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ABSTRAK 

Irawan, Nur Fitria. 2025. Model Predator-Prey dengan Respon Fungsional Holling Type 

II. Skripsi. Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas 

Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing: (I) Dr.Usman Pagalay, 

M.Si., (II) Evawati Alisah, M.Pd. 

 

Kata Kunci: Model Predator-Prey, Holling Type II, Nondimensionalisasi, Kestabilan, 

Maple. 

 

Model predator-prey merupakan salah satu model matematika yang menggambarkan 

interaksi antarspesies dalam ekosistem yang sering digunakan dalam dinamika populasi. 

Pada penelitian ini digunakan model dengan respon fungsional Holling Type II, yaitu laju 

pemangsaan yang meningkat dan kemudian mengalami kejenuhan karena adanya waktu 

penanganan mangsa (handling time). Penelitian ini bertujuan menganalisis kestabilan 

model predator-prey tritrofik tanpa mempertimbangankan waktu tunda. Model 

dinondimensionalisasikan untuk memperoleh sistem yang lebih sederhana. Analisis 

kestabilan dilakukan menggunakan matriks Jacobian dan kriteria Routh-Hurwitz, yang 

kemudian dilakukan simulasi numerik menggunakan software Maple. Pada simulasi 

pertama, sistem menunjukkan keadaan stabil dengan perilaku spiral menuju titik 

kesetimbangan, yang didukung oleh pemilihan nilai parameter m pada rentang kestabilan 

sistem. Namun, pada simulasi kedua ketika nilai parameter m diubah menjadi 𝑚 = 4.35, 

sistem kehilangan kestabilannya dan menunjukkan osilasi periodik, sehingga perilaku 

dinamika menuju limit cycle. Hal ini menunjukkan bahwa perubahan parameter biologis 

tertentu mengakibatkan perubahan ekosistem dari kondisi stabil menuju ketidakstabilan, 

sehingga parameter m berperan penting dalam pengendalian kestabilan populasi dalam 

rantai makanan. 
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ABSTRACT 

Irawan, Nur Fitria. 2025. Predator-Prey Model with Holling Type II Functional 

Response. Thesis. Department of Mathematics, Faculty of Science and Technology, 

Universitas Islam Negeri Maulana Malik Ibrahim Malang. Advisors: (I) Dr. Usman 

Pagalay, M.Si., (II) Evawati Alisah, M.Pd. 

 

Keywords: Predator-Prey Model, Holling Type II, Nondimensionalization, Stability, 

Maple. 

 

The predator-prey model is a mathematical model that describes interspecies interactions 

in ecosystems and is often used in population dynamics. This research employs a predator-

prey model with a Holling Type II functional response, in which the predation rate 

increases rapidly and then saturates due to the handling time. The aim of this study is to 

analyse the stability of a tritrophic predator-prey system without considering time delay. 

The model was nondimensionalized to obtain a simpler form. Stability analysis was 

conducted using the Jacobian matrix and the Routh-Hurwitz criteria, followed by numerical 

simulations using Maple software. In the first simulation, the system showed a stable state 

with spiral behaviour towards the equilibrium point, supported by the selection of the 

parameter value m within the stability range of the system. However, in the second 

simulation, when the parameter value m was changed to 𝑚 = 4.35, the system lost its 

stability and exhibited periodic oscillations, indicating dynamic behavior toward a limit 

cycle. These findings demonstrate that variations in certain biological parameters can shift 

the ecosystem from a stable to an unstable state, thus highlighting the important role of 

parameter m in controlling population stability within the food chain. 
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  ف   السكان  استقرار  ف   التحكم   ف   مهمًا   دوراً  m  المعامل   يلعب   بحيث   مستقرة،  غير  حالة   إل   مستقرة  حالة   من  البيئي
 . الغذائية السلسلة
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BAB I 

PENDAHULUAN 

1.1 Latar Belakang 

Penelitian ini berawal dari kajian ekologi matematika yang menggunakan 

model predator-prey. Model ini menggambarkan interaksi antara dua atau lebih 

spesies dalam suatu ekosistem, yaitu mangsa (prey) dan predator. Model ini juga 

dapat menunjukkan bagaimana populasi berkembang dari waktu ke waktu. Salah 

satu model yang relevan dalam studi ini adalah model yang dikembangkan oleh 

Maiti dkk (2008). Pada penelitian tersebut model yang digunakan berupa sistem 

tiga spesies dalam rantai makanan tritrofik, yaitu mangsa 𝑋(𝑇), predator 𝑌(𝑇), dan 

superpredator 𝑍(𝑇) , yang menerapkan respon fungsional Holling Type II dan 

mempertimbangkan waktu tunda dalam sistem. Pada model ini, populasi mangsa 

yaitu berupa tanaman jagung yang kemudian di mangsa oleh predator yaitu ulat 

pemakan daun, dan superpredator sebagai parasitoid. Model tersebut 

menggambarkan interaksi antar spesies yang dimodelkan secara nonlinier melalui 

sistem persamaan diferensial. Sistem pada model tersebut mencakup berbagai 

parameter biologis penting seperti laju pertumbuhan, laju kematian, tingkat 

konversi, serta konstanta kejenuhan. Parameter-parameter ini secara langsung 

mempengaruhi mekanisme interaksi antar populasi. Hal ini terlihat pada populasi 

mangsa (prey) yang tumbuh secara logistik dalam daya dukung tertentu dan 

mengalami tekanan pemangsaan dari predator, sedangkan predator sendiri menjadi 

mangsa dari superpredator. Sistem ini menunjukkan bahwa perubahan nilai 

parameter dapat menghasilkan perubahan pada titik kesetimbangan, batas 

kestabilan sehingga memunculkan fenomena bifurkasi. 
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Model dasar yang digunakan dalam menggambarkan interaksi predator-prey 

adalah model Lotka-Volterra. Namun, model Lotka-Volterra tidak realistis (Al 

Idrus et al., 2022). Di mana, terjadi interaksi antara predator-prey secara sederhana 

yang mengakibatkan adanya perilaku periodik populasi. Sehingga, diperlukannya 

penggunaan respon fungsional sebagai aspek paling penting dari model penelitian 

ini. Istilah respon fungsional pertama kali digunakan oleh Solomon pada tahun 

1949, yang kemudian dikenal luas melalui  Holling pada tahun 1959 yang 

mengklasifikasikan respon fungsional ke dalam 3 jenis yaitu Holling Type I, II, dan 

III (Al Idrus dkk, 2022). Pada penelitian ini respon fungsional yang digunakan 

adalah respon fungsional Holling Type II, yang memodelkan laju konsumsi mangsa 

oleh predator sebagai fungsi saturasi nonlinier terhadap kepadatan mangsa. Dimana 

meningkatnya kepadatan laju konsumsi mangsa yang akhirnya mengalami 

kejenuhan pada titik tertentu akibat waktu penanganan mangsa oleh predator 

(Dawes & Souza, 2013). Pada penelitian yang dilakukan oleh Maiti dkk (2008) 

model yang digunakan menggabungkan waktu tunda dalam interaksi model 

predator-prey, yang berfokus pada analisis sistem akibat waktu tunda terhadap 

kestabilan dan dinamika populasi dengan menggunakan respon fungsional Holling 

Type II. 

Penelitian ini difokuskan pada analisis dinamik model predator-prey dengan 

menggunakan respon fungsioanl Holling Type II. Dimana penelitian ini bertujuan 

untuk menganalisis karakteristik dinamik dari model predator-prey tersebut, seperti 

titik tetap, kestabilan, serta boundedness. Analisis model ini berfokus pada adanya 

dampak dari bentuk respon fungsional terhadap dinamika populasi, tanpa 

mempertimbangkan faktor waktu tunda. 
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Adapun kaitannya dalam perspektif Islam, Al-Qur’an surah Al-Hijr ayat 19 

yang menyatakan: 

وْزُوْنٍ  ِ شَيْءٍ مَّ
 
ل
ُ
ْۢبَتْنَا فِيْهَا مِنْ ك نْ

َ
قَيْنَا فِيْهَا رَوَاسِيَ وَا

ْ
ل
َ
رْضَ مَدَدْنٰهَا وَا

َ
ا
ْ
  ١٩وَال

Artinya: “Dan Kami telah menghamparkan bumi dan Kami pancangkan padanya 

gunung-gunung serta Kami tumbuhkan di sana segala sesuatu menurut ukuran.” 

Menurut Tafsir al-Munir, menjelaskan bahwa seluruh ciptaan Allah memiliki 

ketentuan ukuran dan batasan tertentu dalam setiap makhluk yang ada di bumi, 

sehingga tercipta keteraturan yang harmonis pada alam semesta (Az-Zuhaili, 2013). 

Secara ekologis, lingkungan sebagai suatu sistem  terdiri atas komponen-komponen 

yang memiliki perannya masing-masing namun saling berkaitan satu sama lainnya 

(Muhammad, 2023). Prinsip ini ditegaskan dalam QS. AL-Hijr [15]: 19 yang 

dipahami sebagai ayat yang memuat prinsip keselarasan dan keseimbangan 

ekologis sebagai sunnatullah dalam alam semesta (Muttaqin, 2020). Pemahaman 

tersebut sejalan dengan analisis kestabilan, dan boundedness dalam model 

predator-prey dengan menggunakan respon fungsional Holling Type II, yang 

menunjukkan bahwa makhluk hidup tidak tumbuh tanpa batas, melainkan bergerak 

menuju keseimbangan. Keseimbangan alami dalam ekosistem ini selaras dengan 

ketetapan Allah bahwa segala sesuatu diciptakan sesuai dengan ukurannya untuk 

menjaga stabilitas dan keberlangsungan kehidupan. Dengan demikian, konsep 

keseimbangan dalam Al-Qur’an selaras dengan model dengan respon fungsional 

Holling Type II yang juga menunjukkan keseimbangan yang terbentuk dalam 

interaksi ekologis. 

Pada penelitian ini, pertama dilakukan dengan menyusun model dasar 

predator-prey dengan respon fungsional Holling Type II yang berfokus pada tanpa 

waktu tunda. Selanjutnya, dilakukan analisis dinamik yang mencakup penentuan 
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titik tetap, analisis kestabilan, serta pembuktian sifat boundedness untuk 

memastikan model tetap realistis secara biologis. Kemudian, dilakukan interpretasi 

dari hasil analisis dan simulasi untuk melihat bagaimana kondisi keseimbangan dan 

keberlangsungan suatu populasi dalam ekosistem. Dengan demikian, tahapan ini 

mendapatkan tujuan yang telah ditetapkan, sesuai dengan alur yang dilalui dari 

penyusunan model hingga pada penarikan kesimpulan. 

Penelitian ini penting karena membantu dalam memahami peran respon 

fungsional Holling Type II dalam model predator-prey yang dikaji. Dalam model 

tersebut merepresentasikan keterbatasan kemampuan predator dalam menangani 

mangsa dan menghasilkan peningkatan laju predasi pada saat populasi mangsa 

rendah hingga mengalami kejenuhan. Mekanisme kejenuhan ini menyebabkan 

hubungan antara predator dan mangsa yang mempengaruhi kestabilan, dan 

dinamika ekosistem, seperti terbentuknya titik kesetimbangan dan potensi 

munculnya osilasi pada populasi. Secara umum, hasil penelitian ini dapat 

digunakan dalam pengambilan keputusan dalam bidang-bidang yang berkaitan 

dengan pengelolaan sumber daya alam, konservasi lingkungan, serta pembelajaran 

matematika terapan dalam bidang biologi, khususnya yang berkaitan mengenai 

analisis model predator-prey dengan respon fungsional Holling Type II. Selain itu, 

penelitian ini juga memperkuat pemahaman bahwa penggunaan model matematika 

dalam studi ekologi tidak hanya bersifat teoritis, tetapi juga memiliki dampak 

praktis. Sehingga, dapat memberikan gambaran mengenai dinamika ekosistem, 

dimana hal ini dapat menjadi acuan dalam memahami mekanisme keseimbangan 

dan keberlangsungan pada populasi dalam lingkungan yang kompleks. 
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Berdasarkan uraian di atas, penelitian ini menerapkan model predator-prey 

dengan respon fungsional Holling Type II. Harapannya penelitian ini memberikan 

pemahaman yang lebih baik mengenai dinamika predator-prey dan dapat 

membantu menjaga keseimbangan ekosistem sekaligus mendukung 

keberlangsungan kehidupan. 

 

1.2 Rumusan Masalah 

Berdasarkan latar belakang di atas dapat ditarik rumusan masalah sebagai 

berikut: 

1. Bagaimana formulasi model predator-prey dengan respon fungsional Holling 

Type II? 

2. Bagaimana kestabilan titik kesetimbangan model predator-prey dengan 

respon fungsional Holling Type II? 

3. Bagaimana pengaruh variasi parameter tertentu terhadap dinamika model 

predator-prey berdasarkan simulasi numerik? 

 

1.3 Tujuan Penelitian 

Berdasarkan rumusan masalah tersebut, dapat ditarik kesimpulan penelitian 

ini bertujuan untuk: 

1. Mengetahui proses konstruksi atau penyederhanaan model predator-prey 

dengan respon fungsional Holling Type II untuk analisis yang lebih praktis. 

2. Mengetahui eksistensi dan kestabilan titik kesetimbangan model predator-

prey dengan respon fungsional Holling Type II. 
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3. Mengetahui pengaruh variasi parameter tertentu terhadap dinamika model 

predator-prey berdasarkan hasil simulasi numerik. 

 

1.4 Manfaat Penelitian 

Berdasarkan tujuan penelitian di atas, maka penelitian ini memiliki manfaat 

sebagai berikut: 

1. Memberikan acuan dalam formulasi dan penyederhanaan model predator-

prey dengan respon fungsional Holling Type II, sehingga diperoleh model 

yang lebih praktis untuk analisis. 

2. Memberikan kontribusi teoritis dalam memahami kestabilan titik 

kesetimbangan model predator-prey dengan respon fungsional Holling Type 

II. 

3. Memberikan gambaran mengenai pengaruh variasi parameter tertentu 

terhadap dinamika populasi pada model predator-prey dengan respon 

fungional Holling Type II melalui simulasi numerik. 

 

1.5 Batasan Masalah 

Batasan masalah dalam penelitian ini adalah sebagai berikut: 

1. Pada penelitian ini model predator-prey yang digunakan merujuk pada jurnal 

terdahulu Maiti dkk (2008): 

𝑑𝑋(𝑇)

𝑑𝑇
= 𝑟𝑋(𝑇) (1 −

𝑋(𝑇)

𝐾
) −

𝐵1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
 ,      𝑋(0) > 0 

𝑑𝑌(𝑇)

𝑑𝑇
=

𝐶1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
− 𝐷1𝑌(𝑇) −

𝐵2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
 ,   𝑌(0) > 0 

𝑑𝑍(𝑇)

𝑑𝑇
=

𝐶2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
− 𝐷2𝑍(𝑇),      𝑍(0) > 0 
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Kemudian, model tersebut ditransformasikan melalui proses penskalaan 

sebelum dilakukan analisis kestabilan dan simulasi numerik. 

2. Penelitian ini berfokus pada model predator-prey tanpa waktu tunda. 

3. Nilai parameter yang digunakan dalam penelitian ini sepenuhnya mengacu 

pada penelitian Maiti dkk, (2008), dengan memodifikasi satu parameter yang 

disesuaikan dengan tujuan penelitian ini. 

4. Analisis dinamik dibatasi pada penentuan titik tetap (titik kesetimbangan), 

linierisasi, nilai eigen, dan vektor eigen, serta interpretasi grafik. 

 

1.6 Definisi Istilah 

1. Model predator-prey adalah salah satu model matematika yang 

menggambarkan interaksi antarspesies dalam ekosistem yang banyak dibahas 

dalam literatur dan sering digunakan sebagai contoh dasar dalam dinamika 

populasi. Model ini menggambarkan interaksi antarspesies yaitu mangsa 

(prey) dan predator dalam suatu populasi (Ndii, 2018). 

2. Fungsi trofik yaitu fungsi yang menggambarkan jumlah mangsa yang 

dimakan oleh setiap predator persatuan waktu berdasarkan ketersediaan 

mangsa dan predator (Maiti dkk, 2008). 

3. Respon fungsional adalah istilah yang digunakan dalam ekologi yang 

menggambarkan hubungan antara kepadatan mangsa dan tingkat konsumsi 

per predator (Papanikolaou dkk, 2020). 

4. Holling Type II adalah bentuk dari respon fungsional di mana tingkat 

konsumsi predator meningkat seiring dengan kepadatan mangsa (prey), 

namun laju peningkatannya melambat dan akhirnya mencapai titik jenuh 
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karena adanya waktu penanganan mangsa (handling time) yang dibutuhkan 

dalam proses pemangsaan (Papanikolaou dkk, 2020). 

5. Tritrofik adalah interaksi yang melibatkan tiga tingkat trofik dalam suatu 

rantai makanan yang melibatkan hubungan antara mangsa (prey), predator, 

dan superpredator (Maiti dkk, 2008). 

6. Predasi adalah interaksi biologis di mana satu organisme (predator) memburu, 

menangkap, dan memakan organisme lain (mangsa) untuk memperoleh 

energi, di mana hal ini menentukan kekuatan interaksi dalam ekologi (Miller 

dkk, 2006). 

7. Osilasi adalah fluktuasi populasi predator dan mangsa secara periodik dalam 

suatu ekosistem, di mana kenaikan populasi satu memengaruhi penurunan 

dan sebaliknya, yang sering terjadi secara berulang akibat interaksi biologis 

antarspesies dan dinamika internal sistem ekologi (Morita & Tainaka, 2006). 
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BAB II 

KAJIAN TEORI 

2.1 Teori Pendukung 

2.1.1 Kajian Model Predator-Prey 

Model predator-prey yaitu salah satu model matematika sederhana yang 

menggambarkan interaksi dari dua spesies atau lebih yaitu mangsa (prey) dan 

predator. Model ini diperkenalkan pertama kali oleh Alfred Lotka seorang ahli 

biofisika Amerika dan Vito Volterra seorang matematikawan Italia pada tahun 

1926 (Afiyah, 2015). Model ini menjadi dasar dalam analisis dinamik, prediksi 

siklus populasi, maupun stabilitas ekologi. Penggunaan model ini dapat 

memberikan wawasan mengenai interaksi antara predator dengan mangsa yang 

dapat menciptakan perilaku dinamis yang lebih kompleks. Di mana hal ini akan 

mengakibatkan terjadinya osilasi populasi. Model ini juga dapat dimodifikasi 

dengan menambahkan beberapa faktor lain seperti, respon fungsional, efek alle, 

migrasi, ataupun waktu tunda, sehingga model persamaan menjadi lebih 

kompleks.  

Pada penelitian ini model predator-prey yang digunakan adalah model tiga 

kompartemen 𝑋(𝑇), 𝑌(𝑇),  dan 𝑍(𝑇)  yaitu mangsa (prey), predator, dan 

superpredator dengan menggunakan respon fungsional Holling Type II. Model 

tersebut dirumuskan dalam bentuk persamaan diferensial nonlinier sebagai 

berikut: 

𝑑𝑋(𝑇)

𝑑𝑇
= 𝑟𝑋(𝑇) (1 −

𝑋(𝑇)

𝐾
) −

𝐵1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
 

 

 



10 

 

 

 

𝑑𝑌(𝑇)

𝑑𝑇
=

𝐶1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
− 𝐷1𝑌(𝑇) −

𝐵2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
 

𝑑𝑍(𝑇)

𝑑𝑇
=

𝐶2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
− 𝐷2𝑍(𝑇) 

(2.1) 

Pada model tersebut, Parameter 𝐴1 dan 𝐴2 adalah konstanta setengah saturasi 

yang menggambarkan tingkat kejenuhan predasi, 𝐵1  dan 𝐵2  adalah tingkat 

pertumbuhan maksimal masing-masing predator dan superpredator, 𝐶1 dan 𝐶2 

adalah tingkat konversi mangsa menjadi predator dan predator menjadi 

superpredator. Sedangkan, 𝐷1 dan 𝐷2  adalah tingkat kematian predator dan 

superpredator. 

Berdasarkan model persamaan (2.1) dinamika populasi mangsa 𝑋(𝑇) 

mengalami pertumbuhan logistik dengan laju intrinsik r yang dibatasi oleh 

kapasitas dukung lingkungan K yang membatasi jumlah maksimum mangsa. 

Kemudian, populasi mangsa mengalami pengurangan akibat predasi oleh predator 

𝑌(𝑇) , dengan laju predasi yang mengikuti respon fungsional Holling Type II. 

Sehingga, ketika jumlah mangsa meningkat laju predasi melambat mengakibatkan 

predator mengalami keterbatasan kapasitas untuk menangkap atau mencerna 

mangsa. Parameter 𝐵1 menunjukkan tingkat interaksi antara mangsa dan predator, 

sedangkan 𝐴1  menunjukkan tingkat saturasi predasi, yang membatasi seberapa 

banyak mangsa dapat dimangsa. Oleh karena itu, bisa diketahui populasi mangsa 

akan mengalami kenaikan secara alami dan pengurangan akibat interaksi dengan 

predator 𝑌(𝑇) sebagai berikut: 

𝑑𝑋(𝑇)

𝑑𝑇
= 𝑟𝑋(𝑇) (1 −

𝑋(𝑇)

𝐾
) −

𝐵1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
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Populasi predator 𝑌(𝑇) mengalami peningkatan populasi akibat memangsa 

mangsa (prey). Namun, predator juga mengalami penurunan populasi yang 

diakibatkan kematian secara alami dengan laju 𝐷1𝑌(𝑇). Kemudian, terjadi interaksi 

antara predator dengan superpredator 𝑍(𝑇) , di mana superpredator memangsa 

predator, sehingga mengalami penambahan penurunan populasi sebagai berikut: 

𝑑𝑌(𝑇)

𝑑𝑇
=

𝐶1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
− 𝐷1𝑌(𝑇) −

𝐵2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
  

Populasi superpredator 𝑍(𝑇)  mengalami peningkatan akibat konsumsi 

predator dengan laju predasi yang mengikuti respon fungsional Holling Type II. 

Kemudian, superpredator mengalami pengurangan akibat tingkat kematian alami 

sebesar 𝐷2𝑍(𝑇). Oleh karena itu, laju perubahan populasi superpredator adalah 

𝑑𝑍(𝑇)

𝑑𝑇
=

𝐶2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
− 𝐷2𝑍(𝑇) 

Dengan demikian, model predator-prey yang digunakan mampu menggambarkan 

inetraksi antarspesies dengan mempertimbangkan keterbatasan predasi melalui 

repson fungsional Holling Type II. 

 

2.1.2 Holling Type II 

Holling Type II adalah salah satu dari tiga model respon fungsional yang 

menggambarkan interaksi predator-prey. Pada model ini, predator tidak dapat 

terus meningkatkan laju konsumsi dengan bertambahnya jumlah mangsa. Hal ini 

terjadi karena predator membutuhkan waktu penanganan untuk menangkap dan 

memproses setiap mangsa. Secara matematis, laju pemangsaan Holing type II 

dapat dinyatakan sebagai berikut: 



12 

 

 

 

𝑃(𝑥) =
𝑐𝑥

𝑚 + 𝑥
 (2.2) 

di mana 𝑥 adalah kepadatan populasi mangsa predator. c adalah tingkat konsumsi 

maksimal predator perkapita. m adalah konstanta setengah saturasi penangkapan, 

yaitu jumlah untuk mencapai setengah dari kecepatan maksimum c. Jadi, dapat 

dikatakan bahwa ketika jumlah mangsa rendah, predator dapat dengan cepat 

memakannya. Namun, dikarenakan adanya keterbatasan waktu penanganan, maka 

ketika jumlah mangsa tinggi, predator tidak dapat memproses semuanya secepat 

itu. Hal ini menunjukan bahwa Holling Type II menggambarkan situasi 

keterbatasan kemampuan fisik predator dalam menangani mangsa, sehingga 

menyebabkan hubungan nonlinier antara predator dan mangsa. 

Pada model predator-prey yang digunakan pada penelitian ini, respon 

fungsional Holling Type II muncul dalam interaksi antara mangsa dan predator, 

yaitu 

𝐵1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
 

Kemudian, pada model yang menggambarkan interkasi antara predator dan 

superpredator sebagai berikut. 

𝐵2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
 

Suku-suku tersebut secara sederhana menggambarkan laju kejenuhan mangsa, di 

mana tingkat konsumsi predator tidak meningkat secara linier terhadap jumlah 

mangsa. Sementara parameter 𝐵1  dan 𝐵2  menunjukkan tingkat konsumsi 

maksimum, sedangkan parameter 𝐴1  dan 𝐴2  menunjukkan konstanta setengah 

saturasi tingkat kejenuhan. Dengan demikian, penggunaan respon fungsional 

Holling Type II dalam model Predator-prey mengurangi perbedaan waktu antara 
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serangan predator dan superpredator, sehingga menghasilkan interaksi populasi 

yang nonlinier.   

 

2.1.3 Sistem Persamaan Diferensial 

Sistem persamaan diferensial merupakan suatu persamaan yang membahas 

setidaknya satu turunan dari fungsi yang belum teridentifikasi atau diketahui. 

Secara umum, persamaan diferensial dibagi menjadi dua, yaitu persamaan 

diferensial biasa (PDB) dan persamaan diferensial parsial (PDP). Persamaan 

diferensial biasa merupakan persamaan yang hanya memiliki satu variabel bebas 

(independen). Bentuk umum persamaan diferensial biasa secara umum dinyatakan 

sebagai berikut: 

𝐹 (𝑡, 𝑥,
𝑑𝑥

𝑑𝑡
) = 0 

di mana F adalah fungsi yang dapat bersifat linier atau nonlinier. Sedangkan 

persamaan diferensial parsial merupakan suatu persamaan yang melibatkan lebih 

dari satu variabel bebas. Bentuk umum dari persamaan diferensial parsial sebagai 

berikut: 

𝐹 (𝑥1, 𝑥2,   … ,  𝑥𝑛, 𝑧,
𝜕𝑧

𝜕𝑥1
,
𝜕𝑧

𝜕𝑥2
,
𝜕2𝑧

𝜕𝑥1
2 ,

𝜕2𝑧

𝜕𝑥1𝜕𝑥2
, … ) = 0 

dengan 𝑥1, 𝑥2,   … ,  𝑥𝑛sebagai variabel-variabel bebas (independen) dan z variabel 

terikat (dependen) (Maidah dkk, 2022). 

Selain itu, persamaan diferensial juga dapat diklasifikasikan menurut sifat 

linieritas yaitu persamaan diferensial linier dan nonlinier. Sistem persamaan 

diferensial linier merupakan sistem persamaan variabel terikat dan turunannya 

dalam bentuk linier (pangkat satu) dan tidak ada perkalian atau fungsi nonlinier 
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dari variabel dependen atau turunannya. Sedangkan persamaan diferensial 

nonlinier adalah persamaan yang memenuhi salah satu kriteria berikut: 

1. Terdapat variabel dependen dan turunannya dengan pangkat lebih dari satu, 

misalnya 
𝑑𝑥

𝑑𝑡
= 𝑥2 + 𝑡 

2. Terdapat perkalian antara variabel dependen dan/atau turunannya. 

Contoh: 
𝑑𝑋

𝑑𝑇
=

𝐵1𝑋𝑌

𝐴1+𝑋
. 

3. Mengandung fungsi yang lebih kompleks yang melibatkan variabel terikat 

serta turunannya. 

Contoh: 
𝑑𝑍

𝑑𝑇
=

𝐶2𝑌𝑍

𝐴2+𝑌
 

Pada penelitian ini, model persamaan yang digunakan mengacu pada model 

predator-prey dengan respon fungsional Holling Type II termasuk kedalam 

persamaan diferensial biasa (PDB) nonlinier. 

 

2.1.4 Titik Kesetimbangan 

Titik Kesetimbangan merupakan titik di mana keadaan laju perubahan 

sistem sama dengan nol. Dalam konteks model interaksi, titik kesetimbangan 

dapat terpecahkan jika 
𝑑𝑥

𝑑𝑡
= 0 , 

𝑑𝑦

𝑑𝑡
= 0 , dan 

𝑑𝑧

𝑑𝑡
= 0 . Dalam hal ini kita dapat 

mempertimbangkan sistem persamaan diferensial berikut: 

𝑑𝑥

𝑑𝑡
= 𝑓1(𝑥, 𝑦, 𝑧) 

𝑑𝑦

𝑑𝑡
= 𝑓2(𝑥, 𝑦, 𝑧) 

𝑑𝑧

𝑑𝑡
= 𝑓3(𝑥, 𝑦, 𝑧) 

 

 

(2.3) 
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dimana 𝑓1(𝑥, 𝑦, 𝑧),  𝑓2(𝑥, 𝑦, 𝑧),    dan 𝑓3(𝑥, 𝑦, 𝑧)  menggambarkan masing-masing 

fungsi dari interaksi populasi mangsa (x), predator (y), dan superpredator (z). Titik 

tetap dapat diperoleh jika nilai x, y, dan z memenuhi berikut ini: 

𝑓1(𝑥, 𝑦, 𝑧) = 0, 𝑓2(𝑥, 𝑦, 𝑧) = 0, dan 𝑓3(𝑥, 𝑦, 𝑧) = 0 

titik-titik ini disebut titik kesetimbangan, di mana laju perubahan untuk masing-

masing populasi tidak berubah atau sama dengan nol (Glass L. & Murray  J. D.,  

2002). 

 

2.1.5 Matriks Jacobian 

Matriks dapat didefinisikan sebagai susunan segi empat yang berasal dari 

bilangan rill atau kompleks, yang tersusun secara sistematis dalam baris dan 

kolom. Berdasarkan penelitian Aryani & Maisyitah (2015), matriks memiliki 

berbagai macam jenis yang diklasifikasikan berdasarkan susunan elemen dan 

karakteristik dari operasi matriksnya, diantaranya yaitu matriks bujur sangkar 

(𝑛 × 𝑛), matriks diagonal, matriks singular, dan nonsingular. Matriks tersebut 

memiliki peranan penting sesuai dengan kegunaanya masing-masing. Salah satu 

matriks utama yang dapat digunakan dalam sistem dinamika nonlinier yaitu 

matriks Jacobian, dimana matriks ini digunakan untuk menganalisis kestabilan 

titik kesetimbangan suatu sistem. Secara matematis, matriks Jacobian dibentuk 

dengan menghitung turunan parsial dari setiap fungsi vektor variabel. Secara 

umum, bentuk matriks Jacobian dapat dinyatakan sebagai berikut: 

𝐹(𝑥) =

[
 
 
 
 
𝑓1(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)

𝑓2(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)

𝑓3(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)
⋮

𝑓𝑚(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)]
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dimana 𝑥 =

[
 
 
 
 
𝑥1
𝑥2

𝑥3

⋮
𝑥𝑚]

 
 
 
 

adalah vektor variabel, sehingga matriks Jacobian J dapat 

didefiniskan sebagai: 

𝐽 =

[
 
 
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓1
𝜕𝑥3

⋯
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

𝜕𝑓2
𝜕𝑥3

⋯
𝜕𝑓2
𝜕𝑥𝑛

𝜕𝑓3
𝜕𝑥1

⋮
𝜕𝑓𝑚
𝜕𝑥1

 
𝜕𝑓3
𝜕𝑥2

⋮
𝜕𝑓𝑚
𝜕𝑥2

𝜕𝑓3
𝜕𝑥3

⋯
𝜕𝑓3
𝜕𝑥𝑛

⋮    ⋱     ⋮
𝜕𝑓𝑚
𝜕𝑥3

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛]

 
 
 
 
 
 
 
 
 

  

 

 

 

(2.4) 

Matriks ini digunakan pada model ekosistem salah satunya yaitu model 

predator-prey untuk mendapatkan informasi mengenai perilaku sistem di sekitar 

titik kesetimbangan dengan mengukur laju perubahan variabel terhadap 

perubahan kecil dalam variabel lainnya (Strogatz, 2018). Matriks pada (2.4) untuk 

model predator-prey tritrofik dapat dinyatakan dalam bentuk berikut: 

𝐽 =

[
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓1
𝜕𝑧

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

𝜕𝑓2
𝜕𝑧

𝜕𝑓3
𝜕𝑥

𝜕𝑓3
𝜕𝑦

𝜕𝑓3
𝜕𝑧 ]

 
 
 
 
 
 

 

 

 

(2.5) 

dimana 𝑓1(𝑥, 𝑦, 𝑧),  𝑓2(𝑥, 𝑦, 𝑧),dan 𝑓3(𝑥, 𝑦, 𝑧) adalah fungsi laju perubahan x, y, 

dan z.   

Pada model predator-prey, nilai eigen dari matriks ini dapat memberikan 

informasi mengenai arah dan kecepatan perubahan sistem di sekitar titik tersebut. 

Menurut Kuznetsov, (1998), apabila nilai eigen memiliki bagian rill negatif, maka 

titik kesetimbangan dianggap stabil. Berbeda halnya dengan matriks Jacobian jika 
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terdapat satu nilai eigen dengan bagian rill yang positif maka titik kesetimbangan 

menjadi tidak stabil.  

Selain itu, stabilitas sistem dalam matriks Jacobian dapat dianalisis 

menggunakan metode Routh-Hurwitz. Metode ini melibatkan matriks Routh-

Hurwitz berdasarkan koefisien persamaan karakteristik sistem. Persamaan 

karakteristik tersebut dinyatakan sebagai: 

𝑝(𝜆) = 𝜆𝑛 + 𝑎1𝜆
𝑛−1 + 𝑎2𝜆

𝑛−2 + 𝑎3𝜆
𝑛−3 + ⋯+ 𝑎𝑛−1𝜆 + 𝑎𝑛 (2.6) 

dimana 𝑎𝑖 merupakan koefisien rill untuk 𝑖 = 1,2,3, … , 𝑛 (Ndii, 2018). Analisis 

ini memungkinkan untuk memastikan bahwa semua akar persamaan karakteristik 

memiliki bagian riil negatif, tanpa perlu menghitung akar-akar tersebut secara 

langsung. Kemudian, sistem dapat dikatakan stabil, jika memenuhi syarat Routh-

Hurwitz berikut: 

∆1> 0, ∆2>, … , ∆𝑛> 0 

Sehingga sistem berada dalam kondisi stabil asimtotik (Ogata, 2010). 

 

2.1.6 Nilai Eigen dan Vektor Eigen 

Nilai eigen dan vektor eigen diperoleh dari analisis matriks Jacobian yang 

digunakan untuk menentukan kestabilan dari titik kesetimbangan. Misalkan 

terdapat matriks J berukuran 𝑛 × 𝑛 . Apabila sebuah vektor tak nol 𝑥  disebut 

sebagai vektor eigen dari J, maka suatu skalar λ yang memenuhi persamaan 

 𝐽𝑥 = 𝜆𝑥 (2.7) 

disebut sebagai nilai eigen dari matriks 𝐽, dan x merupakan vektor eigen yang 

bersesuaian dengan nilai eigen tersebut (Ogata, 2010).  
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Menentukan nilai eigen dari matriks J, maka persamaan (2.7) dapat ditulis 

sebagai berikut: 

(𝐽 − λ𝐼)𝑥 = 0 (2.8) 

dimana I merupakan matriks identitas berukuran 𝑛 × 𝑛 . Persamaan (2.8) 

mempunyai solusi tak nol yang jika hanya jika det(𝐽 − λ𝐼) = 0  disebut 

persamaan karakteristik dari matriks J yang menjadi dasar dalam menghitung nilai 

eigen dan vektor eigen (Ukaely, 2021). Kemudian, sifat kestabilan titik 

kesetimbangan ditentukan berdasarkan nilai eigen yang didapat dari matriks 

Jacobian tersebut. Berdasarkan nilai eigen yang diperoleh klasifikasi kestabilan 

ditunjukkan pada tabel berikut. 

Tabel 2.1 Nilai Eigen dan Kestabilan Sistem 

Nilai Eigen Jenis Titik Kritik Kestabilan Sistem 

𝑟1 > 𝑟2 > 0 Node Tidak stabil 

𝑟1 < 𝑟2 < 0 Node Stabil asimtotik 

𝑟2 < 0 < 𝑟1 Saddle point Tidak stabil 

𝑟1 = 𝑟2 > 0 Proper/improper node Tidak stabil 

𝑟1 = 𝑟2 < 0 Proper/improper node Stabil asimtotik 

𝑟1, 𝑟2 = 𝜆 ± 𝑖𝜇   

𝜆 > 0 Spiral point Tidak stabil 

𝜆 < 0 Spiral point Stabil asimtotik 

𝜆 = 0 Center Stabil 

Berdasarkan Tabel 2.1 untuk setiap nilai eigen dapat menentukan jenis dan 

stabilitas titik kesetimbangan. Jika terdapat nilai eigen yang bernilai negatif, maka 
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titik kesetimbangan bersifat stabil asimtotik. Jika terdapat nilai eigen bernilai 

positif, maka kestabilan sistem menjadi tidak stabil. 

 

2.2 Grafik Fase 

Garfik fase merupakan representasi visual berupa lintasan solusi sistem 

persamaan diferensial dalam ruang fase (phase space). Setiap titik dalam ruang fase 

menyatakan keadaan sistem pada suatu waktu dan perubahan keadaan pada sistem 

tersebut ditunjukkan dalam bentuk kurva atau lintasan (Boyce dkk, 2017). Artinya, 

grafik fase digunakan untuk menvisualisasikan bagaimana variabel-variabel dalam 

suatu sistem berubah secara dinamis terhadap waktu. Sistem dengan dua variabel 

dapat divisualisasikan dengan grafik fase dua dimensi yang disebut phase plane. 

Kemudian, ketika suatu sistem memiliki tiga variabel, maka grafik fase dapat 

divisualisasikan dengan bentuk tiga dimensi. Misalnya, pada model predator-prey 

tritrofik yang memiliki tiga variabel yaitu mangsa (𝑥) , predator (𝑦) , dan 

superpredator (𝑧), di mana pada grafik fase populasi masing-masing spesies yang 

terlibat direpresentasikan oleh salah satu sumbu. Selanjutnya, interaksi setiap 

spesies pada grafik digambarkan dalam bentuk lintasan, sehingga grafik 

menunjukkan bagaimana setiap populasi seiring waktu saling mempengaruhi satu 

sama lain. 

Analisis grafik fase sangat berkaitan dengan titik kesetimbangan. Di mana 

untuk mengetahui bentuk grafik fase perlu dilakukannya linierisasi di sekitar titik 

kesetimbangan. Kemudian, dilakukannya perhitungan nilai eigen dari matriks 

Jacobian untuk menentukan karakteristik kestabilan sistem. Secara umum, terdapat 

berbagai bentuk perilaku sistem dalam grafik fase sebagai berikut:  
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1. Node Stabil 

Grafik fase suatu sistem dikatakan node stabil apabila semua nilai eigen 

bernilai negatif, sehingga menyebabkan lintasan sistem pada grafik bergerak 

menuju titik kesetimbangan. Kondisi ini menunjukkan bahwa titik kesetimbangan 

bersifat stabil. Misalkan diberikan sistem persamaan diferensial linier dua dimensi 

𝑑𝑥1

𝑑𝑡
= −𝑥1 

𝑑𝑥2

𝑑𝑡
= −2𝑥2 

yang memiliki dua nilai eigen riil negatif, yaitu 𝜆1 = −1 dan 𝜆2 = −4, maka titik 

kesetimbangan di (0,0) bersifat node stabil (Boyce & DiPrima, 2012). Grafik fase 

dari node stabil ditunjukan sebagai berikut. 

 
Gambar 2.1 Grafik Fase dengan Grafik Fase dengan Lintasan Menuju Titik Asal yang 

Menunjukkan Bentuk Node Stabil dengan 𝑟1 < 𝑟2 < 0 (Boyce & DiPrima, 2012). 

 

Grafik tersebut menggambarkan kondisi di mana setiap lintasan yang berasal dari 

kondisi awal berbeda akan tetap konvergen ke titik kesetimbangan seiring waktu. 

Sedangkan, grafik fase suatu sistem dikatakan node tidak stabil apabila 

seluruh nilai eigen bernilai positif dengan 𝑟1 > 0 dan 𝑟2 > 0. Sehingga lintasan 

bergerak menjauh dari titik kesetimbangan yang mengakibatkan grafik fase 

menunjukkan arah berlawanan dengan Gambar 2.1. Akibatnya sistem dikatakan 

tidak stabil.  
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2. Saddle Point (Titik Pelana) 

Apabila suatu sistem memiliki salah satu nilai eigennya bernilai positif dan 

terdapat salah satu yang bernilai negatif, maka sistem memiliki titik 

kesetimbangan bersifat saddle point. Kestabilan sistem ini bergantung pada arah 

lintasan terhadap titik kestimbangan. Misalkan, diberikan sistem persamaan 

diferensial  linier dua dimensi, yaitu 

{

𝑑𝑥1

𝑑𝑡
= 𝑥1

𝑑𝑥2

𝑑𝑡
= −𝑥2

 

dengan nilai eigen 𝜆1 = 1 dan 𝜆2 = −1. Dikarenakan nilai eigen yang diperoleh 

bernilai negatif dan positif, maka titik kesetimbangan di (0,0) diklasifikasikan 

sebagai saddle point (Boyce & DiPrima, 2012). Berikut grafikk fase dari saddle 

point. 

 
Gambar 2.2 Grafik Fase untuk Saddle Point dengan Lintasan Mendekati Titik 

Kesetimbangan Di Satu Arah dan Menjauh Di Arah Lain dengan 𝒓𝟏 > 𝟎, 𝒓𝟐 < 𝟎 (Boyce 

& DiPrima, 2012). 

 

Grafik fase tersebut menunjukkan bahwa pada nilai eigen negatif lintasan hanya 

menuju titik kesetimbangan, sedangkan pada nilai eigen positif arah lintasan 

menjauhi titik tersebut 
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3. Spiral Stabil dan Spiral Tak Stabil 

Pada jenis ini, sistem dikatakan spiral stabil apabila nilai eigen kompleks 

dengan bagian riil tidak nol. Misalkan, terdapat sistem persamaan diferensial linier. 

𝑑𝑥1

𝑑𝑡
= −𝑥1 − 𝑦 

𝑑𝑥2

𝑑𝑡
= 𝑥1 − 𝑦 

dimana sistem tersebut memiliki nilai eigen kompleks yaitu 𝜆 = −1 ± 𝑖 dengan 

bagian riil bernilai negatif. Oleh karena itu, titik kesetimbangan di (0,0) dikatakan 

spirat stabil. Namun, jika nilai eigen bernilai positif, maka dapat dikatakan grafik 

spiral tidak stabil (Boyce dkk, 2017). Grafik fase menunjukkan bahwa lintasan 

solusi membentuk spiral bergerak menuju titik kesetimbangan seiring waktu, yang 

menunjukan osilasi yang meredam. Contoh grafik fase spiral stabil ditunjukkan 

pada gambar berikut.  

 
(a) 

 
(b) 

Gambar 2.3 (a) Grafik Fase dengan Lintasan Membentuk Spiral yang Bersifat Stabil 

dengan 𝝀 < 𝟎. (b) Grafik Fase dengan Lintasan Membentuk Spiral yang Bersifat Tidak 

Stabil dengan 𝝀 > 𝟎 (Boyce dkk, 2017). 

 

4. Center 

Apabila nilai eigen bersifat imajiner murni, lintasan pada bidang fase 

berbentuk lingkaran tertutup, maka kondisi ini dikatakan center. Misalkan 

diberikan sistem persamaan diferensial 
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{

𝑑𝑥1

𝑑𝑡
= −𝑦

𝑑𝑥2

𝑑𝑡
= 𝑥1

 

dengan nilai eigen 𝜆 = ±𝑖 merupakan nilai eigen imajiner murni. Oleh karena itu, 

titik kesetimbangan di (0,0) bersifat center. Grafik fase ini menunjukkan osilasi 

periodik tanpa redaman. Sistem ini dikatakan stabil netral karena lintasan tidak 

menuju ataupun menjauh dari titik kesetimbangan (Boyce dkk, 2017). Berikut 

adalah contoh grafik fase center. 

 
(a) 

 
(b) 

Gambar 2.4 (a) Grafik Fase Menunjukkan Lintasan Berbentuk Center Ketika Sistem 

Memiliki Nilai Eigen ±𝑖𝜇. (b) Plot Komponen 𝑥1(𝑡) Menunjukkan Gerak Periodik 

Sesuai Karakteristik Center (Boyce dkk, 2017). 

 

5. Spiral dan Saddle 

Pada sistem nonlinier tertentu, pada grafik fase dapat juga dijumpai beberapa 

jenis kestabilan yang berbeda dari satu titik kesetimbangan. Misalnya, titik 

kesetimbangan yang membentuk spiral dan bersifat stabil, di mana lintasan 

berputar menuju titik tersebut. Selain itu, juga terdapat titik kesetimbangan lain 

berupa saddle point, di mana lintasan mendekati titik kesetimbangan pada arah 

dan menjauh dari arah lainnya. Kombinasi dari kedua perilaku ini sering muncul 

pada sistem seperti pendulum teredam. Hal ini ditunjukkan pada sistem persamaan 

diferensial nonlinier berikut. 

𝑑𝜃

𝑑𝑡
= 𝜔 
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𝑑𝜔

𝑑𝑡
= 𝛼𝜔 − sin 𝜃  

yang merupakan model pendulum teredam, dengan 𝛼 > 0 (Boyce & DiPrima, 

2012). Persamaan tersebut memiliki titik kesetimbangan dengan sifat kestabilan 

yang berbeda. Kombinasi perilaku tersebut ditunjukkan pada grafik fase berikut:  

 
Gambar 2.5 Grafik Fase dengan Titik Kesetimbangan Bersifat Spiral Stabil dan Saddle 

Point (Boyce & DiPrima, 2012). 

 

di mana titik kesetimbangan tengah bawah bersifat spiral stabil, dimana lintasan 

berputar dan bergerak menuju titik tersebut. Sedangkan titik tengah atas arah 

panah menyilang dengan lintasan mendekati satu sisi dan menjauhi sisi lainnya 

sehingga bersifat saddle point. 

 

6. Limit Cycle 

Pada sistem nonlinier, lintasan pada grafik fase tidak selalu menuju atau 

menjauhi titik kesetimbangan, dapat juga membentuk lintasan tertutup yang stabil 

yang disebut sebagai limit cycle. Misalkan, diberikan sistem persamaan diferensial 

nonlinier sebagai berikut: 

𝑑𝑥

𝑑𝑡
= 𝑦 

𝑑𝑦

𝑑𝑡
= 𝜇(1 − 𝑥2)𝑦 − 𝑥,        𝜇 > 0 
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Sistem tersebut bersifat limit cycle yang menggambarkan lintasan berosilasi 

secara periodik dengan amplitudo tetap terhadap waktu (Boyce dkk, 2017). Grafik 

fase dari sistem tersebut dapat ditunjuukan sebagai berikut. 

 
Gambar 2.6 Grafik Fase dengan Lintasan Persamaan Van der Pol (𝜇 = 1) yang 

Menunjukkan Kondisi Limit Cycle Stabil (Boyce dkk, 2017). 

 

Pada grafik tersebut lintasan dimulai dari kondisi awal dalam limit cycle bergerak 

keluar, sedangkan lintasan dari luar bergerak masuk. Sehingga, semua lintasan 

mencapai lintasan tertutup yang stabil 

 

Dengan demikian, berbagai bentuk perilaku sistem dalam grafik fase tersebut 

bergantung pada nilai parameter dan titik kesetimbangan, sehingga grafik fase dapat 

memvisualisasikan kemungkinan perilaku yang terjadi pada sistem terhadap 

perubahan nilai parameter dan kestabilan titik kesetimbangan. 

 

2.3 Kajian Integrasi Topik Dengan Al-Quran 

Hubungan antara predator dan mangsa menjadi mekanisme untuk menjaga 

keseimbangan populasi makhluk hidup. Model predator-prey merupakan salah satu 

contoh bagaimana predator memangsa mangsanya hingga mencapai tingkat 

maksimum dengan efektif. Hal ini menunjukan bahwa dalam ekosistem Allah SWT 
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telah merencanakan secara sempurna agar alam semesta dapat berfungsi dengan 

baik sesuai dengan kehendak-Nya. Dalam Al-Qur’an, Allah SWT menyatakan 

bahwa segala sesuatu di alam diciptakan secara berpasangan untuk menciptakan 

harmoni dan keseimbangan. Hal ini disebutkan dalam Surah Adz-Dzariyat [51]: 49 

sebagai berikut. 

رُوْنَ 
َّ
مْ تَذَك

ُ
ك
َّ
عَل
َ
قْنَا زَوْجَيْنِ ل

َ
ِ شَيْءٍ خَل

 
ل
ُ
   ٤٩وَمِنْ ك

Artinya: “Dan Segala sesuatu Kami ciptakan berpasang-pasangan agar kamu 

mengingat (kebesaran Allah).” 

Ayat tersebut menunjukan bahwa setiap ciptaan Allah memiliki fungsi yang 

saling melengkapi. Berdasarkan Tafsir Jalalain, ayat ini menegaskan bahwa Allah 

menciptakan segala sesuatu secara berpasang pasangan, seperti langit dan bumi, 

siang dan malam, panas dan dingin, matahari dan bulan. Hal ini menggambarkan 

interaksi dua komponen yang saling melengkapi dan membentuk keseimbangan 

(Az-Zuhaili, 2013). Dalam ekologi, hubungan antara predator dan mangsa termasuk 

dalam interkasi dua komponen yang meskipun saling bertentangan, namun dapat 

berfungsi dalam menjaga stabilitas ekosistem. Hal ini menunjukan bagaimana 

mekanisme alam telah diatur sedemikian mungkin oleh Allah untuk menjaga 

keseimbangan tanpa merusak komponen lain dalam ekosistem. Sama halnya 

dengan hidup dan mati, surga dan neraka, hubungan predator dan mangsa 

merupakan bentuk keseimbangan yang diciptakan Allah untuk menjaga 

keseimbangan ekosistem alam. 

 

2.4 Kajian Topik Dengan Teori Pendukung  

Model predator-prey merupakan salah satu pendekatan yang sering 

digunakan dalam kajian ekologi, dimana interaksi antar predator dan mangsa 
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mempengaruhi keseimbangan ekosistem. Pada artikel Maiti dkk (2008) membahas 

mengenai model predator-prey tritrofik yang melibatkan tiga spesies yaitu mangsa 

𝑥(𝑡) , predator 𝑦(𝑡) , dan superpredator 𝑧(𝑡) . Model yang digunakan dalam 

penelitian ini bersifat nonlinier. Penelitian ini menganalisis tentang kestabilan 

populasi ketiga spesies yang didasarkan pada respon fungsional Holling Type II. 

Penggunaan respon fungsional Holling Type II dapat menunjukkan tingkat 

konsumsi predator meningkat pada saat populasi mangsa rendah, dan melambat 

akibat mencapai saturasi. Pendekatan ini dapat menginterpretasikan keseimbangan 

antara populasi spesies dan menemukan kondisi stabil atau tidak stabil pada sistem. 

Selain itu, pengaruh eksternal gangguan lingkungan dan variasi parameter 

terhadap stabilitas ekologi menjadi hal penting dalam penelitian ini. Pada Maiti dkk 

(2008)  juga menunjukan bahwa terjadi dinamika periodik, di mana perubahan 

parameter tertentu mengakibatkan osilasi populasi atau bahkan kepunahan. 

Penggunaan model ini juga dapat menggambarkan prediksi sistem ekologi yang 

nyata. Selain itu, juga dapat membantu menganalisis kestabilan populasi mangsa 

dan predator untuk menentukan kondisi tetap berada dalam keseimbangan. 

Stabilitas ekosistem dipengaruhi oleh rasio tingkat pertumbuhan mangsa dan 

kemampuan predator dalam menyesuaikan laju konsumsi terhadap mangsa. Jika 

rasio tidak seimbang, maka ekosistem akan mengalami gangguan, seperti ledakan 

populasi mangsa atau penurunan populasi predator.  
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BAB III 

METODE PENELITIAN 

3.1 Jenis Penelitian 

Penelitian ini menggunakan metode pendekatan kualitatif. Metode tersebut 

merupakan bentuk pendekatan yang berfokus pada studi literatur atau library 

research, dimana sumber informasi utamanya berasal dari artikel ilmiah, buku, dan 

dokumen relevan lainnya. Jenis penelitian ini digunakan untuk memahami 

bagaimana dinamika model predator-prey dengan respon fungsional Holling Type 

II berdasarkan teori-teori sebelumnya. 

 

3.2 Pra Penelitian 

Langkah-langkah yang dilakukan sebelum memulai penelitian meliputi 

perencanaan yang terdiri dari mengkaji penelitian dari Maiti dkk (2008) untuk 

memperoleh pemahaman mengenai model predator-prey. Selanjutnya, memahami 

lebih dalam tentang isi dari penelitian tersebut. Kemudian, melakukan analisis 

untuk setiap variabel model untuk memahami bagaimana parameter biologis, 

seperti laju konsumsi, tingkat kematian, dan saturasi mempengaruhi pola interaksi 

dalam sistem. 

 

3.3 Tahapan Penelitian 

3.3.1 Penskalaan Model Predator-Prey 

Tahapan yang dilakukan penulis dalam memformulasikan model predator-

prey meliputi: 
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1. Mengkaji model predator-prey dengan respon fungsional Holling Type II 

dari penelitian Maiti dkk (2008). 

2. Menetapkan variabel dan parameter dari model predator-prey tersebut. 

3. Menyususn model sistem persamaan diferensial berdimensi 

4. Melakukan penskalaan model predator-prey ke dalam bentuk tak 

berdimensi. 

5. Menyusun model predator-prey dalam bentuk sistem persamaan diferensial 

tak berdimensi. 

 

3.3.2 Analisis Titik Kesetimbangan dan Kestabilan Model 

Adapun tahapan untuk melakukan analisis dinamik pada model predator-

prey yang digunakan dalam penelitian ini sebagai berikut: 

1. Menentukan titik kesetimbangan. 

2. Melakukan linierisasi model untuk mendapatkan matriks Jacobian. 

3. Mensubstitusikan nilai titik kesetimbangan kedalam matriks Jacobian. 

4. Menentukan nilai eigen dan vektor eigen dari matriks Jacobian tersebut. 

5. Mengidentifikasi jenis kestabilan titik kesetimbangan berdasarkan nilai 

eigen dan vektor eigen. 

 

3.3.3 Simulasi Numerik dan Analisis Dinamika Model 

Adapun tahapan untuk melakukan simulasi numerik pada model predator-

prey dengan menggunakan software Maple sebagai berikut: 

1. Menginisialisasi model. 
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2. Memasukkan persamaan, nilai parameter dan kondisi awal ke dalam 

software Maple dalam bentuk sistem persamaan diferensial. 

3. Menjalankan simulasi dengan memvariasikan nilai parameter, dan nilai 

awal populasi mangsa (prey), predator, dan superpredator. 

4. Menampilkan hasil simulasi dalam bentuk grafik. 

5. Menganalisis hasil simulasi. 
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BAB IV 

HASIL DAN PEMBAHASAN 

4.1 Proses Penskalaan pada Model Predator-Prey 

Model predator-prey yang dianalisis pada penelitian ini terdiri dari tiga 

kompartemen, yaitu populasi mangsa 𝑋(𝑇), populasi predator𝑌(𝑇), dan populasi 

superpredator𝑍(𝑇) dengan menggunakan respon fungsional Holling Type II. 

𝑑𝑋(𝑇)

𝑑𝑇
= 𝑟𝑋(𝑇) (1 −

𝑋(𝑇)

𝐾
) −

𝐵1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
 ,      𝑋(0) > 0 

𝑑𝑌(𝑇)

𝑑𝑇
=

𝐶1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
− 𝐷1𝑌(𝑇) −

𝐵2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
 ,   𝑌(0) > 0 

𝑑𝑍(𝑇)

𝑑𝑇
=

𝐶2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
− 𝐷2𝑍(𝑇),      𝑍(0) > 0 

 

 

(4.1) 

Model yang dianalisis pada (4.1) melibatkan sejumlah besar parameter, sehingga 

sulit untuk dilakukan analisis. Oleh karena itu, pengurangan parameter dan 

penentuan kombinasi parameter yang sesuai perlu dilakukan untuk mengontrol 

perilaku sistem. 

Pada tahapan ini di tentukan skala karakteristik untuk masing-masing variabel. 

Skala populasi dipilih beradasarkan kapasistas lingkungan K, sedangnkan skala 

waktu berdasarkan laju pertumbuhan intrinsik prey r. Kemudian, sistem 

dinondimensionalkan menggunakan persamaan berikut. 

𝑥(𝑡) =
𝑋(𝑇)

𝐾
 ,      𝑦(𝑡) =

𝑌(𝑇)

𝐾
 ,      𝑧(𝑡) =

𝑍(𝑇)

𝐾
      𝑑𝑎𝑛    𝑡 = 𝑟𝑇 

Maka, sistem diferensial yang semula dalam bentuk 

𝑑𝑋(𝑇)

𝑑𝑇
= 𝑟𝑋(𝑇)(1 −

𝑋(𝑇)

𝐾
) −

𝐵1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
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Untuk mempermudah proses nondimensionalisasi, pada tahap ini dilakukan 

pemisalan notasi  

𝑋(𝑇) ≡ 𝑋, 𝑌(𝑇) ≡ 𝑌, 𝑍(𝑇) ≡ 𝑍, 𝑥(𝑡) ≡ 𝑥, 𝑦(𝑡) ≡ 𝑦, 𝑧(𝑡) ≡ 𝑧 

Sehingga dapat disubstitusikan 𝑋 = 𝑥𝐾,  𝑌 = 𝑦𝐾,  dan 𝑇 =
𝑡

𝑟
 ke dalam persamaan 

berikut: 

𝑑𝑋

𝑑𝑇
= 𝑟𝑋 (1 −

𝑋

𝐾
) −

𝐵1𝑋𝑌

𝐴1 + 𝑋
  

𝑑(𝑥𝐾)

𝑑 (
𝑡
𝑟)

= 𝑟𝑥𝐾 (1 −
𝑥𝐾

𝐾
) −

𝐵1𝑥𝐾𝑦𝐾

𝐴1 + 𝑥𝐾
  

𝑟𝐾
𝑑𝑥

𝑑𝑡
= 𝑟𝐾𝑥(1 − 𝑥) −

𝐵1𝐾
2𝑥𝑦

𝐴1 + 𝑥𝐾
 

bagi kedua ruas dengan 𝑟𝐾, sehigga diperoleh 

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥) −

𝐵1𝐾𝑥𝑦

𝑟(𝐴1 + 𝑥𝐾)
 

Kemudian penyebut difaktorkan untuk memperoleh bentuk tak berdimensi  

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥) −

𝐵1𝐾

𝑟
∙

𝑥𝑦

𝐴1 + 𝑥𝐾
 

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥) −

𝐵1𝐾

𝑟
∙

𝑥𝑦

𝐴1 (1 +
𝐾
𝐴1

𝑥)
 

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥) −

𝐵1𝐾

𝑟𝐴1
∙

𝑥𝑦

1 +
𝐾
𝐴1

𝑥
 

Sehingga didapat parameter baru, yaitu 

𝑎 =
𝐾

𝐴1
, 𝑐 =

𝐵1𝐾

𝑟𝐴1
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Kemudian, mensubstitusikan parameter a dan c, diperoleh persamaan menjadi: 

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥) −

𝑐𝑥𝑦

1 + 𝑎𝑥
 

(4.2) 

Transformasi serupa dilakukan pada persamaan kedua, yaitu: 

𝑑𝑌

𝑑𝑇
=

𝐶1𝑋𝑌

𝐴1 + 𝑋
− 𝐷1𝑌 −

𝐵2𝑌𝑍

𝐴2 + 𝑌
 

Substitusikan 𝑋 = 𝑥𝐾,  𝑌 = 𝑦𝐾,  𝑍 = 𝑧𝐾 dan 𝑇 =
𝑡

𝑟
 ke dalam persamaan tersebut: 

𝑑(𝑦𝐾)

𝑑 (
𝑡
𝑟)

=
𝐶1𝑥𝐾𝑦𝐾

𝐴1 + 𝑥𝐾
− 𝐷1𝑦𝐾 −

𝐵2𝑦𝐾𝑧𝐾

𝐴2 + 𝑦𝐾
 

𝑟𝐾
𝑑𝑦

𝑑𝑡
=

𝐶1𝐾
2𝑥𝑦

𝐴1 + 𝑥𝐾
− 𝐷1𝑦 −

𝐵2𝐾
2𝑦𝑧

𝐴2 + 𝑦𝐾
 

Bagi kedua ruas dengan rK, sehingga  

𝑑𝑦

𝑑𝑡
=

𝐶1𝐾

𝑟
⋅

𝑥𝑦

𝐴1 + 𝑥𝐾
−

𝐷1𝑦

𝑟
−

𝐵2𝐾

𝑟
⋅

𝑦𝑧

𝐴2 + 𝑦𝐾
 

Kemudian faktorkan penyebut 

𝐴1 + 𝑥𝐾 = 𝐴1 (1 +
𝐾

𝐴1
𝑥),      𝐴2 + 𝑦𝐾 = 𝐴2 (1 +

𝑦𝐾

𝐴2
) 

sehingga menjadi 

𝑑𝑦

𝑑𝑡
=

𝐶1𝐾

𝑟
⋅

𝑥𝑦

𝐴1 (1 +
𝐾
𝐴1

𝑥)
−

𝐷1𝑦

𝑟
−

𝐵2𝐾

𝑟
⋅

𝑦𝑧

𝐴2 (1 +
𝐾
𝐴2

𝑦)
 

𝑑𝑦

𝑑𝑡
=

𝐶1𝐾

𝑟𝐴1
⋅

𝑥𝑦

1 +
𝐾
𝐴1

𝑥
−

𝐷1𝑦

𝑟
−

𝐵2𝐾

𝑟𝐴2
⋅

𝑦𝑧

1 +
𝐾
𝐴2

𝑦
 

Sehingga didapat parameter baru, yaitu 

𝑚 =
𝐶1𝐾

𝑟𝐴1
,  𝑑 =

𝐷1

𝑟
,  𝑝 =

𝐵2𝐾

𝑟𝐴2
, 𝑏 =

𝐾

𝐴2
 

Kemudian, mensubstitusikan parameter m, a, d, p dan b, diperoleh persamaan 

menjadi: 
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𝑑𝑦

𝑑𝑡
=

𝑚𝑥𝑦

1 + 𝑎𝑥
− 𝑑𝑦 −

𝑝𝑦𝑧

1 + 𝑏𝑦
 

(4.3) 

Selanjutnya, dengan pendekatan yang sama pada persamaan ketiga pada model 

berikut: 

𝑑𝑍

𝑑𝑇
=

𝐶2𝑌𝑍

𝐴2 + 𝑌
− 𝐷2𝑍 

Kemudian substitusikan 𝑌 = 𝑦𝐾,  𝑍 = 𝑧𝐾 dan 𝑇 =
𝑡

𝑟
, sehingga: 

𝑑(𝑧𝐾)

𝑑 (
𝑡
𝑟)

=
𝐶2𝑦𝐾 ⋅ 𝑧𝐾

𝐴2 + 𝑦𝐾
− 𝐷2𝑧𝐾 

𝑟𝐾
𝑑𝑧

𝑑
=

𝐶2𝐾
2𝑦𝑧

𝐴2 + 𝑦𝐾
− 𝐷2𝑧𝐾 

Bagi kedua ruas dengan rK, diperoleh: 

𝑑𝑧

𝑑𝑡
=

𝐶2𝐾

𝑟
⋅

𝑦𝑧

𝐴2 + 𝑦𝐾
−

𝐷2𝑧

𝑟
 

𝑑𝑧

𝑑𝑡
=

𝐶2𝐾

𝑟
⋅

𝑦𝑧

𝐴2 (1 +
𝐾
𝐴2

𝑦)
−

𝐷2𝑧

𝑟
 

𝑑𝑧

𝑑𝑡
=

𝐶2𝐾

𝑟𝐴2
⋅

𝑦𝑧

1 +
𝐾
𝐴2

𝑦
−

𝐷2𝑧

𝑟
 

Sehingga didapat parameter baru, yaitu 

𝑞 =
𝐶2𝐾

𝑟𝐴2
, µ =

𝐷2

𝑟
 

Kemudian, mensubstitusikan parameter q, b, dan μ, diperoleh persamaan menjadi: 

𝑑𝑧

𝑑𝑡
=

𝑞𝑦𝑧

1 + 𝑏𝑦
− µ𝑧 

(4.4) 

Pemisalan notasi (𝑡) hanya digunakan pada tahap nondimensonalisasi, untuk 

selanjutnya untuk menjaga konsistensi penulisan model notasi (𝑡) akan digunakan 
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kembali. Dengan demikian, seluruh sistem model telah berhasil ditransformasikan 

ke bentuk nondimensional, sehingga diperoleh persamaan baru sebagai berikut: 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥(𝑡)(1 − 𝑥(𝑡)) −

𝑐𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
= 𝑥𝐹(𝑥, 𝑦),   𝑥(0) > 0, 

𝑑𝑦(𝑡)

𝑑𝑡
=

𝑚𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑𝑦(𝑡) −

𝑝𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
= 𝑦𝐺(𝑥, 𝑦, 𝑧),    𝑦(0) > 0, 

𝑑𝑧(𝑡)

𝑑𝑡
=

𝑞𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
− µ𝑧(𝑡) = 𝑧𝐻(𝑦), 𝑧(0) > 0. 

 

 

(4.5) 

Model ini merepresentasikan interaksi antarspesies secara lebih sederhana dan tidak 

merubah dinamika biologisnya. Sistem ini akan digunakan sebagai dasar dalam 

analisis selanjutnya. 

 

4.2 Analisis Dinamik Model Predator-Prey 

Dalam penelitian ini, penulis akan menganalisis model predator-prey dengan 

respon fungsional Holling Type II berdasarkan pada artikel Maiti dkk, 2008 dengan 

model sebagai berikut: 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥(𝑡)(1 − 𝑥(𝑡)) −

𝑐𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
 

𝑑𝑦(𝑡)

𝑑𝑡
=

𝑚𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑𝑦(𝑡) −

𝑝𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
 

𝑑𝑧(𝑡)

𝑑𝑡
=

𝑞𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
− µ𝑧(𝑡) 

 

 

(4.6) 

Nilai parameter yang digunakan pada sistem persamaan diferensial dari 

model predator-prey tersebut seluruhnya mengacu pada Maiti dkk, (2008). Selain 

itu, untuk memperluas cakupan analisis, khususnya pada analisis sensitivitas, maka 

pada simulasi kedua dilakukan modifikasi nilai parameter yaitu pada variabel m. 

Perubahan nilai parameter m ini dilakukan bertujuan untuk melihat pengaruh 
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perubahan laju konversi predator terhadap dinamika sistem. Dengan demikian, 

berikut rincian nilai parameter yang digunakan pada model predator-prey tersebut 

yaitu: 

Tabel 4.1 Deskripsi Nilai Variabel dan Nilai Parameter 

Parameter Deskripsi Nilai Sumber Nilai 

Modifikasi 

𝑥(0) Populasi mangsa (Prey) 0.5 (Maiti dkk, 

2008) 

0.5 

𝑦(0) Populasi predator 0.5 (Maiti dkk, 

2008) 

0.5 

𝑧(0) Populasi superpredator 4 (Maiti dkk, 

2008) 

4 

c Laju konsumsi maksimum 

predator terhadap mangsa 

1.5 (Maiti dkk, 

2008) 

1.5 

m Efisiensi konversi mangsa  

menjadi predator 

2.5 (Maiti dkk, 

2008) 

4.35 

p Laju konsumsi maksimum 

superpredator terhadap 

predator 

0.05 (Maiti dkk, 

2008) 

0.05 

q Efisiensi konversi predator 

menjadi superpredator 

0.3 (Maiti dkk, 

2008) 

0.3 

a Efek saturasi pada interaksi 

predator 

3 (Maiti dkk, 

2008) 

3 

b Efek saturasi pada interaksi 

superpredator 

0.4 (Maiti dkk, 

2008) 

0.4 
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d Laju kematian alami predator 0.4 (Maiti dkk, 

2008) 

0.4 

µ Laju kematian alami 

superpredator 

0.075 (Maiti dkk, 

2008) 

0.075 

 

4.3 Penentuan Titik Kesetimbangan Model Predator-Prey 

4.3.1 Pada Titik Kesetimbangan Pertama 

Pada titik kesetimbangan awal, untuk mencari titiknya langkah pertama 

maka perlu dilakukannya 
𝑑𝑥(𝑡)

𝑑𝑡
= 0,

𝑑𝑦(𝑡)

𝑑𝑡
= 0 dan

𝑑𝑧(𝑡)

𝑑𝑡
= 0 pada persamaan (4.6) 

sehingga diperoleh: 

𝑥(𝑡)(1 − 𝑥(𝑡)) −
𝑐𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
= 0 

(4.7a) 

𝑚𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑𝑦(𝑡) −

𝑝𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
= 0 

(4.7b) 

𝑞𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
− µ𝑧(𝑡) = 0 

(4.7c) 

Jika menetapkan turunan persamaan (4.7a), maka persamaan tersebut menjadi: 

𝑥(𝑡)(1 − 𝑥(𝑡)) −
𝑐𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
= 0 

𝑥(𝑡) ((1 − 𝑥(𝑡)) −
𝑐𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
) = 0 

𝑥(𝑡) = 0     atau      (1 − 𝑥(𝑡)) −
𝑐𝑦(𝑡)

1+𝑎𝑥(𝑡)
= 0 (4.8) 

Dengan mengambil langkah lebih lanjut dari persamaan (4.7b) dengan 

mendefinisikan 
𝑑𝑦(𝑡)

𝑑𝑡
= 0 dengan 𝑥(𝑡) = 0 sesuai dengan persamaan (4.8), maka 

persamaan tersebut berubah menjadi: 
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𝑚𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑𝑦(𝑡) −

𝑝𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
= 0 

𝑦(𝑡) (
𝑚𝑥(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑 −

𝑝𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
) = 0 

   y(𝑡) = 0       atau      
𝑚𝑥(𝑡)

1+𝑎𝑥(𝑡)
− 𝑑 −

𝑝𝑧(𝑡)

1+𝑏𝑦(𝑡)
= 0 (4.9) 

Selanjutnya dari persamaan (4.7c) didefiniskan sebagai 
𝑑𝑧(𝑡)

𝑑𝑡
= 0 dengan 𝑥(𝑡) =

0 dan 𝑦(𝑡) = 0, maka persamaan tersebut berubah menjadi: 

𝑞𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
− µ𝑧(𝑡) = 0 

𝑧(𝑡) (
𝑞𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
− µ) = 0 

  𝑧(𝑡) = 0     dan     
𝑞𝑦(𝑡)

1+𝑏𝑦(𝑡)
− µ = 0 (4.10) 

Sehingga didapatkan titik kesetimbangan yang pertama yang memenuhi 

persamaan (4.5) adalah 𝐸0 = (0,0,0). Pernyataan ini membuktikan bahwa ketika 

tidak ada populasi mangsa, maka proses rantai makanan terputus menandakan 

populasi predator dan superpredator tidak bisa bertahan hidup. 

 

4.3.2 Pada Titik Kesetimbangan Kedua 

Pada titik ini, menentukan titik kesetimbangan dengan menggunakan 

persamaan (4.7c) dengan mensubstitusikan 𝑦(𝑡) = 0 sesuai dengan persamaan 

(4.9), maka persamaan tersebut menjadi: 

(𝑞𝑦(𝑡)𝑧(𝑡))

(1 + 𝑏𝑦(𝑡))
− µ𝑧(𝑡) = 0 

(𝑞(0)𝑧(𝑡))

(1 + 𝑏𝑦(𝑡))
− µ𝑧(𝑡) = 0 
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−µ𝑧(𝑡) = 0 

𝑧(𝑡) = 0 

Selanjutnya, persamaan (4.7a) dengan mendefinisikan 
𝑑𝑥(𝑡)

𝑑𝑡
= 0  dan dengan 

menetapkan 𝑦(𝑡) = 0 berdasarkan persamaan (4.9), maka 

𝑥(𝑡)(1 − 𝑥(𝑡)) −
𝑐𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
= 0 

𝑥(𝑡)(1 − 𝑥(𝑡)) −
𝑐𝑥(𝑡)(0)

1 + 𝑎𝑥(𝑡)
= 0 

𝑥(𝑡)(1 − 𝑥(𝑡)) = 0  

  𝑥(𝑡) = 0     dan     1 − 𝑥(𝑡) = 0 

                                            𝑥(𝑡) = 1 

Sehingga ditetapkan titik kesetimbangan kedua yang memenuhi persamaan (4.5) 

adalah 𝐸1 = (1,0,0). 

 

4.3.3 Pada Titik Kesetimbangan Ketiga 

Pada titik ini, langkah pertama mendefiniskan 
𝑑𝑦(𝑡)

𝑑𝑡
= 0  pada persamaan 

(4.7b), maka persamaan menjadi: 

𝑚𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑𝑦(𝑡) −

𝑝𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
= 0 

𝑚𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑𝑦(𝑡) = 0 

𝑦(𝑡) (
𝑚𝑥(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑) = 0 

𝑦(𝑡) = 0    𝑎𝑡𝑎𝑢   
𝑚𝑥(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑 = 0 



40 

 

 

 

 
𝑚𝑥(𝑡)

1 + 𝑎𝑥(𝑡)
= 𝑑 

𝑚𝑥(𝑡) = 𝑑 + 𝑎𝑥(𝑡)𝑑 

Sehingga diperoleh 

𝑥(𝑡)(𝑚 − 𝑎𝑑) = 𝑑           ⇒          𝑥(𝑡) =
𝑑

𝑚 − 𝑎𝑑
 

(4.11) 

Pada persamaan (4.7a) didefinisikan 
𝑑𝑥(𝑡)

𝑑𝑡
= 0  dengan 𝑥(𝑡) =

𝑑

𝑚−𝑎𝑑
 sesuai 

dengan persamaan (4.11), maka persamaan tersebut menjadi 

𝑥(𝑡)(1 − 𝑥(𝑡)) −
𝑐𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
= 0 

𝑥(𝑡) ((1 − 𝑥(𝑡)) −
𝑐𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
) = 0 

 𝑥(𝑡) = 0     𝑎𝑡𝑎𝑢     1 − 𝑥(𝑡) −
𝑐𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
= 0 

                                                            1 − 𝑥(𝑡) =
𝑐𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
 

Kemudian substitusikan 𝑥(𝑡) =
𝑑

𝑚−𝑎𝑑
: 

1 −
𝑑

𝑚 − 𝑎𝑑
=

𝑐𝑦(𝑡)

1 +
𝑎𝑑

𝑚 − 𝑎𝑑

 

𝑚 − 𝑎𝑑 − 𝑑

𝑚 − 𝑎𝑑
=

𝑐𝑦(𝑡)

𝑚 − 𝑎𝑑 + 𝑎𝑑
𝑚 − 𝑎𝑑

 

(
𝑚 − 𝑎𝑑 − 𝑑

𝑚 − 𝑎𝑑
) (

𝑚

𝑚 − 𝑎𝑑
) = 𝑐𝑦(𝑡) 

𝑚(𝑚 − 𝑎𝑑 − 𝑑)

(𝑚 − 𝑎𝑑)2
= 𝑐𝑦(𝑡) 

Sehingga diperoleh 
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𝑚(𝑚 − 𝑎𝑑 − 𝑑)

𝑐(𝑚 − 𝑎𝑑)2
= 𝑦(𝑡) 

(4.12) 

Dengan demikian, titik kesetimbangan ketiga diperoleh 𝐸2 = (𝑥̂, 𝑦̂, 0)  dimana 

𝑥̂ =
𝑑

𝑚−𝑎𝑑
 dan 𝑦̂ =

𝑚(𝑚−𝑎𝑑−𝑑)

𝑐(𝑚−𝑎𝑑)2
. 

 

4.3.4 Pada Titik Kesetimbangan Keempat 

Pada titik kesetimbangan keempat, langkah awal dengan menggunakan 

persamaan (4.7a) sampai (4.7c) tersebut yang didefinisikan dengan 
𝑑𝑥(𝑡)

𝑑𝑡
=

𝑑𝑦(𝑡)

𝑑𝑡
=

𝑑𝑧(𝑡)

𝑑𝑡
= 0, maka persamaan tersebut menjadi:  

𝑞𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
− µ𝑧(𝑡) = 0 

 𝑧(𝑡) (
𝑞𝑦(𝑡)

1 + 𝑏𝑦(𝑡)
− µ) = 0 

𝑧(𝑡) = 0      atau      
𝑞𝑦(𝑡)

1+𝑏𝑦(𝑡)
− µ = 0 

𝑞𝑦(𝑡)

1 + 𝑏𝑦(𝑡)
= µ 

𝑞𝑦(𝑡) = µ(1 + 𝑏𝑦(𝑡)) 

𝑞𝑦(𝑡) = µ + µ𝑏𝑦(𝑡) 

𝑞𝑦(𝑡) − µ𝑏𝑦(𝑡) = µ 

𝑦(𝑡)(𝑞 − µ𝑏) = µ 

Maka diperoleh nilai 𝑦(𝑡) dari persamaan (4.7c) 

𝑦(𝑡) =
µ

(𝑞 − µ𝑏)
 (4.13a) 

Selanjutnya substitusikan persamaan (4.13a) ke persamaan (4.7a) 
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𝑥(𝑡)(1 − 𝑥(𝑡)) −
𝑐𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
= 0 

 𝑥(𝑡) ((1 − 𝑥(𝑡)) −
𝑐𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
) = 0 

𝑥(𝑡) = 0        atau      (1 − 𝑥(𝑡)) −
𝑐𝑦(𝑡)

1+𝑎𝑥(𝑡)
= 0 

(1 − 𝑥(𝑡)) =
𝑐𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
 

 (1 − 𝑥(𝑡))(1 + 𝑎𝑥(𝑡)) = 𝑐𝑦(𝑡) 

 (1 − 𝑥(𝑡))(1 + 𝑎𝑥(𝑡)) =
𝑐µ

(𝑞 − 𝑏µ)
 

 1 + 𝑎𝑥(𝑡) − 𝑥(𝑡) − 𝑎(𝑥(𝑡))
2

=
𝑐µ

(𝑞 − 𝑏µ)
 

−𝑎(𝑥(𝑡))
2
+ (𝑎 − 1)𝑥(𝑡) + (1 −

𝑐µ

(𝑞 − 𝑏µ)
) = 0 

Selanjutnya, gunakan rumus kuadrat untuk menyelesaikan persamaan tersebut 

untuk mendapatkan nilai 𝑥∗ dengan melakukan pemisalan sebagai berikut: 

𝐴 = −𝑎 

𝐵 = 𝑎 − 1 

𝐶 = 1 −
𝑐µ

(𝑞 − 𝑏µ)
 

Sehingga, 

𝑥(𝑡) =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
 

𝑥(𝑡) =

−(𝑎 − 1) ± √(𝑎 − 1)2 − 4(−𝑎) (1 −
𝑐µ

𝑞 − 𝑏µ
)

2(−𝑎)
 

𝑥(𝑡) =
−(𝑎 − 1) ± √(𝑎 − 1)2 + 4𝑎 (

𝑞 − µ(𝑏 + 𝑐)
𝑞 − 𝑏µ

)

−2𝑎
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Misalkan 𝐴 = √(𝑎 − 1)2 + 4𝑎 (
𝑞−µ(𝑏+𝑐)

𝑞−𝑏µ
), maka diperoleh 

𝑥(𝑡) =
𝐴 + 𝑎 − 1

2𝑎
 

(4.13b) 

Kemudian untuk mencari nilai 𝑧∗, gunakan persamaan (4.7b) 

𝑚𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑𝑦(𝑡) −

𝑝𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
= 0 

𝑦(𝑡) (
𝑚𝑥(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑 −

𝑝𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
) = 0 

Sehingga diperoleh  

𝑦(𝑡) = 0     atau      
𝑚𝑥(𝑡)

1+𝑎𝑥(𝑡)
− d −

𝑝𝑧(𝑡)

1+𝑏𝑦(𝑡)
= 0 

Selanjutnya, subtitusikan persamaan (4.13a) dan persamaan (4.13b) ke dalam 

persamaan di atas, sehingga 

𝑚𝑥(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑 −

𝑝𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
= 0 

𝑚𝑥(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑 =

𝑝𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
 

  
𝑚 (

𝐴 + 𝑎 − 1
2𝑎 )

1 + 𝑎 (
𝐴 + 𝑎 − 1

2𝑎 )
− 𝑑 =

𝑝𝑧(𝑡)

1 + 𝑏 (
µ

𝑞 − 𝑏µ
)
 

𝑚 (
𝐴 + 𝑎 − 1

2𝑎 )

1 +
𝐴 + 𝑎 − 1

2

− 𝑑 =
𝑝𝑧(𝑡)

𝑞 − 𝑏µ + 𝑏µ
𝑞 − 𝑏µ

 

𝑚 (
𝐴 + 𝑎 − 1

2𝑎 )

𝐴 + 𝑎 + 1
2

− 𝑑 =
𝑝𝑧(𝑡)

𝑞
𝑞 − 𝑏µ

 

𝑚 (
𝐴 + 𝑎 − 1

2𝑎
) (

2

𝐴 + 𝑎 + 1
) − 𝑑 =

𝑝𝑧(𝑡)(𝑞 − 𝑏𝑢)

𝑞
 



44 

 

 

 

  
𝑚(𝐴 + 𝑎 − 1)

𝑎(𝐴 + 𝑎 + 1)
− 𝑑 =

𝑝𝑧(𝑡)(𝑞 − 𝑏𝑢)

𝑞
 

 
𝑚(𝐴 + 𝑎 − 1) − 𝑑(𝐴 + 𝑎 + 1)

𝑎(𝐴 + 𝑎 + 1)
=

𝑝𝑧(𝑡)(𝑞 − 𝑏𝑢)

𝑞
 

𝑞{(𝐴 + 𝑎)(𝑚 − 𝑎𝑑) + 𝑑 − 𝑚}

𝑎𝑝(𝑞 − 𝑏µ)(𝐴 + 𝑎 + 1)
= 𝑧(𝑡) 

(4.13c) 

Dengan demikian titik kesetimbangan 𝐸∗(𝑥∗, 𝑦∗, 𝑧∗)  dari persamaan (4.7a) 

sampai (4.7c) adalah sebagai berikut: 

𝑥∗ =
𝐴 + 𝑎 − 1

2𝑎
,  𝑦∗ =

µ

𝑞 − 𝑏µ
, 𝑧∗ =

𝑞{(𝐴 + 𝑎)(𝑚 − 𝑎𝑑) + 𝑑 − 𝑚}

𝑎𝑝(𝑞 − 𝑏µ)(𝐴 + 𝑎 + 1)
 

 

4.4 Linierisasi Model 

Linierisasi model merupakan salah satu metode yang digunakan untuk 

mengubah persamaan diferensial nonlinier menjadi bentuk linier untuk 

mempermudah analisis. Hal ini dilakukan dengan melakukan ekspansi deret Tylor 

dan menghilangkan suku nonlinier di sekitar titik kesetimbangan. Berdasarkan 

persamaan pada persamaan (4.6) berikut: 

𝑑𝑥

𝑑𝑡
= x(1 − 𝑥) −

𝑐𝑥𝑦

1 + 𝑎𝑥
 

𝑑𝑦

𝑑𝑡
=

𝑚𝑥𝑦

1 + 𝑎𝑥
− dy −

𝑝𝑦𝑧

1 + 𝑏𝑦
 

𝑑𝑧

𝑑𝑡
=

𝑞𝑦𝑧

1 + 𝑏𝑦
− µ𝑧 

Kemudian dimisalkan sebagai 

𝑓1(𝑥, 𝑦, 𝑧) = x(1 − 𝑥) −
𝑐𝑥𝑦

1 + 𝑎𝑥
 

𝑓2(𝑥, 𝑦, 𝑧) =
𝑚𝑥𝑦

1 + 𝑎𝑥
− dy −

𝑝𝑦𝑧

1 + 𝑏𝑦
 

 

 

(4.14) 
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𝑓3(𝑥, 𝑦, 𝑧) =
𝑞𝑦𝑧

1 + 𝑏𝑦
− µ𝑧 

Sehingga persamaan (4.6) menjadi: 

𝑥̇(𝑡) = 𝑓1(𝑥, 𝑦, 𝑧) 

𝑦̇(𝑡) = 𝑓2(𝑥, 𝑦, 𝑧) 

𝑧̇(𝑡) = 𝑓3(𝑥, 𝑦, 𝑧) 

 

(4.15) 

Selanjutnya, dilakukan linierisasi dengan menggunakan deret Taylor sebagai 

berikut: 

𝑓1(𝑥, 𝑦, 𝑧) ≈ 𝑓1(𝑥
∗, 𝑦∗, 𝑧∗) +

𝜕𝑓1
𝜕𝑥

(𝑥∗, 𝑦∗, 𝑧∗)(𝑥(𝑡) − 𝑥∗)

+
𝜕𝑓1
𝜕𝑦

(𝑥∗, 𝑦∗, 𝑧∗)(𝑦(𝑡) − 𝑦∗)

+
𝜕𝑓1
𝜕𝑧

(𝑥∗, 𝑦∗, 𝑧∗)(𝑧(𝑡) − 𝑧∗) 

 

 

(4.16a) 

𝑓2(𝑥, 𝑦, 𝑧) ≈ 𝑓2(𝑥
∗, 𝑦∗, 𝑧∗) +

∂𝑓2
∂𝑥

(𝑥∗, 𝑦∗, 𝑧∗)(𝑥(𝑡) − 𝑥∗)

+
∂𝑓2
∂𝑦

(𝑥∗, 𝑦∗, 𝑧∗)(𝑦(𝑡) − 𝑦∗)

+
∂𝑓2
∂𝑧

(𝑥∗, 𝑦∗, 𝑧∗)(𝑧(𝑡) − 𝑧∗) 

 

 

(4.16b) 

𝑓3(𝑥, 𝑦, 𝑧) ≈ 𝑓3(𝑥
∗, 𝑦∗, 𝑧∗) +

∂𝑓3
∂𝑥

(𝑥∗, 𝑦∗, 𝑧∗)(𝑥(𝑡) − 𝑥∗)

+
∂𝑓3
∂𝑦

(𝑥∗, 𝑦∗, 𝑧∗)(𝑦(𝑡) − 𝑦∗)

+
∂𝑓3
∂𝑧

(𝑥∗, 𝑦∗, 𝑧∗)(𝑧(𝑡) − 𝑧∗) 

 

 

(4.16c) 

dimana, 

𝑓1(𝑥
∗, 𝑦∗, 𝑧∗) = 𝑥∗(1 − 𝑥∗) −

𝑐𝑥∗𝑦∗

1 + 𝑎𝑥∗
 

(4.17a) 
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∂𝑓1
∂𝑥

(𝑥∗, 𝑦∗, 𝑧∗) = 1 − 2𝑥∗ −
𝑐𝑦∗

1 + 𝑎𝑥∗
+

𝑐𝑎𝑥∗𝑦∗

(1 + 𝑎𝑥∗)2
 

∂𝑓1
∂𝑦

(𝑥∗, 𝑦∗, 𝑧∗) = −
𝑐𝑥∗

1 + 𝑎𝑥∗
 

∂𝑓1
∂𝑧

(𝑥∗, 𝑦∗, 𝑧∗) = 0 

𝑓2(𝑥
∗, 𝑦∗, 𝑧∗) =

𝑚𝑥∗𝑦∗

1 + 𝑎𝑥∗
− 𝑑𝑦∗ −

𝑝𝑦∗𝑧∗

1 + 𝑏𝑦∗
 

∂𝑓2
∂𝑥

(𝑥∗, 𝑦∗, 𝑧∗) =
𝑚𝑦∗

1 + 𝑎𝑥∗
−

𝑚𝑎𝑥∗𝑦∗

(1 + 𝑎𝑥∗)2
 

∂𝑓2
∂𝑦

(𝑥∗, 𝑦∗, 𝑧∗) =
𝑚𝑥∗

1 + 𝑎𝑥∗
− d −

𝑝𝑧∗

1 + 𝑏𝑦∗
+

𝑝𝑏𝑦∗𝑧∗

(1 + 𝑏𝑦∗)2
 

∂𝑓2
∂𝑧

(𝑥∗, 𝑦∗, 𝑧∗) = −
𝑝𝑦∗

1 + 𝑏𝑦∗
 

(4.17b) 

𝑓3(𝑥
∗, 𝑦∗, 𝑧∗) =

𝑞𝑦∗𝑧∗

1 + 𝑏𝑦∗
− µ𝑧∗ 

∂𝑓3
𝑑𝑥

(𝑥∗, 𝑦∗, 𝑧∗) = 0 

∂𝑓3
∂𝑦

(𝑥∗, 𝑦∗, 𝑧∗) =
𝑞𝑧∗

1 + 𝑏𝑦∗
−

𝑞𝑏𝑦∗𝑧∗

(1 + 𝑏𝑦∗)2
 

∂𝑓3
∂𝑧

(𝑥∗, 𝑦∗, 𝑧∗) =
𝑞𝑦∗

1 + 𝑏𝑦∗
− µ 

(4.17c) 

Maka diperoleh hasil linierisasi sebagai berikut: 

𝑥̇(𝑡) ≈ 𝑥∗(1 − 𝑥∗) −
𝑐𝑥∗𝑦∗

1 + 𝑎𝑥∗

+ (1 − 2𝑥∗ −
𝑐𝑦∗

1 + 𝑎𝑥∗
+

𝑐𝑎𝑥∗𝑦∗

(1 + 𝑎𝑥∗)2
) (𝑥(𝑡) − 𝑥∗)

− (
𝑐𝑥∗

1 + 𝑎𝑥∗
) (𝑦(𝑡) − 𝑦∗) 

 

 

(4.18a) 
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𝑦̇(𝑡) ≈
𝑚𝑥∗𝑦∗

1 + 𝑎𝑥∗
− 𝑑𝑦∗ −

𝑝𝑦∗𝑧∗

1 + 𝑏𝑦∗

+ (
𝑚𝑦∗

1 + 𝑎𝑥∗
−

𝑚𝑎𝑥∗𝑦∗

(1 + 𝑎𝑥∗)2
) (𝑥(𝑡) − 𝑥∗)

+ (
𝑚𝑥∗

1 + 𝑎𝑥∗
− 𝑑 −

𝑝𝑧∗

1 + 𝑏𝑦∗
+

𝑝𝑏𝑦∗𝑧∗

(1 + 𝑏𝑦∗)2
) (𝑦(𝑡)

− 𝑦∗) − (
𝑝𝑦∗

1 + 𝑏𝑦∗
) (𝑧(𝑡) − 𝑧∗) 

 

 

 

(4.18b) 

𝑧̇(𝑡) ≈
𝑞𝑦∗𝑧∗

1 + 𝑏𝑦∗
− µ𝑧∗ + (

𝑞𝑧∗

1 + 𝑏𝑦∗
−

𝑞𝑏𝑦∗𝑧∗

(1 + 𝑏𝑦∗)2
) (𝑦(𝑡) − 𝑦∗)

+ (
𝑞𝑦∗

1 + 𝑏𝑦∗
− µ) (𝑧(𝑡) − 𝑧∗) 

 

(4.18c) 

 

4.5 Analisis Kestabilan pada Titik Kesetimbangan 

Untuk memastikan stabilitas pada titik kesetimbangan, maka diperlukannya 

nilai eigen dari titik kesetimbangan dengan menggunakan matriks Jacobian. 

Matriks Jacobian diperoleh dari persamaan linier berikut ini. 

𝐽 =

[
 
 
 
 1 − 2𝑥 −

𝑐𝑦

1+𝑎𝑥
+

𝑐𝑎𝑥𝑦

(1+𝑎𝑥)2
−

𝑐𝑥

1+𝑎𝑥
0

𝑚𝑦

1+𝑎𝑥
−

𝑚𝑎𝑥𝑦

(1+𝑎𝑥)2
𝑚𝑥

1+𝑎𝑥
− 𝑑 −

𝑝𝑧

1+𝑏𝑦
+

𝑝𝑏𝑦𝑧

(1+𝑏𝑦)2
−

𝑝𝑦

1+𝑏𝑦

0
𝑞𝑧

1+𝑏𝑦
−

𝑞𝑏𝑦𝑧

(1+𝑏𝑦)2
𝑞𝑦

1+𝑏𝑦
− µ]

 
 
 
 

  

 

 

(4.19) 

Berdasarkan matriks Jacobian yang diperoleh, diperlukannya anaisis terhadap 

stabilas sebagai berikut: 

 

4.5.1 Titik Kesetimbangan Pertama 

Titik Kesetimbangan pertama yaitu 𝐸0 = (0,0,0) disubstitusikan ke dalam 

persamaan (4.19), sehingga diperoleh: 
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𝐽(𝐸0) = [
1 0 0
0 −𝑑 0
0 0 −µ

] 
(4.20) 

Dengan matriks Jacobian di atas, maka nilai eigen dapat dicari dengan:  

𝑑𝑒𝑡 (𝐽(𝐸0) − 𝜆𝐼) 

⇔ 𝑑𝑒𝑡 [[
1 0 0
0 −𝑑 0
0 0 −µ

] − 𝜆 [
1 0 0
0 1 0
0 0 1

]] = 0 

⇔ 𝑑𝑒𝑡 [[
1 0 0
0 −𝑑 0
0 0 −µ

] − [
𝜆 0 0
0 𝜆 0
0 0 𝜆

]] = 0 

⇔ 𝑑𝑒𝑡 [
1 − 𝜆 0 0

0 −𝑑 − 𝜆 0
0 0 −µ − 𝜆

] = 0 

⇔ (1 − 𝜆) ⋅ (−𝑑 − 𝜆) ⋅ (−µ − 𝜆) = 0 

Maka diperoleh nilai eigen sebagai berikut: 

𝜆1 = 1 

𝜆2 = −𝑑 

𝜆3 = −µ 

 

(4.21) 

Berdasarkan hasil nilai eigen tersebut, diperoleh nilai eigen 1, −𝑑, dan −µ. 

Nilai eigen dikatakan stabil apabila semua nilai eigen memiliki riil negatif. Maka 

dapat disimpulkan bahwa untuk titik kesetimbangan 𝐸0 = (0,0,0) tidak stabil. Hal 

ini dikarenakan adanya satu nilai yang bersifat riil positif. 

 

4.5.2 Titik Kesetimbangan Kedua 

Titik Kesetimbangan kedua yaitu 𝐸1 = (1,0,0), kemudian disubstitusikan 

ke dalam persamaan (4.19), sehingga diperoleh: 
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𝐽(𝐸1) =

[
 
 
 
 −1 −

𝑐

𝑎 + 1
0

0
𝑚

𝑎 + 1
− 𝑑 0

0 0 −µ]
 
 
 
 

 

 

(4.22) 

Dengan menggunakan matriks Jacobian tersebut, maka nilai eigen dapat dicari 

dengan: 

𝑑𝑒𝑡 (𝐽(𝐸1) − 𝜆𝐼) 

⇔ 𝑑𝑒𝑡

[
 
 
 
 
 

[
 
 
 
 −1 −

𝑐

𝑎 + 1
0

0
𝑚

𝑎 + 1
− 𝑑 0

0 0 −µ]
 
 
 
 

− 𝜆 [
1 0 0
0 1 0
0 0 1

]

]
 
 
 
 
 

= 0 

 ⇔ 𝑑𝑒𝑡

[
 
 
 
 
 

[
 
 
 
 −1 −

𝑐

𝑎 + 1
0

0
𝑚

𝑎 + 1
− 𝑑 0

0 0 −µ]
 
 
 
 

− [
𝜆 0 0
0 𝜆 0
0 0 𝜆

]

]
 
 
 
 
 

= 0 

 ⇔ 𝑑𝑒𝑡

[
 
 
 
 −1 − 𝜆 −

𝑐

𝑎 + 1
0

0
𝑚

𝑎 + 1
− 𝑑 − 𝜆 0

0 0 −µ − 𝜆]
 
 
 
 

= 0 

 ⇔ (−1 − 𝜆) ⋅ ( 
𝑚

𝑎 + 1
− 𝑑 − 𝜆) ⋅ (−µ − 𝜆) = 0 

Maka, diperoleh nilai eigen  

𝜆1 = −1 

𝜆2 =
𝑚

𝑎 + 1
− 𝑑 

𝜆3 = −µ 

 

(4.23) 

Berdasarkan hasil nilai aigen tersebut, diperoleh nilai eigen yaitu −1, 
𝑚

𝑎+1
−

𝑑, dan −µ. Pada nilai eigen untuk 𝜆2 =
𝑚

𝑎+1
− 𝑑 bisa bernilai positif atau negatif. 

Sehingga dibutuhkannya syarat kestabilan yaitu jika 𝜆2 < 0  ⟹  
𝑚

𝑎+1
− 𝑑 < 0 
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artinya 𝑚 < (𝑎 + 1)𝑑, maka semua nilai eigen bernilai negatif. Sehingga untuk 

titik kesetimbangan 𝐸1 = (1,0,0) dapat dikatakan stabil. Namun, apabila 𝜆2 >

0  ⟹  
𝑚

𝑎+1
− 𝑑 > 0, maka titik kesetimbangan menjadi tidak stabil. 

 

4.5.3 Titik Kesetimbangan Ketiga 

Pada titik kesetimbangan selanjutnya yaitu 𝐸2 = (𝑥̂, 𝑦̂, 0), pertama lakukan 

substitusi ke dalam persamaan (4.19). Dimana pada kondisi 𝐸2  untuk mencari 

matriks Jacobian didefinisikan sebagai 𝑥̂ =
𝑑

𝑚−𝑎𝑑
 sesuai dengan persamaan (4.11), 

dan 𝑦̂ =
𝑚(𝑚−𝑎𝑑−𝑑)

𝑐(𝑚−𝑎𝑑)2
 sesuai dengan persamaan (4.12). pada titik kesetimbangan 𝐸2, 

persamaan kesetimbangan dari sistem mem sehingga diperoleh  

𝐽(𝐸2) =

[
 
 
 
 
 
 −𝑥̂ +

𝑐𝑎𝑥̂𝑦̂

(1 + 𝑎𝑥̂)2
−

𝑐𝑥̂

1 + 𝑎𝑥̂
0

𝑚𝑦̂

(1 + 𝑎𝑥̂)2
0 −

𝑝𝑦̂

1 + 𝑏𝑦̂

0 0
𝑞𝑦̂

1 + 𝑏𝑦̂
− µ

]
 
 
 
 
 
 

 

 

 

(4.24) 

Berdasarkan matriks Jacobian di atas, dikarenakan matriks yang diperoleh 

tidak termasuk ke dalam struktur segitiga, maka diperlukannya untuk mencari 

persamaan karakteristik dari  

𝑑𝑒𝑡(𝐽(𝐸2) − 𝜆𝐼) = 0 

⇔ 𝑑𝑒𝑡

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 −𝑥̂ +

𝑐𝑎𝑥̂𝑦̂

(1 + 𝑎𝑥̂)2
−

𝑐𝑥̂

1 + 𝑎𝑥̂
0

𝑚𝑦̂

(1 + 𝑎𝑥̂)2
0 −

𝑝𝑦̂

1 + 𝑏𝑦̂

0 0
𝑞𝑦̂

1 + 𝑏𝑦̂
− µ

]
 
 
 
 
 
 

− 𝜆 [
1 0 0
0 1 0
0 0 1

]

]
 
 
 
 
 
 
 

= 0 
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⇔ 𝑑𝑒𝑡

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 −𝑥̂ +

𝑐𝑎𝑥̂𝑦̂

(1 + 𝑎𝑥̂)2
−

𝑐𝑥̂

1 + 𝑎𝑥̂
0

𝑚𝑦̂

(1 + 𝑎𝑥̂)2
0 −

𝑝𝑦̂

1 + 𝑏𝑦̂

0 0
𝑞𝑦̂

1 + 𝑏𝑦̂
− µ

]
 
 
 
 
 
 

− [
𝜆 0 0
0 𝜆 0
0 0 𝜆

]

]
 
 
 
 
 
 
 

= 0 

Kemudian lakukan penyederhanaan persamaan menjadi 

⇔ det [[
−𝜈11 −𝜈12 0
𝜈21 0 −𝜈23

0 0 𝜈33

] − [
𝜆 0 0
0 𝜆 0
0 0 𝜆

]] 

Dengan 

𝜈11 = 𝑥̂ +
𝑐𝑎𝑥̂𝑦̂

(1 + 𝑎𝑥̂)2
 𝜈12 =

𝑐𝑥̂

1 + 𝑎𝑥̂
 

𝜈21 =
𝑚𝑦̂

(1 + 𝑎𝑥̂)2
 𝜈23 =

𝑝𝑦̂

1 + 𝑏𝑦̂
 

𝜈33 =
𝑞𝑦̂

1 + 𝑏𝑦̂
− µ 

 

Sehingga diperoleh 

⇔ 𝑑𝑒𝑡 [

−𝜈11 − 𝜆 −𝜈12 0
𝜈21 −𝜆 −𝜈23

0 0 𝜈33 − 𝜆
] = 0 

Berdasarkan matriks tersebut pada baris dan kolom ketiga yaitu 𝜈33 − 𝜆 

berinteksi terhadapa dirinya sendiri. Oleh karena itu, det (𝐽 − 𝜆𝐼)  dapat 

difaktorkan menjadi sebagai berikut: 

det(𝐽 − 𝜆𝐼) = (𝜈33 − 𝜆) ⋅ det [
−𝜈11 − 𝜆 −𝜈12

𝜈21 −𝜆
] 

Selanjutnya, hitung submatriks 2 × 2: 

det [
−𝜈11 − 𝜆 −𝜈12

𝜈21 −𝜆
] = (−𝜈11 − 𝜆)(−𝜆) − (−𝜈12)(𝜈21) 

= 𝜆2 + 𝜈11𝜆 + 𝜈12𝜈21 
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Jadi determinan keseluruhan menjadi sebagai berikut: 

det(𝐽 − 𝜆𝐼) = (𝜈33 − 𝜆) (𝜆2 + 𝜈11𝜆 + 𝜈12𝜈21) 

Dengan demikian, maka diperoleh nilai eigen sebagai berikut 

1. Untuk nilai eigen dari faktor kuadrat 

𝐴 = 1 

𝐵 = 𝜈11 

𝐶 = 𝜈12𝜈21 

Sehingga 

𝜆 =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
 

𝜆1,2 =
−𝐵 ± √𝐵2 − 4(1)𝐶

2(1)
 

𝜆1,2 =
−𝐵 ± √𝐵2 − 4𝐶

2
 

dengan 

𝐵 = 𝑥̂ +
𝑐𝑎𝑥̂𝑦̂

(1 + 𝑎𝑥̂)2
= 𝑥̂ (1 +

𝑐𝑎𝑦̂

(1 + 𝑎𝑥̂)2
) 

kemudian subtitusikan persamaan 1 − 𝑥̂ =
𝑐𝑦̂

1+𝑎𝑥̂
 

sehingga, diperoleh 

𝐵 = 𝑥̂ (1 +
𝑐𝑎𝑦̂

1 + 𝑎𝑥̂
⋅

1

1 + 𝑎𝑥̂
) 

= 𝑥̂ (1 +
𝑎(1 − 𝑥̂)

1 + 𝑎𝑥̂
) 

= 𝑥̂ (
1 + 𝑎𝑥̂ + 𝑎 − 𝑎𝑥̂

1 + 𝑎𝑥̂
) 

= 𝑥̂
(1 + 𝑎)

1 + 𝑎𝑥̂
 

𝐶 = (
𝑐𝑥̂

1 + 𝑎𝑥̂
) (

𝑚𝑦̂

(1 + 𝑎𝑥̂)2
) 

=
𝑐𝑚𝑥̂𝑦̂

(1 + 𝑎𝑥̂)3
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2. Untuk nilai eigen dari faktor linier 

𝜆3 = 𝜈33 =
𝑞𝑦̂

1 + 𝑏𝑦̂
− µ 

 

Dengan demikian, nilai eigen dari 𝐸2 adalah sebagai berikut: 

𝜆1,2 =
−𝐵 ± √𝐵2 − 4𝐶

2
 

𝜆3 =
𝑞𝑦̂

1 + 𝑏𝑦̂
− µ 

 

 

(4.25) 

Berdasarkan hasil nilai eigen tersebut, diperoleh nilai eigen yaitu  

𝜆1,2 =
−𝜈11±√(𝜈11)2−4𝜈12𝜈21

2
 dan 𝜆3 =

𝑞𝑦̂

1+𝑏𝑦̂
− µ . Titik kesetimbangan 𝐸2 =

(𝑥̂, 𝑦̂, 0)  dikatakan stabil asimtotik lokal apabila seluruh nilai eigen bernilai 

negatif, dimana hal ini terjadi apabila memenuhi syarat kestabilan yaitu 𝜆3 <

0, 𝐵 = −𝜈11 > 0 dan 𝐶 = 𝜈12𝜈21 > 0.  

 

4.5.4 Titik Kesetimbangan Keempat 

Pada bagian ini, titik kesetimbangan yang digunakan merupakan titik 

interior. Titik kesetimbangan 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗)  disubstitusikan kedalam matriks 

(4.19). Kemudian, dilakukan penyederhanaan pada matriks, sehingga diperoleh 

bentuk matriks sebagai berikut: 

𝑉(𝐸∗) = [
𝜐11 𝜐12 0
𝜐21 𝜐22 𝜐23

0 𝜐32 0
] 

 

(4.26) 

dengan 

𝜐11 = 𝑥∗ {−1 +
𝑎𝑐𝑦∗

(1 + 𝑎𝑥∗}2
} 𝜐12 = −

𝑐𝑥∗

1 + 𝑎𝑥∗
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𝜐21 =
𝑚𝑦∗

(1 + 𝑎𝑥∗}2
 𝜐22 =

𝑝𝑏𝑦∗𝑧∗

(1 + 𝑏𝑦∗}2
 

𝜐23 = −
𝑝𝑦∗

1 + 𝑏𝑦∗
 𝜐32 =

𝑞𝑧∗

(1 + 𝑏𝑦∗}2
 

Dengan menggunakan matriks Jacobian tersebut, maka nilai eigen dapat dicari 

dengan: 

det(𝑉(𝐸∗) − 𝜆𝐼) 

⇔ 𝑑𝑒𝑡 [[
𝜐11 𝜐12 0
𝜐21 𝜐22 𝜐23

0 𝜐32 0
] − 𝜆 [

1 0 0
0 1 0
0 0 1

]] 

⇔ 𝑑𝑒𝑡 [[
𝜐11 𝜐12 0
𝜐21 𝜐22 𝜐23

0 𝜐32 0
] − [

𝜆 0 0
0 𝜆 0
0 0 𝜆

]] 

⇔ 𝑑𝑒𝑡 [

𝜐11 − 𝜆 𝜐12 0
𝜐21 𝜐22 − 𝜆 𝜐23

0 𝜐32 −𝜆
] 

⇔ (𝜈11 − 𝜆) ⋅ det [
𝜐22 − 𝜆 𝜈23

𝜈32 −𝜆
] − 𝜈12 ⋅ det [

𝜈21 𝜈23

0 −𝜆
] 

⟺ (𝜈11 − 𝜆)(−𝜆(𝜈22 − 𝜆) − 𝜈23𝜈32) + 𝜈12𝜈21𝜆 

Sehingga diperoleh sebagai berikut: 

det(𝑉(𝐸∗) − 𝜆𝐼) = 𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0 

Dengan 

𝐴1 = −𝜐11 − 𝜐22  

𝐴2 = 𝜐11𝜐22 − 𝜐12𝜐21 − 𝜐23𝜐32 (4.27) 

𝐴3 = 𝜐11𝜐23𝜐32  

Selanjutnya, untuk menganalisis kestabilan, maka diperlukannya syarat 

berdasarkan kriteria Routh-Hurwitz agar semua akar persamaan bernilai negatif, 

yaitu: 
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𝐴1 > 0,       𝐴2 > 0,       𝐴3 > 0,       𝛥 > 0 

Dengan 

𝛥 ≡ 𝐴1𝐴2 − 𝐴3 

= −(𝜐11 + 𝜐22)( 𝜐11𝜐22−𝜐12𝜐21 − 𝜐23𝜐32) + 𝜐11𝜐23𝜐32 

 

(4.28) 

Dengan demikian, titik kesetimbangan untuk 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗)  dinyatakan 

stabil asimtotik lokal apabila memenuhi syarat Routh-Hurwiz, yaitu 𝐴1 > 0, 𝐴2 >

0, 𝐴3 > 0, dan 𝛥 = 𝐴1𝐴2 − 𝐴3 > 0. Apabila syarat ini terpenuhi, maka semua 

akar polinonial karakteristik bernilai negatif, sehingga titik kesetimbangan 

𝐸3(𝑥
∗, 𝑦∗, 𝑧∗)  bersifat stabil.  

 

Berdasarkan keempat titik kesetimbangan yang diperoleh sebelumnya, tidak 

semua titik kesetimbangan tersebut selalu bermakna secara biologis. Oleh karena 

itu, diperlukan konsep eksistensi titik kesetimbangan. Eksistensi menunjukkan 

apakah nilai populasi pada titik kesetimbangan tidak bernilai negatif, sehingga 

memungkinkan terjadinya secara biologis. Pada model ini terdapat titik 

kesetimbangan yang selalu eksis dan titik kesetimbangan yang konsistensinya 

bergantung dengan parameter tertentu. Berikut adalah tabel yang menyajikan 

eksistensi dan kestabilandari keempat titik kesetimbangan. 

Tabel 4. 2 Syarat Kestabilan Model Predator-Prey dengan Respon Fungsional Holling 

Type II 

Titik 

Kesetimbangan 

Eksistensi Syarat 

Kestabilan 

Keterangan 

𝐸0(0,0,0) Selalu ada - Tidak stabil 

𝐸1(1,0,0) Selalu ada 𝑚 < (𝑎 + 1)𝑑 Stabil 
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𝐸2(𝑥̂, 𝑦̂, 0) Ada jika: 

𝑚 > (𝑎 + 1)𝑑 

𝑞𝑦

1 + 𝑏𝑦
< µ, 

𝐵 > 0, 𝐶 > 0 

Stabil 

𝐸3(𝑥
∗, 𝑦∗, 𝑧∗) Ada jika: 

𝑞 > (𝑏 + 𝑐)µ 

𝑚 >
𝑎𝑑(𝐴 + 𝑎 + 1)

𝐴 + 𝑎 − 1
 

dengan 

𝐴 =

√(1 − 𝑎)2 + 4𝑎 (
𝑞−µ(𝑏+𝑐)

𝑞−𝑏µ
)  

Jika memenuhi 

kriteria Routh-

Hurwitz: 

𝐴1 > 0 

𝐴3 > 0 

∆ > 0 

Stabil 

asimtotik 

lokal 

Berdasarkan Tabel 4.2, dapat diketahui kondisi eksistensi dan kestabilan dari 

setiap titik kesetimbangan yang diperoleh. Dari keempat titik kesetimbangan 

tersebut, analisis numerik difokuskan pada titik kesetimbangan interior yaitu 𝐸3, 

dikarenakan hanya pada titik ini yang merepresentasikan keadaan eksistensi untuk 

ketiga populasi secara bersamaan, sehingga dinamika sistem yang paling sesuai 

secara biologis maupun matematis terjadi di sekitar titik tersebut. 

 

4.6 Analisis Numerik dan Simulasi Model 

Penelitian ini menggambarkan kondisi simulasi numerik, yang akan 

menyajikan dua simulasi dari persamaan (4.6) dengan mensubtitusikan nilai 

parameter pada Table 4.1. Hal ini bertujuan untuk mengetahui apakah titik 

kesetimbangan stabil atau tidak. Pada simulasi ini berfokus pada model predator-

prey dengan menggunakan respon fungsional Holling Type II tanpa menggunakan 

waktu tunda, yang diselesaikan dengan menggunakan software Maple. Simulasi 

pertama, memvisualisasikan perilaku dinamis dari model rantai makanan tritrofik 
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dengan menggunakan nilai parameter yang tercantum pada Tabel 4.1 yang diambil 

dari Maiti dkk, (2008). Simulasi ini digunakan untuk untuk memverifikasi hasil 

analisis kestabilan titik kesetimbangan, serta melihat seberapa besar pengaruh 

parameter mempengaruhi populasi tersebut. Begitu pula untuk simulasi kedua, 

dilakukan dengan menggunakan nilai parameter yang sama, namun dengan 

memodifikasi satu nilai parameter yaitu pada variabel m menjadi 4.35. Hal ini 

dilakukan sebagai bentuk analisis sensitivitas untuk melihat pengaruh perubahan 

parameter terhadap dinamika sistem. 

Model predator-prey persamaan (4.6) memiliki 4 titik kesetimbangan, yaitu 

𝐸0 = (0,0,0)  dan 𝐸1 = (1,0,0)  yang bersifat tidak stabil. Titik 𝐸2 = (𝑥̂, 𝑦̂, 0) 

dengan 𝑥̂ =
𝑑

𝑚−𝑎𝑑
 dan 𝑦̂ =

𝑚(𝑚−𝑎𝑑−𝑑)

𝑐(𝑚−𝑎𝑑)2
, merupakan titik kesetimbangan yang eksis 

akan tetapi hanya merepresentasikan dua spesies saja. Selanjutnya, pada titik 

kesetimbangan interior 𝐸3 = (𝑥∗, 𝑦∗, 𝑧∗)  dengan 𝑥∗ =
𝐴+𝑎−1

2𝑎
,  𝑦∗ =

µ

𝑞−𝑏µ
, 𝑧∗ =

𝑞{(𝐴+𝑎)(𝑚−𝑎𝑑)+𝑑−𝑚}

𝑎𝑝(𝑞−𝑏µ)(𝐴+𝑎+1)
 bersifat stabil asimtotik lokal apabila memenuhi syarat 

kestabilan pada Tabel 4.2. Oleh karena itu, berikut akan ditunjukkan hasil simulasi 

untuk menggambarkan dinamika populasi dari model predator-prey tersebut. 

 

4.6.1 Simulasi Pertama 

Pada bagian simulasi ini, model predator-prey disimulasikan dengan 

menggunakan nilai parameter yang tercantum pada Tabel 4.1 yaitu, 𝑚 = 2.5, 𝑝 =

0.05, 𝑞 = 0.3, 𝑎 = 3, 𝑏 = 0.4, 𝑑 = 0.4, µ = 0.075,  dengan kondisi awal 

(𝑥(0), 𝑦(0), 𝑧(0)) = (0.5,0.5,4). Berdasarkan Tabel 4.2 kondisi  𝐸3,  dikatakan 

eksis jika dan hanya jika memenuhi 2 syarat berikut: 



58 

 

 

 

(i) 𝑞 > (𝑏 + 𝑐)µ 

𝑞 > (0.4 + 1.5)0.075 

𝑞 > (1.9)0.075 

0.3 > 0.1425 

(ii) 𝑚 >
𝑎𝑑(𝐴+𝑎+1)

𝐴+𝑎−1
 

dengan  

𝐴 = √(𝑎 − 1)2 + 4𝑎 (
𝑞 − µ(𝑏 + 𝑐)

𝑞 − 𝑏µ
) 

𝐴 = √(3 − 1)2 + 4(3) (
0.3 − 0.075(0.4 + 1.5)

0.3 − 0.4(0.075)
) 

𝐴 = √4 + 7 

𝐴 = √11 = 3.3166 

Maka, diperoleh 

𝑚 >
𝑎𝑑(𝐴 + 𝑎 + 1)

𝐴 + 𝑎 − 1
 

𝑚 >
3(0.4)(3.3166 + 3 + 1)

3.3166 + 3 − 1
 

2.5 > 1.6514 

 

Dengan demikian syarat (i) dan (ii) terpenuhi, sehingga dapat disimpulkan 

titik kesetimbangan 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗)  eksis. Selanjutnya, hitung koordinat dari 

𝑥∗, 𝑦∗, 𝑧∗ untuk mengetahui posisi dari titik kesetimbangan tersebut.  

x∗(𝑡) =
𝐴 + 𝑎 − 1

2𝑎
=

3.3166 + 3 − 1

2(3)
= 0.8861 
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y∗(𝑡) =
µ

𝑞 − 𝑏µ
=

0.075

0.3 − 0.4(0.075)
= 0.2778 

𝑧∗(𝑡) =
𝑞{(𝐴 + 𝑎)(𝑚 − 𝑎𝑑) + 𝑑 − 𝑚}

𝑎𝑝(𝑞 − 𝑏µ)(𝐴 + 𝑎 + 1)
 

=
0.3{(3.3166 + 3)(2.5 − 3(0.4)) + 0.4 − 2.5}

3(0.05)(0.3 − 0.4(0.075))(3.3166 + 3 + 1)
 

= 4.5676 

Sehingga diperoleh koordinat dari titik kesetimbangan 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗) =

(0.8861, 0.2778, 4.5676). 

Selanjutnya, untuk mengetahui apakah titik kesetimbangan tersebut stabil 

dilakukannya analisis kestabilan dengan menggunakan kriteria Routh-Hurwitz. 

Berdasarkan Tabel 4.2 titik 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗) dikatakan stabil asimtotik lokal apabila 

memenuhi syarat A1 > 0, A3 > 0,  dan ∆ > 0.  Dengan mensubstitusikan nilai 

parameter ke dalam persamaan matriks (4.26), sehingga diperoleh bentuk 

numeriknya sebagai berikut: 

𝑉(𝐸∗) = [
−0.8033 −0.3633 0
0.0519 0.0206 −0.0125

0 1.1099 0
] 

Kemudian, subtitusikan elemen-elemen matriks pada persamaan (4.27) dan 

persamaan (4.28), sehingga diperoleh  

𝐴1 = −(𝜐11 + 𝜐22) = −(−0.8033 + 0.0206) = 0.7827 

𝐴2 = 𝜐11𝜐22 − 𝜐12𝜐21 − 𝜐23𝜐32 

= −0.8033(0.0206) − (−0.3633)(0.0519) − (−0.0125)(1.1099) 

= 0.0162 

𝐴3 = 𝜐11𝜐23𝜐32 = −0.8033(−0.0125)(1.1099) = 0.0111 

Δ ≡ 𝐴1𝐴2 − 𝐴3 = 0.7827(0.0162) − 0.0111 = 0.0016 
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Karena nilai dari 𝐴1 = 0.7827 > 0, 𝐴3 = 0.0111 > 0 , dan Δ = 0.0016 > 0 , 

maka titik kesetimbangan dari 𝐸3  bersifat stabil asimtotik lokal. Kemudian, 

dilakukannya simulasi numerik untuk menggambarkan dinamika sistem dan 

memverifikasi hasil dari analisis kestabilan dengan menggunakan nilai parameter 

yang sama.  

 Berikut adalah gambar grafik yang menggambarkan interaksi dari tiga 

spesies yaitu mangsa 𝑥(𝑡), predator 𝑦(𝑡), dan superpredator 𝑧(𝑡). 

 
Gambar 4.1 Potret Fase Grafik Model Predator-Prey (I) dengan Nilai Parameter 𝑚 =
2.5, 𝑝 = 0.05, 𝑞 = 0.3, 𝑎 = 3.0, 𝑏 = 0.4, 𝑑 = 0.4, µ = 0.075, dengan Kondisi Awal 

(𝑥(0), 𝑦(0), 𝑧(0)) = (0.5,0.5,4) 

 

Gambar 4.1 adalah Potret fase grafik tiga dimensi dari model predator-prey 

dengan parameter awal 𝑥(0) = 0.5, 𝑦(0) = 0.5, 𝑧(0) = 4 . Gambar grafik ini 

menunjukkan lintasan populasi mangsa, predator, dan superpredator yang 

bergerak menuju titik kesetimbangan yang stabil yaitu 𝐸3 = (𝑥∗, 𝑦∗, 𝑧∗). Hasil 

simulasi menunjukkan kondisi di mana ketiga populasi eksis sesuai dengan Tabel 

4.2. Lintasan ketiga populasi mengalami osilasi, perlahan bergerak berbentuk 

spiral menuju ke dalam yang semakin mengerucut ke arah titik pusat 
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menggambarkan adanya dinamika osilasi yang semakin mengecil, artinya 

populasi mangsa (prey) menalami perubahan yang sangat drastis akibat predator, 

begitu pula predator akibat superpredator sehingga populasi mangsa mengalami 

fluktuasi. Namun, meskipun awalnya mengalami fluktuasi, pada akhirnya semua 

bergerak menuju ke dalam keadaan stabil. 

Selain potret fase tiga dimensi, selanjutnya akan divisualisasikan suatu 

interaksi populasi mangsa 𝑥(𝑡) dengan populasi superpredator 𝑧(𝑡) pada gambar 

grafik berikut: 

 
Gambar 4.2 Potret Fase Grafik Interaksi antara Populasi Mangsa 𝑥(𝑡) dan 

Superpredator 𝑧(𝑡) dengan Nilai Parameter 𝑚 = 2.5, 𝑝 = 0.05, 𝑞 = 0.3, 𝑎 = 3.0, 𝑏 =

0.4, 𝑑 = 0.4, µ = 0.075, dengan Kondisi Awal (𝑥(0), 𝑦(0), 𝑧(0)) = (0.5,0.5,4) 

Pada Gambar 4.2 grafik menunjukan bahwa adanya lintasan yang bergerak 

dari titik z menjauhi titik awal, hingga membentuk spiral yang menuju suatu titik 

kesetimbangan. Hal ini menunjukan bahwa sistem dinamik mengalami osilasi, 

hingga seiring waktu berkurang yang akhirnya berhenti pada satu titik 

kesetimbangan. Artinya, populasi superpredator secara tidak langsung sangat 

bergantung pada kestabilan populasi mangsa, di mana mangsa mendukung 
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superpredator melalui predator. Sehingga pada akhirnya kedua populasi ini 

mencapai keseimbangan bersama. 

Selanjutnya, akan ditunjukkan visualisai dari interaksi antara predator 

dengan superpredator sebagai berikut: 

 
Gambar 4.3 Potret Fase Grafik Interaksi antara Populasi Predator 𝑦(𝑡) dan 

Superpredator 𝑧(𝑡) dengan Nilai Parameter 𝑚 = 2.5, 𝑝 = 0.05, 𝑞 = 0.3, 𝑎 = 3.0, 𝑏 =

0.4, 𝑑 = 0.4, µ = 0.075, dengan Kondisi Awal (𝑥(0), 𝑦(0), 𝑧(0)) = (0.5,0.5,4) 

  

Gambar 4.3 menunjukan perilaku serupa dengan interaksi antara mangsa 

dengan superpredator. Pada grafik ini, interaksi antara predator dengan 

superpredator menunjukkan adanya osilasi yang pada akhirnya menuju titik 

kesetimbangan. Artinya, populasi predator dapat bertahan hidup meskipun 

dikendalikan oleh superpredator.  
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Gambar 4.4 Grafik Perubahan Populasi Tritrofik Seiring Waktu dengan Nilai 

Parameter 𝑚 = 2.5, 𝑝 = 0.05, 𝑞 = 0.3, 𝑎 = 3.0, 𝑏 = 0.4, 𝑑 = 0.4, µ = 0.075, dengan 

Kondisi Awal (𝑥(0), 𝑦(0), 𝑧(0)) = (0.5,0.5,4) 

 

Berdasarkan grafik Gambar 4.4 menunjukkan bahwa dinamika ketiga 

populasi mengalami osilasi teredam, yaitu pola osilasi dimana seiring waktu 

amplitudonya semakin mengecil hingga pada akhirnya menuju titik 

kesetimbangan. Pada populasi superpredator 𝑧(𝑡) mengalami osilasi yang pada 

awalnya cukup tajam. Kemudian, seiring waktu berjalan osilasi mengalami 

penurunan hingga pada akhirnya stabil. Pada populasi mangsa 𝑥(𝑡) berawal dari 

osilasi yang sangat kecil. Namun, nilainya tetap rendah dan cenderung mendekati 

nol. Hal ini berarti bahwa mangsa meskipun mengalami osilasi yang sangat rendah 

akan tetapi tidak sampai punah. Sedangkan, pada populasi predator 𝑦(𝑡) 

cenderung lebih stabil sejak awal dan hanya mengalami osilasi lebih besar 

daripada 𝑥(𝑡), hingga akhirnya menuju kepunahan. Hal ini menunjukan bahwa 

predator lebih dominan dan relatif lebih stabil dibandingkan dengan populasi 

mangsa. 



64 

 

 

 

4.6.2 Simulasi Kedua 

Pada bagian ini, model predator-prey disimulasikan dengan menggunakan 

nilai parameter sesuai dengan Tabel 4.1 yaitu, 𝑚 = 4.35, 𝑝 = 0.05, 𝑞 = 0.3, 𝑎 =

3.0, 𝑏 = 0.4, 𝑑 = 0.4, 𝜇 = 0.075,  dengan kondisi awal (𝑥(0), 𝑦(0), 𝑧(0)) =

(0.5,0.5,4).  Sama seperti simulasi pertama, simulasi kedua ini juga dilakukan di 

sekitar titik kesetimbangan interior 𝐸3 . Di mana, dikatakan eksis jika syarat 

berikut terpenuhi. 

(i) 𝑞 > (𝑏 + 𝑐)µ 

𝑞 > (0.4 + 1.5)0.075 

𝑞 > (1.9)0.075 

0.3 > 0.1425 

(ii) 𝑚 >
𝑎𝑑(𝐴+𝑎+1)

𝐴+𝑎−1
 

dengan  

𝐴 = √(𝑎 − 1)2 + 4𝑎 (
𝑞 − µ(𝑏 + 𝑐)

𝑞 − 𝑏µ
) 

𝐴 = √(3 − 1)2 + 4(3) (
0.3 − 0.075(0.4 + 1.5)

0.3 − 0.4(0.075)
) 

𝐴 = √4 + 7 = √11 = 3.3166 

Maka, diperoleh 

𝑚 >
𝑎𝑑(𝐴 + 𝑎 + 1)

𝐴 + 𝑎 − 1
 

𝑚 >
3(0.4)(3.3166 + 3 + 1)

3.3166 + 3 − 1
 

4.35 > 1.6514 
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Dengan demikian syarat (i) dan (ii) terpenuhi, sehingga dapat disimpulkan 

titik kesetimbangan 𝐸3 = (𝑥∗, 𝑦∗, 𝑧∗)  eksis. Selanjutnya, hitung koordinat dari 

𝑥∗, 𝑦∗, 𝑧∗ untuk mengetahui posisi dari titik kesetimbangan tersebut.  

x∗(𝑡) =
𝐴 + 𝑎 − 1

2𝑎
=

3.3166 + 3 − 1

2(3)
= 0.8861 

y∗(𝑡) =
µ

𝑞 − 𝑏µ
=

0.075

0.3 − 0.4(0.075)
= 0.2778 

𝑧∗(𝑡) =
𝑞{(𝐴 + 𝑎)(𝑚 − 𝑎𝑑) + 𝑑 − 𝑚}

𝑎𝑝(𝑞 − 𝑏µ)(𝐴 + 𝑎 + 1)
 

=
0.3{(3.3166 + 3)(4.35 − 3(0.4)) + 0.4 − 4.35}

3(0.05)(0.3 − 0.4(0.075))(3.3166 + 3 + 1)
 

= 14.5254 

Sehingga diperoleh koordinat dari titik kesetimbangan 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗) =

(0.8861, 0.2778, 14.5254).  

Selanjutnya, untuk mengetahui apakah titik kesetimbangan tersebut stabil 

dilakukannya analisis kestabilan dengan menggunakan kriteria Routh-Hurwitz. Di 

mana, hal ini tercantum pada Tabel 4.2. Selanjutnya, subtitusikan nilai parameter 

ke dalam persamaan matrik (4.25), sehingga diperoleh bentuk numeriknya sebagai 

berikut: 

𝑉(𝐸∗) = [
−0.8033 −0.3633 0
0.0903 0.0654 −0.0125

0 3.5297 0
] 

Kemudian, subtitusikan elemen-elemen matriks pada persamaan (4.27) dan 

persamaan (4.28), sehingga diperoleh  

𝐴1 = −(𝜐11 + 𝜐22) = −(−0.8033 + 0.0654) = 0.7379 

𝐴2 = 𝜐11𝜐22 − 𝜐12𝜐21 − 𝜐23𝜐32 

= −0.8033(0.0654) − (−0.3633)(0.0903) − (−0.0125)(3.5297) 
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= 0.0244 

𝐴3 = 𝜐11𝜐23𝜐32 = −0.8033(−0.0125)(3.5297) = 0.0354 

Δ ≡ 𝐴1𝐴2 − 𝐴3 = 0.0.9744(1.2630) − 0.0019 = −0.0174 

Dari hasil perhitungan tersebut dperoleh 𝐴1 = 0.7379 > 0, 𝐴3 = 0.0354 >

0, yang memenuhi kriteria kestabilan. Namun, dikarenakan Δ = −0.0174 < 0, 

maka titik kesetimbangan 𝐸3  bersifat tidak stabil. Kemudian, dilakukannya 

simulasi numerik untuk menggambarkan dinamika sistem untuk memverifikasi 

hasil dari analisis kestabilan dengan menggunakan nilai parameter yang sama. 

 
Gambar 4.5 Potret Fase Grafik Model Predator-Prey (II) dengan Nilai Parameter 𝑚 =
4.35, 𝑝 = 0.05, 𝑞 = 0.3, 𝑎 = 3.0, 𝑏 = 0.4, 𝑑 = 0.4, µ = 0.075 dengan Kondisi Awal 

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = (0.5, 0.5, 4). 

 

Gambar 4.5 menunjukkan interaksi antara populasi mangsa (prey), predator, 

dan superpredator yang mengalami lintasan yang membentuk kurva tertutup yang 

stabil. Pola grafik tersebut menunjukkan bahwa amplitudo osilasi tidak mengecil 

seiring waktu, melainkan bertahan, sehingga sistem tidak mencapai titik 

kesetimbangan.  Artinya, interaksi ketiga populasi ini menghasilkan kesimbangan 
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yang tidak stabil dan sistem memasuki suatu limit cycle yang stabil. Hal ini terjadi 

akibat perubahan parameter yang menyebabkan sistem kehilangan kestabilan. 

 
Gambar 4.6 Potret Fase Grafik Interaksi antara Populasi Mangsa 𝑥(𝑡) dan 

Superpredator 𝑧(𝑡) dengan Nilai Parameter 𝑚 = 4.35, 𝑝 = 0.05, 𝑞 = 0.3, 𝑎 = 3.0, 𝑏 =

0.4, 𝑑 = 0.4, µ = 0.075 dengan Kondisi Awal (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = (0.5, 0.5, 4). 

 

Pada grafik Gambar 4.6 menggambarkan interaksi antara populasi mangsa 

𝑥(𝑡)  dengan populasi superpredator 𝑧(𝑡)  yang menunjukkan lintasan tidak 

bergerak menuju titik kesetimbangan. Namun, lintasan membentuk kurva tertutup 

yang stabil. Artinya, kedua populasi ini dari waktu ke waktu mengalami osilasi 

secara periodik dan menunjukkan bahwa sistem tidak stabil. Selain potret fase 

antara interaksi mangsa dengan superpredator, selanjutnya akan divisualisasikan 

juga suatu interaksi populasi predator 𝑦(𝑡) dengan populasi superpredator 𝑧(𝑡) 

pada gambar grafik berikut: 
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Gambar 4.7 Potret Fase Grafik Interaksi antara Populasi Predator 𝑦(𝑡) dan 

Superpredator 𝑧(𝑡) dengan Nilai Parameter 𝑚 = 4.35, 𝑝 = 0.05, 𝑞 = 0.3, 𝑎 = 3.0, 𝑏 =
0.4, 𝑑 = 0.4, µ = 0.075 dengan Kondisi Awal (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = (0.5, 0.5, 4). 

 

Gambar 4.7 menunjukkan lintasan pada grafik membentuk kurva tertutup 

yang menggambarkan bahwa grafik membentuk limit cycle. Grafik ini juga 

menunjukkan bahwa interaksi populasi predator dan superpredator tidak menuju 

titik kesetimbangan, sehingga bersifat tidak stabil. Selain itu, grafik menunjukkan 

bahwa sistem mengalami osilasi secara berulang. 

 
Gambar 4.8 Grafik Perubahan Populasi Tritrofik Seiring Waktu dengan Nilai 

Parameter 𝑚 = 4.35, 𝑝 = 0.05, 𝑞 = 0.3, 𝑎 = 3.0, 𝑏 = 0.4, 𝑑 = 0.4, µ = 0.075 dengan 

Kondisi Awal (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = (0.5, 0.5, 4). 
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Grafik pada Gambar 4.8 menunjukkan bahwa ketiga populasi mengalami 

osilasi secara periodik. Pada populasi mangsa (prey), grafik menggambarkan 

bahwa lintasan mengalami osilasi dengan amplitudo yang sangat kecil namun 

stabil dan terus berosilasi secara periodik dengan rentang nilai yang juga relatif 

kecil. Pada populasi predator, juga menunjukkan bahwa lintasan mengalami 

osilasi dengan amplitudo kecil dan menunjukkan lintasan berosilasi secara terus 

menerus di sekitar titik positif.  Pada populasi superpredator, menunjukkan bahwa 

populasi mengalami osilasi dengan amplitudo yang sangat besar. Selain itu, 

lintasan pada populasi superpredator menunjukkan osilasi periodik tanpa teredam 

yang menandakan dinamika populasi berada dalam keadaan limit cycle. 

 

4.7 Analisis Kajian Islam 

Dalam perspektif Islam, keseimbangan yang ditunjukan oleh model 

matematika berupa dinamika populasi dalam suatu ekosistem secara tidak langsung 

mencerminkan prinsip Al-Mizan.  Hal ini dijelaskan dalam QS.Ar-Rahman [55]: 7 

yang menyatakan: 

مِيْزَانََۙ 
ْ
مَاۤءَ رَفَعَهَا وَوَضَعَ ال ٧وَالسَّ  

Artinya: “Dan langit telah ditinggikan-Nya dan Dia ciptakan keseimbangan.” 

Berdasarkan tafsir karya Muhammad Husain Thabathaba’i menjelaskan 

bahwa makna mizan berarti keseimbangan dan keadilan (Filmizan dkk, 2024). Hal 

ini menjelaskan bahwa prinsip Al-Mizan telah ditetapkan oleh Allah SWT dalam 

menciptakan alam semesta. Sistem dinamik model predator-prey tersebut 

menggambarkan bahwa perubahan sekecil apapun pada parameter dapat 

menyebabkan perubahan sistem menjadi tidak stabil atau dapat mencapai 
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keseimbangan hingga stabil. Hal ini sesuai dengan QS. Al-Qamar [54]: 49, sebagai 

berikut: 

قْنٰهُ بِقَدَرٍ  اِنَّ 
َ
 شَيْءٍ خَل

َّ
ل
ُ
   ٤٩ا ك

Artinya: “Sesungguhnya Kami menciptakan segala sesuatu sesuai dengan ukuran.” 

Ayat tersebut menegaskan bahwa setiap ciptaan Allah sesuai pada ukurannya. 

Menurut tafsir Al-Qurthubi, bahwasannya Allah telah menetapkan segala sesuatu, 

ukuran, keadaan, dan waktu setiap makhluk sebelum diciptakan  (Syaikh Imam Al 

Qurthubi, 2015). Artinya, setiap ciptaan Allah sesuai dengan takdirnya, dan tidak 

terjadi secara kebetulan atau sia-sia. Hal ini sama halnya dengan model predator-

prey dengan respon fungsional Holling Type II, di mana setiap parameter memilili 

ketetapan ukuran yang sesaui untuk menjaga keseimbangan populasi pada 

ekosistem. Selain itu, sekecil apapun perubahan parameter, hal ini akan sangat 

mempengaruhi sistem dinamik. Kondisi ini sesuai dengan pernyataan pada QS. Al-

An’am [6]: 38 yang menyatakan bahwa seluruh makhluk hidup berada pada sistem 

yang teratur. 

مْ   
ُ
ك
ُ
مْثَال

َ
مَمٌ ا

ُ
آ ا

َّ
نَاحَيْهِ اِل طِيْرُ بِجَ ىِٕرٍ يَّ ا طٰۤ

َ
رْضِ وَل

َ
ا
ْ
   ٣٨ …وَمَا مِنْ دَابَّۤةٍ فِى ال

Artinya: “Tidak ada seekor hewan pun (yang berada) di bumi dan burung-burung 

yang terbang dengan kedua sayapnya, melainkan semuanya merupakan umat (juga) 

seperti kamu.” 

Ayat tersebut menjelaskan bagaimana setiap makhluk hidup mempunyai 

sistem sosial.   Berdasarkan tafsir Al-Qurthubi, menegaskan bahwa semua makhluk 

hidup seperti predator dan mangsa merupakan “umat” yang memiliki perannya 

masing-masing (Al-Qurthubi, 2019). Selain itu, ayat ini sangatlah berkaitan dengan 

model predator-prey, di mana setiap interaksi antar populasi pada ekosistem saling 

berpengaruh hingga menciptakan keseimbangan alami, sehingga ekosistem tetap 

stabil. Hal ini menunjukkan bahwa nasib setiap makhluk hidup tidak luput dari 
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ketetapan dan pengaturan Allah. Oleh karena itu, sistem dinamik model predator-

prey ini tidak hanya membantu dalam bidang ilmiah. Namun, juga dapat menjadi 

sarana dalam memahami dan meneguhkan nilai-nilai agama bahwa Allah SWT. 

menciptakan alam semesta ini dengan keseimbangan yang teratur. Dengan 

demikian, hal ini menunjukkan bahwa ilmu pengetahuan dengan ajaran Islam 

sangatlah selaras. 

 

 

 

 

 

 

 

 

 

 

 

 



 

72 

 

BAB V 

PENUTUP 

5.1 Kesimpulan  

Berdasarkan penelitian yang dipaparkan pada pembahasan sebelumnya 

diperoleh kesimpulan sebagai berikut: 

1. Model predator-prey yang digunakan pada penelitian ini adalah model 

tritrofik hasil penelitian yang digunakan oleh Maiti dkk, (2008) sebagai 

berikut. 

𝑑𝑋(𝑇)

𝑑𝑇
= rX(𝑇) (1 −

𝑋(𝑇)

𝐾
) −

𝐵1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
 

𝑑𝑌(𝑇)

𝑑𝑇
=

𝐶1𝑋(𝑇)𝑌(𝑇)

𝐴1 + 𝑋(𝑇)
− 𝐷1Y(𝑇) −

𝐵2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
 

𝑑𝑍(𝑇)

𝑑𝑇
=

𝐶2𝑌(𝑇)𝑍(𝑇)

𝐴2 + 𝑌(𝑇)
− 𝐷2Z(𝑇)  

Setelah dilakukan nondimensionalisasi diperoleh model predator-prey yang 

lebih sederhana. Sehingga diperoleh model berikut menjadi dasar dalam 

analisis penelitian ini. 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥(𝑡)(1 − 𝑥(𝑡)) −

𝑐𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
 

𝑑𝑦(𝑡)

𝑑𝑡
=

𝑚𝑥(𝑡)𝑦(𝑡)

1 + 𝑎𝑥(𝑡)
− 𝑑𝑦(𝑡) −

𝑝𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
 

𝑑𝑧(𝑡)

𝑑𝑡
=

𝑞𝑦(𝑡)𝑧(𝑡)

1 + 𝑏𝑦(𝑡)
− µ𝑧(𝑡) 

Dengan  

𝑐 =
𝐵1𝐾

𝐴1𝑟
,  𝑎 =

𝐾

𝐴1
, 𝑚 =

𝐶1𝐾

𝐴1𝑟
,  𝑑 =

𝐷1

𝑟
,  𝑝 =

𝐵2𝐾

𝐴2𝑟
, 𝑏 =

𝐾

𝐴2
, 𝑞 =

𝐶2𝐾

𝐴2𝑟
, µ =

𝐷2

𝑟
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2. Berdasarkan analisis pada model predator-prey dengan menggunakan respon 

fungsional Holling Type II diperoleh 4 titik kesetimbangan yaitu 𝐸0 =

(0,0,0), 𝐸1 = (1,0,0)  yang selalu eksis, namun tidak stabil. Pada 𝐸2 =

(𝑥̂, 𝑦̂, 0) juga eksis jika memenuhi syarat 𝑚 < (𝑎 + 1)𝑑, namun stabil jika 

memenuhi 
𝑞𝑦

1+𝑏𝑦
< µ. Sedangkan pada titik 𝐸3 = (𝑥∗, 𝑦∗, 𝑧∗) dapat dikatakan 

eksis dan stabil jika memenuhi kriteria Routh-Hurwitz. Hasil analasis 

menunjukan bahwa titik kesetimbangan menunjukkan kondisi stabil 

asimtotik lokal, dengan koordinat 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗) =

(0.8861, 0.2778, 4.5676)  untuk simulasi pertama. Pada simulasi kedua, 

pada titik 𝐸3(𝑥
∗, 𝑦∗, 𝑧∗) = (0.8861, 0.2778, 14.5254) menunjukkan bahwa 

kondisi sistem tidak stabil. Hal ini terjadi dikarenakan Δ = −0.0174 < 0. 

3. Hasil simulasi numerik dengan Maple mendukung hasil analisis dinamik. 

Berdasarkan simulasi pertama yang ditampilkan menunjukkan bahwa solusi 

dari sistem menuju kestabilan pada titik 𝐸3. Simulasi tersebut menunjukkan 

bahwa sistem mengalami osilasi teredam dengan pola spiral di mana awalnya 

lintasanya mengalami fluktuasi yang amplitudonya seiring waktu semakin 

mengecil hingga menuju titik kesetimbangan interior 𝐸3. Artinya, populasi 

ketiga spesies tidak mengalami kepunahan, melainkan berfluktuasi sementara 

hingga pada akhirnya stabil. Pada simulasi kedua, ketika nilai parameter m 

diubah menjadi 𝑚 = 4.35 , perilaku sistem berubah secara signifikan. 

Simulasi tersebut menunjukkan bahwa lintasan pada grafik tidak menuju ke 

titik kesetimbangan, melainkan membentuk kurva tertutup yang stabil, 

sehingga mengalami osilasi secara periodik dan tidak teredam. Artinya, 
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sistem berada dalam kondisi limit cycle. Dengan demikian, perubahan 

parameter spesies menyebabkan hilangnya kestabilan titik kesetimbangan. 

 

5.2 Saran 

Dalam penelitian selanjutnya, disarankan untuk mempertimbangkan 

pengaruh faktor lain, seperti kompetisi antarspesies, atau efek lingkungan pada 

tingkat predator maupun superpredator. Selain itu, dapat juga dilakukan modifikasi 

model dengan menggunakan fungsi interaksi yang lain, seperti respon fungsional 

Holling type III atau Beddington-DeAngelis.  
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