IMPLEMENTASI KODE REED-SOLOMON UNTUK DETEKSI
DAN KOREKSI KESALAHAN TRANSMISI AYAT
AL-QUR’AN MENGGUNAKAN PENGKODEAN HURUF
HIJAIYAH

SKRIPSI

OLEH
TAHIRA KHUWALIDIA SHABIRAH MA’RUF
NIM. 210601110087

PROGRAM STUDI MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM
MALANG
2025

IMPLEMENTASI KODE REED-SOLOMON UNTUK DETEKSI
DAN KOREKSI KESALAHAN TRANSMISI AYAT
AL-QUR’AN MENGGUNAKAN PENGKODEAN HURUF
HIJAIYAH

SKRIPSI

Diajukan Kepada
Fakultas Sains dan Teknologi
Universitas Islam Negeri Maulana Malik Ibrahim Malang
untuk Memenuhi Salah Satu Persyaratan dalam
Memperoleh Gelar Sarjana Matematika (S.Mat)

Oleh
Tahira Khuwalidia Shabirah Ma’ruf
NIM. 210601110087

PROGRAM STUDI MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM
MALANG
2025

IMPLEMENTASI KODE REED-SOLOMON UNTUK DETEKSI
DAN KOREKSI KESALAHAN TRANSMISI AYAT
AL-QUR’AN MENGGUNAKAN PENGKODEAN HURUF
HIJAIYAH

SKRIPSI

Oleh
Tahira Khuwalidia Shabirah Ma’ruf
NIM. 210601110087

Telah Disetujui Untuk Diuji

Malang, 10 Desember 2025

Dosen Pembimbing I Dosen Pembimbing II

Muhamma¥l Khudzaifah, M.Si. Dr. Fachrur Rozi, M.Si.

NIPPPK. 19900511 202321 1 029 NIP. 19800527 200801 1 012

Mengetahui,
}etuzﬁrogram Studi Matematika

R Nlmsgo’ 0527 200801 1 012

IMPLEMENTASI KODE REED-SOLOMON UNTUK DETEKSI
DAN KOREKSI KESALAHAN TRANSMISI AYAT
AL-QUR’AN MENGGUNAKAN PENGKODEAN HURUF
HIJAIYAH

SKRIPSI

Oleh
Tahira Khuwalidia Shabirah Ma’ruf
NIM. 210601110087

Telah Dipertahankan di Depan Dewan Penguji Skripsi
dan Dinyatakan Diterima sebagai Salah satu Persyaratan
untuk Memperoleh Gelar Sarjana Matematika (S.Mat)

Tanggal 22 Desember 2025
Ketua Penguji : Prof. Dr. H. Turmudi, M.Si., Ph.D S
Anggota Penguji 1 : Hisyam Fahmi, M.Kom.
Anggota Penguji 2 : Muhammad Khudzaifah, M.Si.
Anggota Penguji 3 : Dr. Fachrur Rozi, M.Si.
Mengetahui,
etta Program Studi Matematika

T \
Py i@ i
VN F

PERNYATAAN KEASLIAN TULISAN

Saya yang bertanda tangan di bawah ini:

MNama : Tahira Khuwalidia Shabirah Ma'ref

NIM : 210601110087

Program Studi : Matematika

Fakultas : Sains dan Teknologi

Tudul Skripsi . Implementasi Kode Reed-Solomon untuk Deteksi

dan Koreksi Kesalahan Transmisi Ayat Al-Crur’an

Menggunakan Pengkodean Huruf Hijaiyah
Menyatakan dengan sebenamnya bahwa skripsi yang saya tulis ini benar-benar
merupakan hasil karya sendiri, bukan merupakan pengambilan data, tulisan, atau
pikiran orang lain yang saya akui sebagai hasil tulisan dan pikiran saya sendiri,
kecuali dengan mencantumkan sumber cuplikan pada dafiar pustaka. Apabila di
kemudian hari terbukti atau dapat dibuktikan skripsi ini hasil jiplakan, maka saya
bersedia menerima sanksi atas perbuatan tersebut.

Malang, 22 I]es.emhm' 2025

NIM. 2106t Illﬂﬂﬁ?

MOTO

“Allah tidak membebani seseorang melainkan sesuai dengan kesanggupannya”

-Q.S Al-Bagarah: 286

“Aku lahir dengan mempertaruhkan nyawa seorang Ibu, maka aku harus menjadi
alasan semua pengorbanannya bermakna. Ayah lelah setiap hari demi langkahku,
maka biarlah setiap tetes peluhnya berbuah bangga.”

“Skripsi ini mungkin tidak sempurna, namun ia adalah bukti perjalanan panjang
yang mengantar langkahku gelar S.Mat. Bismillah untuk segala hal-hal baik yang

sedang diperjuangkan.”

Vi

PERSEMBAHAN

Dengan penuh rasa syukur ke hadirat Allah SWT atas
segala rahmat, pertolongan dan kemudahan-Nya, sehingga skripsi ini dapat

terselesaikan dengan baik. Karya ini penulis persembahkan kepada:

Ayah, Mama, dan Bunda, yang kasih sayangnya tak pernah berkurang, yang
doanya menjadi kekuatan terbesar dalam setiap langkah, dan yang

pengorbanannya takkan pernah mampu penulis balas dengan apa pun di dunia ini.

Saudara-saudari tercinta, yang senantiasa memberi doa, dukungan, dan semangat

tanpa henti.

Orang terdekat penulis, yang hadir sebagai tempat berbagi cerita, keluh, dan

harapan, serta menjadi sumber kekuatan saat penulis hampir menyerah.
Sahabat-sahabat terbaik, yang dengan tulus menemani, membantu, dan
menyemangati hingga skripsi ini dapat diselesaikan. Terima kasih atas keikhlasan,

kebersamaan, dan tawa yang membuat perjalanan ini lebih ringan.

Semoga setiap doa dan kebaikan kalian menjadi amal yang terus mengalir, dan

semoga karya sederhana ini dapat menjadi kebanggaan bagi kita semua.

vii

KATA PENGANTAR

Assalamu’alaikum Warahmatullahi Wabarakatuh

Alhamdulillahirabbilalamin, segala puji dan syukur senantiasa penulis
panjatkan ke hadirat Allah subhanahu wa ta’ala atas berkat Rahmat, serta hidayah-
Nya, sehingga penulis dapat menyelesaikan skripsi yang berjudul “Implementasi
Kode Reed-Solomon untuk Deteksi dan Koreksi Kesalahan Transmisi Ayat Al-
Qur’an Menggunakan Pengkodean Huruf Hijaiyah” dengan baik dan benar.
Shalawat serta salam tetap tercurahkan kepada Nabi Muhammad SAW, yang telah
membawa kita dari zaman kebodohan menuju zaman kebenaran yakni Islam dan
zaman yang penuh dengan ilmu pengetahuan sebagaimana yang dirasakan pada saat
ini. Dan semoga kita semua mendapat syafaatnya di hari akhir kelak, Aamiin.

Penulis mengucapkan rasa terima kasih yang begitu besar kepada seluruh
pihak yang memberikan dukungan dan motivasi kepada penulis sehingga dapat
menyelesaikan skripsi ini. Ucapan terima kasih ini penulis sampaikan kepada:

1. Prof. Dr. Hj. IlIfi Nur Diana, M.Si., CAHRM, CRMP., selaku Rektor
Universitas Islam Negeri Maulana Malik Ibrahim Malang

2. Dr. H. Agus Mulyono, M.Kes., selaku Dekan Fakultas Sains dan Teknologi
Universitas Islam Negeri Maulana Malik Ibrahim Malang.

3. Dr. Fachrur Rozi, M.Si., selaku Ketua Program Studi Matematika dan selaku
Dosen Pembimbing I, Universitas Islam Negeri Maulana Malik Ibrahim.
Terima kasih atas kesabaran, arahan, serta masukan yang berharga dalam
proses penyelesaian skripsi ini. Semoga segala bimbingan yang diberikan
menjadi pahala dan berkah bagi Bapak.

4. Muhammad Khudzaifah, M.Si., selaku Dosen Pembimbing | atas bimbingan,
dukungan, dan arahan yang telah diberikan selama proses penyusunan skripsi
ini. Semoga ilmu yang Bapak bagikan menjadi amal jariyah dan senantiasa
bermanfaat.

5. Prof. Dr. H. Turmudi, M.Si., Ph.D., selaku Ketua Penguji, yang telah
memberikan arahan, masukan, serta saran yang membangun demi

penyempurnaan skripsi ini.

viii

6. Hisyam Fahmi, M.Kom., selaku Anggota Penguji | dalam Ujian Skripsi, yang

10.

11.

telah memberikan kritik, saran, dan masukan yang konstruktif guna perbaikan

dan penyempurnaan skripsi ini.

. Seluruh dosen Program Studi Matematika, Fakultas Sains dan Teknologi,

Universitas Islam Negeri Maulana Malik Ibrahim

Kepada Ayah M. Munif, sosok panutan sepanjang hidup penulis, atas kasih
sayang, doa, nasihat, dan dukungan yang senantiasa diberikan selama penulis
menempuh studi. Pengorbanan dan keyakinan beliau menjadi sumber
semangat utama bagi penulis. Kepada Mama Lailatul Firdausi Ma’ruf, pintu
surga penulis, atas ketulusan, kesabaran, serta doa dan nasihat yang
senantiasa mengiringi setiap langkah penulis. Kepada Eyang Uti Maryam,
yang dengan penuh kasih telah membimbing, merawat, dan menanamkan
nilai-nilai kebaikan serta kedisiplinan ibadah sejak kecil. Kepada Bunda
Yuliana, atas cinta, doa, dan ketulusan yang tetap mengalir meskipun terpisah
oleh jarak. Semoga Allah SWT membalas seluruh kebaikan dan pengorbanan
beliau dengan pahala dan keberkahan yang berlimpah.

Kepada adik-adik penulis, Chlorina Reva Nadia Ma’ruf, Muhammad Nabil
Firdausi Ma’ruf, dan Alfa Rizqi Anggawa Ma’ruf, yang senantiasa menjadi
sumber semangat, penguat hati, dan penyejuk di tengah perjuangan penulis
menempuh studi. Semoga tumbuh menjadi pribadi yang kuat, cerdas, dan
senantiasa dalam lindungan Allah SWT. Aamiin.

Kepada keluarga besar H. Adjik dan H. Mashuri yang telah menjadi bagian
penting dalam perjalanan hidup penulis. Terima kasih atas perhatian, do’a,
dan dukungan yang selalu diberikan, baik secara langsung maupun tidak
langsung. Semoga silaturahmi dan kasih sayang di antara kita selalu terjaga,
dan Allah senantiasa melimpahkan keberkahan untuk keluarga besar ini.
Kepada Muhammad Putra Zidannizar, sosok lelaki kedua setelah Ayah
penulis yang senantiasa hadir sebagai pendamping dan penyemangat sejak
awal perjalanan perkuliahan hingga saat ini. Terima kasih atas ketulusan,
kesabaran, serta dukungan yang tak pernah putus, bahkan dalam masa-masa
sulit sekalipun. Bersama, kami telah melewati berbagai suka dan duka, saling

menguatkan, saling memahami, dan saling membantu satu sama lain dalam

12.

13.

14.

menapaki dunia akademik maupun kehidupan sehari-hari. Semoga
kebersamaan ini senantiasa terjaga, dan kelak menjadi jalan menuju masa
depan yang diridhoi, penuh keberkahan, dan menjadi tujuan hidup bersama.
Terima kasih telah menjadi bagian penting dari setiap langkah penulis.
Kepada sahabat-sahabat penulis, Elza Zanuarika Kusniadi, Fatma Nabila Nur
Aini, Amalia Fitriani, Cetrin Aprilia, Dinda Nur Azizah, Putri Wahyu, serta
seluruh anggota grup “OTDR”, terima kasih atas kebersamaan, dukungan,
dan semangat yang telah diberikan sejak masa sekolah hingga proses
penyusunan skripsi ini. Kebersamaan, motivasi, dan saling menguatkan yang
terjalin menjadi bagian berharga dalam perjalanan akademik penulis. Semoga
persahabatan dan tali silaturahmi ini senantiasa terjaga serta membawa
kebaikan dan keberkahan bagi kita semua.

Seluruh mahasiswa angkatan 2021 dan teman teman penulis atas
kebersamaan, dukungan, serta motivasi yang telah diberikan selama masa
studi ini. Kehadiran dan semangat kalian menjadi bagian penting dalam
perjalanan ini. Semoga kebersamaan ini terus terjalin dan membawa manfaat
bagi kita semua.

Untuk diri sendiri, Tahira Khuwalidia Shabirah Ma’ruf, yang telah melalui
banyak proses jatuh, bangkit, lelah, namun tetap berjalan. Terima kasih telah
bertahan sejauh ini, terus belajar, dan tidak menyerah meski kadang ingin
berhenti. Semoga tetap konsisten dalam hal baik, terus berproses, dan tidak
lupa tujuan awal. Ingat, segala sesuatu butuh waktu, dan selama terus
melangkah, tidak ada usaha yang sia-sia. Percayalah, kerja keras dan doa
tidak pernah mengkhianati hasil. Tidak ada kata terlambat untuk menciptakan

kehidupan yang kamu inginkan.

Malang, 22 Desember 2025

Tahira Khuwalidia S.M

DAFTAR ISI

HALAMAN JUDULovoiiiiieiiceceeeee e i
HALAMAN PENGAJUANooiiiieee et i
HALAMAN PENGESAHAN ..ottt iii
HALAMAN PERSETUJUAN......cooitiiiiiiieee s iv
PERNYATAAN KEASLIAN

TULISAN s Error! Bookmark not defined.
IMOTO e e e et e et e e et e e e be e e sbe e e sneeeaneeeans vi
PERSEMBAHAN.ottt vii
KATA PENGANTAR ...ttt viii
DAFTAR IS ..ottt Xi
DAFTAR TABEL ...t Xiii
DAFTAR GAMBAR ..ottt Xiv
DAFTAR SIMBOL ..ottt XV
DAFTAR LAMPIRAN ...ttt XVi
ABSTRAK .ottt Xvii
ABSTRACT .ottt bbbttt et nre e xviii
o) LISthuns Lttt bbb bbbttt bbb XiX
BAB I PENDAHULUANooiiiiie e 1
1.1 Latar Belakang.........ccccooooiieiiiiecccc e 1
1.2 RUuMUSan Masalahccooiiiiiiiiiicc s 7
1.3 Tujuan Penelitian.........ccoveveiiiiiiieiiccceeese e 7
1.4 Manfaat PENelitiancccooviiiiieiicce s 7
1.5 Batasan Masalah............ccoceiiiiiiiiiee e 8
1.6 Definisi IStlahcoviic s 10
BAB II KAJIAN TEORI ..ottt 14
2.1 LAPANGAN ..ot 14
2.1.1 Lapangan Hingga (Galois Field).........cccccooveviveieiiciieieee 16
2.1.2 Aritmatika pada Galois Fieldcccoiiiiiiiiiniicce, 17
2.1.3 Polinomial Galois Field............ccooeiiiiiiiiic 20
2.1.4 Representasi Galois Field............ccooviviiiiniiiicce, 22
2.1.5 Ruang Vektor atas Lapangan Hingga.........ccocceveeeriiiinneennnnens 23
2.2 Teori Pengkodean (Coding ThEOKY)........cccceviriviiieeiiriscce e, 24
2.2.1 KOUE SIKIKocvviiiiiieiieiec e 25
2.2.2 KOUE LINBAT ..ottt 26
2.2.3 Pengkodean Huruf Hijaiyahccccoooeiiiniienineecee e 31
2.2.4 Kode Reed-Solomon.........ccviiiiiiiiiee e 34
2.2.5 Proses Encoding dan Decoding Kode Reed-Solomon 37
2.3 TTANSITHSI ...ttt 44
2.3.1 TransSmMiSI Data........ccccviieiieiieieiieriee e 44
2.3.2 Deteksi dan Koreksi Kesalahan Bit Pada Transmisi Data........ 48
2.3.3 Transmisi Ayat Al-QUI’an.........c.ccooveieeieieneninisesee e, 50

2.3.4 Proses Deteksi dan Koreksi Kesalahan pada Transmisi Ayat Al-
QUI AN Lo 51
2.4 Kajian Integrasi Topik Penelitian dengan Al-Qur’an..............c..c........ 53
BAB III METODE PENELITIAN L...oooiiiiei e 56

Xi

3.1 JENIS PENEHITIAN .o ettt 56

3.2 Data dan SUMDEr Data..........cccovviiinieiieeeeseeeee s 57
3.3 Tahapan Penelitian ... 58
BAB IV HASIL DAN PEMBAHASAN........ccct it 65
4.1 Simulasi Pembentukan Parameter dan Struktur Kode Reed-
SOIOMON <.t 65
4.2 Proses ENCOAINGovvviviiiiiiiiiiiiieeee e 67
4.3 Transmisi (Penambahan Polinomial Error)c.ccccceevivevccniiceenne, 72
4.4 ProSeS DECOUINGcveviviiiiiiiieiiieieieieieie e 73
4.4.1 Proses DetekSi.........coiieiiiiiniieiinie e 73
4.4.2 Menentukan Polonomial Lokasi Kesalahan.............c..ccccoveuee.ne. 75
4.4.3 Menentukan Posisi Kesalahan (Error Positions)...................... 83
4.4.4 Menentukan Akar Polinomial Evaluasi Kesalahan (Error
Evaluator Polynomial)ccccooveiiiiiiie e 85
4.4.5 Menghitung Nilai Besar Kesalahan (Error Magnitude)............ 87
4.4.6 Melakukan Koreksi Kesalahan pada Codeword....................... 90
4.4.7 Proses Decoding untuk Mengembalikan Codeword yang Telah
Dikoreksi dengan Pesan AsSli..........cccooveveiiiiniinin i, 92
4.5 Analisis Hasil dengan Beberapa Paremeter Kode Reed-Solomon 93
4.6 Kajian Hasil Penelitian dalam Perspektif Islam.............c.cccccovvennnnnn. 100
BAB V PENUTUP ..ottt 104
5.1 KeSIMPUIAN ...t 104
D2 SANAN ...t 105
DAFTAR PUSTAKA ...ttt 106
LAMPIRAN ..ottt re et saesresaesreens 108
RIWAYAT HIDUP ..ottt e 127

xii

DAFTAR TABEL

Tabel 2.1 Operasi Penjumlahan Modulo 5di Zsccccocvviiiiiiiiicce
Tabel 2.2 Operasi Perkalian Modulo 5 di Zsccocevvevecieiieccc e,
Tabel 2.3 Tabel Representasi Eksponensial dan Polinomial Elemen GF (2™)
Tabel 2.4 Tabel Primitif Polinomial GFccccooco i,
Tabel 2.5 Representasi Polinomial, Biner, dan Desimal pada GF (2%)............
Tabel 2.6 Representasi Polinomial, Biner, dan Desimal pada GF(28)............
Tabel 2.7 Tabel Korespondensi Hewan dan Kode Biner..........ccccccoccvviverennnnne
Tabel 2.8 Korespondensi Huruf Hijaiyah dan Vektor Biner............ccccccoeen....
Tabel 4.1 Tabel Perhitungan XOR untuk Proses Encoding.............ccccceevvennen.
Tabel 4.2 Hasil Decoding Kembali ke Pesan Asli.........cccccoveieiiiiniiencnne
Tabel 4.3 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 1
KESAIANAN. ..o
Tabel 4.4 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 2
KESAIANAN. ...
Tabel 4.5 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 3
KESAIANAN.......c.eiiei e
Tabel 4.6 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 4
KESAlANAN.......ceiiiiie e
Tabel 4.7 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 5
KESAIANAN.......ccuieiiie e

Xiii

DAFTAR GAMBAR

Gambar 2.1 Huruf Hijaiyah..........cccoooiiii e, 32
Gambar 2.2 Diagram Struktur Kode Reed—-Solomon (n, k, 2t)ccccceeveennen. 36
Gambar 2.3 Diagram Proses Pengiriman Pesan/Informasic.cccceeverneneee. 44
Gambar 3.1 AlUr Penelitian..........ccoooieiiiiiiieieie e 58

Xiv

S xomoo O

3 = 3

DAFTAR SIMBOL

Codeword

Matriks generator

Matriks parity-check

Blok pesan

Jumlah maksimum kesalahan bit yang dapat dikoreksi
Panjang total bit

Panjang pesan asli

Jumlah bit dalam satu simbol

XV

DAFTAR LAMPIRAN

Lampiran 1. Representasi Polinomial, Biner, dan Desimal GF (256) 108
Lampiran 2. Script Code Sagemath: Proses Encoding dan Decoding.............. 113
Lampiran 3. Matriks Generator dalam Bentuk Representasi a! GF(29)......... 122
Lampiran 4. Matriks Generator dan Parity-Check dalam Bentuk Desimal...... 126

XVi

ABSTRAK

Ma’ruf, Tahira Khuwalidia Shabirah. 2025. Implementasi Kode Reed-Solomon untuk
Deteksi dan Koreksi Kesalahan Transmisi Ayat Al-Qur’an Menggunakan
Pengkodean Huruf Hijaiyah. Skripsi. Program Studi Matematika, Fakultas
Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang.
Pembimbing: (I) Muhammad Khudzaifah, M.Si. (1) Dr. Fachrur Rozi, M.Si.

Kata Kunci: Reed—Solomon, Huruf Hijaiyah, Deteksi Kesalahan, Koreksi Kesalahan,
Transmisi Digital.

Kesalahan penulisan huruf hijaiyah dalam ayat Al-Qur’an berpotensi mengubah makna
ayat serta menurunkan keakuratan penyampaian teks. Penelitian ini bertujuan untuk
mendeskripsikan proses deteksi dan koreksi kesalahan transmisi ayat Al-Qur’an
menggunakan kode Reed—Solomon. Ayat Al-Qur’an direpresentasikan dalam bentuk kode
Unicode huruf hijaiyah sebagai data digital. Data penelitian terdiri atas penulisan sepuluh
ayat Al-Qur’an yang digunakan sebagai data uji, dengan penambahan kesalahan secara
sengaja dan terkontrol pada tahap transmisi untuk mensimulasikan kondisi transmisi
digital. Setiap huruf hijaiyah dikonversi kedalam representasi Unicode 16-bit, kemudian
dilakukan proses encoding menggunakan parameter kode RS(n,k,2t). Selanjutnya,
kesalahan disisipkan secara terkontrol untuk mensimulasikan gangguan transmisi, dan
proses decoding dilakukan menggunakan algoritma Reed—Solomon berbasis Galois Field
melalui perangkat lunak SageMath. Hasil analisis menunjukkan bahwa kode Reed-
Solomon mampu mendeteksi dan mengoreksi kesalahan simbol sesuai dengan kapasitas
koreksi t secara konsisten pada berbagai variasi jumlah error. Pada seluruh skenario
pengujian, huruf hijaiyah yang mengalami gangguan berhasil dikembalikan ke bentuk
aslinya melalui tahapan perhitungan sindrom, pembentukan polinomial lokasi kesalahan,
perhitungan polinomial evaluator, hingga proses koreksi akhir pada codeword. Penelitian
ini membuktikan bahwa kode Reed-Solomon dapat berfungsi sebagai mekanisme
verifikasi yang efektif untuk menjaga keakuratan teks Al-Qur’an dalam sistem digital serta
mendukung upaya pelestarian kemurnian ayat melalui pendekatan teori pengkodean.

XVii

ABSTRACT

Ma’ruf, Tahira Khuwalidia Shabirah. 2025. Implementation of Reed—Solomon Codes for
Error Detection and Correction in the Transmission of Qur’anic Verses
Using Hijaiyah Character Coding. Thesis. Department of Mathematics,
Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik
Ibrahim Malang. Advisors: (I) Muhammad Khudzaifah, M.Si. (II) Dr. Fachrur
Rozi, M.Si.

Keywords: Reed-Solomon, Hijaiyah Characters, Error Detection, Error Correction,
Digital Transmission.

Errors in the representation of Hijaiyah characters in Qur’anic verses may alter the semantic
meaning of the text and reduce transmission accuracy. This study aims to describe the error
detection and error correction processes in the digital transmission of Qur’anic verses using
Reed—Solomon codes. The Qur’anic verses are modeled as digital data by encoding
Hijaiyah characters into their corresponding Unicode representations. The research data
consist of ten Qur’anic verses used as test data, in which errors are intentionally and
controllably introduced during the transmission stage to simulate digital transmission
conditions. Each Hijaiyah letter is converted into a 16-bit Unicode representation, followed
by an encoding process using Reed—Solomon code parameters RS (n, k, 2t). Subsequently,
controlled errors are inserted to model transmission disturbances, and the decoding process
is performed using a Reed-Solomon algorithm over a Galois Field implemented in
SageMath software. The results show that the Reed-Solomon code is capable of
consistently detecting and correcting symbol errors in accordance with its error-correction
capability t under various error scenarios. In all test cases, corrupted Hijaiyah characters
are successfully restored to their original form through syndrome computation,
construction of the error locator polynomial, evaluation of the error evaluator polynomial,
and the final correction of the received codeword. This study demonstrates that Reed—
Solomon codes can serve as an effective verification mechanism to preserve the accuracy
of Qur’anic text in digital systems and support efforts to maintain the integrity of Qur’anic
verses through coding theory approaches.

XViii

Condl Lalsuians

OTA T 5 b sllas V) ey LAY Opaglonmity) 348 35 Y0 Y0 Lopld Ldlgss [l oy ne
(orgd Sy kel AT (Lt Ll e L sl Gl Bpall Atlngll Gyl s plasizal 0 S
psbdl B bl Ahds dess (1) 120l sVl A Sl Yl alyl UL LY Aol
bl B e L) 55 s (Y)

Lo) et) e el Y1 LT (b al) Adlngd) gl Osaglinilyy sl ¥ SLIST!

gy el (B B iy xal 3 o8 85 oS 0T T S ang)l Gyl a5 el)
(Reed—s,as plasanl o S OTA AT 8 3 LSy sl Y1 o Sl e oy J) a0
(Unicode) s e slazeVU 2ad) @lly 350 5 aullll sda 3 oS 0T 3 AT fiass « Solomon)
e Ol SULS catsial S OTE e ST i ST e ol Sl 03555 G ddlngdl g2l
S S Uiy ¢ ool Il) Gy 518Tomad SlI3g ()Yl e 3 b (Somihy e[Sty sllasf Jls)
G e Oprslonmily B8 el pliiialy gl Bes G 5 e 16 Jsk 5580 Jito) Sl
el 8l ades Gy (LY ol el 58T eal 4 v,<>w e sl 8 S5 ams (RS(, K, 2t)
SageMath g, I .+ (Galois Field) aeuall Joimdl e soamnadl Ogogdsm—aty) losjls plisizal,
B po Bl ey Lgmmaly Gyl sllasl e Sl (s 3,36 Opaglpn—ay, 48 OF Jod) s ey
Copdl sVl oVl b el o cslas) e lagy i Caliien e Bande Sypuiry € s
Lot gt 2 ey cobdaedl Ol e I35 0 2hoYI W jpe) Lo g) adlng)
o ot ler e S agledl el ddes) Yooy sl ¥1 (20 g S limy csllas) o3l
oSy cad) AN B 0 SO ogas 85 e blioll A8 35 2JT Jons O Sy Ogoglsmity) 345

A Bl dmgie IV e WG e dbblonaly LYY A D50 g oo B

XiX

BABI
PENDAHULUAN

1.1 Latar Belakang

Ketepatan dalam penulisan huruf hijaiyah merupakan aspek yang sangat
penting, khususnya dalam penulisan ayat Al-Qur’an, karena kesalahan dalam
penulisan dapat mengubah bentuk lafaz dan berpotensi memengaruhi makna ayat.
Dalam kajian penulisan teks suci Islam, bentuk tertulis dari ayat-ayat Al-Qur’an
dikenal dengan istilah mushaf Al-Qur’an, yaitu kumpulan ayat Al-Qur’an yang
dituliskan dan dibukukan secara sistematis sebagai representasi dari bacaan yang
telah terjaga keasliannya. (Shihab, 2007).

Pada masa Rasulullah SAW, wahyu yang diturunkan belum dibukukan dalam
satu mushaf yang utuh karena proses pewahyuan masih berlangsung. Oleh sebab
itu, penjagaan Al-Qur’an dilakukan melalui hafalan para sahabat serta pencatatan
ayat-ayat pada berbagai media sederhana. Setelah Rasulullah SAW wafat pada
tahun 632 M, upaya penghimpunan ayat-ayat Al-Qur’an dilakukan pada masa
Khalifah Abu Bakar Ash-Shiddiq dan kemudian disempurnakan pada masa
Khalifah Utsman bin Affan melalui standarisasi mushaf yang dikenal sebagai Rasm
Utsmani.

Seiring dengan perkembangan sejarah penulisan mushaf, dilakukan berbagai
penyempurnaan teknis seperti penambahan tanda titik, harakat, dan tanda baca.
Penyempurnaan tersebut bertujuan untuk menjaga kejelasan dan ketepatan
penulisan ayat serta menghindari kesalahan pembacaan, tanpa mengubah substansi

ayat. Dalam perkembangan selanjutnya, istilah Al-Qur’an digunakan secara luas

oleh masyarakat untuk merujuk tidak hanya pada wahyu dalam bentuk bacaan,
tetapi juga pada mushaf sebagai bentuk tertulisnya.

Perkembangan dalam aspek penulisan Al-Qur’an tersebut sejalan dengan
janji Allah SWT dalam Surah Al-Hijr ayat 9 (Kementerian Agama, 2022):

Oglasts 615 S0 1 225 by
"Sesungguhnya Kami yang menurunkan Al-Qur’an, dan sesungguhnya Kami
benar-benar menjaganya.”(Qs. Al-Hijr : 9).

Ayat ini menegaskan bahwa penjagaan Allah SWT terhadap Al-Qur’an tidak
hanya bersifat spiritual, tetapi juga berlangsung secara historis dan teknis, termasuk
dalam aspek penulisan mushaf dan transmisi teks. Dalam perkembangan teknologi
digital saat ini, tantangan penjagaan tersebut juga mencakup proses penulisan,
penyimpanan, dan distribusi teks ayat Al-Qur’an dalam bentuk digital. Kesalahan
penulisan huruf hijaiyah dalam sistem digital berpotensi mengubah makna ayat dan
menurunkan keakuratan penyampaian teks.

Di era modern, upaya menjaga kemurnian Al-Qur’an terus dilakukan, baik
melalui publikasi mushaf standar oleh lembaga resmi seperti Lajnah Pentashihan
Mushaf Al-Qur’an (LPMQ), pelatihan dan sertifikasi gari dan hafidz, maupun
pengembangan aplikasi digital Al-Qur’an yang dilengkapi fitur tajwid. Namun
demikian, kesalahan penulisan ayat Al-Qur’an tetap dapat terjadi. Misalnya, dalam
proses pengiriman atau pertukaran data ayat Al-Qur’an melalui media digital,
seperti aplikasi pesan, media sosial, atau sistem penyimpanan, teks ayat dapat
mengalami gangguan (noise) yang menyebabkan huruf berubah, hilang, atau
tertukar. Kesalahan ini dapat muncul akibat konversi format teks, kerusakan file,

atau ketidakcocokan sistem encoding karakter Arab. Meskipun tampak sederhana,

perubahan satu huruf saja dapat memengaruhi makna dan keutuhan teks ayat.
Kesalahan serupa juga ditemukan pada media cetak. Salah satu contohnya adalah
kasus kesalahan cetak dalam mushaf Al-Qur'an pada surah Al-Kahfi ayat 8, di mana
huruf ‘ain (&) diganti dengan ha (¢), sehingga kata lajaa‘iluuna tertulis sebagai
lajaahiluuna (Kemenag, 2023). Selain itu beberapa buku Pendidikan Agama Islam
juga dilaporkan mengandung kesalahan penulisan ayat Al-Qur’an, sebagaimana
diberitakan oleh Republika pada tanggal 29 Oktober 2017 (Republika, 2017).
Fenomena ini menunjukkan bahwa keakuratan dalam penulisan Al-Qur'an tetap
menjadi tantangan, meskipun teknologi telah berkembang pesat.

Untuk meminimalisir kesalahan serupa di era digital, diperlukan representasi
huruf Al-Qur’an dalam bentuk numerik agar dapat diolah oleh sistem komputer.
Dalam hal ini, huruf hijaiyah digunakan sebagai simbol yang direpresentasikan
dalam bentuk kode numerik. Setiap huruf hijaiyah memiliki nilai Unicode yang
berbeda, yang kemudian dapat dikonversi ke dalam bilangan desimal maupun biner.
Dengan representasi ini, huruf-huruf hijaiyah dalam Al-Qur’an dapat digunakan
sebagai data digital yang siap diproses menggunakan kode Reed-Solomon. Sebagai
contoh, huruf hijaiyah <« (ba) direpresentasikan dalam Unicode dengan kode
U+0628 dengan nilai desimal 1576. Representasi ini selanjutnya dikonversi ke
dalam biner 16-bit, yaitu 0000011000101000, sehingga dapat digunakan dalam
proses encoding dan decoding. Melalui mekanisme ini, setiap huruf Al-Qur’an
dapat diubah ke dalam bentuk biner standar yang konsisten, sehingga lebih mudah
dikelola dalam proses deteksi dan koreksi kesalahan.

Salah satu pendekatan yang relevan untuk mengatasi permasalahan pada

kasus di atas adalah dengan menerapkan teori pengkodean (coding theory). Teori

ini mempelajari karakteristik dan aplikasi kode dalam berbagai sistem, seperti
kompresi data, kriptografi, dan kode pengoreksi error (error-correction codes).
Tujuan utama dari teori pengkodean adalah untuk memberikan kode dengan tingkat
informasi yang tinggi, kemampuan koreksi kesalahan yang kuat dan kompleksitas
encoding dan decoding yang rendah (Widiastuti dkk., 2016). Dalam sistem
komunikasi digital, proses pengkodean terbagi menjadi dua proses. Proses pertama
adalah encoding (mengubah pesan menjadi codeword) dan proses kedua adalah
decoding (mengembalikan codeword menjadi pesan asli), serta mengantisipasi
kemungkinan kesalahan selama transmisi data (Oktavia dkk., 2023). Salah satu
gangguan utama kesalahan dalam transmisi data adalah noise. Noise (derau)
merupakan suatu sinyal pengganggu atau perusak sinyal, sehingga perlu dilakukan
penghilangan noise agar sinyal informasi akan terpisah dari noise.

Dalam proses pengiriman sinyal informasi ke penerima akan melewati suatu
media transmisi. Transmisi merupakan pengiriman sinyal dalam sistem komunikasi
digital. Dalam ilmu komunikasi data, data berarti informasi yang disajikan dalam
bentuk isyarat digital biner. Transmisi data merupakan proses pengiriman informasi
di antara dua titik menggunakan kode biner melewati saluran transmisi dan
peralatan switching, bisa antara komputer dan komputer, komputer dengan
terminal, atau komputer dengan perlatan, atau peralatan dengan peralatan. Pada
proses pengiriman ini maka akan muncul noise sehingga mengakibatkan sinyal
informasi yang diterima mengalami gangguan dan bercampur dengan sinyal-sinyal
yang tidak diinginkan sehingga dapat mengganggu keaslian informasi (Darmadi

dkk., 2020).

Dalam penelitian ini, istilah transmisi tidak hanya dimaknai sebagai
pengiriman sinyal dalam sistem komunikasi digital, tetapi juga sebagai proses
penyampaian teks ayat Al-Qur’an dari satu media ke media lain, seperti dari mushaf
cetak ke aplikasi digital atau dari hasil pengetikan manual ke database komputer.
Pada proses ini, kemungkinan terjadi kesalahan pengiriman penulisan ayat Al-
Qur’an dalam huruf hijaiyah dapat dipandang sebagai bentuk kesalahan (error)
dalam transmisi data. Oleh karena itu, diperlukan mekanisme deteksi dan koreksi
untuk memastikan teks yang diterima tetap sesuai dengan naskah aslinya. Deteksi
kesalahan bertujuan untuk menemukan adanya perubahan atau kerusakan data
selama proses transmisi, sedangkan Kkoreksi kesalahan berfungsi untuk
memperbaiki data yang rusak agar sesuai dengan aslinya. Dalam konteks transmisi
ayat Al-Qur’an, deteksi dimaknai sebagai proses mengidentifikasi huruf hijaiyah
yang mengalami perubahan atau ketidaksesuaian selama pengiriman. Adapun
koreksi merujuk pada pengembalian huruf tersebut ke bentuk yang benar sesuai
teks asli.

Salah satu metode yang banyak digunakan dalam deteksi dan koreksi
kesalahan pada sistem komunikasi digital adalah kode Reed- Solomon. Kode Reed-
Solomon diperkenalkan oleh Irving S. Reed dan Gustave Solomon pada tahun 1960.
Reed-Solomon merupakan kode blok RS(n, k) yang mampu mendeteksi dan
mengoreksi kesalahan hingga sejumlah t < (n — k)/2 simbol. Kode ini banyak
diterapkan pada sistem komunikasi satelit, pemutar CD/DVD, QR Code, serta
sistem penyimpanan RAID karena efektivitasnya dalam menangani kesalahan
dalam jumlah besar (Jariyah dkk., 2013). Selain itu, kode ini juga dikenal memiliki

algoritma encoding dan decoding yang efisien (Oktavia dkk., 2023). Wicker dan

Bhargava menjelaskan bahwa terdapat tiga metode dalam membangun kode Reed-
Solomon, yaitu menggunakan aritmatika pada lapangan hingga, polinomial
generator, serta transformasi Fourier (Wicker, 2005).

Penelitian sebelumnya telah mengkaji berbagai metode untuk meningkatkan
keamanan komunikasi dalam bahasa Arab dan mendeteksi kesalahan penulisan ayat
Al-Qur'an. Algahtani (2013), mengusulkan modifikasi algoritma Vigenere cipher
menggunakan modulus 39 untuk enkripsi teks Arab, yang terbukti lebih aman dan
efisien dibandingkan metode klasik. Riyanto (2019), menerapkan kode linear,
khususnya kode Hamming berorde 3, untuk mendeteksi dan mengoreksi kesalahan
satu huruf dalam penulisan huruf hijaiyah menggunakan representasi biner 5 bit,
sehingga menjaga akurasi teks Al-Qur'an. Sementara itu, Oktavia dkk. (2023),
mengkaji penerapan kode Reed Solomon RS(15,9) dalam kriptosistem McEliece
untuk melindungi transmisi pesan dari serangan komputer kuantum, dengan koreksi
hingga 3 kesalahan bit menggunakan galois field GF(2*), menunjukkan bahwa
pendekatan ini efektif dalam mempertahankan keamanan data.

Berdasarkan literatur pada penelitian sebelumnya, tujuan dari penelitian ini
adalah untuk mengimplementasikan kode Reed-Solomon dalam mendeteksi serta
mengoreksi kesalahan transmisi ayat Al-Qur’an berbasis huruf hijaiyah. Proses
implementasi akan dilakukan menggunakan perangkat lunak SageMath. Melalui
penerapan metode ini, diharapkan dapat meningkatkan akurasi dan ketelitian dalam
pengiriman penulisan huruf hijaiyah, sehingga kesalahan yang umum terjadi dapat
teridentifikasi dan diperbaiki secara otomatis. Penelitian ini juga menjadi langkah
awal dalam memanfaatkan teori pengkodean untuk menjaga kemurnian teks suci

Al-Qur’an secara digital.

1.2

Rumusan Masalah

Berdasarkan uraian latar belakang yang telah disampaikan, rumusan masalah

dalam penelitian ini adalah sebagai berikut:

1.

1.3

Bagaimana simulasi proses deteksi kesalahan transmisi ayat Al-Qur’an
menggunakan kode Reed-Solomon?
Bagaimana simulasi proses koreksi kesalahan transmisi ayat Al-Qur’an

menggunakan kode Reed-Solomon?

Tujuan Penelitian

Berdasarkan rumusan masalah di atas, maka tujuan penelitian yang akan

dicapai adalah sebagai berikut:

1.

1.4

Untuk mendeskripsikan proses deteksi kesalahan transmisi ayat Al-Qur’an
menggunakan kode Reed-Solomon.
Untuk mendeskripsikan proses koreksi kesalahan transmisi ayat Al-Qur’an

menggunakan kode Reed-Solomon.

Manfaat Penelitian

Berdasarkan tujuan penelitian yang telah dikemukakan, hasil penelitian ini

diharapkan dapat memberikan manfaat sebagai berikut:

1.

Manfaat Teoritis:

Penelitian ini diharapkan dapat memberikan kontribusi dalam penerapan teori
kode Reed-Solomon dalam bidang pemrosesan teks digital, khususnya untuk
mendeteksi dan mengoreksi kesalahan transmisi ayat-ayat Al-Qur’an.

Penerapan ini difokuskan pada teks berbahasa Arab yang menggunakan huruf

hijaiyah, sehingga diharapkan dapat meningkatkan akurasi dan keandalan
dalam penyimpanan maupun transmisi data teks Al-Qur’an secara digital.
2. Manfaat Praktis:

a. Memberikan ilustrasi teknis dan simulasi bagaimana kode Reed-
Solomon dapat dimanfaatkan untuk mendeteksi dan memperbaiki
kesalahan transmisi ayat Al-Qur’an secara otomatis.

b. Menjadi rujukan atau dasar bagi penelitian selanjutnya dalam
pengembangan sistem koreksi teks digital yang berbasis pada
pengkodean huruf hijaiyah, baik untuk teks keagamaan maupun aplikasi
teks Arab lainnya.

c. Mendukung upaya pelestarian keakuratan dan kemurnian tulisan ayat-
ayat Al-Qur’an dalam bentuk digital melalui pendekatan matematis dan
teknologi informatika, sehingga dapat meningkatkan keandalan dalam

distribusi dan penyimpanan data teks Al-Qur’an.

1.5 Batasan Masalah
Agar penelitian ini tidak keluar dari batas kajian yang ditetapkan, maka ruang

lingkup penelitian dibatasi pada hal-hal berikut:

1. Penelitian ini menggunakan teks ayat Al-Qur'an dengan huruf hijaiyah dasar

tanpa disertai:
a. Harakat (tanda vokal seperti fathah, kasrah, dammabh, dan sebagainya).
b. Tanda baca (tanda waqgaf, nomor ayat, rukuk, dan lainnya).
c. Bentuk huruf yang berbeda (awal, tengah, akhir) tetap direpresentasikan

menggunakan Unicode yang sama, kecuali huruf khusus yang memang

memiliki Unicode berbeda seperti berbagai bentuk hamzah, T7a’
Marbitah (3), Alif Magsirah (<) dan spasi.
2. Setiap huruf hijaiyah direpresentasikan dalam bentuk kode Unicode 16-bit,

khususnya dalam rentang Unicode Block Arabic (UTF — 8).

3. Sumber penulisan ayat Al-Qur’an.

a. Penelitian menggunakan ayat Al-Qur’an dalam bentuk digital, seperti
mushaf elektronik, aplikasi web, atau dokumen digital lainnya.

b. Penelitian mengikuti standar khat Naskhi yang digunakan dalam mushaf
Rasm Utsmani cetakan Indonesia, serta tidak membahas perbedaan
bentuk tulisan pada mushaf versi internasional.

c. Data yang digunakan adalah sepuluh penulisan ayat Al-Qur’an sebagali
data uji, di mana kesalahan simbol ditambahkan secara sengaja dan
terkontrol untuk mensimulasikan kondisi transmisi digital.

4. Penelitian ini difokuskan pada objek kesalahan sebagai berikut:

a. Kesalahan yang timbul akibat ketidaksesuaian penulisan huruf hijaiyah
dalam aplikasi digital, situs web, atau sistem input teks.

b. Penyimpangan atau penyelewengan penulisan ayat, baik disengaja
maupun tidak disengaja, yang menyebabkan perubahan struktur teks
huruf hijaiyah.

c. Model kesalahan dalam penelitian ini merupakan kesalahan yang sengaja
disisipkan (injected errors) selama proses transmisi digital, bukan
kesalahan dari kanal komunikasi nyata. Tujuannya adalah untuk menguji
kemampuan deteksi dan koreksi dari kode Reed-Solomon secara

terkontrol.

10

d. Setiap kesalahan penulisan huruf hijaiyah direpresentasikan sebagai
symbol error dalam proses transmisi pada kode Reed-Solomon.

5. Penelitian ini tidak membahas aspek tajwid, tafsir, maupun qira’at (variasi
bacaan), serta tidak mencakup keseluruhan sistem Rasm Utsmani secara
komprehensif.

6. Batasan pada Implementasi Reed-Solomon.

a. Penelitian ini hanya menguji kemampuan deteksi dan koreksi kesalahan
(error) pada level simbol (huruf hijaiyah yang diubah menjadi simbol 16-
bit).

b. Penelitian tidak membahas optimasi algoritma atau implementasi Reed—
Solomon untuk skala besar, melainkan hanya menerapkan RS dengan
parameter yang digunakan dalam studi kasus.

c. Pengujian dilakukan dalam lingkungan simulasi perangkat lunak

SageMath bukan pada sistem transmisi fisik sebenarnya.

1.6 Definisi Istilah

Terdapat beberapa istilah yang digunakan dalam penelitian ini, yakni sebagai

berikut:

Unicode : Standar pengkodean karakter yang memberikan
kode unik untuk setiap huruf, angka, dan simbol
dari berbagai bahasa di dunia.

Coding : Proses pemberian kode atau representasi

tertentu terhadap data atau informasi ke dalam

bentuk simbol, bilangan, atau rangkaian bit agar

Encoding

Decoding

Deteksi

Koreksi

Teori Pengkodean

11

dapat diproses, disimpan, atau ditransmisikan
oleh suatu sistem.

Encoding adalah metode dalam teori
pengkodean yang berfungsi mengubah data asli
menjadi bentuk kode tertentu, biasanya dalam
bentuk simbol, kode, atau format digital, agar
dapat disimpan, diproses, atau dikirim secara
lebih efisien.

Decoding adalah proses kebalikan dari encoding
yaitu metode dalam teori koding yang
mengubah kembali informasi yang telah
dikodekan tersebut menjadi data asli.

Deteksi adalah usaha untuk menemukan,
mengenali, dan menentukan keberadaan suatu
kesalahan atau penyimpangan.

Koreksi adalah proses perbaikan atau
pembetulan terhadap suatu kesalahan yang
ditemukan agar sesuai dengan bentuk yang
benar.

Teori pengkodean adalah cabang ilmu dalam
matematika terapan dan teknik informatika yang
mempelajari cara merepresentasikan informasi

ke dalam bentuk simbol atau kode tertentu

Kode Reed-Solomon

Shortened Code Reed-

Solomon

Codeword

Padding

SageMath

Transmisi

12

dengan tujuan meningkatkan keandalan dan
efisiensi komunikasi.

Reed Solomon adalah sebuah metode dalam
teori kode error yang digunakan untuk
mendeteksi dan memperbaiki kesalahan dalam
transmisi data.

Kode Reed-Solomon yang dipendekkan, yaitu
teknik memperpendek panjang codeword
dengan menambahkan simbol isian (padding)
pada awal pesan, kemudian membuangnya
setelah proses pengkodean.

Hasil encoding berupa data yang telah diubah
menjadi bentuk vektor untuk proses decoding.
Proses menambahkan data tambahan (biasanya
berupa bit tertentu) ke suatu pesan agar pesan
tersebut memenuhi ukuran atau panjang yang
diperlukan oleh suatu algoritma, sistem, atau
blok data.

Perangkat lunak open-source berbasis Python
yang digunakan untuk komputasi matematika,
termasuk aljabar, kriptografi, teori bilangan, dan
teori pengkodean.

Pengiriman (penerusan) pesan dan sebagainya

dari seseorang kepada orang (benda) lain.

Transmisi Data

Transmisi Ayat Al-Qur’an

Kesalahan (error)

13

Proses pengiriman data dari satu sumber ke
penerima data.

Transmisi ayat Al-Qur’an adalah proses
pengiriman atau penyampaian teks ayat dari satu
media atau perangkat ke media lain secara
digital.

Hal yang terjadi apabila suatu hal tidak
bertindak semestinya, seperti salah sasaran,

kehilangan satu bit, atau juga berubah datanya.

BAB II
KAJIAN TEORI

2.1 Lapangan

Definisi 2.1

setiap elemen yang bukan nol adalah suatu unit (mempunyai invers terhadap

Lapangan adalah suatu ring komutatif yang memiliki elemen identitas, di mana

perkalian) (Gallian, 2021).

Definisi 2.2

operasi biner yaitu penjumlahan dan perkalian dinotasikan dengan “+” dan “-”

sehingga aksioma-aksioma di bawah ini terpenuhi untuk semua a,b,c € F

Lapangan F merupakan himpunan elemen-elemen tertutup yang memuat dua

(Menezes dkk., 1996).

1.

2.

3.

a+(b+c)=(@+b)+c

a+b=b+a

Terdapat elemen identitas 0 € F sedemikian sehinggaa + 0 = a
Terdapat elemen —a € F sedemikian sehinggaa + (—a) = 0
a-(b-c)=(-b)c

ab=b-a

Terdapat elemen 1 € F sedemikian sehinggaa-1 =a

untuk setiap a # 0, terdapat elemen a~! € F sedemikian sehingga
a-al=1

a-(b+c)=a-b+a-c.

14

15

Contoh 2.3
Himpunan Zs = {[0], [1], [2], [3]. [4]} merupakan himpunan semua kelas sisa

bilangan bulat modulo 5. Dengan +5 dan *5 pada himpunan Zz membentuk suatu

lapangan.
Bukti:
Tabel 2.1 Operasi Penjumlahan Modulo 5 di Zg
+s | [0 [1]|[2]| [3]] [4]
[01| [o]| [1]|[2]| [3]| [4]
(11| [11] [2]|[3]| [4]] [O]
(21| [2]] [3]|[4]] [0]| [1]
31| [31] [4]|[0]| [1]| [2]
[4] | [4]] [O]|[1]| [2]] [3]

Tabel 2.2 Operasi Perkalian Modulo 5 di Zg

*s | (O] [1T| (21| [31| [4]
[0 | fo]| [o]|[o]| [O]| [O]
(11| [0 [AT|[2]| [31| [4]
[2]| [0 [2]|[4]| [11| (3]
[31| [0} 31| M| [4]| [2]
[4] | [O1] [4]|[3]] [2]] I[1]

Dengan memperhatikan Tabel 2.1 untuk operasi +;5 sifat tertutup terpenuhi,
karena untuk setiap [a], [b] € Zs, berlaku [a]+5[b] € Zs. Elemen identitas
terhadap penjumlahan adalah [0], dan setiap elemen [a] € Zs juga memiliki invers
penjumlahan yang dinyatakan dengan —[a], sehingga berlaku (—[a]+s[a]) =
[a]+5(—[a]) = [0]. Selain itu, tabel penjumlahan bersifat simetris terhadap
diagonal utama, sehingga operasi +5 bersifat komutatif, yaitu [a]+5[b] = [b]+5

[al, V[a],[b] € Zs.

16

Selanjutnya, berdasarkan Tabel 2.2 untuk operasi *g, himpunan Zs bersifat
tertutup terhadap perkalian., karena untuk setiap [a], [b] € Zs berlaku [a] *5 [b] €
Zs. Elemen identitas terhadap perkalian adalah [1], dan setiap elemen tak nol [a] €
Zs memiliki invers perkalian, yaitu elemen [a]~! yang memenuhi [a] x5 [a] ™! =
[a]™! x5 [a] = [1]. Tabel perkalian juga simetris terhadap diagonal utama,
sehingga operasi =g bersifat komutatif. Karena Zs memenuhi sifat tertutup,
memiliki elemen identitas, setiap elemen memiliki invers terhadap operasi
penjumlahan dan perkalian, serta kedua operasi bersifat komutatif dan asosiatif,

maka dapat disimpulkan bahwa (Zs, +5,*5) merupakan suatu lapangan (field).

2.1.1 Lapangan Hingga (Galois Field)
Definisi 2.3

Suatu lapangan yang memiliki elemen sebanyak berhingga disebut dengan
galois field “lapangan berhingga” (Dummit & Foote, 2004).

Jika suatu lapangan memiliki p™ elemen, dengan p adalah bilangan prima dan
n € Z*. Maka lapangan hingga dinotasikan dengan GF(q) atau F,, dengan q =
p™. Untuk n = 1, elemen lapangan GF (p) sama dengan {0,1,2, ..., p — 1}, dengan
operasi penjumlahan (+) dan perkalian (-) dilakukan secara modulo p. Sebagai
contoh, GF(2) memiliki 2 elemen {0,1}, sedangkan GF(3) memiliki 3 elemen
{0,1,2}. Jikan > 1 maka lapangan GF (p™) dibangun dari polinomial irreduksibel
derajat n atas GF(p™). Misalnya, GF(22) dapat dibentuk dari Z,[x]/p(x),

dengan p(x) = x2 + x + 1 sehingga memiliki 4 elemen berbeda.

17

2.1.2 Aritmatika pada Galois Field
Dalam galois field, operasi penjumlahan, pengurangan, perkalian, dan

pembagian dapat dilakukan, namun berbeda dengan operasi pada bilangan real.

Setiap hasil operasi antar elemen dalam galois field selalu menghasilkan elemen

lain yang masih berada dalam himpunan terbatas tersebut.

1. Operasi Penjumlahan dan Pengurangan.
Cara melakukan operasi penjumlahan adalah sebagai berikut, (a,,x™ + --- +
arx + ag) + (bypx™ + -+ + bix + by) = ¢,y X™ + -+ ¢1x + ¢y, dimana ¢; =
a; + b; untuk (m — 1) > i = 0. Sama halnya dalam operasi pengurangan
dua elemen GF(a,x™ + -+ a;x + ag) — (b x™ + -+ bix + by) =
CmX™+ -+ cix+cy dimana c¢;=a;+b; untuk (m—-1)=>i=>0.
Operasi + dan — dilakukan dengan modulo 2. Sehingga, baik penjumlahan
maupun pengurangan akan didapatkan hasil ¢; = 0 untuk a; = b; dan ¢; =
1 untuk a; # b;. Dengan kata lain, penjumlahan dan pengurangan adalah
identik dalam Galois Field.
Sebagai contoh, pada GF(16) kita dapat mengurangkan a3 + a dengan
a’l+a’+a+1, sehingga (@>+a)—(a®+a?+a+1)=a?+1.
Dalam representasi biner, (1010) — (1111) = (1010) + (1111) = 0101.
Ataupun dalam representasi desimal, 10 — 15 = 10 + 15 = 5.
2. Operasi Perkalian dan Pembagian.

Dengan primitive polinomial dapat ditentukan bentuk tiap elemen
bilangan GF, baik dalam bentuk polinomial, biner, ataupun desimal. Dengan
mengetahui bentuk elemen bilangan tersebut, dapat dicari hasil operasi

perkalian dua elemen bilangan GF. Pada GF(2™) perkalian dua elemen

18

bilangan a(x) = appx™ + a1 x™ 1+ -+ a;xt +a, dan b(x) =
Dy X™ + b1 x™ 1 + -« + byx* + b, akan menghasilkan c(x) = ¢, x™ +
Cm-1X™ 1+ -+ c;x + ¢, dimana konstanta c,,, ..., c, didapatkan dari
reduksi bilangan berdasarkan primitive polynomial.

Sebagai contoh, operasi perkalian antara bilangan 14 dengan 11 pada
GF(2%). Representasi hasil perkalian dalam bentuk index adalah
qUumlahkedua index)mod(2™™") - Bjlangan 14 merepresentasikan al! dan
bilangan 11 merepresentasikan a’. Sehingga, a'! x a” = 18m0d(15) =
a3 = 8, atau 14 x 11 = 8 pada GF(2%).

Operasi pembagian 8 dengan 14 pada GF(2*) mirip dengan perkalian.
Representasi hasil pembagian dalam bentuk indeks adalah
g (selisihkedua indexymod(2™™) " Bjlangan 8 merepresentasikan a3 dan
bilangan 14 merepresentasikan a1, Sehingga, a3/atl =
aB 1mod?!® = g~ (®mod(15) — o7 = 11, Elemen invers dari GF
didefinisikan sebagai nilai elemen bilangan yang jika dikalikan
menghasilkan nilai 1. Jika 14 merepresentasikan a'' maka inversnya
adalah @711 = (-1D)mod(15) — o4 — 3 Maka, 8/14 = 8x3 = a3 X
a* = a’m0d(1%) = o7 = 11, atau 8/14 = 11.

Exclusive-OR (XOR).

Pada pengolahan data digital, salah satu operasi biner yang paling mendasar
dan sering digunakan dalam proses encoding dan decoding adalah operasi
Exclusive-OR (XOR), yang dilambangkan dengan simbol “ @ ”. Operasi
XOR merupakan bentuk penjumlahan dalam modulo 2 pada lapangan

hingga GF(2), yaitu suatu himpunan bilangan biner yang hanya terdiri dari

19

dua elemen, yaitu 0 dan 1. Secara matematis, operasi XOR didefinisikan
sebagai a @ b = (a + b)mod 2. Operasi ini mendefinisikan bahwa dua bit
yang berbeda akan menghasilkan nilai 1, sedangkan dua bit yang bernilai
sama menghasilkan nilai 0 (Makhomah dkk., 2021).
Misalkan a, b, c merupakan peubah Boolean dalam GF(2), maka operasi
XOR memiliki beberapa sifat penting sebagai berikut:
a. a @ a = 0 (Sifat invers penjumlahan),
b. a @ 0 = a (Sifat identitas),
Cc. a® b= b @ a (Sifat komutatif),
d a® (bDc)=(a® b) D c (Sifat asosiatif).
Contoh 2.1
a 1d1=(1+1)mod2=0
b. 0p0=(0+0)mod2=0
c. 10=081=1
d 1e0dD=100D1=0
Jika dua bilangan biner dioperasikan menggunakan XOR, maka operasi
dilakukan dengan menerapkan XOR pada setiap pasangan bit yang
bersesuaian.
Contoh 2.2

10011 € 11001 = 01010

pada hal ini, hasilnya diperoleh sebagai berikut:

1 0 0 1 1

1 1 0 0 1 o
161 061 06DO0 16D0O 11

0 1 0 1 0

20

2.1.3 Polinomial Galois Field

Sebuah polinomial a(x) berderajat m pada lapangan hingga GF(p)
dituliskan sebagai,

a(x) = apx™+ a1 x™ 1+ L+ ax + aq (2.1)

dengan koefisien a; € GF(p) dan a,, # 0. Derajat (degree) dari polinomial a(x)
adalah pangkat tertinggi dari x, yaitu m. Polinomial tersebut dapat dijumlahkan,
dikurangkan, dikalikan, dan dibagi dengan polinomial pada field yang sama.
Misalkan n(x) dan m(x) adalah polinomial pada GF(256), makan(x) +
m(x),n(x) — m(x),n(x) X m(x), dan n(x)/m(x) terdefinisi.

Lapangan hingga GF(p™) dapat direpresentasikan dengan suatu elemen
primitif (primitive element) a, yaitu

GF(p™) = {0,a° al,a?, .., a®" -2},
Setiap elemen o' dapat direpresentasikan dalam bentuk polinomial berderajat
kurang dari m, yaitu
A1 Xx™ T+ .+ ax + a,

dengan koefisien a; € {0,1}. Representasi ini juga dapat dinyatakan dalam bentuk
bilangan biner m — bit maupun bentuk desimal. Dalam pengkodean Reed-
Solomon, elemen primitif « umumnya dipilih dengan representasi desimal 2.
Definisi 2.5

Polinomial tak tereduksi f(x) dengan derajat m atas GF(q) dikatakan
primitif jika n adalah bilangan bulat positif terkecil, untuk f(x) faktor dari x™ —

1, berlakun = g™ — 1.

21

Sebagai contoh, lapangan hingga GF(8) = GF(23%) memilikim = 3 dan
dapat direpresentasikan menggunaka polinomial primitif p(x) = x3 + x + 1. Jika
« adalah akar dari p(x), maka berlaku,

a+a+1=0> a’=a+1.
Setiap elemen di GF(8) dapat direpresentasikan sebagai a,x? + a x® +
apx®, a; € {0,1}. Dengan a,,ay, a, berkorespondensi dengan nilai biner 000
sampai 111, atau dalam bentuk desimal 0 sampai 7 (Wicker, 2005).

Tabel 2.3 Tabel Representasi Eksponensial dan Polinomial Elemen GF(2")

Representasi Eksponensial Representasi Polinomial
1 1
at a
a’ a’
ol al=a+1
at ala+1)=a’+a
a’ al+a’=a’+a+1
a® al+a’+a=a’+1
0 0

Sebuah polinomial pada galois field yang dituliskan sebagai p(x) disebut
primitive polinomial. Polinomial ini digunakan untuk membangkitkan seluruh
elemen dalam lapangan hingga melalui proses perkalian antar elemen. Dalam
galois field dengan ukuran tertentu, bentuk polinomial primitif yang umum
digunakan dapat dilihat pada Tabel 2.4.

Tabel 2.4 Tabel Primitif Polinomial GF

m Primitive polynomial GF m Primitive polynomial GF
2 1+ x + x? 13 | 1+x+x3+x*+x13
3 1+x+x31+x%+x3 14 | 1+ x+ x6+x10 + x4
4 1+x+x* 15 | 1+x+x'S

5 14+ x2% +x° 16 |1+ x+x3+x'? +x16
6 1+ x+ x° 17 | 1+ x3+xV

7 1+ x3+x7 18 | 1+x7+x'®

8 14+ x2+x%+ x* + x8 19 | 1+x+x?+x%+x2°
9 14+ x*+x° 20 | 1+ x3+x2%0

10 | 1+ x3+x10 21 | 1+x%+x%

11 | 1+x%+x1 22 | 1+x+x?2

12 | 1+x+x*+x%+ x1? 23 | 14 x+ x??

22

2.1.4 Representasi Galois Field

Seperti yang dijelaskan sebelumnya, galois field direpresentasikan sebagai
himpunan terbatas dengan jumlah elemen maksimum sebesar 2™. Pada kasus
GF(16) dengan m =4, jumlah elemennya adalah 2*=16. Untuk
membangunnya, diperlukan sebuah polinomial primitif p(x) = x* + x + 1, maka
substitusi p(x) = 0 dihasilkan a* = a + 1.

Relasi ini sangat penting karena digunakan untuk menyederhanakan nilai-
nilai pangkat a* yang lebih tinggi dengan cara mengganti a* dan kelipatannya
menggunakan a + 1. Kemudian melakukan operasi penjumlahan polinomial
dalam GF(2). Proses ini dilakukan berulang hingga seluruh elemen dalam
GF(16) terbentuk. Sehingga diperoleh GF(16) = {0,1, a, a?, a3, a?, ..., a*}.

Tabel 2.5 menunjukkan representasi elemen GF(16) dalam bentuk pangkat
a', polinomial, biner 4-bit, dan desimal.

Tabel 2.5 Representasi Polinomial, Biner, dan Desimal pada GF (2%)

o Representasi Polinomial Biner Desimal
0 0 0000 0
1 1 0001 1
ot a 0010 2
o? o? 0100 4
ol ol 1000 8
ot a+1 0011 3
o’ o +a 0110 6
a® o + a? 1100 12
o’ B +a+1 1011 11
of o +1 0101 5
o’ o+« 1010 10
ato o +a+1 0111 7
atl o+ o+« 1110 14
ol? B+ +a+1 1111 15
ol3 a3 =0 +a?+1 1101 13
o4 ad+1 1001 9

23

Sementara itu, untuk GF(256) denganm = 8, jumlah elemennya adalah
GF(256) = 28 = 256. Dengan memilih polinomial primitif misalnya p(x) =
x8 + x* + x3 + x%2 + 1. Maka diperoleh a® = a* + a3 + a? + 1. Representasi
elemen GF (256) juga dapat disajikan dalam bentuk pangkat o, polinomial, biner
8-bit, dan desimal pada Tabel 2.6.

Tabel 2.6 Representasi Polinomial, Biner, dan Desimal pada GF (2%)

ol Representasi Polinomial Biner Desimal
a® a® 00000001 | 1
ol ot 00000010 | 2
o o? 00000100 | 4
ol o 00001000 | 8
ot ot 00010000 | 16
ol o’ 00100000 | 32
a® a® 01000000 | 64
o’ o’ 10000000 | 128
of ot + o+ o+ 00011101 | 29
o’ o + ot + o+ ot 00111010 | 58
a0 al + o® + ot + o? 01110100 | 116
atl o/ +af + o’ + o 11101000 | 232
ot? o/ +a®+ o+ %+ 11001101 | 205
al3 o +o®+ ot +al 10000111 | 135
o4 a* +al +af 00010011 | 19
olt® o® + o + at 00100110 | 38
a?55 a® 00000001 | 1

2.1.5 Ruang Vektor atas Lapangan Hingga
Suatu ruang vektor V atas lapangan F adalah himpunan tak kosong yang
dilengkapi dengan dua operasi, yaitu penjumlahan vektor dan perkalian dengan
skalar (Lang dkk., 2015). Untuk setiap vektor u,v,w,€ V dan skalar A,u € F,
berlaku aksioma-aksioma vektor berikut:
1. u+vev.

2. u+v)+w=u+w+w).

24

3. Terdapat O € VV untuk setiap v € VV sedemikian sehingga memenuhi O +
v=v+0=mw

4. Untuk setiap u € V terdapat —u € VV sedemikian sehingga memenuhi u +
(—w)=(—uw)+u=0.

5. utv=v+u

6. Wwev.

7. A(u+v)=Au+ Av.

8. A+ wu=u+ uu.

9. (Awu = A(uu).

10. lu = u.

Ruang vektor digunakan untuk merepresentasikan pesan dan kode sebagai
vektor berdimensi tetap atas lapangan hingga GF (p™). Proses encoding dengan
menggunakan matriks generator merupakan bentuk transformasi linier dalam
ruang vektor,

di mana:
1. Pesan berupa vektor m € GF (p™)k.
2. Dikalikan dengan matriks generator G € GF (p™)**™.

3. Menghasilkan kode C = mG € GF(p").

2.2 Teori Pengkodean (Coding Theory)

Teori pengkodean merupakan cabang ilmu matematika terapan yang
mempelajari cara merepresentasikan informasi dalam bentuk kode sehingga data
dapat ditransmisikan atau disimpan secara efisien dan tetap tahan terhadap

gangguan (noise). Ketika data dikirimkan melalui saluran komunikasi,

25

kemungkinan terjadinya gangguan (noise) sangat besar sehingga data yang diterima
dapat berbeda dari yang dikirim. Fokus utama teori pengkodean adalah merancang
kode yang memungkinkan deteksi dan koreksi kesalahan, sehingga informasi dapat
dipulihkan meskipun terjadi kerusakan data selama proses pengiriman.

Secara umum, teori pengkodean menggabungkan konsep-konsep matematika
seperti aljabar linear, teori bilangan, polinomial, dan lapangan hingga (Galois
Field). Dalam konteks transmisi digital, suatu kode dibangun untuk mengubah
pesan asli ke dalam bentuk codeword yang memiliki redundansi tertentu.
Redundansi inilah yang memungkinkan penerima mendeteksi dan memperbaiki
kesalahan yang terjadi selama proses transmisi.

Teori koding digunakan untuk mengkoreksi kesalahan pada saluran informasi
yang apabila terjadi gangguan dapat membuat data tidak terkirim sempurna.
Encoding atau enkripsi adalah suatu cara atau metode dalam teori koding yang
mengubah suatu data asli menjadi kode-kode yang melambangkan data tersebut.
Decoding atau dekripsi merupakan suatu proses kebalikan dari encoding.
Pengertian decoding yaitu suatu cara atau metode dalam teori koding yang

mengubah kode-kode data tersebut menjadi data asli. (Munir, 2006).

2.2.1 Kode Siklik
Sebuah kode linier C dikatakan siklik jika untuk setiap vektor c =

(¢1,€3, ..., Cn_q) € C. Contohnya, jika (1,1,0,1) adalah elemen sebuah kode

siklik, maka (1,1,1,0) juga termuat dalam kode siklik tersebut (Jamal dkk., 2012).
Dengan demikian, operasi pergeseran siklik memetakan kode C ke dirinya sendiri.

Sehingga jika diberikan suatu matriks G yang merentang kode siklik, untuk

26

menentukan semua vektor kode dari kode sikliknya dapat dilakukan dengan

melakukan pergeseran secara siklik pada vektor perentangnya.

2.2.2 Kode Linear
Definisi 2.6

Suatu kode linear C dengan panjang n atas F, adalah subruang dari E]l.
Dimensi dari kode linear C adalah dimensi dari C sebagai ruang vektor atas F;

yang dinotasikan dim C (Bierbrauer, 2019).

F' ={(vy, v, ... , 1) | v; € Fj} (2.2)
di mana:
F, Lapangan hingga dengan q elemen
P : Ruang vektor berdimensi n atas F,
v; : Elemen ke-i dari vektor
(v1,v2, .. ,v,) © Vektor berdimensi n

Kode linear dengan panjang n dan dimensi k disebut sebagai kode (n, k).
Artinya, kode linear C terdiri atas g codeword, karena terdapat g* kombinasi
linear yang dapat dibentuk dari basis berdimensi k di F;*.

1. Matriks Generator.

Pada teori pengkodean, sebuah kode linear C[n, k] atas lapangan F, dapat

direpresentasikan menggunakan matriks generator G berukuran k X n.

Baris-baris pada matriks ini membentuk basis dari subruang C S F7'.

Dengan demikian, setiap codeword c € C dapat diperoleh dari hasil

perkalian antara vektor pesan v € F,¢ dengan matriks G, yaitu:

27

c=v-G (2.3)
Matriks generator G dinotasikan dengan:
G =[I | A] (2.4)
di mana:
I, . Matriks identitas berukuran k X k
A Matriks berukuran k X (n — k)
Misalkan, diberikan dua vektor pesan sebagai berikut:
v, = (1011), v, = (0101)

dan matriks generator G sebagai berikut:

coopRr
cor o
or oo
R o oo
O ===
_O = =
[=

Dengan demikian, diperoleh:
c;=v,-6=(1011000)
c,=v,-6=(0101101)
Untuk kode Reed-Solomon (RS), matriks generator tidak dibentuk dari G =
[I;|A] secara langsung, tetapi melalui konstruk Vandermonde matrix di
lapangan hingga GF (2™). Matriks generator RS berukuran k X n umumnya

dituliskan sebagai:

[1 1 1 1]

Xo X1 X7 o Xn—1

G=| x5 xf x5 - xp
k—1 k—1 k-1 k—1

X0 X1 X2 Tt Xp-1

Dengan x; = a>/ merupakan titik evaluasi yang berbeda pada GF (2™), dan

j =0,1,..,n — 1 menyatakan indeks kolom matriks generator.

28

Dalam penelitian ini titik evaluasi dipilih menggunakan pola aritmatika
dengan parameter start= 0 dan step= 5, dan titik evaluasi menjadi:

xj = a’/.
Dengan demikian, kolom ke-j dari matriks generator adalah:

. . . T
5 10j 15 k-1(5
[1,a1,a Joat, ..« (1)])

Karena pada GF(28) berlaku a?>®> = a® = 1, semua eksponen dipandang
modulo 255. Dengan gcd(5,255) =5, deret 5j (mod255) akan
mengulangi setiap 255/5 = 51 langkah, oleh karena itu jumlah kolom unik
maksimum tanpa pengulangan eksponen adalah 51. Untuk menjamin bahwa
semua titik evaluasi berbeda (sehingga submatriks Vandermonde k X
k nonsingular), dipastikan n < 51 saat menggunakan pola start =0,

step = 5 pada GF (28).

-1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 -+ 117
1 0(5 alO a15 (XZO aZS a30 a35 a40 a4—5 aSO aSS a60 (X65 a70 (X75 . (XZSO
1 alO aZO 0(30 (X40 (XSO a60 0(70 (XBO a90 0(100(1110(1120(11300(140(X150 (x24—5
1 alS (X30 (X45 (XGO a75 a90 a105a120a135a150a165a180a195a210a222 (XZ40
1 (XZO a4—0 0(60 (XSO a100a120a140a14—0a180a200a220a24—0 (XS (XZS (X45 . (X235
1 a25 aSO (X75 (11000(125(X150a175a200a225a250 a20 0(45 (X70 (X95 a120 (X230
1 (X30 (X60 (X90 a120a150a180a210a24—0 alS a45 (X75 a105a135a165a195 (XZZS

G = 1 a35 (X7O 0(1050L14°(x1750(21°(x245 (XZS (X60 a95 a130a165a200a235 (x15 . (X220
1 (X40 (XSO a120a160a200a240 a25 a65 alOS a9 0(1850(225 alO aSO a90 . (X215

1 a4—5 0(90 0(1350(1800(225 alS a60 a105a150a145a24—0 0(30 (X75 0(120(X165 (X210

1 aSO a100a150a200a250 a4—5 0(95 0(1450(195 (X195 (X40 (X90 a14—0a190a240 (XZOS

1 (XSS a110a165a220 (XZO (X75 a130a185a240a245 (X95 a150a205 (XS (X60 . (XZOO

1 a60 a120a180a24—0 a4-5 a105a165a225 (X30 (140 a150a210 alS (175 a135 a195

1 a65 0(13001195 aS a70 (X135(X200 (X10 a75 a90 (XZOS (x15 (XBO (X145(X210 a190

| 1 O(2'30(XZ'OS(XI'SO(xl‘SSa1'30(x1'05 aéo a'55 aéO (X'S ai35aéloa£85a£60a£35 a'25

2. Matriks Parity-Check.
Setiap kode linear C[n, k] atas lapangan F,, terdapat matriks pemeriksa
paritas (parity-check matrix) H berukuran r X n dengan r = n — k. Baris-
baris pada matriks ini membentuk basis dari ruang ortogonal terhadap C.

Suatu vektor x € F* merupakan codeword jika dan hanya jika memenuhi:

29

C ={x €F|HI =0}

Dengan kata lain, C merupakan himpunan solusi dari sistem persamaan
linear homogen (SPLH) HxT =0, atau disebut juga kernel dari H.
Mengkonstruksi kode linear dengan panjang n dan berdimensi k sama
artinya dengan mendefinisikan matriks cek paritas H.
Dalam proses decoding, matriks cek paritas berfungsi untuk menentukan
simbol-simbol redundansi agar codeword yang terbentuk tetap berada di
ruang solusi.
Misalkan vektor pesan sepanjang k:

u = (uq, Uy, -, Ug),
Yang kemudian di encoding menjadi codeword sepanjang n:

x = (X1, X, e , X))
Dengan x; = uy, ..., X = uy. Sisar = (n — k) simbol berikutnya yaitu,

Xe+1 X425 0 X

adalah simbol cek (parity symbols) yang diperoleh dari penyelesaian SPL:

X1 0

x
HxXT=0oH| 7 |= 0

Xn 0

Matriks H biasanya dinyatakan dalam bentuk standar, yaitu

H=[AlI], (2.5)
di mana:
A Matriks berukuran r x k
I, : Matriks identitas berukuran r x r

Karena Reed-Solomon merupakan evaluation code, matriks H yang

digunakan dalam penelitian ini dibentuk dengan cara mengevaluasi pangkat

30

elemen primitif o pada eksponen tertentu. Jika titik evaluasi untuk matriks
generator menggunakan
xj =a®/,
maka titik evaluasi untuk matriks parity-check adalah titik dual, yaitu nilai-
nilai atU) untuk beberapa t derajat paritas. Baris-baris matriks H memiliki
bentuk umum:
H; = (1, aSi, a10i’ a,15i, a20i’ . aZSOi)1

di mana eksponen selalu dihitung modulo 255 (karena a?°> = 1 di GF (28)).

Dengan demikian, matriks parity-check yang digunakan dapat dituliskan

sebagai:

5

10
15
20

10
20
30
40

15
30
45
60

20
40
60
80

25
50
75
100

30 35 045 50 55 ... o250
60 70 %0

100,110 ..,
90 (105,120,135 150,165 ..,
120,140,160 ;180

S

QR Q QR

0(40
0(80 245

QR QR
QK R
ISES]

240

= e
Q Q
QLo QK
QK QK
Q
QR
QR Q Q 8

a
o 200,220 ..,

=
Q
>y

Codeword.

Definisi 2.7

Diberikan X = {x4, x5, ..., x4} adalah suatu himpunan yang berukuran q,

yang dapat disebut alfabet kode dan elemen-elemennya disebut codeword

(Ling & Xing, 2004).

a. Suatu word g — er panjang n yaitu barisan w = wy, w,, ..., w,, dengan
w; € X untuk setiap i.

b. Kode blok g — er dengan panjang n atas X merupakan himpunan tak
kosong C pada word g — er mempunyai panjang yang sama.

c. Elemen dari C disebut dengan codeword.

d. Kode dengan panjang n dan berukuran m disebut dengan kode-(n, m).

31

Contoh 2.4.

Suatu himpunan yang beranggotakan hewan yaitu H = {kucing, anjing,
burung, ikan, kelinci, ayam} akan dikodekan menjadi suatu pesan rahasia
yang terdiri dari angka biner 0 dan 1 dengan panjang 3-bit pada Tabel 2.7.

Tabel 2.7 Tabel Korespondensi Hewan dan Kode Biner

Hewan Kode
Kucing 000
Anjing 001
Burung 010
Ikan 011
Kelinci 100
Ayam 101

Jadi himpunan H dapat ditulis dalam bentuk kode yaitu,

H = {000,001,010,011,100,101}.

2.2.3 Pengkodean Huruf Hijaiyah

Huruf hijaiyah adalah abjad yang digunakan dalam penulisan teks Al-
Qur’an. Kata huruf berasal dari bahasa Arab“harf” (<_s), dan bentuk jamaknya
adalah “huriaf” (<s,~). Huruf Arab disebut juga huruf hija’iyah (ailss). Kata
hija’iyah berasal dari kata kerja hajjaa (>#) yang artinya mengeja, menghitung
huruf, atau membaca huruf demi huruf. (Nasution, 2020).

Adapun huruf-huruf hijaiyah dapat dilihat pada Gambar 2.1.

32

3,2 C LT oo

LLborPrordodr

balldsnlE
6¢Yj »

Gambar 2.1 Huruf Hijaiyah

Pada penelitian ini, teks yang akan dikodekan menggunakan kode Reed-
Solomon adalah ayat-ayat Al-Qur'an yang ditulis menggunakan huruf hijaiyah
tanpa menggunakan harakat. Untuk mengubah ayat-ayat tersebut menjadi bentuk
yang dapat diolah dalam sistem pengkodean, huruf-huruf hijaiyah dikonversikan
menjadi angka-angka berdasarkan representasi Unicode, yaitu sistem pengkodean
karakter universal yang memberikan setiap huruf Arab kode numerik unik dalam
bentuk bilangan desimal dan biner 16-bit. Sehingga membentuk vektor dalam
ruang vektor V, (F). Representasi ini menjadi dasar dalam proses encoding dan
decoding kode Reed-Solomon untuk mendeteksi serta mengoreksi kesalahan
penulisan ayat Al-Qur'an.

Tabel 2.8 menyajikan nilai Unicode dari huruf-huruf hijaiyah dasar dalam
format Hex, Desimal, dan biner 16-bit. Nilai Unicode (Hex & Desimal),
sedangkan kolom Representasi Biner (16-bit) merupakan hasil konversi peneliti

(nilai Unicode desimal diubah menjadi biner 16-bit).

33

Tabel 2.8 Korespondensi Huruf Hijaiyah dan Vektor Biner

No Huruf Nama Unicode Unicode | Representasi Biner
Hijaiyah Karakter (Hex) (Desimal) (16-bit)
1 s Hamzah U+ 0621 1569 0000011000100001
2 i Alif Hamzah U+ 0623 1571 0000011000100011
di atas
3 3 Waw U+ 0624 1572 0000011000100100
Hamzah
4 ! Alif Hamzah U+ 0625 1573 0000011000100101
di bawah
5 5 Ya’ Hamzah U+ 0626 1574 0000011000100110
6 \ Alif U+ 0627 1575 0000011000100111
7 < Ba’ U+ 0628 1576 0000011000101000
8 O Ta’ U+ 0624 1578 0000011000101010
9 < Tha’ U+ 062B 1579 0000011000101011
10 z Jim U+ 062C 1580 0000011000101100
11 z H¥ U+ 062D 1581 0000011000101101
12 z Kha’ U+ 062E 1582 0000011000101110
13 3 Dal U+ 062F 1583 0000011000101111
14 3 Dhal U + 0630 1584 0000011000110000
15 J Ra’ U+ 0631 1585 0000011000110001
16 J Zay U+ 0632 1586 0000011000110010
17 o Sin U+ 0633 1587 0000011000110011
18 8 Shin U+ 0634 1588 0000011000110100
19 U= Sad U+ 0635 1589 0000011000110101
20 o= Dad U+ 0636 1590 0000011000110110
21 L Ta’ U+ 0637 1591 0000011000110111
22 L 7a’ U + 0638 1592 0000011000111000
23 ¢ ‘Ayn U+ 0639 1593 0000011000111001
24 ¢ Ghayn U+ 0634 1594 0000011000111010
25 < Fa’ U+ 0641 1601 0000011001000001
26 A Qaf U+ 0642 1602 0000011001000010
27 S Kaf U + 0643 1603 0000011001000011
28 J Lam U + 0644 1604 0000011001000100
29 e Mim U + 0645 1605 0000011001000101
30 J Nin U+ 0646 1606 0000011001000110
31 ° H¥ U + 0647 1607 0000011001000111
32 B} Waw U + 0648 1608 0000011001001000
33 Y Lam Alif U+ FEFB 65275 1111111011111011
34 S Ya’ U + 0644 1610 0000011001001010
35 s Alif U + 0649 1609 0000011001001001
Magsiirah
36 5 Ta’ U+ 0629 1577 0000011000101001
Marbiitah
37 Spasi U + 0020 32 0000000000100000

34

2.2.4 Kode Reed-Solomon

Kode Reed-Solomon (RS) merupakan salah satu jenis kode blok linier yang
bersifat siklik non-biner, didefinisikan atas lapangan hingga GF(q), dan GF (2™).
Kode ini pertama kali diperkenalkan oleh Irving S. Reed dan Gustave Solomon
pada tahun 1960 dalam publikasi berjudul “Polynomial Codes over Certain Finite
Fields”. Kode Reed-Solomon merupakan kode blok, yang berarti pesan yang akan
ditransmisikan dibagi menjadi blok-blok data yang terpisah. Kode ini disebut juga
kode sistematik yang artinya proses encoding tidak merubah simbol-simbol pesan
dan simbol proteksi ditambahkan pada tempat yang terpisah pada blok data
tersebut. Kode Reed-Solomon disebut juga kode linear (dengan menjumlahkan
dua codeword akan menghasilkan codeword yang lain), dan juga siklik (dengan
menggeser sebuah codeword secara siklik akan menghasilkan codeword lain).
Reed-Solomon Code termasuk dalam keluarga pengkodean Bose-Choundhuri-
Hocquenghem (BCH) non biner.

Kode Reed-Solomon merupakan salah satu jenis kode koreksi kesalahan
yang bekerja dengan menambahkan simbol-simbol redundansi pada pesan asli
sehingga sistem mampu mendeteksi dan memperbaiki kerusakan yang terjadi
selama proses transmisi. Pada tahap encoding, pesan yang telah direpresentasikan
dalam bentuk simbol pada lapangan hingga ditambahkan sejumlah simbol paritas
yang berfungsi sebagai penanda untuk melacak kesalahan. Ketika codeword
dikirim melalui kanal, sebagian simbol dapat berubah akibat gangguan. Pada saat
penerimaan, decoder akan memeriksa konsistensi hubungan matematis antar-
simbol untuk menentukan apakah terjadi kesalahan. Jika ditemukan

ketidakcocokan, sistem kemudian mengidentifikasi posisi simbol yang rusak

35

dengan memanfaatkan informasi yang tersimpan pada simbol-simbol paritas.
Setelah posisi kesalahan diketahui, Reed—Solomon menghitung nilai asli simbol
tersebut dan menggantinya dengan nilai yang benar sehingga codeword kembali
valid.

Sebagai ilustrasi, misalkan surah Al-Kahf : 48 telah melalui proses encoding
dan menghasilkan sebuah codeword yang berisi 51 simbol. Ketika dikirim, satu
simbol berubah akibat gangguan. Pada tahap penerimaan, decoder mendeteksi
bahwa susunan simbol tidak lagi sesuai dengan struktur matematis yang
seharusnya. Sistem kemudian menelusuri posisi kesalahan tersebut misalnya pada
simbol ke—31 dan menghitung nilai simbol yang benar berdasarkan informasi
paritas. Setelah simbol itu diganti, codeword kembali sesuai dengan kondisi awal,
dan surah Al-Kahf : 48 dapat dipulihkan sepenuhnya tanpa kehilangan satu huruf
pun. Proses yang sama juga berlaku untuk dua, tiga, hingga lima kesalahan,
selama jumlah kerusakan tidak melampaui batas kemampuan koreksi kode Reed—
Solomon.

Dalam sistem komunikasi digital, kode Reed-Solomon memiliki dua proses:

1. Encoding, yaitu proses mengubah pesan menjadi codeword dengan
menambahkan simbol paritas.

2. Decoding, yaitu proses mengembalikan codeword menjadi pesan asli
sekaligus melakukan deteksi dan koreksi kesalahan yang mungkin terjadi
selama transmisi.

Diagram struktur kode Reed-Solomon secara umum dapat dilihat pada

Gambar 2.2.

36

M
A,

.

ke 2t

DATA PARITY |

Gambar 2.2 Diagram Struktur Kode Reed—Solomon (n, k, 2t)

Kode Reed-Solomon atas GF(2™) umumnya menggunakan parameter
sebagai berikut:
1. n=2™ — 1, panjang codeword dalam simbol. (2.6)
2. k =n—2t, jumlah simbol data (pesan). 2.7)
3. 2t = n —k, jumlah simbol paritas, dengan t merupakan jumlah simbol
yang dapat dikoreksi sehingga t = ["T_k : (2.8)
4. dpin = 2t +1 =n—k + 1, jarak minimum antar-codeword. (2.9)
Kode Reed-Solomon biasanya dilambangkan sebagai:
RS(n, k) atas GF(q)
Definisi 2.8
Kode Reed-Solomon RS (n, k) pengoreksi t-kesalahan adalah sebuah kode BCH
primitif dengan panjang n = q — 1 atas lapangan GF(q™).
Contoh 2.5.
Misalkan lapangan hingga GF (2*) dan parameter:
n=15 k=11

Maka:

tzln;kJ=115;11J=2

Sehingga, kode RS(15,11) mampu mendeteksi hingga 4 kesalahan dan

mongerksi hingga 2 kesalahan dalam setiap codeword.

37

2.2.5 Proses Encoding dan Decoding Kode Reed-Solomon
Setelah konsep dasar kode siklik, kode linear, matriks generator, dan matriks
parity check dipaparkan pada bagian sebelumnya, maka pada subbab ini dibahas
proses pembentukan codeword menggunakan matriks generator khusus pada kode
Reed-Solomon. Pembahasan difokuskan pada bagaimana vektor pesan diolah
melalui operasi aritmetika pada GF(28) sehingga menghasilkan simbol-simbol
redundansi yang diperlukan untuk mendeteksi dan mengoreksi kesalahan pada
tahap decoding.
1. Proses Encoding.
Pada penelitian ini, proses encoding pada kode Reed-Solomon dilakukan
dengan merepresentasikan pesan sebagai vektor yang beranggotakan
elemen-elemen dari lapangan hingga GF (2™). Misalkan diberikan pesan,
M = (Mg, My, ..., My_1)
Dengan setiap M; € GF(2™), pesan tersebut kemudian dikodekan menjadi
codeword berdimensi n melalui perkalian antara vektor pesan dengan
matriks generator G, sehingga diperoleh:
C=M-G (2.10)
di mana:
M : Vektor pesan berdimensi k, yaitu (Mg, M4, ..., My _4)
G : Matriks generator berukuran k x n yang dibentuk atas GF (2™)
Hasil dari encoding berupa codeword C berdimensi n, yang terdiri atas k
simbol informasi dan n — k simbol redundansi (paritas). Simbol redundansi
inilah yang memungkinkan kode Reed-Solomon mendeteksi dan

mengoreksi kesalahan hingga sebanyak t kesalahan.

38

2. Transmisi melalui channel.
Dalam sistem komunikasi digital, transmisi merupakan jalur yang
menghubungkan pengirim dengan penerima, yang bisa berupa kabel, udara,
atau media lainnya. Setelah proses encoding selesai, data pesan yang telah
dikodekan menjadi codeword C(x) dikirimkan melalui kanal transmisi.
Pada proses transmisi inilah kemungkinan terjadi gangguan (noise),
interferensi atau kerusakan media, sehingga sebagian simbol dari codeword
mungkin berubah. Untuk mensimulasikan kondisi tersebut, dalam
implementasi program dilakukan penyisipan error (error injection) pada
satu atau beberapa simbol codeword.
Kesalahan yang terjadi direpresentasikan oleh polinomial error e(x), yang
menyatakan posisi dan besarnya kesalahan pada codeword. Dengan
demikian, simbol yang diterima oleh penerima tidak lagi identik dengan
simbol yang dikirim, melainkan berbentuk vektor penerimaan v(x), yang
secara matematis dimodelkan sebagai:
v(x) = C(x) + e(x) (2.11)

atau dalam bentuk vektor:

r=C+e (2.12)
di mana:

c : (CyCy,...,Chq) adalah codeword yang dikirim oleh
pengirim, hasil dari proses encoding.
r : (rp,1,..,Tn—1) adalah received word, yaitu deretan simbol
yang diterima penerima.

e : (e eyq,..., e,_1) adalah vektor error.

39

Vektor error e menggambarkan posisi simbol yang rusak selama transmisi.
Jikae; = 0, maka simbol ke-i tidak mengalami kerusakan. Sebaliknya,
jikae; # 0, maka simbol pada posisi tersebut mengalami error. Dengan
demikian:
a. Jika tidak ada error sama sekali, makar = c.
b. Jika terdapat error pada beberapa posisi, maka r # c, dan selisihnya
ditentukan oleh nilai e.
Contoh 2.6.
Misalkan kode Reed-Solomon RS(7,4) atas GF (23), dengan parameter n =
7, k = 4 dan t = 2. Pesan yang akan dikirim:
M =1011
Hasil encoding (setelah penambahan simbol paritas) diperoleh codeword:
C =1011010
Transmisi melalui channel dimodelkan dengan:
r=C+e
dengan e adalah vektor error.
Jika terjadi error pada bit ke—3, maka:
e = 001000
Sehingga:
r =1011010 + 001000 = 1001010
Proses Decoding.
Proses decoding merupakan tahap untuk mengembalikan codeword yang
diterima menjadi pesan asli. Pada tahap ini dilakukan dua langkah utama,

yaitu proses deteksi kesalahan dan koreksi kesalahan. Jika codeword yang

40

diterima sama dengan yang dikirim, maka pesan dapat langsung dibaca
tanpa koreksi. Namun, jika terdapat perbedaan akibat noise atau gangguan
pada kanal, maka decoder harus mendeteksi lokasi kesalahan dan
memperbaiki.
a. Perhitungan Sindrom.
Pada proses decoding Reed-Solomon, sindrom digunakan untuk
mendeteksi keberadaan dan informasi tentang kesalahan dalam sebuah
codeword. Jika vektor yang diterima adalah v = (vy, vy, ..., Vn_1), maka
sindrom ke-j didefinisikan sebagai hasil evaluasi dari polinomial
v(x) pada akar-akar polynomial generator:

Si =Ygyl j=12,..2t (2.13)
dengan « adalah elemen primitif dari GF(q), dan S; adalah sindrom
ke—j. Secara matriks, sindrom dapat dihitung dengan mengalikan
matriks evaluasi H dengan transpose vektor (vT) (Bras-amor, 2018),
yaitu:

S=H-vT (2.14)

dengan H adalah matriks parity-check berukuran 2t x n:

1 ot o . ot
2 4 .. 2@-1)
H = 1 a a a
i a.2t az.t-z . azt(.n—l)
Apabila semua sindrom bernilai nol (§; =S, = --- = S,; = 0), maka

vektor penerimaan v adalah codeword yang valid. Sebaliknya, jika
terdapat sindrom yang bernilai tidak nol, maka hal ini menunjukkan

adanya error pada codeword yang diterima.

41

b. Menentukan Polinomial Lokasi kesalahan dan Posisi Kesalahan.
Dalam decoding Reed-Solomon, error locator polynomial o(x)
digunakan untuk menentukan posisi simbol yang mengalami kesalahan.

Polinomial ini didefinisikan sebagai:

o(x) = H}Ll(l — Bjx) =1+ 0y +x0,%x% + + -+ 6,X” (2.15)
di mana:

Bj La

v :Jumlah kesalahan

o; . Koefisien polinomial lokasi kesalahan

Akar-akar kebalikan dari o(x) menunjukkan posisi kesalahan pada
codeword. Jika:
o(a™®) =0,

Jika a=¢ = 0 adalah akar dari o(x), maka posisi ke-e pada codeword
terjadi kesalahan.
Untuk memperoleh a(x), digunakan Berlekamp—Massey Algorithm
(BMA), yaitu algoritma yang mencari polinomial dengan derajat terkecil
yang memenuhi relasi linier:

00Sj + 015j_1 + 0,5, + -+ 0.5, =0,
untukj =L +1,...,2¢t,
di mana:

Y

; : Sindrom ke — j

o; + Koefisien polinomial locator kesalahan
L : Derajat polinomial locator (jumlah error yang ditemukan)

t :Jumlah error yang bisa dikoreksi

42

Dalam implementasi RS tertentu (misal RS(255) dengan s = 5), posisi

simbol ditentukan dalam langkah tertentu:
e
[=-
S

Mencari akar Polinomial Evaluasi Kesalahan (Error).
Setelah polinomial locator a(x) diperoleh, langkah berikutnya adalah
menentukan akar polinomial evaluasi error 2(x). Polinomial ini
berfungsi untuk menghitung besar error pada setiap posisi kesalahan.

Q(x) = S(x) - a(x) mod x?t, (2.16)
dengan,

S(x) =81 + Spx + -+ Sypx?tTL

merupakan polinomial sindrom.
Penentuan Nilai Magnitude Kesalahan (Error Magnitude).
Setelah posisi kesalahan dan akar polinomial evaluasi kesalahan
ditemukan, langkah selanjutnya dalam proses decoding adalah
menentukan besarnya nilai kesalahan yang terjadi pada setiap posisi
tersebut. Untuk melakukan hal ini, digunakan Algoritma Forney yang
menghitung magnitudo error pada setiap posisi kesalahan tanpa
mengganggu simbol lainnya dalam vektor penerimaan. Besarnya nilai
magnitude error pada posisi j dinotasikan dengan Ej, dan dapat dihitung

dengan:

v

S; =Zej B i=12,..,2t

j=1

43

dengan e; adalah nilai kesalahan (error value) yang secara konseptual
terjadi pada posisi f;.

__ah
E] - O_I(Xj—l)

(2.17)

N(x) :Polinomial evaluasi error (error evaluator polynomial)

o(x) : Polinomial locator kesalahan (error locator polynomial)

o' (x) : Turunan formal dari o (x)

X1 :Invers dari posisi error dalam bentuk eksponensial elemen
primitif lapangan (a~/)

E

: Besarnya nilai magnitude error yang terjadi di posisi ke-j

e. Koreksi Kode Kesalahan (Error).
Jika v adalah polinomial vektor penerimaan dan e adalah polinomial
error (yang telah diketahui posisinya dan nilainya), maka codeword yang
benar ¢ dapat diperoleh dengan:

C=v—e

Karena pengurangan dalam lapangan hingga GF(2™) sama dengan
penjumlahan (karena karakteristiknya 2), maka:

C=v®e (2.18)

di mana @ menyatakan operasi XOR pada koefisien-koefisien dari

vektor biner atau elemen-elemen GF (2™).

44

2.3 Transmisi

Teori kode pengoreksi error merupakan salah satu cabang matematika yang
bergerak dibidang transmisi dan penyimpanan data. Media informasi tidak selalu
memberikan keakuratan dalam menerima informasi, adakalanya terjadi suatu
gangguan saat pengiriman pesan/informasi. Apabila terjadi suatu error pada saat
pengiriman pesan/informasi, kesalahan tetap dapat terdeteksi bahkan diperbaiki
dengan menambahkan suatu redundansi ke dalam pesan/informasi yang telah
diubah dalam bentuk kode. Diagram sistem transmisi informasi secara umum dapat

dilihat pada Gambar 2.3.

Sumber Informasi 3 Encoder Transmiter »| Saluran Informasi 3 Receiver+Decoder » Penerima Informasi

A

Gangguan

Gambar 2.3 Diagram Proses Pengiriman Pesan/Informasi

2.3.1 Transmisi Data

Transmisi data merupakan proses pengiriman informasi (data) yang telah
dikonversi ke dalam bentuk kode tertentu melalui suatu media dari satu titik ke
titik lainnya. Seiring berkembangnya teknologi, komunikasi data didefinisikan
sebagai proses pengiriman dan penerimaan data atau informasi dari dua atau lebih
perangkat (device) yang saling terhubung dalam sebuah jaringan, baik jaringan
lokal (Local Area Network) maupun jaringan luas seperti internet.

Pada sistem transmisi data, terdapat media transmisi yang berfungsi sebagai
jalur fisik penghubung antara pengirim dan penerima sinyal. Media ini dapat
berupa media terpandu (guided media) seperti kabel tembaga, kabel koaksial,

kabel twisted pair, dan serat optik, maupun media tidak terpandu (unguided

45

media) seperti gelombang radio, gelombang mikro, atau sinyal optik yang
merambat melalui udara, ruang hampa, atau air.

Pada proses transmisi data sering menghadapi berbagai gangguan yang
dapat menyebabkan kesalahan pada data yang dikirimkan. Kesalahan transmisi
dapat berupa perubahan satu bit atau lebih dari data aslinya. Faktor-faktor yang
dapat menyebabkan kesalahan dalam transmisi data:

1. Radiasi Elektromagnetik.

Radiasi elektromagnetik merupakan gelombang energi yang dipancarkan

olen perangkat elektronik, seperti radio, microwave, atau perangkat

komunikasi nirkabel lainnya. Radiasi ini dapat mengganggu sinyal yang
sedang ditransmisikan melalui media komunikasi. Dampaknya, sinyal dapat
mengalami distorsi, sehingga data yang diterima berbeda dari data yang
dikirimkan

2. Crosstalk (sinyal bocor).

Crosstalk terjadi ketika sinyal dari satu saluran komunikasi “bocor” ke

saluran komunikasi lain yang berdekatan. Misalnya, pada kabel yang

terhubung dengan perangkat yang saling berdekatan, atau dalam jaringan
yang menggunakan saluran fisik yang sama. Ketika ini terjadi, sinyal yang
seharusnya tetap utuh bisa terganggu oleh sinyal lain yang menyebabkan
data menjadi rusak atau tidak akurat.

3. Atenausi.
Atenuasi adalah pelemahan sinyal yang disebabkan oleh jarak antara

penerima dan pengirim yang terlalu jauh. Ini dapat terjadi karena adanya

46

halangan diantara keduanya, misalkan sinyal WiFi yang semakin lemah
ketika jauh dari Router.
4. Noise (gangguan sinyal).

Noise merupakan masuknya sinyal lain yang tidak dibutuhkan oleh media

dan menyebabkan sinyal menjadi hancur. Contoh dari noise adalah sinyal

antenna televisi menjadi kabur karena adanya pesawat yang lewat.
5. Distorsi.

Distorsi merupakan keadaan dimana sinyal yang dikirim berbeda dari media

penerima sinyal sehingga membuat rusak media. Contoh distorsi adalah

suara yang berisik pada speaker yang rusak.

Dampak dari gangguan-gangguan tersebut adalah munculnya kesalahan bit.
Kesalahan bit terjadi ketika data yang diterima tidak sesuai dengan data yang
dikirimkan. Bit adalah unit terkecil dari data digital yang hanya memiliki dua
kemungkinan nilai, yaitu 0 atau 1. Ketika terjadi kesalahan bit, nilai “0” bisa
berubah menjadi 1, atau sebaliknya, yang menyebabkan data yang diterima tidak
sesuai dengan data yang seharusnya.

Adapun macam-macam bit error sebagai berikut:
1. Single-bit error.

Single-bit error terjadi ketika hanya satu bit dalam unit data seperti bit,

karakter, atau paket, berubah dari 1 ke O atau sebaliknya. Kesalahan jenis

ini memiliki kemungkinan sangat kecil terjadi dalam transmisi data serial.

Misalnya, jika data ditransmisikan pada kecepatan 1 Mbps, maka setiap bit

hanya berlangsung selama 1 mikrodetik (1us). Untuk menyebabkan single

bit error, gangguan (noise) harus memiliki durasi yang sangat singkat, yaitu

47

sekitar 1us yang jarang terjadi. Biasanya, noise berlangsung lebih lama dari
itu, sehingga lebih mungkin menyebabkan kesalahan yang memengaruhi

lebih dari satu bit.

. Burst error.

Burst error terjadi ketika terdapat dua atau lebih bit pada unit data telah
berubah dari 1 ke O atau dari O ke 1. Pada kasus 0100010001000011
dikirim dan 0101110101100011 diterima, dapat diperhatikan bahwa
beberapa bit mengalami perubahan tetapi tidak harus berurutan. Panjang
burst error dihitung dari bit pertama yang rusak hingga bit terakhir yang
rusak, meskipun ada bit diantaranya yang tetap benar.

Burst error lebih sering terjadi dibandingkan single-bit error karena noise
biasanya memiliki durasi lebih panjang dari 1 bit, yang berarti bahwa ketika
noise mempengaruhi data, maka akan mempengaruhi satu set bit atau lebih
dari satu bit. Jumlah bit yang terkena efeknya tergantung pada data rate dan
durasi noise tersebut.

Untuk mengatasi permasalahan gangguan dalam proses transmisi data,
diperlukan suatu metode yang mampu mendeteksi serta memperbaiki
kesalahan yang terjadi selama pengiriman. Tujuan utama dari metode ini
adalah memastikan bahwa data yang diterima tetap akurat dan konsisten
dengan data yang dikirim, meskipun terjadi gangguan pada saluran
transmisi. Dengan demikian, informasi yang diterima oleh perangkat
penerima dapat tetap dipercaya dan digunakan sebagaimana mestinya.
Proses deteksi dan koreksi kesalahan bit berfungsi untuk mengenali serta

memperbaiki kesalahan yang muncul pada bit-bit data selama proses

48

transmisi. Kedua proses ini merupakan komponen penting dalam sistem
komunikasi digital, karena berperan besar dalam menjaga keandalan

(reliability) dan integritas (integrity) data yang dikirimkan.

2.3.2 Deteksi dan Koreksi Kesalahan Bit Pada Transmisi Data
1. Deteksi Kesalahan Bit.

Deteksi kesalahan bit merupakan proses untuk memastikan bahwa data yang
diterima sesuai dengan data yang dikirim, tanpa adanya perubahan akibat
gangguan selama transmisi. Teknik ini berperan penting dalam sistem
komunikasi maupun penyimpanan data digital, karena proses transmisi
sangat rentan terhadap gangguan seperti noise, interferensi atau kerusakan
perangkat keras.

Proses deteksi dilakukan dengan menambahkan bit kontrol atau bit
redundansi pada data asli. Bit redudansi digunakan untuk memverifikasi
kebenaran data saat diterima. Salah satu teknik yang umum digunakan
adalah kode siklik (cyclic code), yang bekerja berdasarkan polinomial
generator sebagai kunci pembentukan kode kesalahan.

Dalam proses pengkodean, polinomial data dibagi dengan polinomial
generator untuk memperoleh sisa pembagian (remainder), yang kemudian
ditambahkan ke dalam data sebagai bagian dari kode kesalahan. Pada sisi
penerima, pembagian serupa dilakukan menggunakan polinomial generator
yang sama. Jika hasil pembagian menghasilkan sisa nol, maka data dianggap
benar. Sebaliknya, jika sisa tidak nol, berarti telah terjadi kesalahan selama

transmisi.

49

Kode siklik memiliki kemampuan deteksi yang lebih handal dibandingkan
metode sederhana seperti bit paritas, karena dapat dirancang untuk
mendeteksi berbagai pola kesalahan, termasuk kesalahan tunggal, kesalahan
ganda, maupun burst error. Metode ini bersifat efisien, cepat, dan banyak
diterapkan dalam berbagai sistem modern seperti komunikasi jaringan,
penyimpanan digital, serta protokol komunikasi seperti ethernet.

Koreksi Kesalahan Bit.

Koreksi kesalahan bit merupakan proses lanjutan setelah deteksi, yang tidak
hanya mengidentifikasi adanya kesalahan dalam data, tetapi juga
memperbaikinya secara otomatis tanpa perlu pengiriman ulang. Teknik ini
sangat penting dalam sistem komunikasi dan penyimpanan data digital
untuk menjaga keandalan transmisi serta integritas informasi.

Teknik koreksi kesalahan bekerja dengan menambahkan informasi
tambahan atau kode khusus ke dalam data asli saat proses pengiriman.
Infomrasi ini dirancang sedemikian rupa sehingga memungkinkan sistem
penerima untuk memverifikasi integritas data yang diterima. Apabila terjadi
kesalahan, sistem dapat menentukan lokasi bit yang mengalami perubahan
dan mengembalikannya ke nilai yang seharusnya.

Langkah penting dalam koreksi adalah perhitungan nilai sindrom (syndrome
calculation), yaitu hasil operasi pembagian polinomial data yang diterima
dengan polinomial generator. Nilai sindrom menunjukkan apakah terjadi
kesalahan, sekaligus membantu menentukan lokasi kesalahan. Jika nilai
sindrom sama dengan nol, maka data dianggap bebas kesalahan. Namun,
jika tidak nol, sistem akan menggunakan algoritma decoding seperti

Berlekamp-Massey atau Chien Search untuk menemukan posisi kesalahan.

50

Setelah posisi kesalahan diketahui, sistem melakukan pembalikan nilai bit
yang rusak sehingga pesan asli dapat direkonstruksi dengan benar. Proses
koreksi kesalahan ini memberikan lapisan perlindungan tambahan terhadap
kerusakan data, terutama pada sistem di mana transmisi ulang tidak

dimungkinkan atau memerlukan waktu serta sumber daya yang besar.

2.3.3 Transmisi Ayat Al-Qur’an

Dalam penelitian mengenai “Implementasi Kode Reed-Solomon untuk
Deteksi dan Koreksi Kesalahan Transmisi Ayat Al-Qur’an”, proses transmisi
didefinisikan sebagai proses pengiriman data hasil pengkodean huruf hijaiyah
melalui saluran digital. Teks ayat Al-Qur’an terlebih dahulu dikonversi menjadi
simbol pada lapangan hingga GF (2®), kemudian dikodekan menggunakan kode
Reed-Solomon untuk mendapatkan codeword.

Pada proses transmisi, selalu terdapat kemungkinan terjadinya error. Untuk
mensimulasikan gangguan seperti pada transmisi nyata, penelitian ini
menyisipkan error secara sengaja (injected error) pada beberapa simbol dalam
codeword. Penyisipan ini didasarkan pada pola kesalahan penulisan ayat Al-
Qur’an di dunia nyata, misalnya pertukaran huruf (= menjadi <), huruf yang
hilang, kesalahan titik, penambahan atau pengurangan karakter.

Kesalahan linguistik nyata ini hanya menjadi landasan dasar, namun dalam
penelitian diterapkan sebagai kesalahan simbol pada proses transmisi, yaitu:

1. Kesalahan substitusi simbol.
Satu simbol hasil encoding diganti dengan simbol lain (a®> menjadi a**). Ini

menggambarkan single-symbol error.

o1

2. Kesalahan burst.
Dua atau lebih simbol diganti atau diubah sekaligus dalam satu codeword.
Ini memodelkan kondisi noise panjang atau interferensi.

3. Kesalahan acak (random error).
Penelitian dapat menyisipkan error secara acak di beberapa posisi untuk

meniru kondisi saluran yang tidak stabil.

2.3.4 Proses Deteksi dan Koreksi Kesalahan pada Transmisi Ayat Al-Qur’an
Untuk menjaga keakuratan teks ayat Al-Qur’an yang dikirim, digunakan
kode Reed-Solomon (RS). Reed-Solomon merupakan salah satu jenis error-
correcting code yang mampu mendeteksi dan memperbaiki kesalahan pada blok
simbol.
1. Deteksi Kesalahan (Error Detection).
Setelah penerima mendapatkan codeword, langkah pertama adalah
menghitung sindrom:
S;=v(al), i=12..2t
Sindrom bernilai nol (S; = S, = --- = 0) berarti:
a. Tidak ada kesalahan, dan
b. Codeword diterima dengan benar.
Jika salah satu sindrom # 0 — berarti terjadi kesalahan.
2. Penentuan Lokasi Kesalahan (Error Locator Polynomial).
Jika terjadi kesalahan, Reed-Solomon membentuk error locator
polynomial:

A) =14+ 4ix+ -+ Axt

52

Polinomial ini diperoleh melalui:

a. algoritma Berlekamp—Massey, atau

b. Euclidean Algorithm.

Akar-akar dari A(x) menunjukkan posisi simbol yang salah.

Perhitungan Nilai Besar Kesalahan (Error Magnitude).

Setelah menemukan posisi error, langkah selanjutnya adalah menghitung
besar kesalahan menggunakan Rumus Forney:

_ -1
=gy

Nilai ini menentukan seberapa besar simbol tersebut harus dikoreksi.
Koreksi Kesalahan (Error Correction).
Simbol yang salah kemudian diperbaiki:
Ci=v;,— e
Hasilnya adalah codeword yang telah kembali benar.

Pengiriman ayat Al-Qur’an harus memiliki tingkat akurasi tinggi (zero-

tolerance error) karena:

1) Perubahan satu huruf dapat mengubah makna ayat,

2) Teks Al-Qur’an memiliki standar rasm yang baku,

3) Kesalahan penulisan dapat berpotensi menjadi kesalahan pemaknaan.

Dengan menyisipkan error secara terkendali pada proses transmisi,

penelitian ini menunjukkan bahwa:

1) Model kesalahan dapat dideteksi,

2) Kesalahan dapat diperbaiki secara matematis,

3) Ayat Al-Qur’an dapat dipulihkan sesuai teks aslinya dengan kode Reed—

Solomon.

53

2.4 Kajian Integrasi Topik Penelitian dengan Al-Qur’an

Mengintregasikan ilmu pengetahuan dengan ajaran Al-Qur’an dan Hadits
merupakan pendekatan komprehensif yang memadukan antara perkembangan sains
modern dan nilai-nilai keislaman. Pendekatan ini tidak hanya memperluas
pemahaman terhadap aspek teknologi dan sains, tetapi juga memperkuat keyakinan
bahwa menuntut ilmu dan mengaplikasikannya merupakan bagian penting dari
keimanan dan penghambaan kepada Allah SWT. Penelitian yang berjudul
"Implementasi Kode Reed-Solomon untuk Deteksi dan Koreksi Kesalahan
Transmisi Ayat Al-Qur’an Menggunakan Pengkodean Huruf Hijaiyah™ merupakan
salah satu bentuk nyata dari penggunaan teknologi informasi untuk menjaga
keaslian dan ketepatan teks ayat Al-Qur’an. Dalam hal ini, penerapan metode
koreksi kesalahan digital (error correction) tidak hanya berfungsi secara teknis,
tetapi juga memiliki makna spiritual dalam mendukung upaya pelestarian kitab suci
yang telah dijamin kemurniannya oleh Allah SWT. Berikut beberapa ayat Al-Quran
dan Hadits yang relevan untuk mendukung dan memberikan perspektif religius
pada penelitian ini.

1. Kewajiban Bersikap Teliti dan Tidak Mengikuti Sesuatu Tanpa limu.

Dalam ajaran Islam, sikap teliti, cermat, dan tidak tergesa-gesa dalam

menerima ataupun menyebarkan informasi merupakan prinsip yang sangat

ditekankan. Kehati-hatian tersebut menjadi landasan penting agar seseorang

tidak terjerumus pada kesalahan atau kekeliruan dalam memahami maupun

menyampaikan suatu perkara, sebagaimana disebutkan dalam Surah Al-Isra’

ayat 36 (Kementerian Agama, 2022):

54

s ik 08 S5l 38 sy ads gasd Betle ey O S w Lak s
"Dan janganlah kamu mengikuti sesuatu yang tidak kamu ketahui.
Sesungguhnya pendengaran, penglihatan, dan hati, semuanya itu akan
dimintai pertanggungjawaban.”(QS. Al-Isra’: 36)

Ayat ini merupakan prinsip dasar dalam Islam terkait keharusan untuk
berhati-hati dalam menerima, menyampaikan, dan memproses informasi.
Penulisan ayat Al-Qur’an yang salah baik satu huruf, harakat, maupun tanda
baca dapat menyebabkan perubahan makna atau bahkan kesalahan fatal
dalam bacaan. Oleh karena itu, deteksi dan koreksi penulisan ayat menjadi
bentuk konkret dari perintah untuk tidak mengikuti sesuatu yang belum pasti
(tidak valid). Penerapan metode ilmiah seperti kode Reed-Solomon, yang
memiliki kemampuan dalam mendeteksi dan mengoreksi kesalahan
berdasarkan prinsip matematika dan teori informasi, menunjukkan
bagaimana ilmu pengetahuan dapat menjadi alat bantu dalam menjalankan
amanah keagamaan, memastikan teks wahyu tetap utuh dan bebas dari
kesalahan.

Ayat ini mengingatkan bahwa setiap informasi yang kita terima (melalui
pendengaran, penglihatan, atau hati) harus diteliti dan dikonfirmasi
kebenarannya, karena semuanya akan dimintai pertanggungjawaban. Dalam
konteks teknologi digital, ketika teks Al-Qur’an didistribusikan melalui
aplikasi, e-book, atau media daring, tanggung jawab ini semakin besar. Maka
penggunaan teknologi koreksi otomatis adalah bagian dari ikhtiar amanah

ilmiah dan spiritual.

55

2. Tanggung Jawab Menyampaikan Al-Qur’an dengan Benar.

tales o) s o 28
“Sebaik-baik kalian adalah orang yang belajar Al-Qur’an dan
mengajarkannya.” (HR. Bukhari No. 5027)
Hadits ini menegaskan bahwa keutamaan umat Islam terletak pada aktivitas
pembelajaran dan pengajaran Al-Qur’an. Namun, dalam era digital, bentuk
belajar dan mengajar Al-Qur’an telah berkembang tidak hanya secara lisan
dan tulisan manual, tetapi juga dalam bentuk digitalisasi teks dan audio Al-
Qur’an yang tersebar di berbagai platform. Dalam proses digitalisasi,
kesalahan penulisan atau konversi teks Arab sangat mungkin terjadi, apalagi
jika prosesnya dilakukan tanpa deteksi atau sistem koreksi yang tepat. Hal ini
sejalan dengan hadits di atas, belajar dan mengajarkan Al-Qur’an juga
mencakup usaha melestarikan dan menyampaikan Al-Qur’an secara benar

dan akurat, baik melalui media konvensional maupun teknologi modern.

BAB III
METODE PENELITIAN

3.1 Jenis Penelitian

Penelitian ini merupakan penelitian kuantitatif yang menggunakan pendekatan
simulasi algoritmik. Pendekatan ini dipilih karena penelitian berfokus pada proses
pengukuran dan analisis numerik terhadap performa sistem dalam mendeteksi serta
mengoreksi kesalahan transmisi pada ayat-ayat Al-Qur’an yang dikodekan
menggunakan huruf hijaiyah. Proses simulasi dilakukan melalui dua tahapan utama,
yaitu encoding dan decoding, dengan menerapkan kode Reed-Solomon pada
representasi digital teks Al-Qur’an yang telah dikonversi ke dalam format Unicode
16-hit.

Untuk menguji efektivitas sistem, dilakukan penyisipan kesalahan secara
sistematis pada data teks ayat, kemudian diukur sejauh mana algoritma Reed-
Solomon mampu mendeteksi dan mengoreksi kesalahan tersebut. Evaluasi
dilakukan berdasarkan jumlah kesalahan yang berhasil dideteksi dan diperbaiki,
serta tingkat akurasi pemulihan data terhadap teks hijaiyah asli. Selain itu,
dilakukan pula simulasi manual sebagai langkah verifikasi guna memastikan
kesesuaian antara hasil perhitungan teoritis dan hasil pengujian menggunakan
perangkat lunak. Seluruh proses implementasi dan pengujian dalam penelitian ini
dilakukan menggunakan perangkat lunak SageMath, yang memiliki kemampuan
dalam melakukan operasi aritmetika pada lapangan hingga (Galois Field) serta

mendukung mekanisme koreksi kesalahan otomatis pada kode Reed-Solomon.

56

57

3.2 Data dan Sumber Data

Data yang digunakan dalam penelitian ini berupa teks ayat-ayat Al-Qur’an
yang direpresentasikan dalam bentuk biner (kode digital) menggunakan huruf-
huruf hijaiyah berdasarkan sistem Unicode 16-bit, khususnya dalam rentang
Unicode Block Arabic (UTF — 8). Representasi ini memungkinkan setiap huruf
hijaiyah dikodekan sebagai simbol digital yang dapat diproses secara matematis
menggunakan metode pengkodean Reed-Solomon.

Meskipun penelitian mengacu pada kasus-kasus kesalahan penulisan huruf
hijaiyah yang dapat ditemukan pada mushaf digital, aplikasi Al-Qur’an, atau situs
web yang menampilkan teks berdasarkan Rasm Utsmani, data yang digunakan
dalam simulasi tetap berupa teks ayat Al-Qur’an yang benar dengan simulasi
disisipkan error secara terkontrol (injected errors) saat proses simulasi transmisi
digital. Dengan demikian, kesalahan yang diuji bukan berasal dari kanal
komunikasi fisik, tetapi merupakan model kesalahan sintetis yang dirancang untuk
menguji kemampuan deteksi dan koreksi dari kode Reed-Solomon.

Setiap ayat diuji dengan variasi jumlah kesalahan sebanyak 1, 2, 3, 4, dan 5
kesalahan per ayat, sehingga menghasilkan berbagai kondisi kerusakan yang dapat
dianalisis secara kuantitatif. Seluruh proses encoding, penyisipan kesalahan,
perhitungan sindrom, deteksi letak kesalahan, dan proses koreksi dilakukan
menggunakan perangkat lunak SageMath.

Pendekatan ini memungkinkan penelitian mensimulasikan kondisi kesalahan
penulisan huruf hijaiyah sebagaimana terjadi dalam praktik digital, namun tetap
memelihara kemurnian teks ayat suci Al-Qur’an. Dengan demikian, sistem dapat

diuji secara realistis, terukur, dan tetap menjaga keaslian teks ayat Al-Qur’an.

58

3.3 Tahapan Penelitian
Berikut alur dari implementasi kode Reed-Solomon untuk mendeteksi dan
mengoreksi kesalahan trasmisi ayat Al-Qur’an menggunakan pengkodean huruf

hijaiyah:

0

i

Pembentukan
Input Parameter dan Struktur » Encoding » Transmisi
Kode Reed-Solomon

h

Output /Zi Koreksi e—] Deteksi - Decoding

T

Gambar 3.1 Alur Penelitian

1. Input
Input penelitian ini meliputi data teks sepuluh ayat Al-Qur’an yang dikodekan
dalam format Unicode 16 —bit sebagai dasar pembentukan simbol pada
lapangan hingga GF(2®), serta parameter teknis kode Reed-Solomon yang
mencakup panjang codeword n = 51, panjang pesan k = 47, nilai m = 8, dan
variasi kemampuan koreksi t antara 1 sampai 5 kesalahan untuk setiap ayat.
Selain itu, penelitian ini juga menggunakan input berupa pola kesalahan yang
disisipkan secara terkontrol ke dalam codeword, yang mencakup jumlah
kesalahan, posisi simbol yang mengalami gangguan, dan nilai magnitudo
error, sehingga dapat dilakukan pengujian terhadap kemampuan deteksi dan

koreksi kesalahan dari sistem Reed—Solomon.

59

2. Simulasi Pembentukan Parameter dan Struktur Kode Reed-Solomon (RS)
Pada tahap awal dilakukan penetapan parameter-parameter dasar kode Reed-
Solomon, yang meliputi panjang codeword (n) atau total simbol setelah
encoding, panjang pesan (k), kemampuan koreksi kesalahan (t), serta
pembentukan lapangan hingga GF (2™). Selanjutnya dilakukan pembentukan
matriks generator (G) dan matriks parity-check (H) yang digunakan dalam
proses encoding dan decoding.

Langkah-langkah untuk simulasi pembentukan parameter dan struktur kode

Reed-Solomon adalah sebagai berikut:

a. Menetapkan Jumlah Bit per Simbol.
Digunakan nilai m = 8, sehingga setiap simbol direpresentasikan dengan
8 bit dan operasi dilakukan dalam GF (28).

b. Menentukan Panjang Codeword.
Panjang codeword n ditentukan menggunakan Shortened Reed-Solomon
code sehinggan = 51.

c. Menentukan Toleransi Kesalahan.
Pada penelitian ini, perhitungan manual dilakukan dengan t =2
kesalahan, sedangkan pada implementasi komputasi (coding) dilakukan
pengujian dengan lima variasi jumlah kesalahan, yaitu 1,2,3,4,dan 5
kesalahan pada tiap ayat untuk menguji batas efisiensi sistem.

d. Menghitung Panjang Pesan.
Panjang pesan k = 47 diperoleh dari Persamaan (2.7). Sehingga

parameter kode Reed-Solomon RS(51,47).

60

e. Membangkitkan Matriks Generator G.
Matriks generator G berukuran k x n, dibentuk menggunakan perangkat
lunak SageMath, berdasarkan evaluasi polinomial pesan pada titik-titik o'/
di GF(2™).

f. Membangkitkan Matriks Parity-check H.
Matriks parity-check H berukuran (n — k) x n, di mana setiap baris

merupakan evaluasi daria/t dengan j=1,2,..,n—k dan i=

3. Simulasi Encoding Kode Reed-Solomon pada Kesalahan Penulisan Ayat Al-
Qur’an Menggunakan Pengkodean Huruf Hijaiyah.
Proses encoding dalam kode Reed-Solomon dilakukan melalui beberapa
tahapan sistematis. Adapun langkah-langkah dalam proses encoding sebagai
berikut:
a. Menentukan Pesan Asli (plaintext).
Pesan asli direpresentasikan sebagai vektor pesan M dengan panjang k.
Dalam penelitian ini, perhitungan manual menggunakan surah Al-Kahfi ayat
8:
"5 s lade e Ol Uly"
Sedangkan pada implementasi komputasi (coding) dan evaluasi performa,

dilakukan pengujian terhadap 1 — 5 kesalahan simbol kesalahan pada 10

ayat Al-Qur’an.

61

Mengonversi Teks ke dalam Format Biner Unicode 16-bit.

Setiap huruf Hijaiyah pada pesan dikonversi ke dalam representasi biner
menggunakan format Unicode 16-bit berdasarkan Unicode Block Arab
UTF-8.

Mengelompokkan Hasil Biner Menjadi Blok 8-bit dalam GF(28).

Setiap 16 — bit Unicode dipecah menjadi 2 simbol masing-masing 8 — bit,
kemudian setiap blok direpresentasikan sebagai elemen pada lapangan
hingga GF(2®). Representasi elemen pada lapangan menggunakan simbol
«, yang merupakan akar primitif dari polinomial primitif p(x).

Melakukan Padding.

. Jika jumlah simbol pada blok pesan kurang dari panjang pesan k, maka
dilakukan proses padding dengan menambahkan simbol “0”” hingga panjang
blok mencapai k. Proses ini bertujuan untuk menyeragamkan panjang setiap
vektor pesan sehingga dapat diproses lebih lanjut pada tahap encoding tanpa
memengaruhi informasi asli yang terkandung dalam pesan.

Melakukan Proses Encoding.

Proses encoding pada kode Reed-Solomon bertujuan untuk mengubah pesan
asli menjadi sebuah codeword yang memiliki kemampuan deteksi dan
koreksi. Dalam penelitian ini proses encoding dilakukan dengan mengalikan
pesan (M) dengan matriks generator (G) untuk menghasilkan codeword (C)

pada lapangan hinggan GF (2%) menggunakan Persamaan 2.10. Hasil akhir

62

dari proses ini adalah sebuah C berukuran n yang akan mengalami proses
transmisi.
4. Codeword
Codeword (C) adalah representasi dari data hasil proses encoding yang
mengandung informasi asli beserta bit-bit redundansi. Jika terjadi gangguan
atau kesalahan selama transmisi atau penyimpanan, codeword yang diterima
(disebut vektor diterima) berbeda dari codeword asli. Vektor ini kemudian
digunakan untuk proses koreksi kesalahan.
5. Noise
Menambahkan error (e) sebanyak t secara acak pada codeword hasil
encoding. Kesalahan ini direpresentasikan dalam bentuk polinomial error
e(x), sehingga membentuk vektor hasil penjumlahan antara codeword dan
error v(x) = C(x) + e(x).
6. Simulasi Decoding Kode Reed-Solomon pada Kesalahan Penulisan Ayat Al-
Qur’an Menggunakan Pengkodean Huruf Hijaiyah.
Setelah proses encoding dan penambahan kesalahan dilakukan, tahap
selanjutnya adalah proses decoding untuk mendeteksi dan mengoreksi
kesalahan yang terjadi pada data, sehingga informasi yang diterima dapat
dikembalikan mendekati atau sama dengan pesan aslinya sesuai dengan
kemampuan koreksi kode yang digunakan. Langkah-langkah proses decoding
kode Reed-Solomon adalah sebagai berikut:
a. Menghitung Sindrom.
Sindrom dihitung dengan mengalikan matriks parity-check H dengan

vektor transpose dari codeword yang diterimav”, sebagaimana pada

63

Persamaan (2.14). Tahap perhitungan sindrom ini juga berfungsi sebagai
proses deteksi kesalahan pada data yang diterima.
Menentukan Polinomial Lokasi Kesalahan (Error Locator Polynomial)
Polinomial locator kesalahan o(x) dan posisi kesalahan ditentukan
menggunakan algoritma Berlekamp—Massey menggunakan Persamaan
(2.15).
Mencari Akar Polinomial Evaluasi Kesalahan (error).
Menghitung akar polinomial evaluasi error £(x) menggunakan algoritma
Chien Search, dengan Persamaan (2.16).
Menghitung Nilai Magnitude Kesalahan (error magnitude).
Menghitung nilai besar kesalahan E; pada posisi j menggunakan algoritma
Forney, dengan Persamaan (2.17).
Melakukan Proses Decoding untuk Memperoleh Kembali ke dalam pesan
asli.
Setelah codeword diterima dan terdapat kemungkinan kesalahan, langkah
decoding dilakukan untuk mengoreksi simbol yang salah. Dengan
menggunakan sindrom, polinomial locator, dan algoritma Forney,
diperoleh posisi dan magnitudo error. Setiap simbol yang salah kemudian
diperbaiki sehingga diperoleh codeword terkoreksi (C) dalam bentuk
simbol GF (2™):

C=v—e
Hasil decoding ini tetap berada dalam domain GF(2™) dan belum
dikonversi menjadi biner maupun teks, sehingga informasi asli terjaga

sepenuhnya.

64

7. Output
Output pada penelitian ini berupa teks ayat Al-Qur’an yang telah dikoreksi
otomatis, tingkat keberhasilan deteksi kesalahan, dan tingkat keberhasilan
koreksi kesalahan. Evaluasi dilakukan berdasarkan:
a. Jumlah kesalahan yang terdeteksi dengan benar.
b. Jumlah kesalahan berhasil dikoreksi.

c. Kondisi sistem masih gagal mengoreksi (over t).

BAB IV
HASIL DAN PEMBAHASAN

4.1 Simulasi Pembentukan Parameter dan Struktur Kode Reed-Solomon

Dalam kode Reed-Solomon, parameter n menyatakan panjang total dari blok
kode (codeword), yaitu jumlah simbol setelah proses encoding. Sementara itu,
parameter k merupakan jumlah simbol pesan asli yang dikodekan sebelum
ditambahkan simbol redudansi untuk keperluan deteksi dan koreksi kesalahan.
Dengan demikian, n — k menyatakan banyaknya simbol parity yang ditambahkan
pada proses encoding untuk meningkatkan kemampuan koreksi kesalahan.

Langkah pertama dalam menentukan nilai n dan k adalah menetapkan nilai
m, yang menunjukkan banyaknya bit dalam satu simbol atau derajat dari lapangan
hingga GF(2™). Nilai m harus berupa bilangan bulat positif karena menentukan
ukuran dan elemen dari lapangan hingga yang digunakan. Dalam penelitian ini
digunakan m = 8, sehingga operasi dilakukan pada lapangan hingga GF (2%).
Berdasarkan teori kode Reed-Solomon, panjang maksimum blok kode ditentukan
oleh persamaan n = 2™ — 1 = 28 — 1 = 255, sehingga untuk m = 8 diperoleh
panjang maksimum n = 255.

Namun, karena ukuran data yang dikodekan dalam penelitian ini tidak
mencapai 255 simbol, maka digunakan bentuk shortened Reed-Solomon code atau
kode RS yang dipendekkan. Shortened code merupakan versi kode Reed-Solomon
yang panjangnya dikurangi dari panjang maksimum dengan cara menghilangkan
sejumlah simbol awal dari pesan. Proses pemendekan ini tidak mengubah

karakteristik dasar maupun kemampuan koreksi kesalahan dari kode RS asalnya,

65

66

tetapi menyesuaikan panjang codeword agar sesuai dengan ukuran data yang
sebenarnya digunakan.

Dalam penelitian ini digunakan kode RS(51,k), yang merupakan hasil
pemendekan dari kode maksimum RS(255,251) di lapangan hingga GF(28).
Artinya, setiap blok codeword terdiri atas 60 simbol pesan asli dan 4 simbol parity,
dengan kemampuan untuk mengoreksi hingga dua simbol kesalahan dalam setiap
blok. Penggunaan kode RS yang dipendekkan ini dipilih karena ukuran data (ayat
penelitian) hanya memiliki total 512 bit atau setara dengan 64 simbol di GF(2%),
sehingga parameter n = 51 menjadi pilihan yang efisien dan sesuai dengan

kebutuhan sistem.

k=n—-2t=51-2-2=47

Pada penelitian ini, perhitungan manual dilakukan dengan mensimulasikan
dua kesalahan (error) untuk menguji kemampuan sistem dalam melakukan koreksi
hingga t = 2 kesalahan. Dengan demikian, parameter yang digunakan adalah n =
51,k = 47, dan t = 2. Lapangan hingga GF (2®) digunakan dengan representasi
simbol berdasarkan akar primitif o yang telah dicantumkan pada Tabel 2.5.

Matriks generator G dibentuk menggunakan perangkat lunak sagemath
berdasarkan parameter kode yang telah ditentukan, yaitun = 51dank = 47.
Dengan demikian, diperoleh matriks generator G berukuran 47 x 51 sebagai

berikut:

r1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 17
1 (XS alO (x15 (XZO (125 a30 0(35 0(4-0 (X45 (XSO (XSS a60 (X65 (X70 0(75 (XSO (1250
1 alO (XZO (X30 (X40 (XSO a60 a70 (XBO a90 C(1000(1100(120a13()0(14-00(1500(160 a245
1 (X15 (X30 (X45 (X60 (175 (X90 (1105(1120(1135(1150(X165(X180(X195(X210(X222(X240 (X240
1 a20 (X40 (X60 (X80 alOOa120a140a140a180a200a220a240 aS a25 a45 a65 . a235
1 (XZS (XSO (X75 O‘100(11250(1500(1750(200(12250(250 O(20 (X45 (170 (X95 o(1200(14-5 a230
1 a30 (X60 a90 (X120(X150(X180(X210(X240 O(15 a45 (X75 a1°5a135(x165a195a225 a225

G = 1 (X35 (X70 a105a140a175a210a245 (125 (X60 a95 o(1300(165a200az35 a15 a50 a220
1 a4—0 (XBO O(1200(160a200(x24—0 0(25 (X65 a105 (X9 (X185(X225 o(10 (XSO 0(90 (1130 (1215

1 a4—5 (X90 a135a180a225 a15 a60 a105 a150a145a24—0 (X30 a75 (X120(X165(X210 O(210

1 (XSO O(1000(1500(200a250 a4—5 CX95 (1145 (X195 0(195 a40 0(90 (X140(X190 (X240 0(35 (1205

1 (XSS O(1100(165a220 aZO 0(75 a130a185a240a24—5 (X95 a150a205 (XS (X60 a115 a200

1 (X60 O(1200(1800(240 a45 O(1050(1650(225 (X30 (X40 o(1500(210 (115 (X75 (X135(X195 a195

1 a65 (X130(X195 O(S (170 (X135(X200 O(10 (175 a90 (XZOS O(15 (XSO (X145(X210 (XZO a190

| 1 0(2.300(2‘05011'800(1‘55&.300(1‘05 aéO a‘SS a:‘iO a.S a2‘35a2‘10a1.85(x1.60a1‘35a1‘10 a‘ZS_

67

Selanjutnya, Matriks parity-check H memiliki ukuran (n — k) xn = 4 x

51, dan berfungsi untuk mendeteksi dan mengoreksi kesalahan melalui perhitungan

syndrome. Matriks H dibentuk menggunakan sagemath berdasarkan perpangkatan

dari elemen primitif a di GF(28). Adapun bentuk matriks H sebagai berikut:

15

1 o a «a
. 1 o0 20 30

1 o5 30 o

1 o0 o0 60

4.2 Proses Encoding

Pada proses encoding

0(20 0(25 0(30 0(35 0(40 0(45 o0 0(55 0(60 o250
0(40 0(50 0(60 0(70 0(80 0(90 0(100 0(110 0(120 o245
0(60 0(75 0(90 0(105 0(120 0(135 0(150 0(165 0(180 o240
0(80 0(100 0(120 0(140 0(160 a180 C(ZOO C(ZZO a24-0 o232

menggunakan algoritma Reed-Solomon, misalkan teks

pesan ayat Al-Qur’an "l luma Lele L o leal Ul " terdiri dari 31 karakter Unicode,

yang mencakup huruf hijaiyah beserta spasi sebagai pemisah kata. Setiap karakter

terlebih dahulu dikonversi ke dalam representasi Unicode 16 —bit, kemudian setiap

kode 16 —bit tersebut dipisahkan menjadi dua simbol 8 —bit, sehingga diperoleh

total 62 simbol. Dengan menggunakan parameter kode Reed-Solomon adalah n =

51,t = 2, k = 47, blok pesan tersebut dibagi menjadi dua bagian, yaitu blok pesan

68

pertama M; yang memuat 47 simbol dan blok pesan kedua M, yang berisi 15

simbol sisanya.

Tabel 4.1 Representasi Ayat Unicode-16 dalam Bentuk Biner

No | Huruf Biner-16 Bit No | Huruf Biner-16 Bit

1 5| 0000011001001000 | 17 J| 0000011001000100
2 | 0000011000100111 | 18 ¢ | 0000011001001010
3 0| 0000011001000110 | 29 > | 0000011001000111
4)| 0000011000100111 | 20 | 0000011000100111
5 _, | 0000000000100000 |21 ., | 0000000000100000
6 J| 0000011001000100 | 22 o= | 0000011000110101
7 z | 0000011000101100 | 23 ¢ | 0000011000111001
8 ¢ | 0000011000111001 |24 < | 0000011001001010
9 J| 0000011001000100 | 25 2| 0000011000101111
10 5| 0000011001001000 | 26 | 0000011000100111
11 0| 0000011001000110 | 27 ., | 0000000000100000
12 _, | 0000000000100000 | 28 z | 0000011000101100
13 2| 0000011001000101 | 29 2| 0000011000110001
14)| 0000011000100111 | 30 5| 0000011000110010
15 _, | 0000000000100000 | 31 | 0000011000100111
16 ¢ | 0000011000111001

5 Moo Liks s Oslan Ul =

[0000011001001000,0000011000100111,0000011001000110,000001100010011
1,0000000000100000,0000011001000100,0000011000101100,000001100011100
1,0000011001000100,0000011001001000,0000011001000110,000000000010000
0,0000011001000101,0000011000100111,0000000000100000,000001100011100
1,0000011001000100,0000011001001010,0000011001000111,000001100010011
1,0000000000100000,0000011000110101,0000011000111001,000001100100101
0,0000011000101111,0000011000100111,0000000000100000,000001100010110
0,0000011000110001,0000011000110010,0000011000100111]

Setiap nilai 16 —bit dipisah menjadi dua bagian 8 —bit:

[0000011001001000] = [00000110] |l [01001000]

Kode biner hasil konversi Unicode dibagi menjadi simbol sepanjang 8 bit sesuai
dengan panjang elemen pada GF(28). Setiap blok pesan memiliki panjang 47

simbol, sesuai dengan k = 47.

69

100000110
00000110]]00100111
00000110]]00101100

[1101001000
[Il
[Il
[00000110][01001000
[Il
[Il
[Il

[00000110]
[00000000]
[00000110]

[00000110]

00100111
00100000
00111001

1[00000110
|
]
01000110]
]
]
]

00000110
00000110

[[01000110]7
[

[
[00000000
[

[

[

[01000100]
[01000100]
[00100000]
00000110][01000101][00000110][00100111][00000000][00100000]
00000110][00111001][00000110][01000100][00000110][01001010]
00000110][01000111][00000110][00100111][00000000][00100000]
[00000110][00110101][00000110][00111001][00000110]

[S S e B A B
— —————
e e e

[01001010][00000110
00100000][00000110
00110010][00000110

[[00101111][00000110][00100111][00000000];
[

[
[00000000][00000000
[

[

[

I 1
[00101100][00000110][00110001][00000110]
[00100111][00000000][00000000][00000000]

[00000000][00000000][00000000][00000000]
00000000][00000000][00000000][00000000][00000000][00000000]
00000000][00000000][00000000][00000000][00000000][00000000]
00000000][00000000][00000000][00000000][00000000][00000000]

[00000000][00000000][00000000][00000000][00000000]

e e e e — —

Setiap simbol 8 —bit dipetakan ke elemen GF(28) berdasarkan representasi

polinomial dari Tabel 2.5.

0,0]

Pada blok kedua (M,) hanya terdapat 15 simbol representasi polinomial
pada GF(2®). Oleh karena itu, dilakukan penambahan padding 32 simbol bernilai
0 di bagian belakang untuk memenuhi panjang blok menjadi 47 simbol. Dengan
demikian, setiap blok pesan memiliki panjang yang seragam, yaitu 47 simbol,
sesuai dengan parameter k pada kode Reed-Solomon.

Langkah selanjutnya adalah proses encoding menggunakan matriks
generator G. Proses encoding dilakukan dengan mengalikan vektor pesan M = [M,
,Mi,...,M,_;] dengan matriks generator G berukuran k X n, sehingga

menghasilkan vektor kode € = M X G sepanjang n simbol.

70

Simbol pertama codeword dihitung dari:

Karena kolom j = 0 di mana G;, = 1 sehingga setiap m; - G; o = m; Jadi kolom
0 =[1,1,1,1,...,1] (panjang 47 simbol).
Data pesan M, pertama:

— [26 226 ~26 33 26 48 26 33 5 .26 102 26 240 26 154
M; = [a®®, a%“®, a®®, a®°, a®, a*®, a*®, a°, 0, o, a“®, a 7%, a“®, a“*, a“®, o,

221 26

, (X26, (X48, 0’ (XS, (X26, o , 0(26’ (X33, 0' CXS, o

26 39

,a28,033,0, a®, a%8, 3%,

Maka:

Co=a*°-1Pa**® - 1Pa**- 1D Da®®-1
Hasil perhitungan simbol-simbol codeword yang diperoleh dari proses encoding
ditampilkan pada Tabel 4.1.

Tabel 4.2 Tabel Perhitungan XOR untuk Proses Encoding

i m; Operasi xor Hasil i m; Operasi xor Hasil

i =00 a26 0 @ a26 C(26 i =24 a26 CX248 @ (X26 (X197
i=01 aZZG (XZG @ (X226 a34 i =25 (X221 a197 @ a221 (X59
i =02 26 P 26 226 i =26 26 o1 @ a6 31
i =03 a33 (X226 @ (133 a61 i=27 (133 a31 @ a33 a203
i=04 a?® | ot Pt oS58 i=28 0 B3 Do o203
i =05 o8 (XSS @ ot8 o®® i =29 0(5 o203 @ 0(5 al78
i =06 26 o« @ o%6 Py i =30 26 o8 D o2° &7
i=07 a33 Cx147 @ a33 a199 i =31 (X154 a37 @ a154 a123
i =08 0 (x199 @ 0 a199 i=32 a26 (1123 @ (126 alZO
i=09 Cx5 Cx199 69 (XS a130 i =33 alOZ a120 @ Cx102 (X113
i=10 (X26 (X130 @ a26 a53 i =34 a26 a113 @ (X26 a236
i=11 alOZ CX53 @ alOZ 0(250 i =235 (X37 0(256 @ (X37 a211
i=12 (X26 (XZSO @ a26 a40 i =136 aZG ale @ (X26 (X30
i=13 (X240 (X40 @ a240 (148 i =137 CX253 (X3O @ (X253 (X33
i=14 a26 (X48 @ (XZG a54 i =38 (XZG a33 69 a26 (X138
i =15 a154 CX54 @ CX154 a152 i =139 (x33 (X138 @ (X33 (X26
i=16 @ [@a® || =40 0 |[«*®o0 a?
i=17 alOZ (X134 @ alOZ (X236 i =41 aS a26 @ (XS alS
i=18 a26 (X236 69 a26 aZlB i =42 (XZG a15 @ a26 aS

i=19 (X226 (X218 @ a226 (X184 i =43 (X39 aS @ a39 (X141
i=20 a26 (X184 63 a26 a140 i =44 (XZG a141 @ (XZG a14
i=21 (X48 a140 @ (X48 (1181 i =45 (X154 (X14 69 a154 (X142
i=22 0 a181 ea 0 alBl i =46 (126 a142 @ (X26 a240
i =23 (XS a181 @ 0(5 a248

71

Sehingga didapatkan simbol vektor codeword pertama adalah a?4°.

Cl = M1 X G ==
— [CX26, (X226, (X26, (X33, (X26, (X48, (X26 (X33, 0’ (XS, (X26, a102, (X26, CX240, (X26, (X154,
0(26’ 0(102, (X26, 0(226’ (X26, (X48, 0’ (XS, (X26, (X221, 0(26, (X33, 0’ (XS, (X26, (X154, (X26, (X102
(X26, (X37, (X26, (X253, (X26, (X33, O, (XS, (X26, (X39, (X26, (X154, (X26] X
1111 1 11111111111 1 - 1-
1 (XS alO a15 aZO (XZS (X30 (X35 a40 (X45 (XSO (XSS a60 (X65 (X70 (X75 a80 . (XZSO
1 alO a20 (XSO (X40 (XSO a60 (X70 (XSO a90 (x100a110a120a130a140a150a160 e (X245
1 alS (X30 a45 a60 (X75 a90 a105a120a135a150a165a180a195a210a222a24—0 (X240
1 a20 a4—0 a60 aSO alOOa120a140(x14—0a180a200a220a24—0 aS a25 a4—5 a65 . (X235
1 a25 (XSO a75 a100a125a150a175(x200a225a250 (XZO a45 (X70 a95 a120a14—5 a230
1 a30 a60 a90 a120a150a180a210(x24—0 (x15 a4—5 a75 a105a135a165a195a225 e (X225
1 a35 a70 a105a140a175a210a245 (XZS a60 a95 a130a165a200a235 a15 (XSO . a220
1 a4—0 (XSO a120a160a200a240 (XZS a65 a105 a9 a185a225 alO aSO a90 (X130 a215
1 a4-5 (X90 a135a180a225 alS a60 a105a150(x145a24-0 (X30 (X75 a120a165a210 e a210
1 a50 a100a150a200a250 a4—5 (X95 a145a195a195 (X40 a90 a140a190a240 a35 . aZOS
1 (XSS a110a165a220 (XZO a75 0(1300(1850£2400(245 (X95 a150a205 5 a60 a115 . aZOO
1 a60 a120a180a24—0 a45 a105a165a225 a30 a4—0 a150a210 a15 a75 0(1350(195 . a195
[1 230205180 (155 4130 4105 480 (55 (30 5 (2352101854160 ;135,110 o25 |
— 240 .35 39 120 153 54 227 151 233 198 .85 213 44 104 3
Cl—[a , a7, a7, A , , a7, A , A , , A , 07, A ,a T, ,as,
(XSO, (XZG, (X251, (X173, (X65, a39' (X32, (X25, (X231, a133’ 0(110, a113, (Xl, (X43, (XZlO, a151'
a14-4-’ (Xll, (XO, (X174, (X135, (X84, a15' (1124, (X96, (X18, (X160, (X127, (X228, (X178, (XZZ, (X216, (X181,
0(52’ (X40, (X196]
Cz = M2 X G =
— [CX37, (X26, (X69, (X26, (X33, 0’ (XS, (X26, (X240, (X26, (X181, (X26, (X194, (X26, (X33, 0‘0
0,0] X
11 1 1 1 1 1 11 1 1 1 1 1 1 1 1 17
1 & a® a®® a2 a5 o3 o35 a®® o5 o%0 oSS o0 b5 a0 75 B0 ... 250
1 ol® o209 30 40 50 60 70 B0 0 100110120 ;130,140,150 4160 .., ;245
1 a5 30 a5 o0 o5 20 o105 o120 135 (150 (165 (180 (195 (2104222 4240 .., (240
1 (XZO a4—0 a60 aSO alOOa120a140a140a180a200a220a24—0 (XS aZS (X45 a65 __a235
1 a25 (XSO (X75 0(1000(1250(1500(1750(2000(2250(250 (XZO (X45 (X70 a95 a120a14—5 "'(X230
1 a30 a60 (x90 a120a150a180a210a24—0 a15 a4—5 a75 a105a135a165 (x195 (XZZS a225
1 (X35 a70 a105a140a175a210a24—5 a25 (X60 (ng 0(1300(1650(2000(235 a15 CXSO "(X220
1 a4—0 (XSO a120a160a200a240 a25 (X65 a105 (x9 (x185a225 alO a50 a90 (X130 a215
1 (X45 a90 0(1350(1800(225 a15 a60 a105a150a145a240 a30 a75 a120a165a210 a210
1 aSO (XlOOalSOaZOOaZSO a4—5 a95 a14—5a195(x195 (X40 (X90 0(1400(1900(240 (X35 e aZOS
1 a55 a110a165a220 (XZO a75 a130a185a24—0a245 a95 a150a205 5 a60 a115 aZOO
1 a60 (x120a180a24—0 (X45 (x105(x165(x225 (X30 a4—0 (x150a210 (x15 a75 0(1350(195 e a195
[1 230205 (180 (155 ;130 4105 480 (55 130 5 (235,210 ,185,160,135,110 .., (25

amrartraTTaTT [04

72

4.3 Transmisi (Penambahan Polinomial Error)

Diasumsikan pada codeword pertama terjadi dua error, posisi error masing-
masing berlokasi pada posisi [5,20]. Nilai v; kemudian diperoleh melalui proses
perhitungan secara komputasi yaitu,

U1:C:l+3

+ [0x5° + 0x*7 + 0x*® + 0x*7 + 0x*® + + 0x** + 0x*3 + 0x*% +

0x*10x*0 + 0x3% + 0x38 + 0x37 + 0x3° + 0x3° + 0x3* + 0x33 + 0x32 + 0x31 +
+ 0x%° 4+ 0x28 4+ 0x27+0x26+0x2%+0x2% + 0x23 + 0x22 + 0x21+0x20 +

0x™° + 0x'® + 0x17 + 0x16 + 0x*> + 0x™* + 0x'3 + 0x'2 + 0x + 0x1° + 0x° +

0x8 + 0x7 4+ 0x® + 0x5 + 0x* + 0x3 4+ 0x2 + 0x* + 0] =

Pada codeword kedua, posisi error masing-masing berlokasi pada posisi [10,35]
yaitu,

v,=0C,+e

73

+ [0x°° + 0x* + 0x*® + 0x*7 + 0x*® + 0x*5 + 0x** + 0x*3 + 0x*2 + 0x*' +

+ 0x3% 4+ 0x38 + 0x37 + 0x36 + 0x35 + 0x3* + 0x33 + 0x32 + 0x3' +
0x3% + 0x2° + 0x28 + 0x27+0x26+0x2>+0x2* + 0x23 + 0x22 + 0x21+0x2° + 0x1% +
0x8 + 0x17 + 0x16 + + 0x1* + 0x®3 + 0x12 + 0x'* + 0x2° + 0x° + 0x® +

0x7 + 0x% 4+ 0x> + 0x* + 0x3 + 0x2 + 0x' + 0] =

4.4 Proses Decoding

4.4.1 Proses Deteksi

Sindrom adalah bagian utama dalam proses decoding Reed-Solomon karena
digunakan untuk mendeteksi adanya kesalahan (error).

V=vy+ v+ + 4V,
dan a elemen primitif GF (2®), maka sindrom ke-j:
S; =v(d) i v - (@5ODY j=1,2, .., 2¢
S; = Y% v - (@) ,j =1,2,3,4. Atau,
S=Hxv]
1. Hitung S; =1,
Dalam perhitungan sindrom bisa juga menggunakan rumus

51=H><171T

1 a5 alO a15 aZO a25
S, = 1 a'0a?0 300 50
1 alS a30a45 a60 a75
1 a?0 a0 b0 80 100

[04
[04
04

30
6
90

0

o

(13
a70

5

(X4
(XBO

0

105,120

o

120,140,160

[0

[od

S1

[od

(X4
a90

5

135

236

a
(1163

49

a
a51

[04

(04

(04 (04
(1180(1200

50
100
150

[04

04
(04
(04

110
165
220

55 (X60

(04
(04
[04

ee az
120 .,

180 .,
240 .,

50

S1(x) = sg + 51x + 55x2% + s3x5.

Sl(x) = a®® + o'Bx + ax? + o' x5.

2. Hitung S, = v,

SZZHXU%'

5 15 2

o 0(10

S

aSa
at o30 o
o o5 o6
o a0 ol

[N

08
5 (X30
04

0
0

0
0

0(25
O(SO
(X75
alOO

a

(13
(16
a‘)

120

0
0

0o

o

(13
(170

5

(140
(180

105,120

140

o
o

160

o
o

(X4
a9

5

135
180

[04

08
(04
08

50

100
150
200

[0d

o
o
08

110
165
220

55 (X60
120 .,
180 .,
240

08
04
08

-y 240

R R a R

R R KRR

R R S 8]
W w o U"{QQQ]
K o O 9

[SURSERSIRS]
N
o

|
[
©
-

]

243

R q R

R R

]

74

75

52=

a,166
alSB“
a247
a

248
S1(x) = sg+s1x + 5,x2 + s5x3.

Sl(X) — a166 + a138x+a247x2 + 6‘(24-83(.3.

4.4.2 Menentukan Polonomial Lokasi Kesalahan
Menentukan polynomial locator error menggunakan metode algoritma
Berlekamp—Massey.
o(x) = 1+ oyx + 0,x2

1. Diketahui v,

236 163
)

S1 = [50,51,52,53] = [« a
Inisialisasi

C(x) = [co + ¢c1x + c,x?], polinomial penentu kesalahan o (x)
B(x) = Polinomial koneksi cadangan

L = Derajat polinomial penentu kesalahan C(x)

m = Selisih iterasi sejak terakhir kali L diperbarui

b = Pembagi normalisasi

d = Discrepancy (ketidaksesuaian) pada iterasi ke-n

S; = [so, S1, 52, 53] Sindrom ke-i

a. lterasi ke — 0 (n = 0)

Clx)=1
B(x)=1
L =0

d=cysyg=1"55 = a?3°
Karenad # 0

T(x) = C(x)
C(x) = C(x) D 5x™ - B(x)
Clx) = 1@@9&1: 1+ a?3%x

Karena 2L < n (0 < 0), maka:

C(x) =1+ a?3%x

L =1
B(x) =1
b :a236
m =1

. lterasike—1(n=1)

Clx) =1+ a?3%x

L =1
B(x)=1
b — 236
m =1

d = cyS1 + €15
d251+C1'SO

d = 0(163 @ (0(236 . a236)

d — 0(163 @ 0(217 — 0(116
Karenad # 0
T(x) =C(x)

Cx)=Clx) ® %xm - B(x)

D!116

=(1+a®% e X 1

— (1 + a236) 69 (Z135X
Cx) =1+ (a®*° @ a’®)x
Karena 2L < n (2 < 1 false) tidak terpenuhi, maka:

Cx) =1+ (a3 @ a'3%)x

L = 1, tetap
B(x)=1

b — a236
m+1=2

. lterasike—2 (n=2)

Clx) =1+ (a?3° P al®>)x

L =1
B(x)=1
b — 236
m =2

d = cySy + €151 + 2S¢
d:SZ+C1'Sl+O'SO

d= a49 @ (((X236 69 0(135) . 0(163) @ (O . a236)

77

78

d= 0(49 @ ((0(236 @ 0(135) . C(163)
d = 0(49 69 ((0(236 . (X163)((X135 @ 0(163))
d = a* @ al* @ o*3 = 206

Karenad # 0

T(x) =C(x)

Cx) = C(x) ® %xm - B(x)

— (1 + ((X236 @ a135)x) @

a1
= (1 + (%€ @ a'®%)x) @ a?25x2

C(x) =1+ (a?3° P al®)x + a??°x?

Karena 2L < n (2 < 2) terpenuhi, maka:

C(x) =1+ (a?3° P al®)x + a??°x?

L =n+1-L=2

B(x) =1+ (a?3° @ a’®>)x

b = 206

m =1

. lterasi ke — 3 (n = 3)

C(x) =1+ (a?3° P al®)x + a??°x?

L =2

B(x) =1+ (a?3° @ a'3%)x

= 206

m =1

d = 0(51 @ ((0(236 @ 0(135) . a49) @ (0(225 . 0(163)
d = 0(51 @ ((0(236 @ 0(135) . 0(49)
d= 0(51 @ (0(236 . 0(49) @ (C(135 . 0(49) @ 0(133

d = (X51 EB ((X30 @ 0(184) @ 0(133 — 0(153

Karenad # 0
T(x) =C(x)
C(x) = C() — 7= x™ - B(x)

Clx) =1+ (a®2° D a'®)x + a??°x?) @ a?%2x - (1 +

(0236 @ a13%)x)

C(x) — (1 + (a236 @ a135)x + a225x2) @ (azozx + aZOZ(a236 @

a135)x2)

Cinew = €1 @ 022 = (0236 @ a135) @ o202 = 224
Conew = € @ (a2°2B,) = a?%5 @ (0292(a236 @ a135))
Conew = 0225 @ (a1%% @ aB2) = (125

Jadi hasil akhir:

C(x) =1+ o??*x + a1?>x?
Maka

o(x) =1+ 0x +0,x%, o0y=0***0,=q«

2. Diketahui v,
SZ — [SOI S1,S2, 53] — [a166’ (X138, a247
a. lterasike—0(n=0)

Cx)=1

B(x)=1

79

m=1
b =1

L

d= 2 CiSn—i
=0
d =cySg =159 = al®®

Karenad # 0
T(x) =C(x)

d 166
C(x) =C(x) @;xm-B(x) =1 @TX 1=1+ a'®®x
Karena 2L < n (0 < 0), maka:

C(x) =1+ al%x

L=1
B(x) =1
b=a166
m=1

. lterasike—1(n=1)
C(x) =1+ a'%x
L=1

B(x)=Tx)=1

d = cpS1 + €15g
d=5+c 5o =al38 @ (a1 - q166) = 138 @ 7 = o

Karenad # 0

T(x) =C(x)

8
a
x-1=
a166

Cx)=Clx) D %xm ‘B(x) = (1 + a'%x) @
(1+ ') @ a¥x

Clx) =1+ (a®3° P al®)x =1+ a??"x
Karena 2L < n tidak terpenuhi (2 < 1 false), maka:
C(x) =1+ a?*x

L =1, tetap

B(x)=1

b=a«a
m+1=2

. lterasike—2 (n = 2)

C(x) =1+ a?x

L=1

B(x)=1

b = 166

m =2
d = cySy + ¢151 + 38
d=s,+c;-s1+0-5;
d = (X247 @ ((X227 . (X163) @ 0
d = a4 @ q(227+138)mod255 _ (1247 (y (110
d = o156

Karenad # 0

T(x) =C(x)

81

Cx) = C(x) ® %xm - B(x)

156
a
x%-1

=1+ a**7x) D

166
= (1 + «®¥x) @ a?*5x?

C(x) =1+ a??"x + a?*5x?

Karena 2L < n terpenuhi (2 < 2), maka:

C(x) =1+ a??"x + a?*>x?

L =n+1-L=2

B(x) =1+ a*?*"x

p = 156

m =1

. lterasi ke — 3 (n = 3)

C(x) =1+ a??"x + a?*>x?

L =n+1-L=2

B(x) =1+ a??*"x

b — o156
m =1
d = coS3 + €18, + €8
=S3+C1°S,+¢C° 5
— a248 @ (0(227 . 0(247) @ (0(245 . 0(138)
= o248 @ o219 @ 128 = 196
Karenad # 0
T(x) =C(x)

C(x) = C(x) ® %xm - B(x)

82

= (1+ a?¥x + a®*x?) @ %x (1 +a??7x)
Clx) = (1+ a®?x + a?*x?) @ a*Ox - (1 + a??7x)
C(x) = (1+ a®?"x + a?*5x2) @ (a*%x + a?x?)
Cinew = 0227 @ 202 = 244
Conew = 0245 @ 12 = 225
Jadi hasil akhir:
C(x) =1+ o®*x + a??>x?

Maka

o(x) =1+ 0ox+0,x%, o0y=0***0,=«

4.4.3 Menentukan Posisi Kesalahan (Error Positions)
1. v
Polynomial locator o(x) = 1 + g;yx + 0,x?

o(x) =1+ a??*x + a'?5x?

gp=1
o, = a??*
o, = al?S

x=0(@®)=0
o(a=®) =1+ a??*q=° + q'?5q~2¢
Untuk setiap e = 0,1,2, ...,254
o(a®) =1+ a??*a=¢ + al25q2¢
o(a™25) = 1 4 a?24q~25 4 125¢ 225
o(a™25) = 1 4 224725 4 ¢125-50

o) =1+ a'? + o’

83

84

o(a %) =0

o(@a™®) =1+a?*a ¢+ ?5q72¢
G(a—100) =1+ O(224(1—100 + a125a—2-100
o(a™100) = 1 4 224-100 4 (;125-200
o(a=19%) = 1 + o12* + 180

o(a™199) = 0

Jadi lokasi kesalahan pada v, e = 25, e = 100

Karena dalam codingan di RS(255) peneliti menggunakan step s = 5, maka

. e
==
s

e=25=>i=2?5=5

e=100:>i=%=20

U3
Polynomial locator a(x) = 1 + oyx + 0,x?

o(x) =1+ o®*x + a??>x?

O-O = 1
o, = a24-4-
0, = (XZZS

x=0(@*®)=0
o(a=®) = 1+ a?**aq=° + ?25¢2¢
Untuk setiap e = 0,1,2, ...,254
o(a®) =1+ a?**a=€ + a?25q2¢

O'((X_SO) =1+ 0(244C¥_50 + aZZSa—Z'SO

444

o(a50) = 1 + q?+4=50 4 ¢225-100
(a5 = 1 + al%% + 125

o(a™®9) =0

o@®) =1+a?*aq=°+ a?25q2¢
O'(a_175) =14 q?44g~175 4 22542175
o(a=175) = 1 + o244-175 4 (225-350
o(a175) = 1 4+ ab9 + o130

0(0:‘175) =0

Jadi lokasi kesalahan pada v, e = 50, e = 175

85

Karena dalam codingan di RS(255) peneliti menggunakan step s = 5, maka

. e
i=-
S
e=50=>i=?=10

e=175=i=""=35

Menentukan Akar Polinomial Evaluasi Kesalahan (Error Evaluator

Polynomial)
U1
N(x) = o(x) - S(x)modx?t
o(x) =1+ o??*x + al?5x?
5o = a3, 5, = q163 5, = q* 5, = a5, 0, =
o =59
236

86

2, =5,D (so-01)
— a163 @ (a236 . a224)
= 0(163 @ CZZOS — a183

2, =5, D (s,-01) D (50 - 02)
— a49 @ ((X163 . (X224) @ (0(236 . 0(125)
— a49 @ 0(132 @ 0(106 =0

23 =53B (52 01) D (51 02)
— a51 @ (6!49 . 0(224) @ (a163 . 0(125)
:a5169(x18690(33=0

N(x) = a?3% + a'®3x + 0x2 + 0x3

[
o(x) = 1+ o?**x + a??5x?
N(x) = a(x) - S(x)modx?*
5o = al66, s, = q138, 5, = 247 g, = q248, 5 = @2 g, = o225
o =5
— 166

2, =5, D (50 01)
= a138 @ (a166 . a244)
= o138 @ 155 = 206
2; =5, D (s, -01) @ (S0 " 02)
= a?t @ (a138 . 0(244) D (a166 . 0(225)
—a?* @ a2 @ al36 =0
Q3 =5;B (s2-01) D (51 02)

— a248 @ (0(247 . a244-) @ (a138 . 6(225)

87

— a248 @ o236 @ 18 = 0

N(x) = a'®® + a?%x + 0x? + 0x3

4.4.5 Menghitung Nilai Besar Kesalahan (Error Magnitude)

1.

U1

Untuk e = 25 (posisi 5)
-1
J

o(x) =1+ o1x + 0,x2

o'(x) = 0, + 20,x

o'(x) =0

X = q—€ = g255-€

N(x) = a?3% + a'83x

Tetapi, karena 2 = 0 di GF(2), 20,x = 0. Jadi,

_ @)

01

@236 4 o183 . ;255-25

a224

(1236 + 0!183 . a230

a224

a236 + (1158 C{115

Untuk e = 100 (posisi 20)

o(x) =1+ o1x + 0,x2

o'(x) = 0y + 20,x

N(x) = a®3% + a'83x

Tetapi, karena 2 = 0 di GF(2), 20,x = 0. Jadi,

E, = 2

j o1

(l236 + (X183 . a255—100

a,224

0(236+6¥ a

183 155

a4

88

Jadi, pada v, nilai magnitude error pada posisi [5,20] adalah [a1*®, a?33].

U2

Untuk e = 50 (posisi 10)
8
] G,(Xj_l)

0(x) =1+ oyx + 0,x2

o'(x) = o, + 20,x

o'(x) =0

x = q—¢ = g255-¢€

N(x) = a'®® + a?%x

Tetapi, karena 2 = 0 di GF(2), 20,x = 0. Jadi,

Q(a¥
G

01

(X166 + 0[206) a255—50

o244
o166 1 206 . 205
- o224
166 156 177
_ a>’+a _ a _ 198
44 o244
Untuk e = 175 (posisi 35)
-1
LI}
] Iry—1
o (X;7)
0(x) =1+ o1x + 0,x2
o'(x) = o, + 20,x
o'(x) =0
x=q €= a255—e
N(x) = al®® + a?%x
Tetapi, karena 2 = 0 di GF(2), 20,x = 0. Jadi,
Q(a™¥)
Ej =—
01
166 4 206 . o255-175
- pezy
Q166 4 o183 . 80
- o224
166 31 175
_a +a _a 186

0(244 a24—4—

89

90

Jadi, pada v, nilai magnitude error pada posisi [10,35] adalah

188, 186].

[a™°° a
4.4.6 Melakukan Koreksi Kesalahan pada Codeword
Proses koreksi dilakukan menggunakan persamaan:
C=v—e
1. Koreksi pada Codeword (C;)
Pada codeword pertama terdeteksi dua kesalahan (error), yaitu masing-
masing pada posisi ke—[5,20] dan nilai magnitude error-nya [a 46, a?33].

Dengan demikian proses koreksi dilakukan sebagai:

[0x50 + 0x%° + 0x*® + 0x*7 + 0x*° + a'*0x*5 4+ 0x** + 0x*3 +

0x*2 + 0x** + 0x*° + 0x39 + 0x38 + 0x37 + 0x36 + 0x3° + 0x3* +
0x33 + 0x3% + 0x3 + %% + 0x2° + 0x28 + 0x27+0x26+0x%° +
0x2* + 0x%3 + 0x22 4+ 0x?1+0x2° + 0x'° 4+ 0x'® + 0x'7 + 0x'® +
0x®> + 0x* + 0x3 + 0x'2 + 0x** + 0x° + 0x° + 0x® + 0x7 + 0x® +
0x> 4+ 0x* + 0x3 + 0x? + 0x* + 0]

— [0(240, 0(35, 0(39, 0(120, 0(153, (154, (X227, 0(151, 0(233, (X198, 0(85, 0(213, (X44, 0(104,

91

Hasil ini menunjukkan bahwa kedua error pada posisi [5,20] telah berhasil
diperbaiki, sehingga nilai (C;) kembali sesuai dengan hasil encoding awal.
Koreksi pada Codeword (C;)

Pada codeword kedua terdeteksi dua kesalahan (error), yaitu masing-
masing pada posisi ke—[10,35] dan nilai magnitude error-nya [a 18, ¢18¢].

Dengan demikian proses koreksi dilakukan sebagai:

a239, a72, (X226] +

[0x°0 + 0x*° + 0x*® 4+ 0x*7 + 0x*® + 0x*> + 0x** + 0x*3 + 0x*2 +
0x*t + a'®8x*0 + 0x3 + 038 + 0x37 + 0x3° + 0x3° + 0x* + 0x33 +
0x3% + 0x3 + 0x3% + 0x2% 4+ 0x28 + 0x%7+0x25+0x%° + 0x** +

0x%3 4 0x22 + 0x21+0x2% 4+ 0x19 + 0x'® + 0x7 + 0x16 + a86x1° +
0x™* + 0x'3 + 0x'2 4 0x* + 0x° + 0x® + 0x3 + 0x” + 0x® + 0x° +

0x* + 0x3 + 0x2 + 0x1 + 0] =

Hasil ini menunjukkan bahwa kedua error pada posisi [10,35] telah berhasil

diperbaiki, sehingga nilai (C,) kembali sesuai dengan hasil encoding awal.

92

4.4.7 Proses Decoding untuk Mengembalikan Codeword yang Telah

Dikoreksi dengan Pesan Asli

Setelah codeword terkoreksi maka perlu mengembalikan codeword ke

bentuk pesan aslinya dengan mengambil k simbol pertama menggunakan

SageMath maka di peroleh kembali,

[| Il 1l

[Il Il 1l

[Il Il 1l
[00000110][01001000][00000110][01000110
[Il Il 1l

[Il Il 1l

[I

102 221

, (X26, 0(48’ 0, (XS, 0(26, o

26 39

,033,0, 05, %6, a3%, «

01000110]7
01000100
01000100

00000110 []
[]
[]
[00100000]
[]
[|

]

00000110
00000110

01001000
00100111
00101100

00000110
00000000
00000110

00100111
00100000
00111001

00000110
00000110
00000110
00000000
00000110][01000101][00000110][00100111][00000000][00100000
00000110][00111001][00000110][01000100][00000110][01001010
00000110][01000111][00000110][00100111][00000000][00100000
[00000110][00110101][00000110][00111001][00000110]

—
—
—_—

26 24»0’ (X26, 0(181, O(26, 0(194, 0(26, 0(33, 0’0’

33,0, a5, a2, a

0,0]

101001010 00000000
00100000][00000110][00101100][00000110][00110001][00000110
00110010][00000110][{00100111]{00000000][00000000][00000000

[1[00000110](I Il Il 11
[Il I I 1l Il]
[I I I 1l []
[00000000][00000000][00000000][00000000][00000000][00000000]
[Il I I 1l []
{ Il I I 10 Il }

00101111]{00000110][00100111

00000000][00000000][00000000][00000000][00000000][00000000
00000000][00000000][00000000][00000000][00000000][00000000
00000000][00000000][00000000][00000000][00000000][00000000

[00000000][00000000][00000000][00000000][00000000]

Tahap terakhir dalam proses ini adalah membagi deretan bit tersebut

menjadi beberapa blok dengan panjang masing-masing 8-bit. Proses ini bertujuan

untuk mengkonversi setiap blok biner menjadi karakter yang sesuai berdasarkan

tabel Unicode. Setelah dilakukan pembagian dan konversi, diperoleh karakter

karakter sebagai berikut:

Tabel 4.3 Hasil Decodin

g Kembali ke Pesan Asli

Huruf Biner-16 Bit Huruf Biner-16 Bit

) [0000011001001000] J [0000011001000100]
I [0000011000100111] < [0000011001001010]
O [0000011001000110] ° [0000011001000111]
! [0000011000100111] | [0000011000100111]
. [0000000000100000] . [0000000000100000]
J [0000011001000100] ua [0000011000110101]
z [0000011000101100] & [0000011000111001]
& [0000011000111001] < [0000011001001010]
J [0000011001000100] 3 [0000011000101111]
E) [0000011001001000] I [0000011000100111]
O [0000011001000110] L [0000000000100000]
. [0000000000100000] z [0000011000101100]
2 [0000011001000101] D [0000011000110001]
\ [0000011000100111] J [0000011000110010]
. [0000000000100000] I [0000011000100111]
¢ [0000011000111001]

93

Dengan demikian, hasil akhir dari proses decoding berhasil memulihkan

pesan asli yang dikirimkan, yakni lafadz ")) > ldxe leds L Osdext Uls" secara

benar dan tanpa kesalahan.

4.5 Analisis Hasil dengan Beberapa Paremeter Kode Reed-Solomon

Pada penelitian ini, kode Reed—-Solomon diterapkan pada sepuluh ayat Al-

Qur’an dengan panjang kode tetap n = 51. Jumlah kesalahan yang disisipkan pada

tiap ayat divariasikan antara satu hingga lima simbol sehingga parameter

kemampuan koreksi t menyesuaikan, dengan nilai k = n — 2t dihitung otomatis

olen sistem. Seluruh komputasi dilakukan pada lapangan hingga GF(2%)

menggunakan SageMath. Analisis kinerja difokuskan pada empat aspek utama:

94

keberhasilan deteksi, keberhasilan koreksi, konsistensi parameter, dan stabilitas
decoding ketika jumlah error meningkat.

Tabel 4.4 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 1 Kesalahan

No Surah:Ayat | Banyak | RS(n, k,t) Posisi Error Hasil Deteksi | Keterangan
Simbol & Koreksi
1 18:48 31 (51,49,1) | ¢, =5,C,=10 1 error Sesuai
2 2:2 33 (51491) | ;=2C =7 1 error Sesuai
3 4:48 39 (51,49,1) c;=3C,=5 1 error Sesuai
4 8:3 39 (51,49,1) ¢,=1C,=8 1 error Sesuai
5 79:15 17 (51491) | G =4,C =2 1 error Sesuai
6 15:55 38 (51,491) | (G, =6,C, =14 1 error Sesuai
7 23:49 35 (51,49,1) | ¢, =0,(,=20 1 error Sesuai
8 35:16 28 (51,49,1) €;=9C,=3 1 error Sesuai
9 68:33 46 (51,49,1) | €, =12,(, =6 1 error Sesuai
10 895 21 (51,49,1) c,=2C,=5 1 error Sesuai

Berdasarkan Tabel 4.4 yang memuat sepuluh ayat uji pada konfigurasi t =
1 pada pengujian ini memakan waktu sekitar 5 detik, seluruh ayat memiliki
parameter (51,49,1). Konfigurasi ini memungkinkan sistem mendeteksi serta
mengoreksi tepat satu kesalahan simbol pada setiap codeword. Data pada tabel
menunjukkan konsistensi penuh: setiap ayat mengalami satu error selama
transmisi, dan seluruh error berhasil dikoreksi sebagaimana ditunjukkan oleh
kecocokan antara kolom ‘“Hasil Deteksi”, “Hasil Koreksi”, dan keterangan
“Sesuai”.

Proses decoding pada t =1 bersifat paling sederhana karena hanya
memerlukan dua sindrom awal, yaitu S; = v(a), dan S, = v(a?), dengan v(x)
merupakan codeword yang diterima. Kedua sindrom tersebut selanjutnya

digunakan untuk menyusun polinomial error locator.

Sy

A(X)=1+Alx, Al:S)
2

Pencarian akar polinomial ini hanya menghasilkan satu posisi kesalahan, dan

magnitudo error dihitung menggunakan bentuk dasar rumus Forney. Akibatnya,

95

decoding berlangsung cepat dan deterministik. Seluruh codeword berhasil
dipulihkan ke bentuk valid.

Tabel 4.5 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 2 Kesalahan

No Surah:Ayat Banyak RS Posisi Error | Hasil Deteksi | Keterangan
Simbol (nkt) & Koreksi

1 18:48 31 (51,47,2) | C; = 5,20 2 error Sesuai
C, = 10,35

2 2:2 33 (51,47,2) | ¢, =2,14 2 error Sesuai
C, =730

3 4:48 39 (51,47,2) | ¢, =3,15 2 error Sesuai
C, =522

4 8:3 39 (51,47,2) | ¢; =137 2 error Sesuai
C, =83

5 79:15 17 (51,47,2) | ¢; = 4,18 2 error Sesuai
C, =228

6 15:55 38 (51,47,2) | ¢, = 6,11 2 error Sesuai
C, = 14,26

7 23:49 35 (51,47,2) | ¢, =0,16 2 error Sesuai
C, = 20,40

8 35:16 28 (51,47,2) | ¢; =921 2 error Sesuai
C, =317

9 68:33 46 (51,47,2) | ¢, =12,13 2 error Sesuai
C, = 6,48

10 89:5 21 (51,47,2) | ¢, =2,30 2 error Sesuai
C, =525

Berdasarkan Tabel 4.5, pada pengujian ini memakan waktu sekitar 6 detik
dengan konfigurasi t = 2 menggunakan parameter (51,47,2) , sehingga kode
Reed-Solomon dapat mengoreksi dua kesalahan simbol dalam satu codeword.
Proses decoding dimulai dengan menghitung empat sindrom awal, yaitu S;, S,, S5
,danS,. Keempat sindrom ini memberikan informasi yang cukup untuk
memastikan bahwa jumlah kesalahan berada dalam batas toleransi sistem.

Secara matematis, dua kesalahan menghasilkan polinomial error locator
berderajat dua,

A(x) =1+ Ayx + A,x2,
yang dihitung melalui algoritma Berlekamp—Massey. Akar-akar polinomial
tersebut menentukan dua posisi simbol yang rusak melalui pengujian A(a™") =O0.

Setelah posisi kesalahan ditemukan, magnitudo masing-masing kesalahan dihitung

96

menggunakan rumus Forney. Pada kasus dua error, perhitungan melibatkan
turunan formal A’(x) serta evaluasi sindrom dalam GF (28). Koreksi kemudian
diberikan dengan mengurangi magnitudo kesalahan dari dua simbol yang rusak,
sehingga codeword kembali ke bentuk yang valid.

Dengan demikian, meskipun kompleksitas decoding meningkat akibat jumlah
sindrom yang lebih banyak dan polinomial berderajat lebih tinggi, konfigurasi t =
2 tetap mampu memulihkan pesan selama jumlah kesalahan tidak melebihi dua
simbol.

Berdasarkan Tabel 4.6, pada pengujian ini memakan waktu sekitar 5 detik
dengan peningkatan kemampuan koreksi t =3 dan parameter (51,45,3)
memungkinkan sistem menangani hingga tiga kesalahan simbol dalam satu
codeword. Proses decoding dimulai dengan perhitungan enam sindrom pertama
(51 — S¢) yang memberikan informasi lengkap mengenai struktur kerusakan.

Tabel 4.6 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 3 Kesalahan

No Surah:Ayat Banyak RS Posisi Error Hasil Deteksi | Keterangan
Simbol (nk,t) & Koreksi

1 18:48 31 (51,45,3) | C; =5,20,34 3 error Sesuai
C, = 10,35,21

2 2:2 33 (51,45,3) | ¢, = 2,14,17 3 error Sesuai
C, = 7,30,34

3 4:48 39 (51,45,3) | ¢; =3,15,30 3error Sesuai
C, = 522,47

4 8:3 39 (51,45,3) | ¢; =1,37,30 3error Sesuai
C, = 8,45,45

5 79:15 17 (51,45,3) | ¢; =4,18,7 3error Sesuai
C, = 2,28,30

6 15:55 38 (51,45,3) | C; =6,11,24 3error Sesuai
C, = 14,31,47

7 23:49 35 (51,45,3) | €; = 0,2,47 3 error Sesuai
C, = 20,40,32

8 35:16 28 (51,45,3) | €; =9,21,49 3error Sesuai
C, = 3,17,45

9 68:33 46 (51,45,3) | ¢; =12,13,14 3 error Sesuai
C, = 6,22,20

10 | 89:5 21 (51,45,3) | €; =2,30,48 3error Sesuai
C, = 525,24

97

Algoritma Berlekamp—Massey menghasilkan polinomial error locator A(x),
berderajat tiga,

A(x) =1+ Ax + A,x2 + A3x3.

Derajat dari polinomial ini bersifat penting, karena mencerminkan jumlah
error yang terdeteksi. Jika derajatnya tepat tiga, maka sistem secara matematis
konsisten bahwa terdapat tiga simbol yang rusak. Setelah posisi error diketahui,
tahap berikutnya adalah perhitungan magnitudo kesalahan melalui rumus Forney
yang telah diperluas untuk kasus lebih dari dua kerusakan. Rumus Forney untuk
derajat tiga melibatkan evaluasi turunan polinomial locator serta polinomial
evaluator 02(x).

Ketika ketiga simbol telah dikoreksi, codeword kembali memenuhi seluruh
persamaan paritas kode Reed-Solomon. Dengan demikian, pesan asli dapat
dipulihkan tanpa kehilangan informasi apa pun. Kasus t = 3 memperlihatkan
bahwa walaupun beban komputasi meningkat, kode Reed—Solomon tetap dapat
bekerja secara optimal untuk koreksi kesalahan multi-simbol selama jumlah
kesalahan masih berada di bawah kapasitas koreksi maksimum.

Berdasarkan Tabel 4.7, pada pengujian ini memakan waktu sekitar 5 detik
dengan konfigurasi t = 4 dan parameter (51,43,4) menunjukkan bahwa setiap
codeword dapat menampung hingga empat kesalahan simbol. Hasil uji
memperlihatkan bahwa seluruh ayat yang mengandung empat error berhasil
dipulihkan secara tepat oleh decoder. Hal ini dibuktikan melalui kesesuaian antara
jumlah kesalahan yang terdeteksi, kesalahan yang dikoreksi, serta hasil akhir yang
kembali identik dengan pesan asli. Dari sisi proses, decoding memerlukan delapan

sindrom (S, ..., Sg) dan menghasilkan polinomial error locator berderajat empat,

A(x) =1+ Ax + A,x?% + A3x3 + 1,x*,

98

Tabel 4.7 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 4 Kesalahan

No Surah:Ayat Banyak RS Posisi Error Hasil Deteksi | Keterangan
Simbol (nk, t) & Koreksi

1 18:48 31 (51,43,4) | ¢; =5,20,22,10 4 error Sesuai
C, = 10,35,39,27

2 2:2 33 (51,43,4) | C; = 2,14,15,48 4 error Sesuai
C, =730,10,10

3 4:48 39 (51,43,4) | ¢; =3,15,30,10 4 error Sesuai
C, = 5,22,23,50

4 8:3 39 (51,43,4) | C; =1,3,44,39 4 error Sesuai
C, = 8,23,48,45

5 79:15 17 (51,43,4) | C; = 4,18,1,36 4 error Sesuai
C, = 2,28,27,26

6 15:55 38 (51,43,4) | C; = 6,11,24,11 4 error Sesuai
C, = 14,35,25,17

7 23:49 35 (51,43,4) | C; = 0,28,14,45 4 error Sesuai
C, =20,40,24,11

8 35:16 28 (51,434) | ¢, =9,21,19,15 4 error Sesuai
C, =3,17,45,32

9 68:33 46 (51,43,4) | ¢, =12,13,14,15 4 error Sesuai
C, = 6,39,39,25

10 89:5 21 (51,43,4) | C; =2,30,48,49 4 error Sesuai
C, = 5,25,31,20

Meskipun peningkatan nilai t menyebabkan bertambahnya beban komputasi

terutama pada tahap pencarian akar dan perhitungan magnitudo kesalahan seluruh

langkah tetap berjalan stabil dan konsisten. Keberhasilan pemulihan seluruh

codeword pada konfigurasi ini menunjukkan bahwa sistem masih berada dalam

batas kapasitas koreksi maksimum dan seluruh mekanisme decoding bekerja secara

deterministik.

Dengan demikian, pada t =

4 algoritma tetap mampu melakukan deteksi

serta koreksi multi-simbol dengan tingkat akurasi penuh, meskipun kompleksitas

matematis meningkat secara signifikan dibandingkan konfigurasi t yang lebih

rendah.

99

Tabel 4.8 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 5 Kesalahan

No Surah:Ayat | Banyak RS Posisi Error Hasil Keterangan
Simbol | (n,k,t) Deteksi &
Koreksi

1 18:48 31 (51,41,5) | ¢; =5,20,0,29,37 5 error Sesuai
C, = 10,35,5,7,47

2 2:2 33 (51,41,5) | C; = 2,14,14,13,46 5 error Sesuai
Cc, =7,30,37,21,45

3 4:48 39 (51,41,5) | ¢; =3,15,30,9,23 5 error Sesuai
C, =5,22,33,35,25

4 8:3 39 (51,41,5) | ¢; =1,32,15,26,24 5 error Sesuai
C, = 8,28,2,24,49

5 79:15 17 (51,41,5) | ¢; = 4,18,32,17,33 5 error Sesuai
C, = 2,28,22,8,35

6 15:55 38 (51,41,5) | ¢, =6,11,24,28,6 5 error Sesuai
C, =14,47,27,35,48

7 23:49 35 (51,41,5) | ¢; =0,3,13,48,39 5 error Sesuai
C, =20,40,36,12,31

8 35:16 28 (51,41,5) | €1 =9,21,39,41,24 5 error Sesuai
C, = 3,17,45,38,28

9 68:33 46 (51,41,5) | ¢; =12,13,14,15,5 5 error Sesuai
C, =6,10,45,21,33

10 89:5 21 (51,41,5) | C; = 2,30,48,49,50 5 error Sesuai
C, = 5,25,1,13,50

Berdasarkan Tabel 4.8, pada pengujian ini memakan waktu sekitar 9 detik
dengan konfigurasi t = 5 dan parameter (51,41,5) menunjukkan bahwa sistem
Reed—-Solomon beroperasi pada batas maksimum kemampuan koreksi, yakni lima
kesalahan simbol per codeword. Hasil pengujian memperlihatkan bahwa seluruh
codeword yang mengalami lima error berhasil dipulihkan sepenuhnya oleh proses
decoding. Hal ini menegaskan bahwa mekanisme deteksi dan koreksi masih bekerja
secara stabil meskipun berada pada tingkat kompleksitas tertinggi. Sepuluh sindrom
pertama (S; — S;0) dan derajat polinomial error locator berderajat lima,

AX) =1+ Ax + Ax2% + A3x3 + Auxt + A5x5.

Menunjukkan jika jumlah sindrom dan derajat polinomial locator yang
meningkat menambah beban komputasi, namun tidak mengganggu determinisme
algoritma: posisi kelima error dapat diidentifikasi dengan benar dan koreksi
melalui perhitungan magnitudo berlangsung konsisten. Dengan keberhasilan

pemulihan seluruh blok uji, konfigurasi t = 5 membuktikan bahwa kode Reed—

100

Solomon mampu mencapai performa optimal hingga kapasitas koreksi
maksimalnya. Sistem tetap akurat selama jumlah kesalahan tidak melebihi lima
simbol. Apabila noise kanal lebih besar dari kapasitas ini, keberhasilan decoding

tidak lagi terjamin.

4.6 Kajian Hasil Penelitian dalam Perspektif Islam

Penelitian mengenai implementasi kode Reed-Solomon untuk deteksi dan
koreksi kesalahan transmisi ayat Al-Qur’an menggunakan pengkodean huruf
hijaiyah menunjukkan bahwa teknologi informasi modern dapat menjadi sarana
strategis dalam menjaga keaslian teks wahyu, terutama di era digital. Saat ini, ayat-
ayat Al-Qur’an tersebar melalui berbagai platform elektronik seperti aplikasi Al-
Qur’an, mushaf digital, perangkat lunak pembelajaran, hingga penyimpanan
berbasis awan. Proses pengiriman dan penyimpanan digital tersebut membuka
peluang terjadinya distorsi data, misalnya hilangnya huruf, tertukarnya karakter,
atau kerusakan bit. Contoh nyata dapat ditemukan pada kasus kesalahan penulisan

ayat Al-Kahf ayat 8, di mana huruf ¢ tertukar menjadi o, atau kesalahan pada Al-

Ankabut ayat 45 yang mengalami pengurangan huruf pada lafadz &)\, Kasus-

kasus seperti ini menunjukkan bahwa kesalahan penulisan ayat tetap berpotensi
terjadi pada media digital.

Selain itu, potensi kesalahan juga dapat muncul dalam konteks digitalisasi teks,
misalnya saat proses pemindaian mushaf, konversi huruf hijaiyah ke kode digital,
atau saat penyalinan file melalui jaringan. Kesalahan seperti huruf yang tidak
terbaca, karakter yang salah terbaca oleh sistem OCR, atau kerusakan data selama

proses penyimpanan dan distribusi digital dapat menyebabkan penyimpangan pada

101

penulisan ayat. Berdasarkan temuan penelitian, algoritma Reed—Solomon terbukti
mampu mendeteksi sekaligus mengoreksi bentuk-bentuk kesalahan tersebut
sehingga teks ayat dapat direstorasi kembali sesuai naskah aslinya.

Nilai-nilai Islam mengajarkan pentingnya ketelitian (izgan) dan amanah dalam
setiap pekerjaan, termasuk dalam penulisan dan penjagaan naskah Al-Qur’an.
Penerapan algoritma koreksi kesalahan merupakan representasi nyata dari nilai
itgan, karena sistem mampu melakukan deteksi dan koreksi hingga satu sampai
lima kesalahan pada satu ayat, lalu mengembalikannya ke bentuk asli secara akurat.
Hal ini selaras dengan hadits:

i a\m(&x}\ymwws 5
Artinya: “Sesungguhnya Allah mencintai seseorang yang ketika bekerja, ia
melakukannya dengan sungguh-sungguh dan sempurna.” (HR. al-Baihaqi)

Dalam penelitian ini, ketelitian sistem direpresentasikan melalui kemampuan
Reed-Solomon untuk mendeteksi kesalahan hingga lima error pada ayat-ayat Al-
Qur’an dan mengembalikannya ke bentuk asli dengan akurat. Hal ini
mencerminkan praktik izgan dalam konteks digital, di mana teknologi digunakan
untuk memastikan setiap karakter atau simbol tetap sesuai dengan naskah asli, tanpa
distorsi maupun kehilangan informasi. Keberhasilan sistem ini juga berkontribusi
terhadap pencapaian tujuan magqasid al-syart ‘ah, khususnya hifz ad-din (penjagaan
agama), karena menjaga kemurnian teks Al-Qur’an merupakan bagian dari menjaga
syariat dan ajaran agama dari kesalahan penafsiran akibat kelalaian teknis.
Implementasi Reed—Solomon memungkinkan transmisi dan penyimpanan teks Al-
Qur’an secara digital lebih aman dan andal, sehingga dapat digunakan dalam

mushaf digital, aplikasi pembelajaran, dan platform penyimpanan elektronik

102

dengan risiko kesalahan yang minimal. Selain itu, penerapan algoritma ini selaras
dengan prinsip al-sidg (keaslian) dan al-dabt (ketepatan) dalam ilmu gira’ah dan
rasm mushaf. Reed-Solomon tidak dimaksudkan untuk memodifikasi atau
mengubah teks Al-Qur’an, tetapi untuk memulihkan teks yang telah mengalami
gangguan transmisi agar kembali ke bentuk aslinya.

Berdasarkan hasil penelitian, implementasi kode Reed—Solomon tidak hanya
mengoreksi kesalahan teknis pada transmisi ayat, tetapi juga mendukung tanggung
jawab umat Islam dalam menyampaikan Al-Qur’an secara benar. Mekanisme
koreksi otomatis yang terbukti mampu mengembalikan ayat ke bentuk asli
membuat distribusi ayat melalui media elektronik menjadi lebih aman dan akurat.
Prinsip ini terhubung erat dengan hadis Nabi SAW:

Artinya: “Sebaik-baik kalian adalah yang belajar Al-Qur’an dan mengajarkannya”
(HR. Bukhari No. 5027)

Dalam konteks penelitian ini, penggunaan kode Reed-Solomon tidak hanya
dipahami sebagai proses teknis dalam mengoreksi kesalahan data, tetapi juga
sebagai bagian dari ikhtiar menjaga amanah penyampaian Al-Qur’an di era digital.
Pada masa ketika ayat-ayat Al-Qur’an disebarkan melalui berbagai media
elektronik, kebutuhan untuk memastikan bahwa setiap huruf, kata, dan susunan ayat
tersampaikan tanpa perubahan menjadi semakin mendesak. Teknologi koreksi
kesalahan seperti Reed—Solomon berfungsi sebagai lapisan perlindungan tambahan
yang memastikan teks Al-Qur’an tetap akurat meskipun melewati jaringan digital
yang rawan mengalami gangguan, seperti hilangnya bit, tergesernya karakter, atau

rusaknya sebagian data.

103

Dengan demikian, implementasi Reed-Solomon dapat dipandang sebagai
bentuk modern dari tugas “mengajarkan” dan “menyampaikan” Al-Qur’an secara
benar. Jika pada masa klasik ketelitian para kuttab dan huffaz menjadi kunci
menjaga orisinalitas mushaf, maka pada masa digital ketelitian tersebut diwujudkan
melalui sistem yang mampu menjaga integritas simbol huruf hijaiyah dalam proses
transmisi. Upaya ini sejalan dengan prinsip amanah dan ketelitian (izgan) yang
diajarkan Islam, bahwa seluruh urusan yang terkait penyampaian wahyu harus
dilakukan secara hati-hati, presisi, dan dapat dipertanggungjawabkan. Dengan kode
Reed-Solomon, proses distribusi dan penyebaran ayat Al-Qur’an pada generasi
digital dapat berlangsung lebih aman, akurat, dan sesuai dengan standar kebenaran

yang dituntut oleh syariat.

BABV
PENUTUP

5.1 Kesimpulan

1. Simulasi proses deteksi kesalahan pada transmisi ayat Al-Qur’an
menggunakan kode Reed-Solomon dengan panjang kode tetap n =51
menunjukkan kinerja yang akurat dan konsisten pada seluruh konfigurasi
kemampuan koreksi t = 1 hingga t = 5. Hasil perhitungan sindrom selalu
memberikan nilai non-nol ketika terjadi penyisipan error, sehingga mekanisme
deteksi berjalan efektif untuk seluruh ayat uji. Penyesuaian panjang pesan k =
n — 2t pada setiap konfigurasi tidak menimbulkan gangguan terhadap proses
deteksi meskipun jumlah simbol ayat berbeda-beda. Hal ini membuktikan
bahwa struktur kode Reed—Solomon bersifat stabil, dan dapat diterapkan secara
seragam pada berbagai bentuk data ayat Al-Qur’an.

2. Simulasi proses koreksi kesalahan menunjukkan bahwa kode Reed—Solomon
mampu memulihkan seluruh codeword yang mengalami kerusakan selama
jumlah kesalahan tidak melebihi kapasitas koreksi t. Melalui penerapan
algoritma Berlekamp—Massey untuk membentuk polinomial error locator,
pencarian akar menggunakan metode Chien Search, serta perhitungan
magnitudo error melalui rumus Forney, sistem berhasil menentukan lokasi dan
besar kesalahan secara tepat. Pada seluruh pengujian, mulai dari satu hingga
lima simbol error, semua ayat berhasil direstorasi ke bentuk semula tanpa
kehilangan informasi. Hasil ini menegaskan bahwa kode Reed—Solomon tidak

hanya efektif tetapi juga sangat reliabel dalam menjaga integritas teks ayat Al-

104

105

Qur’an pada proses transmisi digital, bahkan hingga mencapai batas

maksimum kemampuan koreksinya.

5.2 Saran
Berdasarkan hasil penelitian yang telah dilakukan, beberapa saran dapat

diberikan untuk penelitian selanjutnya guna memperluas cakupan implementasi dan

memperdalam pemahaman terkait kode Reed-Solomon untuk deteksi dan koreksi
kesalahan transmisi ayat Al-Qur’an menggunakan pengkodean huruf hijaiyah,
antara lain:

1. Disarankan untuk menguji sistem pada kondisi transmisi yang lebih kompleks,
seperti noise acak (random noise), burst error, atau kanal komunikasi yang
menyerupai kondisi nyata.. Hal ini bertujuan untuk mengevaluasi kestabilan
kode Reed-Solomon dalam menghadapi kondisi nyata yang lebih beragam.

2. Sistem dapat dikembangkan lebih lanjut dengan mengintegrasikan kode Reed-
Solomon dengan teknik pengkodean lain atau metode kriptografi, seperti
McEliece atau Reed-Muller, untuk meningkatkan keandalan dan keamanan
transmisi teks Al-Qur’an.

3. Disarankan untuk mengaplikasikan sistem ini pada perangkat digital, aplikasi
pembelajaran, atau platform penyalinan ayat Al-Qur’an, sehingga dapat
membantu meminimalkan kesalahan sekaligus meningkatkan kualitas

pembelajaran dan pengiriman/transmisi teks Al-Qur’an secara digital.

DAFTAR PUSTAKA

Algahtani, Y. (2013). New Approach of Arabic Encryption / Decryption Technique
Using Vigenere Cipher on Mod 39. International Journal of Advanced
Research in IT and Engineering, 2(12), 1-9.

Bras-amor, M. (2018). A decoding approach to Reed-Solomon codes from their
definition. Mathematics, 6(10), 194. https://doi.org/10.3390/math6100194 A

Bierbrauer. J. (2019). Introduction to coding theory (2nd ed). In Sustainability
(Switzerland) (Vol. 11, Issue 1). Universitat Rostock.

Darmadi, D., Imansyah, F., R. R. Y. (2020). Simulasi Eliminasi Noise Dengan
Metode Transformasi Wavelet Berbantuan Graphical User Interface (GUI)
Matlab. Jurnal Fakultas Teknik Universitas Tanjungpura Pontianak, 8.

Dummit, D. S., & Foote, R. M. (2004). Abstract Algebra (3rd ed). Hoboken, NJ:
John Wiley & Sons, Inc.

Gallian, J. A. (2021). Contemporary abstract algebra (10th ed.). CRC Press.
https://doi.org/10.1201/9781003142331

Hadist riwayat Al-Baihagi. As-Sunan al-Kubra (Vol. 3). Dar al-Kutub al-‘Timiyyah.

Hadist riwayat Al-Bukhori. Sahih al-Bukhari (Vol. 7). Dar Tawq al-Najah. Hadist
No. 5027.

Jamal, R. P., Haryanto, L., & Amir, A. K. (2012). Konstruksi Kode Reed-Solomon
sebagai Kode Siklik dengan Polinomial Generator. Jurnal Matematika,
Statistika dan Komputasi, 14(1), 100-105.

Jariyah, A., Suwadi & Hendrantoro, G. (2013). Pengkodean Kanal Reed Solomon
berbasis FPGA untuk Transmisi Citra pada Satelit Nano. Jurnal Teknik
POMITS, 2(1), 51-56.

Kemenag. (2023). Empat Kali Beredar Ulang Foto Salah Cetak Al-Kahfi: 8, Ini
Penjelasan Kemenag. https://kemenag.go.id/pers-rilis/fempat-kali-beredar-
ulang-foto-salah-cetak-al-kahfi-8-ini-penjelasan-kemenag-fSlkJ
(Diakses pada 5 September 2024)

Kementrian Agama Republik Indonesia. (2022). Al-Qur'an dan terjemahannya..
Lajnah Penthasihan Mushaf Al-Qur'an, Kementrian Agama RI.

Makhomah, R., Santoso, K. A., & Kamsyakawuni, A. (2021). Pengkodean Teks

Menggunakan Kombinasi Hill Cipher dan Operasi XOR. PRISMA, Prosiding
Seminar Nasional Matematika, 4, 548-552. Universitas Negeri Semarang.

106

107

Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of
applied cryptography. CRC Press.

Nasution, Z. (2020). Metode Pembelajaran Dalam Pengenalan Huruf Hijaiyah.
Jurnal Al-Fatih, (1), 173-184. http://jurnal.stit-al-
ittihadiyahlabura.ac.id/index.php/alfatih/article/view/85

Oktavia, R. E., Utomo, P. H., & Martini, T. S. (2023). Penerapan Kode Reed
Solomon Pada Kriptosistem Mceliece. FIBONACCI: Jurnal Pendidikan
Matematika Dan Matematika, 9(1), 79. https://doi.org/10.24853/fbc.9.1.79-88

Republika. (2017). Kesalahan Penulisan Alquran, Penyeleksian Harus Diperluas.
https://khazanah.republika.co.id/berita/oyl5es396/kesalahan-penulisan-
alguran-penyeleksian-harus-diperluas

Riyanto, M. Z. (2019). Pengkodean Huruf Hijaiyah Untuk Deteksi dan Koreksi
Kesalahan Penulisan Ayat Al-Qur’an Menggunakan Kode Linear.

Shihab, M. Q. (2007). Mukjizat al-Qur“an (Ditinjau dari Aspek Kebahasaan,
Isyarat IImiah, dan Pemberitaan Gaib.
https://books.google.co.id/books?id=pD5Djck2jeMC&printsec=frontcover&
hl=id#v=onepage&q&f=false

Wicker, S. B. (2005). An Introduction to Reed-Solomon Codes. Gigiena i
Sanitariia, 1, 30-32.

Widiastuti, N., Lestari, D., & Dhoruri, A. (2016.) Sifat dan karakteristik kode Reed
Solomon beserta aplikasinya pada steganography. Seminar Nasional
Matematika dan Pendidikan Matematika UNY 2016 (him. 21-26).
Yogyakarta: Universitas Negeri Yogyakarta. ISBN 978-602-73403-1-2

LAMPIRAN

Lampiran 1. Representasi Polinomial, Biner, dan Desimal GF (256)

=== Lapangan GF(278): P(x) = x"8 + x™ + x"3 + x"2 + 1 ===
Elemen primitif o = 0x02

=== Tabel Representasi GF (256) ===

Pangkat Polinomial Biner Desimal Hex
a™0 1 00000001 1 0x01
a™l a 00000010 2 0x02
ar2 a2 00000100 4 0x04
a3 a3 00001000 8 0x08
a™4 ar4 00010000 16 0x10
a5 a5 00100000 32 0x20
a6 a6 01000000 64 0x40
a7 a7 10000000 128 0x80
a8 a™ + a”3 + a2 + 1 00011101 29 Ox1d
a™9 a”5 + a4 + a"3 + a 00111010 58 0x3a
a”10 a6 + a”5 + a”4d + a2 01110100 116 0x74
a1l a”7 + a”6 + a”5 + a3 11101000 232 Oxe8
arl2 a7 + a”6 + a®3 + a”2 + 111001101 205 Oxcd
a”13 a7 + a2 +a + 1 10000111 135 0x87
a™1l4 a™ + a + 1 00010011 19 0x13
a”1l5 a5 + a”2 + a 00100110 38 0x26
a™l6 a6 + a”3 + a"2 01001100 76 Ox4c
a™l7 a”7 + a4 + a3 10011000 152 0x98
a™18 a5 + a”3 + a2 + 1 00101101 45 0x2d
a™19 a6 + a”4 + a”3 + a 01011010 90 Ox5a
a”20 a7 + a”5 + a”4 + a2 10110100 180 Oxb4
a2l a”6 + a”5 + a®4 + a”2 + 101110101 117 0x75
ar22 a7 + a6 + a”5 + a®3 + alll01010 234 Oxea
ar23 a7 + a6 + a”3 + 1 11001001 201 0xc9
ar24 a7 + a*3 + a2 + a + 1 10001111 143 0x8f
ar25 a + 1 00000011 3 0x03
ar26 a2 + a 00000110 6 0x06
ar27 a3 + a”2 00001100 12 0x0c
ar28 a4 + a3 00011000 24 0x18
a”29 a5 + a4 00110000 48 0x30
a”30 a6 + a"b 01100000 96 0x60
a”31 a7 + a”e 11000000 192 0xcO
a”32 a7 + a”4 + a3 + a”2 + 110011101 157 0x9d
a”33 a5 + a”2 + a + 1 00100111 39 0x27
a”34 a6 + a”"3 + a*2 + a 01001110 78 Ox4e
a”35 a7 + a4 + a3 + a2 10011100 156 0x9c
a”36 a5 + a”2 + 1 00100101 37 0x25
a”37 a6 + a”"3 + a 01001010 74 Ox4a
a”~38 a7 + a4 + an2 10010100 148 0x94
a”~39 a”s + a” + a”2 + 1 00110101 53 0x35
a™40 a6 + a”5 + a”"3 + a 01101010 106 Ox6a
a4l a7 + a”6 + a”d + a2 11010100 212 0xd4
ar42 a7 + a”5 + a®4 + a”2 + 110110101 181 0xb5
a™43 a6 + a”"5 + a™ + a”2 + a +1 01110111 119 0x77
a™44 a7 + a”6 + a5 + a”"3 + a*2 + a 11101110 238 Oxee
a™45 a7 + a”6 + 1 11000001 193 Oxcl
a™46 a”” + a™ + a”"3 + a*2 + a + 1 10011111 159 0x9f
a™47 a”s + a + 1 00100011 35 0x23
a™48 a”e + a”2 + a 01000110 70 0x46
a™49 a7 + a”3 + a"2 10001100 140 0x8c
a”~50 ar2 + 1 00000101 5 0x05
a”51 a3 + a 00001010 10 0x0a
ar52 a4 + a2 00010100 20 0x14
a”53 a”5 + a"3 00101000 40 0x28
a”54 a6 + a4 01010000 80 0x50

108

109

a”55 a7 + a”5 10100000 160 0xa0

a”56 a6 + a4 + a”3 + a®2 + 101011101 93 0x5d

a”57 a7 + a5 + a®4 + a3 + al1l0111010 186 Oxba

a”58 a6 + a5 + a”3 + 1 01101001 105 0x69

a”59 a”7 + a’6 + a™4 + a 11010010 210 0xd2

a”60 a7 + a”5 + a®4 + a”3 + 110111001 185 Oxb9

a”6l a6 + a”"5 + a®"3 + a”"2 +a +1 01101111 111 Oxo6f

ar62 a”7 + a6 + a®4 + a*3 + a”2 + a 11011110 222 Oxde

a”63 a7 + a”s5 + 1 10100001 161 Oxal

a”64 a™e + a4 + a”"3 +a”2 +a +1 01011111 95 Ox5f

a”65 a”? + a”5 + a®4 + a®3 + a”2 + a 10111110190 Oxbe

a™66 a6 + a”s5 + 1 01100001 97 Oxo61l

a6 a7 + a”6 + a 11000010 194 Oxc2

a”68 a7 + a™4 + a3 + 1 10011001 153 0x99

a”69 a5 + a*3 + a”2 + a + 1 00101111 47 O0x2f

a™70 a6 + a4 + a3 + a2 + a01011110 94 Ox5e

a7l a”7 + a”5 + a”4 + a3 + a”2 10111100 188 Oxbc

ar72 a6 + a”5 + a”2 + 1 01100101 101 0x65

a™73 a7 + a6 + a3 + a 11001010 202 Oxca

ar74 a7 + a”3 + 1 10001001 137 0x89

a™75 a3 + a”2 +a + 1 00001111 15 0x0f

a™76 a4 + a”"3 + a”2 + a 00011110 30 Oxle

a™77 a5 + a®4 + a3 + a2 00111100 60 0x3c

a™78 a6 + a”5 + a”4 + a3 01111000 120 0x78

a™79 a7 + a”6 + a”5 + a"4 11110000 240 0xf0

a”~80 a7 + a6 + a®5 + a”4 + a”"3 + a”2 + 1 11111101 253
Oxfd

a”81 a7 + a”6 + a*5 + a”2 +a +1 11100111 231 Oxe’7

ar82 a7 + a”6 + a™ + a + 1 11010011 211 0xd3

a”83 a7 + a5 + a®™4 + a”3 + a + 1 10111011 187 Oxbb

a~84 a6 + a”5 + a”"3 + a + 1 01101011 107 Oxo6b

a”85 a7 + a*6 + a™4 + a2 + al1l1010110 214 0xd6

a”86 a7 + a”5 + a”d + 1 10110001 177 Oxbl

a™87 a6 + a”5 + a™4 + a”*3 + a”2 + a + 1 01111111 127
0x7f

a”~88 a7 + a6 + a*5 + a”™4 + a”"3 + a2 + a 11111110 254
Oxfe

a™89 a”7 + a”6 + a”5 + 1 11100001 225 Oxel

a”90 a7 + a*6 + a™ + a”"3 + a*2 + a + 1 11011111 223
Oxdf

a”91 a7 + a”5 + a + 1 10100011 163 Oxa3

a”92 a6 + a4 + a3 + a + 1 01011011 91 0x5b

a”93 a7 + a”5 + a®4 + a®2 + al0110110 182 Oxb6

a”94 a6 + a”5 + a”4 + 1 01110001 113 0x71

a”95 a7 + a”6 + a”5 + a 11100010 226 Oxe?2

a”96 a7 + a”6 + a®4 + a”3 + 111011001 217 0xd9

a”97 a7 + a”"5 + a”"3 + a”2 +a +1 10101111 175 Oxaf

a”98 a6 + a + 1 01000011 67 0x43

a”99 a7 + a”2 + a 10000110 134 0x86

a”100 a4 + 1 00010001 17 Ox11

a”101 a5 + a 00100010 34 0x22

a”102 a6 + a2 01000100 68 0x44

a”103 ar7 + a3 10001000 136 0x88

a”104 a3 + a”2 + 1 00001101 13 0x0d

a”105 a™ + a”"3 + a 00011010 26 Oxla

a”106 a”5 + a™4 + a2 00110100 52 0x34

a”107 a6 + a”5 + a”3 01101000 104 0x68

a”108 a”7 + a”6 + a4 11010000 208 0xdo0

a”~109 a7 + a5 + a®™ + a3 + a”2 + 1 10111101 189 Oxbd

a”110 a6 + a5 + a2 + a + 1 01100111 103 0x67

an11l a7 + a6 + a®3 + a”2 + al1ll1001110 206 Oxce

a”112 a7 + 1 10000001 129 0x81

a™113 a4 + a3 + a”2 + a + 1 00011111 31 Ox1f

a”114 a5 + a®4 + a”3 + a®2 + a00111110 62 0Ox3e

a™115 a6 + a”5 + a4 + a”"3 + a2 01111100 124 Ox7c

110

a™116 a7 + a”6 + a®5 + a”4 + a”3 11111000 248 0xf8
a™117 a”7 + a6 + a”5 + a®3 + a”2 + 1 11101101 237 Oxed
a”118 a7 4+ a6 + a”2 + a + 1 11000111 199 Oxc7
a”119 a7 + a™M + a + 1 10010011 147 0x93
a”120 a5 + a*4 + a3 + a + 1 00111011 59 0x3b
a”121 a6 + a”5 + a®4 + a”2 + a01110110118 0x76
arl22 a7 + a6 + a”5 + a3 + a”2 11101100 236 Oxec
a”123 a”7 + a”6 + a”2 + 1 11000101 197 Oxc5
a™124 a7 + a4 + a”2 + a + 1 10010111 151 0x97
a”125 a”s + a™ + a + 1 00110011 51 0x33
a™126 a6 + a”5 + a”2 + a 01100110102 0x66
anl127 a7 + a”6 + a”3 + a2 11001100 204 Oxcc
a”128 a7 + ar2 + 1 10000101 133 0x85
a”129 a4 + a”2 + a + 1 00010111 23 0x17
a”130 a”5 + a3 + a*2 + a 00101110 46 Ox2e
a”131 a6 + a4 + a3 + a2 01011100 92 0x5c
a”132 a7 + a~5 + a*4 + a3 10111000 184 0xb8
a”133 a6 + a5 + a®3 + a2 + 101101101109 Ox6d
a”134 a7 + a6 + a™4 + a3 + all011010 218 Oxda
a”135 a7 + a”5 + a”3 + 1 10101001 169 Oxa9
a”136 a”e + a”3 + a”2 +a +1 01001111 79 Ox4f
a”137 a7 + a”4 + a®3 + a”2 + al1l0011110 158 0x9e
a”138 a”s + 1 00100001 33 0x21
a”139 a6 + a 01000010 66 0x42
a”140 ar7 + a2 10000100 132 0x84
a”l41 a4 + a*2 + 1 00010101 21 0x15
a”142 a5 + a”3 + a 00101010 42 Ox2a
a”143 a6 + a”4 + a2 01010100 84 0x54
a”144 a7 + a”5 + a”3 10101000 168 Oxa8
a”145 a6 + a”"3 + a”2 + 1 01001101 77 Ox4d
a”146 a7 + a”™ + a"3 + a 10011010 154 0x9a
an147 a5 + a”3 + 1 00101001 41 0x29
a”148 a6 + a”4 + a 01010010 82 0x52
a™149 a7 + a”5 + a2 10100100 164 Oxa4
a”150 a6 + a™4 + a”2 + 1 01010101 85 0x55
a”151 a7 + a”5 + a3 + a 10101010 170 Oxaa
a”152 a6 + a”3 + 1 01001001 73 0x49
a™153 a7 + a”4 + a 10010010 146 0x92
a”154 a5 + a®4 + a3 + 1 00111001 57 0x39
a™155 a6 + a”5 + a™4 + a 01110010 114 0x72
a”156 a7 + a”6 + a5 + a"2 11100100 228 Oxed
a”157 a7 + a”6 + a®4 + a”2 + 111010101 213 0xd5
a”158 a7 + a5 + a® + a*2 + a + 1 10110111 183 0xb7
a”159 a6 + a5 + a4 + a + 1 01110011 115 0x73
a”160 a7 + a6 + a”5 + a®2 + all1100110 230 Oxeb6
a”161 a”7 + a’6 + a”4 + 1 11010001 209 Oxdl
a”162 a*” + a”5 + a*4 + a®3 + a”2 + a + 1 10111111 191
Oxbf
a”163 a6 + a”"5 + a + 1 01100011 99 0x63
a”164 a”7 + a’6 + a”2 + a 11000110198 0Oxc6
a”165 a7 + a”d4 + 1 10010001 145 0x91
a™166 a5 + a4 + a”3 + a”"2 +a +1 00111111 63 0x3f
a”167 a”6 + a”5 + a®4 + a”"3 + a®2 + a 01111110 126 Ox7e
a”168 a7 + a*6 + a”5 + a™4 + a”3 + a2 11111100 252 Oxfc
a”169 a7 + a6 + a®5 + a”2 + 111100101 229 Oxeb
a”170 a7 + a”"6 + a™ + a”2 +a +1 11010111 215 0xd7
a~171 a”? 4+ a*5 + a4 + a + 1 10110011179 Oxb3
ar172 a“e + a”"5 + a™ + a”"3 +a +1 01111011 123 0x7b
a™173 a7 + a”6 + a”5 + a™4 + a”"2 + a 11110110 246 Oxfo6
a”174 a7 + a”6 + a5 + a”4 + 111110001 241 Oxfl
o175 a7 + a6 + a®5 + a4 + a3 + a”2 + a + 1 11111111 255
Oxff
a”176 a7 4+ a6 + a5 + a + 1 11100011 227 Oxe3
a™~177 a7 + a* + a” + a*3 + a + 1 11011011 219 Oxdb
a™178 a*? 4+ a5 + a3 + a + 1 10101011171 Oxab

111

a™179 a6 + a”"3 + a + 1 01001011 75 Ox4b

a”180 a7 + a”4 + a”2 + a 10010110 150 0x96

a”181 a5 + a”4 + 1 00110001 49 0x31

a”182 a6 + a”5 + a 01100010 98 0x62

a”183 a”7 + a”6 + a2 11000100 196 Oxc4

a~184 a7 + a™4 + a”2 + 1 10010101 149 0x95

a”185 a5 + a4 + a2 + a + 1 00110111 55 0x37

a”186 a6 + a”5 + a3 + a”2 + a 01101110110 Oxo6e

a”187 a7 + a”6 + a4 + a”3 + a2 11011100 220 Oxdc

a”188 a7 + a”5 + a”2 + 1 10100101 165 Oxab

a”189 a6 + a4 + a”2 + a + 1 01010111 87 0x57

a™190 a7 + a5 + a®3 + a®2 + al1l0101110174 Oxae

a”191 a6 + 1 01000001 65 0x41

a”192 a”7 + a 10000010 130 0x82

a”193 a™ + a”3 + 1 00011001 25 0x19

a”194 a5 + a”4 + a 00110010 50 0x32

a”195 a6 + a5 + a2 01100100 100 0x64

a”196 a7 + a”6 + a3 11001000 200 Oxc8

a”197 a7 + a*3 + a*2 + 1 10001101 141 0x8d

a”198 a2 + a + 1 00000111 7 0x07

a”~199 a3 + a”2 + a 00001110 14 0x0e

a”200 a4 + a”3 + a2 00011100 28 Ox1lc

a”201 a”5 + a”4 + a”3 00111000 56 0x38

ar202 a6 + a”5 + a4 01110000 112 0x70

a”203 a7 + a”6 + a”b 11100000 224 0xe0

a”204 a7 + a*6 + a4 + a”3 + a®2 + 1 11011101 221 Oxdd

a”205 a7 + a”"5 + a*2 + a + 1 10100111 167 Oxa’7

a”206 a”e + a4 + a + 1 01010011 83 0x53

a”207 a7 + a”5 + a”2 + a 10100110 166 Oxab

a”208 a6 + a”d + 1 01010001 81 0x51

a”209 a7 + a”5 + a 10100010 162 Oxa2

a”210 a6 + a™4 + a®3 + 1 01011001 89 0x59

a”211 a7 + a”5 + a®™ + a 10110010 178 Oxb2

ar212 a6 + a”5 + a®4 + a”3 + 101111001 121 0x79

a”213 a7 + a”6 + a5 + a”4 + alll10010 242 0xf2

a”214 a7 + a*6 + a*5 + a™4 + a”3 + 1 11111001 249 0xf9

a”215 a7 + a*6 + a*5 + a”"3 + a”2 + a + 1 11101111 239
Oxef

a”216 a7 + a”6e + a + 1 11000011 195 Oxc3

ar217 a”? 4+ a4 + a3 + a + 1 10011011 155 0x9b

a”218 a5 + a”3 + a + 1 00101011 43 0x2b

a”219 a6 + a™4 + a”2 + a 01010110 86 0x56

a”220 a7 + a”5 + a3 + a”2 10101100 172 Oxac

ar221 are + a”2 + 1 01000101 69 0x45

ar222 a7 + a”"3 + a 10001010 138 0x8a

a”223 a3 + 1 00001001 9 0x09

ar224 a4 + a 00010010 18 0x12

a”225 a”s + a2 00100100 36 0x24

an226 a6 + a"3 01001000 72 0x48

ar227 a”7 + a™4 10010000 144 0x90

ar228 a5 + a®4 + a”3 + a®2 + 100111101 61 0x3d

a”229 a6 + a”5 + a®4 + a”3 + a01111010122 Ox7a

a”230 a”7 + a”6 + a”5 + a”d + a2 11110100 244 Oxf4

a”231 a7 + a*6 + a*5 + a™4 + a*2 + 1 11110101 245 0xf5

ar232 a7 + a6 + a*5 + a®4 + a”2 + a + 1 11110111 247
Ox£f7

a”233 a7 + a”6 + a*5 + a”d + a + 1 11110011 243 0xf3

a”234 a7 + a*6 + a5 + a™4 + a3 + a + 1 11111011 251
O0xfb

a”235 a7 + a”"6 + a®5 + a”"3 +a +1 11101011 235 Oxeb

a”236 a7 + a6 + a3 + a + 1 11001011 203 Oxcb

ar237 a7 + a*3 + a + 1 10001011 139 0x8b

a”238 a3 +a + 1 00001011 11 0x0b

a”239 a™ + a”2 + a 00010110 22 0x16

a”240 a5 + a”3 + a2 00101100 44 Ox2c

112

a”241 a6 + a”4 + a”3 01011000 88 0x58
ar242 a”7 + a”5 + a™4 10110000 176 0xb0
a”243 a6 + a”5 + a4 + a”3 + a®2 + 1 01111101 125 0x7d
a”244 a7 + a*6 + a®*5 + a™4 + a”3 + a 11111010 250 Oxfa
a”245 a7 + a”6 + a®5 + a”3 + 111101001 233 Oxe9
a”246 a7 + a”6 + a”3 + a”2 +a +1 11001111 207 Oxcf
ar247 a7 + a + 1 10000011 131 0x83
ar248 a™ + a”"3 + a + 1 00011011 27 Ox1b
a”249 a”5 + a™4 + a”2 + a 00110110 54 0x36
a”250 a6 + a”5 + a3 + a"2 01101100 108 Ox6c
a”251 a”7 + a*6 + a*4 + a3 11011000 216 0xd8
an252 a7 + a5 + a®3 + a2 + 110101101173 Oxad
a”253 a6 + a”2 + a + 1 01000111 71 0x47
a”254 a7 + a”3 + a®2 + a 10001110 142 Ox8e
a”255 1 00000001 1 0x01

Lampiran 2. Script Code Sagemath: Proses Encoding dan Decoding

113

import random

R.<x> = PolynomialRing (GF (2
irreducible polynomial: x
F.<a> = GF (2”8, modulus = x

))
8 + x™MM + x*3 + x*2 + 1 (0x11D)
8 + x™M + x*"3 + x"2 + 1)

~

print ("=== Lapangan GF(278): P(x) = x"8 + x4 + x"3 + x"2 + 1 ===")
print ("Elemen primitif o = 0x02\n")
====== Helper ======

def poly to int(p):
coeffs = p.coefficients (sparse=False)

val = 0
for i, ¢ in enumerate (coeffs):
if int(c) ==
val += (1 << 1)

return val

def element to alpha power (elem) :
if elem ==
return "0"
for i in range (255):
if a**i == elem:
return f"oN{i}"
return "?"

====== Konversi Arabic -> 16-bit biner per huruf ======
def arabic to binarylé6 (text):
hasil = []
for i, huruf in enumerate (text, start=1):
if huruf == " ":
bits = "0000000000100000"
else:

bits = format (ord(huruf), '0léb'")
hasil.append((i, huruf, bits))
return hasil

====== Ubah teks -> dua blok k-symbol (8-bit/simbol) dinamically ======
def text to two blocks for k(text, k):

Menghasilkan dua blok masing-masing panjang k (symbol 8-bit).

Jika data kurang, dipad dengan 0; jika lebih, di-truncate.

wun

bytes8 = []
for huruf in text:
if huruf == " ":
bitslé = "0000000000100000"
else:
bitsl6 = format (ord(huruf), "0leb")

bytes8.append (bitsl6[:8])
bytes8.append (bitsl6[8:1])
ints = [int(b,2) for b in bytes8]
pad agar minimal 2*k simbol
if len(ints) < 2*k:
ints += [0]*(2*k - len(ints))
truncate jika lebih
if len(ints) > 2*k:
ints = ints[:2*k]
ml ints[:k]
m2 = ints[k:2*k]
return ml, m2

====== konversi int -> GF element (sesuai field) ======
def int to GF256 (v):

bits = [int(b) for b in format (v, '08b"')]

p = sum(bits[-(i+1)] * x**i for i in range(8))

return F(p)

====== Syndromes, BM, Chien, Forney (generik) ======
def syndromes from vector sagemath(r, t, step=5, start=0):
n_local = len(r)

S = [1

114

for j in range(l, 2*t + 1):

sj = F(0)
for i in range(n local):
sj += r[i] * (a**((start + step*i) * 3J))
S.append(sj)
return S
def berlekamp massey (S) :
N = len(S)
C=[F(1)] + [F(0O)] * N
B = [F(1)] + [F(O)] * N
L =0, m=1; b=F(1)
for n in range(N):
d = S[n]
for i in range(l, L+1):
d += C[1]*S[n-1]
if d ==
m += 1
else:
coef =d / b
T = C[:]
for i in range (0, N+1l-m):
Cli+m] -= coef * B[1i]
if 2*L <= n:
L=n+1-1L
B=T
b=4d
m=1
else:
m += 1
return C[:L+1], L
def chien search(sigma coeffs, n local, step=5, start=0):

errors = []
for i in range(n_local):

xinv = a** (- (start + step*i))

val = F(0)

for j, ¢ in enumerate(sigma coeffs):
val += ¢ * (xinv**j)

if val ==

errors.append (i)
return errors
def forney magnitudes (S,
PR = PolynomialRing (F,
X = PR.gen()
S poly = PR(0)
for j, Sj in enumerate(S):
S poly += Sj * X**j
sigma poly = PR(0)
for j, cj in enumerate(sigma coeffs):
sigma poly += cj * X**j
Omega = (S _poly * sigma poly) %
sigma prime = sigma poly.derivative()
magnitudes = {}
for pos in error positions:
xinv = a** (- (start + step*pos))
num = Omega (xinv)
den = sigma prime (xinv)
if den
magnitudes([pos] =
else:
magnitudes|[pos] =
return magnitudes

sigma_coeffs,
x1)

[

None

- num / den

Fungsi tampil codeword
show cw(title, cw):
print (£"\n--- {title}
print ("a”i:", [element to alpha power (c)
print("dec:", [poly to_int(c.polynomial (
print ("hex:",

—-—=")

MAIN:
tetap

proses 10 ayat (t dipaksa 2)

error_positions,

t, step=5,

(X**(2*t))

for ¢ in cw])
)) for c in cw])

start=0) :

[f"0x{poly to int(c.polynomial()):02x}" for c in cw])

115

FORCED T = 1 # memaksa 2 error per codeword
daftar ayat = [
(teks arab, epl list, evl list, ep2 list, ev2 list)

("5,20] ,"15,> ldase Legade Lo gedaxd Lile], [0x9A,0xF3], [10,35],
[0xA5, 0x6E]),
("2,14] ,"Lslwse olol delull e ogliwn], [0xB1,0xC3], [7,30], [0x9F,0x771),

("3,15,30] ," 550y ohe! oo LolLs], [0xB2,0xC4,0x5E], [5,22], [0x88,0xAA]l),
("1] ,"esSid Bdaldl ps1], [0xA2], [8], [0x5B]),
("4, 18] S Mewse S84 IS Js], [0x91,0xE1], [2,28], [0x77,0x331),
("6,11,24] ,"Liar,ly L ,421 Li,], [0xAF,0xC8,0x10], [14], [0x99]),
("0] ,"5es! (Gsiesald! Lasi], [0x80], [20,40], [OxDE,O0xAD]),
("9,21] ,"_ s solss <ilw 15141, [OxFE,0x01], [3,17,45], [0x55,0x66,0x77]),
("12,13,14,15] ,"gsales ¥ a500S o) Sidl Jal 1 40lwls], [0x11,0x22,0x33,0x44],
[6], [O0xAB]),

("5:112,30,48,49,50] ,"dblLall &ajs gxdl sL> J3], [0x12,0x34,0x56,0x78,0x9A],
[5,25], [OxDE,O0xAD])
]

Pastikan tepat 10
if len(daftar ayat) != 10:
raise ValueError ("daftar ayat harus berisi tepat 10 entri.")

for idx, (text, epl, evl, ep2, ev2) in enumerate(daftar ayat, start=l):
print ("\n" + "="*80)
print (f"=== Proses Ayat {idx} ===")
print ("="*80)
print ("Teks Arab:", text)
$ - MODIF: PAKSA 2 ERROR SAJA ——-—-—-———-—-——-—-

ambil hanya 2 elemen Jjika ada, kalau kosong buat sampai 2 error acak
epl = list(epl) [:FORCED_T]
evl = list(evl) [:FORCED T]
ep2 = list(ep2) [:FORCED T]
ev2 = list(ev2) [:FORCED T]

jika kurang dari FORCED T, tambahkan posisi/magnitude acak nonzero
while len(epl) < FORCED T:
pos = random.randint (0, n-1)
mag = random.randint (1,255)
epl.append (pos)
evl.append (mag)
while len(ep2) < FORCED T:
pos = random.randint (0, n-1)
mag = random.randint (1,255)
ep?2.append (pos)
ev2.append (mag)

sekarang t needed = FORCED T (2)
t_needed = FORCED_T
hitung k sesuai t_needed
k ayat = n - 2 * t needed # t=2 -> k=47
if k_ayat <= 0:
raise ValueError (f"t needed={t needed} terlalu besar -> k ayat={k ayat}
<= 0. Kurangi jumlah error.")

print (f"Memaksa t = {t needed} (2 error per codeword). Jadi k = {k ayat}
(simbol pesan per block).")

1) tabel 16-bit
print ("\n=== Pesan Arab ke Representasi Biner (l6-bit) ===")
tbl = arabic to binaryl6 (text)
for no, huruf, bits in tbl:
print (f"{no:2d}\t{huruf}\t{bits}™)

2) buat blok k-symbol sesuai k ayat

ml full, m2 full = text to two blocks for k(text, k ayat)

print (£"\nBlok pesan 1 (panjang asli {len(ml_full)} simbol):\n{ml full}\n")
print (f"Blok pesan 2 (panjang asli {len(m2 full)} simbol):\n{m2 full}\n")

pad/truncate ml dan m2 agar panjang == k ayat (fungsi already does, still
keep)
def adjust block for k(block, k):
bl = list (block)

116

if len(bl) < k:
bl = bl + [0] * (k - len(bl))

print (f" - Block dipad dari {len(block)} -> {k} simbol (dengan 0).")
elif len(bl) > k:

bl = bl[:k]

print (£" - PERINGATAN: Block dipotong dari {len(block)} -> {k}

simbol (truncate!).")
return bl

ml = adjust block for k(ml full, k ayat)
m2 = adjust block for k(m2_ full, k_ayat)

3) bangun RS khusus ayat ini (k berubah)

print (f"\n=== Bangun RS untuk ayat {idx}: n={n}, k={k _ayat} (t capability =
{(n-k_ayat)//2}) ===")

C = codes.ReedSolomonCode (F, n, k ayat)

G = C.generator matrix()

H = C.parity check matrix()

--- TAMBAHAN: fungsi untuk menampilkan matriks G dan H secara rapi ---
def pretty print matrix alpha hex(name, M):
try:

rows = M.nrows ()
cols = M.ncols ()
print (f"\n{name} (nrows={rows}, ncols={cols}):")
for r in range (rows) :
row = M.row(r)
alpha row = [element to alpha power(el) for el in row]
hex row = []
for el in row:
try:
dec = poly to int(el.polynomial())
hex row.append (f"0x{dec:02x}")
except Exception:
fallback if el not polynomial
try:
hex row.append (hex (int(el)))
except Exception:
hex row.append (str(el))
print (f"r{r:02d} | alpha: {alpha row} | hex: {hex row}")
except Exception as e:
print (f"Gagal tampilkan matriks {name}: {e}")

panggil pretty print untuk G dan H
pretty print matrix alpha hex ("Generator matrix G", G)
pretty print matrix alpha hex("Parity-check matrix H", H)

4) encoding (pakai G ayat ini)
def encode rs with G(msg bits, G local):
v harus length k ayat
v = vector (F, [F(s) for s in msg bits])
c =v * G_local
return list(c)

def make message vector from ints(int list):
setiap elemen int list harus 0..255
return vector (F, [int to GF256(int(v)) for v in int list])

contoh penggunaan untuk ml dan m2:

msg vecl = make message vector from ints(ml) # vektor atas F, panjang
k_ayat

msg _vec2 = make message vector from ints(m2)

sekarang gunakan C.encode (mengharapkan vector atas F, panjang = k)
cw = C.encode (msg vecl)

cw2 = C.encode (msg_vec2)

print ("\n=== Codeword 1 (a”i) ===")

print ([element to alpha power(c) for c in cw])
print ("\n=== Codeword 2 (a”i) ===")

print ([element to alpha power (c) for c in cw2])
show_cw ("cw", cw)
show cw("cw2", cw2)

117

5) sisip error sesuai input (pos harus < n)

print ("\n=== Simulasi Penambahan Error ===")

print ("Codewordl: posisi", epl, "nilai (hex)", [hex(v) for v in evl], " =>
(a*i):", [element to_alpha power (int to GF256(v)) for v in evl])

print ("Codeword2: posisi", ep2, "nilai (hex)", [hex(v) for v in ev2], " =>
(a*i):", [element to_alpha power (int to GF256(v)) for v in ev2])

def add errors to cw(cw, positions, values):
corrupted = list (cw)
for pos, val in zip(positions, values):
if pos < 0 or pos >= len(corrupted):
raise IndexError (f"Posisi error {pos} di luar jangkauan
(0..{len(corrupted)-1})")
corrupted([pos] += int to GF256 (val)
return corrupted

fungsi konversi magnitude -> elemen F (sudah diperbaiki)
def gf element from maybe int (x):
Jika x sudah elemen lapangan F => kembalikan apa adanya.
Jika x bisa dikonversi ke int (0..255) => kembalikan
int to GF256 (int (x)) .
Jika tidak bisa keduanya, raise ValueError.
mon
try:
px = getattr(x, 'parent', None)
if callable (px) :
try:
parent of x = x.parent ()
if parent of x is F:
return x
except Exception:
pass
else:
if px is F:
return x
except Exception:
pass

try:
xi = int(x)
except Exception as e:
raise ValueError (f"tidak bisa konversi magnitude {x!r} ke int atau
elemen F: {e}l")
if xi < 0 or xi > 255:
raise ValueError ("int magnitude harus di rentang 0..255")
return int to GF256 (xi)

def add errors at positions(cw, positions, magnitudes):
cw: list/sequence elemen F atau vector over F
positions: list of int indices (0..n-1)
magnitudes: list with same length; each magnitude int 0..255 atau elemen

F
Mengembalikan: list elemen F (salinan cw dengan error additive di posisi
tsb) .
if len(positions) != len(magnitudes):
raise ValueError ("positions dan magnitudes harus sama panjang")
res = [c for c in list(cw)]
n_local = len(res)

for pos, mag in zip(positions, magnitudes) :
if not (0 <= pos < n_local):
raise IndexError (f"pos {pos} out of range (0..{n local-1})")
mag el = gf element from maybe int (mag)
res[pos] = res[pos] + mag_ el
return res

fungsi bantu random errors (tetap bisa digunakan)
def add random errors(cw, num errors=1, allow_replacement=False,
mag_nonzero=True) :
n_local = len(cw)
if not allow replacement and num errors > n local:
raise ValueError ("num errors > n local dan allow replacement=False")

118

if allow replacement:
positions [random.randrange (0, n_local) for _ in
range (num _errors)]
else:
positions = random.sample (range(n_local), num errors)
magnitudes = []
for in range(num_errors):
m =0
while True:
m = random.randint (1,255) if mag nonzero else
random.randint (0, 255)
if not mag_nonzero or m != 0:
break
magnitudes.append (m)
res = add errors_at positions(cw, positions, magnitudes)
return res, positions, magnitudes

gunakan posisi/magnitude dari daftar epl/evl (sudah dipaksa FORCED T
elemen)

cwl err = add errors_to cw(cw, epl, evl)

cw2_err = add errors to cw(cw2, ep2, ev2)

print ("\nCodewordl asli (a”i):", [element to alpha power(c) for c in cw])

print ("Codewordl rusak (o”i):", [element to alpha power(c) for c in
cwl err])
print ("\nCodeword2 asli (a”i):", [element to_alpha power(c) for c in cw2])

print ("Codeword2 rusak (o”i):", [element to alpha power(c) for c in
cw2_err])

diagnose & convert ambient Jjika diperlukan sebelum decode
def diagnose ambient and fix(word, C _obj, field F, expected n):

diag = {}
try:
ambient = C obj.ambient space()
diag['ambient repr'] = ambient
except Exception as e:
diag['ambient repr'] = f"Could not fetch ambient via
C obj.ambient space(): {e}"
try:

seq = list (word)
except Exception:
raise ValueError ("word tidak bisa dikonversi menjadi list; berikan
list/vector.")

diag['given length'] = len(seq)
diag['expected length'] = expected n
converted = []

problems = []

for i, e in enumerate (seq):
converted el = None
try:
if hasattr(e, 'parent') and callable(e.parent):
try:
if e.parent() is field F:
converted el e
except Exception:
pass
except Exception:
pass

if converted el is None:
try:
el = int (e)
if not (0 <= ei <= 255):
problems.append((i, e, "int out of range 0..255"))
else:
converted el = int to GF256 (ei)
except Exception as ex:
problems.append((i, e, f"cannot cast to int: {ex}"))

converted.append (converted el)

119

diag['conversion problems']

if len(converted) !

"

({expected n}).

"Pastikan word length

repr (diag))

final vec
return final vec, diag

contoh penggunaan diagnosa
try:
use example 'corrupted
else use cwl _err
corrupted for decode
try:

corrupted for decode
(may or may not exist)

except NameError:
corrupted for decode

exists,

fixed vec, diagnostics
n)

print ("Diagnostik:",

corrected

c, F,

vector (field
diag['final vector parent']

problems

expected n:
raise ValueError (f"Panjang word

({len(converted) }) != expected n

+

= n. Diagnostics:

converted)
final vec.parent ()

FV

+ decode via C.decode

' from earlier deterministic injection if

None

corrupted # from example injection earlier

cwl err

diagnose ambient and fix(corrupted for decode,

diagnostics)
C.decode (fixed vec)

print ("\nDecode sukses. Hasil corrected codeword:")

show_cw ("corrected",
print ("corrected (hex):
in list (corrected)])
except ValueError as e:
print ("ValueError saat p
except Exception as e:

Ccor

"
’

print ("Error lain saat decode:",

6) sindrom dan validasi

t capability (n - k _ayat)

print (£"\n
§ HevAT) ===")

S_eval 1
start=0)

S hv 1

syndromes_from ve

list (H * vector (F,

print ("\n-- Sindrom Codewordl
71’
_to_alpha power(s)}

for 1, s in enumerate(S_eval
print (£"S_{i} {element

{poly to_int(s.polynomial())})")

print ("\n-- Sindrom Codewordl

for i, s in enumerate(S hv 1
print (£"S_{i} {element

{poly to int(s.polynomial())})")
samel all(s_eval 1[1] S

Hitung sindrom

_to_alpha power(s)}

_hv_1[i]

rected)
[f"0x{poly to int(c.polynomial()):02x}

"

for c

ersiapan decode:", e)

e)

/]2
(2t

{2*t_capability}) dan validasi (evaluasi

ctor_sagemath (cwl_err, t capability, step=5,
cwl err))
(evaluasi)

1):

——m)
(dec

(Hev"T)
1):

——m)

’

(dec

for 1 in range(len(S_eval 1)))

print ("Validasi sindrom codewordl:", "Cocok " if samel else "Tidak cocok
Au)

S _eval 2 = syndromes from vector sagemath(cw2 err, t capability, step=5,
start=0)

S hv 2 = list(H * vector(F, cw2 err))

print ("\n-- Sindrom Codeword2 (evaluasi) --")

for i, s in enumerate(S eval 2, 1):

print (£"Ss_ {i}
{poly to int(s.polynomial())})")

print ("\n-- Sindrom Codeword?2

for 1, s in enumerate(S_hv 2
print (£"s_ {i}

{poly to int(s.polynomial())})")
same?2 all(s eval 2[i] == S

A")

~hv 2[1i]
print ("Validasi sindrom codeword2:",

{element to alpha power(s)} (dec
(Hev?T) -=")
, 1) .
{element to alpha power(s)} (dec

for i in range(len(S eval 2)))
"Cocok ¥" if same2 else "Tidak cocok

7) decode: BM + Chien + Forney (menggunakan t capability)

print ("\n

—==m)

Dekoding (Berle

kamp-Massey -> Chien -> Forney) untuk codewordl

120

S1 = S eval 1
sigmal, L1 = berlekamp massey(S1)
print ("Berlekamp-Massey hasil: degree L =", L1)

print ("sigma coeffs (a”i):", [element to_ alpha power(c) for c in sigmall)

errs _posl = chien search(sigmal, n, step=5, start=0)

print ("Posisi error (Chien):", errs posl)

magsl = forney magnitudes (S1l, sigmal, errs posl, t capability, step=5,
start=0)

for pos, val in magsl.items():
if val is None:
print (f"pos {pos}: magnitude = ERROR (div0)")
else:
print (f"pos {pos}: magnitude = {element to alpha power(val)} (dec
{poly to int(val.polynomial())})")
koreksi
cwl corr = list(cwl err)
for pos, mag in magsl.items():
if mag is not None:
cwl corr[pos] -= mag
print ("\nSindrom setelah koreksi (codewordl):", [element to alpha power (s)
for s in syndromes from vector sagemath(cwl corr, t capability, step=5,
start=0)1])
print ("Dekoding codewordl sukses?" , "YA" if all(s==0 for s in

syndromes_from vector sagemath(cwl corr, t capability, step=5, start=0)) else
"TIDAK")
print ("\n=== Dekoding untuk codeword2 ===")

S2 = S eval 2
sigma2, L2 = berlekamp massey (S2)
print ("Berlekamp-Massey hasil: degree L =", L2)

print ("sigma coeffs (a”i):", [element to alpha power(c) for c in sigma2])

errs pos2 = chien search(sigma2, n, step=5, start=0)

print ("Posisi error (Chien):", errs pos2)

mags2 = forney magnitudes (S2, sigma2, errs pos2, t capability, step=5,
start=0)

for pos, val in mags2.items() :
if val is None:
print (f"pos {pos}: magnitude = ERROR (div0)")
else:
print (f"pos {pos}: magnitude = {element to alpha power(val)} (dec
{poly to_int(val.polynomial())})")
cw2_corr = list(cw2 err)
for pos, mag in mags2.items():
if mag is not None:
cw2 corr[pos] -= mag
print ("\nSindrom setelah koreksi (codeword2):", [element to alpha power(s)
for s in syndromes from vector sagemath(cw2 corr, t capability, step=5,
start=0)1])
print ("Dekoding codeword2 sukses?" , "YA" if all(s==0 for s in
syndromes_from vector sagemath(cw2 corr, t capability, step=5, start=0)) else
"TIDAK")

8) tampil akhir

show_cw("cwl (rusak)", cwl_err)
show_cw ("cwl (terkoreksi)", cwl corr)
show cw("cw2 (rusak)", cw2 err)
show_cw ("cw2 (terkoreksi)", cw2 corr)

try:
fixed vec, diagnostics = diagnose ambient and fix(cwl corr, C, F, n)
print ("Diagnostik:", diagnostics)

except Exception as e:
print ("Diagnostik/gagal:", e)

try:
pw = C.decode to message (vector (F, [int to GF256 (
poly to int(c.polynomial())) if hasattr(c, 'polynomial') else
int to GF256 (int(c)) for c in cwl corr])
show cw("pwl (hasil decoding)", pw)
except Exception as e:
print ("Gagal decode to message untuk cwl corr:", e)

try:
fixed vec2, diagnostics2 = diagnose ambient and fix(cw2 corr, C, F, n)

121

print ("Diagnostik cw2:", diagnostics2)
except Exception as e:
print ("Diagnostik cw2/gagal:", e)

try:
pw2 = C.decode_to message (vector(F, [int to GF256(
poly to _int(c.polynomial())) if hasattr(c, 'polynomial') else
int to GF256 (int(c)) for c in cw2 corr])
show _cw("pw2 (hasil decoding)", pw2)
except Exception as e:

print ("Gagal decode to message untuk cw2 corr:", e)
=== SELESAI LOOP 10 AYAT ===
print ("\n=== Semua ayat telah diproses (dengan 2 error per codeword, k = {0}).

===".format (k ayat))

122

Lampiran 3. Matriks Generator dalam Bentuk Representasi a’ GF (2°)

Generator matrix G

(nrows=47,

ncols=51) :

r00 | ['O(AO', 'O(AO', 'O(AO', 'O(AO', 'O(AO', 'O(AO', 'O{AO', 'O{AO', 'O{AO', 'O{AO',
9”0, 'ar0', 'ar0', 'ar0', 'ar0', 'ar0', 'o~0', 'ar0', 'or0', 'ar0', 'or0',
"or0', 'ar0', 'or0', 'a0', 'a”0', 'ar0', 'o”0', 'a*0', 'a”0', 'a’0', 'o~0',
9”0, 'at0', 'ar0', 'at0', 'or0', 'at0', 'o~0', 'ar0', 'o~0', 'ar0', 'o~0’,
"or0', 'ar0', 'or0', 'a0', 'a”0', 'a0', 'a”0', 'a0']

r0l | ['0”0', 'a”5', 'o~10', 'otl5', 'at20', 'o”25', 'o~30', 'ar35', 'ar40',
'o*45', 'a*50', 'a”55', 'a”60', 'at65', 'a~70', 'o”75', 'o”80', 'a85', 'a~90',
"0”95', 'qr100', 'atl05', 'atl10', 'atll5', 'at120', 'atl25', 'a~130', 'o”135',
'0”140', 'or145', 'or150', 'otl55', 'atle0', 'arle5', 'arl70', 'arl75', 'arl80',
"o~185', 'or190', 'ot195', 'ar200', 'at205', 'ar210', 'ar215', 'ar220', 'at225',
"0”230', 'or235', 'or240', 'or245', 'or250']

r02 | ['a”0', 'a*l0', 'a”20', 'o~30', 'ot40', 'a”50', 'o”60', 'a~70', 'o80',
"0”90', 'oqr100', 'arl10', 'at120', 'at130', 'a”140', 'a”150', 'o”160', 'o~170',
"0”180', 'o~190', 'ot200', 'ot210', 'at220', 'at230', 'at240', 'a250', 'a’5',
"or15', 'ar25', 'at35', 'ot45', 'o~55', 'ar65', 'ar75', 'o~85', 'or95', 'arl05',
'o~115', 'ot125', 'ot135', 'atl45', 'atl55', 'atl65', 'atl75', 'a”185', 'at195',
"0r205', 'or215', 'at225', 'at235', 'qr245']

r03 | ['a”0', 'a"l5', 'a”30', 'at45', 'a”60', 'a”75', 'a”90', 'o~105', 'otl120',
"o~135', 'o~150', 'otl165', 'otl180', 'otl95', 'ar210', 'at225', 'at240', 'at0',
"or15', 'ar30', 'at45', 'a”60', 'ot75', 'at90', 'a~105', 'o”120', 'o~135',
"0~150', 'or165', 'otl180', 'ofl95', 'ar210', 'at225', 'ar240', 'atr0', 'otl5',
"0”30", 'ar45', 'an60', 'o~75', 'or90', 'orl05', 'orl20', 'ofl35', 'orls07,
"0”165', 'o~180', 'or195', 'or210', 'ot225', 'ot240']

r04 | ['a™0', 'a20', 'o”40', 'o*60', 'a80', 'a~100', 'a~120', 'o~140',
'0*160', 'o~180', 'ot200', 'ot220', 'at240', 'at5', 'a”25', 'at45', 'ot65',
"0”85', 'qrl05', 'arl25', 'atl45', 'atl65', 'a”185', 'ar205', 'a”225', 'o~245',
"0*10', 'a*30', 'a”50', 'a~70', 'o~90', 'a110', 'a”130', 'a”150', 'a”170',
"0”190', 'or210', 'or230', 'at250', 'otl5', 'at35', 'o”55', 'or75', 'ar95',
"o”115', 'o”135', 'o”155', 'a”l75', 'a”195', 'ar215', 'ar235']

r05 | ['0”0', 'a”25', 'o”50', 'or75', 'arl00', 'ofl25', 'arl50', 'arl7s',
'0”200', 'a”225', 'a”250', 'ar20', 'ar45', 'ar70', 'a”95', 'arl20', 'arl45',
"o”170', 'or195', 'ar220', 'at245', 'atl5', 'at40', 'o”65', 'ot90', 'atll5',
"o”140', 'o”165', 'o”190', 'o”215', 'o”240', 'o”10', 'or35', 'at60', 'o”85',
"0~110', 'o~135', 'ot160', 'ot185', 'of210', 'at235', 'af5', 'a”30', 'ot55',
'0”80", 'arl05', 'ar130', 'atl55', 'ar180', 'at205', 'ar230']

r06 | ['0”0', 'a~30', 'o”60', 'ar90', 'ot120', 'o150', 'o180', 'at210',
"0r240', 'or15', 'ar45', 'a”75', 'o~105', 'o~135', 'orl65', 'orl95', 'ar225',
"or0', 'a”30', 'a”60', 'ot90', 'a”l20', 'a150', 'a”180', 'a”210', 'a”240',
"o~15', 'ar45', 'at75', 'o~105', 'o~135', 'o~165', 'o~195', 'o~225', 'o~0',
"0*30", 'at60', 'a”90', 'o”120', 'o~150', 'o~180', 'o~210', 'o~240', 'o~l5',
"or45', 'qr75', 'a*105', 'a”135', 'a”165', 'o”195', 'ot225']

r07 | ['a”0', 'a*35', 'a”70', 'o~105', 'o~140', 'o*175', 'ot210', 'ot245',
"0”25", 'ar60', 'a”95', 'a~130', 'o~165', 'o~200', 'o~235', 'o~l5', 'o”50',
"0”85', 'ar120', 'arl55', 'ar190', 'ar225', 'ar5', 'or40', 'or75', 'arll0',
'o~145', 'o~180', 'or215', 'ar250', 'or30', 'at65', 'o~100', 'o”135', 'o~170',
"0”205', 'or240', 'or20', 'at55', 'a”r90', 'o~l25', 'o~160', 'o”195', 'or230°,
"o~10', 'at45', 'a”80', 'o~1l5', 'o~150', 'o~185', 'or220']

r08 | ['0”0', 'ar40', 'o”80', 'o~120', 'orl60', 'or200', 'or240', 'onr25',
"0r65', 'atl05', 'atl45', 'atl185', 'at225', 'atl0', 'a”50', 'a”90', 'o~130',
"0~170', 'or210', 'or250', 'or35', 'ar75', 'o”1l5', 'o”155', 'o”195', 'o~235',
"0*20', 'a”60', 'a~100', 'o~140', 'o”180', 'o”220', 'o”5', 'at45', 'a~85',
"o~125', 'or165', 'or205', 'ar245', 'or30', 'ar70', 'o”110', 'o”150', 'o”190',
'0”230', 'ot15', 'a55', 'a”95', 'or135', 'or175', 'ot215']

r09 | ['a”0', 'at45', 'a”90', 'o~135', 'o~180', 'or225', 'orl5', 'at60',
"0”105', 'or150', 'or195', 'or240', 'or30', 'ar75', 'o”120', 'o”165', 'or210',
"or0', 'a“45', 'a”90', 'o~135', 'o~180', 'at225', 'atl5', 'at60', 'o~105',
"0~150', 'or195', 'or240', 'or30', 'at75', 'o”120', 'o~165', 'or210', 'or0',
"or45', 'ar90', 'a~135', 'a~180', 'a”225', 'a”15', 'o~60', 'o~105', 'ot150',
"0”195', 'or240', 'or30', 'ar75', 'a”120', 'o”165', 'or210']

rl0 | ['a”0', 'a"50', 'o”100', 'o~150', 'a~200', 'a~250', 'o~45', 'o~95',
"o~145', 'or195', 'at245', 'ot40', 'ar90', 'o~140', 'o~190', 'ot240', 'o~35,
"0~85', 'a*135', 'a185', 'a”235', 'a”30', 'o”80', 'o~130', 'o~180', 'ot230',
"or257, 'arT5', 'ar125', 'a”l75', 'a”225', 'o”20', 'o~70', 'afl20', 'atl70°,
"0”220', 'o”15', 'at65', 'arll5', 'atl65', 'ar215', 'atl0', 'o”60', 'orll0',
"0”160', 'or210', 'af5', 'a”55', 'o~105', 'orl55', 'or205']

rll | ['a”0', 'a"55', 'a~110', 'o”165', 'a”220', 'o~20', 'o*75', 'a130',
"o~185', 'ot240', 'ot40', 'ar95', 'a”150', 'a”205', 'a”5', 'ot60', 'all5',
"0”170", 'or225', 'at25', 'ar80', 'o”135', 'o~190', 'ot245', 'o~45', 'or100',
"o~155', 'or210', 'ot10', 'at65', 'a120', 'a~l75', 'a”230', 'a”30', 'o~85',
"0”140', 'or195', 'or250', 'of50', 'arl05', 'atl60', 'an215', 'atl5', 'ar70',
"0~125', 'o~180', 'ot235', 'o”35', 'at90', 'o”145', 'a”200']

123

12 | ['a”0', 'a"60', ‘o~ R R
'an225", 'aA§O' 'aAéO'a }igléO'a }8921O'a %40 S PN I
[e - ’ ’ ’ o ’ a”15", 'ar75! 'a”135" Yo '
oa”0', 'a®e0', 'on120', 'a™180' tan e AR
ar240', 'qr45'. 'q~105', 'ar VoA
'a”30', 'a”90', 'a”150" 'aA210: o . . e e
o R : ’ , 'a”l5', 'a”75', 'o”135' 'a”195" ‘o
'uAggl, :uA12O:, 'q*180', 'at240', 'o”45', 'a~105', 'uA16é' 'uA22é' a'oAéo'
o] . ? %50 , 'o~210', 'o™15', 'o~75', 'an135', 'aA195'}’ 0 ‘
rl3 | ['a”0', 'a"65', 'o”130', 'o”195', 'a5! 'ar70" tan ' Yan
'a”75', 'o~l40', 'o~205', 'ao”l5', 'o”] O P
'a”150" '0(/\215,' '0(/\25', 'O(ég" .O(80" VO‘A145VI 'O‘A210'r VO‘A2O" VO‘A85VI
, , , o . 'a”155', 'a”220', 'a”30', 'ah95', 'of
la/\225l L} A L} L} A L} L} A L} L} A ¢ ! " o 95 o 160'
e ,'uglig', 'uAigg', 'uA165', o”230', 'ot40', 'an105', 'uA17é', 'uA23é'
-aA120: e ' ? ! ' oa”240', 'a~50', 'o”115', 'on180', 'an245! 'an55! '
o ' Aa' ? . a”250', 'at60', 'a”~125', 'a”190'] ' ‘
-GA5é-[? O1é a”70', 'o~140', 'on210', 'o™25', 'a”95', 'a”l65! 'ar235"
A L} L} A L} L} A L} L} A L} L} A !
'qu7OZ ?qA2201 ? 190', 'aAB , 'or75', 'o~145', 'on215', 'a”30', 'aAloé'
s " P , 'an~55', 'o~125', 'o®195', 'o”10', 'o”80', 'o”l1l50' 'aA226'
VGA155: ?GA225: ? }75', :a:245', 'a”60', 'o~130', 'on200', 'aA15': 'an85! '
et ;o225 Aa 40', 'o”~110', 'a”180', 'a”250', 'a”65', 'a”135' 'aA2Oé'
jon20t o ?o , '0”160', 'a*230', 'a*45', 'a*1l5', 'o~185'] ' ‘
~ [~
'uAgé'[? 01%5'a 75", 'a~150', 'on225', 'o™45', 'an120' 'a”195" 'a”l5!
, C(/\ , lc(/\24ol’ lc(/\6ol lc(/\135l lc(/\zlol L} /\, L} 1 " ! f
la/\ol, la/\75l, la/\150l, "ar225! ’l S | ¢ 30 ! « 105', |O(A180|,
or45' . 'qr120', 'aqr195', 'qA15t, Tgn
'arl65', 'on240', 'ar60! 'aA13é' '] 0 A S E T S
, , 'a”210', 'a”30', 'a~105', 'or RN
'O(A75' L} A L} L} A L} L} A L} L} A ! ! ! ¢ 180 o O'
-GA24o: ? 150', 'GA225 , 'on45', 'o~120', 'o™195', 'o”l5', 'oa”90! :uA165"
o . a'6O , 'o~135', 'ao”210', 'o”30', 'a”105" 'a”180"] ' '
N Al A ~ A
'quéoE a'O élo? 80', 'a™1l60', 'w”240', 'o*65', 'a”145', 'a”225', 'o~50'
, ot , 'an35', 'o”1ll5! 'a”195" 'ar20" tan : 4
"a”85! [PV [[PV [[PV [,l S ! ! o loo" 'O(AlSO', 'O(AS',
'qA4O', 'ZAigg" 'ZAggg" 'ZAZE" 'u 180', 'a”230', 'a”55', 'o”135', 'or215°',
, , , . '0*105', 'ar185', 'orl0', 'ar90', 'af
'ar250', 'on75', 'an155! 'an235" ' ' L e A
: . , , 'a”60', 'o”140', 'a”220', 'of ~
;i72?5L: Lg'30', 'o”110', 'o~190', 'aA15': 'aA95',"aA1759]’ st Teriast
VO‘AOVI vg/\85: (vxo(g‘;)7év ujézg:, :O(Ag;’v 'O(A85', 10(/\170', 10(/\0', 10(/\85', 10(/\170',
, , , o 'a”170', 'o”0', 'a”85', 'a” ! ~
lo(/\85l’ lo(/\l'7ol’ lo(/\ol lo(/\85l L} A ! ! ¢ % ! & 170 ! va Ov,
, , 'a”170', 'a”0', 'a”85', 'on IR
'O(A17O' L} A L} L} A L} L} A L} L} A L} ! ! ¢ o 170 % O' 'O(A85'
N ZGA§5? ,'uglgg', .ZAéYO : 35? L 1ar85 T 1er1707, Tar0', 'ar85'. 'ar1707,
’ ~ "y 1 ~ A N
g5t ar70t] ’ , o , 'o~170', 'o”0', 'a”85', 'a®170', 'aoan0',
N ~ ~
?éfziog o O'é5'u 90', 'o~180', 'o™1l5', 'o”105', 'a”l1l95', 'o~30' 'ar120"
O S A S P S A '
lo‘/\ol, lo‘/\goll 'O(AISO', "a”15! 1,/\ 4 4 o’ 240 ! “ 75', 'O(A165',
a”105', 'o~195', 'a”30', 'o” v, o
'an45', 'onl35', 'ar225! 'uA6é' ! 0 0 P
o”150', 'qr240', 'gAT75'. tgn Vo
'a”90', 'a”180', 'orl5! s o ' ' T e
. , 'o®105', 'o~195', 'o~30', 'o”120', 'o” ' g5
;?9135': 'u:225', 'a”60', 'onl50', 'uA24O:, 'uA75:, 'uA165:] orint, erent
~ A A
'QA2éOE G'OAéO'd ?5'1 'a”190', 'on30', 'orl25', 'a”220', 'a”60', 'a”l55"
, o , C(/\ 85!, lc(/\25l’ lc(/\12ol lc(/\215l L} A L} L} A !
'O(A85' 'O(/\l L} L} A L} L} A L} L} A l’ ! o 55 ! o 150' 'C(A245'
lqu751 'aAfgv’ vZAigoz ?012851 ? 212 L oa0h, oras 'QA24O': 'aA8O',’
o , , , , 'a*45', 'qr140', 'ar235', 'ar75', 'af
o 10! L} A L} L} A L} L} A L} | A ! ! % 75 ! o 170',
'quoo: ? 105 ' ? %OO , 'a”40', 'o”135', 'o~230', 'a”70', 'a”le5', 'a”5!
20 | ' Au 195', 'o”35', 'a™130', 'an225', 'o”65', 'a"le0'] ' '
'qA35'[?qglgB'a }g?ZgS:QA%OOéél'aT45', 'a”145', 'on245', 'o”90', 'on190',
, , , an , 'ar180', 'ar25', 'ar125', 'at Vo
lo(/\17ol L} /\1 L} L} A L} L} A L} L} A l, ¢ ! % 225 ! O(/\7O',
\ , , , a/\ 5' la/\4ol la/\14ol Al ~ L} Al A
'a”185', 'on30', 'oa”130' 'ar230" ' ' L L
A o , , Ta”75Y, 'ar175', 'ar20', ot , ~
'2165',"0 %65', 'a”10', 'on1l10', 'aA210': 'aA55',"aA155'i a0ty tarazot
~ A ~
faA7é-[o Olé,30 a”105', 'or210', 'o60', 'o”l65', 'o”1l5', 'a”120' 'ar225"
, 'O(A l, 'O(A3O', 'O(A135' 'O(A24O' 'O(A9O' L} A L} L} A . !
lo(/\ol’ lO(AlOSI’ "o”210" "o~ 60" ,l A ! ! ar19s ! % 45" 'O‘A15O',
, , 'arles! 'arl5! 'ar120" 'anr225" tan
'a”180', 'o”30', 'o”135', 'a”240', 'a” L : LA e
" " , 'a”90', 'a”195', 'ar45', 'gr150', 'or0!
:gAégé',"g 21?', 'a”60', 'anle5', 'aAl5': 'aAIZO': 'aA2251 ?aAgg', '§A286'
22 | }' 20}35',A o ?40', 'a”90', 'onl95', 'on45', 'on1l50'] ' ‘
e a' , ? 110', 'on220', 'a*75', 'a”185', 'an40' 'a”150" 'arb!
A | A A 4 ! !
B ,'qglgg? . g5§?',"u 190', 'on45', 'o”155', 'o®l0', 'o”120', 'on230'
, , o , 'a”le0', 'a”l5' 'or125" 'an235" tan '
'an55', 'arleS5', 'on20! tan ! L s LR S
, 'o”130', 'an240' 'a” 95! 'a”205" 'ar60" '
vo‘/\25v, 'O(A135', 'ar245!" "N ¢ ¢ “ ¢ o " 'O(A17O"
. , 'o”100', 'or210', 'a”65', 'a”1l75', 'o* ~
;23250': 'u:lOS', 'ar215', 'on70', 'uA18O': 'uA35': 'ZA142'3 0T, ariaet
~ A A
-aAlé5E a'O 15'a 115', '«®230', 'o”90', 'a”205', 'a”65', 'o"180' 'ar40"
, O(/\ , lo(/\l3ol’ lo(/\245l lo(/\lOSl lo(/\22ol A} A A} A} /\’ f
e 1701 Tar301. tarast Tarst o ' LSO e A
or120', '0r235', 'qA95' . Tgn [N
o 18ar | randst] tanTeor. tara0h, ter13s: ' V.
o ')) ’ , 'oa”l35', 'an250' 'a”110" 'anr225" tan
'uAggo', :uA6O:, 'a*175', 'a”35', 'a”150', 'uAlo',"uA125' "uA24O' "uglgg"
rg4 |5 : Aa'75 , 'a”190', 'o~50', 'a™l65', 'a”25', 'aAl4O'i ' '
'GA195E a'OA%O'a }29', :aA24O', 'a~105', 'a”225', 'o”90', 'o”210', 'an75'
, ' , 'o~180', 'o™45', 'an165', 'o”30', 'o”150', 'o"15' 'aA13é'
14 4

124

"2 0. 'ar120', 'o~ I I v
o , , , , 'a”30', 'ar150', 'orl5', ot [N
O‘ 120! L} A L} L} A L} L} A 1] | A ! L ¢ 135 L ¢ 0"
nglgov’ 'aAj4? : ? 105', 'o~225', 'o”90', 'w”210', 'a”75', 'a”195', 'a”60'
s [: Ag' 5', 'a®165', 'a”30', 'a”150', 'o”15', 'a”l135'] ' ‘
'O(A235"01'01A105c'x 1%3Aé3éc'>02?0'io(')c'%120', 'ar245', 'o~115', 'on240', 'or110',
, , ot , 'a”225', 'on95', 'or220', 'a”90'
'a”85', 'a”210', 'o~80', 'ar205', ' ; i NPT
o”75'. 'qr200', 'o”r70', "o PN
vo‘/\19ov, vo‘/\6ov, vo‘/\185’v vo‘/\55v’ "N ¢ ! ¢ a19s ! o 65"
Lo o , , 'a”180', 'o”50', 'o~175', 'an45', o
'gAiigc '? 1?2', 'a”35', 'a~l60', 'o~30', 'aA155': 'aA25',,'aA15O', 'ZAEZ?',
, o l, la/\140l, la/\lol, "a”135" "ar5! [PV ! !
LIPS A A i’ % 130']
fifléof u'Oié5'u 130', 'o~5', 'a”135', 'a”l0', '&A14O', 'ar15', 'a~l45', 'or20'!
, o l, la/\155l, la/\30l, "a”160" "a”35! [PV [A ! !
'a®45', 'a”175', 'o~50', 'o~lg80', ! ' Cor a0t rameer.
' , , , , 'a”55', 'a*185', 'or60', 'at [P
a”195', 'o~70', 'ao”200', 'on75', 'o” . IR
a”205', 'o~80', 'or210', 'gA85', 'on
'a”90', 'at220', 'or95! ,'qA225', ! . L s e
Lo ;pran2 ' , , 'a”100', 'o”230', 'a”105', 'o”235', 'ao”
rc2x7240 ' Aa'll? , 'a”245', 'o”120', 'a”250', 'a~l25'] ' o enHet
'uAgé'[? 0155'a 135', 'o~15', 'o~150', 'on30', 'o~le5', 'a”45', 'a”180"
, O(/\ , lo(/\75l’ lo(/\21ol lo(/\gol lo(/\225l L} A ! L} L} it !
YGAOY, Ya/\l35¥, Ya/\l5¥, YGA15OY ’Y A ! ! ¢ 105 ¢ O(A24O" 'O(A:LZO'
o 301 Ya/\l65¥ Ya/\451 A} N A} Al A !
'a”195"', 'on75', 'or210! 'uA9O: ! : : AT
, , 'a”225', 'o~105', 'a”240', 'o” !
la/\135l L} A L} L} A L} L} A L} | A ! ! % 120 'C(AO'
o - 3215', 'aA15? , 'a”30', 'a”le5', 'on45', 'aA18O',"aA6O' :aA195"
o . o 0', 'o”90', 'or225', '«”105', 'at240', 'o~120'] ' ‘
A A} Al N ~
-quéoE a'O 240? 140', 'o~25', 'o~l65', 'an50', 'o”190', 'a”75', 'a”215!
, O(/\ , lo(/\l25l’ lo(/\lol lo(/\lSOl lo(/\35l A} A A} A} ! .
'a”85', 'a”225', 'o~ll0', 'uA250" an . L Sleor ramsor vemsger
o~135', '0”20', 'or160', 'or45', Ton
'a”70', 'a”210', 'on95', 'ot235! ,' ' L a0t aminon

, , , , 'a”120', 'a”5', 'ar145', 'or30', ‘ot
lo(/\55l L} A L} L} A L} L} A L} | A ! 4 ! ¢ 30 L ¢ 170',
'qA4ovl 'uA195', 'uASO , 'a”220', 'o~105', 'a”245', 'o”130', 'o”l5', 'o”155!
oo - ? 180', 'o”65', 'or205', 'o”90', 'o”230', 'a”1ll5'] ' ‘
VGA14OE,uv2AgOVu %i?i%5:uA?5i%5:uA%80é,O'uA7O', 'a”215', 'on105', 'a”250',

, , o , a”210" "a”100" "a”245!" LIPS v ~
'a®170', 'on60', 'o~205', 'an95', ! . . Ceiear rser
0”240', 'aq~130', 'o”20', oA PN
'O(A2OO', 'O(A9O', vo‘/\235v’ "N ¢ ! ! ! arles ! oo
, 'a”l25', 'o~15', 'o~le60', 'a”50', 'o” .
A A 2 19 A} Al A
:gAﬁ?O': iu l%O': 'a”10', 'a”155', 'on45', 'uAl9O': 'aASO': 'ZA222', 'ZAfiéz
o l,['aAé?O : Aa 4?',"GA185', 'ar75', 'at220', 'on11l0'] ' '
0L o % a”150', 'on45', 'o”195', 'o”90', 'on240', 'o”135', 'on30'
L} A L} L} A L} L} A L} L} A L} | A 4
e ZGA?5O? ,'a?4§%5 zaAigé%O . 20%5 , 'a~le5', 'a®e0', 'an210', 'aAiOB',
10, , , , ot , 'a”240', 'a~135', 'or30', 'of '
a”75', 'a”225', 'a~120', 'o~1l5', 'o” ' LY Mo
Lo 2 . , 'a”le5', 'o”60', 'o~210', 'o”105', 'a”
'aAégg:, :aA45': 'a”195', 'o”90', 'on240', 'a”135', 'aA3O': 'aAISO', 'ZA25:
r§1 . u'12O , 'a”l5', 'a”l65', 'a®60', 'o”210', 'o”1l05'] ' '
~ A ~
'GA2£OE a'O 12 a”155', 'a~55', 'o”210', 'o~110', 'o”10', 'onl6e5', 'a”65!
, C(/\ Ol’ lc(/\2ol’ lc(/\175l lc(/\75l L} A ! : !
jan220t, o o , , 'a”230', 'o~130', 'a”30', 'a"185"
'ZA§85: ?ufigéz '? 1;0', 'a”40', 'a”195', 'or95', 'aA25O',"aA15O" '§A5O? '
, , O(/\ I’ IO(/\16OI’ IO(/\6OI IO(/\215| L} A L} L} A ! !
'O(A7O' L} /\2 L} L} A L} L} A L} 1] A 4 ! “ 115 ! “ 15' 'O(A17O'
'aAlgoz ? A25', 'aA125 , 'a”25', 'a”180', 'o”80', 'a”235', 'aA135: 'aA35"
o ' a'9O , 'a”245', 'og~145', 'a”45', 'a”200', 'oa”100'] ' '
A~ Al A ~ !
-GA5! [-§A26é- a'16gé: 'a”65', 'a”225', 'o~130', 'a”35', 'a”195', 'o~100'

, , C(/\ , lc(/\23ol’ lc(/\135l lc(/\4ol L} /\20 L} L} A '
o A A T A e
Y ,'q?248', 'gAizg', 'uAég? ' a”45', 'a”205', 'o~ll0', 'uA15:, 'uA17é',

, , , 'a , 'a”210', 'o~115', 'a”20', 'o” v,
lo(/\245l L} /\1 L} L} A L} L} A L} | A ¢ ! ¢ % 180 ! O(/\85',
ng155v’ ,GA 5? : g 55', 'a”215', '«o~120', 'a”25', 'a”185', 'a”90', 'a”250'
e , Aa 60', 'a”220', 'o~125', 'o”30', 'o”190', 'a”95'] ' ‘
£33 v[a”0', 'a”le5', 'o~75', 'or240', 'o”l50', 'are0', 'an225', 'o” !
ar45', 'g”210', 'o~120', 'o”30', 'o”195', 'a”l05', ! Ai5'u ' b0 o
lo(/\ol’ lo(/\l65l’ lo(/\'75l lo(/\24ol |l A ! 4 “ ! aAlgO" 'aAgO',

, , 'a”150', 'ar60', 'ar225', 'ar [P

'a”210', 'on120', 'o”30', 'a”195', 'o” : : A e
o ’ , , '0*105', 'or15', 'ar180', 'an90', 'at
'zAigg:, :u ;g', 'ar240', 'o”150', 'a”e60', 'uA225': 'uAl35': 'gAig', 'ZAglé'

, o l, lo(/\195l, lo(/\1051, "a”15! "a”180" [PV ! !

1 A A A ! (X 90']
fzfo! ['ZAS;B"Q'17O" 'a”85', 'a”0', 'o~l70', 'uAéS', 'a”0', 'o~170', 'an85!
qu17év qu85: ? ?8', 'uAO',"uA17O', 'a”85', 'a”0', 'onl70', 'uA85:, 'uAO"
s ,'GAO' ZQA?7O', 'q é;? , 'a”85', 'a”0', 'o~170', 'a”85', 'a”0', 'aAl76'

, , , O(/\ , lo(/\ol lo(/\170l lo(/\85l L} A L} L} A !
IO(AOII IO(A17OI IO(A85I A} AOI Al A ¢ A ! A ! CX O ¢ CX 170" 'O(A85'
BOSare 'GA85:] , 'a , 'a®170', 'o”85', 'o”0', 'o”1l70', 'a”85', 'qAO',’
f251£5g'aTOla5:a“}75;, 'a”95', 'o~l5', 'o~190', 'o~110', 'a”30', 'a”205"

, o , C(/\ 20l’ lc(/\14ol lc(/\6ol lc(/\235l L} A L} L} A !
YGA17OY, Ya/\9o¥, Ya/\lov A} N A} ! ! ! o 155 ! o 75" 'C(A250'
, 'a”185', 'o~105', 'a”25', 'o”200', 'a” '
'a®215', 'o”135', 'a”55', 'a”230', ! L Col e e
o , , 'a*150', 'or70', 'ar245', 'an [N
O‘ 5! 'O(/\l L} L} A L} L} A L} L} A L} ¢ ! 4 “ 165 4 “ 85"
'qASO: : Ago ' ? 100 , 'a”20', 'ao”195', 'o~115', 'a”35', 'o”210', 'a”130'
e . g 25', 'o~145', 'a”65', 'o”240', 'a”l60', 'o”80'] ' ‘
'GA165E a'gAéO'a }igié"ajlgi;é"aj30', 'a”210', 'on135', 'a”60', 'a”240',
! , , , o , 0”120, 'at45', 'or225', ot [N
O(Aol, lo‘/\lgol, lo‘/\105l, "a”30! 1A ! ! @150 ! < 75"
. 1 , 'a”210', 'o”135', 'a”60', 'on240', 'a” !
'a”90', 'o”15', 'g”195', 'o”120', 'o™45', 'aA225': 'aAISO:, 'aA75', '2A3?5 '
14 14

125

'a”~180",
'a”l5",
r37 | ['
'an205",
"a”85",
"0”220",
"a”~100",
'an235",
r38 | ['
"ar2457",
"ar170",
'an95",
'ar20',
'a”200",
r39 | [°'
'an30",
'O(AO', '
"an2251,
'o”195",
"ar165",
rd40 | [’
"ar707,
'an85"',
"ar100",
"ar1157,
'a”130",
rdl | ['
'a”110"',
"ar170",
'an230",
"an35¢,
'an95",
rd42 | ['
'o”150",
lu/\ol’ 1
'o”105",
'ar210"',
'anr60",
rd3 | [
"o”190",
'an85",
"an235",
'a”~130",
Tan25,
rdd | ['
'ar230",
"a”1707,
"a”r110",
'a”50",
'ar245",
r45 | ['
'a®l5",
lo(/\ol’ '
'an240",
"anr225",
'an210",
rd6 | ['
'a”55",
"an85",
"ar1157,
'arl1l45",
"a”175",

"0~105', 'a~30', 'a~210', 'a~135', 'a"60', 'a~240', 'a~165', 'a~90',

"0”195', 'or120', 'ot45', 'ar225', 'afl50', 'at75']

a”0', 'o~185', 'otll5', 'at45', 'a~230', 'a160', 'a”90', 'o~20',
"0~135', 'ot65', 'ar250', 'ar180', 'atl10', 'at40', 'o”225', 'o~155',

"o”15', 'ar200', 'or130', 'or60', 'ar245', 'aqrl75', 'arl05', 'ar35',
"0~150', 'o~80', 'atl0', 'a”195', 'o”125', 'o~55', 'or240', 'otl70°,
"0”307, 'ar215', 'arl45', 'ar75', 'o”5', 'ot190', 'otl20', 'otS0',
"o*165', 'or95', 'ar25', 'a~210', 'a~l40', 'a”70']

ar0', 'ar190', 'atl125', 'at60', 'o”250', 'o~185', 'o~120', 'o~55',
"0~180', 'o~115', 'o~50', 'an240', 'atl75', 'at110', 'at45', 'a”235',
"0”105', 'ot40', 'ar230', 'atrl65', 'arl00', 'an35', 'ot225', 'o~160',

"o*30", 'at220', 'al55', 'a90', 'o~25', 'ot215', 'o~150', 'o~85',

'0”210', 'o~145', 'o~80', 'afl5', 'a205', 'o”140', 'o”75', 'o~l0',
"o*135', 'or70', 'at5', 'a”195', 'o~130', 'a”65']

a”0', 'o”195', 'orl135', 'or75', 'atl5', 'a”210', 'o~150', 'a”90!,

"0r225', 'ot165', 'ot105', 'ot45', 'at240', 'a”180', 'a”120', 'a”60',

a”195', 'a~135', 'a”75', 'o~15', 'ot210', 'otl50', 'ar90', 'a~30',
'0”165', 'or105', 'ot45', 'ar240', 'ar180', 'ar120', 'on60', 'or0',
"0~135', 'or75', 'atl5', 'a210', 'a”150', 'a”90', 'o~30', 'at225',
"0”105', 'ot45', 'ar240', 'ar180', 'at120', 'at60']

a”0', 'at200', 'otl45', 'or90', 'a”35', 'a”235', 'o~180', 'o~125',

"o~15', 'ar215', 'arl60', 'arl05', 'af50', 'at250', 'ar195', 'onr1407,

"o*30", 'ar230', 'atl75', 'at120', 'a”65', 'o”10', 'ot210', 'ot155',
"or45T, 'qr245', 'qr190', 'atl35', 'at80', 'ot25', 'or225', 'otl70',
"0”60', 'a’5', 'a”205', 'o~150', 'o~95', 'ot40', 'at240', 'a185',
"or75, 'ar20', 'at220', 'atl65', 'a~110', 'o*55']

a”0', 'at205', 'atl55', 'a~105', 'a”55', 'a*5', 'o*210', 'or160',
"0”60', 'arl0', 'at215', 'a”165', 'a”115', 'a”65', 'o~l5', 'ar220',
"0”120', 'or70', 'ar20', 'at225', 'o”l75', 'a~125', 'ar75', 'or25',
"0~180', 'o~130', 'o”80', 'a”30', 'o”235', 'o~185', 'o~135', 'o~85',

"0”240', 'o”190', 'or140', 'or90', 'ar40', 'o”245', 'o”195', 'o~145',

"or45', 'qr250', 'ar200', 'atl50', 'ar100', 'at50']

a”0', 'or210', 'otl65', 'orl20', 'ar75', 'ot30', 'or240', 'o~195,
'0*105', 'ot60', 'atl5', 'a”225', 'a~180', 'a~135', 'a”90', 'o~45',

ar210', 'at165', 'ar120', 'at75', 'o~30', 'or240', 'or195', 'orl150°,
"0*60', 'atl5', 'a"225', 'a~180', 'a~135', 'a”90', 'ot45', 'a”0',
"0”165', 'or120', 'or75', 'ar30', 'a”240', 'o”195', 'o~150', 'o~105',

"or15', 'at225', 'ar180', 'atl35', 'ar90', 'a~45']

a”0', 'ar215', 'o”l75', 'atl35', 'ar95', 'at55', 'o~l5', 'ar2307,
"a”150', 'o~110', 'o”70', 'ar30', 'at245', 'ar205', 'atl65', 'atl25',

"or45', 'af5', 'a”220', 'o~180', 'o~140', 'o”100', 'ot60', 'ar20',
"0”195', 'orl155', 'otll5', 'ar75', 'at35', 'a”250', 'o”210', 'o~170',
'0”90", 'a”50', 'a”10', 'a”225', 'a~185', 'o~145', 'o~105', 'o~65',

"0”240', 'or200', 'ot160', 'arl20', 'ar80', 'an40']

a”0', 'at220', 'a~185', 'atl50', 'atll5', 'a80', 'a”45', 'o~10',
"0”195', 'or160', 'atl25', 'ar90', 'at55', 'at20', 'at240', 'or2057,
"0~135', 'o~100', 'ot65', 'a30', 'a”250', 'o~215', 'o~180', 'o~145',
"orT5Y, 'ar40', 'at5', 'or225', 'or190', 'otl55', 'otl20', 'onss!,

"or15', 'at235', 'ar200', 'atl65', 'atl130', 'a”95', 'a”60', 'a~25',
"0”210', 'o~175', 'o~140', 'ot105', 'ar70', 'at35']

a”0', 'at225', 'at195', 'a’l65', 'al35', 'a~l05', 'a~75', 'o~45',

'0”240', 'o~210', 'o~180', 'atl50', 'atl120', 'at90', 'a”60', 'o~30',

ar225', 'aqr195', 'aqrl65', 'ar135', 'ar105', 'ar75', 'ot45', 'orls!,
"0”210', 'o~180', 'otl150', 'otl120', 'at90', 'at60', 'o”30', 'or0',
"0”195', 'or165', 'atl35', 'arl05', 'ar75', 'at45', 'o~l5', 'or240°,
'0”180', 'o~150', 'or120', 'or90', 'at60', 'a”30']

a”0', 'o”230', 'or205', 'or180', 'orl55', 'or130', 'atl05', 'an80',

'o*30', 'a’5', 'a”235', 'a”210', 'a~185', 'o~160', 'ot135', 'o~l110',

"0r60", 'ar35', 'ar10', 'at240', 'or215', 'o~190', 'otl65', 'orl40',
'0r90", 'at65', 'a”40', 'o~l5', 'ot245', 'or220', 'atl95', 'al70',
"0”120', 'or95', 'ar70', 'at45', 'a”20', 'ot250', 'ot225', 'or200°,
'o*150', 'or125', 'or100', 'or75', 'at50', 'at25']

126

Lampiran 4. Matriks Generator dan Parity-Check dalam Bentuk Desimal

matrix G (nrows=47, ncols=51):

A S 3 (S W . g RV P U0 AR . s 0 A A Ve A (g P0G M. TR, Vs P P V(I YA O, G 7 DO (o 0 T VAR ol 1S5, 5 A0 S0 s e A (0 P WO |

32, 116, 38, 180, 3, 96, 156, 106, 193, 5, 160, 185, 190, 94, 15, 253, 214, 223, 226, 17, 26, 103, 124, 59, 51, 46, 169, 132, 77, 85, 114, 230, 145, 215, 255, 15, 55, 174, 100, 28, 167, 89, 239, 172, 36, 244, 235, 44, 233, 108]
116, 180, 96, 106, 5, 185, 94, 253, 223, 17, 103, 59, 46, 132, 85, 239, 215, 150, 174, 28, 89, 172, 244, 44, 108, 32, 38, 3, 156, 193, 160, 190, 15, 214, 226, 26, 124, 51, 169, 77, 114, 145, 255, 55, 100, 167, 239, 36, 235, 233]
38, 96, 193, 185, 15, 223, 26, 59, 169, 85, 145, 150, 100, 89, 36, 44, 1, 38, 96, 193, 185, 15, 223, 26, 59, 169, 85, 145, 150, 100, 89, 36, 44, 1, 38, 9, 193, 185, 15, 223, 26, 59, 169, 85, 145, 150, 100, 89, 36, 44]

180, 106, 185, 253, 17, 59, 132, 230, 150, 28, 172, 44, 32, 3, 193, 199, 214, 26, 51, 77, 145, 55, 167, 36, 233, 116, 96, 5, 94, 223, 103, 46, 85, 215, 174, 89, 244, 108, 38, 156, 169, 15, 226, 124, 169, 114, 255, 100, 239, 235]
3, 5, 15, 17, 51, 85, 255, 28, 36, 108, 180, 193, 94, 226, 59, 77, 215, 100, 172, 233, 38, 106, 190, 223, 124, 132, 145, 174, 239, 44, 116, 156, 185, 214, 103, 169, 230, 55, 89, 235, 32, 96, 160, 253, 26, 46, 114, 150, 167, 244]
96, 185, 223, 59, 85, 150, 89, 44, 38, 193, 15, 26, 169, 145, 100, 36, 1, 96, 185, 223, 59, 85, 150, 89, 44, 38, 193, 15, 26, 169, 145, 100, 36, 1, 96, 185, 223, 59, 85, 150, 89, 44, 38, 193, 15, 26, 169, 145, 100, 36]

156, 94, 26, 132, 255, 89, 233, 3, 185, 226, 46, 145, 28, 235, 38, 5, 214, 59, 114, 174, 36, 32, 106, 15, 103, 77, 150, 239, 108, %, 1%, 17, 169, 215, 167, 44, 180, 160, 223, 51, 230, 100, 244, 116, 193, 253, 124, 85, S5, 172]
106, 253, 59, 230, 28, 44, 3, 199, 26, 77, 55, 36, 116, 5, 223, 46, 215, 89, 168, 156, 15, 124, 114, 100, 235, 180, 185, 17, 132, 150, 172, 32, 193, 214, 51, 145, 167, 233, 96, 94, 103, 85, 174, 244, 38, 160, 226, 169, 255, 239]
193, 223, 169, 150, 36, 38, 185, 26, 85, 100, 44, 95, 15, 59, 145, 89, 1, 193, 223, 169, 150, 36, 38, 185, 26, 85, 100, 44, 96, 15, 59, 145, 89, 1, 193, 223, 169, 150, 36, 38, 185, 26, 85, 100, 44, 96, 15, 59, 145, 89]

s, 17, 85, 28, 108, 193, 226, 77, 108, 233, 106, 223, 132, 174, 44, 156, 214, 169, 55, 235, 96, 253, 46, 150, 244, 3, 15, 51, 255, 36, 189, 94, 59, 215, 172, 38, 199, 124, 145, 239, 116, 185, 163, 230, 89, 32, 160, 26, 114, 167)
160, 103, 145, 172, 180, 15, 46, 55, 44, 106, 226, 85, 167, 32, 185, 124, 215, 36, 3, 253, 169, 174, 233, 193, 17, 114, 89, 116, 190, 59, 255, 244, 96, 214, 132, 100, 108, 5, 26, 230, 239, 38, 94, 51, 150, 235, 156, 223, 77, 28]
185, 59, 150, 44, 193, 26, 145, 36, 96, 223, 85, 89, 38, 15, 169, 109, 1, 185, 59, 150, 44, 193, 26, 145, 36, 96, 223, 85, 89, 38, 15, 169, 100, 1, 185, 59, 150, 44, 193, 26, 145, 36, 96, 223, 85, 89, 38, 15, 169, 100]

190, 46, 100, 32, 94, 169, 28, 116, 15, 132, 167, 38, 253, 77, 89, 180, 214, 85, 239, 3, 223, 114, 172, 96, 226, 230, 36, 156, 17, 145, 244, 106, 26, 215, 235, 193, 103, 255, 44, 5, 124, 150, 233, 160, 59, 55, 108, 185, 51, 174]
94, 132, 89, 3, 226, 145, 235, 5, 59, 174, 32, 15, 77, 239, 96, 17, 215, 44, 160, 51, 100, 116, 253, 85, 172, 156, 26, 255, 233, 185, 46, 28, 38, 214, 114, 36, 106, 103, 150, 108, 199, 169, 167, 180, 223, 230, 244, 193, 124, 55]
15, 85, 36, 193, 59, 100, 38, 223, 145, 44, 185, 169, 89, 96, 26, 150, 1, 15, 85, 36, 193, 59, 100, 38, 223, 145, 44, 185, 169, 89, 96, 26, 150, 1, 15, 85, 36, 193, 59, 100, 38, 223, 145, 44, 185, 169, 89, 9, 26, 150]

253, 230, 44, 199, 77, 36, 5, 46, 89, 156, 124, 100, 180, 17, 150, 32, 214, 145, 233, 94, 85, 244, 160, 169, 239, 106, 59, 28, 3, 26, 55, 116, 223, 215, 108, 15, 114, 235, 185, 132, 172, 193, 51, 167, 96, 103, 174, 38, 226, 255)
24, 25, 1, 24, 25, 1, 214, 215, 1, 214, A5, 1, 04, 215, 1, 214, 215, 1, 214, 215, 1, 214, 215, 1, 214, 215, 1, 214, 215, 1, 214, 215, 1, 214, 215, 1, 214, 215, 1, 214, 215, 1, 214, 215, 1, 214, 215, 1, 214, 215]

223, 150, 38, 26, 100, 96, 59, 89, 193, 169, 36, 185, 85, 44, 15, 145, 1, 223, 150, 38, 26, 109, 96, 59, 89, 193, 169, 36, 185, 85, 44, 15, 145, 1, 223, 150, 38, 26, 100, 96, 59, 89, 193, 169, 36, 185, 85, 44, 15, 145]

226, 174, 9, 51, 172, 185, 114, 108, 223, 55, 3, 59, 239, 160, 85, 233, 214, 150, 180, 124, 89, 5, 77, 44, 253, 255, 38, 103, 167, 193, 132, 235, 15, 215, 116, 26, 28, 106, 169, 244, 94, 145, 32, 17, 100, 156, 46, 36, 190, 230]
17, 28, 193, 77, 233, 223, 174, 156, 169, 235, 253, 150, 3, 51, 36, 94, 215, 38, 124, 239, 185, 239, 32, 26, 167, 5, 85, 108, 226, 100, 106, 132, 44, 214, 55, 96, 46, 244, 15, 255, 189, 59, 172, 199, 145, 116, 103, 89, 160, 114]
26, 89, 185, 145, 38, 59, 36, 15, 150, 96, 169, 44, 223, 100, 193, 85, 1, 26, 89, 185, 145, 38, 59, 36, 15, 150, 96, 169, 44, 223, 100, 193, 85, 1, 26, 89, 185, 145, 38, 59, 36, 15, 150, 96, 169, 44, 223, 100, 193, 85]

103, 172, 15, 55, 106, 85, 32, 124, 36, 253, 174, 193, 114, 116, 59, 244, 214, 100, 5, 230, 38, 51, 235, 223, 28, 160, 145, 189, 46, 44, 226, 167, 185, 215, 3, 169, 233, 17, 89, 190, 255, 96, 132, 168, 26, 239, 94, 150, 156, 77)
124, 244, 223, 167, 190, 150, 106, 114, 38, 46, 233, 26, 172, 253, 100, 160, 215, 96, 77, 32, 59, 235, 226, 89, 94, S5, 193, 230, 180, 169, 108, 103, 36, 214, 28, 185, 255, 156, 85, 116, 51, 44, 17, 239, 15, 174, 5, 145, 3, 132]
59, 44, 26, 36, 223, 89, 15, 109, 185, 150, 193, 145, 96, 85, 38, 169, 1, 59, 44, 26, 36, 223, 89, 15, 100, 185, 150, 193, 145, 96, 85, 38, 169, 1, 59, 44, 26, 36, 223, 89, 15, 109, 185, 150, 193, 145, 96, 65, 38, 169)

51, 108, 59, 233, 124, 44, 103, 235, 26, 244, 17, 36, 226, 172, 223, 239, 214, 89, 253, 167, 15, 28, 94, 100, 190, 174, 185, 55, 160, 150, 5, 255, 193, 215, 106, 145, 156, 230, 96, 114, 3, 85, 180, 77, 38, 132, 116, 169, 32, 46]
46, 32, 169, 116, 132, 38, 77, 180, 85, 3, 114, 96, 230, 156, 145, 106, 215, 193, 255, 5, 150, 160, S5, 185, 174, 190, 100, 94, 28, 15, 167, 253, 89, 214, 239, 223, 172, 226, 36, 17, 244, 26, 235, 103, 44, 124, 233, 59, 108, 51]
169, 38, 85, 96, 145, 193, 150, 185, 100, 15, 89, 223, 36, 26, 44, 59, 1, 169, 38, 85, 96, 145, 193, 150, 185, 100, 15, 89, 223, 36, 26, 44, 59, 1, 169, 38, 85, 96, 145, 193, 150, 185, 109, 15, 89, 223, 36, 26, 44, 59]

132, 3, 145, 5, 174, 15, 239, 17, 44, 51, 116, 85, 156, 255, 185, 28, 214, 36, 103, 108, 169, 180, 230, 193, 55, 94, 89, 226, 235, 59, 32, 77, 96, 215, 160, 100, 253, 172, 26, 233, 46, 38, 114, 106, 150, 190, 167, 223, 244, 124]
77, 156, 150, 94, 239, 26, 108, 132, 96, 255, 190, 89, 17, 233, 169, 3, 215, 185, 167, 226, 44, 46, 180, 145, 160, 28, 223, 235, 51, 38, 230, 5, 100, 214, 244, 59, 116, 114, 193, 174, 253, 36, 124, 32, 85, 106, 55, 15, 172, 103]
85, 193, 100, 223, 44, 169, 96, 150, 15, 36, 59, 38, 145, 185, 89, 26, 1, 85, 193, 100, 223, 44, 169, 96, 150, 15, 36, 59, 38, 145, 185, 89, 26, 1, 85, 193, 100, 223, 44, 169, 96, 150, 15, 36, 59, 38, 145, 185, 89, 26]

114, 160, 89, 103, 116, 145, 199, 172, 59, 180, 255, 15, 244, 46, 96, 55, 214, 44, 132, 106, 100, 226, 108, 85, 5, 167, 26, 32, 230, 185, 239, 124, 38, 215, 94, 36, 51, 3, 150, 253, 235, 169, 156, 174, 223, 233, 77, 193, 28, 17]
230, 190, 36, 46, 156, 100, 17, 32, 145, 94, 244, 169, 106, 28, 26, 116, 215, 15, 235, 132, 193, 167, 103, 38, 255, 253, 44, 77, 5, 89, 124, 180, 150, 214, 233, 85, 160, 239, 59, 3, 55, 223, 108, 114, 185, 172, 51, 96, 174, 226]
145, 15, 44, 85, 185, 36, 169, 193, 89, 59, 96, 100, 26, 38, 150, 223, 1, 145, 15, 44, 85, 185, 36, 169, 193, 89, 59, 96, 100, 26, 38, 150, 223, 1, 145, 15, 44, 85, 185, 36, 169, 193, 89, 59, 96, 100, 26, 38, 150, 223]

215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214, 1, 215, 214]

255, 226, 38, 174, 103, 96, 167, 51, 193, 172, 132, 185, 235, 114, 15, 108, 215, 223, 116, 55, 26, 3, 28, 59, 106, 239, 169, 160, 244, 85, 94, 233, 145, 214, 32, 159, 17, 180, 109, 124, 156, 89, 46, 5, 36, 77, 190, 44, 230, 253]
150, 26, 96, 89, 169, 185, 44, 145, 223, 38, 108, 59, 193, 36, 85, 15, 1, 150, 26, 96, 89, 169, 185, 44, 145, 223, 38, 160, 59, 193, 36, 85, 15, 1, 150, 26, 96, 89, 169, 185, 44, 145, 223, 38, 100, 59, 193, 36, 85, 15]

55, 124, 193, 244, 230, 223, 180, 167, 169, 199, 108, 150, 103, 106, 36, 114, 214, 38, 28, 46, 185, 233, 255, 26, 156, 172, 85, 253, 116, 100, 51, 160, 44, 215, 17, 96, 239, 77, 15, 32, 174, 59, 5, 235, 145, 226, 3, 89, 132, 94]
174, 51, 185, 108, 55, 59, 160, 233, 150, 124, 5, 44, 255, 103, 193, 235, 215, 26, 106, 244, 145, 17, 156, 36, 230, 226, 96, 172, 114, 223, 3, 239, 85, 214, 180, 89, 77, 253, 38, 167, 132, 15, 116, 28, 169, 94, 32, 160, 46, 190]
100, 169, 15, 38, 89, 85, 223, 96, 36, 145, 26, 193, 44, 150, 59, 185, 1, 1@@, 169, 15, 38, 89, 85, 223, 96, 36, 145, 26, 193, 44, 150, 59, 185, 1, 100, 169, 15, 38, 89, 85, 223, 96, 36, 145, 26, 193, 44, 150, 59, 185]

28, 77, 223, 156, 235, 150, 51, 94, 38, 239, 23@, 26, 5, 108, 100, 132, 214, 96, 244, 255, 59, 190, 116, 89, 114, 17, 193, 233, 174, 169, 253, 3, 36, 215, 124, 185, 32, 167, 85, 226, 106, 44, 55, 46, 15, 180, 172, 145, 103, 160)
167, 114, 26, 160, 32, 89, 230, 103, 185, 116, 239, 145, 124, 190, 38, 172, 215, 59, 94, 180, 36, 255, 51, 15, 3, 244, 150, 46, 253, 96, 235, 55, 169, 214, 156, 44, 174, 132, 223, 106, 233, 100, 77, 226, 193, 108, 28, 85, 17, 5]
89, 145, 59, 15, 96, 44, 100, 85, 26, 185, 38, 36, 150, 169, 223, 193, 1, 89, 145, 59, 15, 96, 44, 100, 85, 26, 185, 38, 36, 150, 169, 223, 193, 1, 89, 145, 59, 15, 96, 44, 100, 85, 26, 185, 38, 36, 150, 169, 223, 193]

239, 255, 169, 226, 160, 38, 244, 174, 85, 103, 94, 9%, 233, 167, 145, 51, 214, 193, 32, 172, 150, 132, 17, 185, 180, 235, 100, 114, 124, 15, 156, 108, 89, 215, 46, 223, 5, 116, 36, 55, 77, 26, 190, 3, 44, 28, 230, 59, 253, 106]
172, 55, 85, 124, 253, 193, 116, 244, 100, 230, 51, 223, 160, 180, 44, 167, 215, 169, 17, 199, 96, 108, 239, 15, 77, 103, 15, 106, 32, 36, 174, 114, 59, 214, 5, 38, 235, 28, 145, 46, 226, 185, 3, 233, B89, 255, 132, 26, 94, 156]
36, 100, 145, 169, 26, 15, 193, 38, 44, 89, 150, 85, 59, 223, 185, 96, 1, 36, 100, 145, 169, 26, 15, 193, 38, 44, 89, 150, 85, 59, 223, 185, 96, 1, 36, 100, 145, 169, 26, 15, 193, 38, 44, 89, 150, 85, 59, 223, 185, 9]

244, 167, 150, 114, 46, 26, 253, 160, 96, 32, 235, 89, 55, 230, 169, 103, 214, 185, 156, 116, 44, 239, 174, 145, 132, 124, 223, 190, 106, 38, 233, 172, 100, 215, 77, 59, 226, 94, 193, 180, 108, 36, 28, 255, 85, 51, 17, 15, 5, 3]

-

i)

Parity-check matrix H (nrows=4, ncols«51):

Generator
reo | [1,
re1 | 1,
re2 | (1,
o3 | [1,
re4 | [1,
o5 | [1,
re6 | [1,
o | [1,
res | [1,
w09 | [1,
rie | [1,
e[,
ri2 | [1,
M3 [,
r4 | [1,
rs | [1,
r6 | 1,
r17 | 1,
r8 | 1,
ro | [1,
r0 | 1,
r2 | [1,
r22 | [1,
r23 | 1,
r24 | 1,
r25 | [1,
r26 | [1,
r27 | [1,
28 | [1,
r29 | [1,
3 | [1,
r3l | [1,
32| (1,
r33 | 1,
r34 | (1,
r35 | [,
36 | [1,
37| [,
38 | [1,
r39 | 1,
o | [1,
r4l | 1,
rd2 | [1,
rd3 | 1,
ra | [,
res | 1,
r46 | [1,
o [[1,
o1 | 1,
re2 | [1,
ro3 | [1,

32, 116, 38, 180, 3, 9, 156, 106, 193, 5, 169, 185, 199, 94, 15, 253, 214, 223, 226, 17, 26, 103, 124, 59, 51, 46, 169, 132, 77, 85, 114, 230, 145, 215, 255, 150, 55, 174, 100, 28, 167, 89, 239, 172, 36, 244, 235, 44, 233, 108]
116, 180, 96, 106, 5, 185, 94, 253, 223, 17, 103, 59, 46, 132, 85, 230, 215, 150, 174, 28, 89, 172, 244, 44, 108, 32, 38, 3, 156, 193, 160, 199, 15, 214, 226, 26, 124, 51, 169, 77, 114, 145, 255, 55, 100, 167, 239, 36, 235, 233]
38, 96, 193, 185, 15, 223, 26, 59, 169, 85, 145, 150, 100, 89, 36, 44, 1, 38, 9, 193, 185, 15, 223, 26, 59, 169, 85, 145, 150, 100, 89, 36, 44, 1, 38, 9%, 193, 185, 15, 223, 26, 50, 169, 85, 145, 150, 100, 89, 36, 4]

180, 106, 185, 253, 17, 59, 132, 230, 150, 28, 172, 44, 32, 3, 193, 199, 214, 26, 51, 77, 145, 55, 167, 36, 233, 116, 96, 5, 94, 223, 103, 46, 85, 215, 174, 89, 244, 108, 38, 156, 160, 15, 226, 124, 169, 114, 255, 160, 239, 235)

RIWAYAT HIDUP

Tahira Khuwalidia Shabirah Ma’ruf lahir di Pasuruan pada
tanggal 30 Maret 2003. Penulis berasal dari keluarga yang
senantiasa menanamkan nilai-nilai pendidikan, kedisiplinan,
dan keimanan sebagai bekal utama dalam kehidupan.

Pendidikan formal penulis dimulai di TK Sri Wiji Handayani,

kemudian dilanjutkan di SDN Pucangsari 1 hingga lulus pada
tahun 2015. Selanjutnya, penulis menempuh pendidikan di SMP Modern Al-Rifai’e
2 dan lulus pada tahun 2018, kemudian melanjutkan pendidikan menengah atas di
SMA Ma’arif NU Pandaan dan lulus pada tahun 2021. Pada tahun yang sama,
penulis melanjutkan studi di Universitas Islam Negeri Maulana Malik Ibrahim
Malang, Program Studi Matematika, Fakultas Sains dan Teknologi. Selama masa
perkuliahan, penulis aktif dalam berbagai kegiatan akademik dan organisasi
kemahasiswaan, antara lain sebagai asisten praktikum mata kuliah Analisis
Numerik, tergabung dalam Himpunan Mahasiswa Program Studi (HMPS) Integral
Matematika, serta menjabat sebagai Ketua Divisi Fundraising pada kegiatan
KOMET XXII. Selain itu, penulis juga mengikuti berbagai kegiatan organisasi lain
yang mendukung pengembangan diri. Di luar kegiatan akademik, penulis mengikuti
program magang di PT Icon Plus PLN Surabaya serta aktif mengajar bimbingan
belajar di Elfaza. Berbagai pengalaman tersebut menjadi bekal penting bagi penulis
dalam membentuk karakter, memperluas wawasan, serta mempersiapkan diri untuk

berkontribusi secara profesional maupun sosial di masa mendatang.

127

KEMENTERIAN AGAMA RI

UNIVERSITAS ISLAM NEGERI

MAULANA MALIK IBRAHIM MALANG
FAKULTAS SAINS DAN TEKNOLOGI

J1. Gajayana No.50 Dinoyo Malang Telp. / Fax. (0341)558933

BUKTI KONSULTASI SKRIPSI

Nama Tahira Khuwalidia Shabirah Ma’ruf

NIM 210601110087

Fakultas / Jurusan Sains dan Teknologi / Matematika

Judul Skripsi Implementasi Kode Reed-Solomon untuk Deteksi dan
Koreksi Kesalahan Transmisi Ayat Al-Qur’an
Menggunakan Pengkodean Huruf Hijaiyah

Pembimbing I Muhammad Khudzaifah, M.Si.

Pembimbing II Dr. Fachrur Rozi, M.Si.

No Tanggal Hal Tanda Tangan

1. 7 November 2024

Konsultasi Bab I, IT, dan TIT

7 e
2. 29 April 2025 Konsultasi Bab I, 11, dan III ﬂ 3 2.
/
3. 14 Mei 2025 Konsultasi Bab I, 1T, dan Il | 3. v
V A
4. 5 Juni 2025 ACC Bab I, I, dan IIT 4. W
; Konsultasi Kajian Agama 4
5| 10Jmizops | Ronsulasi} s.ﬁ
: Konsultasi Kajian Agama /
6. 16 Juni 2025 Bab I dan II 6.
; Konsultasi Kajian Agama /
7. 18 Juni 2025 Bab I dan Il 7.5
.e /
8. 18 Juni 2025 ACC Kajian Agama Bab I 3
dan Il R

9. | 29 Agustus 2025

ACC Seminar Proposal

Konsultasi Revisi Seminar

10. | 12 November 2025
Proposal
, f 14
11. | 20 November 2025 | Konsultasi Bab IV 1. ﬁﬂ/
14
12. | 25 November 2025 | Konsultasi Bab IV 12. %3/
Konsultasi Kajian Agama v
13. | 26 November 2025 | So750! 13.%
Konsultasi Kajian Agama /
14. | 27 November 2025 | Xonsu! 14.-7;_‘
— 7
I5. | 27 November 2025 | ACC Kajian Agama Bab IV | 15, %

Dipindai dengan CamScanner

https://v3.camscanner.com/user/download

KEMENTERIAN AGAMA RI
UNIVERSITAS ISLAM NEGERI
MAULANA MALIK IBRAHIM MALANG
FAKULTAS SAINS DAN TEKNOLOGI

J1. Gajayana No.50 Dinoyo Malang Telp. / Fax. (0341)558933

16. | 28 November 2025| Konsultasi Bab IV dan V 16. 7‘/ g
17. | 28 November 2025| ACCBabIVdan V 17% /
V /A A_,//
18. | 28 November 2025| ACC Seminar Hasil 18. %]
19. | 9 Desember 2025 | Konsultasi Revisi Seminar |, %/
Hasil
4
20. | 15 Desember 2025 | Sidang Skripsi 20. //
4
21 | 22 Desember 2025 | ACC Keseluruhan //%/
Malang, 22 Desember 2025
Merxae&eglm
s, ’Km’?rogram Studi Matematika
‘f‘/ 4.“ ‘\«1/7,‘.:""'. ‘1

Fazs

Dipindai dengan CamScanner

https://v3.camscanner.com/user/download

