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ABSTRAK

Hapsari, Laily Sabrina. 2025. Klasifikasi Kebutuhan Nutrisi Tanaman Melon Pada
Sistem Hidroponik Berbasis Internet of Things Menggunakan Support Vector
Machine. Skripsi. Program Studi Teknik Informatika Fakultas Sains dan
Teknologi Universitas Islam Negeri Maulana Malik [brahim Malang. Pembimbing:
() Shoftin Nahwa Utama, M.T. (II) Nurizal Dwi Priandani, M.Kom.

Kata Kunci: hidroponik, Internet of Things (1oT), klasifikasi nutrisi, Support Vector
Machine (SVM)

Budidaya melon secara hidroponik membutuhkan pengelolaan nutrisi yang presisi
karena perubahan pH, TDS, dan suhu air sangat memengaruhi penyerapan hara. Kendala
yang muncul pada pertanian hidroponik adalah proses pemantauan kondisi nutrisi yang
masih dilakukan secara manual, sehingga berisiko menimbulkan keterlambatan dalam
mendeteksi keadaan nutrisi yang kurang, cukup, atau berlebih. Penelitian ini bertujuan
mengembangkan sistem pemantauan berbasis Internet of Things (IoT) yang terintegrasi
dengan algoritma Support Vector Machine (SVM) untuk mengklasifikasikan kebutuhan
nutrisi secara otomatis. Proses penelitian meliputi akuisisi data sensor secara real-time,
pembersihan data, normalisasi Min-Max, penyeimbangan kelas menggunakan Random
Under Sampling, dan reduksi dimensi dengan Principal Component Analysis sebelum
dilakukan klasifikasi menggunakan SVM kernel linear. Hasil pengujian menunjukkan
bahwa model SVM memperoleh akurasi 94,63% pada rasio 80:20, 94,51% pada rasio
70:30, dan 94,83% pada rasio 60:40, yang menandakan performa model cukup stabil
terhadap variasi data latih dan uji. Pengujian kalibrasi sensor menghasilkan nilai Mean
Absolute Error sebesar 0,335 untuk pH, 134,692 ppm untuk TDS, dan 1,275°C untuk suhu
air, yang menunjukkan tingkat penyimpangan yang masih dapat diterima. Secara
keseluruhan, sistem [oT dan model SVM ini mampu memberikan klasifikasi nutrisi secara
akurat dan efisien sehingga mendukung optimalisasi pengelolaan larutan nutrisi pada
budidaya melon hidroponik.
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ABSTRACT

Hapsari, Laily Sabrina. 2025. Classification of Nutrient Requirements for Melon Plants
in a Hydroponic System Based on the Internet of Things Using Support Vector
Machine. Undergraduate Thesis. Informatics Engineering Study Program, Faculty
of Science and Technology, State Islamic University of Maulana Malik Ibrahim
Malang. Supervisor: (I) Shoffin Nahwa Utama, M.T., (II) Nurizal Dwi Priandani,
M.Kom.

Keywords: hydroponics, Internet of Things (IoT), nutrient classification, Support Vector
Machine (SVM)

Hydroponic melon cultivation requires precise nutrient management because
fluctuations in pH, TDS, and water temperature significantly affect nutrient absorption. A
major challenge in hydroponic agriculture is that nutrient condition monitoring is still
performed manually, which increases the risk of delayed detection of nutrient states such
as deficient, adequate, or excessive. This study aims to develop an Internet of Things (IoT)-
based monitoring system integrated with the Support Vector Machine (SVM) algorithm to
automatically classify nutrient requirements. The research process includes real-time
sensor data acquisition, data cleaning, Min-Max normalization, class balancing using
Random Under Sampling, and dimensionality reduction with Principal Component
Analysis before performing classification using a linear kernel SVM. The results show that
the SVM model achieved accuracies of 94.63% with an 80:20 ratio, 94.51% with a 70:30
ratio, and 94.83% with a 60:40 ratio, indicating stable performance across different train-
test distributions. Sensor calibration tests produced Mean Absolute Error values of 0.335
for pH, 134.692 ppm for TDS, and 1.275°C for water temperature, demonstrating that the
sensors operate within acceptable deviation levels. Overall, the developed IoT system and
SVM model are capable of providing accurate and efficient nutrient classification, thereby
supporting the optimization of nutrient solution management in hydroponic melon
cultivation.
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BAB I

PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknologi informasi dan komunikasi saat ini telah membawa
perubahan signifikan dalam berbagai bidang, termasuk sektor pertanian. Salah satu
inovasi yang banyak dikembangkan adalah pertanian berbasis Internet of Things
(IoT) (Kurniawan & Prasetyo, 2022). IoT memungkinkan perangkat sensor
digunakan untuk memantau kondisi lingkungan secara real time. Sistem ini menjadi
solusi potensial bagi pertanian modern, khususnya pada metode hidroponik yang
bergantung pada kestabilan nutrisi dan kondisi lingkungan (Nugroho &
Fathurrahman, 2021). Dengan demikian, pemanfaatan IoT telah terbukti mampu
meningkatkan efisiensi dalam pengelolaan budidaya pertanian (Santoso & Firdaus,
2023).

Tanaman melon merupakan salah satu komoditas hortikultura dengan nilai
ekonomi tinggi di Indonesia. Permintaan pasar terhadap buah melon terus
meningkat seiring dengan tingginya konsumsi masyarakat (Prasetyo & Sari, 2020).
Namun, budidaya melon secara hidroponik menghadapi tantangan dalam menjaga
keseimbangan pH larutan, Total Dissolved Solid (TDS), suhu air, dan umur
tanaman. Ketidakseimbangan faktor-faktor tersebut dapat menyebabkan tanaman
mengalami defisiensi atau kelebihan nutrisi (Syahputra et al., 2022). Dampaknya
adalah penurunan kualitas maupun kuantitas hasil panen yang merugikan petani

(Dewi & Lestari, 2021).



Pengelolaan nutrisi yang tepat menjadi kunci dalam keberhasilan sistem
hidroponik. Faktor pH dan TDS sangat menentukan ketersediaan unsur hara yang
dapat diserap oleh tanaman (Wahyudi & Putra, 2023). Sementara itu, suhu air dan
umur tanaman turut memengaruhi tingkat kebutuhan nutrisi (Arifin & Kusuma,
2020). Tanpa adanya sistem pengelolaan berbasis data, petani sering menghadapi
kesulitan dalam menentukan dosis nutrisi yang sesuai (Wijayanti & Susanti, 2021).
Alat manual yang digunakan petani hidroponik untuk mengukur nutrisi tidak
menunjukkan secara langsung nutrisi yang terlarut pada sistem hidroponik sudah
tergolong cukup atau tidak. Petani perlu menghitung terlebih dahulu data yang
didapat dari alat manual untuk menentukan nutrisi tanaman sudah cukup atau
belum.

Salah satu pendekatan yang dapat digunakan untuk mengatasi masalah ini
adalah dengan memanfaatkan algoritma Support Vector Machine (SVM).
Algoritma ini dikenal memiliki performa tinggi dalam menangani masalah
klasifikasi dengan jumlah fitur terbatas (Anindita & Saputra, 2021). Dengan
memanfaatkan data hasil pembacaan sensor IoT, SVM dapat digunakan untuk
mengklasifikasikan kondisi kebutuhan nutrisi tanaman melon hidroponik
(Rachman et al., 2021). Klasifikasi ini dapat dibagi ke dalam kategori kurang,
cukup, atau berlebih sesuai dengan kondisi aktual (Wahyuni & Pratama, 2020).

Urgensi penelitian ini terletak pada integrasi antara IoT dan machine
learning dalam mendukung pertanian presisi. Sistem klasifikasi nutrisi berbasis
SVM dapat membantu petani lebih mudah mengambil keputusan terkait pengaturan

nutrisi (Nugroho & Fathurrahman, 2021). Proses budidaya melon hidroponik pun



menjadi lebih efisien, produktif, dan berkelanjutan (Santoso & Firdaus, 2023). Hal
ini sekaligus menjawab tantangan modernisasi pertanian dengan memanfaatkan
teknologi sebagai bagian dari solusi (Syahputra et al., 2022).

Dalam perspektif Islam, manusia diberi amanah sebagai khalifah di bumi
untuk menjaga keseimbangan alam. Hal ini ditegaskan dalam firman Allah SWT
pada Surah Al-An’am ayat 141, yang berbunyi:

Gt EA Y B 2 VaLestan a3 s 0T 1) o e
“Dan Dialah yang menjadikan kebun-kebun yang berjunjung dan yang tidak
berjunjung, pohon kurma, tanam-tanaman yang bermacam-macam rasanya,
zaitun, dan delima yang serupa dan yang tidak serupa. Makanlah dari buahnya
bila dia berbuah, dan tunaikanlah haknya di hari memetik hasilnya, dan janganlah
kamu berlebih-lebihan. Sesungguhnya Allah tidak menyukai orang yang berlebih-
lebihan.” (QS. Al-An’am [6]:141).

Menurut penafsiran para ulama, ayat ini menegaskan bahwa manusia
diperintahkan untuk mengelola hasil pertanian dengan penuh tanggung jawab
(Rahmawati, 2021). Ayat tersebut juga menekankan pentingnya keberlanjutan dan
larangan berlebih-lebihan dalam setiap aktivitas pertanian (Hidayat, 2020; Yusuf,
2019).

Selain landasan Al-Qur’an, penelitian ini sejalan dengan ajaran Rasulullah
SAW yang menekankan pentingnya menjaga kelestarian alam dan
memanfaatkannya secara bijak. Rasulullah SAW dalam haditsnya bersabda:

“Tidaklah seorang muslim menanam pohon atau menabur benih, lalu

sebagian darinya dimakan oleh burung, manusia, atau binatang, melainkan itu

menjadi sedekah baginya.” [HR. Bukhari No. 2320].



Hadits ini menunjukkan bahwa setiap usaha manusia dalam bercocok tanam
memiliki nilai keberkahan (Rahmawati, 2021). Selain itu, hadits ini juga
menegaskan pentingnya pemanfaatan teknologi untuk meningkatkan produktivitas
pertanian (Hidayat, 2020). Pesan moralnya adalah bahwa keberlanjutan lingkungan
harus tetap dijaga meskipun teknologi diterapkan (Yusuf, 2019).

Beberapa penelitian sebelumnya telah membahas penggunaan algoritma
machine learning dalam bidang pertanian. Penelitian Wahyuni dan Pratama (2020)
menunjukkan bahwa SVM memiliki performa tinggi dalam mengklasifikasikan
data pertanian. Selanjutnya, penelitian Anindita dan Saputra (2021) menegaskan
efektivitas SVM pada dataset dengan jumlah fitur terbatas. Namun demikian,
sebagian besar penelitian terdahulu lebih berfokus pada komoditas lain, bukan pada
melon hidroponik (Rachman et al., 2021). Hal ini menunjukkan adanya peluang
penelitian lebih lanjut (Nugroho & Fathurrahman, 2021). Penelitian ini hadir untuk
mengisi kesenjangan tersebut dengan menitikberatkan pada klasifikasi kebutuhan
nutrisi melon hidroponik berbasis IoT (Santoso & Firdaus, 2023).

Selain memperkuat basis akademis, penelitian ini juga memiliki manfaat
praktis bagi masyarakat dan pelaku usaha tani. Sistem klasifikasi nutrisi yang
dihasilkan dapat membantu petani dalam mengurangi kesalahan pemberian nutrisi
(Wahyudi & Putra, 2023). Efisiensi penggunaan pupuk dapat tercapai sehingga
lebih ramah lingkungan (Dewi & Lestari, 2021). Dampak lanjutannya adalah
peningkatan kualitas dan kuantitas hasil panen, yang pada akhirnya dapat

mendukung kesejahteraan petani (Syahputra et al., 2022).



Lebih jauh, penelitian ini diharapkan memberikan kontribusi nyata dalam
pengembangan sistem pertanian presisi berbasis teknologi. Integrasi sensor IoT dan
algoritma machine learning diharapkan menghasilkan model klasifikasi yang
mampu memberikan rekomendasi berbasis data secara akurat (Arifin & Kusuma,
2020). Kontribusi utama penelitian ini adalah menghadirkan solusi inovatif dalam
pengelolaan nutrisi tanaman hidroponik, khususnya melon (Prasetyo & Sari, 2020).
Dengan demikian, penelitian ini mendukung efisiensi sumber daya, meningkatkan
produktivitas, dan memperkuat ketahanan pangan nasional (Wijayanti & Susanti,

2021).

1.2 Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah bagaimana mengembangkan
sistem Internet of Things untuk mengklasifikasikan kebutuhan nutrisi tanaman
melon hidroponik menggunakan Support Vector Machine yang secara otomatis

menunjukkan klasifikasi nutrisi termasuk kurang, cukup, atau berlebih?

1.3 Batasan Masalah
Agar penelitian ini lebih terarah dan tidak melebar dari fokus utama, maka
batasan masalah dalam penelitian ini ditentukan sebagai berikut:
1. Parameter yang digunakan sebagai fitur klasifikasi terbatas pada pH larutan,
suhu air, TDS, dan umur tanaman.
2. Data diperoleh dari sensor IoT yang dipasang pada sistem hidroponik

dengan kalibrasi pengukuran alat manual.



3. Klasifikasi kebutuhan nutrisi tanaman hanya dibatasi pada tiga kategori,
yaitu kurang, cukup, dan berlebih.

4. Penelitian ini hanya difokuskan pada proses klasifikasi kebutuhan nutrisi
tanaman, tanpa membahas lebih lanjut dampak hasil klasifikasi terhadap

pertumbuhan tanaman.

1.4 Tujuan Penelitian

Penelitian ini bertujuan untuk mengembangkan sistem Internet of Things
yang mampu mengklasifikasikan kebutuhan nutrisi tanaman melon hidroponik
menggunakan algoritma Support Vector Machine, sehingga secara otomatis dapat

menunjukkan kategori nutrisi kurang, cukup, atau berlebih.

1.5 Manfaat Penelitian
Hasil penelitian ini diharapkan dapat memberikan manfaat sebagai berikut:

1. Bagi peneliti, penelitian ini menjadi sarana pengembangan pengetahuan dan
keterampilan dalam penerapan teknologi IoT dan algoritma machine
learning, khususnya Support Vector Machine, dalam bidang pertanian
presisi.

2. Bagi petani atau praktisi pertanian, sistem klasifikasi nutrisi tanaman melon
hidroponik yang dihasilkan dapat membantu dalam pengambilan keputusan
pemupukan secara lebih tepat, efisien, dan berbasis data.

3. Bagi akademisi dan peneliti selanjutnya, penelitian ini dapat menjadi

referensi dan dasar pengembangan lebih lanjut pada penelitian di bidang



pertanian cerdas, klasifikasi data sensor, maupun penerapan metode
machine learning lainnya.

. Bagi masyarakat luas, penelitian ini dapat mendukung ketersediaan produk
hortikultura berkualitas tinggi melalui budidaya yang lebih ramah
lingkungan dan efisien, sehingga sejalan dengan prinsip pertanian

berkelanjutan.
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STUDI PUSTAKA

2.1 Penelitian Terkait

Penelitian oleh Sulaiman et al. (2024) mengembangkan model hybrid
ensemble machine learning, melibatkan Random Forest, SVM, dan KNN untuk
memprediksi konsentrasi fosfor dalam larutan hidroponik menggunakan data
spek-troskopi. Hasil menunjukkan bahwa SVM tunggal mencapai akurasi 99,6%,
sedangkan kombinasi SVM/KNN via stacking mencapai 99,73%. Studi ini relevan
karena menunjukkan potensi SVM dalam klasifikasi nutrisi berbasis data spektral,
meskipun fokusnya bukan pada melon dan fitur yang digunakan berbeda.

Islam et al. (2024) menggunakan teknik image processing dan SVM untuk
mengidentifikasi gejala stres lingkungan pada bibit cabai di greenhouse (plant
factory). Dengan metode ini, klasifikasi stress symptoms mencapai akurasi tinggi
dan menunjukkan kecocokan SVM untuk aplikasi agronomi berbasis citra.
Meskipun bukan pada hidroponik melon, pendekatan ini menguatkan ragam
penerapan SVM dalam sistem pertanian terkendali.

Muftashiva, Munadi, & Haryanto (2024) dalam penelitiannya
mengembangkan sistem smart plant monitoring pada budidaya melon hidroponik
berbasis Internet of Things menggunakan metode dutch bucket. Sistem ini
dirancang untuk memantau kondisi lingkungan tanaman, seperti kelembapan, suhu,
serta nutrisi secara real-time, sehingga petani dapat mengetahui status tanaman
tanpa harus melakukan pengecekan manual. Hasil penelitian tersebut menunjukkan

bahwa penerapan IoT mampu meningkatkan efisiensi pemantauan tanaman melon



hidroponik dengan memberikan data yang lebih cepat, akurat, dan mudah diakses

melalui perangkat digital.

Tabel 2.1 Penelitian terkait

No Judul Penelitian Hasil Persamaan Perbedaan

1 Hybrid Ensemble Machine SVM akurasi Penggunaan SVM | Bukan melon,
Learning Models for Nutrient | 99,6%; stacking | untuk klasifikasi basis data
Solution Phosphorus hingga 99,73% | nutrisi spektral
Estimation in Hydroponics
(Sulaiman et al., 2024)

2 | Application of SVM for Stress | Akurasi tinggi Penerapan SVM Respons
Symptom Classification in dalam dalam kondisi terhadap stres,
Chili Seedlings under Plant identifikasi terkontrol bukan nutrisi
Factory Conditions (Islam et | gejala stres
al., 2024)

3 Sistem Smart Plant Implementasi Pemanfaatan Menggunakan
Monitoring Pada Hidroponik | sistem smart Internet of Things | metode dutch
Melon Berbasis Internet Of plant pada budidaya bucket.

Things (Muftashiva, Munadi, | monitoring melon hidroponik Sedangkan

& Haryanto, 2024) berbasis penelitian ini
Internet of menggunakan
Things SVM.

4 Support Vector Machine Akurasi £80,5% | Penggunaan SVM | Fokus pada
untuk Prediksi Pola di sistem pertumbuhan,
Pertumbuhan Selada hidroponik NFT bukan nutrisi
Hidroponik (Rahmadi et al.,

2025)

5 | Pemantauan Nutrisi Sistem akurasi Pemantauan nutrisi | Metode fuzzy,
Hidroponik Menggunakan tinggi dalam pH/TDS berbasis bukan
Sensor pH/TDS dan Logika kendali nutrisi IoT klasifikasi SVM
Fuzzy (Julianti & Kurniawan,

2024)
Usulan Penelitian

6 Klasifikasi Kebutuhan Nutrisi Klasifikasi kebutuhan nutrisi tanaman
Tanaman Melon Hidroponik melon hidroponik berbasis data sensor
Berbasis Internet of Things IoT yang di integrasikan di
Menggunakan Support i greenhouse hidroponik dengan
Vector Machine menggunakan metode Support Vector

Machine (SVM).

2.2 Klasifikasi

Menurut Kamus Besar Bahasa Indonesia (KBBI), klasifikasi adalah
penyusunan secara sistematis dalam kelompok atau golongan berdasarkan kaidah
atau standar tertentu (KBBI, 2024). Secara umum, klasifikasi merupakan proses

mengelompokkan data atau objek berdasarkan kesamaan ciri atau atribut yang
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dimiliki. Dalam ranah machine learning, klasifikasi termasuk ke dalam metode
supervised learning yang menggunakan data berlabel untuk mempelajari pola,
kemudian diaplikasikan pada data baru guna menentukan kelas yang sesuai (IBM,
2024). Berbagai algoritma digunakan dalam klasifikasi, seperti Decision Tree,
Naive Bayes, Artificial Neural Network, hingga Support Vector Machine (SVM).
SVM menjadi salah satu metode yang banyak digunakan karena kemampuannya
membangun hyperplane optimal untuk memisahkan data dalam kelas yang berbeda,
bahkan pada data berdimensi tinggi (Firdausi, 2024). Dengan adanya klasifikasi,
proses analisis data yang sebelumnya dilakukan secara manual dapat ditingkatkan

akurasinya serta dipercepat melalui dukungan komputasi.

2.3 Nutrisi Hidroponik

Dalam budidaya melon hidroponik, kebutuhan nutrisi berbeda pada setiap
fase pertumbuhan, sehingga diperlukan pengaturan parameter pH, suhu air, dan
konsentrasi larutan secara tepat. Pada fase vegetatif (0—3 minggu setelah tanam
(MST)), pH larutan umumnya dipertahankan pada kisaran 5,8-6,3 untuk
memaksimalkan penyerapan unsur hara makro dan mikro (Grozine, 2023). Suhu air
nutrisi yang ideal berada pada kisaran 20-27 °C, karena rentang ini dapat menjaga
ketersediaan oksigen terlarut dan mencegah stres akar (Grozine, 2023). Konsentrasi
larutan nutrisi pada fase ini diberikan secara bertahap, mulai dari sekitar 800 ppm
pada minggu pertama dan meningkat menjadi 1000 ppm pada minggu ketiga (Tappi
& Tandibayang, 2025).

Memasuki fase generatif (berbunga hingga berbuah), kebutuhan nutrisi

tanaman meningkat signifikan. pH larutan tetap dijaga stabil pada kisaran 5,8—6,4
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(Grozine, 2023), sementara suhu air dapat dipertahankan pada 20-27 °C, meskipun
beberapa penelitian melaporkan tanaman melon masih dapat tumbuh baik hingga
suhu air larutan 30 °C apabila sistem aerasi dan sirkulasi terkontrol (Kawasaki et
al., 2020). Pada fase ini, konsentrasi nutrisi larutan dinaikkan ke level 1500-1700
ppm, yang terbukti mendukung pembentukan bunga dan pembesaran buah secara
optimal (Tappi & Tandibayang, 2025; Furoidah, 2018; Darmawan, Dinarto, &

Widodo, 2024).

Tabel 2.2 Ground Truth Kebutuhan Nutrisi Tanaman

Fase Parameter Kurang Cukup Berlebih Sumber
Pertumbuhan (Optimal)
Vegetatif pH <58 5,8-6,4 > 6,4 Grozine,
(0-3 MST) 2023
Suhu Air <20°C 20-27°C >27°C Grozine,
2023
PPM <800 ppm | 800 — 1000 > 1000 ppm | Tappi &
ppm Tandibayang,
2025
Generatif >4 | pH <5,8 5,8—6,4 > 6,4 Grozine,
MST, 2023
berbunga — Suhu Air <20°C 20 -27°C >27°C Kawasaki et
berbuah) al., 2020
PPM <1500 ppm | 1500 —2000 | >2000 ppm | Tappi &
ppm Tandibayang,
2025;
Furoidah,
2018;
Darmawan et
al., 2024

2.4 Cleaning

Tahap data cleaning merupakan bagian penting dalam preprocessing yang
bertujuan untuk meningkatkan kualitas data sebelum masuk ke proses analisis atau
pelatihan model. Data yang dikumpulkan dari sensor sering kali mengandung
permasalahan seperti missing values, data duplikat, inkonsistensi, atau noise akibat

gangguan teknis. Apabila tidak ditangani dengan baik, kondisi ini dapat
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menyebabkan bias dalam hasil analisis dan menurunkan performa model klasifikasi
yang dibangun.

Menurut Garcia, Luengo, & Herrera (2016), kualitas data memiliki
pengaruh yang lebih besar terhadap akurasi model dibandingkan dengan
kompleksitas algoritma yang digunakan. Oleh karena itu, proses cleaning menjadi
tahap yang tidak dapat diabaikan. Teknik yang umum digunakan antara lain adalah
penghapusan atau imputasi nilai hilang, deteksi dan penanganan outliers, serta
standarisasi format data. Abid, Farooqi, & Khan (2021) juga menekankan bahwa
pembersihan data adalah langkah preventif yang memastikan hasil analisis lebih
reliabel dan mudah direplikasi.

Dalam konteks penelitian ini, cleaning dilakukan untuk memastikan data
hasil pembacaan sensor pH, suhu air, dan TDS/PPM benar-benar
merepresentasikan kondisi aktual tanaman. Data yang terdeteksi error atau tidak
logis, seperti nilai di luar batas biologis tanaman melon, akan diidentifikasi dan
diperbaiki menggunakan teknik imputasi sederhana atau dihapus bila tidak relevan.
Dengan demikian, dataset yang diperoleh menjadi lebih konsisten dan siap

digunakan dalam tahap klasifikasi selanjutnya.

2.5 Normalisasi

Tahap normalisasi merupakan salah satu proses penting dalam
preprocessing yang bertujuan untuk menyeragamkan skala data sehingga setiap
atribut memiliki kontribusi yang seimbang dalam proses analisis maupun pelatihan
model. Hal ini menjadi krusial karena data sensor pH, suhu air, dan TDS/PPM

berada pada skala yang berbeda-beda. Misalnya, pH berkisar antara 0—14, suhu air
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biasanya 15-35 °C, sementara TDS dapat mencapai ribuan ppm. Jika tidak
dinormalisasi, atribut dengan skala besar (seperti TDS) akan mendominasi proses
perhitungan jarak atau fungsi kernel dalam algoritma machine learning, termasuk
Support Vector Machine yang digunakan dalam penelitian ini.

Menurut Han, Pei, & Kamber (2012), normalisasi data dapat meningkatkan
kinerja algoritma dengan mempercepat konvergensi dan mengurangi bias akibat
perbedaan skala antar fitur. Teknik normalisasi yang umum digunakan meliputi
Min-Max Normalization, Z-score Standardization, dan Decimal Scaling. Pada
penelitian ini, dipilih metode Min-Max Normalization karena dapat mengubah
setiap atribut ke dalam rentang [0,1], sehingga lebih mudah diinterpretasikan dan
sesuai untuk algoritma SVM yang sensitif terhadap jarak antar data (Patro & Sahu,
2015).

Dengan adanya normalisasi, data sensor yang beragam skala dapat diproses
secara konsisten sehingga hasil klasifikasi kebutuhan nutrisi tanaman menjadi lebih
akurat. Proses ini juga memastikan bahwa sistem I[oT yang dibangun mampu
memberikan rekomendasi yang proporsional berdasarkan setiap parameter

lingkungan yang diukur.

2.6 Balancing

Data balancing adalah proses penyeimbangan distribusi kelas dalam dataset
agar model klasifikasi tidak bias terhadap kelas mayoritas. Ketidakseimbangan
kelas (imbalanced dataset) sering menyebabkan model menghasilkan prediksi yang
tampak akurat secara keseluruhan, tetapi gagal mengenali kelas minoritas dengan

baik. Hal ini penting diperhatikan karena dalam penelitian berbasis klasifikasi,
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kualitas model tidak hanya ditentukan oleh performa pada kelas mayoritas,
melainkan juga oleh kemampuannya dalam mengidentifikasi kelas dengan jumlah
data yang lebih sedikit (Gao et al., 2025; Chen et al., 2024).

Balancing memungkinkan setiap kelas berkontribusi secara lebih
proporsional dalam proses pembelajaran. Studi terbaru menegaskan bahwa teknik
balancing, baik melalui pengurangan data pada kelas mayoritas maupun
penambahan data pada kelas minoritas, dapat membantu mengurangi bias model
dan meningkatkan keandalan hasil klasifikasi pada data multikelas (Chen et al.,
2024). Lebih jauh, penelitian empiris menunjukkan bahwa meskipun balancing
dapat menurunkan jumlah informasi pada kelas tertentu, langkah ini tetap
bermanfaat karena memperbaiki sensitivitas model terhadap kelas minoritas yang
jumlahnya lebih sedikit (Yang et al., 2024).

Dalam konteks penelitian ini, balancing diterapkan pada data hasil sensor
yang dilabeli kondisi nutrisi tanaman (kurang, cukup, berlebih) menggunakan
metode Equalized Class Reconstruction (ECR). Tujuannya adalah memastikan
setiap kategori memiliki representasi data yang proporsional dan maksimum
sehingga model Support Vector Machine dapat belajar secara lebih adil, tidak hanya
fokus pada kelas mayoritas, tetapi juga mampu mendeteksi kelas minoritas dengan

lebih baik.

2.7 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) adalah metode reduksi dimensi yang
digunakan untuk menyederhanakan dataset dengan banyak variabel menjadi

sejumlah kecil komponen utama yang tetap mampu merepresentasikan sebagian
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besar variasi data (Jolliffe & Cadima, 2016). Teknik ini bekerja dengan mengubah
kumpulan variabel awal menjadi kombinasi linier baru yang tidak saling
berkorelasi, yang disebut sebagai principal components. Komponen pertama
menyimpan variasi data terbesar, diikuti komponen berikutnya yang menyimpan
variasi terbesar kedua, dan seterusnya.

Dalam penelitian klasifikasi berbasis machine learning, PCA bermanfaat
untuk meningkatkan efisiensi komputasi, mengurangi noise, dan mencegah
overfitting dengan cara menghilangkan korelasi antarfitur (Sharma & Paliwal,
2021). PCA juga sering digunakan dalam pengolahan data sensor pertanian,
misalnya untuk mengekstraksi pola utama dari parameter lingkungan sehingga hasil
klasifikasi menjadi lebih akurat dan stabil (Zhang et al., 2022).

Secara matematis, PCA menggunakan dekomposisi matriks kovarian atau
singular value decomposition (SVD) untuk menghasilkan vektor eigen dan nilai
eigen. Jika X adalah matriks data dengan mean 0, maka kovarian dihitung dengan

(Krishana, & Dr. Vinod Kumar, 2024):

1

C=—XTX 2.1)
n-1
Keterangan:
C : matriks kovarian
n : jumlah sampel data
X : matriks data yang sudah dikurangi mean
X' : transpose dari matriks X

Selanjutnya dilakukan dekomposisi nilai eigen:

Cvi = Aivi (2.2)
Keterangan:
C : matriks kovarian
vi : eigenvector ke-i

Al : eigenvalue ke-i
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dengan vi adalah eigenvector yang menjadi arah komponen utama dan Ai
adalah eigenvalue yang merepresentasikan besarnya variansi yang dijelaskan oleh
komponen tersebut.

Dengan demikian, PCA relevan digunakan pada penelitian ini untuk
membantu analisis data sensor hidroponik (pH, TDS, suhu air) dengan cara
menyoroti dimensi paling berpengaruh sebelum masuk ke tahap klasifikasi

menggunakan SVM.

2.8 Support Vector Machine (SVM)

Support Vector Machine (SVM) adalah algoritma supervised learning yang
dirancang untuk menyelesaikan masalah klasifikasi dan regresi dengan cara
menentukan hyperplane pemisah yang optimal di antara kelas data (Cervantes et
al., 2020). Keunggulan SVM terletak pada prinsip maximum margin, yaitu memilih
batas pemisah dengan jarak terluas antara dua kelas, sehingga model mampu
melakukan generalisasi dengan baik meskipun ukuran dataset terbatas (Amaya-
Tejera et al., 2024).

Dalam penelitian ini, SVM digunakan untuk mengklasifikasikan kebutuhan
nutrisi tanaman melon hidroponik ke dalam tiga kategori, yaitu kurang, cukup, dan
berlebih. Input klasifikasi berasal dari data sensor pH, TDS, dan suhu air. Pemilihan
SVM relevan karena metode ini telah terbukti unggul dalam penelitian terdahulu
terkait pertanian presisi. Misalnya, Islam et al. (2024) menggunakan SVM untuk
mengklasifikasikan gejala stres pada bibit cabai dengan hasil akurasi tinggi,

sementara Sulaiman et al. (2024) menerapkan SVM dalam estimasi nutrisi
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hidroponik berbasis machine learning dengan tingkat keberhasilan yang signifikan.
Hal ini menunjukkan bahwa SVM efektif diterapkan pada kasus pertanian berbasis
data, termasuk pada penelitian ini.

Secara umum, fungsi keputusan dalam SVM dapat dituliskan sebagai

(Shuzhanfan, 2018):
fxX)=w-x+b (2.3)
Keterangan:
f(x) : nilai fungsi keputusan
w : vektor bobot
x : vektor input fitur
b : bias

Tujuan optimisasi SVM adalah memaksimalkan margin dengan fungsi
objektif:

.1

min= |l w | 2 (2.4)
Keterangan:
w : vektor bobot
lw]|? : norm kuadrat bobot

dengan syarat,

yilw-xi+b) =1 (2.5)
Keterangan:
yi : label kelas
xi : vektor fitur sampel ke-i
w : bobot
b : bias

Untuk data yang tidak sepenuhnya dapat dipisahkan secara linear,

digunakan variabel slack i dengan parameter regularisasi C:

minZ | w Il 2+ C 3L, & (2.6)
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Keterangan:

w : bobot

C : parameter regularisasi

&l : slack variable / kesalahan yang diizinkan
n : jumlah sampel

Formulasi ini memungkinkan SVM tetap bekerja meskipun terdapat

kesalahan klasifikasi kecil pada data latih.

2.9 Kernel Linear

Dalam Support Vector Machine (SVM), kernel berfungsi untuk mengubah
data input ke dalam ruang fitur berdimensi lebih tinggi agar data dapat dipisahkan
dengan hyperplane. Salah satu bentuk kernel yang paling sederhana adalah kernel
linear, yang bekerja tanpa transformasi non-linear sehingga fungsi pemisah tetap
berupa garis atau bidang datar (Harrington, 2020). Fungsi kernel linear dapat

dituliskan sebagai (Cortes, C., & Vapnik, V, 1995):

K(xi,xj) = xi - xj 2.7)
Keterangan:
K (xi, xj) : nilai kernel
xi : vektor fitur sampel pertama
xj : vektor fitur sampel kedua

Penggunaan kernel linear sangat sesuai pada dataset dengan jumlah fitur
yang terbatas dan ketika hubungan antarvariabel cenderung linier. Dalam penelitian
ini, fitur yang digunakan meliputi pH, TDS, suhu air, dan umur tanaman, yang
secara logis memiliki korelasi linier terhadap klasifikasi status nutrisi (kurang,
cukup, berlebih). Keunggulan kernel linear antara lain perhitungan yang sederhana,

waktu komputasi lebih cepat, serta hasil yang lebih mudah diinterpretasikan
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dibandingkan kernel non-linear seperti RBF atau polynomial (Cervantes et al.,
2020).

Selain itu, penelitian terdahulu juga menunjukkan bahwa kernel linear dapat
memberikan performa yang cukup baik pada bidang pertanian berbasis loT ketika
jumlah fitur relatif sedikit. Misalnya, SVM dengan kernel linear telah digunakan
pada klasifikasi pertumbuhan tanaman hidroponik dengan akurasi kompetitif
dibandingkan kernel kompleks lainnya (Rahmadi et al., 2025). Hal ini menjadi
dasar bahwa kernel linear tepat digunakan dalam penelitian ini sebagai pendekatan
klasifikasi kebutuhan nutrisi melon hidroponik berbasis IoT.

Pada gambar 2.1, menunjukkan ilustrasi sederhana penerapan Support
Vector Machine (SVM) dengan kernel linear dalam memisahkan dua kelas data.
Titik biru dan merah merepresentasikan dua kelas berbeda, sedangkan garis hitam
merupakan hyperplane pemisah yang dibentuk oleh SVM. Garis putus-putus
menandai batas margin yang mengapit hyperplane, di mana titik data terdekat
disebut support vector. Prinsip maximum margin ini memungkinkan SVM untuk
meminimalkan kesalahan klasifikasi sekaligus meningkatkan kemampuan

generalisasi pada data baru (Cervantes et al., 2020; Amaya-Tejera et al., 2024).
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llustrasi Hyperplane Linear pada SVM
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Gambear 2.1 Ilustrasi Hyperplane Linear

2.10  Confusion Matrix

Confusion matrix merupakan metode evaluasi yang banyak digunakan
dalam mengukur kinerja model klasifikasi. Matriks ini menyajikan perbandingan
antara hasil prediksi model dengan data aktual yang diketahui, sehingga dapat
menggambarkan tingkat akurasi maupun kesalahan klasifikasi (Hossin & Sulaiman,
2015). Struktur confusion matrix terdiri dari empat komponen utama, yaitu 7rue
Positive (TP), True Negative (TN), False Positive (FP), dan False Negative (FN),
yang masing-masing menjelaskan posisi hasil prediksi terhadap kenyataan (Chicco
& Jurman, 2020). Pada tabel 2.3 berikut menunjukkan bentuk umum confusion

matrix :

Tabel 2.3 Confusion Matrix

Prediksi Positif Prediksi Negatif
Aktual (Fakta) Positif True Positive (TP) False Negative (FN)
Aktual (Fakta) Negatif False Positive (FP) True Negative (TN)

True Positive (TP) adalah situasi hasil dari data aktual dan hasil prediksi

keduanya benar. True Negative (TN) adalah kondisi di mana data aktual tidak benar,
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tetapi hasil prediksi benar. False Positive (FP) terjadi ketika hasil prediksi salah,
sementara data aktualnya benar. False Negative (FN) adalah keadaan ketika hasil
prediksi maupun data aktual keduanya salah. Dalam evaluasi berbasis label akan
mengevaluasi setiap label secara terpisah, yang pada dasarnya mengubah
pengklasifikasi multi-label menjadi pengklasifikasi biner untuk setiap label.
Pendekatan ini menghasilkan empat kemungkinan hasil prediksi: 7rue Positive
(TP), False Positive (FP), True Negative (TN), dan False Negative (FN). Metrik
yang digunakan didefinisikan sebagai berikut (Swaminathan, Sathyanarayanan &

Tantri, B Roopashri, 2024) :

Akurasi = ———=1% X 100% (2.8)
TP+ TN+ FP + FN
Presisi = —— x 100% (2.9)
TP+FP )
Recall = —— x 100% (2.10)
TP+FN )

F1 Score = 2 x LrecisionXRecall ' 450y, @2.11)

Precision+Recall

Keterangan:

TP : true positive
TN : true negative
FP : false positive
FN : false negative

Evaluasi ini penting karena setiap metrik memberikan sudut pandang yang
berbeda. Accuracy baik digunakan ketika distribusi kelas seimbang, namun pada
data tidak seimbang, precision, recall, dan Fl-score lebih dapat menggambarkan

performa model secara adil (Sokolova & Lapalme, 2009). Oleh karena itu,
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kombinasi dari metrik-metrik ini akan digunakan dalam penelitian untuk menilai

kinerja model klasifikasi kebutuhan nutrisi tanaman melon hidroponik.

2.11 Pengujian Kalibrasi Sensor

Pengujian kalibrasi sensor merupakan tahap awal yang penting untuk
memastikan keandalan data yang digunakan dalam penelitian. Sensor yang tidak
terkalibrasi dengan baik dapat menghasilkan data yang bias atau menyimpang dari
kondisi sebenarnya, sehingga berdampak langsung pada akurasi analisis maupun
performa model klasifikasi yang dibangun. Menurut Vasylenko et al. (2020), proses
kalibrasi dilakukan untuk menyesuaikan pembacaan sensor terhadap standar acuan
sehingga kesalahan sistematis dapat diminimalisasi. Hal serupa ditegaskan oleh
Roriz et al. (2021), bahwa kalibrasi bukan hanya meningkatkan akurasi, tetapi juga
menjamin konsistensi pengukuran dari waktu ke waktu.

Kalibrasi sensor dilakukan dengan cara membandingkan hasil pembacaan
sensor terhadap alat ukur manual yang dijadikan referensi. Setiap parameter sensor
(pH, suhu air, dan TDS) diukur secara bersamaan menggunakan sensor dan alat
referensi pada beberapa titik pengukuran. Selisih antara hasil sensor dan referensi
dihitung sebagai error, kemudian dirata-ratakan untuk mengetahui tingkat akurasi
Sensor.

Metrik yang digunakan dalam penelitian ini adalah Mean Absolute Error
(MAE) karena lebih sederhana dan mudah diinterpretasikan. MAE menunjukkan
rata-rata besar deviasi pembacaan sensor terhadap nilai referensi. Rumus MAE

ditunjukkan pada persamaan berikut (Willmott, C. J., & Matsuura, K, 2005):
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1 , ,
MAE = YN |yisen — yiref| (2.12)
Keterangan:
N : jumlah sampel
yisen : nilai referensi
yiref : nilai hasil sensor

Sensor dianggap layak digunakan apabila nilai MAE berada dalam batas
toleransi, misalnya pH < 0,2; suhu air < 0,5 °C; dan TDS < 50-100 ppm (Willmott

& Matsuura, 2005).



BAB III

DESAIN DAN IMPLEMENTASI

3.1 Prosedur Penelitian

Penelitian ini dilakukan melalui beberapa tahapan yang dirancang secara
sistematis agar tujuan penelitian dapat tercapai dengan baik. Prosedur penelitian
berfungsi sebagai gambaran umum mengenai alur kegiatan, mulai dari perancangan
sistem hingga tahap analisis dan evaluasi hasil. Secara lebih jelas, prosedur

penelitian ini ditunjukkan pada Gambar 3.1.

{Pengumpulan DataH Desain Sistem H Implementasi Hﬁnalisis & Evaluasi}

Gambar 3.1. Tahapan Prosedur Penelitian

Tahap pertama adalah pengumpulan data, yang dilakukan setelah sistem
siap digunakan. Peneliti menggunakan sensor yang telah dipasang untuk mencatat
data secara periodik sesuai dengan kebutuhan penelitian. Data ini menjadi dasar
untuk analisis selanjutnya.

Tahap kedua adalah desain sistem, di mana peneliti merancang kebutuhan
perangkat keras dan perangkat lunak yang digunakan. Rancangan ini mencakup
pemilihan sensor IoT untuk mengukur parameter penting tanaman melon
hidroponik seperti pH, suhu air, TDS, serta penentuan arsitektur sistem yang
menghubungkan sensor dengan basis data.

Selanjutnya, tahap implementasi dilakukan dengan membangun model

klasifikasi menggunakan algoritma Support Vector Machine (SVM) sesuai

24
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rancangan yang telah dibuat. Model ini dilatih menggunakan data hasil
preprocessing untuk menghasilkan sistem klasifikasi kebutuhan nutrisi tanaman
melon hidroponik.

Tahap terakhir adalah analisis dan evaluasi, di mana peneliti menilai kinerja
model dengan menggunakan metrik evaluasi seperti accuracy, precision, recall,
dan FI-score dan pengujian kalibrasi sensor pada sistem IoT. Hasil analisis metrik
evaluasi digunakan untuk mengetahui sejauh mana efektivitas model dalam
melakukan klasifikasi, sekaligus memberikan gambaran mengenai perbaikan yang
dapat dilakukan pada penelitian berikutnya. Sedangkan pengujian kalibrasi sensor
digunakan untuk menguji seberapa akurat sensor yang digunakan untuk pembacaan

parameter.

3.1.1 Pengumpulan Data

Tahap pengumpulan data merupakan langkah awal yang sangat penting
dalam penelitian ini. Peneliti akan mengumpulkan data yang digunakan bersumber
dari hasil pengukuran parameter tanaman melon hidroponik dengan sistem IoT.
Parameter yang dicatat meliputi pH larutan nutrisi, nilai TDS (7otal Dissolved
Solids), suhu air sistem hidroponik, serta umur tanaman. Rincian fitur yang

digunakan dalam penelitian ini ditunjukkan pada Tabel 3.1.

Tabel 3.1 Fitur penelitian

No Fitur Satuan Keterangan

1 pH - Menunjukkan tingkat keasaman atau kebasaan larutan nutrisi
hidroponik.

2 TDS ppm Mengukur jumlah padatan terlarut yang merepresentasikan
konsentrasi nutrisi.

3 Suhu Air °C Menunjukkan kondisi air sistem hidroponik  yang
mempengaruhi penyerapan nutrisi tanaman.

4 Umur Hari Menggambarkan fase pertumbuhan tanaman sejak ditanam.

Tanaman (HST)
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Proses pengumpulan data dilakukan dengan memanfaatkan sensor yang
terhubung pada sistem mikrokontroler. Sensor pH digunakan untuk mengukur
tingkat keasaman larutan, sensor TDS untuk mengetahui konsentrasi nutrisi terlarut,
dan sensor DS18b20 untuk mencatat suhu air pada sistem hidroponik. Sementara
itu, fitur umur tanaman hanya berperan sebagai context feature yang digunakan
untuk mengetahui fase pertumbuhan, bukan indikator nutrisi. Umur tanaman tidak
memiliki hubungan langsung terhadap perubahan pH, TDS, maupun suhu, sehingga
tidak digunakan sebagai fitur prediktif dalam proses labeling ataupun pemodelan.
Data yang diperoleh dari sensor kemudian dikirimkan secara otomatis ke server
atau penyimpanan berbasis cloud melalui modul IoT.

Pencatatan data dilakukan secara periodik setiap 1 jam sekali selama masa
penelitian berlangsung. Interval pencatatan ini dipilih untuk memperoleh variasi
data yang cukup serta mampu merepresentasikan perubahan kondisi larutan nutrisi

secara real-time.

3.1.2 Desain Sistem

Peneliti merancang sistem monitoring dan klasifikasi nutrisi melon
hidroponik yang terdiri dari tiga subsistem utama: (1) subsistem perangkat keras
(sensor & mikrokontroler), (2) subsistem komunikasi dan penyimpanan (protokol
MQTT dan server/database), serta (3) subsistem perangkat lunak untuk pengolahan
dan klasifikasi (backend untuk preprocessing & SVM dan antarmuka web untuk
visualisasi). Desain sistem bertujuan memastikan data sensor (pH, TDS, DS18b20)
dikirim secara periodik, tersimpan rapi, dan tersedia untuk proses preprocessing

serta inferensi model SVM.
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Gambar 3.2 Desain Sistem

Desain sistem yang digunakan dalam penelitian ini terdiri atas perangkat
keras dan perangkat lunak yang saling terintegrasi. Pada sisi perangkat keras,
peneliti menggunakan tiga jenis sensor, yaitu sensor pH untuk mengukur tingkat
keasaman larutan nutrisi, sensor TDS untuk mengukur konsentrasi total padatan
terlarut, serta sensor DS18b20 yang digunakan untuk memantau kondisi air pada
sistem hidroponik. Ketiga sensor ini dihubungkan dengan mikrokontroler ESP32
yang berfungsi sebagai pengendali utama sekaligus pengirim data ke server-.

Pada sisi perangkat lunak, peneliti menerapkan protokol komunikasi MQTT
dengan broker Mosquitto sebagai penghubung antara perangkat IoT dan server.
Data dari mikrokontroler dikirim dalam format JSON ke broker, kemudian
diteruskan ke server backend yang bertugas sebagai subscriber. Backend
menangani proses preprocessing data, seperti cleaning, normalisasi, balancing, dan
reduksi dimensi dengan PCA, sebelum data diproses menggunakan algoritma
Support Vector Machine (SVM) untuk klasifikasi kebutuhan nutrisi. Hasil

klasifikasi kemudian disimpan pada database server lokal, dan ditampilkan melalui
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dashboard web untuk memudahkan pengguna dalam memantau kondisi tanaman
secara real-time.

Secara umum, alur kerja sistem dimulai dari sensor yang membaca
parameter larutan, dilanjutkan dengan pengiriman data melalui mikrokontroler ke
broker MQTT. Data tersebut diterima server, diproses melalui pipeline
preprocessing, diklasifikasikan menggunakan SVM, lalu hasilnya ditampilkan di

antarmuka web sebagai media pemantauan dan pengambilan keputusan.

Tabel 3.2 Spesifikasi Hardware

Komponen Spesifikasi / Fungsi

Sensor pH Mengukur tingkat keasaman larutan nutrisi hidroponik (range 0—14, akurasi
+0,1 pH).

Sensor TDS Mengukur konsentrasi total padatan terlarut (ppm) sebagai indikator kadar
nutrisi.

Sensor Digunakan untuk mengukur kondisi air pada system hidroponik (suhu air

DS18b20 larutan nutrisi).

Mikrokontroler | ESP32, membaca data sensor, melakukan validasi awal, dan mengirim data
ke server.

Catu daya Power supply untuk mendukung operasi mikrokontroler dan sensor.

Tabel 3.1 menjelaskan komponen perangkat keras yang digunakan dalam
penelitian ini. Sensor pH, TDS, dan DS menjadi perangkat utama yang berfungsi
membaca parameter penting pada larutan nutrisi hidroponik. Data hasil pembacaan
sensor tersebut diolah oleh mikrokontroler ESP32 yang kemudian mengirimkannya
ke server melalui protokol komunikasi MQTT. Perangkat keras ini dipilih karena
mampu memberikan pengukuran yang cukup akurat dan mudah diintegrasikan

dalam sistem berbasis IoT.

Tabel 3.2 Spesifikasi Software

Komponen Spesifikasi / Fungsi
Protokol MQTT (Message Queuing Telemetry Transport), digunakan untuk
komunikasi pertukaran data IoT.
Broker Mosquitto MQTT broker sebagai pusat distribusi data sensor.

Server Backend REST API / Subscriber MQTT, menangani preprocessing data, PCA, dan
inferensi model SVM.
Database PostgreSQL untuk penyimpanan data sensor dan hasil klasifikasi.
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Tabel 3.2 Lanjutan

Komponen Spesifikasi / Fungsi
Algoritma Support Vector Machine (SVM) dengan kernel linear untuk klasifikasi
kebutuhan nutrisi.
Antarmuka Dashboard berbasis web untuk menampilkan grafik, histori data, dan hasil
Web klasifikasi.

Sementara itu, Tabel 3.2 menunjukkan perangkat lunak dan infrastruktur
yang digunakan. Broker MQTT Mosquitto menjadi penghubung komunikasi antar
perangkat [oT dengan server backend. Backend bertugas menangani preprocessing
data, melakukan reduksi dimensi dengan PCA, dan menjalankan algoritma
klasifikasi Support Vector Machine (SVM). Data hasil klasifikasi disimpan dalam
database server lokal, kemudian divisualisasikan melalui dashboard web yang
memudahkan pengguna dalam melakukan moniftoring kebutuhan nutrisi tanaman

melon hidroponik secara real-time.

3.1.3 Preprocessing Data

Pada tahap ini, peneliti akan melakukan preprocessing data terlebih dahulu
agar data siap digunakan dalam pengembangan model. Gambar 3.3 memperlihatkan
tahapan-tahapan preprocessing yang dilakukan dalam penelitian ini, meliputi

cleaning, normalisasi, balancing, dan PCA.

Cleaning H Normalisasi H Balancing H FCA

Gambar 3.3 Tahapan preprocessing data

Proses preprocessing ini sangat penting karena berfungsi untuk menghasilkan

data yang bersih dan terstruktur, sehingga dapat mendukung proses pelatihan
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maupun pengujian model secara optimal. Mengingat data merupakan aspek yang
sangat krusial, tahapan preprocessing berpengaruh langsung terhadap kualitas hasil

klasifikasi dan evaluasi performa model.

3.1.3.1 Cleaning

Tahap cleaning merupakan langkah awal dalam proses preprocessing yang
bertujuan untuk memastikan kualitas data yang akan digunakan dalam penelitian.
Data hasil pencatatan sensor sering kali mengandung nilai yang tidak valid, hilang
(missing values), atau outlier yang dapat memengaruhi kinerja algoritma
klasifikasi. Oleh karena itu, tahap ini akan dilakukan peneliti untuk
mengidentifikasi dan memperbaiki ketidaksesuaian tersebut.

Peneliti melakukan proses cleaning dengan cara mengecek konsistensi data
dari sensor pH, TDS, suhu air. Jika ditemukan data yang tidak tercatat atau berada
jauh di luar batas normal, data tersebut akan ditangani dengan dua cara: mengganti
nilai yang hilang menggunakan metode interpolasi linear yang diterapkan pada
tahap balancing atau menghapus data yang benar-benar tidak dapat digunakan.

Tahapan cleaning ini penting karena kualitas data sangat menentukan
performa model SVM yang digunakan dalam klasifikasi kebutuhan nutrisi tanaman
melon hidroponik. Data yang bersih akan mengurangi risiko bias, meningkatkan

akurasi prediksi, serta mendukung hasil evaluasi model yang lebih andal.

3.1.3.2 Normalisasi
Tahap normalisasi dilakukan untuk menyamakan skala antar fitur agar tidak

ada parameter yang terlalu mendominasi dalam proses klasifikasi. Hal ini penting
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karena data yang diperoleh memiliki satuan yang berbeda, seperti pH dalam rentang
0-14, TDS dalam satuan ppm, dan suhu air dalam °C. Jika tidak dilakukan
normalisasi, algoritma SVM dapat memberikan bobot yang lebih besar pada fitur
dengan nilai skala lebih tinggi, sehingga memengaruhi akurasi hasil klasifikasi.
Peneliti menggunakan metode Min-Max Normalization, yaitu metode yang
mengubah nilai data ke dalam rentang tertentu, biasanya [0,1]. Rumus Min-Max

Normalization dapat dituliskan sebagai berikut (Patel, H., & Prajapati, P, 2018):

r _ X—Xmin

= (3.1)
Xmax—-Xmin
Keterangan:
X : nilai asli data
X' : nilai hasil normalisasi
Xmin : nilai minimum pada fitur
Xmax : nilai maksimum pada fitur

Sebagai contoh, jika pada parameter suhu air tercatat nilai minimum 20°C

dan maksimum 35°C, maka data suhu air 25°C akan dinormalisasi menjadi:

25-20 5 _ 033
~35—-20 15

!

Dengan adanya normalisasi ini, seluruh fitur berada dalam skala yang

sebanding, sehingga mendukung proses klasifikasi SVM agar bekerja lebih optimal.

3.1.3.3 Balancing
Tahap balancing pada penelitian ini menggunakan pendekatan rekonstruksi
kelas berbasis Equalized Class Reconstruction (ECR). Metode ini dikembangkan

untuk mengatasi ketidakseimbangan kelas tanpa harus membuang data pada kelas
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mayoritas, sekaligus menghindari hilangnya informasi penting yang sebelumnya
terjadi pada proses undersampling. Ketidakseimbangan kelas (class imbalance)
muncul ketika distribusi jumlah sampel pada masing-masing kelas berbeda secara
signifikan, misalnya kelas “cukup” memiliki jumlah data jauh lebih besar
dibandingkan kelas “kurang” dan “berlebih”. Kondisi ini berpotensi menyebabkan
model SVM bias terhadap kelas yang dominan dan mengurangi akurasi pada kelas
minoritas.

Dalam pendekatan ECR, penyeimbangan dilakukan bukan dengan
memangkas data kelas mayoritas, tetapi dengan melakukan proses rekonstruksi
sintetis (synthetic reconstruction) pada kelas yang memiliki jumlah data lebih
sedikit. Proses rekonstruksi dilakukan dengan mengkombinasikan dua titik data
secara linier untuk menghasilkan sampel baru yang masih mempertahankan
karakteristik pola sensor. Rumus pembentukan sampel sintetis dapat dituliskan

sebagai berikut (Bishop, 2006)

xsynthetic=a-xi+ (1 —a)-xj (3.2)
Keterangan :
xi : data asli pertama dalam kelas yang sama
xj : data asli kedua yang dipilih secara acak dalam kelas yang sama
xsynthetic : data sintetis hasil rekonstruksi
a : koefisien penggabungan (nilai antara 0 dan 1).

Dengan menggunakan rumus tersebut, proses rekonstruksi dilakukan
hingga jumlah data pada setiap kelas mencapai jumlah target, yaitu kelas dengan
anggota terbanyak. Setelah proses ini selesai, dataset menjadi seimbang, dan model
klasifikasi, dalam hal ini SVM, dapat belajar secara proporsional pada setiap kelas

tanpa bias terhadap kelas mayoritas.
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3.1.3.4 Principal Component Analysis (PCA)

Peneliti menggunakan metode Principal Component Analysis (PCA) untuk
mereduksi dimensi data sebelum dilakukan proses klasifikasi. PCA dipilih karena
mampu menyederhanakan representasi data tanpa banyak kehilangan informasi
penting, sehingga model klasifikasi dapat bekerja lebih efisien. Proses PCA dalam
penelitian ini dilakukan melalui beberapa langkah utama sebagai berikut.

Langkah awal yang dilakukan peneliti adalah standarisasi nilai dari seluruh
fitur yang digunakan, yaitu pH, TDS, suhu air. Hal ini penting karena masing-
masing fitur memiliki rentang nilai yang berbeda. Sebagai contoh, nilai TDS dapat
mencapai ribuan ppm, sementara pH hanya berada pada rentang 0-14. Jika tidak
dilakukan standarisasi, fitur dengan skala lebih besar akan lebih dominan dalam
perhitungan. Standarisasi dilakukan dengan metode min-max normalization seperti
yang telah dijelaskan pada poin 3.1.3.2, sehingga setiap fitur memiliki rata-rata O
dan standar deviasi 1. Dengan standarisasi, semua fitur berada pada skala yang
sama, sehingga memiliki kontribusi yang seimbang dalam analisis PCA.

Setelah standarisasi, peneliti membentuk matriks kovarians untuk melihat
hubungan antar fitur. Matriks kovarians ini menunjukkan bagaimana dua fitur
saling berkorelasi. Nilai kovarians positif menunjukkan bahwa dua fitur cenderung
naik bersama, nilai negatif menunjukkan hubungan berlawanan, sementara nilai
mendekati nol menunjukkan hampir tidak ada hubungan. Pada penelitian ini,
dengan tiga fitur (pH, TDS, suhu air), matriks kovarians yang dihasilkan berbentuk
3x3, dengan diagonal utama berisi nilai varians masing-masing fitur, sedangkan

elemen lainnya berisi kovarians antar fitur.
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Tabel 3.4 Contoh Matriks Kovarians Data Sensor

Fitur pH TDS Suhu
pH Var(pH) Cov(pH,TDS) Cov(pH,Suhu)
TDS Cov(TDS,pH) Var(TDS) Cov(TDS,Suhu)
Suhu Cov(Suhu,pH) Cov(Suhu,TDS) Var(Suhu)

Langkah berikutnya adalah menghitung nilai eigen (eigenvalue) dan vektor
eigen (eigenvector). Vektor eigen berfungsi sebagai arah atau sumbu baru pada
data, sedangkan nilai eigen menunjukkan seberapa besar variasi data yang dapat
dijelaskan oleh masing-masing vektor. Misalnya, jika eigenvector pertama banyak
dipengaruhi oleh kombinasi TDS dan pH, maka arah ini menjadi sumbu baru yang
paling penting. Semakin besar nilai eigen, semakin besar pula kontribusi vektor
tersebut dalam menjelaskan variasi data.

Nilai eigen yang dihasilkan kemudian diurutkan dari yang terbesar hingga
terkecil. Komponen dengan nilai eigen terbesar dipilih sebagai principal component
karena mampu menjelaskan variasi data paling banyak. Jika peneliti ingin
mereduksi data dari empat dimensi menjadi dua dimensi, maka dua eigenvector
dengan nilai eigen terbesar yang dipilih. Proses transformasi dilakukan dengan
mengalikan data yang telah distandarisasi dengan eigenvector terpilih untuk

menghasilkan principal component (Jolliffe, 1. T., & Cadima, J, 2016).

PC = Xstandar -V 3.3)
Keterangan:
PC : data baru hasil reduksi
Xstandar : data asli yang sudah distandarisasi
|4 : matriks eigenvector terpilih.

Hasil akhir dari proses PCA adalah data baru dalam bentuk principal

component yang lebih ringkas namun tetap menyimpan variasi penting dari data
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asli. Data hasil transformasi inilah yang digunakan peneliti sebagai masukan pada
algoritma SVM untuk melakukan klasifikasi kebutuhan nutrisi tanaman melon

hidroponik.

3.1.4 Implementasi Support Vector Machine (SVM)

Pada tahap implementasi, peneliti melatih model Support Vector Machine
(SVM) dengan data yang telah melalui tahap praproses, termasuk normalisasi,
reduksi dimensi dengan Principal Component Analysis (PCA), serta
penyeimbangan data. Data hasil PCA kemudian digunakan untuk membentuk
matriks kernel, yang merepresentasikan hubungan antar sampel berdasarkan
kombinasi fitur penelitian, yaitu pH, TDS, suhu air.

Setelah kernel terbentuk, disusun matriks Hessian sebagai bagian dari
proses optimisasi SVM. Optimisasi ini dilakukan menggunakan algoritma
Sequential Minimal Optimization (SMO), yaitu metode efisien untuk memperbarui
parameter Lagrange multiplier secara iteratif. Parameter ini menentukan sampel
mana yang berperan sebagai support vector, sehingga model dapat membentuk
hyperplane optimal untuk memisahkan kelas.

Nilai bias dan vektor bobot kemudian dihitung untuk membentuk fungsi
keputusan SVM. Proses pelatihan dilakukan berulang hingga parameter model
mencapai kondisi stabil. Model akhir terdiri atas support vector, vektor bobot, dan
bias yang digunakan untuk mengklasifikasikan data baru.

Dalam penelitian ini, label kelas diperoleh dari tabel acuan nutrisi
hidroponik yang telah dibahas pada Bab II poin 2.3 nutrisi hidroponik. Kategori

2 13

“kurang”, “cukup”, dan “berlebih” ditetapkan berdasarkan rentang optimal pH,
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suhu air, dan TDS pada fase vegetatif maupun berbunga tanaman melon. Hasil
klasifikasi dari model SVM nantinya secara langsung merepresentasikan kondisi

nutrisi tanaman sesuai baseline yang telah ditentukan.

3.2 Skenario Pengujian

Pengujian pada penelitian ini dilakukan untuk mengevaluasi kinerja model
klasifikasi kebutuhan nutrisi tanaman melon hidroponik berbasis SVM dengan
kernel linear. Skenario pengujian dirancang agar dapat menunjukkan sejauh mana
model mampu mengenali pola dari data sensor dan mengklasifikasikan kondisi
nutrisi tanaman ke dalam kategori tertentu (cukup, kurang, atau berlebih).

Pada tahap ini, peneliti membagi dataset hasil pengukuran pH, TDS, dan
suhu air menjadi dua bagian, yaitu data latih (¢raining set) dan data uji (testing set).
Perbandingan rasio data latih dan uji dilakukan dalam beberapa skenario untuk
melihat stabilitas model terhadap variasi pembagian data. Model kemudian dilatih
menggunakan data latth dan diuji menggunakan data uji yang belum pernah
dikenali sebelumnya.

Selain pembagian data, peneliti juga melakukan proses hyperparameter
tuning untuk mencari parameter terbaik yang dapat meningkatkan kinerja SVM.
Pada kernel linear, parameter utama yang diuji adalah nilai regularization
parameter (C). Parameter ini berfungsi untuk mengontrol keseimbangan antara
margin pemisah yang maksimal dan kesalahan klasifikasi pada data latih. Nilai C
yang terlalu kecil dapat menghasilkan margin yang lebar tetapi rawan salah
klasifikasi, sementara nilai C yang terlalu besar dapat membuat model terlalu kaku

(overfitting). Oleh karena itu, beberapa nilai C akan diuji dengan metode pencarian
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sistematis (grid search) serta validasi silang (cross-validation) untuk menentukan

parameter terbaik.

Tabel 3.5 Skenario Pengujian

Skenario | Data Data | Hyperparameter Tujuan
Latih Uji C

1 80% 20% 0.1, 1, 10, 100 Melihat performa model pada rasio umum
yang banyak digunakan dalam penelitian.

2 70% 30% 0.1, 1, 10, 100 Menguji kinerja model dengan data uji
yang lebih besar.

3 60% 40% 0.1,1, 10, 100 Mengevaluasi ketahanan model saat data
latih relatif lebih sedikit.

Hasil prediksi dari model akan dibandingkan dengan label aktual, kemudian
dievaluasi menggunakan confusion matrix dihitung accuracy, precision, recall, dan
Fl-score.

Pengujian kedua dalam penelitian ini adalah pengujian kalibrasi sensor
menggunakan rumus Mean Absolute Error (MAE) yang telah dijelaskan pada bab
2 di poin 2.11. Pengujian kalibrasi sensor dilakukan untuk memastikan bahwa data
yang diperoleh dari sensor yang ada di sistem Internet of Things memiliki tingkat
akurasi yang dapat dipertanggungjawabkan. Skenario pengujian dirancang dengan
cara membandingkan hasil pembacaan sensor dengan alat ukur manual yang
digunakan sebagai referensi. Parameter yang diuji meliputi pH larutan, suhu air,
dan TDS (Total Dissolved Solids) karena ketiganya merupakan indikator utama
dalam sistem hidroponik.

Pengujian dilakukan harian yang mewakili variasi kondisi nyata pada sistem
hidroponik melon, baik pada fase vegetatif maupun berbunga. Setiap pengukuran
dilakukan secara bersamaan antara sensor dan alat referensi untuk memastikan

keseragaman kondisi uji. Data hasil pembacaan sensor dicatat, kemudian
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dibandingkan dengan hasil pengukuran manual. Selisih antara keduanya dihitung

sebagai nilai error.



BAB IV

HASIL DAN PEMBAHASAN

4.1 Pengumpulan Data

Pengumpulan data dilakukan selama periode 8 Agustus 2025 hingga 9
Oktober 2025 melalui sistem Internet of Things (IoT) yang telah dirancang pada
penelitian ini. Data dikumpulkan secara otomatis dari sensor pH, TDS, dan
DS18B20 (suhu air) yang terintegrasi dengan mikrokontroler ESP32. Seluruh hasil
pembacaan sensor dikirimkan secara periodik ke server melalui protokol MQTT
dan disimpan dalam basis data untuk keperluan analisis. Dataset yang diperoleh
menjadi dasar pengembangan model klasifikasi kebutuhan nutrisi tanaman melon
hidroponik berbasis algoritma Support Vector Machine (SVM).

Secara keseluruhan, sistem berhasil merekam 1.498 baris data mentah
selama masa pengamatan. Dataset tersebut terdiri atas empat fitur utama, yaitu pH
larutan, TDS (Total Dissolved Solids), suhu air, dan umur tanaman (Hari Setelah
Tanam). Keempat fitur ini mencerminkan kondisi aktual larutan nutrisi pada dua
fase pertumbuhan tanaman melon, yaitu fase vegetatif dan fase generatif. Data yang
diperoleh mencakup berbagai variasi kondisi lingkungan yang terjadi selama
penelitian berlangsung.

Periode pertama pengambilan data dilakukan pada 8 Agustus hingga 29
Agustus 2025, dengan total 528 baris data. Pada rentang waktu ini, sistem masih
berada pada tahap penyesuaian awal dan proses kalibrasi sensor, sehingga
ditemukan 238 nilai kosong (N/A) yang sebagian besar terjadi pada tanggal 11

hingga 20 Agustus 2025. Nilai kosong tersebut disebabkan oleh error dari

39
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pembacaan sensor dan ketidakstabilan sistem pada fase uji coba awal. Meskipun
demikian, data yang berhasil terekam tetap memberikan gambaran awal mengenai
pola fluktuasi parameter larutan nutrisi selama fase vegetatif tanaman.

Periode kedua berlangsung pada 30 Agustus hingga 9 Oktober 2025, dengan
total 720 baris data yang berhasil terekam secara lengkap dan stabil. Seluruh data
pada periode ini bersifat numerik tanpa adanya nilai kosong, dengan rentang nilai
TDS berada antara 1500 hingga 1700 ppm. Rentang tersebut menunjukkan bahwa
larutan nutrisi berada pada kondisi normal dan sesuai dengan kisaran optimal bagi
tanaman melon pada fase generatif awal. Selain itu, kestabilan data pada periode
ini menunjukkan bahwa sistem IoT telah berfungsi dengan baik dalam mengirim
dan menyimpan hasil pembacaan sensor secara konsisten.

Namun pada pembacaan di tanggal 6 Oktober hingga 9 Oktober 2025,
dengan total 81 baris data. Pada rentang waktu ini, terjadi peningkatan nilai TDS
hingga mencapai >2000 ppm, yang menunjukkan kondisi larutan nutrisi dalam
keadaan “jebol” atau melebihi batas optimal. Fenomena ini menandakan adanya
akumulasi padatan terlarut pada larutan nutrisi, yang berpotensi menyebabkan
ketidakseimbangan ketersediaan unsur hara bagi tanaman. Meskipun demikian,
data dari periode ini tetap dipertahankan dalam dataset karena menggambarkan
kondisi ekstrem yang relevan untuk proses klasifikasi kebutuhan nutrisi tanaman.

Selanjutnya pada pengumpulan data, analisis distribusi dilakukan untuk
memahami karakteristik penyebaran nilai pada masing-masing fitur hasil
pembacaan sensor, meliputi pH, TDS, suhu air, dan umur tanaman. Tujuan analisis

ini adalah untuk melihat pola kecenderungan data, kestabilan sensor, serta potensi
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adanya nilai ekstrem (outlier) sebelum dilakukan tahap preprocessing. Visualisasi

distribusi tiap fitur disajikan pada Gambar 4.1.

[ Distribusi Fitur Utama Sistem Hidroponik
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Gambar 4.1. Visualisasi Distribusi per Fitur

Berdasarkan Gambar 4.1, dapat diamati bahwa fitur pH memiliki distribusi
yang mendekati normal dengan rata-rata 6,03 dan kisaran nilai antara 5,05 hingga
7,85. Sebagian besar nilai pH berada di sekitar rentang 5,8—6,4, yang menunjukkan
kestabilan larutan pada kondisi ideal untuk pertumbuhan tanaman melon
hidroponik. Nilai pH di bawah 5,5 dan di atas 7,0 muncul dalam jumlah kecil,
mengindikasikan adanya fluktuasi sementara akibat proses penyesuaian nutrisi atau
perubahan suhu lingkungan.

Fitur TDS (Total Dissolved Solids) menunjukkan dua puncak utama

(bimodal distribution) dengan nilai rata-rata sebesar 1.510 ppm dan kisaran 800
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hingga 3.619 ppm. Puncak pertama muncul di sekitar 1.000 ppm, yang
menggambarkan kondisi pada fase vegetatif, sedangkan puncak kedua berada di
kisaran 1.500—1.700 ppm yang merupakan fase generatif. Nilai di atas 2.000 ppm
tergolong tinggi dan menandakan kondisi larutan “jebol” atau kelebihan nutrisi,
sebagaimana terjadi pada periode 6-9 Oktober 2025. Pola distribusi ini
menunjukkan bahwa sistem berhasil merekam perubahan konsentrasi nutrisi secara
dinamis antar fase pertumbuhan.

Sementara itu, fitur suhu air (water temp c¢) memiliki distribusi yang relatif
normal dengan rata-rata 23,5°C dan kisaran 15,0 hingga 35,9°C. Sebagian besar
nilai berada di kisaran 22-25°C, yang termasuk rentang optimal untuk penyerapan
unsur hara oleh akar tanaman. Nilai ekstrem di bawah 20°C dan di atas 30°C hanya
muncul dalam jumlah kecil, kemungkinan besar disebabkan oleh variasi kondisi
lingkungan eksternal seperti intensitas cahaya atau sirkulasi udara di sekitar sistem
hidroponik.

Fitur terakhir, yaitu umur tanaman (Hari Setelah Tanam/HST), memiliki
distribusi yang hampir merata dari 0 hingga 62 hari. Sebaran yang relatif seragam
menunjukkan bahwa data pengukuran mencakup keseluruhan siklus pertumbuhan
tanaman, mulai dari fase awal penanaman hingga menjelang panen. Hal ini penting
karena memberikan variasi data yang cukup untuk pelatihan model klasifikasi,
sehingga sistem dapat mengenali kebutuhan nutrisi pada berbagai tahap
pertumbuhan.

Secara keseluruhan, hasil analisis distribusi fitur menunjukkan bahwa data

yang dikumpulkan memiliki keragaman dan representasi yang baik terhadap
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kondisi aktual sistem hidroponik. Pola distribusi pH dan suhu cenderung normal
dan stabil, sedangkan TDS menunjukkan variasi yang lebih besar antar fase
pertumbuhan. Variasi inilah yang menjadi dasar bagi sistem klasifikasi dalam

mengidentifikasi kondisi nutrisi tanaman melon secara akurat.

4.2 Sistem Internet of Things (I1oT)

Sistem Internet of Things (10T) yang telah direalisasikan pada penelitian ini
berfungsi sebagai platform utama pengumpulan dan analisis data nutrisi tanaman
melon hidroponik secara otomatis dan real-time. Implementasi sistem ini terdiri
atas tiga lapisan utama, yaitu lapisan pengumpulan data, lapisan pemrosesan data,
dan lapisan analisis hasil. Masing-masing lapisan memiliki peran spesifik dalam
mendukung alur kerja sistem mulai dari akuisisi data sensor hingga penampilan
hasil klasifikasi pada dashboard web.

Pada lapisan pertama yang dimana merupakan bagian yang bertanggung
jawab terhadap proses akuisisi data dari lingkungan hidroponik. Pada penelitian ini,
perangkat yang digunakan terdiri atas mikrokontroler ESP32 yang terhubung
dengan sensor pH, sensor TDS, dan sensor DS18B20. Sistem ini dirancang untuk
membaca parameter kualitas larutan nutrisi secara berkala, kemudian mengirimkan
data dalam format JSON Payload melalui jaringan Wi-Fi menggunakan protokol
MQTT menuju server.

Hasil implementasi fisik dari perangkat ini ditunjukkan pada Gambar 4.2
dan Gambar 4.3, yaitu prototype sistem IoT yang digunakan selama proses

pengujian. Rangkaian ini terdiri atas papan ESP32, sensor-sensor yang terhubung
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melalui konektor digital dan analog, serta catu daya yang memungkinkan sistem

beroperasi secara mandiri di lapangan.

Gambar 4.3 Rangkaian Hardwar Sensor pH

Prototype sistem tersebut kemudian dipasang di dalam greenhouse
percobaan untuk melakukan pengukuran langsung pada larutan nutrisi hidroponik
melon. Posisi alat diatur agar sensor pH dan TDS terendam dalam bak nutrisi,
sedangkan sensor DS18B20 diletakkan pada aliran air untuk mengukur suhu aktual
larutan. Implementasi penempatan alat di lapangan ditunjukkan pada Gambar 4.4

berikut.
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Gambar 4.4 Posisi Penempatan Hardware di Greenhouse

Dari hasil implementasi lapangan tersebut, sistem mampu mengirimkan
data sensor secara periodik dengan interval pembacaan yang stabil, serta
mempertahankan koneksi MQTT selama proses pengamatan berlangsung. Pada
Gambar 4.5, menunjukkan bahwa perangkat keras telah berfungsi sesuai rancangan

dan mampu merekam kondisi nutrisi secara kontinu.
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Gambar 4.5 Riwayat Pembacaan Sensor

Lapisan kedua berfungsi sebagai pusat pengelolaan dan analisis data yang

dikirim dari perangkat IoT. Pada penelitian ini, digunakan server backend yang
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menjalankan proses penerimaan data, penyimpanan dalam basis data, serta
preprocessing untuk keperluan klasifikasi menggunakan algoritma Support Vector
Machine (SVM).

Data yang diterima dari broker MQTT secara otomatis disimpan dalam
database server untuk kemudian melalui tahapan labeling, cleaning, normalisasi,
balancing, dan reduksi dimensi (PCA). Setelah data siap, model SVM digunakan
untuk mengklasifikasikan kondisi nutrisi tanaman ke dalam tiga kategori, yaitu
kurang, cukup, dan berlebih.

Hasil implementasi lapisan pemrosesan data ditunjukkan pada Gambar 4.6
dan Gambar 4.7 berikut, yang memperlihatkan tampilan server dan struktur basis
data yang digunakan. Sistem backend ini berjalan pada lingkungan lokal yang telah
dikonfigurasi agar dapat menerima data dari perangkat [oT secara langsung melalui

protokol MQTT.

Table Editor
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Gambar 4.6 Interface Database
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Gambar 4.7 JSON Payload MQTT

Lapisan terakhir merupakan bagian antarmuka pengguna (user interface)
yang berfungsi untuk menampilkan hasil klasifikasi serta informasi sensor secara
visual. Antarmuka ini dikembangkan dalam bentuk dashboard web interaktif, yang
menampilkan data pH, TDS, suhu air, serta hasil klasifikasi nutrisi tanaman dalam
bentuk indikator status.

Pada gambar 4.8, menunjukkan bahwa dashboard ini juga dilengkapi
dengan laman kalibrasi sensor, yang digunakan untuk menyesuaikan hasil
pembacaan sensor terhadap alat ukur referensi. Fitur ini memastikan bahwa sistem
tetap akurat dalam membaca nilai-nilai parameter lingkungan selama

pengoperasian.
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Gambar 4.8 Laman Kalibrasi Sensor

Implementasi antarmuka web ditunjukkan pada Gambar 4.9, yang

memperlihatkan tampilan dashboard utama dan halaman kalibrasi sensor. Melalui

dashboard ini, pengguna dapat memantau kondisi larutan nutrisi secara langsung,

melihat riwayat data, serta mengidentifikasi perubahan status nutrisi berdasarkan

hasil klasifikasi SVM.
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Gambar 4.9 Dashboard Klasifikasi Nutrisi

Secara keseluruhan, hasil implementasi sistem Internet of Things (10T) yang

telah dikembangkan menunjukkan bahwa ketiga lapisan mulai dari pengumpulan
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data, pemrosesan server, hingga visualisasi hasil klasifikasi telah berfungsi dengan
baik dan saling terintegrasi. Sistem dapat melakukan pemantauan kualitas larutan
nutrisi secara real-time, menyimpan data secara otomatis, dan menampilkan hasil

analisis dengan akurat melalui dashboard web.

4.3  Preprocessing Data
4.3.1 Labeling Data

Tahap awal sebelum proses preprocessing adalah pelabelan data (labeling),
yang bertujuan untuk memberikan kategori kelas terhadap setiap sampel data hasil
pembacaan sensor. Kategori ini digunakan sebagai acuan dalam proses pelatihan
model klasifikasi kebutuhan nutrisi tanaman melon hidroponik berbasis Support
Vector Machine (SVM).

Pelabelan dilakukan berdasarkan pendekatan berbasis aturan (rule-based
classification), dengan mempertimbangkan tiga parameter utama hasil pengukuran
sensor, yaitu pH air (ph), Total Dissolved Solids (tds ppm), dan suhu air
(water_temp c). Masing-masing parameter memiliki rentang nilai ideal yang telah
ditetapkan berdasarkan acuan kebutuhan nutrisi tanaman hidroponik sebagaimana
dijelaskan pada Tabel 2.2 di Bab II. Nilai pH ideal berkisar antara 5,8-6,4,
sedangkan nilai TDS optimal berada pada rentang 800—1700 ppm tergantung fase
pertumbuhan tanaman. Adapun suhu air ideal berkisar pada 20-25°C, karena
rentang tersebut mendukung penyerapan nutrisi secara optimal.

Proses pelabelan dilakukan dengan menerapkan aturan logis yang
membandingkan nilai setiap parameter terhadap rentang ideal tersebut. Kriteria

pelabelan ditetapkan sebagai berikut:
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1. Apabila satu atau lebih parameter berada di bawah batas bawah rentang
ideal, maka data diklasifikasikan sebagai “Kurang” (label 0), yang
menunjukkan bahwa larutan nutrisi belum mencapai konsentrasi optimal.

2. Apabila seluruh parameter berada dalam rentang ideal, maka data
diklasifikasikan sebagai “Cukup” (label 1), yang menandakan kondisi
nutrisi berada pada tingkat optimal untuk pertumbuhan tanaman.

3. Apabila satu atau lebih parameter melebihi batas atas rentang ideal, maka
data diklasifikasikan sebagai “Berlebih” (label 2), yang mengindikasikan
larutan terlalu pekat atau suhu air terlalu tinggi.

Secara implementatif, proses labeling dilakukan menggunakan fungsi
pemetaan berbasis kondisi logis (conditional mapping) pada pseudocode 4.1

berikut:

Pseudocode 4.1

Algoritma Pelabelan Otomatis Nutrisi

Input : Dataset dengan kolom pH, TDS (ppm), dan suhu air (°C)
Output : Kolom nutrisi label dengan nilai (0 = Kurang, 1 =
Cukup, 2 = Berlebih)

Mulai
1. Konversi kolom pH, TDS, dan suhu air menjadi numerik.
2. Untuk setiap baris data pada dataset:
a. Ambil nilai ph, tds, dan suhu.
b. Jika salah satu bernilai kosong (NaN), maka:
Label ~ NaN
c. Jika 5.8 £ ph £ 6.4 dan
(800 < tds < 1000 atau 1500 £ tds £ 1700) dan
20 £ suhu £ 25 maka:
Label « 1 // Cukup
d. Jika ph < 5.8 atau tds < 800 atau suhu < 20 maka:
Label « 0 // Kurang
e. Jika ph > 6.4 atau tds > 1700 atau suhu > 25 maka:
Label « 2 // Berlebih
f. Jika tidak memenuhi semua kondisi di atas:
Label ~ NaN
3. Simpan label hasil ke kolom baru “nutrisi label”.
4. Hitung jumlah distribusi tiap label (0, 1, 2).
5. Visualisasikan distribusi label dalam bentuk grafik
batang.
Selesai
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Hasil dari proses labeling menunjukkan bahwa data terbagi ke dalam tiga
kategori utama, yaitu kurang (0), cukup (1), dan berlebih (2), serta sejumlah data
yang tidak memiliki label akibat nilai kosong atau missing value. Distribusi label

awal ditunjukkan pada Tabel 4.1 berikut:

Tabel 4.1 Distribusi Label

Kelas | Kategori Jumlah Data | Persentase (%)
0 Kurang 220 14.7

1 Cukup 870 58.2

2 Berlebih 131 8.7

- Tidak Terlabel (NaN) | 277 18.5

Total | — 1.498 100.0

Berdasarkan Tabel 4.1, dapat diketahui bahwa sebagian besar data berada
pada kategori cukup dengan persentase sekitar 58,2% dari total dataset. Hal ini
menunjukkan bahwa kondisi larutan nutrisi selama masa pengamatan berada pada
kisaran ideal yang mendukung pertumbuhan tanaman. Sementara itu, kategori
kurang dan berlebih memiliki proporsi yang lebih kecil, masing-masing sebesar
14,7% dan 8,7%, yang menunjukkan variasi kondisi nutrisi di luar batas optimal.
Adapun 18,5% data tidak memiliki label karena adanya nilai kosong (NaN) pada
parameter pH atau TDS, yang kemudian ditangani pada tahap cleaning selanjutnya.

Pendekatan labeling ini dinilai efektif karena mampu merepresentasikan
kondisi aktual sistem nutrisi hidroponik secara menyeluruh dengan
mempertimbangkan beberapa faktor lingkungan sekaligus. Selain itu, hasil
distribusi label yang tidak seimbang juga memberikan dasar bagi penerapan metode
balancing pada tahap preprocessing berikutnya agar model klasifikasi dapat belajar

secara proporsional terhadap seluruh kelas.
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4.3.2 Cleaning

Setelah proses labeling selesai dilakukan, tahap berikutnya adalah
pembersihan data (data cleaning). Tahap ini bertujuan untuk memastikan bahwa
dataset yang digunakan dalam proses pelatihan model berada dalam kondisi bersih,
konsisten, dan bebas dari kesalahan pencatatan. Proses cleaning dilakukan melalui
beberapa langkah utama, yaitu menghapus data duplikat, mengatasi data ekstrem
dan noise (outlier), serta menstandarkan penamaan kolom agar sesuai dengan
kebutuhan proses komputasi.

Langkah pertama adalah pemeriksaan dan penghapusan data duplikat.
Berdasarkan hasil pemeriksaan, tidak ditemukan adanya baris data yang identik
atau berulang sehingga jumlah duplikat yang dihapus adalah 0 baris. Langkah ini
penting dilakukan untuk mencegah terjadinya bias pada distribusi data dan menjaga
integritas hasil analisis.

Langkah kedua adalah penanganan data ekstrem dan noise (outlier), khususnya
pada fitur pH, TDS, suhu air dan label nutrisi. Sebelum dilakukan pembersihan,

jumlah nilai ekstrem tercatat sebagai berikut:

Tabel 4.2 Outlier / Noise Dataset

Kolom Jumlah Data Ekstrem
ph 272
tds_ppm 238

water temp ¢ | 0
nutrisi_label | 277

Data tersebut umumnya terjadi akibat gangguan pembacaan sensor atau
keterlambatan pengiriman data pada periode tertentu. Untuk mengatasinya,

digunakan metode interpolasi linier yang diterapkan pada tahap balancing untuk
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menjaga keseimbangan data pada fitur pH, TDS, suhu air (water temp c). Metode
ini menghitung nilai pengganti berdasarkan antar pasangan sampel acak pada kelas
yang sama, sehingga pola perubahan data tetap terjaga secara alami tanpa
menimbulkan distorsi signifikan. Sedangkan data outlier dan noise di drop
seluruhnya untuk menjaga integritas data sebelum diproses pada tahap selanjutnya.

Langkah ketiga adalah standarisasi penamaan kolom agar seragam dan
mudah diakses pada tahap komputasi berikutnya. Penamaan kolom disesuaikan
menjadi huruf kecil tanpa spasi, seperti ph, tds ppm, dan water temp c, untuk
menjaga konsistensi sintaksis dalam implementasi kode program.

Hasil akhir dari tahap cleaning menunjukkan bahwa seluruh data ekstrem
dan noise telah berhasil ditangani. Setelah seluruh proses pembersihan selesai
dilakukan, jumlah data yang tersisa adalah 1.221 baris dari total 1.498 data mentah.
Dengan demikian, dataset yang digunakan untuk tahap preprocessing berikutnya
telah bebas dari data ekstrem dan noise serta siap untuk dilakukan proses
normalisasi data.

4.3.3 Normalisasi

Pada tahap normalisasi, tiga fitur utama yang dinormalisasi adalah pH, TDS

(Total Dissolved Solids), dan suhu air. Proses normalisasi dilakukan menggunakan

library scikit-learn melalui fungsi MinMaxScaler() pada pseudocode 4.2 berikut:

Pseudocode 4.2
Algoritma Normalisasi Data MinMax
Input : Dataset dengan kolom ph, tds ppm, water temp c
Output : Dataset dengan nilai fitur ternormalisasi pada rentang
[0, 1]
Mulai
1. Tentukan daftar kolom fitur yang akan dinormalisasi:
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fitur « [ph, tds ppm, water temp c]
2. Buat salinan dataset untuk menyimpan hasil normalisasi.
3. Untuk setiap fitur pada daftar fitur:
a. Hitung nilai minimum (min) dan maksimum (max) fitur.
b. Lakukan normalisasi setiap nilai menggunakan rumus:

nilai normalisasi = (nilai asli - min) / (max - min)

4. Simpan hasil normalisasi ke dataset baru (df scaled).

5. Simpan parameter min dan max untuk tiap fitur agar dapat
digunakan pada proses prediksi berikutnya.

6. Tampilkan nilai minimum dan maksimum tiap fitur sebelum
proses normalisasi.

7. Tampilkan 5 data pertama hasil normalisasi.
Selesai.

Hasil proses normalisasi menunjukkan bahwa seluruh fitur berhasil
ditransformasikan ke dalam rentang nilai 0—1. Nilai minimum dan maksimum

setiap fitur sebelum proses scaling ditunjukkan pada Tabel 4.3 berikut.

Tabel 4.3 Nilai Min-Max per Fitur

Fitur Nilai Minimum | Nilai Maksimum
Ph 5.05 7.85
TDS (ppm) 800.50 3,619.20
Suhu Air (°C) | 15.00 30.80

Setelah proses normalisasi, nilai setiap fitur diubah secara proporsional

sesuai rentang skala baru. Lima data pertama hasil normalisasi ditunjukkan pada

Tabel 4.4 berikut.
Tabel 4.4 Data Hasil Normalisasi
Timestamp pH TDS (scaled) | Suhu Air (scaled) | Label
08/08/2025 00:00 | 0.2929 | 0.0053 0.6139 1
08/08/2025 01:00 | 0.3464 | 0.0203 0.3987 1
08/08/2025 02:00 | 0.3857 | 0.0214 0.6203 1
08/08/2025 03:00 | 0.4107 | 0.0149 0.5696 1
08/08/2025 04:00 | 0.6143 | 0.0259 0.9810 2

Dari hasil tersebut dapat disimpulkan bahwa seluruh nilai telah berada
dalam skala yang seragam, tanpa mengubah pola relatif antar nilai asli. Proses ini

memastikan bahwa tidak ada fitur yang memiliki pengaruh dominan hanya karena
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perbedaan satuan atau rentang nilai. Dengan demikian, dataset hasil normalisasi

siap digunakan pada tahap balancing dan pelatihan model klasifikasi.

4.3.4 Balancing

Pada tahap ini dilakukan proses Equalized Class Reconstruction untuk
menghasilkan distribusi data yang seimbang pada seluruh kelas label nutrisi.
Pertama, dataset hasil normalisasi disalin ke variabel df bal, kemudian dihitung
distribusi awal jumlah sampel per kelas. Nilai jumlah sampel terbesar digunakan
sebagai target agar seluruh kelas memiliki jumlah sampel identik setelah balancing.

Selanjutnya, dataset dipisah berdasarkan label, lalu diproses secara
individual. Untuk kelas yang jumlah datanya di bawah target, dilakukan
rekonstruksi data sintetis melalui interpolasi linier antar pasangan sampel acak pada
kelas tersebut. Formula interpolasi digunakan untuk menghasilkan sampel baru
yang secara statistik berada di tengah ruang distribusi kelas, sehingga tetap
merepresentasikan pola sensorik aslinya. Berikut pseudocode yang menjelaskan

proses Equalized Class Reconstruction (ECR) dan balancing :

Pseudocode 4.3
Algoritma Balancing Data ECR

Input : Dataset hasil normalisasi (df scaled) berisi fitur [ph,
tds ppm, water temp c] dan label nutrisi label
Output : Dataset seimbang (df re) dengan jumlah sampel identik
pada tiap kelas
Mulai
1. df bal « salin dataset hasil normalisasi
2. Hitung distribusi kelas awal pada df bal
3. Tentukan target « jumlah sampel terbanyak (kelas
mayoritas)
4. Buat list kosong df final
5. Untuk setiap label dalam nutrisi label lakukan:
a. group « subset data dengan label tersebut
b. n « jumlah data dalam group
c. Jika n < target:
needed « target - n
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Pilih pasangan indeks acak idxl dan idx2
sebanyak needed
Buat data sintetis:
synth « 0.5 * group[idx1l] + 0.5 *group[idx2]
Tambahkan label ke setiap baris synthetic
df new « gabungkan group + synthetic
Jika n > target:
df new ~ sample acak group sebanyak target
d. Tambahkan df new ke df final
6. df re — gabungkan semua elemen dalam df final
7. Lakukan shuffle pada df re untuk menghapus pola
pengurutan label
8. Kembalikan df re
Selesai

Perbandingan jumlah data sebelum dan sesudah dilakukan balancing
ditunjukkan pada Tabel 4.5 berikut.

Tabel 4.5 Perbandingan Data Sebelum dan Setelah Balancing

Kelas | Kategori | Jumlah Data Sebelum | Jumlah Data Sesudah | Perubahan
0 Kurang 220 870 + 650

1 Cukup 870 870 —

2 Berlebih | 131 870 + 739
Total | — 1.221 2.610 -

Tabel di atas menunjukkan bahwa seluruh kelas telah disamakan jumlahnya
menjadi 870 sampel per kelas, sehingga total data akhir yang digunakan untuk
pelatihan model klasifikasi adalah 2.610 sampel. Penambahan data (over-sampling)
terjadi pada kelas (Kurang) dan kelas Berlebih, sedangkan kelas Cukup tetap
dipertahankan sebagai acuan keseimbangan.

Setelah seluruh kelas selesai diproses, hasilnya digabungkan ke dalam satu
dataset baru dan dilakukan proses shuffle untuk memastikan tidak ada
pengelompokan data berdasarkan label. Dataset akhir ini kemudian digunakan

sebagai masukan pada tahap PCA dan pelatithan model SVM.
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4.3.5 Principal Component Analysis (PCA)

Proses PCA dilakukan terhadap data hasil balancing menggunakan tiga fitur
utama: ph, tds_ppm, dan water temp c. Jumlah komponen yang digunakan adalah
dua komponen utama (PC1 dan PC2), dengan implementasi menggunakan pustaka

scikit-learn pada pseudocode 4.4 berikut:

Pseudocode 4.4

Algoritma Reduksi Dimensi PCA

Input : Dataset hasil balancing dengan fitur (ph, tds_ppm,
water temp c) dan label nutrisi label

Output : Dataset hasil reduksi dimensi dengan dua komponen utama
(PC1, PC2)

Mulai

1. Pisahkan data menjadi:
[ph, tds ppm, water temp c]
[nutrisi label]
2. Tentukan jumlah komponen utama yang akan digunakan:
jumlah komponen 2
Buat objek PCA dengan jumlah komponen.
Terapkan PCA pada data fitur:
X pca « hasil transformasi PCA terhadap X
5. Simpan hasil transformasi ke dataset baru (df pca) dengan
kolom:

—
—

X
Yy

DSow

[PC1, PC2, nutrisi label]
6. Hitung proporsi variansi yang dijelaskan oleh setiap
komponen utama:
a. PCl var « proporsi variansi komponen 1
b. PC2 var « proporsi variansi komponen 2
7. Hitung total variansi yang dijelaskan oleh seluruh
komponen.
8. Simpan nilai *component loadings* untuk melihat
kontribusi setiap fitur terhadap komponen utama.
9. Tampilkan hasil proporsi variansi dan *component
loadings*.
10. Tampilkan lima data pertama hasil reduksi PCA.
Selesai

Hasil analisis menunjukkan bahwa dua komponen utama yang terbentuk
mampu menjelaskan 87,85% dari total variansi data, dengan rincian proporsi
variansi untuk masing-masing komponen seperti ditunjukkan pada Tabel 4.6

berikut.
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Tabel 4.6 Proporsi Variansi Komponen

Komponen Proporsi Variansi Keterangan

PC1 0.5567 Menjelaskan variansi terbesar, dominan pada
fitur TDS

PC2 0.3218 Menjelaskan variansi tambahan, dominan pada
fitur pH dan suhu air

Total 0.8785 87,85% total variansi data terjelaskan

Berdasarkan nilai loading components yang dihasilkan, terlihat bahwa
komponen utama pertama (PC1) memiliki kontribusi terbesar dari fitur TDS
(0.945227), sedangkan komponen kedua (PC2) dipengaruhi kuat oleh fitur pH

(0.884727) dan suhu air (0.346572). Matriks component loadings dapat dilihat pada

Tabel 4.7 berikut.
Tabel 4.7 Matriks Component Loadings
Komponen pH TDS Suhu Air
PC1 0.251480 | 0.945227 | 0.208095
PC2 0.884727 | -0.311683 | 0.346572

Dari hasil tersebut dapat disimpulkan bahwa TDS merupakan fitur dengan
pengaruh paling dominan terhadap variasi data secara keseluruhan, sedangkan pH
dan suhu air memberikan kontribusi tambahan terhadap komponen kedua. Dengan
total varian terjelaskan sebesar 87,85%, dua komponen utama ini sudah cukup
representatif untuk menggambarkan karakteristik data sensor secara keseluruhan.

Selain itu, hasil transformasi PCA juga digunakan untuk visualisasi
distribusi data antar kelas nutrisi, yang menunjukkan bahwa masing-masing kelas
(kurang, cukup, dan berlebih) memiliki kecenderungan pola yang berbeda pada
ruang dua dimensi PC1-PC2. Hal ini menunjukkan bahwa data hasil balancing
memiliki separabilitas yang baik dan layak digunakan untuk tahap pelatihan model

klasifikasi pada subbab berikutnya.



59

4.4 Implementasi Support Vector Machine (SVM)

Implementasi model klasifikasi dilakukan menggunakan algoritma Support
Vector Machine (SVM) dengan kernel linear, yang secara bawaan menerapkan
pendekatan One-vs-Rest (OvR) untuk menangani kasus multi-kelas. Pada
pendekatan ini, SVM membentuk tiga Ayperplane secara internal yang masing-
masing memisahkan satu kelas terhadap dua kelas lainnya (Berlebih vs lainnya,
Cukup vs lainnya, dan Kurang vs lainnya). Setiap titik data kemudian dievaluasi
terhadap ketiga hyperplane tersebut, dan kelas dengan nilai decision function
tertinggi ditetapkan sebagai hasil prediksi akhir. Mekanisme ini memungkinkan
model linear untuk memetakan data hasil reduksi Principal Component Analysis
(PCA) ke dalam bidang dua dimensi (PC1-PC2) dengan margin optimal antar
kelas.

Dalam penelitian ini, tiga model SVM linear dibangun dengan perbedaan
proporsi data latih dan uji, yaitu 80:20, 70:30, dan 60:40 seperti yang sudah
dijelaskan pada Tabel 3.5 Skenario Pengujian. Setiap model menjalani proses
pelatihan dan tuning parameter menggunakan metode Grid Search dengan 5-Fold
Cross Validation untuk memperoleh nilai parameter optimal, khususnya pada
variabel regularisasi (C). Model yang diperoleh dari setiap konfigurasi dievaluasi
terhadap data uji untuk mengukur akurasi dan stabilitas klasifikasi terhadap variasi
proporsi data pelatihan.

Visualisasi hasil pelatihan masing-masing model ditunjukkan pada Gambar
4.10, 4.11, dan 4.12, yang menggambarkan posisi syperplane dan margin pemisah

antar kelas pada bidang PC1-PC2. Garis hitam merepresentasikan batas pemisah
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linear yang dihasilkan SVM, sedangkan titik berwarna menunjukkan distribusi data
hasil PCA. Titik berwarna hijau dengan garis tepi menandakan support vectors
yang digunakan model untuk menentukan posisi margin optimal. Pola sebaran
menunjukkan bahwa setiap model menghasilkan decision boundary yang
konsisten, dengan sedikit variasi pada distribusi margin akibat perubahan proporsi

data latih dan uji.

SVM Linear Decision Boundary (80:20)
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Gambar 4.10 Visualisasi Hyperplane Data Train-Test 80:20
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SVM Linear Decision Boundary (70:30)
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Gambar 4.11 Visualisasi Hyperplane Data Train-Test 70:30

SVM Linear Decision Boundary (60:40)
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Gambar 4.12 Visualisasi Hyperplane Data Train-Test 60:40

Hasil tersebut menunjukkan bahwa pendekatan linear SVM dengan skema
OvR mampu mengklasifikasikan data nutrisi tanaman menjadi tiga kategori secara

efektif. Meskipun terdapat 61umpeng tindih margin antar kelas, terutama antara
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kelas Cukup dan Kurang, struktur pemisahan tetap terbentuk jelas pada ruang dua
dimensi hasil PCA. Secara keseluruhan, implementasi ketiga model menunjukkan

performa yang stabil dan adaptif terhadap variasi ukuran data pelatihan.

4.5 Pengujian Model

Pengujian model dilakukan terhadap tiga variasi rasio pembagian data latih
dan uji, yaitu 80:20, 70:30, dan 60:40. Setiap model menjalani proses pelatihan
dengan Grid Search Cross Validation untuk menemukan parameter terbaik.
Masing-masing konfigurasi pembagian data latih dan uji juga melalui pengujian
confusion matrix untuk menghitung accuracy, precision, recall, dan F'I-score.

Pada konfigurasi pertama, sebanyak 80% data digunakan untuk pelatihan
dan 20% untuk pengujian. Model memperoleh parameter terbaik pada C = 100
dengan kernel linear, serta skor cross-validation sebesar 0,9478. Hasil pengujian

pada data uji menunjukkan akurasi sebesar 94,64%.

Tabel 4.8 Pengujian Hyperparameter Tuning Model SVM Rasio 80:20
Parameter Terbaik | Akurasi (%) | Cross-Validation Score | Jumlah Support Vector
C =100, Linear 94,64 0.9478 340

Visualisasi Confusion Matrix dan kinerja model secara per kelas

ditunjukkan pada gambar dan tabel berikut.
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Confusion Matrix (80:20)
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Gambar 4.13 Confusion Matrix Model SVM Rasio 80:20

Tabel 4.9 Metrik Evaluasi Model SVM Rasio 80:20

Kelas Precision | Recall | F1-Score | Jumlah Data
Berlebih | 0.92 0.98 0.95 174
Cukup 0.96 0.89 0.92 174
Kurang 0.96 0.98 0.97 174
Rata-rata | 0.95 0.95 0.95 —

Hasil menunjukkan bahwa model mampu membedakan ketiga kelas dengan
baik. Nilai precision tertinggi diperoleh pada kelas Berlebih, sedangkan penurunan
kecil pada kelas Kurang menandakan sebagian data nutrisi rendah masih memiliki
kemiripan nilai dengan kelas Cukup.

Pada konfigurasi kedua, model menggunakan 70% data untuk pelatihan dan
30% untuk pengujian. Parameter terbaik diperoleh dengan C = 100 dan kernel
linear, dengan skor cross-validation sebesar 0.9486. Hasil pengujian menunjukkan

akurasi 94,51%, yang relatif stabil dibandingkan rasio sebelumnya.

Tabel 4.10 Pengujian Hyperparameter Tuning Model SVM Rasio 70:30
Parameter Terbaik | Akurasi (%) | Cross-Validation Score | Jumlah Support Vector
C =100, Linear 94,51% 0.9486 305
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Confusion Matrix (70:30)
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Gambar 4.14 Confusion Matrix Model SVM Rasio 70:30

Tabel 4.11 Metrik Evaluasi Model SVM Rasio 70:30

Kelas Precision | Recall | F1-Score | Jumlah Data
Berlebih | 0.92 0.97 0.95 261
Cukup 0.95 0.89 0.92 261
Kurang 0.96 0.97 0.96 261
Rata-rata | 0.95 0.95 0.94 —

Model tetap menunjukkan konsistensi performa antar kelas, dengan nilai
recall tertinggi terdapat pada kelas Berlebih dan Kurang (0.97), menandakan model
lebih sensitif terhadap kondisi nutrisi tinggi dan kurang akurasi keseluruhan
94,51%, menunjukkan kemampuan model mempertahankan generalisasi meskipun
proporsi data uji meningkat.

Pada konfigurasi ketiga, proporsi data latih dikurangi menjadi 60%,

sementara 40% digunakan sebagai data uji. Parameter terbaik diperoleh pada C =
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100 dengan kernel linear, menghasilkan skor cross-validation 0.9464 dan akurasi

94,83% pada data uji.

Tabel 4.12 Pengujian Hyperparameter Tuning Model SVM Rasio 60:40

Parameter Terbaik | Akurasi (%) | Cross-Validation Score | Jumlah Support Vector

C =100, Linear 94.83 0.9464 269

Confusion Matrix (60:40)

Actual
Cukup Berlebih

Kurang

1
Cukup Kurang
Predicted

|
Berlebih

Gambar 4.15 Confusion Matrix Model SVM Rasio 60:40

Tabel 4.13 Metrik Evaluasi Model SVM Rasio 60:40

Kelas Precision | Recall | FI-Score | Jumlah Data
Berlebih | 0.93 0.98 0.96 348
Cukup 0.96 0.90 0.93 348
Kurang 0.95 0.97 0.96 348
Rata-rata | 0.95 0.95 0.95 —

Meskipun jumlah data latih lebih sedikit, model masih mampu menjaga

akurasi dan keseimbangan metrik antar kelas. Nilai precision dan recall yang relatif

merata menunjukkan bahwa model linear tetap robust terhadap variasi ukuran data

pelatihan.
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Secara keseluruhan, seluruh model menunjukkan performa yang stabil

dengan rata-rata akurasi di atas 90%. Variasi nilai parameter C hanya memengaruhi

jumlah support vector yang digunakan untuk membentuk margin optimal.

Rangkuman hasil pengujian ditunjukkan pada tabel berikut.

Tabel 4.14 Rangkuman Hasil Pengujian Model SVM

Rasio Train- Parameter Akurasi Cross-Validation Jumlah Support
Test Terbaik (%) Score Vector
80:20 C =100, Linear 94,63 0.9478 340
70:30 C =100, Linear 94,51 0.9486 305
60:40 C =100, Linear 94,83 0.9464 269

Berdasarkan hasil pengujian pada ketiga variasi rasio data, dapat
disimpulkan bahwa model SVM dengan kernel linear menunjukkan performa yang
stabil dan konsisten di seluruh skenario. Perbedaan rasio data pelatihan dan
pengujian tidak memberikan perubahan signifikan terhadap nilai akurasi maupun
metrik evaluasi lainnya. Nilai akurasi tertinggi diperoleh pada rasio 60:40 sebesar
94,83%, diikuti oleh dua rasio lainnya yang mencapai 94,51% pada rasio 70:30 dan
94,63% pada rasio 80:20. Perbedaan kecil sekitar satu hingga dua persen
menunjukkan bahwa model memiliki kemampuan generalisasi yang baik terhadap
data yang belum pernah dilihat sebelumnya.

Dari sisi parameter, nilai C yang seragam pada masing-masing rasio
menunjukkan bahwa model memerlukan margin yang lebih sempit untuk
meminimalkan kesalahan klasifikasi ketika data pelatihan lebih sedikit. Selain itu,
jumlah support vector cenderung menurun seiring berkurangnya proporsi data
pelatihan, dari 340 pada rasio 80:20 menjadi 269 pada rasio 60:40, menandakan

bahwa kompleksitas model berkurang sejalan dengan ukuran data latih.
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Secara keseluruhan, hasil pengujian ini mengindikasikan bahwa SVM linear
dengan mekanisme One-vs-Rest (OVR) efektif dalam memisahkan tiga kelas nutrisi
(Kurang, Cukup, dan Berlebih) pada ruang dua dimensi hasil transformasi PCA.
Model tidak hanya menunjukkan ketepatan yang tinggi, tetapi juga konsistensi
performa antar skenario, sehingga dapat diandalkan untuk diimplementasikan

dalam sistem pemantauan nutrisi hidroponik berbasis loT secara real-time.

4.6  Pengujian Kalibrasi Sensor

Pengujian dan kalibrasi sensor dilakukan untuk mengevaluasi akurasi serta
stabilitas pembacaan sensor pH, TDS, dan suhu air pada sistem hidroponik terhadap
data pembanding yang diperoleh secara manual menggunakan alat ukur
laboratorium. Tujuan utama dari tahap ini adalah memastikan kesesuaian hasil
pembacaan sensor otomatis dengan alat ukur acuan sebelum sistem digunakan
untuk pemantauan kualitas air secara berkelanjutan.

Pengukuran manual dilakukan menggunakan alat ukur digital multifungsi
TDS/pH/EC/Salinity meter seperti ditunjukkan pada Gambar 4.15. Alat ini
digunakan sebagai pembanding (ground truth) terhadap pembacaan sensor otomatis
yang terpasang pada sistem IoT. Perangkat tersebut mampu mengukur beberapa
parameter kualitas air secara bersamaan, meliputi pH, Total Dissolved Solids (TDS)
dalam satuan ppm, konduktivitas listrik (EC), serta suhu air. Proses pengukuran
dilakukan dengan cara mencelupkan probe alat ke dalam larutan nutrisi, menunggu

hingga nilai pembacaan stabil, kemudian mencatat hasilnya secara manual.
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Gambar 4.16 Alat Pengukuran Manual

Setiap pengukuran dilakukan pada waktu yang relatif bersamaan dengan
sistem otomatis untuk memastikan kesesuaian waktu (timestamp) antara kedua
sumber data. Alat ini dipilih karena memiliki tingkat kepraktisan tinggi, kecepatan
respon cepat, serta akurasi yang cukup baik untuk kebutuhan kalibrasi lapangan
pada sistem hidroponik skala kecil hingga menengah.

Pada tahap kalibrasi awal, perbedaan antara pembacaan sensor dan alat
manual masih berada pada rentang yang relatif kecil, dengan selisih pH sekitar 2
poin dan rasio pembacaan TDS sekitar 1:1,2 terhadap alat ukur manual. Namun
seiring waktu penggunaan, sensor mengalami degradasi kinerja yang cukup
signifikan akibat paparan nutrisi berkonsentrasi tinggi, penumpukan residu pada
probe, serta perubahan suhu lingkungan di dalam greenhouse. Pada periode akhir
pengujian, selisih pembacaan pH meningkat menjadi sekitar 5—6 poin, sementara
rasio pembacaan TDS membesar hingga sekitar 1:3, menandakan adanya
penurunan sensitivitas sensor terhadap larutan nutrisi.

Proses pengujian dilakukan sepanjang periode pengambilan data otomatis

dan data manual, yaitu dari 8 Agustus 2025 hingga 9 Oktober 2025. Data yang
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diperoleh terdiri atas 1498 data otomatis dan 63 data pembacaan manual. Proses

perhitungan MAE dijelaskan pada pseudocode 4.5 berikut:

Pseudocode 4.5

Algoritma Perhitungan MAE Sensor vs Manual
Input Dataset pembacaan sensor otomatis (AUTO), Dataset
pembacaan manual (MANUAL)
Output : Nilai MAE untuk pH, TDS, dan suhu air
Mulai
1. Baca file data AUTO dan MANUAL.
2. Konversi kolom waktu pada data AUTO menjadi format
datetime.
3. Gabungkan kolom tanggal dan waktu pada data MANUAL menjadi
satu kolom datetime.
4. Hapus baris yang memiliki waktu tidak wvalid (NaT).
5. Urutkan kedua dataset berdasarkan waktu masing-masing.
6. Cocokkan data MANUAL dengan data AUTO menggunakan pencarian
waktu terdekat (nearest match)
dengan toleransi selisih maksimum 1 jam.
7. Hapus baris hasil pencocokan yang tidak memiliki pasangan
nilai sensor.
8. Hitung nilai MAE untuk setiap parameter:
a. MAE pH « rata-rata(|pH manual - pH sensor])
b. MAE TDS « rata-rata(|TDS manual - TDS sensor|)
c. MAE Suhu « rata-rata(|Suhu manual - Suhu sensor])
9. Tampilkan nilai MAE pH, MAE TDS, dan MAE suhu air.
10. (Opsional) Visualisasikan perbandingan manual vs sensor
dalam grafik garis.
Selesai

Setelah proses sinkronisasi waktu dilakukan, diperoleh 52 data pasangan

yang memiliki timestamp berdekatan dan dapat dibandingkan secara langsung.

Contoh hasil penggabungan kedua data tersebut disajikan pada Tabel 4.15.

Tabel 4.15 Data Teratas Hasil Penggabungan Manual dan Sensor Otomatis

Tanggal pH pH TDS TDS Suhu Suhu

Manual Sensor Manual Sensor Manual Sensor
(ppm) (ppm) (W9 O

08-08- 6.08 6.24 883.8 811.3 23.62 21.4

2025

09-08- 6.19 5.89 846.7 817.6 24.15 20.6

2025

10-08- 6.11 5.92 890.9 847.2 24.38 24.0

2025

21-08- 6.21 6.23 898.0 802.0 23.62 21.6

2025

22-08- 6.17 5.95 880.4 834.2 23.16 24.4

2025
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Perhitungan Mean Absolute Error (MAE) pada penelitian ini dilakukan
menggunakan fungsi mean_absolute error yang disediakan oleh modul

sklearn.metrics. Implementasi rumus MAE ada pada blok kode berikut:

mae ph = mean absolute error (df merge['pH Manual'],

df merge['ph'])

mae_ tds = mean absolute error (df merge['TDS Manual'],

df merge['tds ppm'])

mae_suhu = mean absolute error (df merge['Suhu Air Manual'],

df merge['water temp c'])

Fungsi tersebut secara internal menerapkan rumus MAE, yaitu rata-rata
nilai absolut dari selisih antara nilai referensi dan nilai hasil pembacaan sensor dari
masing-masing fitur.

Visualisasi perbandingan antara hasil pembacaan manual dan otomatis

ditunjukkan pada Gambar 4.16 berikut.

Perbandingan pH Manual vs Sensor

6.5 —8— Manual pH
—- Sensor pH
6o NS
5.5 %] X
2025"08’08 2025*‘08*15 2025"08’22 2025"09*01 2025"09*08 2025"09*15 2025"09*22 2025"10*01 2025"10*08
Perbandingan TDS Manual vs Sensor
—e— Manual TDS ’lxk""
20004 ¥ Sensor TDS F
o
10007 @ qom—————

7 T T T T T T T T
2025-08-08 2025-08-15 2025-08-22 2025-09-01 2025-09-08 2025-09-15 2025-09-22 2025-10-01 2025-10-08

Perbandingan Suhu Manual vs Sensor

X

{}
- \ v \
| ~— poyv v T Y]

22 4 —#— Manual Suhu ~y4 X ! ‘,( Y NS ¥

—- Sensor Suhu N ¥

A
T T T T T T T T T
2025-08-08 2025-08-15 2025-08-22 2025-09-01 2025-09-08 2025-09-15 2025-09-22 2025-10-01 2025-10-08

Gambar 4.17 Perbandingan Pembacaan Manual dan Sensor
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Dari hasil grafik tersebut terlihat bahwa pola perubahan nilai sensor
otomatis secara umum mengikuti tren pembacaan manual, meskipun terdapat
deviasi pada beberapa titik. Penyimpangan ini semakin terlihat pada akhir periode
pengamatan, khususnya pada sensor pH dan TDS yang menunjukkan penurunan
akurasi akibat faktor lingkungan dan kondisi fisik sensor yang menurun.

Untuk mengukur tingkat kesalahan rata-rata antara hasil pengukuran
manual dan otomatis, digunakan metrik Mean Absolute Error (MAE). Nilai MAE

masing-masing parameter ditunjukkan pada Tabel 4.16.

Tabel 4.16 Nilai MAE per Paramater

Parameter | Nilai MAE | Satuan
pH 0.335 —

TDS 134.692 ppm
Suhu Air 1.275 °C

Berdasarkan hasil tersebut, dapat disimpulkan bahwa sensor suhu air
menunjukkan performa paling stabil dengan kesalahan rata-rata kecil, sedangkan
sensor pH dan TDS menunjukkan variasi lebih besar terutama akibat penurunan
sensitivitas sensor dan faktor kalibrasi lapangan. Meskipun demikian, hasil
pengujian ini menunjukkan bahwa sistem masih dapat berfungsi dengan baik untuk
pemantauan relatif (relative monitoring) kualitas air nutrisi dalam sistem

hidroponik.

4.7  Analisis dan Pembahasan

Hasil penelitian menunjukkan bahwa sistem klasifikasi nutrisi tanaman
hidroponik berbasis Support Vector Machine (SVM) dengan data hasil pengukuran
sensor pH, TDS, dan suhu air berhasil diimplementasikan secara menyeluruh mulai

dari tahap akuisisi data, preprocessing, hingga evaluasi model. Tahapan
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preprocessing meliputi pembersihan data (cleaning), normalisasi dengan metode
Min-Max Scaling, penyeimbangan kelas menggunakan teknik Random Under
Sampling (RUS), serta reduksi dimensi menggunakan Principal Component
Analysis (PCA).

Pada tahap reduksi dimensi, dua komponen utama (PC1 dan PC2) dari hasil
PCA mampu menjelaskan 87,85% total variansi data, yang menunjukkan bahwa
sebagian besar informasi penting dari ketiga fitur sensor tetap terwakili dalam ruang
dua dimensi. PCA pada tahap ini digunakan untuk menyederhanakan representasi
data agar proses klasifikasi oleh model SVM lebih efisien secara komputasi, tanpa
mengubah struktur atau karakteristik dasar dari data sensor.

Model SVM yang digunakan dalam penelitian ini menerapkan kernel /inear,
yang dipilih karena kesederhanaan perhitungannya, waktu komputasi yang lebih
cepat, serta hasil yang mudah diinterpretasikan dibandingkan kernel non-linear
seperti Radial Basis Function (RBF) atau polynomial (Cervantes et al., 2020).
Dengan pendekatan One-vs-Rest (OvR), model membangun tiga hyperplane yang
masing-masing memisahkan satu kelas terhadap dua kelas lainnya, yaitu “Kurang
vs lainnya”, “Cukup vs lainnya”, dan “Berlebih vs lainnya ™.

Hasil pengujian menunjukkan bahwa rasio pembagian data pada masing-
masing menghasilkan akurasi yang cukup seragam pada akurasi 94%. Hal ini
menandakan bahwa masing-masing model memiliki stabilitas performa terhadap
variasi jumlah data pelatithan. Visualisasi decision boundary pada ruang dua
dimensi hasil PCA menunjukkan bahwa model mampu memisahkan ketiga kelas

dengan margin yang cukup jelas. Titik-titik support vector yang berada di tepi
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setiap kelas menandakan terbentuknya hyperplane optimal dengan margin
maksimum. Adanya tumpang tindih antar kelas Cukup dengan Kurang maupun
Berlebih diperkirakan disebabkan oleh nilai pH dan TDS yang berada di batas
rentang optimal nutrisi.

Model Support Vector Machine (SVM) yang digunakan dalam sistem IoT
pada interface web merupakan hasil pelatihan dengan rasio pembagian data 60:40,
karena konfigurasi tersebut menghasilkan akurasi tertinggi sebesar 94,83%
dibandingkan dua skenario lainnya. Oleh sebab itu, model dengan parameter terbaik
C =100 dan kernel linear dipilih sebagai model final dan diintegrasikan pada sistem
web berbasis Internet of Things (IoT) untuk klasifikasi kondisi nutrisi tanaman
melon hidroponik.

Model klasifikasi nutrisi diterapkan dalam bentuk pipeline terintegrasi yang
disimpan dalam berkas .pkl menggunakan pustaka joblib. Pipeline ini memuat tiga
komponen utama, yaitu MinMaxScaler untuk proses normalisasi data, Principal
Component Analysis (PCA) untuk reduksi dimensi, serta Support Vector Machine
(SVM) sebagai algoritma klasifikasi utama. Ketiga komponen tersebut bekerja
secara berurutan untuk memastikan proses preprocessing dan inferensi berlangsung
otomatis dan konsisten di sisi server web.

Data masukan berasal dari hasil pembacaan sensor pH (ph), kadar zat
terlarut total (¢ds_ppm), dan suhu air (water temp c) yang dikirim secara real-time
dari perangkat IoT. Setelah pipeline berhasil dimuat dari direktori

saved_pipeline/svm_pca_pipeline.pkl, sistem melakukan serangkaian proses mulai
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dari normalisasi, transformasi PCA, hingga klasifikasi akhir oleh model SVM. Alur

inferensi tersebut dijelaskan melalui pseudocode 4.6 berikut:

Pseudocode 4.6
Algoritma Pipeline Klasifikasi Nutrisi Air
Input: Data sensor (ph, tds ppm, water temp c)
Output: Label klasifikasi nutrisi air {Kurang, Cukup, Berlebih}
Mulai
1. Muat pipeline model terlatih yang telah disimpan dalam
file "svm pca pipeline.pkl".
2. Terima data sensor dari perangkat IoT berupa nilai pH, TDS

(ppm), dan suhu air (°C).
3. Lakukan tahap praproses data dengan langkah-langkah
berikut:

4. Normalisasi setiap fitur menggunakan MinMaxScaler agar
seluruh parameter berada pada rentang nilai yang seragam.

5. Transformasikan data hasil normalisasi menggunakan
Principal Component Analysis (PCA) untuk mereduksi dimensi
dan mengoptimalkan representasi fitur.

6. Jalankan model Support Vector Machine (SVM) yang telah
terintegrasi dalam pipeline untuk menghasilkan hasil
klasifikasi kelas nutrisi air.

Selesai.

Pada tahap pengujian, pipeline menerima input data dari sensor IoT berupa
nilai pH, TDS, dan suhu air. Data tersebut kemudian melewati tahapan normalisasi
dan transformasi PCA sebelum akhirnya diprediksi oleh model SVM.
Hasil klasifikasi berupa label “Kurang”, “Cukup”, atau “Berlebih” yang muncul
setelah melewati tahapan pengujian ditampilkan pada dashboard web di bagian
nutrition status dan dapat di monitor secara real-time berdasarkan data sensor yang
didapat.

Secara keseluruhan, hasil ini menunjukkan bahwa SVM dengan kernel
linear dapat menjadi pendekatan yang efektif untuk klasifikasi kondisi nutrisi
tanaman hidroponik berbasis data sensor IoT. Pendekatan ini juga memudahkan
interpretasi hasil model pada tahap visualisasi dan evaluasi sistem, sehingga sesuai

untuk diterapkan dalam sistem monitoring berbasis data real-time.
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Selain dari sisi teknis, hasil penelitian ini juga dapat ditinjau dari perspektif
integrasi Islam dan sains, yang menempatkan teknologi sebagai sarana untuk
mewujudkan kemaslahatan dan menjaga keseimbangan dalam pengelolaan sumber
daya alam. Hal ini sejalan dengan firman Allah dalam QS. A/-4n’am ayat 141 yang
berbunyi:

Gt EA Y B 2 Vg estan a3 s 0T 1) o F e
“Dan Dialah yang menjadikan kebun-kebun yang berjunjung dan yang tidak
berjunjung, pohon kurma, tanam-tanaman yang bermacam-macam rasanya,
zaitun, dan delima yang serupa dan yang tidak serupa. Makanlah dari buahnya
bila dia berbuah, dan tunaikanlah haknya di hari memetik hasilnya, dan janganlah
kamu berlebih-lebihan. Sesungguhnya Allah tidak menyukai orang yang berlebih-
lebihan.” (QS. Al-An’am [6]:141).

Dimana ayat tersebut menegaskan agar manusia tidak berlebih-lebihan dan
tetap memperhatikan prinsip keberlanjutan dalam bertani dan mengelola hasil
bumi. Landasan kedua yang dimana Rasulullah juga bersabda dalam HR. Bukhari
No. 2320,

“Tidaklah seorang muslim menanam pohon atau menabur benih, lalu

sebagian darinya dimakan oleh burung, manusia, atau binatang, melainkan itu

menjadi sedekah baginya.” [HR. Bukhari No. 2320].

Hadits tersebut menjelaskan bahwa kedua landasan tersebut menunjukkan
bahwa penggunaan teknologi IoT dan kecerdasan buatan dalam bidang pertanian
bukan hanya bagian dari inovasi sains, tetapi juga wujud nyata dari yang amal
ilmiah mencerminkan tanggung jawab manusia sebagai khalifah di bumi untuk

menjaga keberlanjutan lingkungan. Penelitian ini tidak hanya berkontribusi pada
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peningkatan efisiensi dan akurasi pemantauan nutrisi tanaman, tetapi juga
mencerminkan penerapan nilai-nilai Islam dalam upaya mengoptimalkan potensi

ilmu pengetahuan untuk kemaslahatan umat dan kelestarian alam.



BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan seluruh rangkaian penelitian yang telah dilaksanakan, dapat
disimpulkan bahwa sistem Internet of Things (IoT) yang dikembangkan berhasil
memenuhi tujuan penelitian, yakni mengklasifikasikan kebutuhan nutrisi tanaman
melon hidroponik secara otomatis menggunakan algoritma Support Vector
Machine (SVM). Sistem mampu melakukan akuisisi data pH, TDS, dan suhu air,
kemudian mengolahnya melalui serangkaian tahapan meliputi pembersihan data,
normalisasi Min-Max, penyeimbangan kelas, dan reduksi dimensi dengan PCA
sebelum dilakukan klasifikasi ke dalam kategori Kurang, Cukup, dan Berlebih.
Model SVM kernel linear yang diimplementasikan menunjukkan performa yang
konsisten dengan akurasi 94,63% pada rasio 80:20, 94,51% pada 70:30, dan
94,83% pada 60:40, menandakan bahwa model mampu memisahkan kelas dengan
efektif meskipun variasi rasio pelatihan-pengujian berubah. Selain itu, pengujian
kalibrasi sensor menghasilkan nilai MAE sebesar 0,335 untuk pH, 134,692 ppm
untuk TDS, dan 1,275°C untuk suhu air, menunjukkan tingkat penyimpangan
sensor yang masih berada pada batas wajar sehingga layak digunakan dalam
operasional sistem. Integrasi sistem dengan server dan dashboard web juga
memungkinkan pemantauan nutrisi secara real-time, memberikan dukungan
keputusan yang cepat dan presisi dalam pengelolaan larutan nutrisi. Secara

keseluruhan, sistem IoT yang dibangun dan model SVM yang diterapkan mampu
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menyediakan solusi pemantauan dan klasifikasi nutrisi yang otomatis, akurat,

efisien, dan sesuai untuk mengoptimalkan manajemen budidaya melon hidroponik.

5.2

Saran

Berdasarkan penelitian yang telah dilakukan oleh peneliti, saran yang dapat

dijadikan sebagai pengembangan penelitian selanjutnya antara lain.

1.

Pengembangan Model:

Penelitian selanjutnya disarankan untuk menambahkan algoritma
pembanding seperti Random Forest, K-Nearest Neighbor (KNN), atau
Neural Network guna memperoleh pembanding performa yang lebih
komprehensif terhadap SVM.

Perluasan Dataset:

Dataset sensor sebaiknya diperluas dengan waktu pengambilan data yang
lebih panjang dan variasi kondisi lingkungan yang lebih beragam agar

model memiliki kemampuan generalisasi yang lebih baik.

. Kalibrasi Sensor Berkala:

Berdasarkan hasil pengujian kalibrasi, diketahui bahwa akurasi sensor
mengalami pergeseran nilai seiring waktu, khususnya pada sensor pH dan
TDS. Oleh karena itu, diperlukan proses kalibrasi berkala untuk menjaga
keakuratan data dan stabilitas sistem.

Integrasi Sistem Kontrol Otomatis:

Sistem dapat dikembangkan menjadi closed-loop system dengan

menambahkan aktuator otomatis yang mampu mengatur dosis nutrisi
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berdasarkan hasil klasifikasi, sehingga proses monitoring dan pengendalian

dapat berlangsung secara mandiri.
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LAMPIRAN

Lampiran 1. Kode Program Pelabelan Otomatis (Rule-Based Labeling)

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

# Pastikan kolom numerik

df['ph'] = pd.to numeric(df['ph'], errors='coerce')
df['tds ppm'] = pd.to numeric(df['tds ppm'], errors='coerce')
df ['water temp c¢'] = pd.to numeric(df['water temp c'],

errors="'coerce')

def label nutrisi(row):
ph = row['ph']
tds = row['tds ppm']
temp = row['water temp c']

if pd.isna(ph) or pd.isna(tds) or pd.isna (temp) :
return np.nan

# --- RULE: Cukup ---
if (5.8 <= ph <= 6.4) and ((800 <= tds <= 1000) or (1500 <=
tds <= 1700)) and (20 <= temp <= 27):
return 1 # Cukup

# -—- RULE: Kurang ---
elif (ph < 5.8) or (tds < 800) or (temp < 20):
return 0 # Kurang

# -—— RULE: Berlebih ---
elif (ph > 6.4) or (tds > 1700) or (temp > 27):
return 2 # Berlebih

else:
return np.nan

# Terapkan fungsi
df ['nutrisi label'] = df.apply(label nutrisi, axis=1)

# Distribusi hasil labeling

print("m] Distribusi Label Nutrisi:")

print (df [ 'nutrisi label'].value counts (dropna=False) .sort index())
print ("\nO = Kurang | 1 = Cukup | 2 = Berlebih")

# Visualisasi hasil labeling

plt.figure(figsize=(6,4))

sns.countplot (x="'nutrisi label', data=df, palette='coolwarm')
plt.title("Distribusi Label Nutrisi (Rule-Based)")

plt.xlabel ("Label (0=Kurang, 1=Cukup, 2=Berlebih)")
plt.ylabel ("Jumlah Data™)

plt.grid(alpha=0.3)



plt.show ()

Lampiran 2. Kode Program Normalisasi Data (Min—Max Scaling)

from sklearn.preprocessing import MinMaxScaler
import joblib # Import joblib

print(" Proses normalisasi dimulai...\n")

# Pilih kolom fitur yang mau dinormalisasi
fitur = ['ph', 'tds _ppm', 'water temp c']

# Buat scaler dan fit transform ke data

scaler = MinMaxScaler ()

df scaled = df.copy()

df scaled[fitur] = scaler.fit transform(df scaled[fitur])

# Simpan parameter min-max biar bisa dipakai di prediksi nanti
minmax params = {

'min': scaler.data min_,

'max': scaler.data max ,

'range': scaler.data range

}

scaler filename = "fitted scaler.pkl"
joblib.dump (scaler, scaler filename)

print (" Normalisasi selesail!™)
print ("Nilai minimum & maksimum tiap fitur sebelum scaling:")
for i, £ in enumerate (fitur):

print (£" {f} - min: {minmax params['min'][i]:.3f} | max:
{minmax params|['max'][i]:.3f}")

print ("\nCek 5 data pertama hasil normalisasi:")
df scaled.head()

Lampiran 3. Kode Program Balancing Data (Equalized Class Reconstruction)
import numpy as np

print ("[G] Melakukan FINAL RE-ENGINEER + BALANCING...\n")
df bal = df scaled.copy ()

print ("Jumlah awal per kelas (df bal):")
print (df bal['nutrisi label'].value counts () .sort index())

fitur sensor = ['ph', 'tds ppm', 'water temp c']

# TARGET = mayoritas (870)
target = df bal['nutrisi label'].value counts() .max()

print("\n@? Target jumlah tiap kelas:", target)

df final = []



for label, group in df bal.groupby('nutrisi label'):

group = group.copy().reset index (drop=True)
n = len(group)

# —--- Jika kurang dari target — buat data synthetic ---
if n < target:

needed = target - n

# ambil pasangan titik untuk interpolasi synthetic

idx1l = np.random.randint (0, n, needed)
idx2 = np.random.randint (0, n, needed)
synth =

group[fitur sensor].iloc[idxl].reset index(drop=True)*0.5 + \
group[fitur sensor].iloc[idx2].reset index (drop=Tr

ue) *0.5
synth['nutrisi label'] = label
df new = pd.concat([group, synth], axis=0)
# -—-— Jika lebih dari target - sampling acak ---
else:

df new = group.sample (target, random state=42)
df final.append(df new)

# Gabungkan & shuffle
df re = pd.concat(df final) .sample (frac=1,
random state=42) .reset index (drop=True)

print ("\n[y] Jumlah akhir per kelas:")
print (df re['nutrisi label'].value counts () .sort index())

Lampiran 4. Kode Program Reduksi Dimensi Menggunakan PCA

from sklearn.decomposition import PCA
import pandas as pd
import joblib # Import joblib to save the fitted PCA object

print("C§ Proses PCA dimulai...\n")

# Pisahkan fitur dan label
X = df balanced[['ph', 'tds ppm', 'water temp c']]
y = df balanced['nutrisi label']

# Buat objek PCA dengan 2 komponen
pca = PCA(n_components=2)
X pca = pca.fit transform(X)

# *** SIMPAN OBJEK PCA YANG SUDAH DI-FIT ***
pca filename = "fitted pca.pkl"
joblib.dump (pca, pca_ filename)



print(f" Objek PCA yang sudah di-fit disimpan di ->

{pca_filename}")
# E e b b b b b b b b b b b b b b b b b b b b b b b b b b b i b b b b b b b b b b g

# Konversi ke DataFrame baru
df pca = pd.DataFrame(data=X pca, columns=['PCl', 'PC2'])
df pcal['nutrisi label'] = y.values

# Tampilkan hasil wvarian

print ("9 Proporsi Variansi Tiap Komponen:")

for i, ratio in enumerate (pca.explained variance ratio ):
print (£f" PC{i+1l}: {ratio:.4f}")

print (f"\n¢> Total variansi yang terjelaskan oleh 2 komponen:
{sum(pca.explained variance ratio ):.4f}")

# Cek data hasil PCA
df pca.head()

print ("\nl4 PCA Component Loadings:")

loadings = pd.DataFrame (pca.components , columns=X.columns,
index=['PCl', 'PC2'])

print (loadings)

Lampiran 5. Model Pipeline untuk Penerapan Klasifikasi di Web

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA

from sklearn.svm import SVC

import joblib

import os

import pandas as pd # Import pandas

# 1. Muat objek scaler yang sudah di-fit pada data normalisasi
scaler filename = "fitted scaler.pkl"
if not os.path.exists(scaler filename):

print (f" X File Scaler yang sudah di-fit tidak ditemukan di:
{scaler filename}")

print("ﬂ Harap jalankan kembali cell Random Undersampling
untuk membuat file ini.")

# Anda perlu menjalankan kembali cell Random Undersampling
untuk membuat file ini.
else:

scaler loaded = joblib.load(scaler filename)

print(f"!ﬂ Objek Scaler yang sudah di-fit berhasil dimuat
dari -> {scaler filename}")

# 2. Muat objek PCA yang sudah di-fit



# Objek ini sudah di-fit pada data yang *undersampled* di
cell PCA (ZtlsbXejE3wb)

pca filename = "fitted pca.pkl"

if not os.path.exists(pca_ filename) :

print (f" X File PCA yang sudah di-fit tidak ditemukan di:
{pca_filename}")

print("ﬂ Harap jalankan kembali cell PCA untuk membuat
file ini.")
# Anda perlu menjalankan kembali cell PCA untuk membuat
file ini.
else:
pca reloaded = joblib.load(pca filename)

print(f" Objek PCA yang sudah di-fit berhasil dimuat
dari -> {pca_ filename}")

# 3. Muat model SVM terbaik (dari split 80:20)
model path = "saved models/SVM linear 80 20.pkl"
if not os.path.exists (model path):
print (f" X File model SVM tidak ditemukan di:
{model path}")
print("u Harap jalankan kembali cell Training SVM
untuk membuat file ini.")
else:
svin_model loaded = joblib.load(model path)

print (f"[@ Model svM ({model path}) berhasil

dimuat.")
# 4. Buat Pipeline
# Gunakan scaler loaded yang dimuat dari file
pipeline = Pipeline ([
('scaler', scaler loaded), # Gunakan scaler yang
dimuat

('pca', pca reloaded),
('svm', svm model loaded)

1)

print("\nf@ Pipeline model berhasil dibuat!")
# SIMPAN PIPELINE MENGGUNAKAN JOBLIB

# Pastikan folder penyimpanan tersedia
save dir = "saved pipeline"
os.makedirs (save dir, exist ok=True)

pipeline filename = os.path.join(save dir,

"svm pca pipeline.pkl")
joblib.dump (pipeline, pipeline filename)

print(f"\n Pipeline model disimpan di ->
{pipeline filename}")

Lampiran 6. Implementasi Model Klasifikasi Pada Sistem Web



import joblib
import pandas as pd
import os

pipeline filename = os.path.join("saved pipeline",
"svm pca pipeline.pkl")

# Pastikan file pipeline ada
if not os.path.exists(pipeline filename) :
print (f" X File pipeline tidak ditemukan di:
{pipeline filename}")
else:
loaded pipeline = joblib.load(pipeline filename)
print(f" Pipeline model berhasil dimuat dari ->
{pipeline filename}")

new _data = pd.DataFrame ({

'eh': [6.7],
'tds_ppm': [2000],
'water temp c': [24]

})

print ("\nInput data baru:")
display (new_data)

# --- Langkah Debugging: Lihat hasil Scaling dan PCA ---
# Ambil scaler dan pca dari pipeline

scaler step = loaded pipeline.named steps|['scaler']

pca step = loaded pipeline.named steps['pca'l]

# Scaling

scaled data = scaler step.transform(new data)

scaled df = pd.DataFrame (scaled data, columns=['ph scaled',
'tds _ppm scaled', 'water temp c scaled'])

print ("\nData setelah Scaling:")

display (scaled df)

# PCA Transformation

pca data = pca step.transform(scaled data)

pca df = pd.DataFrame (pca data, columns=['PCl', 'PC2'])
print ("\nData setelah PCA:")

display (pca_df)

# --—- Akhir Langkah Debugging ---

prediction = loaded pipeline.predict (new data)

# Mapping hasil klasifikasi ke label yang mudah dibaca

label map = {0.0: 'Kurang', 1.0: 'Cukup', 2.0: 'Berlebih'}

predicted label = label map.get (prediction[0], "Label tidak
dikenali")

print (f"\nHasil Klasifikasi Label Nutrisi: {prediction}")



