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ABSTRAK

Irawan, Nur Fitria. 2025. Model Predator-Prey dengan Respon Fungsional Holling Type
1. Skripsi. Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas
Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing: (1) Dr.Usman Pagalay,
M.Si., (1) Evawati Alisah, M.Pd.

Kata Kunci: Model Predator-Prey, Holling Type Il, Nondimensionalisasi, Kestabilan,
Maple.

Model predator-prey merupakan salah satu model matematika yang menggambarkan
interaksi antarspesies dalam ekosistem yang sering digunakan dalam dinamika populasi.
Pada penelitian ini digunakan model dengan respon fungsional Holling Type Il, yaitu laju
pemangsaan yang meningkat dan kemudian mengalami kejenuhan karena adanya waktu
penanganan mangsa (handling time). Penelitian ini bertujuan menganalisis kestabilan
model predator-prey tritrofik tanpa mempertimbangankan waktu tunda. Model
dinondimensionalisasikan untuk memperoleh sistem yang lebih sederhana. Analisis
kestabilan dilakukan menggunakan matriks Jacobian dan kriteria Routh-Hurwitz, yang
kemudian dilakukan simulasi numerik menggunakan software Maple. Pada simulasi
pertama, sistem menunjukkan keadaan stabil dengan perilaku spiral menuju titik
kesetimbangan, yang didukung oleh pemilihan nilai parameter m pada rentang kestabilan
sistem. Namun, pada simulasi kedua ketika nilai parameter m diubah menjadi m = 4.35,
sistem kehilangan kestabilannya dan menunjukkan osilasi periodik, sehingga perilaku
dinamika menuju limit cycle. Hal ini menunjukkan bahwa perubahan parameter biologis
tertentu mengakibatkan perubahan ekosistem dari kondisi stabil menuju ketidakstabilan,
sehingga parameter m berperan penting dalam pengendalian kestabilan populasi dalam
rantai makanan.
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ABSTRACT

Irawan, Nur Fitria. 2025. Predator-Prey Model with Holling Type Il Functional
Response. Thesis. Department of Mathematics, Faculty of Science and Technology,
Universitas Islam Negeri Maulana Malik Ibrahim Malang. Advisors: (1) Dr. Usman
Pagalay, M.Si., (1) Evawati Alisah, M.Pd.

Keywords: Predator-Prey Model, Holling Type Il, Nondimensionalization, Stability,
Maple.

The predator-prey model is a mathematical model that describes interspecies interactions
in ecosystems and is often used in population dynamics. This research employs a predator-
prey model with a Holling Type Il functional response, in which the predation rate
increases rapidly and then saturates due to the handling time. The aim of this study is to
analyse the stability of a tritrophic predator-prey system without considering time delay.
The model was nondimensionalized to obtain a simpler form. Stability analysis was
conducted using the Jacobian matrix and the Routh-Hurwitz criteria, followed by numerical
simulations using Maple software. In the first simulation, the system showed a stable state
with spiral behaviour towards the equilibrium point, supported by the selection of the
parameter value m within the stability range of the system. However, in the second
simulation, when the parameter value m was changed to m = 4.35, the system lost its
stability and exhibited periodic oscillations, indicating dynamic behavior toward a limit
cycle. These findings demonstrate that variations in certain biological parameters can shift
the ecosystem from a stable to an unstable state, thus highlighting the important role of
parameter m in controlling population stability within the food chain.
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BAB |
PENDAHULUAN

1.1 Latar Belakang

Penelitian ini berawal dari kajian ekologi matematika yang menggunakan
model predator-prey. Model ini menggambarkan interaksi antara dua atau lebih
spesies dalam suatu ekosistem, yaitu mangsa (prey) dan predator. Model ini juga
dapat menunjukkan bagaimana populasi berkembang dari waktu ke waktu. Salah
satu model yang relevan dalam studi ini adalah model yang dikembangkan oleh
Maiti dkk (2008). Pada penelitian tersebut model yang digunakan berupa sistem
tiga spesies dalam rantai makanan tritrofik, yaitu mangsa X (T), predator Y (T), dan
superpredator Z(T), yang menerapkan respon fungsional Holling Type Il dan
mempertimbangkan waktu tunda dalam sistem. Pada model ini, populasi mangsa
yaitu berupa tanaman jagung yang kemudian di mangsa oleh predator yaitu ulat
pemakan daun, dan superpredator sebagai parasitoid. Model tersebut
menggambarkan interaksi antar spesies yang dimodelkan secara nonlinier melalui
sistem persamaan diferensial. Sistem pada model tersebut mencakup berbagai
parameter biologis penting seperti laju pertumbuhan, laju kematian, tingkat
konversi, serta konstanta kejenuhan. Parameter-parameter ini secara langsung
mempengaruhi mekanisme interaksi antar populasi. Hal ini terlihat pada populasi
mangsa (prey) yang tumbuh secara logistik dalam daya dukung tertentu dan
mengalami tekanan pemangsaan dari predator, sedangkan predator sendiri menjadi
mangsa dari superpredator. Sistem ini menunjukkan bahwa perubahan nilai
parameter dapat menghasilkan perubahan pada titik kesetimbangan, batas

kestabilan sehingga memunculkan fenomena bifurkasi.



Model dasar yang digunakan dalam menggambarkan interaksi predator-prey
adalah model Lotka-Volterra. Namun, model Lotka-Volterra tidak realistis (Al
Idrus et al., 2022). Di mana, terjadi interaksi antara predator-prey secara sederhana
yang mengakibatkan adanya perilaku periodik populasi. Sehingga, diperlukannya
penggunaan respon fungsional sebagai aspek paling penting dari model penelitian
ini. Istilah respon fungsional pertama kali digunakan oleh Solomon pada tahun
1949, yang kemudian dikenal luas melalui Holling pada tahun 1959 yang
mengklasifikasikan respon fungsional ke dalam 3 jenis yaitu Holling Type 1, Il, dan
Il (Al Idrus dkk, 2022). Pada penelitian ini respon fungsional yang digunakan
adalah respon fungsional Holling Type 11, yang memodelkan laju konsumsi mangsa
oleh predator sebagai fungsi saturasi nonlinier terhadap kepadatan mangsa. Dimana
meningkatnya kepadatan laju konsumsi mangsa yang akhirnya mengalami
kejenuhan pada titik tertentu akibat waktu penanganan mangsa oleh predator
(Dawes & Souza, 2013). Pada penelitian yang dilakukan oleh Maiti dkk (2008)
model yang digunakan menggabungkan waktu tunda dalam interaksi model
predator-prey, yang berfokus pada analisis sistem akibat waktu tunda terhadap
kestabilan dan dinamika populasi dengan menggunakan respon fungsional Holling
Type Il.

Penelitian ini difokuskan pada analisis dinamik model predator-prey dengan
menggunakan respon fungsioanl Holling Type Il. Dimana penelitian ini bertujuan
untuk menganalisis karakteristik dinamik dari model predator-prey tersebut, seperti
titik tetap, kestabilan, serta boundedness. Analisis model ini berfokus pada adanya
dampak dari bentuk respon fungsional terhadap dinamika populasi, tanpa

mempertimbangkan faktor waktu tunda.



Adapun kaitannya dalam perspektif Islam, Al-Qur’an surah Al-Hijr ayat 19

yang menyatakan:
P 1 ; 1% 2 -5 /’/G// P /’i,// PN 7 ,/’/
@ 0335 st B e e BANI3 ol s B Laia 23l

Artinya: “Dan Kami telah menghamparkan bumi dan Kami pancangkan padanya
gunung-gunung serta Kami tumbuhkan di sana segala sesuatu menurut ukuran. ”

Menurut Tafsir al-Munir, menjelaskan bahwa seluruh ciptaan Allah memiliki
ketentuan ukuran dan batasan tertentu dalam setiap makhluk yang ada di bumi,
sehingga tercipta keteraturan yang harmonis pada alam semesta (Az-Zuhaili, 2013).
Secara ekologis, lingkungan sebagai suatu sistem terdiri atas komponen-komponen
yang memiliki perannya masing-masing namun saling berkaitan satu sama lainnya
(Muhammad, 2023). Prinsip ini ditegaskan dalam QS. AL-Hijr [15]: 19 yang
dipahami sebagai ayat yang memuat prinsip keselarasan dan keseimbangan
ekologis sebagai sunnatullah dalam alam semesta (Muttagin, 2020). Pemahaman
tersebut sejalan dengan analisis kestabilan, dan boundedness dalam model
predator-prey dengan menggunakan respon fungsional Holling Type Il, yang
menunjukkan bahwa makhluk hidup tidak tumbuh tanpa batas, melainkan bergerak
menuju keseimbangan. Keseimbangan alami dalam ekosistem ini selaras dengan
ketetapan Allah bahwa segala sesuatu diciptakan sesuai dengan ukurannya untuk
menjaga stabilitas dan keberlangsungan kehidupan. Dengan demikian, konsep
keseimbangan dalam Al-Qur’an selaras dengan model dengan respon fungsional
Holling Type Il yang juga menunjukkan keseimbangan yang terbentuk dalam
interaksi ekologis.

Pada penelitian ini, pertama dilakukan dengan menyusun model dasar
predator-prey dengan respon fungsional Holling Type Il yang berfokus pada tanpa

waktu tunda. Selanjutnya, dilakukan analisis dinamik yang mencakup penentuan



titik tetap, analisis kestabilan, serta pembuktian sifat boundedness untuk
memastikan model tetap realistis secara biologis. Kemudian, dilakukan interpretasi
dari hasil analisis dan simulasi untuk melihat bagaimana kondisi keseimbangan dan
keberlangsungan suatu populasi dalam ekosistem. Dengan demikian, tahapan ini
mendapatkan tujuan yang telah ditetapkan, sesuai dengan alur yang dilalui dari
penyusunan model hingga pada penarikan kesimpulan.

Penelitian ini penting karena membantu dalam memahami peran respon
fungsional Holling Type Il dalam model predator-prey yang dikaji. Dalam model
tersebut merepresentasikan keterbatasan kemampuan predator dalam menangani
mangsa dan menghasilkan peningkatan laju predasi pada saat populasi mangsa
rendah hingga mengalami kejenuhan. Mekanisme kejenuhan ini menyebabkan
hubungan antara predator dan mangsa yang mempengaruhi kestabilan, dan
dinamika ekosistem, seperti terbentuknya titik kesetimbangan dan potensi
munculnya osilasi pada populasi. Secara umum, hasil penelitian ini dapat
digunakan dalam pengambilan keputusan dalam bidang-bidang yang berkaitan
dengan pengelolaan sumber daya alam, konservasi lingkungan, serta pembelajaran
matematika terapan dalam bidang biologi, khususnya yang berkaitan mengenai
analisis model predator-prey dengan respon fungsional Holling Type Il. Selain itu,
penelitian ini juga memperkuat pemahaman bahwa penggunaan model matematika
dalam studi ekologi tidak hanya bersifat teoritis, tetapi juga memiliki dampak
praktis. Sehingga, dapat memberikan gambaran mengenai dinamika ekosistem,
dimana hal ini dapat menjadi acuan dalam memahami mekanisme keseimbangan

dan keberlangsungan pada populasi dalam lingkungan yang kompleks.



Berdasarkan uraian di atas, penelitian ini menerapkan model predator-prey
dengan respon fungsional Holling Type Il. Harapannya penelitian ini memberikan
pemahaman yang lebih baik mengenai dinamika predator-prey dan dapat
membantu  menjaga  keseimbangan  ekosistem  sekaligus  mendukung

keberlangsungan kehidupan.

1.2 Rumusan Masalah
Berdasarkan latar belakang di atas dapat ditarik rumusan masalah sebagai
berikut:
1. Bagaimana formulasi model predator-prey dengan respon fungsional Holling
Type 11?
2. Bagaimana kestabilan titik kesetimbangan model predator-prey dengan
respon fungsional Holling Type 11?
3. Bagaimana pengaruh variasi parameter tertentu terhadap dinamika model

predator-prey berdasarkan simulasi numerik?

1.3 Tujuan Penelitian
Berdasarkan rumusan masalah tersebut, dapat ditarik kesimpulan penelitian
ini bertujuan untuk:
1. Mengetahui proses konstruksi atau penyederhanaan model predator-prey
dengan respon fungsional Holling Type Il untuk analisis yang lebih praktis.
2. Mengetahui eksistensi dan kestabilan titik kesetimbangan model predator-

prey dengan respon fungsional Holling Type II.



1.4

Mengetahui pengaruh variasi parameter tertentu terhadap dinamika model

predator-prey berdasarkan hasil simulasi numerik.

Manfaat Penelitian

Berdasarkan tujuan penelitian di atas, maka penelitian ini memiliki manfaat

sebagai berikut:

1.

1.5

Memberikan acuan dalam formulasi dan penyederhanaan model predator-
prey dengan respon fungsional Holling Type I, sehingga diperoleh model
yang lebih praktis untuk analisis.

Memberikan kontribusi teoritis dalam memahami kestabilan titik
kesetimbangan model predator-prey dengan respon fungsional Holling Type
Il.

Memberikan gambaran mengenai pengaruh variasi parameter tertentu
terhadap dinamika populasi pada model predator-prey dengan respon

fungional Holling Type Il melalui simulasi numerik.

Batasan Masalah
Batasan masalah dalam penelitian ini adalah sebagai berikut:
Pada penelitian ini model predator-prey yang digunakan merujuk pada jurnal

terdahulu Maiti dkk (2008):

dX(T) X(T)\ B,X(T)Y(T)
AT _rX(T)<1_ K )_ 2, +xa) 0 FO>0
YT _GXDYD) o BYDZD

dT ~ A +x(T) ¢ A, +Y(T) "’

dZ(T) _ C,Y(T)Z(T)
drT A, +Y(D)

—D,Z(T), Z(0)>0
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Kemudian, model tersebut ditransformasikan melalui proses penskalaan
sebelum dilakukan analisis kestabilan dan simulasi numerik.

Penelitian ini berfokus pada model predator-prey tanpa waktu tunda.

Nilai parameter yang digunakan dalam penelitian ini sepenuhnya mengacu
pada penelitian Maiti dkk, (2008), dengan memodifikasi satu parameter yang
disesuaikan dengan tujuan penelitian ini.

Analisis dinamik dibatasi pada penentuan titik tetap (titik kesetimbangan),

linierisasi, nilai eigen, dan vektor eigen, serta interpretasi grafik.

Definisi Istilah

Model predator-prey adalah salah satu model matematika yang
menggambarkan interaksi antarspesies dalam ekosistem yang banyak dibahas
dalam literatur dan sering digunakan sebagai contoh dasar dalam dinamika
populasi. Model ini menggambarkan interaksi antarspesies yaitu mangsa
(prey) dan predator dalam suatu populasi (Ndii, 2018).

Fungsi trofik yaitu fungsi yang menggambarkan jumlah mangsa yang
dimakan oleh setiap predator persatuan waktu berdasarkan ketersediaan
mangsa dan predator (Maiti dkk, 2008).

Respon fungsional adalah istilah yang digunakan dalam ekologi yang
menggambarkan hubungan antara kepadatan mangsa dan tingkat konsumsi
per predator (Papanikolaou dkk, 2020).

Holling Type Il adalah bentuk dari respon fungsional di mana tingkat
konsumsi predator meningkat seiring dengan kepadatan mangsa (prey),

namun laju peningkatannya melambat dan akhirnya mencapai titik jenuh



karena adanya waktu penanganan mangsa (handling time) yang dibutuhkan
dalam proses pemangsaan (Papanikolaou dkk, 2020).

Tritrofik adalah interaksi yang melibatkan tiga tingkat trofik dalam suatu
rantai makanan yang melibatkan hubungan antara mangsa (prey), predator,
dan superpredator (Maiti dkk, 2008).

Predasi adalah interaksi biologis di mana satu organisme (predator) memburu,
menangkap, dan memakan organisme lain (mangsa) untuk memperoleh
energi, di mana hal ini menentukan kekuatan interaksi dalam ekologi (Miller
dkk, 2006).

Osilasi adalah fluktuasi populasi predator dan mangsa secara periodik dalam
suatu ekosistem, di mana kenaikan populasi satu memengaruhi penurunan
dan sebaliknya, yang sering terjadi secara berulang akibat interaksi biologis

antarspesies dan dinamika internal sistem ekologi (Morita & Tainaka, 2006).



BAB |1
KAJIAN TEORI

2.1 Teori Pendukung
2.1.1 Kajian Model Predator-Prey

Model predator-prey yaitu salah satu model matematika sederhana yang
menggambarkan interaksi dari dua spesies atau lebih yaitu mangsa (prey) dan
predator. Model ini diperkenalkan pertama kali oleh Alfred Lotka seorang ahli
biofisika Amerika dan Vito Volterra seorang matematikawan Italia pada tahun
1926 (Afiyah, 2015). Model ini menjadi dasar dalam analisis dinamik, prediksi
siklus populasi, maupun stabilitas ekologi. Penggunaan model ini dapat
memberikan wawasan mengenai interaksi antara predator dengan mangsa yang
dapat menciptakan perilaku dinamis yang lebih kompleks. Di mana hal ini akan
mengakibatkan terjadinya osilasi populasi. Model ini juga dapat dimodifikasi
dengan menambahkan beberapa faktor lain seperti, respon fungsional, efek alle,
migrasi, ataupun waktu tunda, sehingga model persamaan menjadi lebih
kompleks.

Pada penelitian ini model predator-prey yang digunakan adalah model tiga
kompartemen X(T),Y(T), dan Z(T) yaitu mangsa (prey), predator, dan
superpredator dengan menggunakan respon fungsional Holling Type 11. Model
tersebut dirumuskan dalam bentuk persamaan diferensial nonlinier sebagai

berikut:

dx(T) X(T)\ B X(T)Y(T)
dT _rX(T)(l_ K )_ A, + X(T)
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dy(T) _ C,X(T)Y(T) B,Y(T)Z(T) (2.1)
dT A, +X(T) Dy (1) = A, +Y(T)
dZ(T) _ GY(MZ(T) D,2(T)

dT A, +Y(D)

Pada model tersebut, Parameter A, dan A, adalah konstanta setengah saturasi
yang menggambarkan tingkat kejenuhan predasi, B; dan B, adalah tingkat
pertumbuhan maksimal masing-masing predator dan superpredator, C; dan C,
adalah tingkat konversi mangsa menjadi predator dan predator menjadi
superpredator. Sedangkan, D; dan D, adalah tingkat kematian predator dan
superpredator.

Berdasarkan model persamaan (2.1) dinamika populasi mangsa X(T)
mengalami pertumbuhan logistik dengan laju intrinsik r yang dibatasi oleh
kapasitas dukung lingkungan K yang membatasi jumlah maksimum mangsa.
Kemudian, populasi mangsa mengalami pengurangan akibat predasi oleh predator
Y(T), dengan laju predasi yang mengikuti respon fungsional Holling Type II.
Sehingga, ketika jumlah mangsa meningkat laju predasi melambat mengakibatkan
predator mengalami keterbatasan kapasitas untuk menangkap atau mencerna
mangsa. Parameter B; menunjukkan tingkat interaksi antara mangsa dan predator,
sedangkan A; menunjukkan tingkat saturasi predasi, yang membatasi seberapa
banyak mangsa dapat dimangsa. Oleh karena itu, bisa diketahui populasi mangsa
akan mengalami kenaikan secara alami dan pengurangan akibat interaksi dengan

predator Y (T) sebagai berikut:

dx(T) X(T)\ B X(T)Y(T)
dT _rX(T)(l_ K )_ A, + X(T)
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Populasi predator Y (T) mengalami peningkatan populasi akibat memangsa
mangsa (prey). Namun, predator juga mengalami penurunan populasi yang
diakibatkan kematian secara alami dengan laju D, Y (T). Kemudian, terjadi interaksi
antara predator dengan superpredator Z(T), di mana superpredator memangsa

predator, sehingga mengalami penambahan penurunan populasi sebagai berikut:

dY(T) _ C,X(TY(T) B,Y(T)Z(T)
dT ~ A, +X(T) D¥(T) = A, +Y(T)

Populasi superpredator Z(T) mengalami peningkatan akibat konsumsi
predator dengan laju predasi yang mengikuti respon fungsional Holling Type II.
Kemudian, superpredator mengalami pengurangan akibat tingkat kematian alami
sebesar D,Z(T). Oleh karena itu, laju perubahan populasi superpredator adalah

dZ(T) _ C,Y(T)Z(T)
dT A, +Y(T)

— D,Z(T)

Dengan demikian, model predator-prey yang digunakan mampu menggambarkan
inetraksi antarspesies dengan mempertimbangkan keterbatasan predasi melalui

repson fungsional Holling Type I1.

2.1.2 Holling Type 11

Holling Type Il adalah salah satu dari tiga model respon fungsional yang
menggambarkan interaksi predator-prey. Pada model ini, predator tidak dapat
terus meningkatkan laju konsumsi dengan bertambahnya jumlah mangsa. Hal ini
terjadi karena predator membutuhkan waktu penanganan untuk menangkap dan
memproses setiap mangsa. Secara matematis, laju pemangsaan Holing type 1l

dapat dinyatakan sebagai berikut:
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Pe) = mc-lJf x ¢2

di mana x adalah kepadatan populasi mangsa predator. ¢ adalah tingkat konsumsi
maksimal predator perkapita. m adalah konstanta setengah saturasi penangkapan,
yaitu jumlah untuk mencapai setengah dari kecepatan maksimum c. Jadi, dapat
dikatakan bahwa ketika jumlah mangsa rendah, predator dapat dengan cepat
memakannya. Namun, dikarenakan adanya keterbatasan waktu penanganan, maka
ketika jumlah mangsa tinggi, predator tidak dapat memproses semuanya secepat
itu. Hal ini menunjukan bahwa Holling Type Il menggambarkan situasi
keterbatasan kemampuan fisik predator dalam menangani mangsa, sehingga
menyebabkan hubungan nonlinier antara predator dan mangsa.

Pada model predator-prey yang digunakan pada penelitian ini, respon
fungsional Holling Type Il muncul dalam interaksi antara mangsa dan predator,
yaitu

B,X(T)Y(T)
A+ X(T)

Kemudian, pada model yang menggambarkan interkasi antara predator dan

superpredator sebagai berikut.

B,Y(T)Z(T)
Ay +Y(T)

Suku-suku tersebut secara sederhana menggambarkan laju kejenuhan mangsa, di
mana tingkat konsumsi predator tidak meningkat secara linier terhadap jumlah
mangsa. Sementara parameter B; dan B, menunjukkan tingkat konsumsi
maksimum, sedangkan parameter A; dan A, menunjukkan konstanta setengah
saturasi tingkat kejenuhan. Dengan demikian, penggunaan respon fungsional

Holling Type 11 dalam model Predator-prey mengurangi perbedaan waktu antara
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serangan predator dan superpredator, sehingga menghasilkan interaksi populasi

yang nonlinier.

2.1.3 Sistem Persamaan Diferensial

Sistem persamaan diferensial merupakan suatu persamaan yang membahas
setidaknya satu turunan dari fungsi yang belum teridentifikasi atau diketahui.
Secara umum, persamaan diferensial dibagi menjadi dua, yaitu persamaan
diferensial biasa (PDB) dan persamaan diferensial parsial (PDP). Persamaan
diferensial biasa merupakan persamaan yang hanya memiliki satu variabel bebas
(independen). Bentuk umum persamaan diferensial biasa secara umum dinyatakan

sebagai berikut:

F (t dx) =0
Hrae) T
di mana F adalah fungsi yang dapat bersifat linier atau nonlinier. Sedangkan

persamaan diferensial parsial merupakan suatu persamaan yang melibatkan lebih

dari satu variabel bebas. Bentuk umum dari persamaan diferensial parsial sebagai

berikut:
v 0z 0z 0%z 0%z “ o
X1, X2, vy Xn»Z, axl’aleaxlz’axlaxz’." -
dengan x,, x,, ..., x,Sebagai variabel-variabel bebas (independen) dan z variabel

terikat (dependen) (Maidah dkk, 2022).

Selain itu, persamaan diferensial juga dapat diklasifikasikan menurut sifat
linieritas yaitu persamaan diferensial linier dan nonlinier. Sistem persamaan
diferensial linier merupakan sistem persamaan variabel terikat dan turunannya

dalam bentuk linier (pangkat satu) dan tidak ada perkalian atau fungsi nonlinier
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dari variabel dependen atau turunannya. Sedangkan persamaan diferensial
nonlinier adalah persamaan yang memenuhi salah satu kriteria berikut:
1. Terdapat variabel dependen dan turunannya dengan pangkat lebih dari satu,
misalnya% =x%+t
2. Terdapat perkalian antara variabel dependen dan/atau turunannya.

ax B1XY
Contoh: —= = /—/—.
dT  Aq+X

3. Mengandung fungsi yang lebih kompleks yang melibatkan variabel terikat

serta turunannya.
dz C,YZ

Contoh: = = 2=
dT  Ay+Y

Pada penelitian ini, model persamaan yang digunakan mengacu pada model
predator-prey dengan respon fungsional Holling Type Il termasuk kedalam

persamaan diferensial biasa (PDB) nonlinier.

2.1.4 Titik Kesetimbangan
Titik Kesetimbangan merupakan titik di mana keadaan laju perubahan

sistem sama dengan nol. Dalam konteks model interaksi, titik kesetimbangan
dapat terpecahkan jika % =0, % =0, dan % = 0. Dalam hal ini kita dapat

mempertimbangkan sistem persamaan diferensial berikut:

dx_ ( )

dt _fl x,y,Z

dy

E - fZ(xiylZ) (23)
dz

dt = f3(x,y,2)
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dimana f;(x,y,z), f,(x,y,2z), dan f;(x,y,z) menggambarkan masing-masing
fungsi dari interaksi populasi mangsa (x), predator (y), dan superpredator (z). Titik
tetap dapat diperoleh jika nilai x, y, dan z memenuhi berikut ini:

filx,y,2z) =0, f,(x,y,z) = 0,dan f3(x,y,z) =0
titik-titik ini disebut titik kesetimbangan, di mana laju perubahan untuk masing-
masing populasi tidak berubah atau sama dengan nol (Glass L. & Murray J. D.,

2002).

2.1.5 Matriks Jacobian

Matriks dapat didefinisikan sebagai susunan segi empat yang berasal dari
bilangan rill atau kompleks, yang tersusun secara sistematis dalam baris dan
kolom. Berdasarkan penelitian Aryani & Maisyitah (2015), matriks memiliki
berbagai macam jenis yang diklasifikasikan berdasarkan susunan elemen dan
karakteristik dari operasi matriksnya, diantaranya yaitu matriks bujur sangkar
(n x n), matriks diagonal, matriks singular, dan nonsingular. Matriks tersebut
memiliki peranan penting sesuai dengan kegunaanya masing-masing. Salah satu
matriks utama yang dapat digunakan dalam sistem dinamika nonlinier yaitu
matriks Jacobian, dimana matriks ini digunakan untuk menganalisis kestabilan
titik kesetimbangan suatu sistem. Secara matematis, matriks Jacobian dibentuk
dengan menghitung turunan parsial dari setiap fungsi vektor variabel. Secara

umum, bentuk matriks Jacobian dapat dinyatakan sebagai berikut:

f1(x1, X2, X3, ey Xpy)
f2(x1, %2, X3, o0, Xy)
F(x) = | f3(x1, X2, X3, erv) Xpy)

fm(xl,XZ,Xg, "xn)



X1
X2

dimana x = [’{3ladalah vektor variabel, sehingga

L |

didefiniskan sebagai:

0fi 0fi O0fi

dx; O0x, 0Oxs

i, 9f; 0df;

dx; O0x, Ox;
J=|0fs 0fs 0f
dx; 0Ox, O0Oxs

Ofm  Ofm  Ofm

[0x; Ox, O0x3

ahi

dx,
of
dx,
ofs
dx,

O

dx,
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matriks Jacobian J dapat

(2.4)

Matriks ini digunakan pada model ekosistem salah satunya yaitu model

predator-prey untuk mendapatkan informasi mengenai perilaku sistem di sekitar

titik kesetimbangan dengan mengukur laju perubahan variabel terhadap

perubahan kecil dalam variabel lainnya (Strogatz, 2018). Matriks pada (2.4) untuk

model predator-prey tritrofik dapat dinyatakan dalam bentuk berikut:

0%
d0x
0f2
d0x
0fs

| O0x

o

% ]
0z
%
0z
3

0z |

(2.5)

dimana f;(x,y,z), f,(x,y,z),dan f5(x,y,z) adalah fungsi laju perubahan x, v,

dan z.

Pada model predator-prey, nilai eigen dari matriks ini dapat memberikan

informasi mengenai arah dan kecepatan perubahan sistem di sekitar titik tersebut.

Menurut Kuznetsov, (1998), apabila nilai eigen memiliki bagian rill negatif, maka

titik kesetimbangan dianggap stabil. Berbeda halnya dengan matriks Jacobian jika
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terdapat satu nilai eigen dengan bagian rill yang positif maka titik kesetimbangan
menjadi tidak stabil.

Selain itu, stabilitas sistem dalam matriks Jacobian dapat dianalisis
menggunakan metode Routh-Hurwitz. Metode ini melibatkan matriks Routh-
Hurwitz berdasarkan koefisien persamaan karakteristik sistem. Persamaan
karakteristik tersebut dinyatakan sebagai:

p(QD) ="+ a A"+ a2+ az A" 3 + -+ a4+ a, (2.6)
dimana a; merupakan koefisien rill untuk i = 1,2,3, ...,n (Ndii, 2018). Analisis
ini memungkinkan untuk memastikan bahwa semua akar persamaan karakteristik
memiliki bagian riil negatif, tanpa perlu menghitung akar-akar tersebut secara
langsung. Kemudian, sistem dapat dikatakan stabil, jika memenuhi syarat Routh-
Hurwitz berikut:

A>0,  Ay> .., A>O0

Sehingga sistem berada dalam kondisi stabil asimtotik (Ogata, 2010).

2.1.6 Nilai Eigen dan Vektor Eigen
Nilai eigen dan vektor eigen diperoleh dari analisis matriks Jacobian yang
digunakan untuk menentukan kestabilan dari titik kesetimbangan. Misalkan
terdapat matriks J berukuran n x n. Apabila sebuah vektor tak nol x disebut
sebagai vektor eigen dari J, maka suatu skalar A yang memenuhi persamaan
Jx = Ax 2.7)
disebut sebagai nilai eigen dari matriks J, dan x merupakan vektor eigen yang

bersesuaian dengan nilai eigen tersebut (Ogata, 2010).
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Menentukan nilai eigen dari matriks J, maka persamaan (2.7) dapat ditulis

sebagai berikut:
(J—ADx=0 (2.8)

dimana | merupakan matriks identitas berukuran n X n . Persamaan (2.8)
mempunyai solusi tak nol yang jika hanya jika det(J —AI) = 0 disebut
persamaan karakteristik dari matriks J yang menjadi dasar dalam menghitung nilai
eigen dan vektor eigen (Ukaely, 2021). Kemudian, sifat kestabilan titik
kesetimbangan ditentukan berdasarkan nilai eigen yang didapat dari matriks
Jacobian tersebut. Berdasarkan nilai eigen yang diperoleh klasifikasi kestabilan

ditunjukkan pada tabel berikut.

Tabel 2.1 Nilai Eigen dan Kestabilan Sistem

Nilai Eigen Jenis Titik Kritik Kestabilan Sistem
rn>r>0 Node Tidak stabil
rn<r<o0 Node Stabil asimtotik
r,<0<n Saddle point Tidak stabil
rn=1r>0 Proper/improper node Tidak stabil
n=r<0 Proper/improper node Stabil asimtotik
T =Atiu

A>0 Spiral point Tidak stabil

A<0 Spiral point Stabil asimtotik

A=0 Center Stabil

Berdasarkan Tabel 2.1 untuk setiap nilai eigen dapat menentukan jenis dan

stabilitas titik kesetimbangan. Jika terdapat nilai eigen yang bernilai negatif, maka
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titik kesetimbangan bersifat stabil asimtotik. Jika terdapat nilai eigen bernilai

positif, maka kestabilan sistem menjadi tidak stabil.

2.2 Grafik Fase

Garfik fase merupakan representasi visual berupa lintasan solusi sistem
persamaan diferensial dalam ruang fase (phase space). Setiap titik dalam ruang fase
menyatakan keadaan sistem pada suatu waktu dan perubahan keadaan pada sistem
tersebut ditunjukkan dalam bentuk kurva atau lintasan (Boyce dkk, 2017). Artinya,
grafik fase digunakan untuk menvisualisasikan bagaimana variabel-variabel dalam
suatu sistem berubah secara dinamis terhadap waktu. Sistem dengan dua variabel
dapat divisualisasikan dengan grafik fase dua dimensi yang disebut phase plane.
Kemudian, ketika suatu sistem memiliki tiga variabel, maka grafik fase dapat
divisualisasikan dengan bentuk tiga dimensi. Misalnya, pada model predator-prey
tritrofik yang memiliki tiga variabel yaitu mangsa (x), predator (y), dan
superpredator (z), di mana pada grafik fase populasi masing-masing spesies yang
terlibat direpresentasikan oleh salah satu sumbu. Selanjutnya, interaksi setiap
spesies pada grafik digambarkan dalam bentuk lintasan, sehingga grafik
menunjukkan bagaimana setiap populasi seiring waktu saling mempengaruhi satu
sama lain.

Analisis grafik fase sangat berkaitan dengan titik kesetimbangan. Di mana
untuk mengetahui bentuk grafik fase perlu dilakukannya linierisasi di sekitar titik
kesetimbangan. Kemudian, dilakukannya perhitungan nilai eigen dari matriks
Jacobian untuk menentukan karakteristik kestabilan sistem. Secara umum, terdapat

berbagai bentuk perilaku sistem dalam grafik fase sebagai berikut:
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1. Node Stabil

Grafik fase suatu sistem dikatakan node stabil apabila semua nilai eigen
bernilai negatif, sehingga menyebabkan lintasan sistem pada grafik bergerak
menuju titik kesetimbangan. Kondisi ini menunjukkan bahwa titik kesetimbangan

bersifat stabil. Misalkan diberikan sistem persamaan diferensial linier dua dimensi

dx;

dc 1
dx

_dtz = —sz

yang memiliki dua nilai eigen riil negatif, yaitu A; = —1 dan A, = —4, maka titik
kesetimbangan di (0,0) bersifat node stabil (Boyce & DiPrima, 2012). Grafik fase

dari node stabil ditunjukan sebagai berikut.

*2

21 1 2 A
~ A
—_— \ x(2)(¢)

RS

Gambar 2.1 Grafik Fase dengan Grafik Fase dengan Lintasan Menuju Titik Asal yang
Menunjukkan Bentuk Node Stabil dengan r; < r, < 0 (Boyce & DiPrima, 2012).

Grafik tersebut menggambarkan kondisi di mana setiap lintasan yang berasal dari
kondisi awal berbeda akan tetap konvergen ke titik kesetimbangan seiring waktu.

Sedangkan, grafik fase suatu sistem dikatakan node tidak stabil apabila
seluruh nilai eigen bernilai positif dengan r; > 0 dan r, > 0. Sehingga lintasan
bergerak menjauh dari titik kesetimbangan yang mengakibatkan grafik fase
menunjukkan arah berlawanan dengan Gambar 2.1. Akibatnya sistem dikatakan

tidak stabil.
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2. Saddle Point (Titik Pelana)

Apabila suatu sistem memiliki salah satu nilai eigennya bernilai positif dan
terdapat salah satu yang bernilai negatif, maka sistem memiliki titik
kesetimbangan bersifat saddle point. Kestabilan sistem ini bergantung pada arah
lintasan terhadap titik kestimbangan. Misalkan, diberikan sistem persamaan

diferensial linier dua dimensi, yaitu

dx;

ac
dx,
i

dengan nilai eigen 4, = 1 dan A, = —1. Dikarenakan nilai eigen yang diperoleh
bernilai negatif dan positif, maka titik kesetimbangan di (0,0) diklasifikasikan
sebagai saddle point (Boyce & DiPrima, 2012). Berikut grafikk fase dari saddle

point.
x2
N
\.2 xm(t

~—

/////& (

Gambar 2.2 Grafik Fase untuk Saddle Point dengan Lintasan Mendekati Titik
Kesetimbangan Di Satu Arah dan Menjauh Di Arah Lain dengan r; > 0,1, < 0 (Boyce
& DiPrima, 2012).

—

l

Grafik fase tersebut menunjukkan bahwa pada nilai eigen negatif lintasan hanya
menuju titik kesetimbangan, sedangkan pada nilai eigen positif arah lintasan

menjauhi titik tersebut



22

3. Spiral Stabil dan Spiral Tak Stabil
Pada jenis ini, sistem dikatakan spiral stabil apabila nilai eigen kompleks

dengan bagian riil tidak nol. Misalkan, terdapat sistem persamaan diferensial linier.

dx;

dt =—X1—)y
dx,

@ STy

dimana sistem tersebut memiliki nilai eigen kompleks yaitu A = —1 + i dengan
bagian riil bernilai negatif. Oleh karena itu, titik kesetimbangan di (0,0) dikatakan
spirat stabil. Namun, jika nilai eigen bernilai positif, maka dapat dikatakan grafik
spiral tidak stabil (Boyce dkk, 2017). Grafik fase menunjukkan bahwa lintasan
solusi membentuk spiral bergerak menuju titik kesetimbangan seiring waktu, yang
menunjukan osilasi yang meredam. Contoh grafik fase spiral stabil ditunjukkan

pada gambar berikut.

(a)
Gambar 2.3 (a) Grafik Fase dengan Lintasan Membentuk Spiral yang Bersifat Stabil
dengan 4 < 0. (b) Grafik Fase dengan Lintasan Membentuk Spiral yang Bersifat Tidak
Stabil dengan 4 > 0 (Boyce dkk, 2017).

4. Center
Apabila nilai eigen bersifat imajiner murni, lintasan pada bidang fase
berbentuk lingkaran tertutup, maka kondisi ini dikatakan center. Misalkan

diberikan sistem persamaan diferensial
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dx,
a7
dx,
T

dengan nilai eigen A = +i merupakan nilai eigen imajiner murni. Oleh karena itu,
titik kesetimbangan di (0,0) bersifat center. Grafik fase ini menunjukkan osilasi
periodik tanpa redaman. Sistem ini dikatakan stabil netral karena lintasan tidak
menuju ataupun menjauh dari titik kesetimbangan (Boyce dkk, 2017). Berikut

adalah contoh grafik fase center.

X

A hAAf
$r  ¥YY

(@) (b)
Gambar 2.4 (a) Grafik Fase Menunjukkan Lintasan Berbentuk Center Ketika Sistem
Memiliki Nilai Eigen +iu. (b) Plot Komponen x, (t) Menunjukkan Gerak Periodik
Sesuai Karakteristik Center (Boyce dkk, 2017).

5. Spiral dan Saddle

Pada sistem nonlinier tertentu, pada grafik fase dapat juga dijumpai beberapa
jenis kestabilan yang berbeda dari satu titik kesetimbangan. Misalnya, titik
kesetimbangan yang membentuk spiral dan bersifat stabil, di mana lintasan
berputar menuju titik tersebut. Selain itu, juga terdapat titik kesetimbangan lain
berupa saddle point, di mana lintasan mendekati titik kesetimbangan pada arah
dan menjauh dari arah lainnya. Kombinasi dari kedua perilaku ini sering muncul
pada sistem seperti pendulum teredam. Hal ini ditunjukkan pada sistem persamaan

diferensial nonlinier berikut.
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yang merupakan model pendulum teredam, dengan a > 0 (Boyce & DiPrima,

2012). Persamaan tersebut memiliki titik kesetimbangan dengan sifat kestabilan

yang berbeda. Kombinasi perilaku tersebut ditunjukkan pada grafik fase berikut:

NNNNNNNN
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Gambar 2.5 Grafik Fase dengan Titik Kesetimbangan Bersifat Spiral Stabil dan Saddle
Point (Boyce & DiPrima, 2012).

di mana titik kesetimbangan tengah bawah bersifat spiral stabil, dimana lintasan

berputar dan bergerak menuju titik tersebut. Sedangkan titik tengah atas arah

panah menyilang dengan lintasan mendekati satu sisi dan menjauhi sisi lainnya

sehingga bersifat saddle point.

6. Limit Cycle

Pada sistem nonlinier, lintasan pada grafik fase tidak selalu menuju atau

menjauhi titik kesetimbangan, dapat juga membentuk lintasan tertutup yang stabil

yang disebut sebagai limit cycle. Misalkan, diberikan sistem persamaan diferensial

nonlinier sebagai berikut:

dx

a7

dy_
ac  H

(1-x%y—x,

u>0
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Sistem tersebut bersifat limit cycle yang menggambarkan lintasan berosilasi
secara periodik dengan amplitudo tetap terhadap waktu (Boyce dkk, 2017). Grafik

fase dari sistem tersebut dapat ditunjuukan sebagai berikut.

Gambar 2.6 Grafik Fase dengan Lintasan Persamaan Van der Pol (u = 1) yang
Menunjukkan Kondisi Limit Cycle Stabil (Boyce dkk, 2017).

Pada grafik tersebut lintasan dimulai dari kondisi awal dalam limit cycle bergerak
keluar, sedangkan lintasan dari luar bergerak masuk. Sehingga, semua lintasan

mencapai lintasan tertutup yang stabil

Dengan demikian, berbagai bentuk perilaku sistem dalam grafik fase tersebut
bergantung pada nilai parameter dan titik kesetimbangan, sehingga grafik fase dapat
memvisualisasikan kemungkinan perilaku yang terjadi pada sistem terhadap

perubahan nilai parameter dan kestabilan titik kesetimbangan.

2.3 Kajian Integrasi Topik Dengan Al-Quran

Hubungan antara predator dan mangsa menjadi mekanisme untuk menjaga
keseimbangan populasi makhluk hidup. Model predator-prey merupakan salah satu
contoh bagaimana predator memangsa mangsanya hingga mencapai tingkat

maksimum dengan efektif. Hal ini menunjukan bahwa dalam ekosistem Allah SWT
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telah merencanakan secara sempurna agar alam semesta dapat berfungsi dengan
baik sesuai dengan kehendak-Nya. Dalam Al-Qur’an, Allah SWT menyatakan
bahwa segala sesuatu di alam diciptakan secara berpasangan untuk menciptakan
harmoni dan keseimbangan. Hal ini disebutkan dalam Surah Adz-Dzariyat [51]: 49

sebagai berikut.

_ . B P e
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Artinya: “Dan Segala sesuatu Kami ciptakan berpasang-pasangan agar kamu
mengingat (kebesaran Allah).”

Ayat tersebut menunjukan bahwa setiap ciptaan Allah memiliki fungsi yang
saling melengkapi. Berdasarkan Tafsir Jalalain, ayat ini menegaskan bahwa Allah
menciptakan segala sesuatu secara berpasang pasangan, seperti langit dan bumi,
siang dan malam, panas dan dingin, matahari dan bulan. Hal ini menggambarkan
interaksi dua komponen yang saling melengkapi dan membentuk keseimbangan
(Az-Zuhaili, 2013). Dalam ekologi, hubungan antara predator dan mangsa termasuk
dalam interkasi dua komponen yang meskipun saling bertentangan, namun dapat
berfungsi dalam menjaga stabilitas ekosistem. Hal ini menunjukan bagaimana
mekanisme alam telah diatur sedemikian mungkin oleh Allah untuk menjaga
keseimbangan tanpa merusak komponen lain dalam ekosistem. Sama halnya
dengan hidup dan mati, surga dan neraka, hubungan predator dan mangsa
merupakan bentuk keseimbangan yang diciptakan Allah untuk menjaga

keseimbangan ekosistem alam.

2.4 Kajian Topik Dengan Teori Pendukung
Model predator-prey merupakan salah satu pendekatan yang sering

digunakan dalam kajian ekologi, dimana interaksi antar predator dan mangsa
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mempengaruhi keseimbangan ekosistem. Pada artikel Maiti dkk (2008) membahas
mengenai model predator-prey tritrofik yang melibatkan tiga spesies yaitu mangsa
x(t), predator y(t), dan superpredator z(t). Model yang digunakan dalam
penelitian ini bersifat nonlinier. Penelitian ini menganalisis tentang kestabilan
populasi ketiga spesies yang didasarkan pada respon fungsional Holling Type II.
Penggunaan respon fungsional Holling Type Il dapat menunjukkan tingkat
konsumsi predator meningkat pada saat populasi mangsa rendah, dan melambat
akibat mencapai saturasi. Pendekatan ini dapat menginterpretasikan keseimbangan
antara populasi spesies dan menemukan kondisi stabil atau tidak stabil pada sistem.

Selain itu, pengaruh eksternal gangguan lingkungan dan variasi parameter
terhadap stabilitas ekologi menjadi hal penting dalam penelitian ini. Pada Maiti dkk
(2008) juga menunjukan bahwa terjadi dinamika periodik, di mana perubahan
parameter tertentu mengakibatkan osilasi populasi atau bahkan kepunahan.
Penggunaan model ini juga dapat menggambarkan prediksi sistem ekologi yang
nyata. Selain itu, juga dapat membantu menganalisis kestabilan populasi mangsa
dan predator untuk menentukan kondisi tetap berada dalam keseimbangan.
Stabilitas ekosistem dipengaruhi oleh rasio tingkat pertumbuhan mangsa dan
kemampuan predator dalam menyesuaikan laju konsumsi terhadap mangsa. Jika
rasio tidak seimbang, maka ekosistem akan mengalami gangguan, seperti ledakan

populasi mangsa atau penurunan populasi predator.



BAB Il
METODE PENELITIAN

3.1 Jenis Penelitian

Penelitian ini menggunakan metode pendekatan kualitatif. Metode tersebut
merupakan bentuk pendekatan yang berfokus pada studi literatur atau library
research, dimana sumber informasi utamanya berasal dari artikel ilmiah, buku, dan
dokumen relevan lainnya. Jenis penelitian ini digunakan untuk memahami
bagaimana dinamika model predator-prey dengan respon fungsional Holling Type

Il berdasarkan teori-teori sebelumnya.

3.2 PraPenelitian

Langkah-langkah yang dilakukan sebelum memulai penelitian meliputi
perencanaan yang terdiri dari mengkaji penelitian dari Maiti dkk (2008) untuk
memperoleh pemahaman mengenai model predator-prey. Selanjutnya, memahami
lebih dalam tentang isi dari penelitian tersebut. Kemudian, melakukan analisis
untuk setiap variabel model untuk memahami bagaimana parameter biologis,
seperti laju konsumsi, tingkat kematian, dan saturasi mempengaruhi pola interaksi

dalam sistem.

3.3 Tahapan Penelitian
3.3.1 Penskalaan Model Predator-Prey
Tahapan yang dilakukan penulis dalam memformulasikan model predator-

prey meliputi:

28
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Mengkaji model predator-prey dengan respon fungsional Holling Type Il
dari penelitian Maiti dkk (2008).

Menetapkan variabel dan parameter dari model predator-prey tersebut.
Menyususn model sistem persamaan diferensial berdimensi

Melakukan penskalaan model predator-prey ke dalam bentuk tak
berdimensi.

Menyusun model predator-prey dalam bentuk sistem persamaan diferensial

tak berdimensi.

3.3.2 Analisis Titik Kesetimbangan dan Kestabilan Model

Adapun tahapan untuk melakukan analisis dinamik pada model predator-

prey yang digunakan dalam penelitian ini sebagai berikut:

1.

2.

Menentukan titik kesetimbangan.

Melakukan linierisasi model untuk mendapatkan matriks Jacobian.
Mensubstitusikan nilai titik kesetimbangan kedalam matriks Jacobian.
Menentukan nilai eigen dan vektor eigen dari matriks Jacobian tersebut.
Mengidentifikasi jenis kestabilan titik kesetimbangan berdasarkan nilai

eigen dan vektor eigen.

3.3.3 Simulasi Numerik dan Analisis Dinamika Model

Adapun tahapan untuk melakukan simulasi numerik pada model predator-

prey dengan menggunakan software Maple sebagai berikut:

1.

Menginisialisasi model.
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Memasukkan persamaan, nilai parameter dan kondisi awal ke dalam
software Maple dalam bentuk sistem persamaan diferensial.

Menjalankan simulasi dengan memvariasikan nilai parameter, dan nilai
awal populasi mangsa (prey), predator, dan superpredator.

Menampilkan hasil simulasi dalam bentuk grafik.

Menganalisis hasil simulasi.



BAB IV
HASIL DAN PEMBAHASAN

4.1 Proses Penskalaan pada Model Predator-Prey
Model predator-prey yang dianalisis pada penelitian ini terdiri dari tiga
kompartemen, yaitu populasi mangsa X (T), populasi predatorY (T, dan populasi

superpredatorZ (T') dengan menggunakan respon fungsional Holling Type II.

dX(T) X(T)\ B X(TY(T)
Tdr rX(T)(l_ K >_ A +x@ 0 YO0
dy(T) _ CX(MY(T) DY (T — B,Y(T)Z(T) Y(0) > 0 “.1)

dT A, +X(T) A, +Y(T)

dZ(T) _ CY(T)Z(T)
dT A, +Y(T)

—D,Z(T), Z(0)>0

Model yang dianalisis pada (4.1) melibatkan sejumlah besar parameter, sehingga
sulit untuk dilakukan analisis. Oleh karena itu, pengurangan parameter dan
penentuan kombinasi parameter yang sesuai perlu dilakukan untuk mengontrol
perilaku sistem.

Pada tahapan ini di tentukan skala karakteristik untuk masing-masing variabel.
Skala populasi dipilih beradasarkan kapasistas lingkungan K, sedangnkan skala
waktu berdasarkan laju pertumbuhan intrinsik prey r. Kemudian, sistem

dinondimensionalkan menggunakan persamaan berikut.

X(T Y(T Z(T
=" =10 =20

) d t=1rT
K an r

Maka, sistem diferensial yang semula dalam bentuk

dXx(T) (1 ~ X(T)) _ ByX(DY(T)

ar - XM K A, + X(T)

31
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Untuk mempermudah proses nondimensionalisasi, pada tahap ini dilakukan
pemisalan notasi
X(M=XYM=Y,Z(T)=Zx(t) =x,y(t) =y,z(t) =z

Sehingga dapat disubstitusikan X = xK, Y = yK, dan T = é ke dalam persamaan

berikut:

dX X(l X) B, XY
r A + X

d(xK) ( xK) B;xKyK
- Ay + xK

de_ Kx(1 — %) B,K?xy
M T T TR

bagi kedua ruas dengan rK, sehigga diperoleh

Kemudian penyebut difaktorkan untuk memperoleh bentuk tak berdimensi

dx a ) B, K Xy
de - N T T T A v K
dx B;K X
i x(1—x)— ; : 4 %
4, (1 +A—1x)
dx B, K Xy
—=x(1-x)— .
dt rA, K
1+ 4, X

Sehingga didapat parameter baru, yaitu

K B,K

a=— c
A’ T4,
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Kemudian, mensubstitusikan parameter a dan c, diperoleh persamaan menjadi:

dx cxy (4.2)
FTIR i g

Transformasi serupa dilakukan pada persamaan kedua, yaitu:

dy XY B,YZ
dT ~ A, +X 8 A, 4Y

Substitusikan X = xK, Y = yK, Z = zKdanT = ; ke dalam persamaan tersebut:

d(yK) CixKyK " B,yKzK
a (%) TA4 Kk P T A 1K
dy CK?xy B,K%yz

K - 7 _ —_ sz
At T vk Y T a4, 9K
Bagi kedua ruas dengan rK, sehingga

dy (K xy D;y B;K vz
dt  r A +xK r r A, +yK

Kemudian faktorkan penyebut

K yK
Ay 4z

sehingga menjadi

dy GK Xy D,y B;K vz

de v A1(1+A£1x) r r A2(1+£y)

dy (K xy Dy B;K vz

dt 14, 1+A£x r T4, 1+A£y
1 2

Sehingga didapat parameter baru, yaitu

_GK D _BK K
m_rAl' _r'p_rAz' A,

Kemudian, mensubstitusikan parameter m, a, d, p dan b, diperoleh persamaan

menjadi:
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d_y _ mxy p pyz (4.3)

dt 1+ax Y 1+ by

Selanjutnya, dengan pendekatan yang sama pada persamaan ketiga pada model

berikut:

dZ _ C,YZ

—=—=___D,7
dT ~ A, +Y 72

Kemudian substitusikan Y = yK, Z = zKdan T = f sehingga:

d(zK) CyK -zK

= —D,zK
d (E) Az +yK 2
T
dz C,K%yz
— — D,zK
d T A, vy

Bagi kedua ruas dengan rK, diperoleh:

dz (K yz D,z
dt  r A,+yK 7

dz (K yz D,z
dt ~ r K\ r
A |1+
2( Azy)

dz CK vz D,z
dt 14, 4 +A£y r
2

Sehingga didapat parameter baru, yaitu

_CK _ D,
1= rd,’ =
Kemudian, mensubstitusikan parameter g, b, dan x, diperoleh persamaan menjadi:
dz qyz (4.4)
dt 1+ by

Pemisalan notasi (t) hanya digunakan pada tahap nondimensonalisasi, untuk

selanjutnya untuk menjaga konsistensi penulisan model notasi (t) akan digunakan
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kembali. Dengan demikian, seluruh sistem model telah berhasil ditransformasikan
ke bentuk nondimensional, sehingga diperoleh persamaan baru sebagai berikut:

dx(t) X — x(£)) — cx(t)y(t)

xF(x,y), x(0) >0,

dt 1+ax(t)
dy(t t)y(t )z (t
3;(t ) _ TJ-Cl-(a)j((t)) —dy(t) - % =yG6(x,y,2), y(0)>0, (45)

dz(t) _ qy(®)z(t)
dt 1+ by(t)

uz(t) = zH(y), z(0) > 0.

Model ini merepresentasikan interaksi antarspesies secara lebih sederhana dan tidak
merubah dinamika biologisnya. Sistem ini akan digunakan sebagai dasar dalam

analisis selanjutnya.

4.2  Analisis Dinamik Model Predator-Prey
Dalam penelitian ini, penulis akan menganalisis model predator-prey dengan
respon fungsional Holling Type Il berdasarkan pada artikel Maiti dkk, 2008 dengan

model sebagai berikut:

dx(t) cx(t)y(t)
9 - x(£)(1 —x(t)) - T+ ax(d)
dy®) _mx(®)y@®) dv(t) — py(t)z(t)
i - ira® PO T (4.6)
dz(t) qy(t)z(t) wz(6)

dt  1+by(t)
Nilai parameter yang digunakan pada sistem persamaan diferensial dari

model predator-prey tersebut seluruhnya mengacu pada Maiti dkk, (2008). Selain
itu, untuk memperluas cakupan analisis, khususnya pada analisis sensitivitas, maka
pada simulasi kedua dilakukan modifikasi nilai parameter yaitu pada variabel m.

Perubahan nilai parameter m ini dilakukan bertujuan untuk melihat pengaruh
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perubahan laju konversi predator terhadap dinamika sistem. Dengan demikian,

berikut rincian nilai parameter yang digunakan pada model predator-prey tersebut

yaitu:
Tabel 4.1 Deskripsi Nilai Variabel dan Nilai Parameter
Parameter Deskripsi Nilai Sumber Nilai
Modifikasi
x(0) Populasi mangsa (Prey) 0.5 (Maiti dkk, 0.5
2008)
y(0) Populasi predator 0.5 (Maiti dkk, 0.5
2008)
z(0) Populasi superpredator 4 (Maiti dkk, 4
2008)
c Laju konsumsi maksimum 1.5 (Maiti dkk, 1.5
predator terhadap mangsa 2008)
m Efisiensi konversi mangsa 2.5 (Maiti dkk, 4.35
menjadi predator 2008)
p Laju konsumsi maksimum 0.05 (Maiti dkk, 0.05
superpredator terhadap 2008)
predator
q Efisiensi konversi predator 0.3 (Maiti dkk, 0.3
menjadi superpredator 2008)
a Efek saturasi pada interaksi 3 (Maiti dkk, 3
predator 2008)
b Efek saturasi pada interaksi 0.4 (Maiti dkk, 0.4
superpredator 2008)
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d Laju kematian alami predator | 0.4 (Maiti dkk, 0.4
2008)
V1 Laju kematian alami 0.075 | (Maiti dkk, 0.075
superpredator 2008)

4.3 Penentuan Titik Kesetimbangan Model Predator-Prey
4.3.1 Pada Titik Kesetimbangan Pertama

Pada titik kesetimbangan awal, untuk mencari titiknya langkah pertama

maka perlu dilakukannya d’;—(tt) = O,dfi—(tt) =0 dandZ—(tt) = 0 pada persamaan (4.6)
sehingga diperoleh:
cx(Dy(t) (4.7a)
x(®)(1—x@®) - TrarD
mx(t)y(t) dy(t) - py®)z(t) _ (4.7b)
1+ ax(t) Y 1+ by(t)
qy()z(t) 3 (4.7¢)
1+ by O =0

Jika menetapkan turunan persamaan (4.7a), maka persamaan tersebut menjadi:

cx(Oy() _

x(®)(1—x@®) - Teroh

x(t) <(1 —x(®) - ﬂ) =0

1+ ax(t)
x®=0 atau (1-x()-722=0 (4.8)

Dengan mengambil langkah lebih lanjut dari persamaan (4.7b) dengan

dy(t)

mendefinisikan o

= 0 dengan x(t) = 0 sesuai dengan persamaan (4.8), maka

persamaan tersebut berubah menjadi:
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maOy®) _ oy PYO0zO)
T+ax(® 27 1+by®)
mx(t) pz(t) '\ _
y(t)<m_d—m> =0
y(t) =0  atau l’f;‘i?t) —d— lfz(yt()t) —0 (4.9)

dz(t)

Selanjutnya dari persamaan (4.7c) didefiniskan sebagai —

= 0 dengan x(t) =

0 dan y(t) = 0, maka persamaan tersebut berubah menjadi:

qy(t)z(t) B
m —uz(t) =0
qy(©)z(t) 3
z(t) (m — }l) =0
z(t) =0 dan % —p=0 (4.10)

Sehingga didapatkan titik kesetimbangan yang pertama yang memenuhi
persamaan (4.5) adalah E, = (0,0,0). Pernyataan ini membuktikan bahwa ketika
tidak ada populasi mangsa, maka proses rantai makanan terputus menandakan

populasi predator dan superpredator tidak bisa bertahan hidup.

4.3.2 Pada Titik Kesetimbangan Kedua
Pada titik ini, menentukan titik kesetimbangan dengan menggunakan
persamaan (4.7c¢) dengan mensubstitusikan y(t) = 0 sesuai dengan persamaan

(4.9), maka persamaan tersebut menjadi:

(qy®)z(®) _
(1+by®) hz(8) = 0
(q(0z() 208 = 0

(1+by(D)
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—uz(t) =0
z(t)=0

Selanjutnya, persamaan (4.7a) dengan mendefinisikan d’;—(tt)z 0 dan dengan

menetapkan y(t) = 0 berdasarkan persamaan (4.9), maka

x(®)(1 - x(D)) - % _
0
x(®)(1 - x(®) - % —0

x(t)(l — x(t)) =0
x(t)=0 dan 1—-x(t)=0
x(t) =1
Sehingga ditetapkan titik kesetimbangan kedua yang memenuhi persamaan (4.5)

adalah E; = (1,0,0).

4.3.3 Pada Titik Kesetimbangan Ketiga

dy(t)

Pada titik ini, langkah pertama mendefiniskan - = 0 pada persamaan

(4.7b), maka persamaan menjadi:

% —dy(t) - % =
y(t) <1T+(xt()t) - d) =0
J© =0 atau —0 0

1+ ax(t) Bl



mx(t)
14 ax(t)

mx(t) =d+ ax(t)d

Sehingga diperoleh

xOm-ad)=d =  x(0)=——0

x(t)
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(4.11)

Pada persamaan (4.7a) didefinisikan %z 0 dengan x(t) =$ sesuai

dengan persamaan (4.11), maka persamaan tersebut menjadi

x(y()
x(®)(1—x(®) - Trax® -~
cy(® |\ _
x(t) <(1 —x(t)) - m) =0
x(t) =0 atau 1-—x(t) _% =
4]
L=x0 =170
Kemudian substitusikan x(t) = mfad:
o4 o0
m — ad 14+ mcidad
m—ad—d B cy(t)
m—ad  m—ad+ad
m—ad
m-—ad—d m
( m — ad )(m_ad)=cy(t)
m(m —ad — d)
(m — ad)? =cy(®)

Sehingga diperoleh
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—ad—d 12
mS(nm —aad)z 10 )

Dengan demikian, titik kesetimbangan ketiga diperoleh E, = (%,7,0) dimana

d m(m—-ad—-d)

c(m-ad)? ’

dany =

4.3.4 Pada Titik Kesetimbangan Keempat

Pada titik kesetimbangan keempat, langkah awal dengan menggunakan

persamaan (4.7a) sampai (4.7c) tersebut yang didefinisikan dengan d’;—(tt) =
di;—(tt) = dZ—(tt) = 0, maka persamaan tersebut menjadi:
Z
B w0
t
z(t) (ﬁ-yT(y)(t) - H) =0
z(t)=0 atau %— =0
qy(®)
T+by@® "
qy(t) = u(1 + by(®))
qy(t) = p+ pby(t)
qy(t) —pby(t) =
y(®)(q —pb) = n
Maka diperoleh nilai y(t) dari persamaan (4.7c)
m (4.13a)

YOS

Selanjutnya substitusikan persamaan (4.13a) ke persamaan (4.7a)
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ot
ol i385
x(®)=0 atau  (1-x(D) -1 =
(1-x©®) =1 iycfi)(t)

(1 — x(t))(l + ax(t)) =cy(t)

(1-x@®)(1+ax®) = (q — bp)
2 CH
1+ax(t) —x(t) —a(x(®)” = (q — bp)

2 cu _
—a(x®)" + (@ - Dx(®) + (1 - bu)) —0

Selanjutnya, gunakan rumus kuadrat untuk menyelesaikan persamaan tersebut

untuk mendapatkan nilai x* dengan melakukan pemisalan sebagai berikut:

A=—-a
B=a-1
g
R P
Sehingga,
—B + VB2 — 4AC
x(6) = 24
I Ja= 17— a0 (1- 25
= 2(-a)
—(a-1)+ [(a—1)? + 4a (1=HEEO)
x(t) = \/ ( q—bu )

—2a
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Misalkan A = \/(a —1)2 4 4a (%), maka diperoleh
A+a-1 4.13b
x(t) = g ( )

Kemudian untuk mencari nilai z*, gunakan persamaan (4.7b)

mx(®)y(® ) — py()z(t) _
T+ax@® 1+ by(t)
mx(t) pz(t) \ _
y(t)<1+ax(t)_d_1+by(t) =0
Sehingga diperoleh
_ mx(t) pz(t) _
y(®) =0 atau 1+ax(t) — 1+by(t)

Selanjutnya, subtitusikan persamaan (4.13a) dan persamaan (4.13b) ke dalam

persamaan di atas, sehingga

mx(t) pz(t) B
1+ ax(t) 1+ by(t)
mx(t) _ pz(t)
1+ ax(t) " 1+ by(t)
A+a—1
( 2a )_ _ pz@®)
A+a—-1 o T
1+a(" ) 1+b(q—bu)
A+a—-1
o), po
A+a -1 ~ q—bu+ bu
1+852 - 94— OB O
2 q — bp
A+a—1
( 2a )_d_PZ(t)
A+a+1 T q
2 q — bu

m(A +20;_ 1) (A + i + 1) —d= pZ(t)(Z —
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mA+a-—1) _ pz(t)(q — bu)
a(A+a+1) ST q

mA+a—-1)—-dA+a+1) pz()(q—Dbu)
a(A+a+1) - q

g{(A +a)(m—ad) +d —m} _ (4.130)
aw@—bw@Atarny ‘0

Dengan demikian titik kesetimbangan E*(x*,y* z*) dari persamaan (4.7a)
sampai (4.7c) adalah sebagai berikut:

, A+ta-1 | 1

- *_q{(A+a)(m—ad)+d_m}
2a Y=

q—bp'”  ap(g-bw(A+a+1)

X

4.4  Linierisasi Model

Linierisasi model merupakan salah satu metode yang digunakan untuk
mengubah persamaan diferensial nonlinier menjadi bentuk linier untuk
mempermudah analisis. Hal ini dilakukan dengan melakukan ekspansi deret Tylor
dan menghilangkan suku nonlinier di sekitar titik kesetimbangan. Berdasarkan
persamaan pada persamaan (4.6) berikut:

dx a ) cxXy
dt - T Y T T v ax

dy  mxy q pyz

dt 1+ax Y 1+by

dz  qyz
dt _1+by ¢

Kemudian dimisalkan sebagai

cxy
1+ ax

filx,y,2) =x(1 = x) -

mx pPyz
+

N —dv —

fZ(xryJZ)z ax y 1+by (414)



qyz

fs(x»J’»Z) = 1 +by

Sehingga persamaan (4.6) menjadi:
X(t) = f1(x,y'Z)
y(t) = fZ(xﬂylZ)

Z(t) = f3(x,y,z)
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(4.15)

Selanjutnya, dilakukan linierisasi dengan menggunakan deret Taylor sebagai

berikut:

0
[i(63,2) % Gy 2) + D (', y", 2) (x() — )

of,
" % 'y 7)) —3)

afl * ok %k *
+, (Y z) () - 27)

o,
Fley,2) = fi(c,y,2) + 2 (a2 e (®) — )

d
" a—’;z oy 250 - y)

0f2 v v . \
+6_z(x ¥52)(z(t) — z%)

0
Fi0,2) 0y 2) + 22 (e, 2) (D) = 1)

d
" a—f oy 25 - y)

s o ey :
+ =2y 20 — 2)

dimana,

1+ ax*

fl(X*ly*’Z*) = X*(l - X*) -

(4.16a)

(4.16b)

(4.16¢)

(4.17a)



df1 cy” cax*y”
_J *’ *’ ) — 1 _ 2 *
ox (% y%27) x 1+ax*+(1+ax*)2

afl(* © 7 = cx*
ayx'y'z  14ax*

afl E I S N
a—Z(x,y,Z)—O

fz(x,y,z)=1+ax* Y 1+ by*

afz( C ) 7 = my”* max*y*
ox Y T T ax (1+ ax*)?

of, mx” pz* pby*z*
—(x",y",z") = e +
dy 1+ ax* 1+ by*  (1+by*)?
Uz (o it 57y = PV
9z Y 1+ by*
N A A
f3(x:y ’Z)_1+by* HZ
ad
d_f;(x*’y*, Z*) — 0
s (o gy AT
oy Y 1+ by* (1+by*)?
9z Y 1+ by* H

Maka diperoleh hasil linierisasi sebagai berikut:

() ~ v (1 - x) — oL
R T T e
cy” cax*y”
1—2x"—
+< x 1+ax*+(1+ax*)2

() 6@ -y

)G - x)
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(4.17h)

(4.17¢)

(4.18a)
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Y= 1+ ax* Y 1+ by*
my” B max*y* ) .
(1 +ax* (1+ ax*)? x(®) =x9)
_|_< mx” d pz* N pby*z* )( ® (4.18Db)
1+ ax* 1+by* (1+by*)? Y
o (_PY o
SN s ICORED
: qy*z" \ ( qz’ qby’z’ ) .
t) ~ — — t) —
2(t) 1+ by* 1+ by* (14 by*)? 0@® =)
(4.18¢)

(2 b*y* 1) ) - )

4.5 Analisis Kestabilan pada Titik Kesetimbangan
Untuk memastikan stabilitas pada titik kesetimbangan, maka diperlukannya
nilai eigen dari titik kesetimbangan dengan menggunakan matriks Jacobian.

Matriks Jacobian diperoleh dari persamaan linier berikut ini.

c cax cx
1—2x ——2—2 — 0
1+ax  (1+ax)? 1+ax
my  maxy mx  ,  pz pbyz _py (4 19)
1+ax (1+ax)? 1+ax 1+by  (1+by)? 1+by )
z byz
0 _az__ _abyz_ v
1+by  (1+by)? 1+by

Berdasarkan matriks Jacobian yang diperoleh, diperlukannya anaisis terhadap

stabilas sebagai berikut:

4.5.1 Titik Kesetimbangan Pertama
Titik Kesetimbangan pertama yaitu E, = (0,0,0) disubstitusikan ke dalam

persamaan (4.19), sehingga diperoleh:
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1 0 0 (4.20)
J(Ep)=1|0 —d 0 ]
0 0 -—p

Dengan matriks Jacobian di atas, maka nilai eigen dapat dicari dengan:

det (J(Eo) — AI

1 0 0 1 0 O
S det||0 —d O —/1[0 1 0] =0

0 0 —p 0 0 1
1 0 0 A 0 0
Sdet||0 —d O —[0 A 0] =0
0 0 —u 0 0 4
1-4 0 0
s det| O —-d—-A1 0 ] =0
0 0 —pn—=A1
S1-A)-(—d-A)-(—p—A) =0
Maka diperoleh nilai eigen sebagai berikut:
/11 = 1
Ay =—d (4.21)
A3 =—p

Berdasarkan hasil nilai eigen tersebut, diperoleh nilai eigen 1, —d, dan —p.
Nilai eigen dikatakan stabil apabila semua nilai eigen memiliki riil negatif. Maka
dapat disimpulkan bahwa untuk titik kesetimbangan E, = (0,0,0) tidak stabil. Hal

ini dikarenakan adanya satu nilai yang bersifat riil positif.

4.5.2 Titik Kesetimbangan Kedua
Titik Kesetimbangan kedua yaitu E; = (1,0,0), kemudian disubstitusikan

ke dalam persamaan (4.19), sehingga diperoleh:
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-1 - 0
a+1
JEY=|,o ™ _4 (4.22)
a+1
0 0 -

Dengan menggunakan matriks Jacobian tersebut, maka nilai eigen dapat dicari
dengan:

det (J(E,) — AD)

1 < 0 |
T Ta+1 1 0 0|
 det|| m—d o|=410 1 0]|=0
a+1 0 0 1
0 0 —l
c ]
BT 20 o|
& det m —[0 2 of|=0
0 — 0
a+1 0 0 2
0 0 —l
C
-1-1 - 0 |
a+1
o det 0 m —d—1 0 =0
a+1
0 0 —un—=A
m
@(—1—/1)-((1—“—01—/1)-(—“—,1)_0
Maka, diperoleh nilai eigen
Al=_1
__m _ (4.23)
Az_a+1 d
A3 = —q
Berdasarkan hasil nilai aigen tersebut, diperoleh nilai eigen yaitu —1, % —

d, dan —p. Pada nilai eigen untuk A, = —— — d bisa bernilai positif atau negatif.

Sehingga dibutuhkannya syarat kestabilan yaitu jika 1, <0 = % -d<0
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artinyam < (a + 1)d, maka semua nilai eigen bernilai negatif. Sehingga untuk

titik kesetimbangan E; = (1,0,0) dapat dikatakan stabil. Namun, apabila 1, >

0 = — —d > 0, maka titik kesetimbangan menjadi tidak stabil.

a+1

4.5.3 Titik Kesetimbangan Ketiga
Pada titik kesetimbangan selanjutnya yaitu E, = (X, y, 0), pertama lakukan

substitusi ke dalam persamaan (4.19). Dimana pada kondisi E, untuk mencari

matriks Jacobian didefinisikan sebagai £ = ﬁ sesuai dengan persamaan (4.11),

m(m—ad-d)

C(m—ad)? sesuai dengan persamaan (4.12). pada titik kesetimbangan E,,

dany =

persamaan kesetimbangan dari sistem mem sehingga diperoleh

N caxy cx 0
x (1+ ax)? 1+ ax
my Py
JE) = —— =3 0 - =
(1+ax) 1A+ by (4.24)
0 0 v
1+ N

Berdasarkan matriks Jacobian di atas, dikarenakan matriks yang diperoleh
tidak termasuk ke dalam struktur segitiga, maka diperlukannya untuk mencari
persamaan karakteristik dari

det(J(E;) —AI) =0

caxy cx 0
(1+ ax)? 1+ ax
oar| o Y —/1\(1) ! 3] —0
A2 A —
(1+ ax) q;+by 0 0 1
0 0 -
1+bp M




o1

caxy cx 0
(1+ ax)? 1+ ax )
& det (1jrnyA)2 0 —1iybA —[0 ?1 8] =0
ax 9 Y1 lo o 2
0 0 -
1+pyp N
Kemudian lakukan penyederhanaan persamaan menjadi
—Vi1 V12 0 A 0 O
S det Vo1 0 —V3|—|0 A O
0 0 V33 0O 0 A
Dengan
N caxy cx
Vi = X aR)? Viz T 1 0z
y my I
217 (1 + ak)? 2714 by
A
371+ by
Sehingga diperoleh
Vi1 — A4~V 0
(=4 det[ Va1 —A —Vo3 ] =0
0 0 V33 — A

Berdasarkan matriks tersebut pada baris dan kolom ketiga yaitu v33 — A1
berinteksi terhadapa dirinya sendiri. Oleh karena itu, det (J — AI) dapat

difaktorkan menjadi sebagai berikut:

—Vi1— A =V

det(J — AI) = (vg5 — 1) - det[ noh T
Selanjutnya, hitung submatriks 2 x 2:
-V — A =V
det 11/1 _/112 = (—v11 = DD = (—vi2)(v21)
21

= AZ + Vlll + V12V21



Jadi determinan keseluruhan menjadi sebagai berikut:
det(] - AI) = (V33 - A) (AZ + V11/1 + V12V21)
Dengan demikian, maka diperoleh nilai eigen sebagai berikut

1. Untuk nilai eigen dari faktor kuadrat

A=1
B =vy,
C =vyvy
Sehingga
—B VB2 —4AC
A=
2A
—B + /B2 —4(1)C
/11,2 =
2(1)
—B+VB2—4C
/11,2 - 2
dengan
. caxy A( cay )
B = _— = 1 —_
Haraz U araz
kemudian subtitusikan persamaan 1 — X = <y -
1+ax
sehingga, diperoleh
cay 1 cx my
U v B (vl (ee=s)
x 1+ax 1+ax 1+ ax/\(1+ ax)?
a(l—x Xy
P PGt __miy
1+ ax (1+ ax)3

Il
=

(1+a£+a—a£>
1+ ax

(1+a)
=X —
1+ ax

52
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2. Untuk nilai eigen dari faktor linier

~

qy
1+ by

A3 =v33 =

Dengan demikian, nilai eigen dari E, adalah sebagai berikut:

—B +VB?—4C
/11,2 - 2
o1
3=T3bp M (4.25)

Berdasarkan hasil nilai eigen tersebut, diperoleh nilai eigen yaitu

— i 2_4 9
Vi1 \/(V112) V12V21 dan /13= qy

1+b9

Ao = —p . Titik kesetimbangan E, =

(%,7,0) dikatakan stabil asimtotik lokal apabila seluruh nilai eigen bernilai
negatif, dimana hal ini terjadi apabila memenuhi syarat kestabilan yaitu 1; <

O,B = _Vll > 0 dan C = V12V21 > 0

4.5.4 Titik Kesetimbangan Keempat

Pada bagian ini, titik kesetimbangan yang digunakan merupakan titik
interior. Titik kesetimbangan E;(x*,y* z*) disubstitusikan kedalam matriks
(4.19). Kemudian, dilakukan penyederhanaan pada matriks, sehingga diperoleh

bentuk matriks sebagai berikut:

V11 Uz O
V(E™) = |V21 U2z Vg
0 v, O (4.26)
dengan
i} acy* cx”
v =X {_1 * (1+ ax*}z} V2 = T e
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__my
Va1 = 1+ ax*}?

*

Yy
1+ by*

Uz3z =
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=t by P

*

qz

2= W by P

Dengan menggunakan matriks Jacobian tersebut, maka nilai eigen dapat dicari
dengan:

det(V(E*) — AI)

Vip Uiz 0] 1 0 O
S det||vyr Uz Uz —Al0 1 0
L 0 wv3, 0 0 0 1
Vg Uz O A 0 O
S det||vz1 Uz Uz|—|(0 A 0
0 vy, O 0 0 2
V11 — 4 U2 0
S det| Uy Uyp — A U23]
O U32 _A
N, Uz =4 Va3] . V21 Va3
[—t (V11 A) det[ V32 _/1 V12 det[ O _A:l

& (V11 — D) (A(vyy — A1) — Va3V3,) + V4,V 4
Sehingga diperoleh sebagai berikut:
det(V(E") —A) =23+ A A2 + A4+ A3 =0

Dengan

Al = —Vqq — Uyy

Ay = V11Uyp — U1pVUz1 — Uy3Usn (4.27)

Az = V110303
Selanjutnya, untuk menganalisis kestabilan, maka diperlukannya syarat

berdasarkan kriteria Routh-Hurwitz agar semua akar persamaan bernilai negatif,

yaitu:
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A; >0, A, >0, A3>0, 4>0
Dengan
A= AA, — As
= —(V11 + V22) (V11V22—V12U21 — U23V32) + U11V23VU32 (4.28)

Dengan demikian, titik kesetimbangan untuk E;(x*,y*, z*) dinyatakan
stabil asimtotik lokal apabila memenuhi syarat Routh-Hurwiz, yaitu A; > 0,4, >
0,A; > 0,dan 4 = A;A, — A; > 0. Apabila syarat ini terpenuhi, maka semua
akar polinonial karakteristik bernilai negatif, sehingga titik kesetimbangan

E;(x™,y*,z*) bersifat stabil.

Berdasarkan keempat titik kesetimbangan yang diperoleh sebelumnya, tidak
semua titik kesetimbangan tersebut selalu bermakna secara biologis. Oleh karena
itu, diperlukan konsep eksistensi titik kesetimbangan. Eksistensi menunjukkan
apakah nilai populasi pada titik kesetimbangan tidak bernilai negatif, sehingga
memungkinkan terjadinya secara biologis. Pada model ini terdapat titik
kesetimbangan yang selalu eksis dan titik kesetimbangan yang konsistensinya
bergantung dengan parameter tertentu. Berikut adalah tabel yang menyajikan

eksistensi dan kestabilandari keempat titik kesetimbangan.

Tabel 4. 2 Syarat Kestabilan Model Predator-Prey dengan Respon Fungsional Holling

Type Il
Titik Eksistensi Syarat Keterangan
Kesetimbangan Kestabilan
E,;(0,0,0) Selalu ada - Tidak stabil
E;(1,0,0) Selalu ada m < (a+ 1)d | Stabil
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E;(%,9,0) Ada jika: ay < Stabil
K,
1+ by
m> (a+ 1)d
B>0,C>0
E;(x*,y*,z%) Ada jika: Jika memenuhi | Stabil
q> b+ kriteria Routh- | asimtotik
ad(A+a+1) Hurwitz: lokal
m >
A+a-1
A; >0
dengan
A; >0
A=
A>0
_ 2 q-u(b+c)
\/(1 a)? + 4a (—q_bu )

Berdasarkan Tabel 4.2, dapat diketahui kondisi eksistensi dan kestabilan dari
setiap titik kesetimbangan yang diperoleh. Dari keempat titik kesetimbangan
tersebut, analisis numerik difokuskan pada titik kesetimbangan interior yaitu Es,
dikarenakan hanya pada titik ini yang merepresentasikan keadaan eksistensi untuk
ketiga populasi secara bersamaan, sehingga dinamika sistem yang paling sesuai

secara biologis maupun matematis terjadi di sekitar titik tersebut.

4.6 Analisis Numerik dan Simulasi Model

Penelitian ini menggambarkan kondisi simulasi numerik, yang akan
menyajikan dua simulasi dari persamaan (4.6) dengan mensubtitusikan nilai
parameter pada Table 4.1. Hal ini bertujuan untuk mengetahui apakah titik
kesetimbangan stabil atau tidak. Pada simulasi ini berfokus pada model predator-
prey dengan menggunakan respon fungsional Holling Type 1l tanpa menggunakan
waktu tunda, yang diselesaikan dengan menggunakan software Maple. Simulasi

pertama, memvisualisasikan perilaku dinamis dari model rantai makanan tritrofik
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dengan menggunakan nilai parameter yang tercantum pada Tabel 4.1 yang diambil
dari Maiti dkk, (2008). Simulasi ini digunakan untuk untuk memverifikasi hasil
analisis kestabilan titik kesetimbangan, serta melihat seberapa besar pengaruh
parameter mempengaruhi populasi tersebut. Begitu pula untuk simulasi kedua,
dilakukan dengan menggunakan nilai parameter yang sama, namun dengan
memodifikasi satu nilai parameter yaitu pada variabel m menjadi 4.35. Hal ini
dilakukan sebagai bentuk analisis sensitivitas untuk melihat pengaruh perubahan
parameter terhadap dinamika sistem.

Model predator-prey persamaan (4.6) memiliki 4 titik kesetimbangan, yaitu

E, = (0,0,0) dan E; = (1,0,0) yang bersifat tidak stabil. Titik E, = (%,7,0)

d
m—ad

dan 9y = %, merupakan titik kesetimbangan yang eksis

dengan x =

akan tetapi hanya merepresentasikan dua spesies saja. Selanjutnya, pada titik

H H H * * * * A+a-1 * *
kesetimbangan interior E; = (x*,y*,z") dengan x* = 2"; Y =ﬁ,z =

q{(A+a)(m—ad)+d—-m}
ap(q-bw)(A+a+1)

bersifat stabil asimtotik lokal apabila memenuhi syarat

kestabilan pada Tabel 4.2. Oleh karena itu, berikut akan ditunjukkan hasil simulasi

untuk menggambarkan dinamika populasi dari model predator-prey tersebut.

4.6.1 Simulasi Pertama

Pada bagian simulasi ini, model predator-prey disimulasikan dengan
menggunakan nilai parameter yang tercantum pada Tabel 4.1 yaitu, m = 2.5,p =
0.05,g =0.3,a=3,b=04,d =04,u=0.075, dengan kondisi awal
(x(0),¥(0),2z(0)) = (0.5,0.5,4). Berdasarkan Tabel 4.2 kondisi Es, dikatakan

eksis jika dan hanya jika memenuhi 2 syarat berikut:
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(i) g>B+op
q > (0.4 + 1.5)0.075
q > (1.9)0.075

0.3 > 0.1425

ad(A+a+1)

(“) m > A+a-1

dengan

A =j(a—1)2+4a(%bb:6))

_ , 0.3 —0.075(0.4 + 1.5)
A= j(S - 4(3)( 0.3 — 0.4(0.075) )

A=V4+7
A =11 = 3.3166
Maka, diperoleh

ad(A+a+1)
A+a-1

m >

3(0.4)(3.3166 + 3 + 1)
33166+ 3 — 1

2.5>1.6514

Dengan demikian syarat (i) dan (ii) terpenuhi, sehingga dapat disimpulkan
titik kesetimbangan E;(x*,y*,z*) eksis. Selanjutnya, hitung koordinat dari

x*,y*,z" untuk mengetahui posisi dari titik kesetimbangan tersebut.

A4+a—-1 33166+3—-1

= = 0.8861
2a 2(3)

x*(t) =
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() =——= 0.075 =0.2778
YA = —bu” 03-04(0.075)
q{(A+a)(m—ad) +d —m}
z*(t) =

ap(q —bWA+a+1)

_0.3{(3.3166 + 3)(2.5 — 3(0.4)) + 0.4 — 2.5}
~3(0.05)(0.3 — 0.4(0.075))(3.3166 + 3 + 1)

= 4.5676
Sehingga diperoleh koordinat dari titik kesetimbangan E;(x*,y* z*) =
(0.8861,0.2778,4.5676).

Selanjutnya, untuk mengetahui apakah titik kesetimbangan tersebut stabil
dilakukannya analisis kestabilan dengan menggunakan kriteria Routh-Hurwitz.
Berdasarkan Tabel 4.2 titik E5(x*, y*, z*) dikatakan stabil asimtotik lokal apabila
memenuhi syarat A; > 0,A; > 0, dan A > 0. Dengan mensubstitusikan nilai
parameter ke dalam persamaan matriks (4.26), sehingga diperoleh bentuk

numeriknya sebagai berikut:

—0.8033 —0.3633 0
V(E*) =] 0.0519 0.0206 —0.0125
0 1.1099 0

Kemudian, subtitusikan elemen-elemen matriks pada persamaan (4.27) dan
persamaan (4.28), sehingga diperoleh
Ay = —(vy + vyy) = —(—0.8033 + 0.0206) = 0.7827
Ay = V11Up — U1pVz1 — Up3Us;
= —0.8033(0.0206) — (—0.3633)(0.0519) — (—0.0125)(1.1099)
= 0.0162
Az = V11U53U3, = —0.8033(—0.0125)(1.1099) = 0.0111

A= A;A;, —A; =0.7827(0.0162) — 0.0111 = 0.0016
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Karena nilai dari A; =0.7827 > 0,4; = 0.0111 > 0, dan A =0.0016 > 0,
maka titik kesetimbangan dari E; bersifat stabil asimtotik lokal. Kemudian,
dilakukannya simulasi numerik untuk menggambarkan dinamika sistem dan
memverifikasi hasil dari analisis kestabilan dengan menggunakan nilai parameter
yang sama.

Berikut adalah gambar grafik yang menggambarkan interaksi dari tiga

spesies yaitu mangsa x(t), predator y(t), dan superpredator z(t).

Potret Fase Interaksi Tiga Spesies

0.6 0.5

0.4 0.7
it 0g 08 w0

Gambar 4.1 Potret Fase Grafik Model Predator-Prey (1) dengan Nilai Parameter m =
2.5,p=0.05g =0.3,a =3.0,b = 0.4,d = 0.4,n = 0.075, dengan Kondisi Awal

(x(0),y(0),2(0)) = (0.5,0.5,4)

Gambar 4.1 adalah Potret fase grafik tiga dimensi dari model predator-prey
dengan parameter awal x(0) = 0.5,y(0) = 0.5,z(0) = 4. Gambar grafik ini
menunjukkan lintasan populasi mangsa, predator, dan superpredator yang
bergerak menuju titik kesetimbangan yang stabil yaitu E5 = (x*, y*, z*). Hasil
simulasi menunjukkan kondisi di mana ketiga populasi eksis sesuai dengan Tabel
4.2. Lintasan ketiga populasi mengalami osilasi, perlahan bergerak berbentuk

spiral menuju ke dalam yang semakin mengerucut ke arah titik pusat
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menggambarkan adanya dinamika osilasi yang semakin mengecil, artinya
populasi mangsa (prey) menalami perubahan yang sangat drastis akibat predator,
begitu pula predator akibat superpredator sehingga populasi mangsa mengalami
fluktuasi. Namun, meskipun awalnya mengalami fluktuasi, pada akhirnya semua
bergerak menuju ke dalam keadaan stabil.

Selain potret fase tiga dimensi, selanjutnya akan divisualisasikan suatu
interaksi populasi mangsa x(t) dengan populasi superpredator z(t) pada gambar
grafik berikut:

Dotret Fase Interaksi Antara Mangsa x(t) dan Superpredaror z(1)

554

354 | ; . :
05 06 0.7 . 08 0s
Gambar 4.2 Potret Fase Grafik Interaksi antara Populasi Mangsa x(t) dan
Superpredator z(t) dengan Nilai Parameter m = 2.5,p = 0.05,q = 0.3,a = 3.0,b =
0.4,d = 0.4, = 0.075, dengan Kondisi Awal (x(0),y(0),z(0)) = (0.5,0.5,4)

Pada Gambar 4.2 grafik menunjukan bahwa adanya lintasan yang bergerak

dari titik z menjauhi titik awal, hingga membentuk spiral yang menuju suatu titik
kesetimbangan. Hal ini menunjukan bahwa sistem dinamik mengalami osilasi,
hingga seiring waktu berkurang yang akhirnya berhenti pada satu titik
kesetimbangan. Artinya, populasi superpredator secara tidak langsung sangat

bergantung pada kestabilan populasi mangsa, di mana mangsa mendukung
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superpredator melalui predator. Sehingga pada akhirnya kedua populasi ini
mencapai keseimbangan bersama.
Selanjutnya, akan ditunjukkan visualisai dari interaksi antara predator

dengan superpredator sebagai berikut:

Potret Fase Antara Predator v(t) dan Superpredator z(t)

02 03 04 0.5
RG]

Gambar 4.3 Potret Fase Grafik Interaksi antara Populasi Predator y(t) dan
Superpredator z(t) dengan Nilai Parameter m = 2.5,p = 0.05,q = 0.3,a = 3.0,b =
0.4,d = 0.4, = 0.075, dengan Kondisi Awal (x(0),y(0),z(0)) = (0.5,0.5,4)

Gambar 4.3 menunjukan perilaku serupa dengan interaksi antara mangsa
dengan superpredator. Pada grafik ini, interaksi antara predator dengan
superpredator menunjukkan adanya osilasi yang pada akhirnya menuju titik

kesetimbangan. Artinya, populasi predator dapat bertahan hidup meskipun

dikendalikan oleh superpredator.
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Perkembangan Populasi x(t) dan v(t) Terthadap Wakm Perkembangan Populasi z(t) Terhadap Wakm
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Gambar 4.4 Grafik Perubahan Populasi Tritrofik Seiring Waktu dengan Nilai
Parameter m = 2.5,p = 0.05,q = 0.3,a = 3.0,b = 0.4,d = 0.4, = 0.075, dengan
Kondisi Awal (x(0), y(0),2(0)) = (0.5,0.5,4)

X(t

Berdasarkan grafik Gambar 4.4 menunjukkan bahwa dinamika ketiga
populasi mengalami osilasi teredam, yaitu pola osilasi dimana seiring waktu
amplitudonya semakin mengecil hingga pada akhirnya menuju titik
kesetimbangan. Pada populasi superpredator z(t) mengalami osilasi yang pada
awalnya cukup tajam. Kemudian, seiring waktu berjalan osilasi mengalami
penurunan hingga pada akhirnya stabil. Pada populasi mangsa x(t) berawal dari
osilasi yang sangat kecil. Namun, nilainya tetap rendah dan cenderung mendekati
nol. Hal ini berarti bahwa mangsa meskipun mengalami osilasi yang sangat rendah
akan tetapi tidak sampai punah. Sedangkan, pada populasi predator y(t)
cenderung lebih stabil sejak awal dan hanya mengalami osilasi lebih besar
daripada x(t), hingga akhirnya menuju kepunahan. Hal ini menunjukan bahwa
predator lebih dominan dan relatif lebih stabil dibandingkan dengan populasi

mangsa.
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4.6.2 Simulasi Kedua
Pada bagian ini, model predator-prey disimulasikan dengan menggunakan
nilai parameter sesuai dengan Tabel 4.1 yaitu, m = 4.35,p = 0.05,q = 0.3,a =
3.0,b=0.4,d = 0.4, = 0.075, dengan kondisi awal (x(0),y(0),2z(0)) =
(0.5,0.5,4). Sama seperti simulasi pertama, simulasi kedua ini juga dilakukan di
sekitar titik kesetimbangan interior E;. Di mana, dikatakan eksis jika syarat
berikut terpenuhi.
() g>®B+ou
q > (0.4 + 1.5)0.075
q > (1.9)0.075

0.3 > 0.1425

ad(A+a+1)

(”) m > A+a-1

dengan

A =\/(a—1)2+4a(%)

0.3 — 0.075(0.4 + 1.5)
4= \/B - 4(3)< 0.3 — 0.4(0.075) )

A=+V4+7=+11=3.3166

Maka, diperoleh

ad(A+a+1)
A+a-1

m >

3(0.4)(3.3166 + 3 + 1)
33166 +3 — 1

435> 1.6514
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Dengan demikian syarat (i) dan (ii) terpenuhi, sehingga dapat disimpulkan
titik kesetimbangan E5; = (x*,y*, z*) eksis. Selanjutnya, hitung koordinat dari
x*,y*, z" untuk mengetahui posisi dari titik kesetimbangan tersebut.

A+a—1_ 33166+3—1

“(t) = = = 0.8861
x*(t) 72 233) 0.886

“(t) = - 0.075 = 0.2778
YA = — b T 03-04(0.075)

_qf(A+a)(m—ad) +d —m}

2= W@t at D

_0.3{(3.3166 + 3)(4.35 — 3(0.4)) + 0.4 — 4.35}
~3(0.05)(0.3 — 0.4(0.075))(3.3166 + 3 + 1)

= 14.5254
Sehingga diperoleh koordinat dari titik kesetimbangan E;(x*,y* z*) =
(0.8861,0.2778,14.5254).
Selanjutnya, untuk mengetahui apakah titik kesetimbangan tersebut stabil
dilakukannya analisis kestabilan dengan menggunakan kriteria Routh-Hurwitz. Di
mana, hal ini tercantum pada Tabel 4.2. Selanjutnya, subtitusikan nilai parameter

ke dalam persamaan matrik (4.25), sehingga diperoleh bentuk numeriknya sebagai

berikut:
—0.8033 —0.3633 0
V(E*) = 0.0903 0.0654 —0.0125
0 3.5297 0

Kemudian, subtitusikan elemen-elemen matriks pada persamaan (4.27) dan
persamaan (4.28), sehingga diperoleh

A; = —(vg; + V,y) = —(—0.8033 + 0.0654) = 0.7379

Ay = V11Up — U1pVz1 — Up3Us;

= —0.8033(0.0654) — (—0.3633)(0.0903) — (—0.0125)(3.5297)



66

= 0.0244
A3 = v11U,3V3, = —0.8033(—0.0125)(3.5297) = 0.0354
A= AjA, — A; =0.0.9744(1.2630) — 0.0019 = —0.0174
Dari hasil perhitungan tersebut dperoleh A; = 0.7379 > 0,A; = 0.0354 >
0, yang memenuhi kriteria kestabilan. Namun, dikarenakan A = —0.0174 < 0,
maka titik kesetimbangan E; bersifat tidak stabil. Kemudian, dilakukannya
simulasi numerik untuk menggambarkan dinamika sistem untuk memverifikasi

hasil dari analisis kestabilan dengan menggunakan nilai parameter yang sama.

Potret Fase Interaksi Tiga Spesies
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0
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Gambar 4.5 Potret Fase Grafik Model Predator-Prey (I1) dengan Nilai Parameter m =
4.35,p =0.05,g =0.3,a =3.0,b = 0.4,d = 0.4, 1 = 0.075 dengan Kondisi Awal

(x(8), y(6), z(t)) = (0.5,0.5,4).

Gambar 4.5 menunjukkan interaksi antara populasi mangsa (prey), predator,
dan superpredator yang mengalami lintasan yang membentuk kurva tertutup yang
stabil. Pola grafik tersebut menunjukkan bahwa amplitudo osilasi tidak mengecil
seiring waktu, melainkan bertahan, sehingga sistem tidak mencapai titik

kesetimbangan. Artinya, interaksi ketiga populasi ini menghasilkan kesimbangan
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yang tidak stabil dan sistem memasuki suatu limit cycle yang stabil. Hal ini terjadi

akibat perubahan parameter yang menyebabkan sistem kehilangan kestabilan.

Potret Fase Interaksi Antara Mangsa x(t) dan Superpredator z(t)
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Gambar 4.6 Potret Fase Grafik Interaksi antara Populasi Mangsa x(t) dan
Superpredator z(t) dengan Nilai Parameter m = 4.35,p = 0.05,q = 0.3,a = 3.0,b =
0.4,d = 0.4, = 0.075 dengan Kondisi Awal (x(t), y(t),z(t)) = (0.5,0.5,4).

Pada grafik Gambar 4.6 menggambarkan interaksi antara populasi mangsa
x(t) dengan populasi superpredator z(t) yang menunjukkan lintasan tidak
bergerak menuju titik kesetimbangan. Namun, lintasan membentuk kurva tertutup
yang stabil. Artinya, kedua populasi ini dari waktu ke waktu mengalami osilasi
secara periodik dan menunjukkan bahwa sistem tidak stabil. Selain potret fase
antara interaksi mangsa dengan superpredator, selanjutnya akan divisualisasikan

juga suatu interaksi populasi predator y(t) dengan populasi superpredator z(t)

pada gambar grafik berikut:
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Potret Fase Antara Predator v(t) dan Superpredator z{(t)
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Gambar 4.7 Potret Fase Grafik Interaksi antara Populasi Predator y(t) dan
Superpredator z(t) dengan Nilai Parameter m = 4.35,p = 0.05,q = 0.3,a =3.0,b =
0.4,d = 0.4, 1 = 0.075 dengan Kondisi Awal (x(t), y(t),z(t)) = (0.5,0.5,4).

Gambar 4.7 menunjukkan lintasan pada grafik membentuk kurva tertutup
yang menggambarkan bahwa grafik membentuk limit cycle. Grafik ini juga
menunjukkan bahwa interaksi populasi predator dan superpredator tidak menuju

titik kesetimbangan, sehingga bersifat tidak stabil. Selain itu, grafik menunjukkan

bahwa sistem mengalami osilasi secara berulang.

Perkembangan Populas x(t) dan v(t) Terhadap Waktu Perkembangan Populas z(t) Terhadap Waktu
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Gambar 4.8 Grafik Perubahan Populasi Tritrofik Seiring Waktu dengan Nilai
Parameter m = 4.35,p = 0.05,q = 0.3,a = 3.0,b = 0.4,d = 0.4,u = 0.075 dengan
Kondisi Awal (x(¢), y(¢), z(t)) = (0.5,0.5,4).
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Grafik pada Gambar 4.8 menunjukkan bahwa ketiga populasi mengalami
osilasi secara periodik. Pada populasi mangsa (prey), grafik menggambarkan
bahwa lintasan mengalami osilasi dengan amplitudo yang sangat kecil namun
stabil dan terus berosilasi secara periodik dengan rentang nilai yang juga relatif
kecil. Pada populasi predator, juga menunjukkan bahwa lintasan mengalami
osilasi dengan amplitudo kecil dan menunjukkan lintasan berosilasi secara terus
menerus di sekitar titik positif. Pada populasi superpredator, menunjukkan bahwa
populasi mengalami osilasi dengan amplitudo yang sangat besar. Selain itu,
lintasan pada populasi superpredator menunjukkan osilasi periodik tanpa teredam

yang menandakan dinamika populasi berada dalam keadaan limit cycle.

4.7 Analisis Kajian Islam

Dalam perspektif Islam, keseimbangan yang ditunjukan oleh model
matematika berupa dinamika populasi dalam suatu ekosistem secara tidak langsung
mencerminkan prinsip Al-Mizan. Hal ini dijelaskan dalam QS.Ar-Rahman [55]: 7
yang menyatakan:

Y A (PR P S a1
' Q\J).;J\ Ca))\_yu ;L...Jb

Artinya: “Dan langit telah ditinggikan-Nya dan Dia ciptakan keseimbangan.”

Berdasarkan tafsir karya Muhammad Husain Thabathaba’i menjelaskan
bahwa makna mizan berarti keseimbangan dan keadilan (Filmizan dkk, 2024). Hal
ini menjelaskan bahwa prinsip Al-Mizan telah ditetapkan oleh Allah SWT dalam
menciptakan alam semesta. Sistem dinamik model predator-prey tersebut
menggambarkan bahwa perubahan sekecil apapun pada parameter dapat

menyebabkan perubahan sistem menjadi tidak stabil atau dapat mencapai
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keseimbangan hingga stabil. Hal ini sesuai dengan QS. Al-Qamar [54]: 49, sebagai
berikut:

-7 a8 -7 - 92 1
@ LS o8 LG
L4y
L i J 4&5"' J

Artinya: “Sesungguhnya Kami menciptakan segala sesuatu sesuai dengan ukuran.”
Ayat tersebut menegaskan bahwa setiap ciptaan Allah sesuai pada ukurannya.
Menurut tafsir Al-Qurthubi, bahwasannya Allah telah menetapkan segala sesuatu,
ukuran, keadaan, dan waktu setiap makhluk sebelum diciptakan (Syaikh Imam Al
Qurthubi, 2015). Artinya, setiap ciptaan Allah sesuai dengan takdirnya, dan tidak
terjadi secara kebetulan atau sia-sia. Hal ini sama halnya dengan model predator-
prey dengan respon fungsional Holling Type Il, di mana setiap parameter memilili
ketetapan ukuran yang sesaui untuk menjaga keseimbangan populasi pada
ekosistem. Selain itu, sekecil apapun perubahan parameter, hal ini akan sangat
mempengaruhi sistem dinamik. Kondisi ini sesuai dengan pernyataan pada QS. Al-
An’am [6]: 38 yang menyatakan bahwa seluruh makhluk hidup berada pada sistem
yang teratur.
B - o
@ S AN 0262 il 1LY 2331 3505 5l g
Artinya: “Tidak ada seekor hewan pun (yang berada) di bumi dan burung-burung

yang terbang dengan kedua sayapnya, melainkan semuanya merupakan umat (juga)
seperti kamu.”

Ayat tersebut menjelaskan bagaimana setiap makhluk hidup mempunyai
sistem sosial. Berdasarkan tafsir Al-Qurthubi, menegaskan bahwa semua makhluk
hidup seperti predator dan mangsa merupakan “umat” yang memiliki perannya
masing-masing (Al-Qurthubi, 2019). Selain itu, ayat ini sangatlah berkaitan dengan
model predator-prey, di mana setiap interaksi antar populasi pada ekosistem saling
berpengaruh hingga menciptakan keseimbangan alami, sehingga ekosistem tetap

stabil. Hal ini menunjukkan bahwa nasib setiap makhluk hidup tidak luput dari
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ketetapan dan pengaturan Allah. Oleh karena itu, sistem dinamik model predator-
prey ini tidak hanya membantu dalam bidang ilmiah. Namun, juga dapat menjadi
sarana dalam memahami dan meneguhkan nilai-nilai agama bahwa Allah SWT.
menciptakan alam semesta ini dengan keseimbangan yang teratur. Dengan
demikian, hal ini menunjukkan bahwa ilmu pengetahuan dengan ajaran Islam

sangatlah selaras.



BAB V
PENUTUP

5.1 Kesimpulan

Berdasarkan penelitian yang dipaparkan pada pembahasan sebelumnya
diperoleh kesimpulan sebagai berikut:
1. Model predator-prey yang digunakan pada penelitian ini adalah model

tritrofik hasil penelitian yang digunakan oleh Maiti dkk, (2008) sebagai

berikut.
A0 s I
"D _CADID gy LD
dZ(T) _ C,Y(T)Z(T) DT

dT A, +Y(T)
Setelah dilakukan nondimensionalisasi diperoleh model predator-prey yang
lebih sederhana. Sehingga diperoleh model berikut menjadi dasar dalam
analisis penelitian ini.

dxa)__x@)m__xaj)_cxaoy@)

dt 1+ ax(t)
dy®) _ mx(@©y(@®) _ dy(t) - py(t)z(t)
it 1+ax®) Ty
dz(t) qy(t)z(t)
= — pz(t)
dt  1+by(d
Dengan
_BK K GK D BK K _CK D
C_Alr'a Al'm_Alr' r'p_AZr’ _Az'q_AZr’u_r
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Berdasarkan analisis pada model predator-prey dengan menggunakan respon
fungsional Holling Type Il diperoleh 4 titik kesetimbangan yaitu E, =
(0,0,0),E; = (1,0,0) yang selalu eksis, namun tidak stabil. Pada E, =
(%,9,0) juga eksis jika memenuhi syarat m < (a + 1)d, namun stabil jika

memenuhi % < . Sedangkan pada titik E; = (x*,y*, z*) dapat dikatakan

eksis dan stabil jika memenuhi kriteria Routh-Hurwitz. Hasil analasis
menunjukan bahwa titik kesetimbangan menunjukkan kondisi stabil
asimtotik lokal, dengan koordinat E;(x*,y*,z") =
(0.8861,0.2778,4.5676) untuk simulasi pertama. Pada simulasi kedua,
pada titik E5(x*, y*,z*) = (0.8861,0.2778, 14.5254) menunjukkan bahwa
kondisi sistem tidak stabil. Hal ini terjadi dikarenakan A = —0.0174 < 0.

Hasil simulasi numerik dengan Maple mendukung hasil analisis dinamik.
Berdasarkan simulasi pertama yang ditampilkan menunjukkan bahwa solusi
dari sistem menuju kestabilan pada titik E5. Simulasi tersebut menunjukkan
bahwa sistem mengalami osilasi teredam dengan pola spiral di mana awalnya
lintasanya mengalami fluktuasi yang amplitudonya seiring waktu semakin
mengecil hingga menuju titik kesetimbangan interior E5. Artinya, populasi
ketiga spesies tidak mengalami kepunahan, melainkan berfluktuasi sementara
hingga pada akhirnya stabil. Pada simulasi kedua, ketika nilai parameter m
diubah menjadi m = 4.35, perilaku sistem berubah secara signifikan.
Simulasi tersebut menunjukkan bahwa lintasan pada grafik tidak menuju ke
titik kesetimbangan, melainkan membentuk kurva tertutup yang stabil,

sehingga mengalami osilasi secara periodik dan tidak teredam. Artinya,
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sistem berada dalam kondisi limit cycle. Dengan demikian, perubahan

parameter spesies menyebabkan hilangnya kestabilan titik kesetimbangan.

5.2 Saran

Dalam penelitian selanjutnya, disarankan untuk mempertimbangkan
pengaruh faktor lain, seperti kompetisi antarspesies, atau efek lingkungan pada
tingkat predator maupun superpredator. Selain itu, dapat juga dilakukan modifikasi
model dengan menggunakan fungsi interaksi yang lain, seperti respon fungsional

Holling type 111 atau Beddington-DeAngelis.
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LAMPIRAN

Lampiran 1 Perhitungan Maple Tanpa Nilai Parameter
> restart : with( plots) : with(DEtools) : with(linalg) : unprotect(y) : unprotect(m) :

i DFE : END :

=> dx!=x-(l—x)—%:

=> dy = %*d})*%:
_> dz == qu'ryl')Z'y —mu-z:

> fixpoint == solve( {dx, dy, dz}, {x,y,z}) :
> tthl == fixpoint[ 17];
tkl == {x=0,y=0,z=0}

> 1th2 := fixpoint[3];
th2 = {x=1,y=0,z=0}

> tth3 = fixpoint[4];
3 = = — d ,y=—m(ad+d72m),z=0
ad—m c(ad—m)

[ > tthe = fixpoint[57;

tth4 == [x—RootOf((abu—aq)_Zz—O— (—abu+ag+bu—gq) Z—bu—uc

1 .

+q)y=———. 2= (¢ (RootOf((abp—aq) 7

bpu—gq acpp (bu—q)
+(—abp+aq+bu—gq) Z—bu—pc+gq)bmpu+acdp
—RootOf((ab].l—aq)_Zz-O-(—abu+aq+bu—q)_Z—b|.L—j.Lc
+q)mg—bmu—cmu+mq))}
;> J = Matrix( jacobian([dx, dv, dz], [x, v, z]) ) :
> ttkl == eval(subs(ttkl, J));

1 0 0
tkl == | 0 —d 0
0 0 —pn
=> ith2 == eval(subs(ttk2,J) );
- a-cl- 1 0
wh2 = | aTl_d 0
0 0 —LU
> ith3 = eval(subs(ttk3,J));
w3 = |1+ adzf]m + m(:’d+d;f)
(ad— m) (—m + 1]
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(1)

(2)

(3

4)

()

(6)

(7
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n dm(ad+d—dm)a _ cd — ol
3 a — —
(ad—m) (_ad—m-H) (ad m)( ad—m+]J
B mz(ad+d—m) B mzd(ad-l-d—m)a
o ad ; ad 27
c(ad 'ﬂ)( adm“} (ad—m)c(—adm+l)
B mdad _d
{ad—m)(—adm+l]
pm(ad+d—m)
C(adm)z(bm(ad-l-d—zm) +1]
c(ad—m)
gm(ad+d—m)
0,0, - —u
C(ad_m]g(_bm(ad+d 2m) +1J
c(ad—m)

(> ithd == eval(subs(ttk4,J ) );

tthd = | |1 — 2 RootOf ((abp—aq) Z+ (—abp+aqg+bu—gq) Z—bu—pc(8)

+4)+ (cn) [ ((bu—q) (aRootOf ((abp—ag) Z+ (~abu+ag
+bu—q) Z—bu—pc+q)+1)) = (cRootOf((abp—aq) 7+ (
*abu+aq+bu*q)_2*bu*uc+q)ua)/((bu

—q) (aRootOf((abu—aq) 72+ (—abp+aq+bp—q) Z—bp—pc

+q)+1)7),

*(CRootOf((abu*aq)fzz+ (—abu+aqg+bu—q) Z—bp—puc
+q))/(aRootOf((abu*aq)7Zz+ (—abu+aqg+bu—gq) Z—bu—uc
+q) +1),0]

—(mp) [ ((bu—¢q) (aRootOf((abp—ag) Z+ (—abu+aq+by

fq)iZ*bu*uc+q) + 1)) + (mRootOf((abu*aq)iZz-l- (—abu
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+aq+bu*q)_2*bu*uc+q)ua)/((bu-*q) (a RootOf ((a by
—aq) Z+(—abptaq+bu—q) Z—bu—pc+q)+1)°),

(mRootOf ((abu—aq) Z+ (—abu+aq+bu—q) Z—bp—pc

+q))/(aRootOf((abufaq)_22+ (—abu+aqg+bu—gq) Z—bp—puc

1

acp(bp—gq) ( bﬁ”q +1J

+q)+1)—d— (q (RootOf ((abu

—aq)722+ (—abu+aq+bu—q) Z—bu—uc+q)bmpu+acdu
—RootOf((abu—aq)_Zz-i-(—abu-i—aq-{-bu—q) Z—bp—nc

+q)mg—bmp—cmp+mgq))

- 1 Z(q(RootOf((abu—aq)722+(—abu

(buq]zac( b + IJ
bpu—gq

‘+aqgtbu—q) Z—bu—pc+q)bmu+acdu— RootOf ((abp

—aq)_ZZ-I- (—abu-l-aq-l—bu—q)_Z—bu—uc-l—q)mq—bmu—cmu
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1

b
acup (bu—yq) (— bqu +1)

0 (4 (RootOf ((abp—aq) 7+ (

s

—abut+agt+bu—q) Z—bu—pc+q)bmp+acdu— RootOf((abu

—aq)_Zz-{- (—abu+ag+bu—q) Z—bp—pc+q)mg—bmpu—cmu

1

(bu—q) acp ( o 1}
bu—yg

+mq)) + = (g (RootOf ((a by

—aq)722-|- (—abu+aq+bu—q)72—bu—p.c-l—q)bmp.+acdp.

—RootOf ((abp—aq) Z+ (—abp+aq+bp—gq) Z—bu—pc

+q)mg—bmpu—cmpu+mq)b), — 9k —u
bu
(bu—q){— +1J
i bu—gq
> thl = eigenvalues(1tkl);
ithi =1, —d, —pt o)
(> 1th2 = eigenvalues(itk2);
ad+d—m
k2=, -——, - 10
f T ] M (10)

> 1tk3 = eigenvalues(ttk3);
ltk3==f(azcdzp.fabdmuf2acdmu+aqufbdmu+bn12u+cm2u (11)
-I-a’mq—mzq)/(azcdz—abdm—2aca’m—bdm+bm2+cm2),
—_— —ad
Tm(ad—m) (a +a adm+dm
+(a4d4+4a3d4m+2a3d4f2a3d3m+4a2d4mf12a2d3m2+a2d4+a2d2mzf8ad3m2
112
-I-12ad2m3+2aaﬁm—2ad2m2+4d2n13—4dm4+d2mz) ),
1

—_ﬂ2 —d adm—dm
_Zm(adm)( d—ad+adm—d

-I-(a4d4+4a3d4m+2a3d4—203d3m+4a2d4m—12a2d3m2+a2d4+a2d2mz—8ad3m2

112
+12ad2m3+2aaﬁmf2ad2m2+4d2m374dm4+d2mz) )
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> tth4 = eigenvalues(ttk4);

tthd == Rooth(—a3bczdLL4+a3czdu3q+bc‘zmu4a2—czmu3qa2 (12)
+2RootOf((abu—aq) Z2+ (—abu+aqg+bu—gq) Z—bu—pc
+q) a3bc2du4—2Root()f((abu—aq)_22+ (—abu+ag+bu—gq) Z
—bu—pc+q) asczduSq—2R00[Of((abu—aq) _Zz+ (—abp+agqg
+bu—gq) Z—bu—pc+gq) a2b02n1u4+3Root0f’((abufaq]_Z'Z-I-(
—abu+aq+bu—q)_Z—bu—uc+q)a2b2mu3q+2RootOf((abp.
—aq) 7+ (—abu-l—aq—l—bu—q)7Z—bu—uc+q]azczmpfq
—3RootOf ((abu—aq) Z+ (—abu+ag+bu—gq) Z—bu—pc
+q) azbmuzquercazbu}qf4ca2bmu3qf lOabcm;fq
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+Sabzcmu4+uzcza3723q—2u3cRootOf((abu—aq)722+ (—abp
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—aq)_Zz+(—abu+aq+bp.—q)_Z—bp,—j,lc+q)a2bmpq2
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—2bcmp2q—Root0f((abu—aq)722+(—abu—l—aq%—bu—q)iz
—b}.t—pc+q)a2b3mu3—2Rooth((ab}.L—aq)_ZZ+(—abu+aq
+b},L—q)_Z—bj.L—uc+q)ab3mu3+3RoorOf((ab},L—aq)_Zz+(
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—abu+aq+bp—q)_Z—bp—uc-}—q)bzmuzq—3RootOf((abu
—aq) Z+ (—abu+aqg+bu—q) Z—bu—pc+q)bmug’
+a2b3mu3+2ab3mu3+bzcmHS—3b2mu2q+3bmuq2+cmuq2
—RootOf((abpu—aq) Z+ (—abpu+aq+bu—q) Z—bu—pc
+q)b3mu3+RootOf((abu—aq)_Zz+(—abu+aq+bu—q)_Z—bu
—uc+q)azmq3+2R00tOf((abu—aq)_Zl-i—(—abu+aq+b}.t
—q)_Z—bu—uc+q)amq3+3RootOf((abu—aq)_Zz+(—abu—l—aq
+bu—gq) Z—bpu—uc+gq) azbcmu2q+6Root0f((abu—aq) _22+(
—abu+aq+bu—q)72—bu—uc+q)abC'muzq—a3czbdu3
—a3b2cdu3—da2bzcu3—aszdef—2u3cRoonf((abu—aq) 7+
—abu+aq+bu—q)7Z—bu—uc+q)azbmq+a3bcdu2q
+u2dca2bq+Root0f((abu—aq)_Zz+ (—abu+aqg+bu—yq) Z
—b],l—p.c+q)a3bzcdu3-|—2R00t0f'((abu—aq)_Zz+(—abp.-l—aq
+bu—q)_Z—bu—uc-l—q)a3bczdu3+RootOf((abu—aq)_ZZ+(
—abu+aq+bu—q)_Z—b[.l—p.tc-l—q)azbzc‘du3—RootO_f((ab].l
—aq)_22+(—abu+aq+bu—q)_Z—bu—uc+q)aBbcduzq
—RootOf((abpn—aq) Z+ (—abpu+aq+bu—q) Z—bu—pc
-|-q)azbcdpzq+p4cRootOf((abu—aq)_ZZ-I-(—abu+aq+bu
—q) Z—bp—pc+gq) a2b2m+u20R00t0f((abp*aq)_Zz-}- (—abp
+aq+bufq)_Z*bufchrq)azqufazbzcmu‘l)_Z
+u4cRootOf((abu—aq)_Zz+(—abu-l—aq-l—bu—q)_Z—bu—uc
+q)d b d -2 cRootOf ((abu—aq) 2+ (—abu+aq+bu—gq) Z
—bp—uc+q)a2b2m+uchootOf((abu—aq)7ZZ-|- (—abu+agq
-I—bu—q)7Z—bu—uc+q)asdqz—2uchootOf((abu—aq)722+(
—abu+aq+bu—q)7Z—bu—uc+q]azqu—azbczdu4+a2c2du3q
+3bczmu4a—3czmu3qa—a3cdu2q2+3a2bmu2q2+2a2bzcmu4
—azbzcdu4—3a2b2mu3q—a3bzcdu4)
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Lampiran 2 Perhitungan Maple untuk Titik Kesetimbangan Model Predator-Prey

HANALISIS NUMERIK PERTAMA

restart : with( plots) : with(DEtools) : with(linalg) : unprotect(y) : unprotect(m) :
DFE :END :

ci=15:m=25:p=005:q:=03:¢:=30:b:=04:d:=04:mu:=
0.075:

cxy
de=x(l —x)— ———:
= ¥) l+ax
m-x-y pyz
dy = —dy— ——
N l+ax YT + by
dz = %bzy —muz:
Sixpoint == solve({dx, dv, dz}, {x,y,z}):

tthkl = fixpoint| 1 |;

ttkl == {x=0.,y=0,z=0.} (1)

itk2 = fixpoint[3];
k2= {x=1.,y=0.,z=0.} (2)

ttk3 = fixpoint[4|;
ttk3 == {x=0.3076923077, y =0.8875739645, z=0.} 3)

itk4 == fixpoint[5];
ith4 := {x=0.8861041317, y=0.2777777778, z=4.567591040 } 4)

J := Matrix( jacobian([dx, dy, dz], [x,y,z]) ) :

itkl == eval(subs(ttkl, J));

. —0. 0
ikl =1 0. —04 —0. &)
0 0. —0.075

ithk2 = eval(subs(ttk2,J) );

[u—

—0.3750000000 0

k2= 1| 0.  0.2250000000 —0. (6)
0 0. —0.075
tth3 = eval(subs(tth3,J) );
0.0246153845 —0.2400000000 0
itk3 == | 0.6000000001 0. —0.03275109170 (7
0 0. 0.1215065502
itk4 == eval(subs(ttk4,J));
—0.8033417081 —0.3633249580 0
k4 = | 0.0518890753  0.02055415968 —0.01250000000 (8)
0 1.109924623 0.

tthl = eigenvalues(ttkl);
ttki == —0.400000000000000, —0.0750000000000000, 1. 9)

itk2 := eigenvalues(ttk2);
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ttk2 = —1.,0.225000000000000, —0.0750000000000000 (10)
(> k3 = eigenvalues(ttk3);
ttk3 = 0.0123076922500000 + 0.379273675247148 1, 0.0123076922500000 (11)

— 0.379273675247148 1, 0.121506550200000

(> tthd = eigenvalues(ttk4);
fth4 == —0.780312740131322, —0.00123740414433868 + 0.119507257267440 1, (12)

—0.00123740414433868 — 0.119507257267440 1

> #ANALISIS NUMERIK KEDUA
> restart : with(plots) : with(DEtools) : with(linalg) : unprotect(y) : unprotect(m) :

L DFE :END :
>c=15a=3m=435:d=04:p:=005:b=04:9g:=03:mu:=
| 0.075:
cxy

> =x (1l —x)— :
| dx = %) l+ax

—_mxy o, _PVE
=> d l1+ax dy 1+ by

_ _qyz .
_> dz : T+by mu-z:

> fixpoint := solve({dx, dv, dz}, {x,y,z}) :
> ttkl = fixpoint[1];

ikl == {x=0,y=0,z=0.} (13)

(> 1th2 = fixpoint[3];
k2 = {x=1,y=0,z=0.} (14)

> 1tk3 = fixpoint[4];
itk3 == {x=0.1269841270, y=0.8037288990, z=0.} (15)

(> 1tk == Sfixpoint[5];
ith4 = {x=0.8861041317,y=0.2777777778, z=14.52538619 } (16)

> J:= Matrix( jacobian([dx, dy, dz], [x,y,z])) :
> fttkl = eval(subs(ttkl, J) );
1. —0. 0
tkl=1{ 0. —04 —0. an
0 0. —0075

> (th2 = eval(subs(1tk2,J));
—1. —0.3750000000 0

2= | 0. 0.687500000 —0. (18)
0 0. —0.075
(> 1th3 = eval(subs(11k3,J) );
0.1138478380 —0.1379310345 0
k3= | 1833333334 0. —0.03040991420 (19)

0 0. 0.1074594852




> 1th4 = eval(subs(ttk4,J ) );

—0.8033417081 —0.3633249580 0
ttkd == 0.0902869909  0.06536423738 —0.01250000000
0 3.529668844 0.

> ttkl := eigenvalues(ttkl);
ttkl == —0.400000000000000, —0.0750000000000000, 1.

> 11k2 = eigenvalues(ttk2);
(k2 == —1.,0.687500000000000, —0.0750000000000000

(> 11h3 = eigenvalues(ttk3);
itk3 == 0.0569239190000000 + 0.499633096169214 I, 0.0569239190000000

—0.499633096169214 1, 0.107459485200000

(> 1hd = eigenvalues(ttk4);
itk4 == —0.766458430173604, 0.0142404797268021 + 0.214572225208632 1,

0.0142404797268021 — 0.214572225208632 |
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(20)

(21)
(22)

(23)

(24)
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Lampiran 3 Program Maple Simulasi Pertama

[> #SIMULASI 1

> restart : with( plots) : with(DEtools) :
>c=15a=3m=25:d=04:p=005:h:=04:9:=03:mu:=0.075:

> de = diff (5(0). ) =x(0)- (1= +(0)) = % :

= Jiff _mx)y() ey - 2y
> B0 = T T Ty
> dz:=diff (z(t).t) = % —mu-z(f) :

> ics =x(0)=05,y(0)=05,2(0)=4:
[ > sol = dsolve({dx, dy, dz, ics }, numeric) :
> plots|odeplot](sol, [x(t), v(t).z(t) ], 0..3000, title
="Potret Fase Interaksi Tiga Spesies", labels = ["x(1)", "y(t)", "z(t)"], color = blue,
L axes = boxed, thickness = 2.5, numpoints =900) :
> plots|odeplot](sol, [x(t),z(t) ], 0..3000, title
="Potret Fase Interaksi Antara Mangsa x(t) dan Superpredator z(t)", labels = [x(1),
L 2(t) ], thickness =2.5, numpoints =900) :
> plots[odeplot](sol, [ [y(t),z(t)]], t=0 .. 3000, title
="Potret Fase Antara Predator y(t) dan Superpredator z(t)", labels = [y(t), z(1) ],
| color = blue, linestvle=1, thickness =2.5, numpoints =900) :
> plots[odeplot](sol, [ [t,x(t)], [t y(?)]], t=0..1500, numpoints =700, title
= "Perkembangan Populasi x(t) dan y(t) Terhadap Waktu", labels = [t,
"Populasi x(t), y(t)"], linestyle=[1, 1], thickness =2.5, color = [ red, blue], legend
[ =00
> plots|odeplot](sol, [, z(t) ], t=0 .. 1500, numpoints =700, title
= "Perkembangan Populasi z(t) Terhadap Waktu", labels = [ ¢, "Populasi z(t)"],
linestyle =1, thickness = 2.5, color = green, legend=["z(t)"]) :




Lampiran 4 Program Maple Simulasi Kedua

[> #SIMULASI 2

| > restart : with( plots) : with(DEtools) :

>c=15:a=3:m:=435:d:=04:p:=005:p:=04:¢:=03:mu:=

| 0.075:

:> dx = diff (x(1), 1) =x(1)- (1 — x(1)) — % :

> = - gy - P
:> dz = diff (z(1), 1) = % — mu-z(f) ;

| > dcs = x(0)=05,(0)=05,2(0) =4
L> sol = dsolve( {dx, dy, dz, ics }, numeric)
> plots[odeplot](sol, [x(t), y(t),z(t)], 0..1000, title

L axes = boxed, thickness =2, numpoints =250) :
> plots[odeplot](sol, [x(t),z(t)],0..1000, fitle

L z(t) ], thickness =2, numpoints = 250) :
> plots[odeplot](sol, [ [v(t),z(t)]], t=0 .. 1000, title
= "Potret Fase Antara Predator y(t) dan Superpredator z(t)", labels = [y(t), z(¢) ],
| color = blue, linestyle= 1, thickness =2, numpoints =250) :
> plots[odeplot|(sol, [ [t,x(1)], [t,y(t)]], t=0 .. 500, numpoints = 250, title
= "Perkembangan Populasi x(t) dan y(t) Terhadap Waktu", labels = [1,
"Populasi x(t), y(t)"], linestyle=[1, 1], color = red, blue], thickness =2, legend
| =0y
> plots|odeplot](sol, [t,z(t)], t=0 .. 500, numpoints =250, title
= "Perkembangan Populasi z(t) Terhadap Waktu", labels = [ ¢, "Populasi z(t)"],
linestyle =1, thickness = 2.5, color = green, legend=["z(t)"]) :
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= "Potret Fase Interaksi Tiga Spesies", labels = ["x(t)", "y(t)", "z(t)" ], color = blue,

="Potret Fase Interaksi Antara Mangsa x(t) dan Superpredator z(t)", labels = [x(t),
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