perubahan sifat asam amino dari
bermuatan menjadi lebih netral atau hidrofobik. Pola seperti ini menggambarkan
bahwa dinamika mutasi berjalan melalui mekanisme yang teratur, bukan sekadar
peristiwa acak tanpa struktur. Perspektif ini sangat sesuai dengan konsep Islam
yang menegaskan bahwa segala sesuatu di alam ini berlangsung dengan ketentuan

dan aturan yang tetap. Hal ini tercermin dalam firman Allah:
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S '5.....3"5..‘...3‘05..»\ d\.: ! d\/ Ll g9 ) f LSJ‘; ij-:-i P ey - >y U > (0 43 09

P

Or s K0l e
“dan menganugerahkan kepadanya rezeki dari arah yang tidak dia duga. Siapa
yang bertawakal kepada Allah, niscaya Allah akan mencukupkan (keperluan)-
nya. Sesungguhnya Allahlah yang menuntaskan urusan-Nya. Sungguh, Allah telah
membuat ketentuan bagi setiap sesuatu” (QS.At-Thalag: 3).

Ayat ini memberikan pemahaman bahwa proses biologis, termasuk mutasi
virus, berada dalam bingkai ketetapan ilmiah yang telah Allah SWT tetapkan.
Ketika model FFNN mampu memprediksi pola perubahan, maka hal ini
menunjukkan bahwa fenomena mutasi memiliki keteraturan yang dapat diselidiki

karena Allah SWT memang menciptakan alam dengan hukum-hukum yang dapat

dipahami manusia melalui ilmu pengetahuan.
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Integrasi antara hasil penelitian dan perspektif keislaman juga terlihat dari
bagaimana manusia diberi kemampuan untuk mengembangkan ilmu guna
memahami fenomena alam, termasuk penyakit dan penyebarannya. Dalam
konteks prediksi mutasi, penggunaan model komputasi seperti FFNN merupakan
bentuk ikhtiar ilmiah manusia untuk mencegah, mengantisipasi, atau mempelajari
karakter virus yang terus berubah. Hal ini selaras dengan perintah Nabi

Muhammad:
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“Telah menceritakan kepada kami Muhammad bin Al-Mutsanna, telah
menceritakan kepada kami Abu Ahmad Al-Zubairi, telah menceritakan kepada
kami ‘Umar bin Sa’id bin Abi Husain, ia berkata: ‘Ata’ bin Abi Rabah telah

Al

menceritakan kepadaku, dari Abu Hurairah —radhiyallahu ‘anhu— dari Nabi
beliau bersabda: ‘Allah tidak menurunkan suatu penyakit kecuali Dia juga
menurunkan obatnya.’” (HR. Bukhari no. 5678).

Hadis tentang anjuran berobat menunjukkan bahwa mempelajari mutasi,
termasuk menganalisis perubahan residu dan memprediksi sekuens, merupakan
bentuk ikhtiar ilmiah manusia dalam menghadapi penyakit. Dengan memahami
pola mutasi, peneliti dapat mengantisipasi kemunculan varian baru lebih awal.
Adanya hotspot mutasi seperti posisi 687 menggambarkan sunnatullah, yaitu
hukum perubahan yang terus berlangsung sehingga manusia perlu mengambil
pelajaran darinya. Integrasi keislaman dalam penelitian ini menegaskan bahwa

ilmu pengetahuan menjadi sarana untuk memahami ketetapan Allah SWT dalam

ciptaan-Nya sekaligus menjalankan amanah menjaga kesehatan masyarakat.



BAB V
PENUTUP

5.1 Kesimpulan

Kesimpulan penelitian ini merangkum temuan utama terkait pengembangan
dan evaluasi model prediksi mutasi pada region FCS SARS-CoV-2, yang
disajikan sebagai berikut.

1. Penelitian ini berhasil membangun model FFNN yang mampu mempelajari
pola mutasi region FCS protein Spike SARS-CoV-2, khususnya pada
tingkat posisional. Model menunjukkan performa yang kuat dengan akurasi
83,64% dan error rendah (MSE = 0,006178; MAE = 0,0291). Posisi residu
yang bersifat konservatif dapat diprediksi secara konsisten, menunjukkan
bahwa FFNN efektif dalam menangkap pola lokal pada sekuens protein.

2. Model menunjukkan kinerja yang baik pada level residu, tetapi belum
akurat dalam memprediksi sekuens penuh, terutama pada posisi yang sangat
bervariasi seperti residu 687 dan 689. Oleh karena itu, diperlukan
pengembangan arsitektur serta penambahan konteks sekuens yang lebih luas
agar prediksi menjadi lebih stabil.

5.2 Saran
Beberapa saran dapat diajukan untuk pengembangan penelitian selanjutnya.
1. Penelitian selanjutnya disarankan menggunakan model berbasis sekuens,
seperti klasifikasi multilabel, untuk akurasi prediksi sekuens penuh.
2. Penelitian selanjutnya disarankan menambahkan konteks sekuens yang
lebih luas, agar prediksi pada posisi residu yang sangat bervariasi menjadi

lebih stabil dan relevan secara biologis.
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LAMPIRAN

Lampiran 1 Akses Dataset Sekuensial dan Notebook Kaggle Prediksi Mutasi

Dataset Sekuensial Notebook Kaaale Prediksi Mutasi

Lampiran 2 Script phyton Model FFNN Prediksi Mutasi

pip install biopython

import os
from datetime import datetime
from typing import Optional, Tuple

import numpy as np

import pandas as pd

import matplotlib

import matplotlib.pyplot as plt
import seaborn as sns

# Retina figure (notebook-friendly)
try:
from IPython.display import display
from IPython import get ipython

get ipython().run line magic('config',
"InlineBackend.figure format = 'retina'")
except Exception:

pass
matplotlib.rcParams|['figure.dpi'] = 200

from Bio import SeqIO

# TensorFlow / Keras

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

1. Konfigurasi umum

RNG SEED = 123

TF SEED = 123
np.random.seed (RNG_SEED)
tf.random.set seed(TF_SEED)

# Opsional: agar GPU tidak all-allocate memori
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try:
gpus = tf.config.list physical devices ('GPU")
if gpus:
for gpu in gpus:
tf.config.experimental.set memory growth (gpu, True)
except Exception as e:
print (£" [WARN] Could not set memory growth: {e}")

# Path & region

FASTA PATH = "/kaggle/input/skripsi/Data Sequens.fasta"
START POS = 684

END_POS = 694

# Windowing & split

LAG = 8

SPLIT TRAIN = 0.70

SPLIT VAL = 0.15 # sisa otomatis jadi test

# Mapping asam amino — integer
AA TO INT = {
'‘A':1, 'R':2, 'N':3, 'D':4, 'C':5, 'E':6, 'Q':7, 'G':8,
'H':9, 'I':10,
'v':11, 'K':12, 'M':13, 'F':14, 'P':15, 'S':1le, 'T':17,
'w':18, 'y':19, 'v':20,
'-':0, 'X':0
}
INT TO AA = {v:k for k,v in AA TO INT.items ()}
AA ALPHABET = list (AA TO INT.keys()) # 21 simbol
AA MAX = 20.0 # untuk skala 0..1

2. Helper functions

def parse date safe(date str: Optionallstr]) ->
Optional[datetime]:
if date str is None:
return None
for fmt in ("%Y-%m-%d", "$Y-%m", "SY"):
try:
return datetime.strptime (date str.strip(), fmt)
except ValueError:
continue
return None

def seqg_to int(seqg: str) -> list:
return [AA TO INT.get(aa, 0) for aa in seq]

def ints to aa string(int row: np.ndarray) -> str:

return "".join (INT TO AA.get(int(x), "?") for x in int row)
def make windows matrix (H: np.ndarray, lag: int = 2) ->
Tuple[np.ndarray, np.ndarray]:
X,y = [1, []
for i in range(len(H) - lag):
win = H[i:i+lag, :]

tgt Hli+lag, :]
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X.append (win.flatten())
y.append (tgt)
return np.array(X), np.array(y)

def entropy from counts(counts: np.ndarray) -> float:
"""counts: array non-negatif; entropi basis 2."""
total = counts.sum()
if total <= 0:
return 0.0
p = counts / total
p = plp > 0]
return float(-(p * np.log2(p)) .sum())

3. Baca FASTA & ekstrak region FCS

FASTA WUHAN MSA = "/kaggle/input/skripsi/Data Wuhan.fasta"
print (">> Menampilkan data sekuens sebelum MSA\n")
records = []

# Area FCS
fcs start = 684 - 10
fcs _end = 687 + 10

def extract fcs(seq):
start = max (0, fcs start)
end = min(len(seq), fcs end)
return "..." + seg[start:end] + "..."

for rec in SeqIO.parse (FASTA WUHAN MSA, "fasta"):
seq_str = str(rec.seq)
records.append ({
"ID": rec.id,
"Sequence": extract fcs(seq str),
"Length": len(seqg_str)
})

df wuhan msa = pd.DataFrame (records)

# Tampilkan tabel

display (df wuhan msa)

FASTA BEFORE MSA = "/kaggle/input/skripsi/Sebelum MSA.fasta"
print (">> Menampilkan data sekuens sebelum MSA\n")

records = []

# Area FCS

fcs start = 684 - 10

fcs _end = 687 + 10

def extract fcs(seq):
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start = max (0, fcs start)
end = min(len(seq), fcs end)
return "..." + seqg[start:end] + "..."

for rec in SeqIO.parse(FASTA BEFORE MSA, "fasta"):
seq_str = str(rec.seq)
records.append ({
"ID": rec.id,
"Sequence": extract fcs(seq str),
"Length": len(seg_str)
})

df before msa = pd.DataFrame (records)

# Tampilkan tabel
display (df before msa)

df len = df before msa[ (df before msa["Length"] >= 1260) &
(df before msa["Length"] <= 1280)]

count len = df len["Length"].value counts().sort index()

plt.plot (count len.index, count len.values, marker="o")
plt.xticks (rotation=60)

plt.xlabel ("Length (bp)")

plt.ylabel ("Count")

plt.title("Jumlah Sekuens per Panjang")
plt.savefig("Jumlah sekuen per panjang", dpi=300,

bbox inches="tight")

plt.show()
# ==========AFTER MSA==========
FASTA AFTER MSA = "/kaggle/input/skripsi/Data Sequens.fasta"

print (">> Menampilkan data sekuens area FCS setelah MSA\n")
records = []

# Area FCS
fcs start = 684 - 10
fcs end = 687 + 10

def extract fcs(seq):
start = max (0, fcs start)
end = min(len(seq), fcs_end)
return "..." + seq[start:end] + "..."

for rec in SeqIO.parse (FASTA AFTER MSA, "fasta"):
seq_str = str(rec.seq)
records.append ({
"ID": rec.id,
"Sequence": extract fcs(seq str),
"Length": len(seq str)
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})
df after msa = pd.DataFrame (records)

# Tampilkan tabel
display (df after msa)

# Hitung duplikat berdasarkan ID
duplikat id = df after msa.duplicated(subset="ID")

# Hitung jumlah duplikat dan unik
counts = duplikat id.value counts() # True = duplikat, False
unik

# Buat plot

plt.figure(figsize=(4,3))

plt.bar (["Unik", "Duplikat"], [counts.get(False,0),
counts.get(True,0)], color=["skyblue","salmon"])
plt.ylabel ("Jumlah baris sequens")

plt.tight layout ()

plt.savefig("duplikat", dpi=300, bbox inches="tight")
plt.show ()

# ==========CEK AMBIGU KARAKTER==========

df ["Jumlah Ambigu Gap"] = df["Region 684 694"].apply(
lambda s: s.count("-") + s.count(".")

)

df ["Ada Ambigu Gap"] = df["Jumlah Ambigu Gap"] > 0

print (df ["Ada Ambigu Gap"].value counts())
print (df ["Jumlah Ambigu Gap"].value counts () .sort index())

plt.figure(figsize=(5.2, 3.2))
sns.histplot (
data=df,
x="Jumlah Ambigu Gap",
bins=range (df ["Jumlah Ambigu Gap"].max() + 2),
discrete=True,
shrink=0.8

plt.title("Distribusi karakter ambigu per sekuens")
plt.xlabel ("Jumlah karakter ambigu")

plt.ylabel ("Jumlah sekuens")

plt.tight layout ()
plt.savefig("Gambar Distribusi Karakter Ambigu.png", dpi=300,
bbox inches="tight")

plt.show()

df ["Jumlah X"] = df["Region 684 694"].apply(lambda s:
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s.count ("X"))

plt.figure(figsize=(5.2, 3.2))
sns.histplot (data=df,x="Jumlah X",bins=6,discrete=True,shrink=0.8
)

plt.xlim(-0.5, 5.5)
plt.xticks (range (0, 6))

plt.title("Distribusi jumlah 'X' per sekuens")

plt.tight layout ()
plt.savefig("Gambar 1 Distribusi Jumlah X.png", dpi=300,
bbox inches="tight")

plt.show()

if len(df clean) ==
raise ValueError ("Tidak ada sekuens tersisa setelah menghapus
'X"")

# Tren waktu (opsional): jumlah per bulan

print ("\n>> Gambar 2. Tren jumlah sekuens per bulan (data dengan
tanggal)")

df with date = df clean[df clean["Date"].notna()].copy ()

if len(df with date) > O:
df with date["YearMonth"] =
df with date["Date"].dt.to period("M") .astype (str)
per month =
df with date.groupby ("YearMonth") .size () .reset index (name="Count"

)

plt.figure (figsize=(6.8, 4.0))
sns.lineplot (data=per month, x="YearMonth", y="Count",
marker="o0o")

# Set batas Y hingga 300
plt.ylim(0, 300)
plt.yticks (range (0, 301, 20))

plt.xticks (rotation=60, ha="right")
plt.tight layout ()
plt.savefig ("Tren Jumlah", dpi=300, bbox inches="tight")
plt.show ()
else:
print (" (Tidak ada metadata tanggal; plot dilewati.)")

4, Statistik deskriptif FCS (frekuensi AA per posisi, entropi)

H str = np.array(df clean["Region 684 694"].tolist()) # (n seq,)
of strings
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seq_len = END POS - START POS

# Frekuensi: posisi (rows) x AA (columns)
freq mat = np.zeros((seq len, len(AA ALPHABET)), dtype=int)
aa_index = {aa:i for i, aa in enumerate (AA ALPHABET) }
for row in H str:
for pos, aa in enumerate (row) :
freq mat[pos, aa index.get(aa, aa index['-'])] += 1

freq df = pd.DataFrame (freqg mat, columns=AA ALPHABET)

freq df.insert (0, "Posisi", list(range (START_ POS, END POS)))
print ("\n>> Tabel 2. Distribusi Asam Amino per Posisi
(frekuensi) ")

pd.DataFrame (freq df).to csv("/kaggle/working/Tabel 2.csv",
index=False)

display (freq df)

entropies = np.apply along axis(entropy from counts, axis=Il,
arr=freq mat)
desc_df = pd.DataFrame ({
"Posisi": list(range (START POS, END POS)),
"Entropi": entropies
})
print ("\n>> Tabel 3. Entropi per posisi FCS")
display (desc df)

print ("\n>> Gambar 4. Entropi per posisi")
plt.figure(figsize=(6.4,3.0))

plt.bar(desc _df["Posisi"].astype(str), desc df["Entropi"])
plt.xticks (rotation=0); plt.ylabel ("Entropi (bits)");
plt.title ("Entropi per Posisi FC3S")

plt.tight layout();

plt.savefig("Entropi per Posisi FCS", dpi=300)

plt.show()

print ("\n>> Gambar 3. Heatmap frekuensi AA per posisi™)
plt.figure (figsize=(9, 4.3))
sns.heatmap (freq mat / freq mat.sum(axis=1, keepdims=True),
cmap="viridis",

cbar kws={"label": "Proporsi"},
xticklabels=AA ALPHABET,

yticklabels=1list (range (START POS, END POS)))
plt.xlabel ("Asam Amino"); plt.ylabel ("Posisi");
plt.title ("Frekuensi AA per Posisi (proporsi)")
plt.tight layout();
plt.savefig("Frekuensi AA per Posisi (proporsi)", dpi=300,
bbox inches="tight")
plt.show()

5. Mapping ke integer & windowing

|# Urutkan berdasarkan kolom Date




75

df clean = df clean.sort values(by="Date") .reset index (drop=True)

# Konversi sekuens menjadi integer
df clean["Seg Int"] =
df clean["Region 684 694"].apply(seq_to int)

# Buat array sekuens
H = np.array(df clean["Seq Int"].tolist()) # shape: (n seq,
seq len)

# Cek apakah data cukup untuk windowing
if H.shapel[0] <= LAG:

raise ValueError (f"Data tidak cukup untuk windowing.
n seqg={H.shape[0]} harus > LAG={LAG}.")

# Buat matriks input-output berdasarkan lag
X, y = make windows matrix (H, lag=LAG)

# Scaling
X scaled = X / AA MAX
y scaled = y / AA MAX

# Split berurutan 70/15/15

n = len(X scaled)

n _train = int (SPLIT TRAIN * n)

n val = int (SPLIT VAL * n)

X train = X scaled[:n train]

y _train = y scaled[:n train]

X val = X scaled[n _train:n train+n val]
y val = y scaled[n train:n train+n val]
X test = X scaled[n train+n val:]

y test =y scaled[n train+n val:]

# Ringkasan split
print ("\n>> Tabel 4. Ringkasan Windowing & Split")
split df = pd.DataFrame ([{

"Lag": LAG,

"n seq (setelah X-removed)": H.shapel[O],
"Dimensi input": X.shape[l],

"Dimensi output": y.shapell],

"n train": len(X train),

"n val": len(X val),

"n test": len(X test),
1)
display(split df)

print ("\n>> Contoh sekuens setelah sorting dan konversi
integer:")
display(df clean[["Date", "Region 684 694", "Seq Int"]])
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6. Model FFNN
def build ffnn(input dim: int, output dim: int) -> keras.Model:
model = keras.Sequential ([

layers.Input (shape=(input dim,)),
layers.Dense (256, activation="relu"),
layers.Dropout (0.10),
layers.Dense (128, activation="relu"),
layers.Dense (output dim, activation="linear"),

1)

model.compile (
optimizer=keras.optimizers.Adam(learning rate=le-3),
loss="mse",
metrics=[keras.metrics.MeanAbsoluteError (name="mae") ]

)

return model
model = build ffnn(X train.shape[l], y train.shapell])

model . summary ()

7. Baseline Model

def baseline persistence predict (X matrix: np.ndarray, lag: int,
seq len: int) -> np.ndarray:
return X matrix[:, (lag-1)*seq len : lag*seq len]

y pred base scaled = baseline persistence predict (X test, LAG,
seq_len)

y_pred base int = np.rint(y pred base scaled *

AA MAX) .astype (int) .clip (0, 20)

y_true int all = np.rint(y test * AA MAX) .astype (int) .clip (0,
20)

acc_pos base = np.mean(y pred base int == y true int all)
acc_row base = np.mean(np.all(y pred base int == y true int all,
axis=1))

mae base = np.mean (np.abs (y _pred base scaled - y test))

base df = pd.DataFrame ([{

"Baseline": "Persistence",

"MAE (normalized)": mae base,

"MAE (skala asli)": mae base * AA MAX,

"Akurasi posisional (%)": acc pos base * 100.0,
"Akurasi sekuens penuh (%)": acc_row base * 100.0

1)

def baseline moving average predict (X matrix: np.ndarray, lag:

int, seq len: int) -> np.ndarray:
start = (lag-2) * seqg len
end = lag * seq len
block = X matrix[:, start:end]
block = block.reshape (X matrix.shape[0], 2, seq len)

return block.mean (axis=1)
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y _pred ma scaled = baseline moving average predict (X test, LAG,
seq_len)

y_pred ma int = np.rint(y pred ma scaled *

AA MAX) .astype (int) .clip (0, 20)

acc_pos ma = np.mean(y pred ma int == y true int all)
acc_row ma = np.mean(np.all(y pred ma int == y true int all,
axis=1))

mae ma = np.mean (np.abs(y pred ma scaled - y test))

print ("\n>> Tabel 5. Kinerja Baseline")
base df2 = pd.DataFrame ([{

"Baseline": "Moving Average",
"MAE (normalized)": mae ma,
"MAE (skala asli)": mae ma * AA MAX,
"Akurasi posisional (%)": acc pos ma * 100.0,
"Akurasi sekuens penuh (%)": acc_row ma * 100.0
1)
# ==========Tabel arsitektur sederhana==========

print ("\n>> Tabel 6. Arsitektur Model FFNN")
layers info = []

total params = 0
for i, lyr in enumerate (model.layers, 1):
params = lyr.count params /()

total params += params
layers info.append ({
"Layer #": 1,

"Tipe": lyr. class . name ,
"Output shape": str(lyr.output.shape),
"Params": params

})
display (pd.DataFrame (layers info))
print (f"Total params: {total params:,}")

tabel baseline = pd.concat ([base df, base df2],
ignore index=True)
display (tabel baseline)

print ("\n>> Tabel 7. Hiperparameter Pelatihan")
hp df = pd.DataFrame ([

"Optimizer": "Adam",

"Learning rate": le-3,

"Batch size": 32,

"Epoch maks": 200,

"Patience (EarlyStopping)": 10,
"Dropout": 0.10

"Optimizer": "SGD (Momentum)",
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"Learning rate": le-2,

"Batch size": 32,

"Epoch maks": 200,

"Patience (EarlyStopping)": 10,
"Dropout": 0.10

"Optimizer": "RMSprop",
"Learning rate": le-3,

"Batch size": 32,

"Epoch maks": 200,

"Patience (EarlyStopping)": 10,
"Dropout": 0.10

1)

display (hp df)

callbacks = [
keras.callbacks.EarlyStopping (monitor="val loss",
patience=10, restore best weights=True)
]
history = model.fit (
X train, y train,
validation data=(X val, y val),
epochs=30,
batch size=32,
verbose=1,
callbacks=callbacks

print ("\n>> Gambar 5. Kurva pelatihan (MSE)")
plt.figure(figsize=(6.0,3.5))

plt.plot (history.history["loss"], label="Train MSE")

plt.plot (history.history["val loss"], label="Val MSE")
plt.xlabel ("Epoch"); plt.ylabel ("MSE"); plt.title("History Loss
(MSE) ™)

plt.ylim(0.001, 0.028) # batas sumbu-y

plt.legend(); plt.tight layout()
plt.savefig("History Loss MSE.png", dpi=300)

plt.show()

8. Prediksi

show k = min (10, len(X test))

rows = []

for i in range(show k):
true str = ints to aa string(y true int all[i])
pred str = ints to aa string(y pred int[i])
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match ratio = np.mean(y true int all[i] == y pred int[i]) *

100.0

rows.append ({"Sampel": i+1, "TRUE": true str, "PRED":

pred str, "Match per posisi (%)": round(match ratio,

print ("\n>> Tabel 11. Contoh Prediksi (AA)")
display(pd.DataFrame (rows))

print ("\nSelesai )

def make window last(H, lag, n_features):
X last = H[-lag:, :].flatten().astype(np.float32)

# Penyesualan panjang fitur
if X last.shape[0] != n features:
X last = X last[:n features]
if X last.shape[0] < n_ features:
X last = np.pad(X last, (0, n features -
X last.shape[0]), 'constant')
return X last.reshape(l, -1)

lag = 8

n features = X train.shape[l]

# Buat input terakhir untuk prediksi

X last = make window last(H, lag, n_ features)

# Lakukan prediksi
y_next pred = model (X last) .numpy ()

# Data hasil prediksi

pred float = y next pred.flatten()

pred int = np.round(pred float).astype (int)

pred aa = [INT TO AA.get(i, '?') for i in pred int]

# Buat tabel hasil dalam bentuk DataFrame Pandas
tabel prediksi = pd.DataFrame ({
'Posisi': range(l, len(pred float) + 1),
'Nilai Prediksi (Float)': pred float,
'Nilai Dibulatkan (Int)': pred int,
'Huruf Asam Amino': pred aa

})

# Tampilkan tabel
tabel prediksi.style.set properties (**{
'text-align': 'center'

2) 1)

}) .set _table styles([dict(selector="'th', props=[('text-align',

'center')])1])

9. Evaluasi Model FFNN

test loss, test mae = model.evaluate (X test, y test,

y pred scaled = model.predict (X test)

verbose=0)
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y pred int = np.rint(y pred scaled *
AA MAX) .astype (int) .clip (0, 20)

acc_positional = np.mean(y pred int == y true int all) * 100.0
acc_sequence = np.mean(np.all(y pred int == y true int all,
axis=1)) * 100.0

print ("\n>> Tabel 8. Kinerja Model (Test)")
model perf df = pd.DataFrame ([{
"MSE (test)": test loss,
"MAE (normalized)": test mae,
"MAE (skala asli)": test mae * AA MAX,
"Akurasi posisional (%)": acc positional,
"Akurasi sekuens penuh (%)": acc_sequence

)
display (model perf df)

from sklearn.metrics import precision score, recall score,
fl score

# Flatten data untuk menghitung precision / recall / FI
y_true flat = y true int all.flatten()
y _pred flat = y pred int.flatten()

precision = precision score(y true flat, y pred flat,
average="macro", zero division=0)

recall = recall score(y true flat, y pred flat,
average="macro", zero division=0)
fl = fl1 score(y true flat, y pred flat, average="macro",

zero _division=0)

print ("\n>> Tambahan Metrik Klasifikasi (Posisional)™)

(
print (f"Precision (macro): {precision:.4f}")
print (f"Recall (macro): {recall:.4f}™)
print (f"Fl-score (macro): {fl:.4f}1")
# ===========Perbandingan dengan baseline===============

print ("\n>> Tabel 9. Perbandingan Baseline vs FFNN (Test)")
compare df = pd.DataFrame ([

{"Model": "Persistence",
"MAE (normalized)": mae_ base,
"MAE (skala asli)": mae_base * AA MAX,
"Akurasi posisional (%)": acc _pos_base * 100.0,
"Akurasi sekuens penuh (%)": acc_row base * 100.0},
{"Model": "Moving Average",
"MAE (normalized)": mae ma,
"MAE (skala asli)": mae ma * AA MAX,
"Akurasi posisional (%)": acc pos ma * 100.0,
"Akurasi sekuens penuh (%)": acc_row ma * 100.0},
{"Model": "FFNN",
"MAE (normalized)": test mae,
"MAE (skala asli)": test mae * AA MAX,

"Akurasi posisional (%)": acc positional ,
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"Akurasi sekuens penuh (%)": acc_sequence },

1)
display (compare df)

10. Analisis posisional (akurasi & error)

acc_per pos = np.mean(y pred int == y true int all, axis=0)

# akurasi per posisi

mae per pos = np.mean(np.abs(y pred scaled - y test), axis=0) *
AA MAX # MAE integer per posisi

pos_axis = np.arange (START POS, END POS)

print ("\n>> Tabel 10. Akurasi & MAE per Posisi")
pos_df = pd.DataFrame ({

"Posisi": pos axis,

"Akurasi posisional (%)": np.round(acc_per pos * 100.0, 2),
"MAE (skala asli)": np.round(mae per pos, 3),

"Entropi": np.round(entropies, 3)

})
display (pos_df)

print ("\n>> Gambar 7. Barplot Akurasi per Posisi")

plt.figure(figsize=(7.0,3.5))
bars = plt.bar (pos df["Posisi"].astype(str), acc per pos * 100.0)

plt.ylim(0, 110)
plt.ylabel ("Akurasi (%)")
plt.title ("Akurasi Posisi (FFNN)")

# Tambahkan keterangan nilai di atas tiap batang
for bar in bars:
height = bar.get height()
plt.text(
bar.get x() + bar.get width()/2, # posisi x di tengah

batang

height + 1, # posisi y sedikit di
atas batang

f"{height:.1£f}%", # teks, misal "92.5%"

ha='center', va='bottom', fontsize=8

plt.tight layout ()
plt.savefig("Akurasi Posisi FFNN.png", dpi=300)

plt.show()

# ==========HEATMAP ERROR===========

print ("\n>> Gambar 8. Heatmap Error |pred-true| (skala integer)")
err int = np.abs(y pred int - y true int all) # (n test,

seq len)

plt.figure(figsize=(7.2,4.0))

sns.heatmap (err int, cmap="magma r'", cbar kws={"label": "|pred-

truel|"})
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plt.
plt.
plt.
plt.
plt.

xlabel ("Posisi (offset)"); plt.ylabel ("Sampel Test")
title ("Heatmap Error Posisional (Integer)")

tight layout();

savefig ("Heatmap Error Posisional (Integer)", dpi=300)
show ()
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