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ABSTRAK 

 

Hapsari, Laily Sabrina. 2025. Klasifikasi Kebutuhan Nutrisi Tanaman Melon Pada 

Sistem Hidroponik Berbasis Internet of Things Menggunakan Support Vector 

Machine. Skripsi. Program Studi Teknik Informatika Fakultas Sains dan 

Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing: 

(I) Shoffin Nahwa Utama, M.T. (II) Nurizal Dwi Priandani, M.Kom. 

 

Kata Kunci: hidroponik, Internet of Things (IoT), klasifikasi nutrisi, Support Vector 

Machine (SVM) 

 

Budidaya melon secara hidroponik membutuhkan pengelolaan nutrisi yang presisi 

karena perubahan pH, TDS, dan suhu air sangat memengaruhi penyerapan hara. Kendala 

yang muncul pada pertanian hidroponik adalah proses pemantauan kondisi nutrisi yang 

masih dilakukan secara manual, sehingga berisiko menimbulkan keterlambatan dalam 

mendeteksi keadaan nutrisi yang kurang, cukup, atau berlebih. Penelitian ini bertujuan 

mengembangkan sistem pemantauan berbasis Internet of Things (IoT) yang terintegrasi 

dengan algoritma Support Vector Machine (SVM) untuk mengklasifikasikan kebutuhan 

nutrisi secara otomatis. Proses penelitian meliputi akuisisi data sensor secara real-time, 

pembersihan data, normalisasi Min-Max, penyeimbangan kelas menggunakan Random 

Under Sampling, dan reduksi dimensi dengan Principal Component Analysis sebelum 

dilakukan klasifikasi menggunakan SVM kernel linear. Hasil pengujian menunjukkan 

bahwa model SVM memperoleh akurasi 94,63% pada rasio 80:20, 94,51% pada rasio 

70:30, dan 94,83% pada rasio 60:40, yang menandakan performa model cukup stabil 

terhadap variasi data latih dan uji. Pengujian kalibrasi sensor menghasilkan nilai Mean 

Absolute Error sebesar 0,335 untuk pH, 134,692 ppm untuk TDS, dan 1,275°C untuk suhu 

air, yang menunjukkan tingkat penyimpangan yang masih dapat diterima. Secara 

keseluruhan, sistem IoT dan model SVM ini mampu memberikan klasifikasi nutrisi secara 

akurat dan efisien sehingga mendukung optimalisasi pengelolaan larutan nutrisi pada 

budidaya melon hidroponik.
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ABSTRACT 

 

Hapsari, Laily Sabrina. 2025. Classification of Nutrient Requirements for Melon Plants 

in a Hydroponic System Based on the Internet of Things Using Support Vector 

Machine. Undergraduate Thesis. Informatics Engineering Study Program, Faculty 

of Science and Technology, State Islamic University of Maulana Malik Ibrahim 

Malang. Supervisor: (I) Shoffin Nahwa Utama, M.T., (II) Nurizal Dwi Priandani, 

M.Kom. 

 

Keywords: hydroponics, Internet of Things (IoT), nutrient classification, Support Vector 

Machine (SVM) 

 

Hydroponic melon cultivation requires precise nutrient management because 

fluctuations in pH, TDS, and water temperature significantly affect nutrient absorption. A 

major challenge in hydroponic agriculture is that nutrient condition monitoring is still 

performed manually, which increases the risk of delayed detection of nutrient states such 

as deficient, adequate, or excessive. This study aims to develop an Internet of Things (IoT)-

based monitoring system integrated with the Support Vector Machine (SVM) algorithm to 

automatically classify nutrient requirements. The research process includes real-time 

sensor data acquisition, data cleaning, Min-Max normalization, class balancing using 

Random Under Sampling, and dimensionality reduction with Principal Component 

Analysis before performing classification using a linear kernel SVM. The results show that 

the SVM model achieved accuracies of 94.63% with an 80:20 ratio, 94.51% with a 70:30 

ratio, and 94.83% with a 60:40 ratio, indicating stable performance across different train-

test distributions. Sensor calibration tests produced Mean Absolute Error values of 0.335 

for pH, 134.692 ppm for TDS, and 1.275°C for water temperature, demonstrating that the 

sensors operate within acceptable deviation levels. Overall, the developed IoT system and 

SVM model are capable of providing accurate and efficient nutrient classification, thereby 

supporting the optimization of nutrient solution management in hydroponic melon 

cultivation. 
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 البحث  مستخلص

 

 

ليلي  فاه الأشياء  2025.  صبريناساري،  إنترنت  المعتمد على  المائية  الزراعة  نظام  الشمام في  لنبات  المغذيات  احتياجات  تصنيف   .
امعة مولانا مالك إبراهيم  بج  ، كلية العلوم والتكنولوجيايةندسة المعلومات البحث الجامعي. قسم الهعم.  االد  المتجه  باستخدام آلة

مالان الحكومية  المشرفج الإسلامية  الثاني:  اجستيرالمأوتامى،    الأول: صفين نحو  .  المشرف  رياندانى، قيزال دوي  ر   نور؛ 
 . اجستيرالم
 
 (SVM) متجه داعم ، تصنيف مغذيات، آلة (IoT) زراعة مائية، إنترنت أشياء ة:رئيسيالكلمات ال

 
، ودرجة حرارة الماء TDSزراعة الشمام بالطريقة المائية تتطلب إدارة دقيقة للعناصر الغذائية لأن تغير الرقم الهيدروجيني، و

  يؤثر بشكل كبير على امتصاص المغذيات. من العقبات التي تواجه الزراعة المائية هي عملية مراقبة حالة العناصر الغذائية التي تتم يدوياً 
طوير نظام حتى الآن، مما يزيد من خطر التأخر في اكتشاف حالة نقص أو كفاية أو زيادة العناصر الغذائية. يهدف هذا البحث إلى ت

لتصنيف احتياجات العناصر الغذائية   (SVM) اعمالد المتجه  متكامل مع خوارزمية آلة   (IoT) مراقبة قائم على الإنترنت للأشياء
-Min على بيانات المستشعرات في الوقت الفعلي، وتنظيف البيانات، والتطبيع باستخدامتلقائيًا. تشمل عملية البحث الحصول  

Maxالفئات باستخدام )  ، وموازنة  الأبعاد باستخدام تحليل  (Random Under Samplingاختيار عينة عشوائية  ، وتقليل 
% 94,63حقق دقة بنسبة   SVM أظهرت نتائج الاختبار أن نموذج .بنواة خطية SVM المركبات الرئيسية قبل التصنيف باستخدام 

، ما يشير إلى أن أداء النموذج مستقر إلى 60:40% عند نسبة 83,94، و70:30% عند نسبة 51,94، و80:20عند نسبة 
ـ ل  0,335متوسط الخطأ المطلق بمقدار    ةحد كبير تجاه تنوع بيانات التدريب والاختبار. أسفرت اختبارات معايرة المستشعر عن قيم

درجة مئوية لدرجة حرارة الماء، مما يشير إلى مستوى   1,275، وTDS جزء في المليون لـ  134,692، وpH ـ  أس هيدروجيني
قادران على تقديم تصنيف دقيق وفعال للعناصر الغذائية  SVM انحراف لا يزال مقبولًا. بشكل عام، فإن نظام إنترنت الأشياء ونموذج
 .بما يدعم تحسين إدارة المحاليل المغذية في زراعة الشمام بالنظام المائي
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BAB I  PENDAHULUAN

BAB I 

 

PENDAHULUAN 

 

1.1 Latar Belakang 

Perkembangan teknologi informasi dan komunikasi saat ini telah membawa 

perubahan signifikan dalam berbagai bidang, termasuk sektor pertanian. Salah satu 

inovasi yang banyak dikembangkan adalah pertanian berbasis Internet of Things 

(IoT) (Kurniawan & Prasetyo, 2022). IoT memungkinkan perangkat sensor 

digunakan untuk memantau kondisi lingkungan secara real time. Sistem ini menjadi 

solusi potensial bagi pertanian modern, khususnya pada metode hidroponik yang 

bergantung pada kestabilan nutrisi dan kondisi lingkungan (Nugroho & 

Fathurrahman, 2021). Dengan demikian, pemanfaatan IoT telah terbukti mampu 

meningkatkan efisiensi dalam pengelolaan budidaya pertanian (Santoso & Firdaus, 

2023). 

Tanaman melon merupakan salah satu komoditas hortikultura dengan nilai 

ekonomi tinggi di Indonesia. Permintaan pasar terhadap buah melon terus 

meningkat seiring dengan tingginya konsumsi masyarakat (Prasetyo & Sari, 2020). 

Namun, budidaya melon secara hidroponik menghadapi tantangan dalam menjaga 

keseimbangan pH larutan, Total Dissolved Solid (TDS), suhu air, dan umur 

tanaman. Ketidakseimbangan faktor-faktor tersebut dapat menyebabkan tanaman 

mengalami defisiensi atau kelebihan nutrisi (Syahputra et al., 2022). Dampaknya 

adalah penurunan kualitas maupun kuantitas hasil panen yang merugikan petani 

(Dewi & Lestari, 2021). 
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Pengelolaan nutrisi yang tepat menjadi kunci dalam keberhasilan sistem 

hidroponik. Faktor pH dan TDS sangat menentukan ketersediaan unsur hara yang 

dapat diserap oleh tanaman (Wahyudi & Putra, 2023). Sementara itu, suhu air dan 

umur tanaman turut memengaruhi tingkat kebutuhan nutrisi (Arifin & Kusuma, 

2020). Tanpa adanya sistem pengelolaan berbasis data, petani sering menghadapi 

kesulitan dalam menentukan dosis nutrisi yang sesuai (Wijayanti & Susanti, 2021). 

Alat manual yang digunakan petani hidroponik untuk mengukur nutrisi tidak 

menunjukkan secara langsung nutrisi yang terlarut pada sistem hidroponik sudah 

tergolong cukup atau tidak. Petani perlu menghitung terlebih dahulu data yang 

didapat dari alat manual untuk menentukan nutrisi tanaman sudah cukup atau 

belum. 

Salah satu pendekatan yang dapat digunakan untuk mengatasi masalah ini 

adalah dengan memanfaatkan algoritma Support Vector Machine (SVM). 

Algoritma ini dikenal memiliki performa tinggi dalam menangani masalah 

klasifikasi dengan jumlah fitur terbatas (Anindita & Saputra, 2021). Dengan 

memanfaatkan data hasil pembacaan sensor IoT, SVM dapat digunakan untuk 

mengklasifikasikan kondisi kebutuhan nutrisi tanaman melon hidroponik 

(Rachman et al., 2021). Klasifikasi ini dapat dibagi ke dalam kategori kurang, 

cukup, atau berlebih sesuai dengan kondisi aktual (Wahyuni & Pratama, 2020). 

Urgensi penelitian ini terletak pada integrasi antara IoT dan machine 

learning dalam mendukung pertanian presisi. Sistem klasifikasi nutrisi berbasis 

SVM dapat membantu petani lebih mudah mengambil keputusan terkait pengaturan 

nutrisi (Nugroho & Fathurrahman, 2021). Proses budidaya melon hidroponik pun 
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menjadi lebih efisien, produktif, dan berkelanjutan (Santoso & Firdaus, 2023). Hal 

ini sekaligus menjawab tantangan modernisasi pertanian dengan memanfaatkan 

teknologi sebagai bagian dari solusi (Syahputra et al., 2022). 

Dalam perspektif Islam, manusia diberi amanah sebagai khalifah di bumi 

untuk menjaga keseimbangan alam. Hal ini ditegaskan dalam firman Allah SWT 

pada Surah Al-An’am ayat 141, yang berbunyi: 

نَ وَالرُّمَّانَ مُتَشَابِِاً وَغَيْرَ مُتَشَابِهٍ ۚ  وَهُوَ الَّذِي أنَشَأَ جَنَّاتٍ مَّعْرُوشَاتٍ وَغَيْرَ مَعْرُوشَاتٍ وَالنَّخْلَ وَالزَّرعَْ مُُْتَلِفًا أكُُلُهُ وَالزَّيْـتُو 
 سْرفُِوا ۚ إنَِّهُ لَا يُُِبُّ الْمُسْرفِِينَ كُلُوا مِن ثََرَهِِ إِذَا أثََْرََ وَآتوُا حَقَّهُ يَـوْمَ حَصَادِهِ ۖ وَلَا تُ 

 

“Dan Dialah yang menjadikan kebun-kebun yang berjunjung dan yang tidak 

berjunjung, pohon kurma, tanam-tanaman yang bermacam-macam rasanya, 

zaitun, dan delima yang serupa dan yang tidak serupa. Makanlah dari buahnya 

bila dia berbuah, dan tunaikanlah haknya di hari memetik hasilnya, dan janganlah 

kamu berlebih-lebihan. Sesungguhnya Allah tidak menyukai orang yang berlebih-

lebihan.” (QS. Al-An’am [6]:141). 

 

 

Menurut penafsiran para ulama, ayat ini menegaskan bahwa manusia 

diperintahkan untuk mengelola hasil pertanian dengan penuh tanggung jawab 

(Rahmawati, 2021). Ayat tersebut juga menekankan pentingnya keberlanjutan dan 

larangan berlebih-lebihan dalam setiap aktivitas pertanian (Hidayat, 2020; Yusuf, 

2019). 

Selain landasan Al-Qur’an, penelitian ini sejalan dengan ajaran Rasulullah 

SAW yang menekankan pentingnya menjaga kelestarian alam dan 

memanfaatkannya secara bijak. Rasulullah SAW dalam haditsnya bersabda:  

“Tidaklah seorang muslim menanam pohon atau menabur benih, lalu 

sebagian darinya dimakan oleh burung, manusia, atau binatang, melainkan itu 

menjadi sedekah baginya.” [HR. Bukhari No. 2320].  
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Hadits ini menunjukkan bahwa setiap usaha manusia dalam bercocok tanam 

memiliki nilai keberkahan (Rahmawati, 2021). Selain itu, hadits ini juga 

menegaskan pentingnya pemanfaatan teknologi untuk meningkatkan produktivitas 

pertanian (Hidayat, 2020). Pesan moralnya adalah bahwa keberlanjutan lingkungan 

harus tetap dijaga meskipun teknologi diterapkan (Yusuf, 2019). 

Beberapa penelitian sebelumnya telah membahas penggunaan algoritma 

machine learning dalam bidang pertanian. Penelitian Wahyuni dan Pratama (2020) 

menunjukkan bahwa SVM memiliki performa tinggi dalam mengklasifikasikan 

data pertanian. Selanjutnya, penelitian Anindita dan Saputra (2021) menegaskan 

efektivitas SVM pada dataset dengan jumlah fitur terbatas. Namun demikian, 

sebagian besar penelitian terdahulu lebih berfokus pada komoditas lain, bukan pada 

melon hidroponik (Rachman et al., 2021). Hal ini menunjukkan adanya peluang 

penelitian lebih lanjut (Nugroho & Fathurrahman, 2021). Penelitian ini hadir untuk 

mengisi kesenjangan tersebut dengan menitikberatkan pada klasifikasi kebutuhan 

nutrisi melon hidroponik berbasis IoT (Santoso & Firdaus, 2023). 

Selain memperkuat basis akademis, penelitian ini juga memiliki manfaat 

praktis bagi masyarakat dan pelaku usaha tani. Sistem klasifikasi nutrisi yang 

dihasilkan dapat membantu petani dalam mengurangi kesalahan pemberian nutrisi 

(Wahyudi & Putra, 2023). Efisiensi penggunaan pupuk dapat tercapai sehingga 

lebih ramah lingkungan (Dewi & Lestari, 2021). Dampak lanjutannya adalah 

peningkatan kualitas dan kuantitas hasil panen, yang pada akhirnya dapat 

mendukung kesejahteraan petani (Syahputra et al., 2022). 
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Lebih jauh, penelitian ini diharapkan memberikan kontribusi nyata dalam 

pengembangan sistem pertanian presisi berbasis teknologi. Integrasi sensor IoT dan 

algoritma machine learning diharapkan menghasilkan model klasifikasi yang 

mampu memberikan rekomendasi berbasis data secara akurat (Arifin & Kusuma, 

2020). Kontribusi utama penelitian ini adalah menghadirkan solusi inovatif dalam 

pengelolaan nutrisi tanaman hidroponik, khususnya melon (Prasetyo & Sari, 2020). 

Dengan demikian, penelitian ini mendukung efisiensi sumber daya, meningkatkan 

produktivitas, dan memperkuat ketahanan pangan nasional (Wijayanti & Susanti, 

2021). 

 

1.2 Rumusan Masalah 

Rumusan masalah dalam penelitian ini adalah bagaimana mengembangkan 

sistem Internet of Things untuk mengklasifikasikan kebutuhan nutrisi tanaman 

melon hidroponik menggunakan Support Vector Machine yang secara otomatis 

menunjukkan klasifikasi nutrisi termasuk kurang, cukup, atau berlebih? 

 

1.3 Batasan Masalah 

Agar penelitian ini lebih terarah dan tidak melebar dari fokus utama, maka 

batasan masalah dalam penelitian ini ditentukan sebagai berikut: 

1. Parameter yang digunakan sebagai fitur klasifikasi terbatas pada pH larutan, 

suhu air, TDS, dan umur tanaman. 

2. Data diperoleh dari sensor IoT yang dipasang pada sistem hidroponik 

dengan kalibrasi pengukuran alat manual. 
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3. Klasifikasi kebutuhan nutrisi tanaman hanya dibatasi pada tiga kategori, 

yaitu kurang, cukup, dan berlebih. 

4. Penelitian ini hanya difokuskan pada proses klasifikasi kebutuhan nutrisi 

tanaman, tanpa membahas lebih lanjut dampak hasil klasifikasi terhadap 

pertumbuhan tanaman. 

 

1.4 Tujuan Penelitian 

Penelitian ini bertujuan untuk mengembangkan sistem Internet of Things 

yang mampu mengklasifikasikan kebutuhan nutrisi tanaman melon hidroponik 

menggunakan algoritma Support Vector Machine, sehingga secara otomatis dapat 

menunjukkan kategori nutrisi kurang, cukup, atau berlebih. 

 

1.5 Manfaat Penelitian 

Hasil penelitian ini diharapkan dapat memberikan manfaat sebagai berikut: 

1. Bagi peneliti, penelitian ini menjadi sarana pengembangan pengetahuan dan 

keterampilan dalam penerapan teknologi IoT dan algoritma machine 

learning, khususnya Support Vector Machine, dalam bidang pertanian 

presisi. 

2. Bagi petani atau praktisi pertanian, sistem klasifikasi nutrisi tanaman melon 

hidroponik yang dihasilkan dapat membantu dalam pengambilan keputusan 

pemupukan secara lebih tepat, efisien, dan berbasis data. 

3. Bagi akademisi dan peneliti selanjutnya, penelitian ini dapat menjadi 

referensi dan dasar pengembangan lebih lanjut pada penelitian di bidang 
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pertanian cerdas, klasifikasi data sensor, maupun penerapan metode 

machine learning lainnya. 

4. Bagi masyarakat luas, penelitian ini dapat mendukung ketersediaan produk 

hortikultura berkualitas tinggi melalui budidaya yang lebih ramah 

lingkungan dan efisien, sehingga sejalan dengan prinsip pertanian 

berkelanjutan. 
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BAB II 

 

STUDI PUSTAKA 

 

2.1 Penelitian Terkait 

Penelitian oleh Sulaiman et al. (2024) mengembangkan model hybrid 

ensemble machine learning, melibatkan Random Forest, SVM, dan KNN untuk 

memprediksi konsentrasi fosfor dalam larutan hidroponik menggunakan data 

spek­troskopi. Hasil menunjukkan bahwa SVM tunggal mencapai akurasi 99,6%, 

sedangkan kombinasi SVM/KNN via stacking mencapai 99,73%. Studi ini relevan 

karena menunjukkan potensi SVM dalam klasifikasi nutrisi berbasis data spektral, 

meskipun fokusnya bukan pada melon dan fitur yang digunakan berbeda. 

Islam et al. (2024) menggunakan teknik image processing dan SVM untuk 

mengidentifikasi gejala stres lingkungan pada bibit cabai di greenhouse (plant 

factory). Dengan metode ini, klasifikasi stress symptoms mencapai akurasi tinggi 

dan menunjukkan kecocokan SVM untuk aplikasi agronomi berbasis citra. 

Meskipun bukan pada hidroponik melon, pendekatan ini menguatkan ragam 

penerapan SVM dalam sistem pertanian terkendali. 

Muftashiva, Munadi, & Haryanto (2024) dalam penelitiannya 

mengembangkan sistem smart plant monitoring pada budidaya melon hidroponik 

berbasis Internet of Things menggunakan metode dutch bucket. Sistem ini 

dirancang untuk memantau kondisi lingkungan tanaman, seperti kelembapan, suhu, 

serta nutrisi secara real-time, sehingga petani dapat mengetahui status tanaman 

tanpa harus melakukan pengecekan manual. Hasil penelitian tersebut menunjukkan 

bahwa penerapan IoT mampu meningkatkan efisiensi pemantauan tanaman melon 
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hidroponik dengan memberikan data yang lebih cepat, akurat, dan mudah diakses 

melalui perangkat digital. 

Tabel 2.1 Penelitian terkait 

No Judul Penelitian Hasil Persamaan Perbedaan 

1 Hybrid Ensemble Machine 

Learning Models for Nutrient 

Solution Phosphorus 

Estimation in Hydroponics 

(Sulaiman et al., 2024) 

SVM akurasi 

99,6%; stacking 

hingga 99,73% 

Penggunaan SVM 

untuk klasifikasi 

nutrisi 

Bukan melon, 

basis data 

spektral 

2 Application of SVM for Stress 

Symptom Classification in 

Chili Seedlings under Plant 

Factory Conditions (Islam et 

al., 2024) 

Akurasi tinggi 

dalam 

identifikasi 

gejala stres 

Penerapan SVM 

dalam kondisi 

terkontrol 

Respons 

terhadap stres, 

bukan nutrisi 

3 Sistem Smart Plant 

Monitoring Pada Hidroponik 

Melon Berbasis Internet Of 

Things (Muftashiva, Munadi, 

& Haryanto, 2024) 

Implementasi 

sistem smart 

plant 

monitoring 

berbasis 

Internet of 

Things 

Pemanfaatan 

Internet of Things 

pada budidaya 

melon hidroponik 

Menggunakan 

metode dutch 

bucket. 

Sedangkan 

penelitian ini 

menggunakan 

SVM. 

4 Support Vector Machine 

untuk Prediksi Pola 

Pertumbuhan Selada 

Hidroponik (Rahmadi et al., 

2025) 

Akurasi ±80,5% Penggunaan SVM 

di sistem 

hidroponik NFT 

Fokus pada 

pertumbuhan, 

bukan nutrisi 

5 Pemantauan Nutrisi 

Hidroponik Menggunakan 

Sensor pH/TDS dan Logika 

Fuzzy (Julianti & Kurniawan, 

2024) 

Sistem akurasi 

tinggi dalam 

kendali nutrisi 

Pemantauan nutrisi 

pH/TDS berbasis 

IoT 

Metode fuzzy, 

bukan 

klasifikasi SVM 

Usulan Penelitian 

6 Klasifikasi Kebutuhan Nutrisi 

Tanaman Melon Hidroponik 

Berbasis Internet of Things 

Menggunakan Support 

Vector Machine 

- 

Klasifikasi kebutuhan nutrisi tanaman 

melon hidroponik berbasis data sensor 

IoT yang di integrasikan di 

greenhouse hidroponik dengan 

menggunakan metode Support Vector 

Machine (SVM). 

 

 

2.2 Klasifikasi 

Menurut Kamus Besar Bahasa Indonesia (KBBI), klasifikasi adalah 

penyusunan secara sistematis dalam kelompok atau golongan berdasarkan kaidah 

atau standar tertentu (KBBI, 2024). Secara umum, klasifikasi merupakan proses 

mengelompokkan data atau objek berdasarkan kesamaan ciri atau atribut yang 
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dimiliki. Dalam ranah machine learning, klasifikasi termasuk ke dalam metode 

supervised learning yang menggunakan data berlabel untuk mempelajari pola, 

kemudian diaplikasikan pada data baru guna menentukan kelas yang sesuai (IBM, 

2024). Berbagai algoritma digunakan dalam klasifikasi, seperti Decision Tree, 

Naïve Bayes, Artificial Neural Network, hingga Support Vector Machine (SVM). 

SVM menjadi salah satu metode yang banyak digunakan karena kemampuannya 

membangun hyperplane optimal untuk memisahkan data dalam kelas yang berbeda, 

bahkan pada data berdimensi tinggi (Firdausi, 2024). Dengan adanya klasifikasi, 

proses analisis data yang sebelumnya dilakukan secara manual dapat ditingkatkan 

akurasinya serta dipercepat melalui dukungan komputasi. 

 

2.3 Nutrisi Hidroponik 

Dalam budidaya melon hidroponik, kebutuhan nutrisi berbeda pada setiap 

fase pertumbuhan, sehingga diperlukan pengaturan parameter pH, suhu air, dan 

konsentrasi larutan secara tepat. Pada fase vegetatif (0–3 minggu setelah tanam 

(MST)), pH larutan umumnya dipertahankan pada kisaran 5,8–6,3 untuk 

memaksimalkan penyerapan unsur hara makro dan mikro (Grozine, 2023). Suhu air 

nutrisi yang ideal berada pada kisaran 20–27 °C, karena rentang ini dapat menjaga 

ketersediaan oksigen terlarut dan mencegah stres akar (Grozine, 2023). Konsentrasi 

larutan nutrisi pada fase ini diberikan secara bertahap, mulai dari sekitar 800 ppm 

pada minggu pertama dan meningkat menjadi 1000 ppm pada minggu ketiga (Tappi 

& Tandibayang, 2025). 

Memasuki fase generatif (berbunga hingga berbuah), kebutuhan nutrisi 

tanaman meningkat signifikan. pH larutan tetap dijaga stabil pada kisaran 5,8–6,4 
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(Grozine, 2023), sementara suhu air dapat dipertahankan pada 20–27 °C, meskipun 

beberapa penelitian melaporkan tanaman melon masih dapat tumbuh baik hingga 

suhu air larutan 30 °C apabila sistem aerasi dan sirkulasi terkontrol (Kawasaki et 

al., 2020). Pada fase ini, konsentrasi nutrisi larutan dinaikkan ke level 1500–1700 

ppm, yang terbukti mendukung pembentukan bunga dan pembesaran buah secara 

optimal (Tappi & Tandibayang, 2025; Furoidah, 2018; Darmawan, Dinarto, & 

Widodo, 2024). 

Tabel 2.2 Ground Truth Kebutuhan Nutrisi Tanaman 

Fase 

Pertumbuhan 

Parameter Kurang Cukup 

(Optimal) 

Berlebih Sumber 

Vegetatif  

(0–3 MST) 

pH < 5,8  5,8 – 6,4 > 6,4  Grozine, 

2023 

Suhu Air < 20 °C  20 – 27 °C > 27 °C  Grozine, 

2023 

PPM < 800 ppm  800 – 1000 

ppm 

> 1000 ppm  Tappi & 

Tandibayang, 

2025 

Generatif (≥4 

MST, 

berbunga – 

berbuah) 

pH < 5,8  5,8 – 6,4 > 6,4  Grozine, 

2023 

Suhu Air < 20 °C  20 – 27 °C  > 27 °C  Kawasaki et 

al., 2020 

PPM < 1500 ppm  1500 – 2000 

ppm 

> 2000 ppm  Tappi & 

Tandibayang, 

2025; 

Furoidah, 

2018; 

Darmawan et 

al., 2024 

 

 

2.4 Cleaning 

Tahap data cleaning merupakan bagian penting dalam preprocessing yang 

bertujuan untuk meningkatkan kualitas data sebelum masuk ke proses analisis atau 

pelatihan model. Data yang dikumpulkan dari sensor sering kali mengandung 

permasalahan seperti missing values, data duplikat, inkonsistensi, atau noise akibat 

gangguan teknis. Apabila tidak ditangani dengan baik, kondisi ini dapat 
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menyebabkan bias dalam hasil analisis dan menurunkan performa model klasifikasi 

yang dibangun. 

Menurut García, Luengo, & Herrera (2016), kualitas data memiliki 

pengaruh yang lebih besar terhadap akurasi model dibandingkan dengan 

kompleksitas algoritma yang digunakan. Oleh karena itu, proses cleaning menjadi 

tahap yang tidak dapat diabaikan. Teknik yang umum digunakan antara lain adalah 

penghapusan atau imputasi nilai hilang, deteksi dan penanganan outliers, serta 

standarisasi format data. Abid, Farooqi, & Khan (2021) juga menekankan bahwa 

pembersihan data adalah langkah preventif yang memastikan hasil analisis lebih 

reliabel dan mudah direplikasi. 

Dalam konteks penelitian ini, cleaning dilakukan untuk memastikan data 

hasil pembacaan sensor pH, suhu air, dan TDS/PPM benar-benar 

merepresentasikan kondisi aktual tanaman. Data yang terdeteksi error atau tidak 

logis, seperti nilai di luar batas biologis tanaman melon, akan diidentifikasi dan 

diperbaiki menggunakan teknik imputasi sederhana atau dihapus bila tidak relevan. 

Dengan demikian, dataset yang diperoleh menjadi lebih konsisten dan siap 

digunakan dalam tahap klasifikasi selanjutnya. 

 

2.5 Normalisasi 

Tahap normalisasi merupakan salah satu proses penting dalam 

preprocessing yang bertujuan untuk menyeragamkan skala data sehingga setiap 

atribut memiliki kontribusi yang seimbang dalam proses analisis maupun pelatihan 

model. Hal ini menjadi krusial karena data sensor pH, suhu air, dan TDS/PPM 

berada pada skala yang berbeda-beda. Misalnya, pH berkisar antara 0–14, suhu air 
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biasanya 15–35 °C, sementara TDS dapat mencapai ribuan ppm. Jika tidak 

dinormalisasi, atribut dengan skala besar (seperti TDS) akan mendominasi proses 

perhitungan jarak atau fungsi kernel dalam algoritma machine learning, termasuk 

Support Vector Machine yang digunakan dalam penelitian ini. 

Menurut Han, Pei, & Kamber (2012), normalisasi data dapat meningkatkan 

kinerja algoritma dengan mempercepat konvergensi dan mengurangi bias akibat 

perbedaan skala antar fitur. Teknik normalisasi yang umum digunakan meliputi 

Min-Max Normalization, Z-score Standardization, dan Decimal Scaling. Pada 

penelitian ini, dipilih metode Min-Max Normalization karena dapat mengubah 

setiap atribut ke dalam rentang [0,1], sehingga lebih mudah diinterpretasikan dan 

sesuai untuk algoritma SVM yang sensitif terhadap jarak antar data (Patro & Sahu, 

2015). 

Dengan adanya normalisasi, data sensor yang beragam skala dapat diproses 

secara konsisten sehingga hasil klasifikasi kebutuhan nutrisi tanaman menjadi lebih 

akurat. Proses ini juga memastikan bahwa sistem IoT yang dibangun mampu 

memberikan rekomendasi yang proporsional berdasarkan setiap parameter 

lingkungan yang diukur. 

 

2.6 Balancing 

Data balancing adalah proses penyeimbangan distribusi kelas dalam dataset 

agar model klasifikasi tidak bias terhadap kelas mayoritas. Ketidakseimbangan 

kelas (imbalanced dataset) sering menyebabkan model menghasilkan prediksi yang 

tampak akurat secara keseluruhan, tetapi gagal mengenali kelas minoritas dengan 

baik. Hal ini penting diperhatikan karena dalam penelitian berbasis klasifikasi, 
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kualitas model tidak hanya ditentukan oleh performa pada kelas mayoritas, 

melainkan juga oleh kemampuannya dalam mengidentifikasi kelas dengan jumlah 

data yang lebih sedikit (Gao et al., 2025; Chen et al., 2024). 

Balancing memungkinkan setiap kelas berkontribusi secara lebih 

proporsional dalam proses pembelajaran. Studi terbaru menegaskan bahwa teknik 

balancing, baik melalui pengurangan data pada kelas mayoritas maupun 

penambahan data pada kelas minoritas, dapat membantu mengurangi bias model 

dan meningkatkan keandalan hasil klasifikasi pada data multikelas (Chen et al., 

2024). Lebih jauh, penelitian empiris menunjukkan bahwa meskipun balancing 

dapat menurunkan jumlah informasi pada kelas tertentu, langkah ini tetap 

bermanfaat karena memperbaiki sensitivitas model terhadap kelas minoritas yang 

jumlahnya lebih sedikit (Yang et al., 2024). 

Dalam konteks penelitian ini, balancing diterapkan pada data hasil sensor 

yang dilabeli kondisi nutrisi tanaman (kurang, cukup, berlebih) menggunakan 

metode Equalized Class Reconstruction (ECR). Tujuannya adalah memastikan 

setiap kategori memiliki representasi data yang proporsional dan maksimum 

sehingga model Support Vector Machine dapat belajar secara lebih adil, tidak hanya 

fokus pada kelas mayoritas, tetapi juga mampu mendeteksi kelas minoritas dengan 

lebih baik. 

 

2.7 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) adalah metode reduksi dimensi yang 

digunakan untuk menyederhanakan dataset dengan banyak variabel menjadi 

sejumlah kecil komponen utama yang tetap mampu merepresentasikan sebagian 
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besar variasi data (Jolliffe & Cadima, 2016). Teknik ini bekerja dengan mengubah 

kumpulan variabel awal menjadi kombinasi linier baru yang tidak saling 

berkorelasi, yang disebut sebagai principal components. Komponen pertama 

menyimpan variasi data terbesar, diikuti komponen berikutnya yang menyimpan 

variasi terbesar kedua, dan seterusnya. 

Dalam penelitian klasifikasi berbasis machine learning, PCA bermanfaat 

untuk meningkatkan efisiensi komputasi, mengurangi noise, dan mencegah 

overfitting dengan cara menghilangkan korelasi antarfitur (Sharma & Paliwal, 

2021). PCA juga sering digunakan dalam pengolahan data sensor pertanian, 

misalnya untuk mengekstraksi pola utama dari parameter lingkungan sehingga hasil 

klasifikasi menjadi lebih akurat dan stabil (Zhang et al., 2022). 

Secara matematis, PCA menggunakan dekomposisi matriks kovarian atau 

singular value decomposition (SVD) untuk menghasilkan vektor eigen dan nilai 

eigen. Jika 𝑋 adalah matriks data dengan mean 0, maka kovarian dihitung dengan 

(Krishana, & Dr. Vinod Kumar, 2024): 

𝐶 =
1 

𝑛−1
𝑋𝑇𝑋      (2.1) 

Keterangan: 

𝐶   : matriks kovarian 

𝑛   : jumlah sampel data 

𝑋   : matriks data yang sudah dikurangi mean 

𝑋ᵀ   : transpose dari matriks X 

 

Selanjutnya dilakukan dekomposisi nilai eigen: 

𝐶𝑣𝑖 = 𝜆𝑖𝑣𝑖     (2.2) 

Keterangan: 

C   : matriks kovarian 

𝑣𝑖   : eigenvector ke-i 

𝜆𝑖   : eigenvalue ke-i 



16 

 

 

 

 

dengan 𝑣𝑖 adalah eigenvector yang menjadi arah komponen utama dan 𝜆𝑖 

adalah eigenvalue yang merepresentasikan besarnya variansi yang dijelaskan oleh 

komponen tersebut. 

Dengan demikian, PCA relevan digunakan pada penelitian ini untuk 

membantu analisis data sensor hidroponik (pH, TDS, suhu air) dengan cara 

menyoroti dimensi paling berpengaruh sebelum masuk ke tahap klasifikasi 

menggunakan SVM. 

 

2.8 Support Vector Machine (SVM) 

Support Vector Machine (SVM) adalah algoritma supervised learning yang 

dirancang untuk menyelesaikan masalah klasifikasi dan regresi dengan cara 

menentukan hyperplane pemisah yang optimal di antara kelas data (Cervantes et 

al., 2020). Keunggulan SVM terletak pada prinsip maximum margin, yaitu memilih 

batas pemisah dengan jarak terluas antara dua kelas, sehingga model mampu 

melakukan generalisasi dengan baik meskipun ukuran dataset terbatas (Amaya-

Tejera et al., 2024). 

Dalam penelitian ini, SVM digunakan untuk mengklasifikasikan kebutuhan 

nutrisi tanaman melon hidroponik ke dalam tiga kategori, yaitu kurang, cukup, dan 

berlebih. Input klasifikasi berasal dari data sensor pH, TDS, dan suhu air. Pemilihan 

SVM relevan karena metode ini telah terbukti unggul dalam penelitian terdahulu 

terkait pertanian presisi. Misalnya, Islam et al. (2024) menggunakan SVM untuk 

mengklasifikasikan gejala stres pada bibit cabai dengan hasil akurasi tinggi, 

sementara Sulaiman et al. (2024) menerapkan SVM dalam estimasi nutrisi 
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hidroponik berbasis machine learning dengan tingkat keberhasilan yang signifikan. 

Hal ini menunjukkan bahwa SVM efektif diterapkan pada kasus pertanian berbasis 

data, termasuk pada penelitian ini. 

Secara umum, fungsi keputusan dalam SVM dapat dituliskan sebagai 

(Shuzhanfan, 2018): 

𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏    (2.3) 

 

Keterangan: 

𝑓(𝑥)   : nilai fungsi keputusan 

𝑤   : vektor bobot 

𝑥   : vektor input fitur 

𝑏   : bias 

Tujuan optimisasi SVM adalah memaksimalkan margin dengan fungsi 

objektif: 

 

𝑚𝑖𝑛
1

2
∥ 𝑤 ∥ 2     (2.4) 

 
Keterangan: 

𝑤   : vektor bobot 

|𝑤|| 2  : norm kuadrat bobot 

 

dengan syarat, 

 

𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1    (2.5) 

 

Keterangan: 

𝑦𝑖   : label kelas 

𝑥𝑖   : vektor fitur sampel ke-i 

𝑤   : bobot 

𝑏   : bias 

 

Untuk data yang tidak sepenuhnya dapat dipisahkan secara linear, 

digunakan variabel slack 𝜉𝑖 dengan parameter regularisasi 𝐶: 

 

min
1

2
∥ 𝑤 ∥ 2 + 𝐶 ∑ 𝜉𝑖𝑛

𝑖=1     (2.6) 
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Keterangan: 

𝑤   : bobot 

𝐶   : parameter regularisasi 

𝜉𝑖   : slack variable / kesalahan yang diizinkan 

𝑛   : jumlah sampel 

 

Formulasi ini memungkinkan SVM tetap bekerja meskipun terdapat 

kesalahan klasifikasi kecil pada data latih. 

 

2.9 Kernel Linear 

Dalam Support Vector Machine (SVM), kernel berfungsi untuk mengubah 

data input ke dalam ruang fitur berdimensi lebih tinggi agar data dapat dipisahkan 

dengan hyperplane. Salah satu bentuk kernel yang paling sederhana adalah kernel 

linear, yang bekerja tanpa transformasi non-linear sehingga fungsi pemisah tetap 

berupa garis atau bidang datar (Harrington, 2020). Fungsi kernel linear dapat 

dituliskan sebagai (Cortes, C., & Vapnik, V, 1995): 

 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 ⋅ 𝑥𝑗    (2.7) 

 

Keterangan: 

𝐾(𝑥𝑖, 𝑥𝑗)  : nilai kernel 

𝑥𝑖   : vektor fitur sampel pertama 

𝑥𝑗   : vektor fitur sampel kedua 

 

Penggunaan kernel linear sangat sesuai pada dataset dengan jumlah fitur 

yang terbatas dan ketika hubungan antarvariabel cenderung linier. Dalam penelitian 

ini, fitur yang digunakan meliputi pH, TDS, suhu air, dan umur tanaman, yang 

secara logis memiliki korelasi linier terhadap klasifikasi status nutrisi (kurang, 

cukup, berlebih). Keunggulan kernel linear antara lain perhitungan yang sederhana, 

waktu komputasi lebih cepat, serta hasil yang lebih mudah diinterpretasikan 
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dibandingkan kernel non-linear seperti RBF atau polynomial (Cervantes et al., 

2020). 

Selain itu, penelitian terdahulu juga menunjukkan bahwa kernel linear dapat 

memberikan performa yang cukup baik pada bidang pertanian berbasis IoT ketika 

jumlah fitur relatif sedikit. Misalnya, SVM dengan kernel linear telah digunakan 

pada klasifikasi pertumbuhan tanaman hidroponik dengan akurasi kompetitif 

dibandingkan kernel kompleks lainnya (Rahmadi et al., 2025). Hal ini menjadi 

dasar bahwa kernel linear tepat digunakan dalam penelitian ini sebagai pendekatan 

klasifikasi kebutuhan nutrisi melon hidroponik berbasis IoT. 

Pada gambar 2.1, menunjukkan ilustrasi sederhana penerapan Support 

Vector Machine (SVM) dengan kernel linear dalam memisahkan dua kelas data. 

Titik biru dan merah merepresentasikan dua kelas berbeda, sedangkan garis hitam 

merupakan hyperplane pemisah yang dibentuk oleh SVM. Garis putus-putus 

menandai batas margin yang mengapit hyperplane, di mana titik data terdekat 

disebut support vector. Prinsip maximum margin ini memungkinkan SVM untuk 

meminimalkan kesalahan klasifikasi sekaligus meningkatkan kemampuan 

generalisasi pada data baru (Cervantes et al., 2020; Amaya-Tejera et al., 2024). 
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Gambar 2.1 Ilustrasi Hyperplane Linear 

 

 

2.10 Confusion Matrix 

Confusion matrix merupakan metode evaluasi yang banyak digunakan 

dalam mengukur kinerja model klasifikasi. Matriks ini menyajikan perbandingan 

antara hasil prediksi model dengan data aktual yang diketahui, sehingga dapat 

menggambarkan tingkat akurasi maupun kesalahan klasifikasi (Hossin & Sulaiman, 

2015). Struktur confusion matrix terdiri dari empat komponen utama, yaitu True 

Positive (TP), True Negative (TN), False Positive (FP), dan False Negative (FN), 

yang masing-masing menjelaskan posisi hasil prediksi terhadap kenyataan (Chicco 

& Jurman, 2020). Pada tabel 2.3 berikut menunjukkan bentuk umum confusion 

matrix : 

   Tabel 2.3 Confusion Matrix  
Prediksi Positif Prediksi Negatif 

Aktual (Fakta) Positif True Positive (TP) False Negative (FN) 

Aktual (Fakta) Negatif False Positive (FP) True Negative (TN) 

 

 

True Positive (TP) adalah situasi hasil dari data aktual dan hasil prediksi 

keduanya benar. True Negative (TN) adalah kondisi di mana data aktual tidak benar, 
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tetapi hasil prediksi benar. False Positive (FP) terjadi ketika hasil prediksi salah, 

sementara data aktualnya benar. False Negative (FN) adalah keadaan ketika hasil 

prediksi maupun data aktual keduanya salah. Dalam evaluasi berbasis label akan 

mengevaluasi setiap label secara terpisah, yang pada dasarnya mengubah 

pengklasifikasi multi-label menjadi pengklasifikasi biner untuk setiap label. 

Pendekatan ini menghasilkan empat kemungkinan hasil prediksi: True Positive 

(TP), False Positive (FP), True Negative (TN), dan False Negative (FN). Metrik 

yang digunakan didefinisikan sebagai berikut (Swaminathan, Sathyanarayanan & 

Tantri, B Roopashri, 2024) : 

  

Akurasi = 
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100%     (2.8) 

Presisi = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  ×  100%    (2.9) 

Recall = 
𝑇𝑃  

𝑇𝑃+𝐹𝑁
×  100%    (2.10)   

F1 Score = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 
 ×  100%   (2.11) 

 

Keterangan: 

𝑇𝑃   : true positive 

𝑇𝑁   : true negative 

𝐹𝑃   : false positive 

𝐹𝑁   : false negative 

 

 

Evaluasi ini penting karena setiap metrik memberikan sudut pandang yang 

berbeda. Accuracy baik digunakan ketika distribusi kelas seimbang, namun pada 

data tidak seimbang, precision, recall, dan F1-score lebih dapat menggambarkan 

performa model secara adil (Sokolova & Lapalme, 2009). Oleh karena itu, 
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kombinasi dari metrik-metrik ini akan digunakan dalam penelitian untuk menilai 

kinerja model klasifikasi kebutuhan nutrisi tanaman melon hidroponik. 

 

2.11 Pengujian Kalibrasi Sensor 

Pengujian kalibrasi sensor merupakan tahap awal yang penting untuk 

memastikan keandalan data yang digunakan dalam penelitian. Sensor yang tidak 

terkalibrasi dengan baik dapat menghasilkan data yang bias atau menyimpang dari 

kondisi sebenarnya, sehingga berdampak langsung pada akurasi analisis maupun 

performa model klasifikasi yang dibangun. Menurut Vasylenko et al. (2020), proses 

kalibrasi dilakukan untuk menyesuaikan pembacaan sensor terhadap standar acuan 

sehingga kesalahan sistematis dapat diminimalisasi. Hal serupa ditegaskan oleh 

Roriz et al. (2021), bahwa kalibrasi bukan hanya meningkatkan akurasi, tetapi juga 

menjamin konsistensi pengukuran dari waktu ke waktu. 

Kalibrasi sensor dilakukan dengan cara membandingkan hasil pembacaan 

sensor terhadap alat ukur manual yang dijadikan referensi. Setiap parameter sensor 

(pH, suhu air, dan TDS) diukur secara bersamaan menggunakan sensor dan alat 

referensi pada beberapa titik pengukuran. Selisih antara hasil sensor dan referensi 

dihitung sebagai error, kemudian dirata-ratakan untuk mengetahui tingkat akurasi 

sensor. 

Metrik yang digunakan dalam penelitian ini adalah Mean Absolute Error 

(MAE) karena lebih sederhana dan mudah diinterpretasikan. MAE menunjukkan 

rata-rata besar deviasi pembacaan sensor terhadap nilai referensi. Rumus MAE 

ditunjukkan pada persamaan berikut (Willmott, C. J., & Matsuura, K, 2005): 
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𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖𝑠𝑒𝑛 − 𝑦𝑖𝑟𝑒𝑓|𝑁

𝑖=1    (2.12) 

 
Keterangan: 

𝑁   : jumlah sampel 

𝑦𝑖𝑠𝑒𝑛
   : nilai referensi 

𝑦𝑖𝑟𝑒𝑓   : nilai hasil sensor 

 

Sensor dianggap layak digunakan apabila nilai MAE berada dalam batas 

toleransi, misalnya pH ≤ 0,2; suhu air ≤ 0,5 °C; dan TDS ≤ 50–100 ppm (Willmott 

& Matsuura, 2005). 
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BAB III 

 

DESAIN DAN IMPLEMENTASI 

 

3.1 Prosedur Penelitian 

Penelitian ini dilakukan melalui beberapa tahapan yang dirancang secara 

sistematis agar tujuan penelitian dapat tercapai dengan baik. Prosedur penelitian 

berfungsi sebagai gambaran umum mengenai alur kegiatan, mulai dari perancangan 

sistem hingga tahap analisis dan evaluasi hasil. Secara lebih jelas, prosedur 

penelitian ini ditunjukkan pada Gambar 3.1.  

Gambar 3.1. Tahapan Prosedur Penelitian 

 

Tahap pertama adalah pengumpulan data, yang dilakukan setelah sistem 

siap digunakan. Peneliti menggunakan sensor yang telah dipasang untuk mencatat 

data secara periodik sesuai dengan kebutuhan penelitian. Data ini menjadi dasar 

untuk analisis selanjutnya. 

Tahap kedua adalah desain sistem, di mana peneliti merancang kebutuhan 

perangkat keras dan perangkat lunak yang digunakan. Rancangan ini mencakup 

pemilihan sensor IoT untuk mengukur parameter penting tanaman melon 

hidroponik seperti pH, suhu air, TDS, serta penentuan arsitektur sistem yang 

menghubungkan sensor dengan basis data. 

Selanjutnya, tahap implementasi dilakukan dengan membangun model 

klasifikasi menggunakan algoritma Support Vector Machine (SVM) sesuai 
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rancangan yang telah dibuat. Model ini dilatih menggunakan data hasil 

preprocessing untuk menghasilkan sistem klasifikasi kebutuhan nutrisi tanaman 

melon hidroponik. 

Tahap terakhir adalah analisis dan evaluasi, di mana peneliti menilai kinerja 

model dengan menggunakan metrik evaluasi seperti accuracy, precision, recall, 

dan F1-score dan pengujian kalibrasi sensor pada sistem IoT. Hasil analisis metrik 

evaluasi digunakan untuk mengetahui sejauh mana efektivitas model dalam 

melakukan klasifikasi, sekaligus memberikan gambaran mengenai perbaikan yang 

dapat dilakukan pada penelitian berikutnya. Sedangkan pengujian kalibrasi sensor 

digunakan untuk menguji seberapa akurat sensor yang digunakan untuk pembacaan 

parameter. 

 

3.1.1 Pengumpulan Data 

Tahap pengumpulan data merupakan langkah awal yang sangat penting 

dalam penelitian ini. Peneliti akan mengumpulkan data yang digunakan bersumber 

dari hasil pengukuran parameter tanaman melon hidroponik dengan sistem IoT. 

Parameter yang dicatat meliputi pH larutan nutrisi, nilai TDS (Total Dissolved 

Solids), suhu air sistem hidroponik, serta umur tanaman. Rincian fitur yang 

digunakan dalam penelitian ini ditunjukkan pada Tabel 3.1. 

Tabel 3.1 Fitur penelitian 

No Fitur Satuan Keterangan 

1 pH - Menunjukkan tingkat keasaman atau kebasaan larutan nutrisi 

hidroponik. 

2 TDS ppm Mengukur jumlah padatan terlarut yang merepresentasikan 

konsentrasi nutrisi. 

3 Suhu Air °C Menunjukkan kondisi air sistem hidroponik yang 

mempengaruhi penyerapan nutrisi tanaman. 

4 Umur 

Tanaman 

Hari 

(HST) 

Menggambarkan fase pertumbuhan tanaman sejak ditanam. 
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Proses pengumpulan data dilakukan dengan memanfaatkan sensor yang 

terhubung pada sistem mikrokontroler. Sensor pH digunakan untuk mengukur 

tingkat keasaman larutan, sensor TDS untuk mengetahui konsentrasi nutrisi terlarut, 

dan sensor DS18b20 untuk mencatat suhu air pada sistem hidroponik. Sementara 

itu, fitur umur tanaman hanya berperan sebagai context feature yang digunakan 

untuk mengetahui fase pertumbuhan, bukan indikator nutrisi. Umur tanaman tidak 

memiliki hubungan langsung terhadap perubahan pH, TDS, maupun suhu, sehingga 

tidak digunakan sebagai fitur prediktif dalam proses labeling ataupun pemodelan. 

Data yang diperoleh dari sensor kemudian dikirimkan secara otomatis ke server 

atau penyimpanan berbasis cloud melalui modul IoT. 

Pencatatan data dilakukan secara periodik setiap 1 jam sekali selama masa 

penelitian berlangsung. Interval pencatatan ini dipilih untuk memperoleh variasi 

data yang cukup serta mampu merepresentasikan perubahan kondisi larutan nutrisi 

secara real-time.  

 

3.1.2 Desain Sistem 

Peneliti merancang sistem monitoring dan klasifikasi nutrisi melon 

hidroponik yang terdiri dari tiga subsistem utama: (1) subsistem perangkat keras 

(sensor & mikrokontroler), (2) subsistem komunikasi dan penyimpanan (protokol 

MQTT dan server/database), serta (3) subsistem perangkat lunak untuk pengolahan 

dan klasifikasi (backend untuk preprocessing & SVM dan antarmuka web untuk 

visualisasi). Desain sistem bertujuan memastikan data sensor (pH, TDS, DS18b20) 

dikirim secara periodik, tersimpan rapi, dan tersedia untuk proses preprocessing 

serta inferensi model SVM. 
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Gambar 3.2 Desain Sistem 

 

 

Desain sistem yang digunakan dalam penelitian ini terdiri atas perangkat 

keras dan perangkat lunak yang saling terintegrasi. Pada sisi perangkat keras, 

peneliti menggunakan tiga jenis sensor, yaitu sensor pH untuk mengukur tingkat 

keasaman larutan nutrisi, sensor TDS untuk mengukur konsentrasi total padatan 

terlarut, serta sensor DS18b20 yang digunakan untuk memantau kondisi air pada 

sistem hidroponik. Ketiga sensor ini dihubungkan dengan mikrokontroler ESP32 

yang berfungsi sebagai pengendali utama sekaligus pengirim data ke server. 

Pada sisi perangkat lunak, peneliti menerapkan protokol komunikasi MQTT 

dengan broker Mosquitto sebagai penghubung antara perangkat IoT dan server. 

Data dari mikrokontroler dikirim dalam format JSON ke broker, kemudian 

diteruskan ke server backend yang bertugas sebagai subscriber. Backend 

menangani proses preprocessing data, seperti cleaning, normalisasi, balancing, dan 

reduksi dimensi dengan PCA, sebelum data diproses menggunakan algoritma 

Support Vector Machine (SVM) untuk klasifikasi kebutuhan nutrisi. Hasil 

klasifikasi kemudian disimpan pada database server lokal, dan ditampilkan melalui 
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dashboard web untuk memudahkan pengguna dalam memantau kondisi tanaman 

secara real-time. 

Secara umum, alur kerja sistem dimulai dari sensor yang membaca 

parameter larutan, dilanjutkan dengan pengiriman data melalui mikrokontroler ke 

broker MQTT. Data tersebut diterima server, diproses melalui pipeline 

preprocessing, diklasifikasikan menggunakan SVM, lalu hasilnya ditampilkan di 

antarmuka web sebagai media pemantauan dan pengambilan keputusan. 

Tabel 3.2 Spesifikasi Hardware 

Komponen Spesifikasi / Fungsi 

Sensor pH Mengukur tingkat keasaman larutan nutrisi hidroponik (range 0–14, akurasi 

±0,1 pH). 

Sensor TDS Mengukur konsentrasi total padatan terlarut (ppm) sebagai indikator kadar 

nutrisi. 

Sensor 

DS18b20 

Digunakan untuk mengukur kondisi air pada system hidroponik (suhu air 

larutan nutrisi). 

Mikrokontroler ESP32, membaca data sensor, melakukan validasi awal, dan mengirim data 

ke server. 

Catu daya Power supply untuk mendukung operasi mikrokontroler dan sensor. 

 

 

Tabel 3.1 menjelaskan komponen perangkat keras yang digunakan dalam 

penelitian ini. Sensor pH, TDS, dan DS menjadi perangkat utama yang berfungsi 

membaca parameter penting pada larutan nutrisi hidroponik. Data hasil pembacaan 

sensor tersebut diolah oleh mikrokontroler ESP32  yang kemudian mengirimkannya 

ke server melalui protokol komunikasi MQTT. Perangkat keras ini dipilih karena 

mampu memberikan pengukuran yang cukup akurat dan mudah diintegrasikan 

dalam sistem berbasis IoT. 

Tabel 3.2 Spesifikasi Software 

Komponen Spesifikasi / Fungsi 

Protokol 

komunikasi 

MQTT (Message Queuing Telemetry Transport), digunakan untuk 

pertukaran data IoT. 

Broker Mosquitto MQTT broker sebagai pusat distribusi data sensor. 

Server Backend REST API / Subscriber MQTT, menangani preprocessing data, PCA, dan 

inferensi model SVM. 

Database PostgreSQL untuk penyimpanan data sensor dan hasil klasifikasi. 
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Tabel 3.2 Lanjutan 

Komponen Spesifikasi / Fungsi 

Algoritma Support Vector Machine (SVM) dengan kernel linear untuk klasifikasi 

kebutuhan nutrisi. 

Antarmuka 

Web 

Dashboard berbasis web untuk menampilkan grafik, histori data, dan hasil 

klasifikasi. 

 

 

Sementara itu, Tabel 3.2 menunjukkan perangkat lunak dan infrastruktur 

yang digunakan. Broker MQTT Mosquitto menjadi penghubung komunikasi antar 

perangkat IoT dengan server backend. Backend bertugas menangani preprocessing 

data, melakukan reduksi dimensi dengan PCA, dan menjalankan algoritma 

klasifikasi Support Vector Machine (SVM). Data hasil klasifikasi disimpan dalam 

database server lokal, kemudian divisualisasikan melalui dashboard web yang 

memudahkan pengguna dalam melakukan monitoring kebutuhan nutrisi tanaman 

melon hidroponik secara real-time. 

 

3.1.3 Preprocessing Data 

Pada tahap ini, peneliti akan melakukan preprocessing data terlebih dahulu 

agar data siap digunakan dalam pengembangan model. Gambar 3.3 memperlihatkan 

tahapan-tahapan preprocessing yang dilakukan dalam penelitian ini, meliputi 

cleaning, normalisasi, balancing, dan PCA.  

Gambar 3.3 Tahapan preprocessing data 

 

 

Proses preprocessing ini sangat penting karena berfungsi untuk menghasilkan 

data yang bersih dan terstruktur, sehingga dapat mendukung proses pelatihan 
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maupun pengujian model secara optimal. Mengingat data merupakan aspek yang 

sangat krusial, tahapan preprocessing berpengaruh langsung terhadap kualitas hasil 

klasifikasi dan evaluasi performa model. 

 

3.1.3.1 Cleaning 

Tahap cleaning merupakan langkah awal dalam proses preprocessing yang 

bertujuan untuk memastikan kualitas data yang akan digunakan dalam penelitian. 

Data hasil pencatatan sensor sering kali mengandung nilai yang tidak valid, hilang 

(missing values), atau outlier yang dapat memengaruhi kinerja algoritma 

klasifikasi. Oleh karena itu, tahap ini akan dilakukan peneliti untuk 

mengidentifikasi dan memperbaiki ketidaksesuaian tersebut. 

Peneliti melakukan proses cleaning dengan cara mengecek konsistensi data 

dari sensor pH, TDS, suhu air. Jika ditemukan data yang tidak tercatat atau berada 

jauh di luar batas normal, data tersebut akan ditangani dengan dua cara: mengganti 

nilai yang hilang menggunakan metode interpolasi linear yang diterapkan pada 

tahap balancing atau menghapus data yang benar-benar tidak dapat digunakan. 

Tahapan cleaning ini penting karena kualitas data sangat menentukan 

performa model SVM yang digunakan dalam klasifikasi kebutuhan nutrisi tanaman 

melon hidroponik. Data yang bersih akan mengurangi risiko bias, meningkatkan 

akurasi prediksi, serta mendukung hasil evaluasi model yang lebih andal. 

 

3.1.3.2 Normalisasi  

Tahap normalisasi dilakukan untuk menyamakan skala antar fitur agar tidak 

ada parameter yang terlalu mendominasi dalam proses klasifikasi. Hal ini penting 
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karena data yang diperoleh memiliki satuan yang berbeda, seperti pH dalam rentang 

0–14, TDS dalam satuan ppm, dan suhu air dalam °C. Jika tidak dilakukan 

normalisasi, algoritma SVM dapat memberikan bobot yang lebih besar pada fitur 

dengan nilai skala lebih tinggi, sehingga memengaruhi akurasi hasil klasifikasi. 

Peneliti menggunakan metode Min-Max Normalization, yaitu metode yang 

mengubah nilai data ke dalam rentang tertentu, biasanya [0,1]. Rumus Min-Max 

Normalization dapat dituliskan sebagai berikut (Patel, H., & Prajapati, P, 2018): 

 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    (3.1) 

 
Keterangan: 

𝑋   : nilai asli data 

𝑋′   :  nilai hasil normalisasi 

𝑋𝑚𝑖𝑛   : nilai minimum pada fitur 

𝑋𝑚𝑎𝑥   : nilai maksimum pada fitur 

 

 

Sebagai contoh, jika pada parameter suhu air tercatat nilai minimum 20°C 

dan maksimum 35°C, maka data suhu air 25°C akan dinormalisasi menjadi: 

 

𝑋′ =
25 − 20

35 − 20
=

5

15
= 0.33 

 

Dengan adanya normalisasi ini, seluruh fitur berada dalam skala yang 

sebanding, sehingga mendukung proses klasifikasi SVM agar bekerja lebih optimal. 

 

3.1.3.3 Balancing 

Tahap balancing pada penelitian ini menggunakan pendekatan rekonstruksi 

kelas berbasis Equalized Class Reconstruction (ECR). Metode ini dikembangkan 

untuk mengatasi ketidakseimbangan kelas tanpa harus membuang data pada kelas 
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mayoritas, sekaligus menghindari hilangnya informasi penting yang sebelumnya 

terjadi pada proses undersampling. Ketidakseimbangan kelas (class imbalance) 

muncul ketika distribusi jumlah sampel pada masing-masing kelas berbeda secara 

signifikan, misalnya kelas “cukup” memiliki jumlah data jauh lebih besar 

dibandingkan kelas “kurang” dan “berlebih”. Kondisi ini berpotensi menyebabkan 

model SVM bias terhadap kelas yang dominan dan mengurangi akurasi pada kelas 

minoritas. 

Dalam pendekatan ECR, penyeimbangan dilakukan bukan dengan 

memangkas data kelas mayoritas, tetapi dengan melakukan proses rekonstruksi 

sintetis (synthetic reconstruction) pada kelas yang memiliki jumlah data lebih 

sedikit. Proses rekonstruksi dilakukan dengan mengkombinasikan dua titik data 

secara linier untuk menghasilkan sampel baru yang masih mempertahankan 

karakteristik pola sensor. Rumus pembentukan sampel sintetis dapat dituliskan 

sebagai berikut (Bishop, 2006) 

 

𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 𝛼 ⋅ 𝑥𝑖 + (1 − 𝛼) ⋅ 𝑥𝑗    (3.2) 

 
Keterangan : 

𝑥𝑖   : data asli pertama dalam kelas yang sama 

𝑥𝑗  : data asli kedua yang dipilih secara acak dalam kelas yang sama 

𝑥synthetic  : data sintetis hasil rekonstruksi 

𝛼  : koefisien penggabungan (nilai antara 0 dan 1). 

 

Dengan menggunakan rumus tersebut, proses rekonstruksi dilakukan 

hingga jumlah data pada setiap kelas mencapai jumlah target, yaitu kelas dengan 

anggota terbanyak. Setelah proses ini selesai, dataset menjadi seimbang, dan model 

klasifikasi, dalam hal ini SVM, dapat belajar secara proporsional pada setiap kelas 

tanpa bias terhadap kelas mayoritas. 
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3.1.3.4 Principal Component Analysis (PCA) 

Peneliti menggunakan metode Principal Component Analysis (PCA) untuk 

mereduksi dimensi data sebelum dilakukan proses klasifikasi. PCA dipilih karena 

mampu menyederhanakan representasi data tanpa banyak kehilangan informasi 

penting, sehingga model klasifikasi dapat bekerja lebih efisien. Proses PCA dalam 

penelitian ini dilakukan melalui beberapa langkah utama sebagai berikut. 

Langkah awal yang dilakukan peneliti adalah standarisasi nilai dari seluruh 

fitur yang digunakan, yaitu pH, TDS, suhu air. Hal ini penting karena masing-

masing fitur memiliki rentang nilai yang berbeda. Sebagai contoh, nilai TDS dapat 

mencapai ribuan ppm, sementara pH hanya berada pada rentang 0–14. Jika tidak 

dilakukan standarisasi, fitur dengan skala lebih besar akan lebih dominan dalam 

perhitungan. Standarisasi dilakukan dengan metode min-max normalization seperti 

yang telah dijelaskan pada poin 3.1.3.2, sehingga setiap fitur memiliki rata-rata 0 

dan standar deviasi 1. Dengan standarisasi, semua fitur berada pada skala yang 

sama, sehingga memiliki kontribusi yang seimbang dalam analisis PCA. 

Setelah standarisasi, peneliti membentuk matriks kovarians untuk melihat 

hubungan antar fitur. Matriks kovarians ini menunjukkan bagaimana dua fitur 

saling berkorelasi. Nilai kovarians positif menunjukkan bahwa dua fitur cenderung 

naik bersama, nilai negatif menunjukkan hubungan berlawanan, sementara nilai 

mendekati nol menunjukkan hampir tidak ada hubungan. Pada penelitian ini, 

dengan tiga fitur (pH, TDS, suhu air), matriks kovarians yang dihasilkan berbentuk 

3x3, dengan diagonal utama berisi nilai varians masing-masing fitur, sedangkan 

elemen lainnya berisi kovarians antar fitur. 
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            Tabel 3.4 Contoh Matriks Kovarians Data Sensor 

Fitur  pH TDS Suhu 

pH Var(pH) Cov(pH,TDS) Cov(pH,Suhu) 

TDS Cov(TDS,pH) Var(TDS) Cov(TDS,Suhu) 

Suhu Cov(Suhu,pH) Cov(Suhu,TDS) Var(Suhu) 

 

Langkah berikutnya adalah menghitung nilai eigen (eigenvalue) dan vektor 

eigen (eigenvector). Vektor eigen berfungsi sebagai arah atau sumbu baru pada 

data, sedangkan nilai eigen menunjukkan seberapa besar variasi data yang dapat 

dijelaskan oleh masing-masing vektor. Misalnya, jika eigenvector pertama banyak 

dipengaruhi oleh kombinasi TDS dan pH, maka arah ini menjadi sumbu baru yang 

paling penting. Semakin besar nilai eigen, semakin besar pula kontribusi vektor 

tersebut dalam menjelaskan variasi data.  

Nilai eigen yang dihasilkan kemudian diurutkan dari yang terbesar hingga 

terkecil. Komponen dengan nilai eigen terbesar dipilih sebagai principal component 

karena mampu menjelaskan variasi data paling banyak. Jika peneliti ingin 

mereduksi data dari empat dimensi menjadi dua dimensi, maka dua eigenvector 

dengan nilai eigen terbesar yang dipilih. Proses transformasi dilakukan dengan 

mengalikan data yang telah distandarisasi dengan eigenvector terpilih untuk 

menghasilkan principal component (Jolliffe, I. T., & Cadima, J, 2016). 

 

𝑃𝐶 = 𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟 ⋅ 𝑉    (3.3) 

 
Keterangan: 

𝑃𝐶   : data baru hasil reduksi 

𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟  : data asli yang sudah distandarisasi  

𝑉   : matriks eigenvector terpilih. 

 

Hasil akhir dari proses PCA adalah data baru dalam bentuk principal 

component yang lebih ringkas namun tetap menyimpan variasi penting dari data 
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asli. Data hasil transformasi inilah yang digunakan peneliti sebagai masukan pada 

algoritma SVM untuk melakukan klasifikasi kebutuhan nutrisi tanaman melon 

hidroponik. 

 

3.1.4 Implementasi Support Vector Machine (SVM) 

Pada tahap implementasi, peneliti melatih model Support Vector Machine 

(SVM) dengan data yang telah melalui tahap praproses, termasuk normalisasi, 

reduksi dimensi dengan Principal Component Analysis (PCA), serta 

penyeimbangan data. Data hasil PCA kemudian digunakan untuk membentuk 

matriks kernel, yang merepresentasikan hubungan antar sampel berdasarkan 

kombinasi fitur penelitian, yaitu pH, TDS, suhu air. 

Setelah kernel terbentuk, disusun matriks Hessian sebagai bagian dari 

proses optimisasi SVM. Optimisasi ini dilakukan menggunakan algoritma 

Sequential Minimal Optimization (SMO), yaitu metode efisien untuk memperbarui 

parameter Lagrange multiplier secara iteratif. Parameter ini menentukan sampel 

mana yang berperan sebagai support vector, sehingga model dapat membentuk 

hyperplane optimal untuk memisahkan kelas. 

Nilai bias dan vektor bobot kemudian dihitung untuk membentuk fungsi 

keputusan SVM. Proses pelatihan dilakukan berulang hingga parameter model 

mencapai kondisi stabil. Model akhir terdiri atas support vector, vektor bobot, dan 

bias yang digunakan untuk mengklasifikasikan data baru. 

Dalam penelitian ini, label kelas diperoleh dari tabel acuan nutrisi 

hidroponik yang telah dibahas pada Bab II poin 2.3 nutrisi hidroponik. Kategori 

“kurang”, “cukup”, dan “berlebih” ditetapkan berdasarkan rentang optimal pH, 
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suhu air, dan TDS pada fase vegetatif maupun berbunga tanaman melon. Hasil 

klasifikasi dari model SVM nantinya secara langsung merepresentasikan kondisi 

nutrisi tanaman sesuai baseline yang telah ditentukan. 

 

3.2 Skenario Pengujian 

Pengujian pada penelitian ini dilakukan untuk mengevaluasi kinerja model 

klasifikasi kebutuhan nutrisi tanaman melon hidroponik berbasis SVM dengan 

kernel linear. Skenario pengujian dirancang agar dapat menunjukkan sejauh mana 

model mampu mengenali pola dari data sensor dan mengklasifikasikan kondisi 

nutrisi tanaman ke dalam kategori tertentu (cukup, kurang, atau berlebih). 

Pada tahap ini, peneliti membagi dataset hasil pengukuran pH, TDS, dan 

suhu air menjadi dua bagian, yaitu data latih (training set) dan data uji (testing set). 

Perbandingan rasio data latih dan uji dilakukan dalam beberapa skenario untuk 

melihat stabilitas model terhadap variasi pembagian data. Model kemudian dilatih 

menggunakan data latih dan diuji menggunakan data uji yang belum pernah 

dikenali sebelumnya. 

Selain pembagian data, peneliti juga melakukan proses hyperparameter 

tuning untuk mencari parameter terbaik yang dapat meningkatkan kinerja SVM. 

Pada kernel linear, parameter utama yang diuji adalah nilai regularization 

parameter (C). Parameter ini berfungsi untuk mengontrol keseimbangan antara 

margin pemisah yang maksimal dan kesalahan klasifikasi pada data latih. Nilai C 

yang terlalu kecil dapat menghasilkan margin yang lebar tetapi rawan salah 

klasifikasi, sementara nilai C yang terlalu besar dapat membuat model terlalu kaku 

(overfitting). Oleh karena itu, beberapa nilai C akan diuji dengan metode pencarian 
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sistematis (grid search) serta validasi silang (cross-validation) untuk menentukan 

parameter terbaik. 

Tabel 3.5 Skenario Pengujian 

Skenario Data 

Latih 

Data 

Uji 

Hyperparameter 

C 

Tujuan 

1 80% 20% 0.1, 1, 10, 100 Melihat performa model pada rasio umum 

yang banyak digunakan dalam penelitian. 

2 70% 30% 0.1, 1, 10, 100 Menguji kinerja model dengan data uji 

yang lebih besar. 

3 60% 40% 0.1, 1, 10, 100 Mengevaluasi ketahanan model saat data 

latih relatif lebih sedikit. 

 

Hasil prediksi dari model akan dibandingkan dengan label aktual, kemudian 

dievaluasi menggunakan confusion matrix dihitung accuracy, precision, recall, dan 

F1-score. 

Pengujian  kedua  dalam penelitian ini adalah pengujian kalibrasi sensor  

menggunakan rumus Mean Absolute Error (MAE) yang telah dijelaskan pada bab 

2 di poin 2.11. Pengujian kalibrasi sensor dilakukan untuk memastikan bahwa data 

yang diperoleh dari sensor yang ada di sistem Internet of Things memiliki tingkat 

akurasi yang dapat dipertanggungjawabkan. Skenario pengujian dirancang dengan 

cara membandingkan hasil pembacaan sensor dengan alat ukur manual yang 

digunakan sebagai referensi. Parameter yang diuji meliputi pH larutan, suhu air, 

dan TDS (Total Dissolved Solids) karena ketiganya merupakan indikator utama 

dalam sistem hidroponik. 

Pengujian dilakukan harian yang mewakili variasi kondisi nyata pada sistem 

hidroponik melon, baik pada fase vegetatif maupun berbunga. Setiap pengukuran 

dilakukan secara bersamaan antara sensor dan alat referensi untuk memastikan 

keseragaman kondisi uji. Data hasil pembacaan sensor dicatat, kemudian 
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dibandingkan dengan hasil pengukuran manual. Selisih antara keduanya dihitung 

sebagai nilai error. 

BA DAN 
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BAB IV 

 

HASIL DAN PEMBAHASAN 

 

4.1 Pengumpulan Data 

Pengumpulan data dilakukan selama periode 8 Agustus 2025 hingga 9 

Oktober 2025 melalui sistem Internet of Things (IoT) yang telah dirancang pada 

penelitian ini. Data dikumpulkan secara otomatis dari sensor pH, TDS, dan 

DS18B20 (suhu air) yang terintegrasi dengan mikrokontroler ESP32. Seluruh hasil 

pembacaan sensor dikirimkan secara periodik ke server melalui protokol MQTT 

dan disimpan dalam basis data untuk keperluan analisis. Dataset yang diperoleh 

menjadi dasar pengembangan model klasifikasi kebutuhan nutrisi tanaman melon 

hidroponik berbasis algoritma Support Vector Machine (SVM). 

Secara keseluruhan, sistem berhasil merekam 1.498 baris data mentah 

selama masa pengamatan. Dataset tersebut terdiri atas empat fitur utama, yaitu pH 

larutan, TDS (Total Dissolved Solids), suhu air, dan umur tanaman (Hari Setelah 

Tanam). Keempat fitur ini mencerminkan kondisi aktual larutan nutrisi pada dua 

fase pertumbuhan tanaman melon, yaitu fase vegetatif dan fase generatif. Data yang 

diperoleh mencakup berbagai variasi kondisi lingkungan yang terjadi selama 

penelitian berlangsung. 

Periode pertama pengambilan data dilakukan pada 8 Agustus hingga 29 

Agustus 2025, dengan total 528 baris data. Pada rentang waktu ini, sistem masih 

berada pada tahap penyesuaian awal dan proses kalibrasi sensor, sehingga 

ditemukan 238 nilai kosong (N/A) yang sebagian besar terjadi pada tanggal 11 

hingga 20 Agustus 2025. Nilai kosong tersebut disebabkan oleh error dari 
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pembacaan sensor dan ketidakstabilan sistem pada fase uji coba awal. Meskipun 

demikian, data yang berhasil terekam tetap memberikan gambaran awal mengenai 

pola fluktuasi parameter larutan nutrisi selama fase vegetatif tanaman. 

Periode kedua berlangsung pada 30 Agustus hingga 9 Oktober 2025, dengan 

total 720 baris data yang berhasil terekam secara lengkap dan stabil. Seluruh data 

pada periode ini bersifat numerik tanpa adanya nilai kosong, dengan rentang nilai 

TDS berada antara 1500 hingga 1700 ppm. Rentang tersebut menunjukkan bahwa 

larutan nutrisi berada pada kondisi normal dan sesuai dengan kisaran optimal bagi 

tanaman melon pada fase generatif awal. Selain itu, kestabilan data pada periode 

ini menunjukkan bahwa sistem IoT telah berfungsi dengan baik dalam mengirim 

dan menyimpan hasil pembacaan sensor secara konsisten. 

Namun pada pembacaan di tanggal 6 Oktober hingga 9 Oktober 2025, 

dengan total 81 baris data. Pada rentang waktu ini, terjadi peningkatan nilai TDS 

hingga mencapai ≥2000 ppm, yang menunjukkan kondisi larutan nutrisi dalam 

keadaan “jebol” atau melebihi batas optimal. Fenomena ini menandakan adanya 

akumulasi padatan terlarut pada larutan nutrisi, yang berpotensi menyebabkan 

ketidakseimbangan ketersediaan unsur hara bagi tanaman. Meskipun demikian, 

data dari periode ini tetap dipertahankan dalam dataset karena menggambarkan 

kondisi ekstrem yang relevan untuk proses klasifikasi kebutuhan nutrisi tanaman. 

Selanjutnya pada pengumpulan data, analisis distribusi dilakukan untuk 

memahami karakteristik penyebaran nilai pada masing-masing fitur hasil 

pembacaan sensor, meliputi pH, TDS, suhu air, dan umur tanaman. Tujuan analisis 

ini adalah untuk melihat pola kecenderungan data, kestabilan sensor, serta potensi 
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adanya nilai ekstrem (outlier) sebelum dilakukan tahap preprocessing. Visualisasi 

distribusi tiap fitur disajikan pada Gambar 4.1. 

 
Gambar 4.1. Visualisasi Distribusi per Fitur 

 

 

Berdasarkan Gambar 4.1, dapat diamati bahwa fitur pH memiliki distribusi 

yang mendekati normal dengan rata-rata 6,03 dan kisaran nilai antara 5,05 hingga 

7,85. Sebagian besar nilai pH berada di sekitar rentang 5,8–6,4, yang menunjukkan 

kestabilan larutan pada kondisi ideal untuk pertumbuhan tanaman melon 

hidroponik. Nilai pH di bawah 5,5 dan di atas 7,0 muncul dalam jumlah kecil, 

mengindikasikan adanya fluktuasi sementara akibat proses penyesuaian nutrisi atau 

perubahan suhu lingkungan. 

Fitur TDS (Total Dissolved Solids) menunjukkan dua puncak utama 

(bimodal distribution) dengan nilai rata-rata sebesar 1.510 ppm dan kisaran 800 
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hingga 3.619 ppm. Puncak pertama muncul di sekitar 1.000 ppm, yang 

menggambarkan kondisi pada fase vegetatif, sedangkan puncak kedua berada di 

kisaran 1.500–1.700 ppm yang merupakan fase generatif. Nilai di atas 2.000 ppm 

tergolong tinggi dan menandakan kondisi larutan “jebol” atau kelebihan nutrisi, 

sebagaimana terjadi pada periode 6–9 Oktober 2025. Pola distribusi ini 

menunjukkan bahwa sistem berhasil merekam perubahan konsentrasi nutrisi secara 

dinamis antar fase pertumbuhan. 

Sementara itu, fitur suhu air (water_temp_c) memiliki distribusi yang relatif 

normal dengan rata-rata 23,5°C dan kisaran 15,0 hingga 35,9°C. Sebagian besar 

nilai berada di kisaran 22–25°C, yang termasuk rentang optimal untuk penyerapan 

unsur hara oleh akar tanaman. Nilai ekstrem di bawah 20°C dan di atas 30°C hanya 

muncul dalam jumlah kecil, kemungkinan besar disebabkan oleh variasi kondisi 

lingkungan eksternal seperti intensitas cahaya atau sirkulasi udara di sekitar sistem 

hidroponik. 

Fitur terakhir, yaitu umur tanaman (Hari Setelah Tanam/HST), memiliki 

distribusi yang hampir merata dari 0 hingga 62 hari. Sebaran yang relatif seragam 

menunjukkan bahwa data pengukuran mencakup keseluruhan siklus pertumbuhan 

tanaman, mulai dari fase awal penanaman hingga menjelang panen. Hal ini penting 

karena memberikan variasi data yang cukup untuk pelatihan model klasifikasi, 

sehingga sistem dapat mengenali kebutuhan nutrisi pada berbagai tahap 

pertumbuhan. 

Secara keseluruhan, hasil analisis distribusi fitur menunjukkan bahwa data 

yang dikumpulkan memiliki keragaman dan representasi yang baik terhadap 
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kondisi aktual sistem hidroponik. Pola distribusi pH dan suhu cenderung normal 

dan stabil, sedangkan TDS menunjukkan variasi yang lebih besar antar fase 

pertumbuhan. Variasi inilah yang menjadi dasar bagi sistem klasifikasi dalam 

mengidentifikasi kondisi nutrisi tanaman melon secara akurat. 

 

4.2 Sistem Internet of Things (IoT) 

Sistem Internet of Things (IoT) yang telah direalisasikan pada penelitian ini 

berfungsi sebagai platform utama pengumpulan dan analisis data nutrisi tanaman 

melon hidroponik secara otomatis dan real-time. Implementasi sistem ini terdiri 

atas tiga lapisan utama, yaitu lapisan pengumpulan data, lapisan pemrosesan data, 

dan lapisan analisis hasil. Masing-masing lapisan memiliki peran spesifik dalam 

mendukung alur kerja sistem mulai dari akuisisi data sensor hingga penampilan 

hasil klasifikasi pada dashboard web. 

Pada lapisan pertama yang dimana merupakan bagian yang bertanggung 

jawab terhadap proses akuisisi data dari lingkungan hidroponik. Pada penelitian ini, 

perangkat yang digunakan terdiri atas mikrokontroler ESP32 yang terhubung 

dengan sensor pH, sensor TDS, dan sensor DS18B20. Sistem ini dirancang untuk 

membaca parameter kualitas larutan nutrisi secara berkala, kemudian mengirimkan 

data dalam format JSON Payload melalui jaringan Wi-Fi menggunakan protokol 

MQTT menuju server. 

Hasil implementasi fisik dari perangkat ini ditunjukkan pada Gambar 4.2 

dan Gambar 4.3, yaitu prototype sistem IoT yang digunakan selama proses 

pengujian. Rangkaian ini terdiri atas papan ESP32, sensor-sensor yang terhubung 



44 

 

 

 

melalui konektor digital dan analog, serta catu daya yang memungkinkan sistem 

beroperasi secara mandiri di lapangan. 

 
Gambar 4.2 Rangkaian Hardware Sensor TDS & DS18b20 

 

 

 
Gambar 4.3 Rangkaian Hardware Sensor pH 

 

 

Prototype sistem tersebut kemudian dipasang di dalam greenhouse 

percobaan untuk melakukan pengukuran langsung pada larutan nutrisi hidroponik 

melon. Posisi alat diatur agar sensor pH dan TDS terendam dalam bak nutrisi, 

sedangkan sensor DS18B20 diletakkan pada aliran air untuk mengukur suhu aktual 

larutan. Implementasi penempatan alat di lapangan ditunjukkan pada Gambar 4.4 

berikut. 
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Gambar 4.4 Posisi Penempatan Hardware di Greenhouse 

 

 

Dari hasil implementasi lapangan tersebut, sistem mampu mengirimkan 

data sensor secara periodik dengan interval pembacaan yang stabil, serta 

mempertahankan koneksi MQTT selama proses pengamatan berlangsung. Pada 

Gambar 4.5, menunjukkan bahwa perangkat keras telah berfungsi sesuai rancangan 

dan mampu merekam kondisi nutrisi secara kontinu. 

 
Gambar 4.5 Riwayat Pembacaan Sensor 

 

 

Lapisan kedua berfungsi sebagai pusat pengelolaan dan analisis data yang 

dikirim dari perangkat IoT. Pada penelitian ini, digunakan server backend yang 
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menjalankan proses penerimaan data, penyimpanan dalam basis data, serta 

preprocessing untuk keperluan klasifikasi menggunakan algoritma Support Vector 

Machine (SVM). 

Data yang diterima dari broker MQTT secara otomatis disimpan dalam 

database server untuk kemudian melalui tahapan labeling, cleaning, normalisasi, 

balancing, dan reduksi dimensi (PCA). Setelah data siap, model SVM digunakan 

untuk mengklasifikasikan kondisi nutrisi tanaman ke dalam tiga kategori, yaitu 

kurang, cukup, dan berlebih. 

Hasil implementasi lapisan pemrosesan data ditunjukkan pada Gambar 4.6 

dan Gambar 4.7 berikut, yang memperlihatkan tampilan server dan struktur basis 

data yang digunakan. Sistem backend ini berjalan pada lingkungan lokal yang telah 

dikonfigurasi agar dapat menerima data dari perangkat IoT secara langsung melalui 

protokol MQTT. 

 
Gambar 4.6 Interface Database 
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Gambar 4.7 JSON Payload MQTT 

 

 

Lapisan terakhir merupakan bagian antarmuka pengguna (user interface) 

yang berfungsi untuk menampilkan hasil klasifikasi serta informasi sensor secara 

visual. Antarmuka ini dikembangkan dalam bentuk dashboard web interaktif, yang 

menampilkan data pH, TDS, suhu air, serta hasil klasifikasi nutrisi tanaman dalam 

bentuk indikator status. 

Pada gambar 4.8, menunjukkan bahwa dashboard ini juga dilengkapi 

dengan laman kalibrasi sensor, yang digunakan untuk menyesuaikan hasil 

pembacaan sensor terhadap alat ukur referensi. Fitur ini memastikan bahwa sistem 

tetap akurat dalam membaca nilai-nilai parameter lingkungan selama 

pengoperasian. 
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Gambar 4.8 Laman Kalibrasi Sensor 

 

 

Implementasi antarmuka web ditunjukkan pada Gambar 4.9, yang 

memperlihatkan tampilan dashboard utama dan halaman kalibrasi sensor. Melalui 

dashboard ini, pengguna dapat memantau kondisi larutan nutrisi secara langsung, 

melihat riwayat data, serta mengidentifikasi perubahan status nutrisi berdasarkan 

hasil klasifikasi SVM. 

 
Gambar 4.9 Dashboard Klasifikasi Nutrisi 

 

 

Secara keseluruhan, hasil implementasi sistem Internet of Things (IoT) yang 

telah dikembangkan menunjukkan bahwa ketiga lapisan mulai dari pengumpulan 
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data, pemrosesan server, hingga visualisasi hasil klasifikasi telah berfungsi dengan 

baik dan saling terintegrasi. Sistem dapat melakukan pemantauan kualitas larutan 

nutrisi secara real-time, menyimpan data secara otomatis, dan menampilkan hasil 

analisis dengan akurat melalui dashboard web. 

 

4.3 Preprocessing Data 

 

4.3.1 Labeling Data 

Tahap awal sebelum proses preprocessing adalah pelabelan data (labeling), 

yang bertujuan untuk memberikan kategori kelas terhadap setiap sampel data hasil 

pembacaan sensor. Kategori ini digunakan sebagai acuan dalam proses pelatihan 

model klasifikasi kebutuhan nutrisi tanaman melon hidroponik berbasis Support 

Vector Machine (SVM). 

Pelabelan dilakukan berdasarkan pendekatan berbasis aturan (rule-based 

classification), dengan mempertimbangkan tiga parameter utama hasil pengukuran 

sensor, yaitu pH air (ph), Total Dissolved Solids (tds_ppm), dan suhu air 

(water_temp_c). Masing-masing parameter memiliki rentang nilai ideal yang telah 

ditetapkan berdasarkan acuan kebutuhan nutrisi tanaman hidroponik sebagaimana 

dijelaskan pada Tabel 2.2 di Bab II. Nilai pH ideal berkisar antara 5,8–6,4, 

sedangkan nilai TDS optimal berada pada rentang 800–1700 ppm tergantung fase 

pertumbuhan tanaman. Adapun suhu air ideal berkisar pada 20–25°C, karena 

rentang tersebut mendukung penyerapan nutrisi secara optimal. 

Proses pelabelan dilakukan dengan menerapkan aturan logis yang 

membandingkan nilai setiap parameter terhadap rentang ideal tersebut. Kriteria 

pelabelan ditetapkan sebagai berikut: 
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1. Apabila satu atau lebih parameter berada di bawah batas bawah rentang 

ideal, maka data diklasifikasikan sebagai “Kurang” (label 0), yang 

menunjukkan bahwa larutan nutrisi belum mencapai konsentrasi optimal. 

2. Apabila seluruh parameter berada dalam rentang ideal, maka data 

diklasifikasikan sebagai “Cukup” (label 1), yang menandakan kondisi 

nutrisi berada pada tingkat optimal untuk pertumbuhan tanaman. 

3. Apabila satu atau lebih parameter melebihi batas atas rentang ideal, maka 

data diklasifikasikan sebagai “Berlebih” (label 2), yang mengindikasikan 

larutan terlalu pekat atau suhu air terlalu tinggi. 

Secara implementatif, proses labeling dilakukan menggunakan fungsi 

pemetaan berbasis kondisi logis (conditional mapping) pada pseudocode 4.1 

berikut: 

Pseudocode 4.1 
Algoritma Pelabelan_Otomatis_Nutrisi 

Input  : Dataset dengan kolom pH, TDS (ppm), dan suhu air (°C) 

Output : Kolom nutrisi_label dengan nilai (0 = Kurang, 1 = 

Cukup, 2 = Berlebih) 

Mulai 

    1. Konversi kolom pH, TDS, dan suhu air menjadi numerik. 

    2. Untuk setiap baris data pada dataset: 

        a. Ambil nilai ph, tds, dan suhu. 

        b. Jika salah satu bernilai kosong (NaN), maka: 

              Label ← NaN 

        c. Jika 5.8 ≤ ph ≤ 6.4 dan  

             (800 ≤ tds ≤ 1000 atau 1500 ≤ tds ≤ 1700) dan  

             20 ≤ suhu ≤ 25 maka: 

              Label ← 1   // Cukup 

        d. Jika ph < 5.8 atau tds < 800 atau suhu < 20 maka: 

              Label ← 0   // Kurang 

        e. Jika ph > 6.4 atau tds > 1700 atau suhu > 25 maka: 

              Label ← 2   // Berlebih 

        f. Jika tidak memenuhi semua kondisi di atas: 

              Label ← NaN 

    3. Simpan label hasil ke kolom baru “nutrisi_label”. 

    4. Hitung jumlah distribusi tiap label (0, 1, 2). 

    5. Visualisasikan distribusi label dalam bentuk grafik 

batang. 

Selesai 
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Hasil dari proses labeling menunjukkan bahwa data terbagi ke dalam tiga 

kategori utama, yaitu kurang (0), cukup (1), dan berlebih (2), serta sejumlah data 

yang tidak memiliki label akibat nilai kosong atau missing value. Distribusi label 

awal ditunjukkan pada Tabel 4.1 berikut: 

          Tabel 4.1 Distribusi Label 

Kelas Kategori Jumlah Data Persentase (%) 

0 Kurang 220 14.7 

1 Cukup 870 58.2 

2 Berlebih 131 8.7 

- Tidak Terlabel (NaN) 277 18.5 

Total – 1.498 100.0 

 

Berdasarkan Tabel 4.1, dapat diketahui bahwa sebagian besar data berada 

pada kategori cukup dengan persentase sekitar 58,2% dari total dataset. Hal ini 

menunjukkan bahwa kondisi larutan nutrisi selama masa pengamatan berada pada 

kisaran ideal yang mendukung pertumbuhan tanaman. Sementara itu, kategori 

kurang dan berlebih memiliki proporsi yang lebih kecil, masing-masing sebesar 

14,7% dan 8,7%, yang menunjukkan variasi kondisi nutrisi di luar batas optimal. 

Adapun 18,5% data tidak memiliki label karena adanya nilai kosong (NaN) pada 

parameter pH atau TDS, yang kemudian ditangani pada tahap cleaning selanjutnya. 

Pendekatan labeling ini dinilai efektif karena mampu merepresentasikan 

kondisi aktual sistem nutrisi hidroponik secara menyeluruh dengan 

mempertimbangkan beberapa faktor lingkungan sekaligus. Selain itu, hasil 

distribusi label yang tidak seimbang juga memberikan dasar bagi penerapan metode 

balancing pada tahap preprocessing berikutnya agar model klasifikasi dapat belajar 

secara proporsional terhadap seluruh kelas. 
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4.3.2 Cleaning 

Setelah proses labeling selesai dilakukan, tahap berikutnya adalah 

pembersihan data (data cleaning). Tahap ini bertujuan untuk memastikan bahwa 

dataset yang digunakan dalam proses pelatihan model berada dalam kondisi bersih, 

konsisten, dan bebas dari kesalahan pencatatan. Proses cleaning dilakukan melalui 

beberapa langkah utama, yaitu menghapus data duplikat, mengatasi data ekstrem 

dan noise (outlier), serta menstandarkan penamaan kolom agar sesuai dengan 

kebutuhan proses komputasi. 

Langkah pertama adalah pemeriksaan dan penghapusan data duplikat. 

Berdasarkan hasil pemeriksaan, tidak ditemukan adanya baris data yang identik 

atau berulang sehingga jumlah duplikat yang dihapus adalah 0 baris. Langkah ini 

penting dilakukan untuk mencegah terjadinya bias pada distribusi data dan menjaga 

integritas hasil analisis. 

Langkah kedua adalah penanganan data ekstrem dan noise (outlier), khususnya 

pada fitur pH, TDS, suhu air dan label nutrisi. Sebelum dilakukan pembersihan, 

jumlah nilai ekstrem tercatat sebagai berikut: 

      Tabel 4.2 Outlier / Noise Dataset 

Kolom Jumlah Data Ekstrem 

ph 272 

tds_ppm 238 

water_temp_c 0 

nutrisi_label 277 

 

Data tersebut umumnya terjadi akibat gangguan pembacaan sensor atau 

keterlambatan pengiriman data pada periode tertentu. Untuk mengatasinya, 

digunakan metode interpolasi linier yang diterapkan pada tahap balancing untuk 
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menjaga keseimbangan data pada fitur pH, TDS, suhu air (water_temp_c). Metode 

ini menghitung nilai pengganti berdasarkan antar pasangan sampel acak pada kelas 

yang sama, sehingga pola perubahan data tetap terjaga secara alami tanpa 

menimbulkan distorsi signifikan. Sedangkan data outlier dan noise di drop 

seluruhnya untuk menjaga integritas data sebelum diproses pada tahap selanjutnya.  

Langkah ketiga adalah standarisasi penamaan kolom agar seragam dan 

mudah diakses pada tahap komputasi berikutnya. Penamaan kolom disesuaikan 

menjadi huruf kecil tanpa spasi, seperti ph, tds_ppm, dan water_temp_c, untuk 

menjaga konsistensi sintaksis dalam implementasi kode program. 

Hasil akhir dari tahap cleaning menunjukkan bahwa seluruh data ekstrem 

dan noise telah berhasil ditangani. Setelah seluruh proses pembersihan selesai 

dilakukan, jumlah data yang tersisa adalah 1.221 baris dari total 1.498 data mentah. 

Dengan demikian, dataset yang digunakan untuk tahap preprocessing berikutnya 

telah bebas dari data ekstrem dan noise serta siap untuk dilakukan proses 

normalisasi data. 

4.3.3 Normalisasi 

Pada tahap normalisasi, tiga fitur utama yang dinormalisasi adalah pH, TDS 

(Total Dissolved Solids), dan suhu air. Proses normalisasi dilakukan menggunakan 

library scikit-learn melalui fungsi MinMaxScaler() pada pseudocode 4.2 berikut: 

Pseudocode 4.2 
Algoritma Normalisasi_Data_MinMax 

Input  : Dataset dengan kolom ph, tds_ppm, water_temp_c 

Output : Dataset dengan nilai fitur ternormalisasi pada rentang 

[0, 1] 

Mulai 

    1. Tentukan daftar kolom fitur yang akan dinormalisasi: 
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         fitur ← [ph, tds_ppm, water_temp_c] 

    2. Buat salinan dataset untuk menyimpan hasil normalisasi. 

    3. Untuk setiap fitur pada daftar fitur: 

         a. Hitung nilai minimum (min) dan maksimum (max) fitur. 

         b. Lakukan normalisasi setiap nilai menggunakan rumus: 

             

            nilai_normalisasi = (nilai_asli - min) / (max - min) 

    4. Simpan hasil normalisasi ke dataset baru (df_scaled). 

    5. Simpan parameter min dan max untuk tiap fitur agar dapat 

digunakan pada proses prediksi berikutnya. 

    6. Tampilkan nilai minimum dan maksimum tiap fitur sebelum 

proses normalisasi. 

    7. Tampilkan 5 data pertama hasil normalisasi. 

Selesai. 

 

 

Hasil proses normalisasi menunjukkan bahwa seluruh fitur berhasil 

ditransformasikan ke dalam rentang nilai 0–1. Nilai minimum dan maksimum 

setiap fitur sebelum proses scaling ditunjukkan pada Tabel 4.3 berikut. 

    Tabel 4.3 Nilai Min-Max per Fitur 

Fitur Nilai Minimum Nilai Maksimum 

Ph 5.05 7.85 

TDS (ppm) 800.50 3,619.20 

Suhu Air (°C) 15.00 30.80 

 

 

Setelah proses normalisasi, nilai setiap fitur diubah secara proporsional 

sesuai rentang skala baru. Lima data pertama hasil normalisasi ditunjukkan pada 

Tabel 4.4 berikut.             

                  Tabel 4.4 Data Hasil Normalisasi 

Timestamp pH TDS (scaled) Suhu Air (scaled) Label 

08/08/2025 00:00 0.2929 0.0053 0.6139 1 

08/08/2025 01:00 0.3464 0.0203 0.3987 1 

08/08/2025 02:00 0.3857 0.0214 0.6203 1 

08/08/2025 03:00 0.4107 0.0149 0.5696 1 

08/08/2025 04:00 0.6143 0.0259 0.9810 2 

 

Dari hasil tersebut dapat disimpulkan bahwa seluruh nilai telah berada 

dalam skala yang seragam, tanpa mengubah pola relatif antar nilai asli. Proses ini 

memastikan bahwa tidak ada fitur yang memiliki pengaruh dominan hanya karena 
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perbedaan satuan atau rentang nilai. Dengan demikian, dataset hasil normalisasi 

siap digunakan pada tahap balancing dan pelatihan model klasifikasi. 

 

4.3.4 Balancing 

Pada tahap ini dilakukan proses Equalized Class Reconstruction untuk 

menghasilkan distribusi data yang seimbang pada seluruh kelas label nutrisi. 

Pertama, dataset hasil normalisasi disalin ke variabel df_bal, kemudian dihitung 

distribusi awal jumlah sampel per kelas. Nilai jumlah sampel terbesar digunakan 

sebagai target agar seluruh kelas memiliki jumlah sampel identik setelah balancing. 

Selanjutnya, dataset dipisah berdasarkan label, lalu diproses secara 

individual. Untuk kelas yang jumlah datanya di bawah target, dilakukan 

rekonstruksi data sintetis melalui interpolasi linier antar pasangan sampel acak pada 

kelas tersebut. Formula interpolasi digunakan untuk menghasilkan sampel baru 

yang secara statistik berada di tengah ruang distribusi kelas, sehingga tetap 

merepresentasikan pola sensorik aslinya. Berikut pseudocode yang menjelaskan 

proses Equalized Class Reconstruction (ECR) dan balancing : 

Pseudocode 4.3 
Algoritma Balancing_Data_ECR 

Input  : Dataset hasil normalisasi (df_scaled) berisi fitur [ph, 

tds_ppm, water_temp_c] dan label nutrisi_label 

Output : Dataset seimbang (df_re) dengan jumlah sampel identik 

pada tiap kelas 

Mulai 

    1. df_bal ← salin dataset hasil normalisasi 

    2. Hitung distribusi kelas awal pada df_bal 

    3. Tentukan target ← jumlah sampel terbanyak (kelas 

mayoritas) 

    4. Buat list kosong df_final 

    5. Untuk setiap label dalam nutrisi_label lakukan: 

         a. group ← subset data dengan label tersebut            

         b. n ← jumlah data dalam group 

         c. Jika n < target: 

                needed ← target - n 
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                Pilih pasangan indeks acak idx1 dan idx2 

sebanyak needed 

                Buat data sintetis: 

                    synth ← 0.5 * group[idx1] + 0.5 *group[idx2] 

            Tambahkan label ke setiap baris synthetic 

                df_new ← gabungkan group + synthetic 

            Jika n > target: 

                df_new ← sample acak group sebanyak target 

         d. Tambahkan df_new ke df_final 

    6. df_re ← gabungkan semua elemen dalam df_final 

    7. Lakukan shuffle pada df_re untuk menghapus pola 

pengurutan label 

    8. Kembalikan df_re  

Selesai 

 

Perbandingan jumlah data sebelum dan sesudah dilakukan balancing 

ditunjukkan pada Tabel 4.5 berikut. 

         Tabel 4.5 Perbandingan Data Sebelum dan Setelah Balancing 

Kelas Kategori Jumlah Data Sebelum Jumlah Data Sesudah Perubahan 

0 Kurang 220 870 + 650 

1 Cukup 870 870 – 

2 Berlebih 131 870 + 739 

Total – 1.221 2.610 – 

 

Tabel di atas menunjukkan bahwa seluruh kelas telah disamakan jumlahnya 

menjadi 870 sampel per kelas, sehingga total data akhir yang digunakan untuk 

pelatihan model klasifikasi adalah 2.610 sampel. Penambahan data (over-sampling) 

terjadi pada kelas (Kurang) dan kelas Berlebih, sedangkan kelas Cukup tetap 

dipertahankan sebagai acuan keseimbangan. 

Setelah seluruh kelas selesai diproses, hasilnya digabungkan ke dalam satu 

dataset baru dan dilakukan proses shuffle untuk memastikan tidak ada 

pengelompokan data berdasarkan label. Dataset akhir ini kemudian digunakan 

sebagai masukan pada tahap PCA dan pelatihan model SVM. 
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4.3.5 Principal Component Analysis (PCA) 

Proses PCA dilakukan terhadap data hasil balancing menggunakan tiga fitur 

utama: ph, tds_ppm, dan water_temp_c. Jumlah komponen yang digunakan adalah 

dua komponen utama (PC1 dan PC2), dengan implementasi menggunakan pustaka 

scikit-learn pada pseudocode 4.4 berikut: 

Pseudocode 4.4 
Algoritma Reduksi_Dimensi_PCA 

Input  : Dataset hasil balancing dengan fitur (ph, tds_ppm, 

water_temp_c) dan label nutrisi_label 

Output : Dataset hasil reduksi dimensi dengan dua komponen utama 

(PC1, PC2) 

Mulai 

    1. Pisahkan data menjadi: 

X ← [ph, tds_ppm, water_temp_c] 

y ← [nutrisi_label] 

    2. Tentukan jumlah komponen utama yang akan digunakan: 

         jumlah_komponen ← 2 

    3. Buat objek PCA dengan jumlah_komponen. 

    4. Terapkan PCA pada data fitur: 

         X_pca ← hasil transformasi PCA terhadap X 

    5. Simpan hasil transformasi ke dataset baru (df_pca) dengan 

kolom: 

         [PC1, PC2, nutrisi_label] 

    6. Hitung proporsi variansi yang dijelaskan oleh setiap 

komponen utama: 

         a. PC1_var ← proporsi variansi komponen 1 

         b. PC2_var ← proporsi variansi komponen 2 

    7. Hitung total variansi yang dijelaskan oleh seluruh 

komponen. 

    8. Simpan nilai *component loadings* untuk melihat 

kontribusi setiap fitur terhadap komponen utama. 

    9. Tampilkan hasil proporsi variansi dan *component 

loadings*. 

    10. Tampilkan lima data pertama hasil reduksi PCA. 

Selesai 

 

 

Hasil analisis menunjukkan bahwa dua komponen utama yang terbentuk 

mampu menjelaskan 87,85% dari total variansi data, dengan rincian proporsi 

variansi untuk masing-masing komponen seperti ditunjukkan pada Tabel 4.6 

berikut. 
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Tabel 4.6 Proporsi Variansi Komponen 

Komponen Proporsi Variansi Keterangan 

PC1 0.5567 Menjelaskan variansi terbesar, dominan pada 

fitur TDS 

PC2 0.3218 Menjelaskan variansi tambahan, dominan pada 

fitur pH dan suhu air 

Total 0.8785 87,85% total variansi data terjelaskan 

 

Berdasarkan nilai loading components yang dihasilkan, terlihat bahwa 

komponen utama pertama (PC1) memiliki kontribusi terbesar dari fitur TDS 

(0.945227), sedangkan komponen kedua (PC2) dipengaruhi kuat oleh fitur pH 

(0.884727) dan suhu air (0.346572). Matriks component loadings dapat dilihat pada 

Tabel 4.7 berikut. 

         Tabel 4.7 Matriks Component Loadings 

Komponen pH TDS Suhu Air 

PC1  0.251480 0.945227 0.208095 

PC2   0.884727 -0.311683 0.346572 

 

Dari hasil tersebut dapat disimpulkan bahwa TDS merupakan fitur dengan 

pengaruh paling dominan terhadap variasi data secara keseluruhan, sedangkan pH 

dan suhu air memberikan kontribusi tambahan terhadap komponen kedua. Dengan 

total varian terjelaskan sebesar 87,85%, dua komponen utama ini sudah cukup 

representatif untuk menggambarkan karakteristik data sensor secara keseluruhan. 

Selain itu, hasil transformasi PCA juga digunakan untuk visualisasi 

distribusi data antar kelas nutrisi, yang menunjukkan bahwa masing-masing kelas 

(kurang, cukup, dan berlebih) memiliki kecenderungan pola yang berbeda pada 

ruang dua dimensi PC1–PC2. Hal ini menunjukkan bahwa data hasil balancing 

memiliki separabilitas yang baik dan layak digunakan untuk tahap pelatihan model 

klasifikasi pada subbab berikutnya. 
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4.4 Implementasi Support Vector Machine (SVM) 

Implementasi model klasifikasi dilakukan menggunakan algoritma Support 

Vector Machine (SVM) dengan kernel linear, yang secara bawaan menerapkan 

pendekatan One-vs-Rest (OvR) untuk menangani kasus multi-kelas. Pada 

pendekatan ini, SVM membentuk tiga hyperplane secara internal yang masing-

masing memisahkan satu kelas terhadap dua kelas lainnya (Berlebih vs lainnya, 

Cukup vs lainnya, dan Kurang vs lainnya). Setiap titik data kemudian dievaluasi 

terhadap ketiga hyperplane tersebut, dan kelas dengan nilai decision function 

tertinggi ditetapkan sebagai hasil prediksi akhir. Mekanisme ini memungkinkan 

model linear untuk memetakan data hasil reduksi Principal Component Analysis 

(PCA) ke dalam bidang dua dimensi (PC1–PC2) dengan margin optimal antar 

kelas. 

Dalam penelitian ini, tiga model SVM linear dibangun dengan perbedaan 

proporsi data latih dan uji, yaitu 80:20, 70:30, dan 60:40 seperti yang sudah 

dijelaskan pada Tabel 3.5 Skenario Pengujian. Setiap model menjalani proses 

pelatihan dan tuning parameter menggunakan metode Grid Search dengan 5-Fold 

Cross Validation untuk memperoleh nilai parameter optimal, khususnya pada 

variabel regularisasi (C). Model yang diperoleh dari setiap konfigurasi dievaluasi 

terhadap data uji untuk mengukur akurasi dan stabilitas klasifikasi terhadap variasi 

proporsi data pelatihan. 

Visualisasi hasil pelatihan masing-masing model ditunjukkan pada Gambar 

4.10, 4.11, dan 4.12, yang menggambarkan posisi hyperplane dan margin pemisah 

antar kelas pada bidang PC1–PC2. Garis hitam merepresentasikan batas pemisah 
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linear yang dihasilkan SVM, sedangkan titik berwarna menunjukkan distribusi data 

hasil PCA. Titik berwarna hijau dengan garis tepi menandakan support vectors 

yang digunakan model untuk menentukan posisi margin optimal. Pola sebaran 

menunjukkan bahwa setiap model menghasilkan decision boundary yang 

konsisten, dengan sedikit variasi pada distribusi margin akibat perubahan proporsi 

data latih dan uji. 

 
Gambar 4.10 Visualisasi Hyperplane Data Train-Test 80:20 
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Gambar 4.11 Visualisasi Hyperplane Data Train-Test 70:30 

 

 
Gambar 4.12 Visualisasi Hyperplane Data Train-Test 60:40 

 

 

Hasil tersebut menunjukkan bahwa pendekatan linear SVM dengan skema 

OvR mampu mengklasifikasikan data nutrisi tanaman menjadi tiga kategori secara 

efektif. Meskipun terdapat 61umpeng tindih margin antar kelas, terutama antara 
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kelas Cukup dan Kurang, struktur pemisahan tetap terbentuk jelas pada ruang dua 

dimensi hasil PCA. Secara keseluruhan, implementasi ketiga model menunjukkan 

performa yang stabil dan adaptif terhadap variasi ukuran data pelatihan. 

 

4.5 Pengujian Model 

Pengujian model dilakukan terhadap tiga variasi rasio pembagian data latih 

dan uji, yaitu 80:20, 70:30, dan 60:40. Setiap model menjalani proses pelatihan 

dengan Grid Search Cross Validation untuk menemukan parameter terbaik. 

Masing-masing konfigurasi pembagian data latih dan uji juga melalui pengujian 

confusion matrix untuk menghitung accuracy, precision, recall, dan F1-score. 

Pada konfigurasi pertama, sebanyak 80% data digunakan untuk pelatihan 

dan 20% untuk pengujian. Model memperoleh parameter terbaik pada C = 100 

dengan kernel linear, serta skor cross-validation sebesar 0,9478. Hasil pengujian 

pada data uji menunjukkan akurasi sebesar 94,64%. 

    Tabel 4.8 Pengujian Hyperparameter Tuning Model SVM Rasio 80:20 

Parameter Terbaik Akurasi (%) Cross-Validation Score Jumlah Support Vector 

C = 100, Linear 94,64 0.9478 340 

 

Visualisasi Confusion Matrix dan kinerja model secara per kelas 

ditunjukkan pada gambar dan tabel berikut. 
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Gambar 4.13 Confusion Matrix Model SVM Rasio 80:20 

 

 
             Tabel 4.9 Metrik Evaluasi Model SVM Rasio 80:20 

Kelas Precision Recall F1-Score Jumlah Data 

Berlebih 0.92 0.98 0.95 174 

Cukup 0.96 0.89 0.92 174 

Kurang 0.96 0.98 0.97 174 

Rata-rata 0.95 0.95 0.95 — 

 

Hasil menunjukkan bahwa model mampu membedakan ketiga kelas dengan 

baik. Nilai precision tertinggi diperoleh pada kelas Berlebih, sedangkan penurunan 

kecil pada kelas Kurang menandakan sebagian data nutrisi rendah masih memiliki 

kemiripan nilai dengan kelas Cukup. 

Pada konfigurasi kedua, model menggunakan 70% data untuk pelatihan dan 

30% untuk pengujian. Parameter terbaik diperoleh dengan C = 100 dan kernel 

linear, dengan skor cross-validation sebesar 0.9486. Hasil pengujian menunjukkan 

akurasi 94,51%, yang relatif stabil dibandingkan rasio sebelumnya. 

 

Tabel 4.10 Pengujian Hyperparameter Tuning Model SVM Rasio 70:30 

Parameter Terbaik Akurasi (%) Cross-Validation Score Jumlah Support Vector 

C = 100, Linear 94,51% 0.9486 305 
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Gambar 4.14 Confusion Matrix Model SVM Rasio 70:30 

 

              Tabel 4.11 Metrik Evaluasi Model SVM Rasio 70:30 

Kelas Precision Recall F1-Score Jumlah Data 

Berlebih 0.92 0.97 0.95 261 

Cukup 0.95 0.89 0.92 261 

Kurang 0.96 0.97 0.96 261 

Rata-rata 0.95 0.95 0.94 — 

 

 

Model tetap menunjukkan konsistensi performa antar kelas, dengan nilai 

recall tertinggi terdapat pada kelas Berlebih dan Kurang (0.97), menandakan model 

lebih sensitif terhadap kondisi nutrisi tinggi dan kurang akurasi keseluruhan 

94,51%, menunjukkan kemampuan model mempertahankan generalisasi meskipun 

proporsi data uji meningkat. 

Pada konfigurasi ketiga, proporsi data latih dikurangi menjadi 60%, 

sementara 40% digunakan sebagai data uji. Parameter terbaik diperoleh pada C = 
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100 dengan kernel linear, menghasilkan skor cross-validation 0.9464 dan akurasi 

94,83% pada data uji. 

     Tabel 4.12 Pengujian Hyperparameter Tuning Model SVM Rasio 60:40 

Parameter Terbaik Akurasi (%) Cross-Validation Score Jumlah Support Vector 

C = 100, Linear 94.83 0.9464 269 

 

 
Gambar 4.15 Confusion Matrix Model SVM Rasio 60:40 

 

                Tabel 4.13 Metrik Evaluasi Model SVM Rasio 60:40 

Kelas Precision Recall F1-Score Jumlah Data 

Berlebih 0.93 0.98 0.96 348 

Cukup 0.96 0.90 0.93 348 

Kurang 0.95 0.97 0.96 348 

Rata-rata 0.95 0.95 0.95 — 

 

Meskipun jumlah data latih lebih sedikit, model masih mampu menjaga 

akurasi dan keseimbangan metrik antar kelas. Nilai precision dan recall yang relatif 

merata menunjukkan bahwa model linear tetap robust terhadap variasi ukuran data 

pelatihan. 
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Secara keseluruhan, seluruh model menunjukkan performa yang stabil 

dengan rata-rata akurasi di atas 90%. Variasi nilai parameter C hanya memengaruhi 

jumlah support vector yang digunakan untuk membentuk margin optimal. 

Rangkuman hasil pengujian ditunjukkan pada tabel berikut. 

Tabel 4.14 Rangkuman Hasil Pengujian Model SVM 
Rasio Train-

Test 

Parameter 

Terbaik 

Akurasi 

(%) 

Cross-Validation 

Score 

Jumlah Support 

Vector 

80:20 C = 100, Linear 94,63 0.9478 340 

70:30 C = 100, Linear 94,51 0.9486 305 

60:40 C = 100, Linear 94,83 0.9464 269 

 

Berdasarkan hasil pengujian pada ketiga variasi rasio data, dapat 

disimpulkan bahwa model SVM dengan kernel linear menunjukkan performa yang 

stabil dan konsisten di seluruh skenario. Perbedaan rasio data pelatihan dan 

pengujian tidak memberikan perubahan signifikan terhadap nilai akurasi maupun 

metrik evaluasi lainnya. Nilai akurasi tertinggi diperoleh pada rasio 60:40 sebesar 

94,83%, diikuti oleh dua rasio lainnya yang mencapai 94,51% pada rasio 70:30 dan 

94,63% pada rasio 80:20. Perbedaan kecil sekitar satu hingga dua persen 

menunjukkan bahwa model memiliki kemampuan generalisasi yang baik terhadap 

data yang belum pernah dilihat sebelumnya. 

Dari sisi parameter, nilai C yang seragam pada masing-masing rasio 

menunjukkan bahwa model memerlukan margin yang lebih sempit untuk 

meminimalkan kesalahan klasifikasi ketika data pelatihan lebih sedikit. Selain itu, 

jumlah support vector cenderung menurun seiring berkurangnya proporsi data 

pelatihan, dari 340 pada rasio 80:20 menjadi 269 pada rasio 60:40, menandakan 

bahwa kompleksitas model berkurang sejalan dengan ukuran data latih. 
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Secara keseluruhan, hasil pengujian ini mengindikasikan bahwa SVM linear 

dengan mekanisme One-vs-Rest (OvR) efektif dalam memisahkan tiga kelas nutrisi 

(Kurang, Cukup, dan Berlebih) pada ruang dua dimensi hasil transformasi PCA. 

Model tidak hanya menunjukkan ketepatan yang tinggi, tetapi juga konsistensi 

performa antar skenario, sehingga dapat diandalkan untuk diimplementasikan 

dalam sistem pemantauan nutrisi hidroponik berbasis IoT secara real-time. 

 

4.6 Pengujian Kalibrasi Sensor 

Pengujian dan kalibrasi sensor dilakukan untuk mengevaluasi akurasi serta 

stabilitas pembacaan sensor pH, TDS, dan suhu air pada sistem hidroponik terhadap 

data pembanding yang diperoleh secara manual menggunakan alat ukur 

laboratorium. Tujuan utama dari tahap ini adalah memastikan kesesuaian hasil 

pembacaan sensor otomatis dengan alat ukur acuan sebelum sistem digunakan 

untuk pemantauan kualitas air secara berkelanjutan. 

Pengukuran manual dilakukan menggunakan alat ukur digital multifungsi 

TDS/pH/EC/Salinity meter seperti ditunjukkan pada Gambar 4.15. Alat ini 

digunakan sebagai pembanding (ground truth) terhadap pembacaan sensor otomatis 

yang terpasang pada sistem IoT. Perangkat tersebut mampu mengukur beberapa 

parameter kualitas air secara bersamaan, meliputi pH, Total Dissolved Solids (TDS) 

dalam satuan ppm, konduktivitas listrik (EC), serta suhu air. Proses pengukuran 

dilakukan dengan cara mencelupkan probe alat ke dalam larutan nutrisi, menunggu 

hingga nilai pembacaan stabil, kemudian mencatat hasilnya secara manual. 
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Gambar 4.16 Alat Pengukuran Manual 

 

Setiap pengukuran dilakukan pada waktu yang relatif bersamaan dengan 

sistem otomatis untuk memastikan kesesuaian waktu (timestamp) antara kedua 

sumber data. Alat ini dipilih karena memiliki tingkat kepraktisan tinggi, kecepatan 

respon cepat, serta akurasi yang cukup baik untuk kebutuhan kalibrasi lapangan 

pada sistem hidroponik skala kecil hingga menengah. 

Pada tahap kalibrasi awal, perbedaan antara pembacaan sensor dan alat 

manual masih berada pada rentang yang relatif kecil, dengan selisih pH sekitar 2 

poin dan rasio pembacaan TDS sekitar 1:1,2 terhadap alat ukur manual. Namun 

seiring waktu penggunaan, sensor mengalami degradasi kinerja yang cukup 

signifikan akibat paparan nutrisi berkonsentrasi tinggi, penumpukan residu pada 

probe, serta perubahan suhu lingkungan di dalam greenhouse. Pada periode akhir 

pengujian, selisih pembacaan pH meningkat menjadi sekitar 5–6 poin, sementara 

rasio pembacaan TDS membesar hingga sekitar 1:3, menandakan adanya 

penurunan sensitivitas sensor terhadap larutan nutrisi. 

Proses pengujian dilakukan sepanjang periode pengambilan data otomatis 

dan data manual, yaitu dari 8 Agustus 2025 hingga 9 Oktober 2025. Data yang 



69 

 

 

 

diperoleh terdiri atas 1498 data otomatis dan 63 data pembacaan manual. Proses 

perhitungan MAE dijelaskan pada pseudocode 4.5 berikut: 

Pseudocode 4.5 
Algoritma Perhitungan_MAE_Sensor_vs_Manual 

Input : Dataset pembacaan sensor otomatis (AUTO), Dataset 

pembacaan manual (MANUAL) 

Output : Nilai MAE untuk pH, TDS, dan suhu air 

Mulai 

  1. Baca file data AUTO dan MANUAL. 

  2. Konversi kolom waktu pada data AUTO menjadi format 

datetime. 

  3. Gabungkan kolom tanggal dan waktu pada data MANUAL menjadi 

satu kolom datetime. 

  4. Hapus baris yang memiliki waktu tidak valid (NaT). 

  5. Urutkan kedua dataset berdasarkan waktu masing-masing. 

  6. Cocokkan data MANUAL dengan data AUTO menggunakan pencarian 

waktu terdekat (nearest match) 

      dengan toleransi selisih maksimum 1 jam. 

  7. Hapus baris hasil pencocokan yang tidak memiliki pasangan 

nilai sensor. 

  8. Hitung nilai MAE untuk setiap parameter: 

      a. MAE_pH ← rata-rata(|pH_manual – pH_sensor|) 

      b. MAE_TDS ← rata-rata(|TDS_manual – TDS_sensor|) 

      c. MAE_Suhu ← rata-rata(|Suhu_manual – Suhu_sensor|) 

  9. Tampilkan nilai MAE pH, MAE TDS, dan MAE suhu air. 

  10. (Opsional) Visualisasikan perbandingan manual vs sensor 

dalam grafik garis. 

Selesai 

 

 

Setelah proses sinkronisasi waktu dilakukan, diperoleh 52 data pasangan 

yang memiliki timestamp berdekatan dan dapat dibandingkan secara langsung. 

Contoh hasil penggabungan kedua data tersebut disajikan pada Tabel 4.15. 

Tabel 4.15 Data Teratas Hasil Penggabungan Manual dan Sensor Otomatis 

Tanggal pH 

Manual 

pH 

Sensor 

TDS 

Manual 

(ppm) 

TDS 

Sensor 

(ppm) 

Suhu 

Manual 

(°C) 

Suhu 

Sensor 

(°C) 

08-08-

2025 

6.08 6.24 883.8 811.3 23.62 21.4 

09-08-

2025 

6.19 5.89 846.7 817.6 24.15 20.6 

10-08-

2025 

6.11 5.92 890.9 847.2 24.38 24.0 

21-08-

2025 

6.21 6.23 898.0 802.0 23.62 21.6 

22-08-

2025 

6.17 5.95 880.4 834.2 23.16 24.4 
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Perhitungan Mean Absolute Error (MAE) pada penelitian ini dilakukan 

menggunakan fungsi mean_absolute_error yang disediakan oleh modul 

sklearn.metrics. Implementasi rumus MAE ada pada blok kode berikut:  

 
mae_ph = mean_absolute_error(df_merge['pH_Manual'], 

df_merge['ph']) 

mae_tds = mean_absolute_error(df_merge['TDS_Manual'], 

df_merge['tds_ppm']) 

mae_suhu = mean_absolute_error(df_merge['Suhu_Air_Manual'], 

df_merge['water_temp_c']) 

 

Fungsi tersebut secara internal menerapkan rumus MAE, yaitu rata-rata 

nilai absolut dari selisih antara nilai referensi dan nilai hasil pembacaan sensor dari 

masing-masing fitur. 

Visualisasi perbandingan antara hasil pembacaan manual dan otomatis 

ditunjukkan pada Gambar 4.16 berikut. 

 
Gambar 4.17 Perbandingan Pembacaan Manual dan Sensor   
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Dari hasil grafik tersebut terlihat bahwa pola perubahan nilai sensor 

otomatis secara umum mengikuti tren pembacaan manual, meskipun terdapat 

deviasi pada beberapa titik. Penyimpangan ini semakin terlihat pada akhir periode 

pengamatan, khususnya pada sensor pH dan TDS yang menunjukkan penurunan 

akurasi akibat faktor lingkungan dan kondisi fisik sensor yang menurun. 

Untuk mengukur tingkat kesalahan rata-rata antara hasil pengukuran 

manual dan otomatis, digunakan metrik Mean Absolute Error (MAE). Nilai MAE 

masing-masing parameter ditunjukkan pada Tabel 4.16. 

     Tabel 4.16 Nilai MAE per Paramater 

Parameter Nilai MAE Satuan 

pH 0.335 – 

TDS 134.692 ppm 

Suhu Air 1.275 °C 

 

 

Berdasarkan hasil tersebut, dapat disimpulkan bahwa sensor suhu air 

menunjukkan performa paling stabil dengan kesalahan rata-rata kecil, sedangkan 

sensor pH dan TDS menunjukkan variasi lebih besar terutama akibat penurunan 

sensitivitas sensor dan faktor kalibrasi lapangan. Meskipun demikian, hasil 

pengujian ini menunjukkan bahwa sistem masih dapat berfungsi dengan baik untuk 

pemantauan relatif (relative monitoring) kualitas air nutrisi dalam sistem 

hidroponik. 

 

4.7 Analisis dan Pembahasan 

Hasil penelitian menunjukkan bahwa sistem klasifikasi nutrisi tanaman 

hidroponik berbasis Support Vector Machine (SVM) dengan data hasil pengukuran 

sensor pH, TDS, dan suhu air berhasil diimplementasikan secara menyeluruh mulai 

dari tahap akuisisi data, preprocessing, hingga evaluasi model. Tahapan 
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preprocessing meliputi pembersihan data (cleaning), normalisasi dengan metode 

Min-Max Scaling, penyeimbangan kelas menggunakan teknik Random Under 

Sampling (RUS), serta reduksi dimensi menggunakan Principal Component 

Analysis (PCA). 

Pada tahap reduksi dimensi, dua komponen utama (PC1 dan PC2) dari hasil 

PCA mampu menjelaskan 87,85% total variansi data, yang menunjukkan bahwa 

sebagian besar informasi penting dari ketiga fitur sensor tetap terwakili dalam ruang 

dua dimensi. PCA pada tahap ini digunakan untuk menyederhanakan representasi 

data agar proses klasifikasi oleh model SVM lebih efisien secara komputasi, tanpa 

mengubah struktur atau karakteristik dasar dari data sensor. 

Model SVM yang digunakan dalam penelitian ini menerapkan kernel linear, 

yang dipilih karena kesederhanaan perhitungannya, waktu komputasi yang lebih 

cepat, serta hasil yang mudah diinterpretasikan dibandingkan kernel non-linear 

seperti Radial Basis Function (RBF) atau polynomial (Cervantes et al., 2020). 

Dengan pendekatan One-vs-Rest (OvR), model membangun tiga hyperplane yang 

masing-masing memisahkan satu kelas terhadap dua kelas lainnya, yaitu “Kurang 

vs lainnya”, “Cukup vs lainnya”, dan “Berlebih vs lainnya”. 

Hasil pengujian menunjukkan bahwa rasio pembagian data pada masing-

masing menghasilkan akurasi yang cukup seragam pada akurasi 94%. Hal ini 

menandakan bahwa masing-masing model memiliki stabilitas performa terhadap 

variasi jumlah data pelatihan. Visualisasi decision boundary pada ruang dua 

dimensi hasil PCA menunjukkan bahwa model mampu memisahkan ketiga kelas 

dengan margin yang cukup jelas. Titik-titik support vector yang berada di tepi 
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setiap kelas menandakan terbentuknya hyperplane optimal dengan margin 

maksimum. Adanya tumpang tindih antar kelas Cukup dengan Kurang maupun 

Berlebih diperkirakan disebabkan oleh nilai pH dan TDS yang berada di batas 

rentang optimal nutrisi. 

Model Support Vector Machine (SVM) yang digunakan dalam sistem IoT 

pada interface web merupakan hasil pelatihan dengan rasio pembagian data 60:40, 

karena konfigurasi tersebut menghasilkan akurasi tertinggi sebesar 94,83% 

dibandingkan dua skenario lainnya. Oleh sebab itu, model dengan parameter terbaik 

C = 100 dan kernel linear dipilih sebagai model final dan diintegrasikan pada sistem 

web berbasis Internet of Things (IoT) untuk klasifikasi kondisi nutrisi tanaman 

melon hidroponik. 

Model klasifikasi nutrisi diterapkan dalam bentuk pipeline terintegrasi yang 

disimpan dalam berkas .pkl menggunakan pustaka joblib. Pipeline ini memuat tiga 

komponen utama, yaitu MinMaxScaler untuk proses normalisasi data, Principal 

Component Analysis (PCA) untuk reduksi dimensi, serta Support Vector Machine 

(SVM) sebagai algoritma klasifikasi utama. Ketiga komponen tersebut bekerja 

secara berurutan untuk memastikan proses preprocessing dan inferensi berlangsung 

otomatis dan konsisten di sisi server web. 

Data masukan berasal dari hasil pembacaan sensor pH (ph), kadar zat 

terlarut total (tds_ppm), dan suhu air (water_temp_c) yang dikirim secara real-time 

dari perangkat IoT. Setelah pipeline berhasil dimuat dari direktori 

saved_pipeline/svm_pca_pipeline.pkl, sistem melakukan serangkaian proses mulai 
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dari normalisasi, transformasi PCA, hingga klasifikasi akhir oleh model SVM. Alur 

inferensi tersebut dijelaskan melalui pseudocode 4.6 berikut: 

Pseudocode 4.6 
Algoritma Pipeline Klasifikasi Nutrisi Air 

Input: Data sensor (ph, tds_ppm, water_temp_c) 

Output: Label klasifikasi nutrisi air {Kurang, Cukup, Berlebih} 

Mulai 

1. Muat pipeline model terlatih yang telah disimpan dalam 
file "svm_pca_pipeline.pkl". 

2. Terima data sensor dari perangkat IoT berupa nilai pH, TDS 
(ppm), dan suhu air (°C). 

3. Lakukan tahap praproses data dengan langkah-langkah 
berikut: 

4. Normalisasi setiap fitur menggunakan MinMaxScaler agar 
seluruh parameter berada pada rentang nilai yang seragam. 

5. Transformasikan data hasil normalisasi menggunakan 
Principal Component Analysis (PCA) untuk mereduksi dimensi 

dan mengoptimalkan representasi fitur. 

6. Jalankan model Support Vector Machine (SVM) yang telah 
terintegrasi dalam pipeline untuk menghasilkan hasil 

klasifikasi kelas nutrisi air. 

Selesai. 

 

 

Pada tahap pengujian, pipeline menerima input data dari sensor IoT berupa 

nilai pH, TDS, dan suhu air. Data tersebut kemudian melewati tahapan normalisasi 

dan transformasi PCA sebelum akhirnya diprediksi oleh model SVM. 

Hasil klasifikasi berupa label “Kurang”, “Cukup”, atau “Berlebih” yang muncul 

setelah melewati tahapan pengujian ditampilkan pada dashboard web di bagian 

nutrition status dan dapat di monitor secara real-time berdasarkan data sensor yang 

didapat. 

Secara keseluruhan, hasil ini menunjukkan bahwa SVM dengan kernel 

linear dapat menjadi pendekatan yang efektif untuk klasifikasi kondisi nutrisi 

tanaman hidroponik berbasis data sensor IoT. Pendekatan ini juga memudahkan 

interpretasi hasil model pada tahap visualisasi dan evaluasi sistem, sehingga sesuai 

untuk diterapkan dalam sistem monitoring berbasis data real-time. 
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Selain dari sisi teknis, hasil penelitian ini juga dapat ditinjau dari perspektif 

integrasi Islam dan sains, yang menempatkan teknologi sebagai sarana untuk 

mewujudkan kemaslahatan dan menjaga keseimbangan dalam pengelolaan sumber 

daya alam. Hal ini sejalan dengan firman Allah dalam QS. Al-An’am ayat 141 yang 

berbunyi: 

نَ وَالرُّمَّانَ مُتَشَابِِاً وَغَيْرَ مُتَشَابِهٍ ۚ  وَهُوَ الَّذِي أنَشَأَ جَنَّاتٍ مَّعْرُوشَاتٍ وَغَيْرَ مَعْرُوشَاتٍ وَالنَّخْلَ وَالزَّرعَْ مُُْتَلِفًا أكُُلُهُ وَالزَّيْـتُو 
  سْرفُِوا ۚ إنَِّهُ لَا يُُِبُّ الْمُسْرفِِينَ كُلُوا مِن ثََرَهِِ إِذَا أثََْرََ وَآتوُا حَقَّهُ يَـوْمَ حَصَادِهِ ۖ وَلَا تُ 

 

“Dan Dialah yang menjadikan kebun-kebun yang berjunjung dan yang tidak 

berjunjung, pohon kurma, tanam-tanaman yang bermacam-macam rasanya, 

zaitun, dan delima yang serupa dan yang tidak serupa. Makanlah dari buahnya 

bila dia berbuah, dan tunaikanlah haknya di hari memetik hasilnya, dan janganlah 

kamu berlebih-lebihan. Sesungguhnya Allah tidak menyukai orang yang berlebih-

lebihan.” (QS. Al-An’am [6]:141). 

 

 

Dimana ayat tersebut menegaskan agar manusia tidak berlebih-lebihan dan 

tetap memperhatikan prinsip keberlanjutan dalam bertani dan mengelola hasil 

bumi. Landasan kedua yang dimana Rasulullah juga bersabda dalam HR. Bukhari 

No. 2320, 

“Tidaklah seorang muslim menanam pohon atau menabur benih, lalu 

sebagian darinya dimakan oleh burung, manusia, atau binatang, melainkan itu 

menjadi sedekah baginya.” [HR. Bukhari No. 2320].  

 

Hadits tersebut menjelaskan bahwa kedua landasan tersebut menunjukkan 

bahwa penggunaan teknologi IoT dan kecerdasan buatan dalam bidang pertanian 

bukan hanya bagian dari inovasi sains, tetapi juga wujud nyata dari yang amal 

ilmiah mencerminkan tanggung jawab manusia sebagai khalifah di bumi untuk 

menjaga keberlanjutan lingkungan. Penelitian ini tidak hanya berkontribusi pada 
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peningkatan efisiensi dan akurasi pemantauan nutrisi tanaman, tetapi juga 

mencerminkan penerapan nilai-nilai Islam dalam upaya mengoptimalkan potensi 

ilmu pengetahuan untuk kemaslahatan umat dan kelestarian alam.  
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BAB V 

 

KESIMPULAN DAN SARAN 

 

5.1 Kesimpulan 

 

Berdasarkan seluruh rangkaian penelitian yang telah dilaksanakan, dapat 

disimpulkan bahwa sistem Internet of Things (IoT) yang dikembangkan berhasil 

memenuhi tujuan penelitian, yakni mengklasifikasikan kebutuhan nutrisi tanaman 

melon hidroponik secara otomatis menggunakan algoritma Support Vector 

Machine (SVM). Sistem mampu melakukan akuisisi data pH, TDS, dan suhu air, 

kemudian mengolahnya melalui serangkaian tahapan meliputi pembersihan data, 

normalisasi Min-Max, penyeimbangan kelas, dan reduksi dimensi dengan PCA 

sebelum dilakukan klasifikasi ke dalam kategori Kurang, Cukup, dan Berlebih. 

Model SVM kernel linear yang diimplementasikan menunjukkan performa yang 

konsisten dengan akurasi 94,63% pada rasio 80:20, 94,51% pada 70:30, dan 

94,83% pada 60:40, menandakan bahwa model mampu memisahkan kelas dengan 

efektif meskipun variasi rasio pelatihan-pengujian berubah. Selain itu, pengujian 

kalibrasi sensor menghasilkan nilai MAE sebesar 0,335 untuk pH, 134,692 ppm 

untuk TDS, dan 1,275°C untuk suhu air, menunjukkan tingkat penyimpangan 

sensor yang masih berada pada batas wajar sehingga layak digunakan dalam 

operasional sistem. Integrasi sistem dengan server dan dashboard web juga 

memungkinkan pemantauan nutrisi secara real-time, memberikan dukungan 

keputusan yang cepat dan presisi dalam pengelolaan larutan nutrisi. Secara 

keseluruhan, sistem IoT yang dibangun dan model SVM yang diterapkan mampu 
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menyediakan solusi pemantauan dan klasifikasi nutrisi yang otomatis, akurat, 

efisien, dan sesuai untuk mengoptimalkan manajemen budidaya melon hidroponik. 

 

5.2 Saran 

Berdasarkan penelitian yang telah dilakukan oleh peneliti, saran yang dapat 

dijadikan sebagai pengembangan penelitian selanjutnya antara lain. 

1. Pengembangan Model: 

Penelitian selanjutnya disarankan untuk menambahkan algoritma 

pembanding seperti Random Forest, K-Nearest Neighbor (KNN), atau 

Neural Network guna memperoleh pembanding performa yang lebih 

komprehensif terhadap SVM. 

2. Perluasan Dataset: 

Dataset sensor sebaiknya diperluas dengan waktu pengambilan data yang 

lebih panjang dan variasi kondisi lingkungan yang lebih beragam agar 

model memiliki kemampuan generalisasi yang lebih baik. 

3. Kalibrasi Sensor Berkala: 

Berdasarkan hasil pengujian kalibrasi, diketahui bahwa akurasi sensor 

mengalami pergeseran nilai seiring waktu, khususnya pada sensor pH dan 

TDS. Oleh karena itu, diperlukan proses kalibrasi berkala untuk menjaga 

keakuratan data dan stabilitas sistem. 

4. Integrasi Sistem Kontrol Otomatis: 

Sistem dapat dikembangkan menjadi closed-loop system dengan 

menambahkan aktuator otomatis yang mampu mengatur dosis nutrisi 
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berdasarkan hasil klasifikasi, sehingga proses monitoring dan pengendalian 

dapat berlangsung secara mandiri. 
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LAMPIRAN 

 

Lampiran 1. Kode Program Pelabelan Otomatis (Rule-Based Labeling)  
 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Pastikan kolom numerik 

df['ph'] = pd.to_numeric(df['ph'], errors='coerce') 

df['tds_ppm'] = pd.to_numeric(df['tds_ppm'], errors='coerce') 

df['water_temp_c'] = pd.to_numeric(df['water_temp_c'], 

errors='coerce') 

 

def label_nutrisi(row): 

    ph = row['ph'] 

    tds = row['tds_ppm'] 

    temp = row['water_temp_c'] 

 

    if pd.isna(ph) or pd.isna(tds) or pd.isna(temp): 

        return np.nan 

 

    # --- RULE: Cukup --- 

    if (5.8 <= ph <= 6.4) and ((800 <= tds <= 1000) or (1500 <= 

tds <= 1700)) and (20 <= temp <= 27): 

        return 1  # Cukup 

 

    # --- RULE: Kurang --- 

    elif (ph < 5.8) or (tds < 800) or (temp < 20): 

        return 0  # Kurang 

 

    # --- RULE: Berlebih --- 

    elif (ph > 6.4) or (tds > 1700) or (temp > 27): 

        return 2  # Berlebih 

 

    else: 

        return np.nan 

 

# Terapkan fungsi 

df['nutrisi_label'] = df.apply(label_nutrisi, axis=1) 

 

# Distribusi hasil labeling 

print("         Distribusi Label Nutrisi:") 

print(df['nutrisi_label'].value_counts(dropna=False).sort_index()) 

print("\n0 = Kurang | 1 = Cukup | 2 = Berlebih") 

 

# Visualisasi hasil labeling 

plt.figure(figsize=(6,4)) 

sns.countplot(x='nutrisi_label', data=df, palette='coolwarm') 

plt.title("Distribusi Label Nutrisi (Rule-Based)") 

plt.xlabel("Label (0=Kurang, 1=Cukup, 2=Berlebih)") 

plt.ylabel("Jumlah Data") 

plt.grid(alpha=0.3) 



 

 

 

 

plt.show()

 

Lampiran 2. Kode Program Normalisasi Data (Min–Max Scaling) 

from sklearn.preprocessing import MinMaxScaler 

import joblib # Import joblib 

 

print("⚙️ Proses normalisasi dimulai...\n") 

 

# Pilih kolom fitur yang mau dinormalisasi 

fitur = ['ph', 'tds_ppm', 'water_temp_c'] 

 

# Buat scaler dan fit_transform ke data 

scaler = MinMaxScaler() 

df_scaled = df.copy() 

df_scaled[fitur] = scaler.fit_transform(df_scaled[fitur]) 

 

# Simpan parameter min-max biar bisa dipakai di prediksi nanti 

minmax_params = { 

    'min': scaler.data_min_, 

    'max': scaler.data_max_, 

    'range': scaler.data_range_ 

} 

 

scaler_filename = "fitted_scaler.pkl" 

joblib.dump(scaler, scaler_filename) 

 

print("✅ Normalisasi selesai!") 

print("Nilai minimum & maksimum tiap fitur sebelum scaling:") 

for i, f in enumerate(fitur): 

    print(f"  {f}  →  min: {minmax_params['min'][i]:.3f} | max: 

{minmax_params['max'][i]:.3f}") 

 

print("\nCek 5 data pertama hasil normalisasi:") 

df_scaled.head() 

 

Lampiran 3. Kode Program Balancing Data (Equalized Class Reconstruction) 

import numpy as np 

 

print("🔄 Melakukan FINAL RE-ENGINEER + BALANCING...\n") 

 

df_bal = df_scaled.copy() 

 

print("Jumlah awal per kelas (df_bal):") 

print(df_bal['nutrisi_label'].value_counts().sort_index()) 

 

fitur_sensor = ['ph', 'tds_ppm', 'water_temp_c'] 

 

# TARGET = mayoritas (870) 

target = df_bal['nutrisi_label'].value_counts().max() 

print("\n🎯 Target jumlah tiap kelas:", target) 

 

df_final = [] 



 

 

 

 

 

for label, group in df_bal.groupby('nutrisi_label'): 

 

    group = group.copy().reset_index(drop=True) 

    n = len(group) 

 

    # --- Jika kurang dari target → buat data synthetic --- 

    if n < target: 

        needed = target - n 

 

        # ambil pasangan titik untuk interpolasi synthetic 

        idx1 = np.random.randint(0, n, needed) 

        idx2 = np.random.randint(0, n, needed) 

 

        synth = 

group[fitur_sensor].iloc[idx1].reset_index(drop=True)*0.5 + \ 

                group[fitur_sensor].iloc[idx2].reset_index(drop=Tr

ue)*0.5 

 

        synth['nutrisi_label'] = label 

 

        df_new = pd.concat([group, synth], axis=0) 

 

    # --- Jika lebih dari target → sampling acak --- 

    else: 

        df_new = group.sample(target, random_state=42) 

 

    df_final.append(df_new) 

 

# Gabungkan & shuffle 

df_re = pd.concat(df_final).sample(frac=1, 

random_state=42).reset_index(drop=True) 

 

print("\n📊 Jumlah akhir per kelas:") 

print(df_re['nutrisi_label'].value_counts().sort_index()) 

 

Lampiran 4. Kode Program Reduksi Dimensi Menggunakan PCA 

from sklearn.decomposition import PCA 

import pandas as pd 

import joblib # Import joblib to save the fitted PCA object 

 

print("🔍 Proses PCA dimulai...\n") 

 

# Pisahkan fitur dan label 

X = df_balanced[['ph', 'tds_ppm', 'water_temp_c']] 

y = df_balanced['nutrisi_label'] 

 

# Buat objek PCA dengan 2 komponen 

pca = PCA(n_components=2) 

X_pca = pca.fit_transform(X) 

 

# *** SIMPAN OBJEK PCA YANG SUDAH DI-FIT *** 

pca_filename = "fitted_pca.pkl" 

joblib.dump(pca, pca_filename) 



 

 

 

 

print(f"✅ Objek PCA yang sudah di-fit disimpan di -> 

{pca_filename}") 

# ***************************************** 

 

# Konversi ke DataFrame baru 

df_pca = pd.DataFrame(data=X_pca, columns=['PC1', 'PC2']) 

df_pca['nutrisi_label'] = y.values 

 

# Tampilkan hasil varian 

print("🔸 Proporsi Variansi Tiap Komponen:") 

for i, ratio in enumerate(pca.explained_variance_ratio_): 

    print(f"  PC{i+1}: {ratio:.4f}") 

 

print(f"\n🔹 Total variansi yang terjelaskan oleh 2 komponen: 

{sum(pca.explained_variance_ratio_):.4f}") 

 

# Cek data hasil PCA 

df_pca.head() 

 

print("\n📈 PCA Component Loadings:") 

loadings = pd.DataFrame(pca.components_, columns=X.columns, 

index=['PC1', 'PC2']) 

print(loadings) 

 

Lampiran 5. Model Pipeline untuk Penerapan Klasifikasi di Web  

from sklearn.pipeline import Pipeline 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.decomposition import PCA 

from sklearn.svm import SVC 

import joblib 

import os 

import pandas as pd # Import pandas 

 

# ====================================== 

# MEMBUAT PIPELINE MODEL 

# ====================================== 

 

# 1. Muat objek scaler yang sudah di-fit pada data normalisasi 

scaler_filename = "fitted_scaler.pkl" 

if not os.path.exists(scaler_filename): 

    print(f"❌ File Scaler yang sudah di-fit tidak ditemukan di: 

{scaler_filename}") 

    print("❗ Harap jalankan kembali cell Random Undersampling 
untuk membuat file ini.") 

    # Anda perlu menjalankan kembali cell Random Undersampling 

untuk membuat file ini. 

else: 

    scaler_loaded = joblib.load(scaler_filename) 

    print(f"✅ Objek Scaler yang sudah di-fit berhasil dimuat 

dari -> {scaler_filename}") 

 

    # 2. Muat objek PCA yang sudah di-fit 



 

 

 

 

    #    Objek ini sudah di-fit pada data yang *undersampled* di 

cell PCA (ZtlsbXejE3wb) 

    pca_filename = "fitted_pca.pkl" 

    if not os.path.exists(pca_filename): 

        print(f"❌ File PCA yang sudah di-fit tidak ditemukan di: 

{pca_filename}") 

        print("❗ Harap jalankan kembali cell PCA untuk membuat 
file ini.") 

        # Anda perlu menjalankan kembali cell PCA untuk membuat 

file ini. 

    else: 

        pca_reloaded = joblib.load(pca_filename) 

        print(f"✅ Objek PCA yang sudah di-fit berhasil dimuat 

dari -> {pca_filename}") 

 

        # 3. Muat model SVM terbaik (dari split 80:20) 

        model_path = "saved_models/SVM_linear_80_20.pkl" 

        if not os.path.exists(model_path): 

             print(f"❌ File model SVM tidak ditemukan di: 

{model_path}") 

             print("❗ Harap jalankan kembali cell Training SVM 
untuk membuat file ini.") 

        else: 

            svm_model_loaded = joblib.load(model_path) 

            print(f"✅ Model SVM ({model_path}) berhasil 

dimuat.") 

 

            # 4. Buat Pipeline 

            #    Gunakan scaler_loaded yang dimuat dari file 

            pipeline = Pipeline([ 

                ('scaler', scaler_loaded), # Gunakan scaler yang 

dimuat 

                ('pca', pca_reloaded), 

                ('svm', svm_model_loaded) 

            ]) 

 

            print("\n🎉 Pipeline model berhasil dibuat!") 

 

            # ====================================== 

            # SIMPAN PIPELINE MENGGUNAKAN JOBLIB 

            # ====================================== 

 

            # Pastikan folder penyimpanan tersedia 

            save_dir = "saved_pipeline" 

            os.makedirs(save_dir, exist_ok=True) 

 

            pipeline_filename = os.path.join(save_dir, 

"svm_pca_pipeline.pkl") 

            joblib.dump(pipeline, pipeline_filename) 

 

            print(f"\n✅ Pipeline model disimpan di -> 

{pipeline_filename}") 

 

Lampiran 6. Implementasi Model Klasifikasi Pada Sistem Web 



 

 

 

 

import joblib 

import pandas as pd 

import os 

 

pipeline_filename = os.path.join("saved_pipeline", 

"svm_pca_pipeline.pkl") 

 

# Pastikan file pipeline ada 

if not os.path.exists(pipeline_filename): 

    print(f"❌ File pipeline tidak ditemukan di: 

{pipeline_filename}") 

else: 

    loaded_pipeline = joblib.load(pipeline_filename) 

    print(f"✅ Pipeline model berhasil dimuat dari -> 

{pipeline_filename}") 

 

    new_data = pd.DataFrame({ 

        'ph': [6.7], 

        'tds_ppm': [2000], 

        'water_temp_c': [24] 

    }) 

 

    print("\nInput data baru:") 

    display(new_data) 

 

    # --- Langkah Debugging: Lihat hasil Scaling dan PCA --- 

    # Ambil scaler dan pca dari pipeline 

    scaler_step = loaded_pipeline.named_steps['scaler'] 

    pca_step = loaded_pipeline.named_steps['pca'] 

 

    # Scaling 

    scaled_data = scaler_step.transform(new_data) 

    scaled_df = pd.DataFrame(scaled_data, columns=['ph_scaled', 

'tds_ppm_scaled', 'water_temp_c_scaled']) 

    print("\nData setelah Scaling:") 

    display(scaled_df) 

 

    # PCA Transformation 

    pca_data = pca_step.transform(scaled_data) 

    pca_df = pd.DataFrame(pca_data, columns=['PC1', 'PC2']) 

    print("\nData setelah PCA:") 

    display(pca_df) 

    # --- Akhir Langkah Debugging --- 

 

    prediction = loaded_pipeline.predict(new_data) 

 

    # Mapping hasil klasifikasi ke label yang mudah dibaca 

    label_map = {0.0: 'Kurang', 1.0: 'Cukup', 2.0: 'Berlebih'} 

    predicted_label = label_map.get(prediction[0], "Label tidak 

dikenali") 

 

    print(f"\nHasil Klasifikasi Label Nutrisi: {prediction}") 

  


