

IMPLEMENTASI KODE REED-SOLOMON UNTUK DETEKSI

DAN KOREKSI KESALAHAN TRANSMISI AYAT

AL-QUR’AN MENGGUNAKAN PENGKODEAN HURUF

HIJAIYAH

SKRIPSI

OLEH

TAHIRA KHUWALIDIA SHABIRAH MA’RUF

NIM. 210601110087

PROGRAM STUDI MATEMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM

MALANG

2025

ii

IMPLEMENTASI KODE REED-SOLOMON UNTUK DETEKSI

DAN KOREKSI KESALAHAN TRANSMISI AYAT

AL-QUR’AN MENGGUNAKAN PENGKODEAN HURUF

HIJAIYAH

SKRIPSI

Diajukan Kepada

Fakultas Sains dan Teknologi

Universitas Islam Negeri Maulana Malik Ibrahim Malang

untuk Memenuhi Salah Satu Persyaratan dalam

Memperoleh Gelar Sarjana Matematika (S.Mat)

Oleh

Tahira Khuwalidia Shabirah Ma’ruf

NIM. 210601110087

PROGRAM STUDI MATEMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM

MALANG

2025

 iii

 iv

 v

 vi

MOTO

“Allah tidak membebani seseorang melainkan sesuai dengan kesanggupannya”

-Q.S Al-Baqarah: 286

“Aku lahir dengan mempertaruhkan nyawa seorang Ibu, maka aku harus menjadi

alasan semua pengorbanannya bermakna. Ayah lelah setiap hari demi langkahku,

maka biarlah setiap tetes peluhnya berbuah bangga.”

“Skripsi ini mungkin tidak sempurna, namun ia adalah bukti perjalanan panjang

yang mengantar langkahku gelar S.Mat. Bismillah untuk segala hal-hal baik yang

sedang diperjuangkan.”

 vii

PERSEMBAHAN

Dengan penuh rasa syukur ke hadirat Allah SWT atas

segala rahmat, pertolongan dan kemudahan-Nya, sehingga skripsi ini dapat

terselesaikan dengan baik. Karya ini penulis persembahkan kepada:

Ayah, Mama, dan Bunda, yang kasih sayangnya tak pernah berkurang, yang

doanya menjadi kekuatan terbesar dalam setiap langkah, dan yang

pengorbanannya takkan pernah mampu penulis balas dengan apa pun di dunia ini.

Saudara-saudari tercinta, yang senantiasa memberi doa, dukungan, dan semangat

tanpa henti.

Orang terdekat penulis, yang hadir sebagai tempat berbagi cerita, keluh, dan

harapan, serta menjadi sumber kekuatan saat penulis hampir menyerah.

Sahabat-sahabat terbaik, yang dengan tulus menemani, membantu, dan

menyemangati hingga skripsi ini dapat diselesaikan. Terima kasih atas keikhlasan,

kebersamaan, dan tawa yang membuat perjalanan ini lebih ringan.

Semoga setiap doa dan kebaikan kalian menjadi amal yang terus mengalir, dan

semoga karya sederhana ini dapat menjadi kebanggaan bagi kita semua.

 viii

KATA PENGANTAR

Assalamu’alaikum Warahmatullahi Wabarakatuh

Alhamdulillahirabbilalamin, segala puji dan syukur senantiasa penulis

panjatkan ke hadirat Allah subhanahu wa ta’ala atas berkat Rahmat, serta hidayah-

Nya, sehingga penulis dapat menyelesaikan skripsi yang berjudul “Implementasi

Kode Reed-Solomon untuk Deteksi dan Koreksi Kesalahan Transmisi Ayat Al-

Qur’an Menggunakan Pengkodean Huruf Hijaiyah” dengan baik dan benar.

Shalawat serta salam tetap tercurahkan kepada Nabi Muhammad SAW, yang telah

membawa kita dari zaman kebodohan menuju zaman kebenaran yakni Islam dan

zaman yang penuh dengan ilmu pengetahuan sebagaimana yang dirasakan pada saat

ini. Dan semoga kita semua mendapat syafaatnya di hari akhir kelak, Aamiin.

Penulis mengucapkan rasa terima kasih yang begitu besar kepada seluruh

pihak yang memberikan dukungan dan motivasi kepada penulis sehingga dapat

menyelesaikan skripsi ini. Ucapan terima kasih ini penulis sampaikan kepada:

1. Prof. Dr. Hj. Ilfi Nur Diana, M.Si., CAHRM, CRMP., selaku Rektor

Universitas Islam Negeri Maulana Malik Ibrahim Malang

2. Dr. H. Agus Mulyono, M.Kes., selaku Dekan Fakultas Sains dan Teknologi

Universitas Islam Negeri Maulana Malik Ibrahim Malang.

3. Dr. Fachrur Rozi, M.Si., selaku Ketua Program Studi Matematika dan selaku

Dosen Pembimbing II, Universitas Islam Negeri Maulana Malik Ibrahim.

Terima kasih atas kesabaran, arahan, serta masukan yang berharga dalam

proses penyelesaian skripsi ini. Semoga segala bimbingan yang diberikan

menjadi pahala dan berkah bagi Bapak.

4. Muhammad Khudzaifah, M.Si., selaku Dosen Pembimbing I atas bimbingan,

dukungan, dan arahan yang telah diberikan selama proses penyusunan skripsi

ini. Semoga ilmu yang Bapak bagikan menjadi amal jariyah dan senantiasa

bermanfaat.

5. Prof. Dr. H. Turmudi, M.Si., Ph.D., selaku Ketua Penguji, yang telah

memberikan arahan, masukan, serta saran yang membangun demi

penyempurnaan skripsi ini.

 ix

6. Hisyam Fahmi, M.Kom., selaku Anggota Penguji I dalam Ujian Skripsi, yang

telah memberikan kritik, saran, dan masukan yang konstruktif guna perbaikan

dan penyempurnaan skripsi ini.

7. Seluruh dosen Program Studi Matematika, Fakultas Sains dan Teknologi,

Universitas Islam Negeri Maulana Malik Ibrahim

8. Kepada Ayah M. Munif, sosok panutan sepanjang hidup penulis, atas kasih

sayang, doa, nasihat, dan dukungan yang senantiasa diberikan selama penulis

menempuh studi. Pengorbanan dan keyakinan beliau menjadi sumber

semangat utama bagi penulis. Kepada Mama Lailatul Firdausi Ma’ruf, pintu

surga penulis, atas ketulusan, kesabaran, serta doa dan nasihat yang

senantiasa mengiringi setiap langkah penulis. Kepada Eyang Uti Maryam,

yang dengan penuh kasih telah membimbing, merawat, dan menanamkan

nilai-nilai kebaikan serta kedisiplinan ibadah sejak kecil. Kepada Bunda

Yuliana, atas cinta, doa, dan ketulusan yang tetap mengalir meskipun terpisah

oleh jarak. Semoga Allah SWT membalas seluruh kebaikan dan pengorbanan

beliau dengan pahala dan keberkahan yang berlimpah.

9. Kepada adik-adik penulis, Chlorina Reva Nadia Ma’ruf, Muhammad Nabil

Firdausi Ma’ruf, dan Alfa Rizqi Anggawa Ma’ruf, yang senantiasa menjadi

sumber semangat, penguat hati, dan penyejuk di tengah perjuangan penulis

menempuh studi. Semoga tumbuh menjadi pribadi yang kuat, cerdas, dan

senantiasa dalam lindungan Allah SWT. Aamiin.

10. Kepada keluarga besar H. Adjik dan H. Mashuri yang telah menjadi bagian

penting dalam perjalanan hidup penulis. Terima kasih atas perhatian, do’a,

dan dukungan yang selalu diberikan, baik secara langsung maupun tidak

langsung. Semoga silaturahmi dan kasih sayang di antara kita selalu terjaga,

dan Allah senantiasa melimpahkan keberkahan untuk keluarga besar ini.

11. Kepada Muhammad Putra Zidannizar, sosok lelaki kedua setelah Ayah

penulis yang senantiasa hadir sebagai pendamping dan penyemangat sejak

awal perjalanan perkuliahan hingga saat ini. Terima kasih atas ketulusan,

kesabaran, serta dukungan yang tak pernah putus, bahkan dalam masa-masa

sulit sekalipun. Bersama, kami telah melewati berbagai suka dan duka, saling

menguatkan, saling memahami, dan saling membantu satu sama lain dalam

 x

menapaki dunia akademik maupun kehidupan sehari-hari. Semoga

kebersamaan ini senantiasa terjaga, dan kelak menjadi jalan menuju masa

depan yang diridhoi, penuh keberkahan, dan menjadi tujuan hidup bersama.

Terima kasih telah menjadi bagian penting dari setiap langkah penulis.

12. Kepada sahabat-sahabat penulis, Elza Zanuarika Kusniadi, Fatma Nabila Nur

Aini, Amalia Fitriani, Cetrin Aprilia, Dinda Nur Azizah, Putri Wahyu, serta

seluruh anggota grup “OTDR”, terima kasih atas kebersamaan, dukungan,

dan semangat yang telah diberikan sejak masa sekolah hingga proses

penyusunan skripsi ini. Kebersamaan, motivasi, dan saling menguatkan yang

terjalin menjadi bagian berharga dalam perjalanan akademik penulis. Semoga

persahabatan dan tali silaturahmi ini senantiasa terjaga serta membawa

kebaikan dan keberkahan bagi kita semua.

13. Seluruh mahasiswa angkatan 2021 dan teman teman penulis atas

kebersamaan, dukungan, serta motivasi yang telah diberikan selama masa

studi ini. Kehadiran dan semangat kalian menjadi bagian penting dalam

perjalanan ini. Semoga kebersamaan ini terus terjalin dan membawa manfaat

bagi kita semua.

14. Untuk diri sendiri, Tahira Khuwalidia Shabirah Ma’ruf, yang telah melalui

banyak proses jatuh, bangkit, lelah, namun tetap berjalan. Terima kasih telah

bertahan sejauh ini, terus belajar, dan tidak menyerah meski kadang ingin

berhenti. Semoga tetap konsisten dalam hal baik, terus berproses, dan tidak

lupa tujuan awal. Ingat, segala sesuatu butuh waktu, dan selama terus

melangkah, tidak ada usaha yang sia-sia. Percayalah, kerja keras dan doa

tidak pernah mengkhianati hasil. Tidak ada kata terlambat untuk menciptakan

kehidupan yang kamu inginkan.

Malang, 22 Desember 2025

Tahira Khuwalidia S.M

 xi

DAFTAR ISI

HALAMAN JUDUL .. i

HALAMAN PENGAJUAN ... ii

HALAMAN PENGESAHAN ... iii

HALAMAN PERSETUJUAN... iv

PERNYATAAN KEASLIAN

TULISAN .. Error! Bookmark not defined.
MOTO ... vi
PERSEMBAHAN ... vii
KATA PENGANTAR .. viii
DAFTAR ISI ... xi
DAFTAR TABEL... xiii
DAFTAR GAMBAR .. xiv
DAFTAR SIMBOL .. xv
DAFTAR LAMPIRAN .. xvi
ABSTRAK .. xvii
ABSTRACT .. xviii
 xix ... مستخلصا البحث

BAB I PENDAHULUAN ... 1
1.1 Latar Belakang ... 1

1.2 Rumusan Masalah ... 7

1.3 Tujuan Penelitian ... 7

1.4 Manfaat Penelitian .. 7

1.5 Batasan Masalah.. 8

1.6 Definisi Istilah ... 10

BAB II KAJIAN TEORI ... 14
2.1 Lapangan .. 14

2.1.1 Lapangan Hingga (Galois Field) .. 16
2.1.2 Aritmatika pada Galois Field ... 17
2.1.3 Polinomial Galois Field.. 20
2.1.4 Representasi Galois Field ... 22
2.1.5 Ruang Vektor atas Lapangan Hingga 23

2.2 Teori Pengkodean (Coding Theory) .. 24

2.2.1 Kode Siklik ... 25
2.2.2 Kode Linear .. 26
2.2.3 Pengkodean Huruf Hijaiyah ... 31
2.2.4 Kode Reed-Solomon... 34
2.2.5 Proses Encoding dan Decoding Kode Reed-Solomon 37

2.3 Transmisi .. 44

2.3.1 Transmisi Data .. 44
2.3.2 Deteksi dan Koreksi Kesalahan Bit Pada Transmisi Data 48
2.3.3 Transmisi Ayat Al-Qur’an .. 50
2.3.4 Proses Deteksi dan Koreksi Kesalahan pada Transmisi Ayat Al-

Qur’an .. 51
2.4 Kajian Integrasi Topik Penelitian dengan Al-Qur’an.......................... 53

BAB III METODE PENELITIAN ... 56

 xii

3.1 Jenis Penelitian .. 56

3.2 Data dan Sumber Data .. 57

3.3 Tahapan Penelitian .. 58

BAB IV HASIL DAN PEMBAHASAN.. 65
4.1 Simulasi Pembentukan Parameter dan Struktur Kode Reed-

Solomon ... 65

4.2 Proses Encoding .. 67

4.3 Transmisi (Penambahan Polinomial Error) ... 72

4.4 Proses Decoding .. 73

4.4.1 Proses Deteksi ... 73
4.4.2 Menentukan Polonomial Lokasi Kesalahan.............................. 75
4.4.3 Menentukan Posisi Kesalahan (Error Positions) 83
4.4.4 Menentukan Akar Polinomial Evaluasi Kesalahan (Error

Evaluator Polynomial) ... 85
4.4.5 Menghitung Nilai Besar Kesalahan (Error Magnitude) 87
4.4.6 Melakukan Koreksi Kesalahan pada Codeword 90
4.4.7 Proses Decoding untuk Mengembalikan Codeword yang Telah

Dikoreksi dengan Pesan Asli .. 92
4.5 Analisis Hasil dengan Beberapa Paremeter Kode Reed-Solomon 93

4.6 Kajian Hasil Penelitian dalam Perspektif Islam 100

BAB V PENUTUP .. 104
5.1 Kesimpulan .. 104

5.2 Saran ... 105

DAFTAR PUSTAKA ... 106
LAMPIRAN .. 108
RIWAYAT HIDUP .. 127

 xiii

DAFTAR TABEL

Tabel 2.1 Operasi Penjumlahan Modulo 5 di 𝑍5 ... 15

Tabel 2.2 Operasi Perkalian Modulo 5 di 𝑍5 ... 15

Tabel 2.3 Tabel Representasi Eksponensial dan Polinomial Elemen 𝐺𝐹(2𝑚) 21

Tabel 2.4 Tabel Primitif Polinomial GF .. 21

Tabel 2.5 Representasi Polinomial, Biner, dan Desimal pada 𝐺𝐹(24) 22

Tabel 2.6 Representasi Polinomial, Biner, dan Desimal pada 𝐺𝐹(28) 23

Tabel 2.7 Tabel Korespondensi Hewan dan Kode Biner 31

Tabel 2.8 Korespondensi Huruf Hijaiyah dan Vektor Biner............................ 33

Tabel 4.1 Tabel Perhitungan XOR untuk Proses Encoding 70

Tabel 4.2 Hasil Decoding Kembali ke Pesan Asli ... 93

Tabel 4.3 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 1

Kesalahan... 94

Tabel 4.4 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 2

Kesalahan... 95

Tabel 4.5 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 3

Kesalahan... 96

Tabel 4.6 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 4

Kesalahan... 98

Tabel 4.7 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 5

Kesalahan... 99

 xiv

DAFTAR GAMBAR

Gambar 2.1 Huruf Hijaiyah.. 32

Gambar 2.2 Diagram Struktur Kode Reed–Solomon (𝑛, 𝑘, 2𝑡) 36

Gambar 2.3 Diagram Proses Pengiriman Pesan/Informasi 44

Gambar 3.1 Alur Penelitian.. 58

 xv

DAFTAR SIMBOL

𝐶 : Codeword

𝐺 : Matriks generator

𝐻 : Matriks parity-check

𝑀 : Blok pesan

𝑡 : Jumlah maksimum kesalahan bit yang dapat dikoreksi

𝑛 : Panjang total bit

𝑘 : Panjang pesan asli

𝑚 : Jumlah bit dalam satu simbol

 xvi

DAFTAR LAMPIRAN

Lampiran 1. Representasi Polinomial, Biner, dan Desimal 𝐺𝐹(256) 108
Lampiran 2. Script Code Sagemath: Proses Encoding dan Decoding 113

Lampiran 3. Matriks Generator dalam Bentuk Representasi 𝛼𝑖 𝐺𝐹(28) 122
Lampiran 4. Matriks Generator dan Parity-Check dalam Bentuk Desimal 126

 xvii

ABSTRAK

Ma’ruf, Tahira Khuwalidia Shabirah. 2025. Implementasi Kode Reed–Solomon untuk

Deteksi dan Koreksi Kesalahan Transmisi Ayat Al-Qur’an Menggunakan

Pengkodean Huruf Hijaiyah. Skripsi. Program Studi Matematika, Fakultas

Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang.

Pembimbing: (I) Muhammad Khudzaifah, M.Si. (II) Dr. Fachrur Rozi, M.Si.

Kata Kunci: Reed–Solomon, Huruf Hijaiyah, Deteksi Kesalahan, Koreksi Kesalahan,

Transmisi Digital.

Kesalahan penulisan huruf hijaiyah dalam ayat Al-Qur’an berpotensi mengubah makna

ayat serta menurunkan keakuratan penyampaian teks. Penelitian ini bertujuan untuk

mendeskripsikan proses deteksi dan koreksi kesalahan transmisi ayat Al-Qur’an

menggunakan kode Reed–Solomon. Ayat Al-Qur’an direpresentasikan dalam bentuk kode

Unicode huruf hijaiyah sebagai data digital. Data penelitian terdiri atas penulisan sepuluh

ayat Al-Qur’an yang digunakan sebagai data uji, dengan penambahan kesalahan secara

sengaja dan terkontrol pada tahap transmisi untuk mensimulasikan kondisi transmisi

digital. Setiap huruf hijaiyah dikonversi kedalam representasi Unicode 16-bit, kemudian

dilakukan proses encoding menggunakan parameter kode 𝑅𝑆(𝑛, 𝑘, 2𝑡). Selanjutnya,

kesalahan disisipkan secara terkontrol untuk mensimulasikan gangguan transmisi, dan

proses decoding dilakukan menggunakan algoritma Reed–Solomon berbasis Galois Field

melalui perangkat lunak SageMath. Hasil analisis menunjukkan bahwa kode Reed–

Solomon mampu mendeteksi dan mengoreksi kesalahan simbol sesuai dengan kapasitas

koreksi 𝑡 secara konsisten pada berbagai variasi jumlah error. Pada seluruh skenario

pengujian, huruf hijaiyah yang mengalami gangguan berhasil dikembalikan ke bentuk

aslinya melalui tahapan perhitungan sindrom, pembentukan polinomial lokasi kesalahan,

perhitungan polinomial evaluator, hingga proses koreksi akhir pada codeword. Penelitian

ini membuktikan bahwa kode Reed–Solomon dapat berfungsi sebagai mekanisme

verifikasi yang efektif untuk menjaga keakuratan teks Al-Qur’an dalam sistem digital serta

mendukung upaya pelestarian kemurnian ayat melalui pendekatan teori pengkodean.

 xviii

ABSTRACT

Ma’ruf, Tahira Khuwalidia Shabirah. 2025. Implementation of Reed–Solomon Codes for

Error Detection and Correction in the Transmission of Qur’anic Verses

Using Hijaiyah Character Coding. Thesis. Department of Mathematics,

Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik

Ibrahim Malang. Advisors: (I) Muhammad Khudzaifah, M.Si. (II) Dr. Fachrur

Rozi, M.Si.

Keywords: Reed–Solomon, Hijaiyah Characters, Error Detection, Error Correction,

Digital Transmission.

Errors in the representation of Hijaiyah characters in Qur’anic verses may alter the semantic

meaning of the text and reduce transmission accuracy. This study aims to describe the error

detection and error correction processes in the digital transmission of Qur’anic verses using

Reed–Solomon codes. The Qur’anic verses are modeled as digital data by encoding

Hijaiyah characters into their corresponding Unicode representations. The research data

consist of ten Qur’anic verses used as test data, in which errors are intentionally and

controllably introduced during the transmission stage to simulate digital transmission

conditions. Each Hijaiyah letter is converted into a 16-bit Unicode representation, followed

by an encoding process using Reed–Solomon code parameters 𝑅𝑆(𝑛, 𝑘, 2𝑡). Subsequently,

controlled errors are inserted to model transmission disturbances, and the decoding process

is performed using a Reed–Solomon algorithm over a Galois Field implemented in

SageMath software. The results show that the Reed–Solomon code is capable of

consistently detecting and correcting symbol errors in accordance with its error-correction

capability 𝑡 under various error scenarios. In all test cases, corrupted Hijaiyah characters

are successfully restored to their original form through syndrome computation,

construction of the error locator polynomial, evaluation of the error evaluator polynomial,

and the final correction of the received codeword. This study demonstrates that Reed–

Solomon codes can serve as an effective verification mechanism to preserve the accuracy

of Qur’anic text in digital systems and support efforts to maintain the integrity of Qur’anic

verses through coding theory approaches.

 xix

 مستخلصا البحث

سولومون لاكتشاف وتصحيح الأخطاء في نقل آيات القرآن –تطبيق شفرة ريد .٠٢٠٢معروف، تاهيرا خوواليديا شابيره.
الرياضيات، كلية العلوم والتكنولوجيا، قسمي. جامعالبحث ال .الكريم باستخدام ترميز الحروف الهجائية العربية

العلوم. في ماجستير اليفة، ذ(محمد خ١:)فة الحكومية مالانج. المشر جامعة مولانا مالك إبراهيم الإسلامي
 .العلوم في ماجستيرالزي، افخر الر . (الدكتور٠)

 .النقل الرقمي ،تصحيح الأخطاء ،اكتشاف الأخطاء ،الحروف الهجائية العربية؛ ،سولومون–ريد :الأساسيةالكلمات

دف آيات القرآن الكريم قد تؤدي إلى تغي ر المعنى وتقليل دق ة نقل النص. وتهإنَّ الأخطاء في كتابة الحروف الهجائية في

–Reed)هذه الدراسة إلى وصف عملية الكشف عن الأخطاء وتصحيحها في نقل آيات القرآن الكريم باستخدام شفرة

Solomon) ، ى ترميز وتمثَّل آيات القرآن الكريم في هذه الدراسة في صورة بيانات رقمية بالاعتماد عل(Unicode)

استُخدمت كبيانات اختبار، مع عشر آيات من القرآن الكريم كتابة، حيث تتكو ن بيانات البحث من للحروف الهجائية
رف ، ويُحوَّل كل حإدخال أخطاء بشكل متعم د ومُتحكَّم فيه في مرحلة الإرسال، وذلك لمحاكاة ظروف الإرسال الرقمي

 سولومون من النوع–بت، ثم تُجرى عملية الترميز باستخدام معاملات شفرة ريد 61 هجائي إلى تمثيل يونيكود بطول
𝑅𝑆(𝑛, 𝑘, 2𝑡) وبعد ذلك تدُرج الأخطاء بشكل مُتحكَّم فيه لمحاكاة اضطرابات الإرسال، وتنُفَّذ عملية فك الترميز ،

 SageMathمن خلال برنامج (Galois Field) سولومون المعتمدة على الحقول المنتهية–باستخدام خوارزميات ريد

سولومون قادرة على الكشف عن أخطاء الرموز وتصحيحها بما يتوافق مع سعة –نتائج التحليل أن شفرة ريد ت، وظهر
وبصورة مت سقة عبر مختلف سيناريوهات عدد الأخطاء، حيث أعُيدت في جميع حالات الاختبار الحروف t التصحيح

ب إلى صورتها الأصلية من خلال مراحل حساب المتلازمات، وبناء كثير حدود تحديد الهجائية التي تعر ضت للاضطرا
مواقع الأخطاء، وحساب كثير حدود مُقي ِّم الأخطاء، وصولاا إلى عملية التصحيح النهائية للكلمة المشفَّرة، مما يثبت أن

مية، وتسهم قرآن الكريم في الأنظمة الرقسولومون يمكن أن تعمل كآلية تحقق فع الة للحفاظ على دقة نصوص ال–شفرة ريد
 .في دعم جهود صون سلامة الآيات والمحافظة على نقائها من خلال منهجية نظرية الترميز

1

BAB I

PENDAHULUAN

1.1 Latar Belakang

Ketepatan dalam penulisan huruf hijaiyah merupakan aspek yang sangat

penting, khususnya dalam penulisan ayat Al-Qur’an, karena kesalahan dalam

penulisan dapat mengubah bentuk lafaz dan berpotensi memengaruhi makna ayat.

Dalam kajian penulisan teks suci Islam, bentuk tertulis dari ayat-ayat Al-Qur’an

dikenal dengan istilah mushaf Al-Qur’an, yaitu kumpulan ayat Al-Qur’an yang

dituliskan dan dibukukan secara sistematis sebagai representasi dari bacaan yang

telah terjaga keasliannya. (Shihab, 2007).

Pada masa Rasulullah SAW, wahyu yang diturunkan belum dibukukan dalam

satu mushaf yang utuh karena proses pewahyuan masih berlangsung. Oleh sebab

itu, penjagaan Al-Qur’an dilakukan melalui hafalan para sahabat serta pencatatan

ayat-ayat pada berbagai media sederhana. Setelah Rasulullah SAW wafat pada

tahun 632 M, upaya penghimpunan ayat-ayat Al-Qur’an dilakukan pada masa

Khalifah Abu Bakar Ash-Shiddiq dan kemudian disempurnakan pada masa

Khalifah Utsman bin Affan melalui standarisasi mushaf yang dikenal sebagai Rasm

Utsmani.

Seiring dengan perkembangan sejarah penulisan mushaf, dilakukan berbagai

penyempurnaan teknis seperti penambahan tanda titik, harakat, dan tanda baca.

Penyempurnaan tersebut bertujuan untuk menjaga kejelasan dan ketepatan

penulisan ayat serta menghindari kesalahan pembacaan, tanpa mengubah substansi

ayat. Dalam perkembangan selanjutnya, istilah Al-Qur’an digunakan secara luas

2

oleh masyarakat untuk merujuk tidak hanya pada wahyu dalam bentuk bacaan,

tetapi juga pada mushaf sebagai bentuk tertulisnya.

Perkembangan dalam aspek penulisan Al-Qur’an tersebut sejalan dengan

janji Allah SWT dalam Surah Al-Hijr ayat 9 (Kementerian Agama, 2022):

.نَّ نَحْنُ نَ زَّلْنَا الذ ِّكْرَوَاِّنَّالَهُ لَحَافِّظوُْنَ اِّ

"Sesungguhnya Kami yang menurunkan Al-Qur’an, dan sesungguhnya Kami

benar-benar menjaganya."(Qs. Al-Hijr : 9).

Ayat ini menegaskan bahwa penjagaan Allah SWT terhadap Al-Qur’an tidak

hanya bersifat spiritual, tetapi juga berlangsung secara historis dan teknis, termasuk

dalam aspek penulisan mushaf dan transmisi teks. Dalam perkembangan teknologi

digital saat ini, tantangan penjagaan tersebut juga mencakup proses penulisan,

penyimpanan, dan distribusi teks ayat Al-Qur’an dalam bentuk digital. Kesalahan

penulisan huruf hijaiyah dalam sistem digital berpotensi mengubah makna ayat dan

menurunkan keakuratan penyampaian teks.

 Di era modern, upaya menjaga kemurnian Al-Qur’an terus dilakukan, baik

melalui publikasi mushaf standar oleh lembaga resmi seperti Lajnah Pentashihan

Mushaf Al-Qur’an (LPMQ), pelatihan dan sertifikasi qari dan hafidz, maupun

pengembangan aplikasi digital Al-Qur’an yang dilengkapi fitur tajwid. Namun

demikian, kesalahan penulisan ayat Al-Qur’an tetap dapat terjadi. Misalnya, dalam

proses pengiriman atau pertukaran data ayat Al-Qur’an melalui media digital,

seperti aplikasi pesan, media sosial, atau sistem penyimpanan, teks ayat dapat

mengalami gangguan (noise) yang menyebabkan huruf berubah, hilang, atau

tertukar. Kesalahan ini dapat muncul akibat konversi format teks, kerusakan file,

atau ketidakcocokan sistem encoding karakter Arab. Meskipun tampak sederhana,

3

perubahan satu huruf saja dapat memengaruhi makna dan keutuhan teks ayat.

Kesalahan serupa juga ditemukan pada media cetak. Salah satu contohnya adalah

kasus kesalahan cetak dalam mushaf Al-Qur'an pada surah Al-Kahfi ayat 8, di mana

huruf ’ain (ع) diganti dengan ha (ه), sehingga kata lajaa'iluuna tertulis sebagai

lajaahiluuna (Kemenag, 2023). Selain itu beberapa buku Pendidikan Agama Islam

juga dilaporkan mengandung kesalahan penulisan ayat Al-Qur’an, sebagaimana

diberitakan oleh Republika pada tanggal 29 Oktober 2017 (Republika, 2017).

Fenomena ini menunjukkan bahwa keakuratan dalam penulisan Al-Qur'an tetap

menjadi tantangan, meskipun teknologi telah berkembang pesat.

Untuk meminimalisir kesalahan serupa di era digital, diperlukan representasi

huruf Al-Qur’an dalam bentuk numerik agar dapat diolah oleh sistem komputer.

Dalam hal ini, huruf hijaiyah digunakan sebagai simbol yang direpresentasikan

dalam bentuk kode numerik. Setiap huruf hijaiyah memiliki nilai Unicode yang

berbeda, yang kemudian dapat dikonversi ke dalam bilangan desimal maupun biner.

Dengan representasi ini, huruf-huruf hijaiyah dalam Al-Qur’an dapat digunakan

sebagai data digital yang siap diproses menggunakan kode Reed-Solomon. Sebagai

contoh, huruf hijaiyah ب (ba) direpresentasikan dalam Unicode dengan kode

U+0628 dengan nilai desimal 1576. Representasi ini selanjutnya dikonversi ke

dalam biner 16-bit, yaitu 0000011000101000, sehingga dapat digunakan dalam

proses encoding dan decoding. Melalui mekanisme ini, setiap huruf Al-Qur’an

dapat diubah ke dalam bentuk biner standar yang konsisten, sehingga lebih mudah

dikelola dalam proses deteksi dan koreksi kesalahan.

Salah satu pendekatan yang relevan untuk mengatasi permasalahan pada

kasus di atas adalah dengan menerapkan teori pengkodean (coding theory). Teori

4

ini mempelajari karakteristik dan aplikasi kode dalam berbagai sistem, seperti

kompresi data, kriptografi, dan kode pengoreksi error (error-correction codes).

Tujuan utama dari teori pengkodean adalah untuk memberikan kode dengan tingkat

informasi yang tinggi, kemampuan koreksi kesalahan yang kuat dan kompleksitas

encoding dan decoding yang rendah (Widiastuti dkk., 2016). Dalam sistem

komunikasi digital, proses pengkodean terbagi menjadi dua proses. Proses pertama

adalah encoding (mengubah pesan menjadi codeword) dan proses kedua adalah

decoding (mengembalikan codeword menjadi pesan asli), serta mengantisipasi

kemungkinan kesalahan selama transmisi data (Oktavia dkk., 2023). Salah satu

gangguan utama kesalahan dalam transmisi data adalah noise. Noise (derau)

merupakan suatu sinyal pengganggu atau perusak sinyal, sehingga perlu dilakukan

penghilangan noise agar sinyal informasi akan terpisah dari noise.

Dalam proses pengiriman sinyal informasi ke penerima akan melewati suatu

media transmisi. Transmisi merupakan pengiriman sinyal dalam sistem komunikasi

digital. Dalam ilmu komunikasi data, data berarti informasi yang disajikan dalam

bentuk isyarat digital biner. Transmisi data merupakan proses pengiriman informasi

di antara dua titik menggunakan kode biner melewati saluran transmisi dan

peralatan switching, bisa antara komputer dan komputer, komputer dengan

terminal, atau komputer dengan perlatan, atau peralatan dengan peralatan. Pada

proses pengiriman ini maka akan muncul noise sehingga mengakibatkan sinyal

informasi yang diterima mengalami gangguan dan bercampur dengan sinyal-sinyal

yang tidak diinginkan sehingga dapat mengganggu keaslian informasi (Darmadi

dkk., 2020).

5

Dalam penelitian ini, istilah transmisi tidak hanya dimaknai sebagai

pengiriman sinyal dalam sistem komunikasi digital, tetapi juga sebagai proses

penyampaian teks ayat Al-Qur’an dari satu media ke media lain, seperti dari mushaf

cetak ke aplikasi digital atau dari hasil pengetikan manual ke database komputer.

Pada proses ini, kemungkinan terjadi kesalahan pengiriman penulisan ayat Al-

Qur’an dalam huruf hijaiyah dapat dipandang sebagai bentuk kesalahan (error)

dalam transmisi data. Oleh karena itu, diperlukan mekanisme deteksi dan koreksi

untuk memastikan teks yang diterima tetap sesuai dengan naskah aslinya. Deteksi

kesalahan bertujuan untuk menemukan adanya perubahan atau kerusakan data

selama proses transmisi, sedangkan koreksi kesalahan berfungsi untuk

memperbaiki data yang rusak agar sesuai dengan aslinya. Dalam konteks transmisi

ayat Al-Qur’an, deteksi dimaknai sebagai proses mengidentifikasi huruf hijaiyah

yang mengalami perubahan atau ketidaksesuaian selama pengiriman. Adapun

koreksi merujuk pada pengembalian huruf tersebut ke bentuk yang benar sesuai

teks asli.

Salah satu metode yang banyak digunakan dalam deteksi dan koreksi

kesalahan pada sistem komunikasi digital adalah kode Reed- Solomon. Kode Reed-

Solomon diperkenalkan oleh Irving S. Reed dan Gustave Solomon pada tahun 1960.

Reed-Solomon merupakan kode blok 𝑅𝑆(𝑛, 𝑘) yang mampu mendeteksi dan

mengoreksi kesalahan hingga sejumlah 𝑡 < (𝑛 − 𝑘)/2 simbol. Kode ini banyak

diterapkan pada sistem komunikasi satelit, pemutar CD/DVD, QR Code, serta

sistem penyimpanan RAID karena efektivitasnya dalam menangani kesalahan

dalam jumlah besar (Jariyah dkk., 2013). Selain itu, kode ini juga dikenal memiliki

algoritma encoding dan decoding yang efisien (Oktavia dkk., 2023). Wicker dan

6

Bhargava menjelaskan bahwa terdapat tiga metode dalam membangun kode Reed-

Solomon, yaitu menggunakan aritmatika pada lapangan hingga, polinomial

generator, serta transformasi Fourier (Wicker, 2005).

Penelitian sebelumnya telah mengkaji berbagai metode untuk meningkatkan

keamanan komunikasi dalam bahasa Arab dan mendeteksi kesalahan penulisan ayat

Al-Qur'an. Alqahtani (2013), mengusulkan modifikasi algoritma Vigenère cipher

menggunakan modulus 39 untuk enkripsi teks Arab, yang terbukti lebih aman dan

efisien dibandingkan metode klasik. Riyanto (2019), menerapkan kode linear,

khususnya kode Hamming berorde 3, untuk mendeteksi dan mengoreksi kesalahan

satu huruf dalam penulisan huruf hijaiyah menggunakan representasi biner 5 bit,

sehingga menjaga akurasi teks Al-Qur'an. Sementara itu, Oktavia dkk. (2023),

mengkaji penerapan kode Reed Solomon 𝑅𝑆(15,9) dalam kriptosistem McEliece

untuk melindungi transmisi pesan dari serangan komputer kuantum, dengan koreksi

hingga 3 kesalahan bit menggunakan galois field 𝐺𝐹(2⁴), menunjukkan bahwa

pendekatan ini efektif dalam mempertahankan keamanan data.

Berdasarkan literatur pada penelitian sebelumnya, tujuan dari penelitian ini

adalah untuk mengimplementasikan kode Reed-Solomon dalam mendeteksi serta

mengoreksi kesalahan transmisi ayat Al-Qur’an berbasis huruf hijaiyah. Proses

implementasi akan dilakukan menggunakan perangkat lunak SageMath. Melalui

penerapan metode ini, diharapkan dapat meningkatkan akurasi dan ketelitian dalam

pengiriman penulisan huruf hijaiyah, sehingga kesalahan yang umum terjadi dapat

teridentifikasi dan diperbaiki secara otomatis. Penelitian ini juga menjadi langkah

awal dalam memanfaatkan teori pengkodean untuk menjaga kemurnian teks suci

Al-Qur’an secara digital.

7

1.2 Rumusan Masalah

Berdasarkan uraian latar belakang yang telah disampaikan, rumusan masalah

dalam penelitian ini adalah sebagai berikut:

1. Bagaimana simulasi proses deteksi kesalahan transmisi ayat Al-Qur’an

menggunakan kode Reed-Solomon?

2. Bagaimana simulasi proses koreksi kesalahan transmisi ayat Al-Qur’an

menggunakan kode Reed-Solomon?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah di atas, maka tujuan penelitian yang akan

dicapai adalah sebagai berikut:

1. Untuk mendeskripsikan proses deteksi kesalahan transmisi ayat Al-Qur’an

menggunakan kode Reed-Solomon.

2. Untuk mendeskripsikan proses koreksi kesalahan transmisi ayat Al-Qur’an

menggunakan kode Reed-Solomon.

1.4 Manfaat Penelitian

Berdasarkan tujuan penelitian yang telah dikemukakan, hasil penelitian ini

diharapkan dapat memberikan manfaat sebagai berikut:

1. Manfaat Teoritis:

Penelitian ini diharapkan dapat memberikan kontribusi dalam penerapan teori

kode Reed-Solomon dalam bidang pemrosesan teks digital, khususnya untuk

mendeteksi dan mengoreksi kesalahan transmisi ayat-ayat Al-Qur’an.

Penerapan ini difokuskan pada teks berbahasa Arab yang menggunakan huruf

8

hijaiyah, sehingga diharapkan dapat meningkatkan akurasi dan keandalan

dalam penyimpanan maupun transmisi data teks Al-Qur’an secara digital.

2. Manfaat Praktis:

a. Memberikan ilustrasi teknis dan simulasi bagaimana kode Reed-

Solomon dapat dimanfaatkan untuk mendeteksi dan memperbaiki

kesalahan transmisi ayat Al-Qur’an secara otomatis.

b. Menjadi rujukan atau dasar bagi penelitian selanjutnya dalam

pengembangan sistem koreksi teks digital yang berbasis pada

pengkodean huruf hijaiyah, baik untuk teks keagamaan maupun aplikasi

teks Arab lainnya.

c. Mendukung upaya pelestarian keakuratan dan kemurnian tulisan ayat-

ayat Al-Qur’an dalam bentuk digital melalui pendekatan matematis dan

teknologi informatika, sehingga dapat meningkatkan keandalan dalam

distribusi dan penyimpanan data teks Al-Qur’an.

1.5 Batasan Masalah

Agar penelitian ini tidak keluar dari batas kajian yang ditetapkan, maka ruang

lingkup penelitian dibatasi pada hal-hal berikut:

1. Penelitian ini menggunakan teks ayat Al-Qur'an dengan huruf hijaiyah dasar

tanpa disertai:

a. Harakat (tanda vokal seperti fathah, kasrah, dammah, dan sebagainya).

b. Tanda baca (tanda waqaf, nomor ayat, rukuk, dan lainnya).

c. Bentuk huruf yang berbeda (awal, tengah, akhir) tetap direpresentasikan

menggunakan Unicode yang sama, kecuali huruf khusus yang memang

9

memiliki Unicode berbeda seperti berbagai bentuk hamzah, Tāʼ

Marbūṭah (ة), Alif Maqṣūrah (ى) dan spasi.

2. Setiap huruf hijaiyah direpresentasikan dalam bentuk kode Unicode 16-bit,

khususnya dalam rentang Unicode Block Arabic (𝑈𝑇𝐹 − 8).

3. Sumber penulisan ayat Al-Qur’an.

a. Penelitian menggunakan ayat Al-Qur’an dalam bentuk digital, seperti

mushaf elektronik, aplikasi web, atau dokumen digital lainnya.

b. Penelitian mengikuti standar khat Naskhi yang digunakan dalam mushaf

Rasm Utsmani cetakan Indonesia, serta tidak membahas perbedaan

bentuk tulisan pada mushaf versi internasional.

c. Data yang digunakan adalah sepuluh penulisan ayat Al-Qur’an sebagai

data uji, di mana kesalahan simbol ditambahkan secara sengaja dan

terkontrol untuk mensimulasikan kondisi transmisi digital.

4. Penelitian ini difokuskan pada objek kesalahan sebagai berikut:

a. Kesalahan yang timbul akibat ketidaksesuaian penulisan huruf hijaiyah

dalam aplikasi digital, situs web, atau sistem input teks.

b. Penyimpangan atau penyelewengan penulisan ayat, baik disengaja

maupun tidak disengaja, yang menyebabkan perubahan struktur teks

huruf hijaiyah.

c. Model kesalahan dalam penelitian ini merupakan kesalahan yang sengaja

disisipkan (injected errors) selama proses transmisi digital, bukan

kesalahan dari kanal komunikasi nyata. Tujuannya adalah untuk menguji

kemampuan deteksi dan koreksi dari kode Reed-Solomon secara

terkontrol.

10

d. Setiap kesalahan penulisan huruf hijaiyah direpresentasikan sebagai

symbol error dalam proses transmisi pada kode Reed-Solomon.

5. Penelitian ini tidak membahas aspek tajwid, tafsir, maupun qira’at (variasi

bacaan), serta tidak mencakup keseluruhan sistem Rasm Utsmani secara

komprehensif.

6. Batasan pada Implementasi Reed-Solomon.

a. Penelitian ini hanya menguji kemampuan deteksi dan koreksi kesalahan

(error) pada level simbol (huruf hijaiyah yang diubah menjadi simbol 16-

bit).

b. Penelitian tidak membahas optimasi algoritma atau implementasi Reed–

Solomon untuk skala besar, melainkan hanya menerapkan 𝑅𝑆 dengan

parameter yang digunakan dalam studi kasus.

c. Pengujian dilakukan dalam lingkungan simulasi perangkat lunak

SageMath bukan pada sistem transmisi fisik sebenarnya.

1.6 Definisi Istilah

Terdapat beberapa istilah yang digunakan dalam penelitian ini, yakni sebagai

berikut:

Unicode : Standar pengkodean karakter yang memberikan

kode unik untuk setiap huruf, angka, dan simbol

dari berbagai bahasa di dunia.

Coding : Proses pemberian kode atau representasi

tertentu terhadap data atau informasi ke dalam

bentuk simbol, bilangan, atau rangkaian bit agar

11

dapat diproses, disimpan, atau ditransmisikan

oleh suatu sistem.

Encoding : Encoding adalah metode dalam teori

pengkodean yang berfungsi mengubah data asli

menjadi bentuk kode tertentu, biasanya dalam

bentuk simbol, kode, atau format digital, agar

dapat disimpan, diproses, atau dikirim secara

lebih efisien.

Decoding : Decoding adalah proses kebalikan dari encoding

yaitu metode dalam teori koding yang

mengubah kembali informasi yang telah

dikodekan tersebut menjadi data asli.

Deteksi : Deteksi adalah usaha untuk menemukan,

mengenali, dan menentukan keberadaan suatu

kesalahan atau penyimpangan.

Koreksi : Koreksi adalah proses perbaikan atau

pembetulan terhadap suatu kesalahan yang

ditemukan agar sesuai dengan bentuk yang

benar.

Teori Pengkodean : Teori pengkodean adalah cabang ilmu dalam

matematika terapan dan teknik informatika yang

mempelajari cara merepresentasikan informasi

ke dalam bentuk simbol atau kode tertentu

12

dengan tujuan meningkatkan keandalan dan

efisiensi komunikasi.

Kode Reed-Solomon : Reed Solomon adalah sebuah metode dalam

teori kode error yang digunakan untuk

mendeteksi dan memperbaiki kesalahan dalam

transmisi data.

Shortened Code Reed-

Solomon

: Kode Reed–Solomon yang dipendekkan, yaitu

teknik memperpendek panjang codeword

dengan menambahkan simbol isian (padding)

pada awal pesan, kemudian membuangnya

setelah proses pengkodean.

Codeword : Hasil encoding berupa data yang telah diubah

menjadi bentuk vektor untuk proses decoding.

Padding : Proses menambahkan data tambahan (biasanya

berupa bit tertentu) ke suatu pesan agar pesan

tersebut memenuhi ukuran atau panjang yang

diperlukan oleh suatu algoritma, sistem, atau

blok data.

SageMath : Perangkat lunak open-source berbasis Python

yang digunakan untuk komputasi matematika,

termasuk aljabar, kriptografi, teori bilangan, dan

teori pengkodean.

Transmisi : Pengiriman (penerusan) pesan dan sebagainya

dari seseorang kepada orang (benda) lain.

13

Transmisi Data : Proses pengiriman data dari satu sumber ke

penerima data.

Transmisi Ayat Al-Qur’an : Transmisi ayat Al-Qur’an adalah proses

pengiriman atau penyampaian teks ayat dari satu

media atau perangkat ke media lain secara

digital.

Kesalahan (error) : Hal yang terjadi apabila suatu hal tidak

bertindak semestinya, seperti salah sasaran,

kehilangan satu bit, atau juga berubah datanya.

14

BAB II

KAJIAN TEORI

2.1 Lapangan

Definisi 2.1

Lapangan adalah suatu ring komutatif yang memiliki elemen identitas, di mana

setiap elemen yang bukan nol adalah suatu unit (mempunyai invers terhadap

perkalian) (Gallian, 2021).

Definisi 2.2

Lapangan 𝐹 merupakan himpunan elemen-elemen tertutup yang memuat dua

operasi biner yaitu penjumlahan dan perkalian dinotasikan dengan “+” dan “∙”

sehingga aksioma-aksioma di bawah ini terpenuhi untuk semua 𝑎, 𝑏, 𝑐 ∈ 𝐹

(Menezes dkk., 1996).

1. 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐

2. 𝑎 + 𝑏 = 𝑏 + 𝑎

3. Terdapat elemen identitas 0 ∈ 𝐹 sedemikian sehingga 𝑎 + 0 = 𝑎

4. Terdapat elemen −𝑎 ∈ 𝐹 sedemikian sehingga 𝑎 + (−𝑎) = 0

5. 𝑎 ∙ (𝑏 ∙ 𝑐) = (𝑎 ∙ 𝑏) ∙ 𝑐

6. 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎

7. Terdapat elemen 1 ∈ 𝐹 sedemikian sehingga 𝑎 ∙ 1 = 𝑎

8. untuk setiap 𝑎 ≠ 0, terdapat elemen 𝑎−1 ∈ 𝐹 sedemikian sehingga

𝑎 ∙ 𝑎−1 = 1

9. 𝑎 ∙ (𝑏 + 𝑐) = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐.

15

Contoh 2.3

Himpunan ℤ5 = {[0], [1], [2], [3]. [4]} merupakan himpunan semua kelas sisa

bilangan bulat modulo 5. Dengan +5 dan ∗5 pada himpunan ℤ5 membentuk suatu

lapangan.

Bukti:

Tabel 2.1 Operasi Penjumlahan Modulo 5 di ℤ5

+5 [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

Tabel 2.2 Operasi Perkalian Modulo 5 di ℤ5

∗5 [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4]

[2] [0] [2] [4] [1] [3]

[3] [0] [3] [1] [4] [2]

[4] [0] [4] [3] [2] [1]

Dengan memperhatikan Tabel 2.1 untuk operasi +5 sifat tertutup terpenuhi,

karena untuk setiap [𝑎], [𝑏] ∈ ℤ5, berlaku [𝑎]+5[𝑏] ∈ ℤ5. Elemen identitas

terhadap penjumlahan adalah [0], dan setiap elemen [𝑎] ∈ ℤ5 juga memiliki invers

penjumlahan yang dinyatakan dengan −[𝑎], sehingga berlaku (−[𝑎]+5[𝑎]) =

[𝑎]+5(−[𝑎]) = [0]. Selain itu, tabel penjumlahan bersifat simetris terhadap

diagonal utama, sehingga operasi +5 bersifat komutatif, yaitu [𝑎]+5[𝑏] = [𝑏]+5

[𝑎], ∀[𝑎], [𝑏] ∈ ℤ5.

16

Selanjutnya, berdasarkan Tabel 2.2 untuk operasi ∗5, himpunan ℤ5 bersifat

tertutup terhadap perkalian., karena untuk setiap [𝑎], [𝑏] ∈ ℤ5 berlaku [𝑎] ∗5 [𝑏] ∈

ℤ5. Elemen identitas terhadap perkalian adalah [1], dan setiap elemen tak nol [𝑎] ∈

 ℤ𝟓 memiliki invers perkalian, yaitu elemen [𝑎]−1 yang memenuhi [𝑎] ∗5 [𝑎]−1 =

[𝑎]−1 ∗5 [𝑎] = [1]. Tabel perkalian juga simetris terhadap diagonal utama,

sehingga operasi ∗5 bersifat komutatif. Karena ℤ𝟓 memenuhi sifat tertutup,

memiliki elemen identitas, setiap elemen memiliki invers terhadap operasi

penjumlahan dan perkalian, serta kedua operasi bersifat komutatif dan asosiatif,

maka dapat disimpulkan bahwa (ℤ5, +5,∗5) merupakan suatu lapangan (field).

2.1.1 Lapangan Hingga (Galois Field)

Definisi 2.3

Suatu lapangan yang memiliki elemen sebanyak berhingga disebut dengan

galois field “lapangan berhingga” (Dummit & Foote, 2004).

Jika suatu lapangan memiliki 𝑝𝑛 elemen, dengan 𝑝 adalah bilangan prima dan

𝑛 ∈ ℤ+. Maka lapangan hingga dinotasikan dengan 𝐺𝐹(𝑞) atau 𝐹𝑞, dengan 𝑞 =

𝑝𝑛. Untuk 𝑛 = 1, elemen lapangan 𝐺𝐹(𝑝) sama dengan {0,1,2, … , 𝑝 − 1}, dengan

operasi penjumlahan (+) dan perkalian (∙) dilakukan secara modulo 𝑝. Sebagai

contoh, 𝐺𝐹(2) memiliki 2 elemen {0,1}, sedangkan 𝐺𝐹(3) memiliki 3 elemen

{0,1,2}. Jika 𝑛 > 1 maka lapangan 𝐺𝐹(𝑝𝑛) dibangun dari polinomial irreduksibel

derajat 𝑛 atas 𝐺𝐹(𝑝𝑛). Misalnya, 𝐺𝐹(22) dapat dibentuk dari ℤ2[𝑥]/𝑝(𝑥),

dengan 𝑝(𝑥) = 𝑥2 + 𝑥 + 1 sehingga memiliki 4 elemen berbeda.

17

2.1.2 Aritmatika pada Galois Field

Dalam galois field, operasi penjumlahan, pengurangan, perkalian, dan

pembagian dapat dilakukan, namun berbeda dengan operasi pada bilangan real.

Setiap hasil operasi antar elemen dalam galois field selalu menghasilkan elemen

lain yang masih berada dalam himpunan terbatas tersebut.

1. Operasi Penjumlahan dan Pengurangan.

Cara melakukan operasi penjumlahan adalah sebagai berikut, (𝑎𝑚𝑥𝑚 + ⋯ +

𝑎1𝑥 + 𝑎0) + (𝑏𝑚𝑥𝑚 + ⋯ + 𝑏1𝑥 + 𝑏0) = 𝑐𝑚𝑥𝑚 + ⋯ + 𝑐1𝑥 + 𝑐0, dimana 𝑐𝑖 =

𝑎𝑖 + 𝑏𝑖 untuk (𝑚 − 1) ≥ 𝑖 ≥ 0. Sama halnya dalam operasi pengurangan

dua elemen 𝐺𝐹(𝑎𝑚𝑥𝑚 + ⋯+ 𝑎1𝑥 + 𝑎0) − (𝑏𝑚𝑥𝑚 + ⋯+ 𝑏1𝑥 + 𝑏0) =

𝑐𝑚𝑥𝑚 + ⋯+ 𝑐1𝑥 + 𝑐0, dimana 𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 untuk (𝑚 − 1) ≥ 𝑖 ≥ 0.

Operasi + dan − dilakukan dengan modulo 2. Sehingga, baik penjumlahan

maupun pengurangan akan didapatkan hasil 𝑐𝑖 = 0 untuk 𝑎𝑖 = 𝑏𝑖 dan 𝑐𝑖 =

1 untuk 𝑎𝑖 ≠ 𝑏𝑖. Dengan kata lain, penjumlahan dan pengurangan adalah

identik dalam Galois Field.

Sebagai contoh, pada 𝐺𝐹(16) kita dapat mengurangkan 𝛼3 + 𝛼 dengan

𝛼3 + 𝛼2 + 𝛼 + 1, sehingga (𝛼3 + 𝛼) − (𝛼3 + 𝛼2 + 𝛼 + 1) = 𝛼2 + 1.

Dalam representasi biner, (1010) − (1111) = (1010) + (1111) = 0101.

Ataupun dalam representasi desimal, 10 − 15 = 10 + 15 = 5.

2. Operasi Perkalian dan Pembagian.

Dengan primitive polinomial dapat ditentukan bentuk tiap elemen

bilangan 𝐺𝐹, baik dalam bentuk polinomial, biner, ataupun desimal. Dengan

mengetahui bentuk elemen bilangan tersebut, dapat dicari hasil operasi

perkalian dua elemen bilangan 𝐺𝐹. Pada 𝐺𝐹(2𝑚) perkalian dua elemen

18

bilangan 𝑎(𝑥) = 𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥
𝑚−1 + ⋯+ 𝑎1𝑥

1 + 𝑎0 dan 𝑏(𝑥) =

𝑏𝑚𝑥𝑚 + 𝑏𝑚−1𝑥
𝑚−1 + ⋯ + 𝑏1𝑥

1 + 𝑏0 akan menghasilkan 𝑐(𝑥) = 𝑐𝑚𝑥𝑚 +

𝑐𝑚−1𝑥
𝑚−1 + ⋯+ 𝑐1𝑥

1 + 𝑐0, dimana konstanta 𝑐𝑚, . . . , 𝑐0 didapatkan dari

reduksi bilangan berdasarkan primitive polynomial.

Sebagai contoh, operasi perkalian antara bilangan 14 dengan 11 pada

𝐺𝐹(24). Representasi hasil perkalian dalam bentuk index adalah

𝛼(jumlah kedua 𝑖𝑛𝑑𝑒𝑥)𝑚𝑜𝑑(2𝑚−1). Bilangan 14 merepresentasikan 𝛼11 dan

bilangan 11 merepresentasikan 𝛼7. Sehingga, 𝛼11 × 𝛼7 = 𝛼18𝑚𝑜𝑑(15) =

𝛼3 = 8, atau 14 × 11 = 8 pada 𝐺𝐹(24).

Operasi pembagian 8 dengan 14 pada 𝐺𝐹(24) mirip dengan perkalian.

Representasi hasil pembagian dalam bentuk indeks adalah

𝛼(selisih kedua 𝑖𝑛𝑑𝑒𝑥)𝑚𝑜𝑑(2𝑚−1). Bilangan 8 merepresentasikan 𝛼3 dan

bilangan 14 merepresentasikan 𝛼11. Sehingga, 𝛼3/𝛼11 =

 𝛼(3−11)𝑚𝑜𝑑15 = 𝛼−(8)𝑚𝑜𝑑(15) = 𝛼7 = 11. Elemen invers dari 𝐺𝐹

didefinisikan sebagai nilai elemen bilangan yang jika dikalikan

menghasilkan nilai 1. Jika 14 merepresentasikan 𝛼11 maka inversnya

adalah 𝛼−11 = α(−11)mod(15) = α4 = 3. Maka, 8/14 = 8 𝑥 3 = 𝛼3 ×

𝛼4 = 𝛼7𝑚𝑜𝑑(15) = 𝛼7 = 11, atau 8/14 = 11.

3. Exclusive-OR (XOR).

Pada pengolahan data digital, salah satu operasi biner yang paling mendasar

dan sering digunakan dalam proses encoding dan decoding adalah operasi

Exclusive-OR (XOR), yang dilambangkan dengan simbol “ ⊕ ”. Operasi

XOR merupakan bentuk penjumlahan dalam modulo 2 pada lapangan

hingga 𝐺𝐹(2), yaitu suatu himpunan bilangan biner yang hanya terdiri dari

19

dua elemen, yaitu 0 dan 1. Secara matematis, operasi XOR didefinisikan

sebagai 𝑎 ⊕ 𝑏 = (𝑎 + 𝑏) 𝑚𝑜𝑑 2. Operasi ini mendefinisikan bahwa dua bit

yang berbeda akan menghasilkan nilai 1, sedangkan dua bit yang bernilai

sama menghasilkan nilai 0 (Makhomah dkk., 2021).

Misalkan 𝑎, 𝑏, 𝑐 merupakan peubah Boolean dalam 𝐺𝐹(2), maka operasi

XOR memiliki beberapa sifat penting sebagai berikut:

a. 𝑎 ⊕ 𝑎 = 0 (Sifat invers penjumlahan),

b. 𝑎 ⊕ 0 = 𝑎 (Sifat identitas),

c. 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 (Sifat komutatif),

d. 𝑎 ⊕ (𝑏 ⊕ 𝑐) = (𝑎 ⊕ 𝑏) ⊕ c (Sifat asosiatif).

Contoh 2.1

a. 1 ⊕ 1 = (1 + 1) mod 2 = 0

b. 0 ⊕ 0 = (0 + 0) mod 2 = 0

c. 1 ⊕ 0 = 0 ⊕ 1 = 1

d. 1 ⊕ (0 ⊕ 1) = (1 ⊕ 0) ⊕ 1 = 0

Jika dua bilangan biner dioperasikan menggunakan XOR, maka operasi

dilakukan dengan menerapkan XOR pada setiap pasangan bit yang

bersesuaian.

Contoh 2.2

10011 ⊕ 11001 = 01010

pada hal ini, hasilnya diperoleh sebagai berikut:

1 0 0 1 1
1 1 0 0 1

1 ⊕ 1 0 ⊕ 1 0 ⊕ 0 1 ⊕ 0 11
0 1 0 1 0



20

2.1.3 Polinomial Galois Field

Sebuah polinomial 𝑎(𝑥) berderajat 𝑚 pada lapangan hingga 𝐺𝐹(𝑝)

dituliskan sebagai,

𝑎(𝑥) = 𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥
𝑚−1 + … + 𝑎1𝑥 + 𝑎0 (2.1)

dengan koefisien 𝑎𝑖 ∈ 𝐺𝐹(𝑝) dan 𝑎𝑚 ≠ 0. Derajat (degree) dari polinomial 𝑎(𝑥)

adalah pangkat tertinggi dari 𝑥, yaitu 𝑚. Polinomial tersebut dapat dijumlahkan,

dikurangkan, dikalikan, dan dibagi dengan polinomial pada field yang sama.

Misalkan 𝑛(𝑥) dan 𝑚(𝑥) adalah polinomial pada 𝐺𝐹(256), maka 𝑛(𝑥) +

𝑚(𝑥), 𝑛(𝑥) − 𝑚(𝑥), 𝑛(𝑥) × 𝑚(𝑥), dan 𝑛(𝑥)/𝑚(𝑥) terdefinisi.

Lapangan hingga 𝐺𝐹(𝑝𝑚) dapat direpresentasikan dengan suatu elemen

primitif (primitive element) 𝛼, yaitu

𝐺𝐹(𝑝𝑚) = {0, 𝛼0, 𝛼1, 𝛼2, … , 𝛼(𝑝𝑚−2)}.

Setiap elemen 𝛼𝑖 dapat direpresentasikan dalam bentuk polinomial berderajat

kurang dari 𝑚, yaitu

𝑎𝑚−1𝑥
𝑚−1 + … + 𝑎1𝑥 + 𝑎0,

dengan koefisien 𝛼𝑗 ∈ {0,1}. Representasi ini juga dapat dinyatakan dalam bentuk

bilangan biner 𝑚 − 𝑏𝑖𝑡 maupun bentuk desimal. Dalam pengkodean Reed-

Solomon, elemen primitif 𝛼 umumnya dipilih dengan representasi desimal 2.

Definisi 2.5

 Polinomial tak tereduksi 𝑓(𝑥) dengan derajat 𝑚 atas 𝐺𝐹(𝑞) dikatakan

primitif jika 𝑛 adalah bilangan bulat positif terkecil, untuk 𝑓(𝑥) faktor dari 𝑥𝑛 −

1, berlaku 𝑛 = 𝑞𝑚 − 1.

21

 Sebagai contoh, lapangan hingga 𝐺𝐹(8) = 𝐺𝐹(23) memiliki 𝑚 = 3 dan

dapat direpresentasikan menggunaka polinomial primitif 𝑝(𝑥) = 𝑥3 + 𝑥 + 1. Jika

𝛼 adalah akar dari 𝑝(𝑥), maka berlaku,

𝛼3 + 𝛼 + 1 = 0 ⇒ 𝛼3 = 𝛼 + 1.

Setiap elemen di 𝐺𝐹(8) dapat direpresentasikan sebagai 𝛼2𝑥
2 + 𝛼1𝑥

1 +

𝛼0𝑥
0, 𝛼𝑗 ∈ {0,1}. Dengan 𝛼2, 𝛼1, 𝛼0 berkorespondensi dengan nilai biner 000

sampai 111, atau dalam bentuk desimal 0 sampai 7 (Wicker, 2005).

Tabel 2.3 Tabel Representasi Eksponensial dan Polinomial Elemen 𝐺𝐹(2𝑛)

Representasi Eksponensial Representasi Polinomial

1 1

𝛼1 𝛼

𝛼2 𝛼2

𝛼3 𝛼3 = 𝛼 + 1

𝛼4 α(α + 1) = 𝛼2 + 𝛼

𝛼5 𝛼3 + 𝛼2 = 𝛼2 + 𝛼 + 1

𝛼6 𝛼3 + 𝛼2 + 𝛼 = 𝛼2 + 1

0 0

Sebuah polinomial pada galois field yang dituliskan sebagai 𝑝(𝑥) disebut

primitive polinomial. Polinomial ini digunakan untuk membangkitkan seluruh

elemen dalam lapangan hingga melalui proses perkalian antar elemen. Dalam

galois field dengan ukuran tertentu, bentuk polinomial primitif yang umum

digunakan dapat dilihat pada Tabel 2.4.

Tabel 2.4 Tabel Primitif Polinomial GF
m Primitive polynomial 𝐺𝐹 m Primitive polynomial 𝐺𝐹

2 1 + 𝑥 + 𝑥2 13 1 + 𝑥 + 𝑥3 + 𝑥4 + 𝑥13

3 1 + 𝑥 + 𝑥3, 1 + 𝑥2 + 𝑥3 14 1 + 𝑥 + 𝑥6 + 𝑥10 + 𝑥14

4 1 + 𝑥 + 𝑥4 15 1 + 𝑥 + 𝑥15

5 1 + 𝑥2 + 𝑥5 16 1 + 𝑥 + 𝑥3 + 𝑥12 + 𝑥16

6 1 + 𝑥 + 𝑥6 17 1 + 𝑥3 + 𝑥17

7 1 + 𝑥3 + 𝑥7 18 1 + 𝑥7 + 𝑥18

8 1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥8 19 1 + 𝑥 + 𝑥2 + 𝑥5 + 𝑥19

9 1 + 𝑥4 + 𝑥9 20 1 + 𝑥3 + 𝑥20

10 1 + 𝑥3 + 𝑥10 21 1 + 𝑥2 + 𝑥21

11 1 + 𝑥2 + 𝑥11 22 1 + 𝑥 + 𝑥22

12 1 + 𝑥 + 𝑥4 + 𝑥6 + 𝑥12 23 1 + 𝑥 + 𝑥22

22

2.1.4 Representasi Galois Field

Seperti yang dijelaskan sebelumnya, galois field direpresentasikan sebagai

himpunan terbatas dengan jumlah elemen maksimum sebesar 2𝑚. Pada kasus

𝐺𝐹(16) dengan 𝑚 = 4, jumlah elemennya adalah 24 = 16. Untuk

membangunnya, diperlukan sebuah polinomial primitif 𝑝(𝑥) = 𝑥4 + 𝑥 + 1, maka

substitusi 𝑝(𝑥) = 0 dihasilkan 𝛼4 = 𝛼 + 1.

Relasi ini sangat penting karena digunakan untuk menyederhanakan nilai-

nilai pangkat 𝛼𝑖 yang lebih tinggi dengan cara mengganti 𝛼4 dan kelipatannya

menggunakan 𝛼 + 1. Kemudian melakukan operasi penjumlahan polinomial

dalam 𝐺𝐹(2). Proses ini dilakukan berulang hingga seluruh elemen dalam

𝐺𝐹(16) terbentuk. Sehingga diperoleh 𝐺𝐹(16) = {0,1, 𝛼, 𝛼2, 𝛼3, 𝛼4, … , 𝛼14}.

Tabel 2.5 menunjukkan representasi elemen 𝐺𝐹(16) dalam bentuk pangkat

𝛼𝑖, polinomial, biner 4-bit, dan desimal.

Tabel 2.5 Representasi Polinomial, Biner, dan Desimal pada 𝐺𝐹(24)

α𝑖 Representasi Polinomial Biner Desimal

0 0 0000 0

1 1 0001 1

α1 α 0010 2

α2 α2 0100 4

α3 α3 1000 8

α4 α + 1 0011 3

α5 α2 + α 0110 6

α6 α3 + α2 1100 12

α7 α3 + α + 1 1011 11

α8 α2 + 1 0101 5

α9 α3 + α 1010 10

α10 α2 + α + 1 0111 7

α11 α3 + α2 + α 1110 14

α12 α3 + α2 + α + 1 1111 15

α13 α13 = α3 + α2 + 1 1101 13

α14 α3 + 1 1001 9

23

Sementara itu, untuk 𝐺𝐹(256) dengan 𝑚 = 8, jumlah elemennya adalah

𝐺𝐹(256) = 28 = 256. Dengan memilih polinomial primitif misalnya 𝑝(𝑥) =

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1. Maka diperoleh 𝛼8 = 𝛼4 + 𝛼3 + 𝛼2 + 1. Representasi

elemen 𝐺𝐹(256) juga dapat disajikan dalam bentuk pangkat 𝛼𝑖, polinomial, biner

8-bit, dan desimal pada Tabel 2.6.

Tabel 2.6 Representasi Polinomial, Biner, dan Desimal pada 𝐺𝐹(28)

α𝑖 Representasi Polinomial Biner Desimal

𝛼0 α0 00000001 1

α1 α1 00000010 2

α2 α2 00000100 4

α3 α3 00001000 8

α4 α4 00010000 16

α5 α5 00100000 32

α6 α6 01000000 64

α7 α7 10000000 128

α8 α4 + α3 + α2 + α0 00011101 29

α9 α5 + α4 + α3 + α1 00111010 58

α10 α6 + α5 + α4 + α2 01110100 116

α11 α7 + α6 + α5 + α3 11101000 232

α12 α7 + α6 + α3 + α2 + α0 11001101 205

α13 α7 + α2 + α1 + α0 10000111 135

α14 α4 + α1 + α0 00010011 19

α15 α5 + α2 + α1 00100110 38

⋮ ⋮ ⋮ ⋮
α255 α0 00000001 1

2.1.5 Ruang Vektor atas Lapangan Hingga

 Suatu ruang vektor 𝑉 atas lapangan 𝐹 adalah himpunan tak kosong yang

dilengkapi dengan dua operasi, yaitu penjumlahan vektor dan perkalian dengan

skalar (Lang dkk., 2015). Untuk setiap vektor 𝒖, 𝒗, 𝒘, ∈ 𝑉 dan skalar 𝜆, 𝜇 ∈ 𝐹,

berlaku aksioma-aksioma vektor berikut:

1. 𝒖 + 𝒗 ∈ 𝑉.

2. (𝒖 + 𝒗) + 𝒘 = 𝒖 + (𝒗 + 𝒘).

24

3. Terdapat 𝐎 ∈ 𝑉 untuk setiap 𝒗 ∈ 𝑉 sedemikian sehingga memenuhi 𝐎 +

𝒗 = 𝒗 + 𝐎 = 𝒗.

4. Untuk setiap 𝒖 ∈ 𝑉 terdapat −𝒖 ∈ 𝑉 sedemikian sehingga memenuhi 𝒖 +

(−𝒖) = (−𝒖) + 𝒖 = 𝐎.

5. 𝒖 + 𝒗 = 𝒗 + 𝒖.

6. 𝜆𝒗 ∈ 𝑉.

7. 𝜆(𝒖 + 𝒗) = 𝜆𝒖 + 𝜆𝒗.

8. (𝜆 + 𝜇)𝒖 = 𝜆𝒖 + 𝜇𝒖.

9. (𝜆𝜇)𝒖 = 𝜆(𝜇𝒖).

10. 1𝒖 = 𝒖.

Ruang vektor digunakan untuk merepresentasikan pesan dan kode sebagai

vektor berdimensi tetap atas lapangan hingga 𝐺𝐹(𝑝𝑛). Proses encoding dengan

menggunakan matriks generator merupakan bentuk transformasi linier dalam

ruang vektor,

di mana:

1. Pesan berupa vektor 𝑚 ∈ 𝐺𝐹(𝑝𝑛)𝑘.

2. Dikalikan dengan matriks generator 𝐺 ∈ 𝐺𝐹(𝑝𝑛)𝑘×𝑛.

3. Menghasilkan kode 𝐶 = 𝑚𝐺 ∈ 𝐺𝐹(𝑝𝑛).

2.2 Teori Pengkodean (Coding Theory)

Teori pengkodean merupakan cabang ilmu matematika terapan yang

mempelajari cara merepresentasikan informasi dalam bentuk kode sehingga data

dapat ditransmisikan atau disimpan secara efisien dan tetap tahan terhadap

gangguan (noise). Ketika data dikirimkan melalui saluran komunikasi,

25

kemungkinan terjadinya gangguan (noise) sangat besar sehingga data yang diterima

dapat berbeda dari yang dikirim. Fokus utama teori pengkodean adalah merancang

kode yang memungkinkan deteksi dan koreksi kesalahan, sehingga informasi dapat

dipulihkan meskipun terjadi kerusakan data selama proses pengiriman.

Secara umum, teori pengkodean menggabungkan konsep-konsep matematika

seperti aljabar linear, teori bilangan, polinomial, dan lapangan hingga (Galois

Field). Dalam konteks transmisi digital, suatu kode dibangun untuk mengubah

pesan asli ke dalam bentuk codeword yang memiliki redundansi tertentu.

Redundansi inilah yang memungkinkan penerima mendeteksi dan memperbaiki

kesalahan yang terjadi selama proses transmisi.

Teori koding digunakan untuk mengkoreksi kesalahan pada saluran informasi

yang apabila terjadi gangguan dapat membuat data tidak terkirim sempurna.

Encoding atau enkripsi adalah suatu cara atau metode dalam teori koding yang

mengubah suatu data asli menjadi kode-kode yang melambangkan data tersebut.

Decoding atau dekripsi merupakan suatu proses kebalikan dari encoding.

Pengertian decoding yaitu suatu cara atau metode dalam teori koding yang

mengubah kode-kode data tersebut menjadi data asli. (Munir, 2006).

2.2.1 Kode Siklik

Sebuah kode linier 𝐶 dikatakan siklik jika untuk setiap vektor 𝑐 =

 (𝑐1, 𝑐2, … , 𝑐𝑛−1) ∈ 𝐶. Contohnya, jika (1,1,0,1) adalah elemen sebuah kode

siklik, maka (1,1,1,0) juga termuat dalam kode siklik tersebut (Jamal dkk., 2012).

Dengan demikian, operasi pergeseran siklik memetakan kode 𝐶 ke dirinya sendiri.

Sehingga jika diberikan suatu matriks 𝐺 yang merentang kode siklik, untuk

26

menentukan semua vektor kode dari kode sikliknya dapat dilakukan dengan

melakukan pergeseran secara siklik pada vektor perentangnya.

2.2.2 Kode Linear

Definisi 2.6

Suatu kode linear 𝐶 dengan panjang 𝑛 atas 𝐹𝑞 adalah subruang dari 𝐹𝑛
𝑞
.

Dimensi dari kode linear 𝐶 adalah dimensi dari 𝐶 sebagai ruang vektor atas 𝐹𝑞

yang dinotasikan dim 𝐶 (Bierbrauer, 2019).

𝐹𝑞
𝑛 = {(𝑣1, 𝑣2, … , 𝑣𝑛) | 𝑣𝑖 ∈ 𝐹𝑞} (2.2)

di mana:

𝐹𝑞 : Lapangan hingga dengan 𝑞 elemen

𝐹𝑞
𝑛 : Ruang vektor berdimensi 𝑛 atas 𝐹𝑞

𝑣𝑖 : Elemen ke-i dari vektor

(𝑣1, 𝑣2, … , 𝑣𝑛) : Vektor berdimensi 𝑛

Kode linear dengan panjang 𝑛 dan dimensi 𝑘 disebut sebagai kode (𝑛, 𝑘).

Artinya, kode linear 𝐶 terdiri atas 𝑞𝑘 codeword, karena terdapat 𝑞𝑘 kombinasi

linear yang dapat dibentuk dari basis berdimensi 𝑘 di 𝐹𝑞
𝑛.

1. Matriks Generator.

Pada teori pengkodean, sebuah kode linear 𝐶[𝑛, 𝑘] atas lapangan 𝐹𝑞 dapat

direpresentasikan menggunakan matriks generator 𝐺 berukuran 𝑘 × 𝑛.

Baris-baris pada matriks ini membentuk basis dari subruang 𝐶 ⊆ 𝐹𝑞
𝑛.

Dengan demikian, setiap codeword 𝑐 ∈ 𝐶 dapat diperoleh dari hasil

perkalian antara vektor pesan 𝑣 ∈ 𝐹𝑞
𝑘 dengan matriks 𝐺, yaitu:

27

𝑐 = 𝑣 ∙ 𝐺 (2.3)

Matriks generator 𝐺 dinotasikan dengan:

 𝐺 = [𝐼𝑘 ∣ 𝐴] (2.4)

di mana:

𝐼𝑘 : Matriks identitas berukuran 𝑘 × 𝑘

𝐴 : Matriks berukuran 𝑘 × (𝑛 − 𝑘)

Misalkan, diberikan dua vektor pesan sebagai berikut:

𝑣1 = (1011), 𝑣2 = (0101)

dan matriks generator 𝐺 sebagai berikut:

𝐺 = [

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 0
0 0 0 1 0 1 1

]

Dengan demikian, diperoleh:

𝑐1 = 𝑣1 ⋅ 𝐺 = (1 0 1 1 0 0 0)

𝑐2 = 𝑣2 ⋅ 𝐺 = (0 1 0 1 1 0 1)

Untuk kode Reed–Solomon (𝑅𝑆), matriks generator tidak dibentuk dari 𝐺 =

[𝐼𝑘|𝐴] secara langsung, tetapi melalui konstruk Vandermonde matrix di

lapangan hingga 𝐺𝐹(2𝑚). Matriks generator 𝑅𝑆 berukuran 𝑘 × 𝑛 umumnya

dituliskan sebagai:

𝐺 =

[

1 1 1 ⋯ 1
𝑥0 𝑥1 𝑥2 ⋯ 𝑥𝑛−1

𝑥0
2 𝑥1

2 𝑥2
2 ⋯ 𝑥𝑛−1

2

⋮ ⋮ ⋮ ⋱ ⋮
𝑥0

𝑘−1 𝑥1
𝑘−1 𝑥2

𝑘−1 ⋯ 𝑥𝑛−1
𝑘−1]

Dengan 𝑥𝑗 = 𝛼5𝑗 merupakan titik evaluasi yang berbeda pada 𝐺𝐹(2𝑚), dan

𝑗 = 0,1,… , 𝑛 − 1 menyatakan indeks kolom matriks generator.

28

Dalam penelitian ini titik evaluasi dipilih menggunakan pola aritmatika

dengan parameter start= 0 dan step= 5, dan titik evaluasi menjadi:

𝑥𝑗 = 𝛼5𝑗 .

Dengan demikian, kolom ke-j dari matriks generator adalah:

[ 1, 𝛼5𝑗 , 𝛼10𝑗, 𝛼15𝑗, … , 𝛼𝑘−1(5𝑗) ]
𝑇
.

Karena pada 𝐺𝐹(28) berlaku 𝛼255 = 𝛼0 = 1, semua eksponen dipandang

modulo 255. Dengan 𝑔𝑐𝑑(5,255) = 5, deret 5𝑗 (𝑚𝑜𝑑255) akan

mengulangi setiap 255/5 = 51 langkah, oleh karena itu jumlah kolom unik

maksimum tanpa pengulangan eksponen adalah 51. Untuk menjamin bahwa

semua titik evaluasi berbeda (sehingga submatriks Vandermonde 𝑘 ×

𝑘 nonsingular), dipastikan 𝑛 ≤ 51 saat menggunakan pola 𝑠𝑡𝑎𝑟𝑡 = 0,

𝑠𝑡𝑒𝑝 = 5 pada 𝐺𝐹(28).

𝐺 =

[

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⋯ 1
1 α5 α10 α15 α20 α25 α30 α35 α40 α45 α50 α55 α60 α65 α70 α75 ⋯ α250

1 α10 α20 α30 α40 α50 α60 α70 α80 α90 α100α110α120α130α140α150 ⋯ α245

1 α15 α30 α45 α60 α75 α90 α105α120α135α150α165α180α195α210α222 ⋯ α240

1 α20 α40 α60 α80 α100α120α140α140α180α200α220α240 α5 α25 α45 ⋯ α235

1 α25 α50 α75 α100α125α150α175α200α225α250 α20 α45 α70 α95 α120 ⋯ α230

1 α30 α60 α90 α120α150α180α210α240 α15 α45 α75 α105α135α165α195 ⋯ α225

1 α35 α70 α105α140α175α210α245 α25 α60 α95 α130α165α200α235 α15 ⋯ α220

1 α40 α80 α120α160α200α240 α25 α65 α105 α9 α185α225 α10 α50 α90 ⋯ α215

1 α45 α90 α135α180α225 α15 α60 α105α150α145α240 α30 α75 α120α165 ⋯ α210

1 α50 α100α150α200α250 α45 α95 α145α195α195 α40 α90 α140α190α240 ⋯ α205

1 α55 α110α165α220 α20 α75 α130α185α240α245 α95 α150α205 α5 α60 ⋯ α200

1 α60 α120α180α240 α45 α105α165α225 α30 α40 α150α210 α15 α75 α135 ⋯ α195

1 α65 α130α195 α5 α70 α135α200 α10 α75 α90 α205 α15 α80 α145α210 ⋯ α190

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 α230α205α180α155α130α105 α80 α55 α30 α5 α235α210α185α160α135 ⋯ α25]

2. Matriks Parity-Check.

Setiap kode linear 𝐶[𝑛, 𝑘] atas lapangan 𝐹𝑞, terdapat matriks pemeriksa

paritas (parity-check matrix) H berukuran 𝑟 × 𝑛 dengan 𝑟 = 𝑛 − 𝑘. Baris-

baris pada matriks ini membentuk basis dari ruang ortogonal terhadap 𝐶.

Suatu vektor 𝑥 ∈ 𝐹𝑞
𝑛 merupakan codeword jika dan hanya jika memenuhi:

29

𝐶 = {𝑥 ∈ 𝐹𝑞
𝑛 ∣ 𝐻𝑥

𝑇 = 0}.

Dengan kata lain, C merupakan himpunan solusi dari sistem persamaan

linear homogen (SPLH) 𝐻𝑥𝑇 = 0, atau disebut juga kernel dari H.

Mengkonstruksi kode linear dengan panjang 𝑛 dan berdimensi 𝑘 sama

artinya dengan mendefinisikan matriks cek paritas H.

Dalam proses decoding, matriks cek paritas berfungsi untuk menentukan

simbol-simbol redundansi agar codeword yang terbentuk tetap berada di

ruang solusi.

Misalkan vektor pesan sepanjang 𝑘:

𝑢 = (𝑢1, 𝑢2, … , 𝑢k),

Yang kemudian di encoding menjadi codeword sepanjang 𝑛:

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛),

Dengan 𝑥1 = 𝑢1, … , 𝑥𝑘 = 𝑢k. Sisa 𝑟 = (𝑛 − 𝑘) simbol berikutnya yaitu,

𝑥𝑘+1, 𝑥𝑘+2, … , 𝑥𝑛,

adalah simbol cek (parity symbols) yang diperoleh dari penyelesaian SPL:

𝐻𝑥𝑇 = 0 ⟺ 𝐻 (

𝑥1

𝑥2

⋮
𝑥𝑛

) = (

0
0
⋮
0

)

Matriks H biasanya dinyatakan dalam bentuk standar, yaitu

𝐻 = [𝐴 ∣∣ 𝐼𝑟], (2.5)

di mana:

𝐴 : Matriks berukuran 𝑟 × 𝑘

𝐼𝑟 : Matriks identitas berukuran 𝑟 × 𝑟

Karena Reed–Solomon merupakan evaluation code, matriks H yang

digunakan dalam penelitian ini dibentuk dengan cara mengevaluasi pangkat

30

elemen primitif α pada eksponen tertentu. Jika titik evaluasi untuk matriks

generator menggunakan

𝑥𝑗 = 𝛼5𝑗,

maka titik evaluasi untuk matriks parity-check adalah titik dual, yaitu nilai-

nilai 𝛼𝑡(𝑗) untuk beberapa t derajat paritas. Baris-baris matriks H memiliki

bentuk umum:

𝐻𝑖 = (1,   𝛼5𝑖 ,  𝛼10𝑖,  𝛼15𝑖,  𝛼20𝑖,  … ,  𝛼250𝑖),

di mana eksponen selalu dihitung modulo 255 (karena 𝛼255 = 1 di 𝐺𝐹(28)).

Dengan demikian, matriks parity-check yang digunakan dapat dituliskan

sebagai:

𝐻 = [

1 α5 α10α15α20 α25 α30 α35 α40 α45 α50 α55 ⋯ α250

1 α10α20α30α40 α50 α60 α70 α80 α90 α100α110 ⋯ α245

1 α15α30 α45 α60 α75 α90 α105α120α135α150α165 ⋯ α240

1 α20α40α60α80α100α120α140α160α180α200α220 ⋯ α235

]

3. Codeword.

Definisi 2.7

Diberikan 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑞} adalah suatu himpunan yang berukuran 𝑞,

yang dapat disebut alfabet kode dan elemen-elemennya disebut codeword

(Ling & Xing, 2004).

a. Suatu word 𝑞 − 𝑒𝑟 panjang 𝑛 yaitu barisan 𝑤 = 𝑤1, 𝑤2, … ,𝑤𝑛 dengan

𝑤𝑖 ∈ 𝑋 untuk setiap 𝑖.

b. Kode blok 𝑞 − 𝑒𝑟 dengan panjang 𝑛 atas 𝑋 merupakan himpunan tak

kosong 𝐶 pada word 𝑞 − 𝑒𝑟 mempunyai panjang yang sama.

c. Elemen dari 𝐶 disebut dengan codeword.

d. Kode dengan panjang 𝑛 dan berukuran 𝑚 disebut dengan kode-(𝑛,𝑚).

31

Contoh 2.4.

Suatu himpunan yang beranggotakan hewan yaitu 𝐻 = {kucing, anjing,

burung, ikan, kelinci, ayam} akan dikodekan menjadi suatu pesan rahasia

yang terdiri dari angka biner 0 dan 1 dengan panjang 3-bit pada Tabel 2.7.

Tabel 2.7 Tabel Korespondensi Hewan dan Kode Biner

Hewan Kode

Kucing 000

Anjing 001

Burung 010

Ikan 011

Kelinci 100

Ayam 101

Jadi himpunan 𝐻 dapat ditulis dalam bentuk kode yaitu,

𝐻 = {000,001,010,011,100,101}.

2.2.3 Pengkodean Huruf Hijaiyah

Huruf hijaiyah adalah abjad yang digunakan dalam penulisan teks Al-

Qur’an. Kata huruf berasal dari bahasa Arab“harf” (حرف), dan bentuk jamaknya

adalah “ḥurūf” (حروف). Huruf Arab disebut juga huruf hija’iyah (هجائية) . Kata

hija’iyah berasal dari kata kerja hajjaa)هجى(yang artinya mengeja, menghitung

huruf, atau membaca huruf demi huruf. (Nasution, 2020).

Adapun huruf-huruf hijaiyah dapat dilihat pada Gambar 2.1.

32

Gambar 2.1 Huruf Hijaiyah

Pada penelitian ini, teks yang akan dikodekan menggunakan kode Reed-

Solomon adalah ayat-ayat Al-Qur'an yang ditulis menggunakan huruf hijaiyah

tanpa menggunakan harakat. Untuk mengubah ayat-ayat tersebut menjadi bentuk

yang dapat diolah dalam sistem pengkodean, huruf-huruf hijaiyah dikonversikan

menjadi angka-angka berdasarkan representasi Unicode, yaitu sistem pengkodean

karakter universal yang memberikan setiap huruf Arab kode numerik unik dalam

bentuk bilangan desimal dan biner 16-bit. Sehingga membentuk vektor dalam

ruang vektor 𝑉𝑘(𝐹). Representasi ini menjadi dasar dalam proses encoding dan

decoding kode Reed-Solomon untuk mendeteksi serta mengoreksi kesalahan

penulisan ayat Al-Qur'an.

Tabel 2.8 menyajikan nilai Unicode dari huruf-huruf hijaiyah dasar dalam

format Hex, Desimal, dan biner 16-bit. Nilai Unicode (Hex & Desimal),

sedangkan kolom Representasi Biner (16-bit) merupakan hasil konversi peneliti

(nilai Unicode desimal diubah menjadi biner 16-bit).

33

Tabel 2.8 Korespondensi Huruf Hijaiyah dan Vektor Biner

No Huruf

Hijaiyah

Nama

Karakter

Unicode

(Hex)

Unicode

(Desimal)

Representasi Biner

(16-bit)

Hamzah 𝑈 ء 1 + 0621 1569 0000011000100001

 Alif Hamzah أ 2

di atas
𝑈 + 0623 1571 0000011000100011

 Wāw ؤ 3

Hamzah
𝑈 + 0624 1572 0000011000100100

 Alif Hamzah إ 4

di bawah
𝑈 + 0625 1573 0000011000100101

Yāʼ Hamzah 𝑈 ئ 5 + 0626 1574 0000011000100110

Alif 𝑈 ا 6 + 0627 1575 0000011000100111

Bāʼ 𝑈 ب 7 + 0628 1576 0000011000101000

Tāʼ 𝑈 ت 8 + 062𝐴 1578 0000011000101010

Thāʼ 𝑈 ث 9 + 062𝐵 1579 0000011000101011

Jīm 𝑈 ج 10 + 062𝐶 1580 0000011000101100

Ḥāʼ 𝑈 ح 11 + 062𝐷 1581 0000011000101101

Khāʼ 𝑈 خ 12 + 062𝐸 1582 0000011000101110

Dāl 𝑈 د 13 + 062𝐹 1583 0000011000101111

Dhāl 𝑈 ذ 14 + 0630 1584 0000011000110000

Rāʼ 𝑈 ر 15 + 0631 1585 0000011000110001

Zāy 𝑈 ز 16 + 0632 1586 0000011000110010

Sīn 𝑈 س 17 + 0633 1587 0000011000110011

Shīn 𝑈 ش 18 + 0634 1588 0000011000110100

Ṣād 𝑈 ص 19 + 0635 1589 0000011000110101

Ḍād 𝑈 ض 20 + 0636 1590 0000011000110110

Ṭāʼ 𝑈 ط 21 + 0637 1591 0000011000110111

Ẓāʼ 𝑈 ظ 22 + 0638 1592 0000011000111000

ʿAyn 𝑈 ع 23 + 0639 1593 0000011000111001

Ghayn 𝑈 غ 24 + 063𝐴 1594 0000011000111010

Fāʼ 𝑈 ف 25 + 0641 1601 0000011001000001

Qāf 𝑈 ق 26 + 0642 1602 0000011001000010

Kāf 𝑈 ك 27 + 0643 1603 0000011001000011

Lām 𝑈 ل 28 + 0644 1604 0000011001000100

Mīm 𝑈 م 29 + 0645 1605 0000011001000101

Nūn 𝑈 ن 30 + 0646 1606 0000011001000110

Hāʼ 𝑈 ه 31 + 0647 1607 0000011001000111

Wāw 𝑈 و 32 + 0648 1608 0000011001001000

Lam Alif 𝑈 لا 33 + 𝐹𝐸𝐹𝐵 65275 1111111011111011

Yāʼ 𝑈 ي 34 + 064𝐴 1610 0000011001001010

 Alif ى 35

Maqṣūrah
𝑈 + 0649 1609 0000011001001001

 Tāʼ ة 36

Marbūṭah
𝑈 + 0629 1577 0000011000101001

37 ␣ Spasi 𝑈 + 0020 32 0000000000100000

34

2.2.4 Kode Reed-Solomon

Kode Reed-Solomon (𝑅𝑆) merupakan salah satu jenis kode blok linier yang

bersifat siklik non-biner, didefinisikan atas lapangan hingga 𝐺𝐹(𝑞), dan 𝐺𝐹(2𝑚).

Kode ini pertama kali diperkenalkan oleh Irving S. Reed dan Gustave Solomon

pada tahun 1960 dalam publikasi berjudul “Polynomial Codes over Certain Finite

Fields”. Kode Reed-Solomon merupakan kode blok, yang berarti pesan yang akan

ditransmisikan dibagi menjadi blok-blok data yang terpisah. Kode ini disebut juga

kode sistematik yang artinya proses encoding tidak merubah simbol-simbol pesan

dan simbol proteksi ditambahkan pada tempat yang terpisah pada blok data

tersebut. Kode Reed-Solomon disebut juga kode linear (dengan menjumlahkan

dua codeword akan menghasilkan codeword yang lain), dan juga siklik (dengan

menggeser sebuah codeword secara siklik akan menghasilkan codeword lain).

Reed-Solomon Code termasuk dalam keluarga pengkodean Bose-Choundhuri-

Hocquenghem (BCH) non biner.

Kode Reed–Solomon merupakan salah satu jenis kode koreksi kesalahan

yang bekerja dengan menambahkan simbol-simbol redundansi pada pesan asli

sehingga sistem mampu mendeteksi dan memperbaiki kerusakan yang terjadi

selama proses transmisi. Pada tahap encoding, pesan yang telah direpresentasikan

dalam bentuk simbol pada lapangan hingga ditambahkan sejumlah simbol paritas

yang berfungsi sebagai penanda untuk melacak kesalahan. Ketika codeword

dikirim melalui kanal, sebagian simbol dapat berubah akibat gangguan. Pada saat

penerimaan, decoder akan memeriksa konsistensi hubungan matematis antar-

simbol untuk menentukan apakah terjadi kesalahan. Jika ditemukan

ketidakcocokan, sistem kemudian mengidentifikasi posisi simbol yang rusak

35

dengan memanfaatkan informasi yang tersimpan pada simbol-simbol paritas.

Setelah posisi kesalahan diketahui, Reed–Solomon menghitung nilai asli simbol

tersebut dan menggantinya dengan nilai yang benar sehingga codeword kembali

valid.

Sebagai ilustrasi, misalkan surah Al-Kahf : 48 telah melalui proses encoding

dan menghasilkan sebuah codeword yang berisi 51 simbol. Ketika dikirim, satu

simbol berubah akibat gangguan. Pada tahap penerimaan, decoder mendeteksi

bahwa susunan simbol tidak lagi sesuai dengan struktur matematis yang

seharusnya. Sistem kemudian menelusuri posisi kesalahan tersebut misalnya pada

simbol ke−31 dan menghitung nilai simbol yang benar berdasarkan informasi

paritas. Setelah simbol itu diganti, codeword kembali sesuai dengan kondisi awal,

dan surah Al-Kahf : 48 dapat dipulihkan sepenuhnya tanpa kehilangan satu huruf

pun. Proses yang sama juga berlaku untuk dua, tiga, hingga lima kesalahan,

selama jumlah kerusakan tidak melampaui batas kemampuan koreksi kode Reed–

Solomon.

Dalam sistem komunikasi digital, kode Reed-Solomon memiliki dua proses:

1. Encoding, yaitu proses mengubah pesan menjadi codeword dengan

menambahkan simbol paritas.

2. Decoding, yaitu proses mengembalikan codeword menjadi pesan asli

sekaligus melakukan deteksi dan koreksi kesalahan yang mungkin terjadi

selama transmisi.

Diagram struktur kode Reed-Solomon secara umum dapat dilihat pada

Gambar 2.2.

36

Gambar 2.2 Diagram Struktur Kode Reed–Solomon (𝑛, 𝑘, 2𝑡)

Kode Reed-Solomon atas 𝐺𝐹(2𝑚) umumnya menggunakan parameter

sebagai berikut:

1. 𝑛 = 2𝑚 − 1, panjang codeword dalam simbol. (2.6)

2. 𝑘 = 𝑛 − 2𝑡 , jumlah simbol data (pesan). (2.7)

3. 2𝑡 = 𝑛 − 𝑘 , jumlah simbol paritas, dengan 𝑡 merupakan jumlah simbol

yang dapat dikoreksi sehingga 𝑡 = ⌊
𝑛−𝑘

2
⌋. (2.8)

4. 𝑑𝑚𝑖𝑛 = 2𝑡 + 1 = 𝑛 − 𝑘 + 1, jarak minimum antar-codeword. (2.9)

Kode Reed-Solomon biasanya dilambangkan sebagai:

𝑅𝑆(𝑛, 𝑘) atas 𝐺𝐹(𝑞)

Definisi 2.8

Kode Reed-Solomon 𝑅𝑆(𝑛, 𝑘) pengoreksi 𝑡-kesalahan adalah sebuah kode BCH

primitif dengan panjang 𝑛 = 𝑞 − 1 atas lapangan 𝐺𝐹(𝑞𝑚).

Contoh 2.5.

Misalkan lapangan hingga 𝐺𝐹(24) dan parameter:

𝑛 = 15, 𝑘 = 11

Maka:

𝑡 = ⌊
𝑛 − 𝑘

2
⌋ = ⌊

15 − 11

2
⌋ = 2

Sehingga, kode 𝑅𝑆(15, 11) mampu mendeteksi hingga 4 kesalahan dan

mongerksi hingga 2 kesalahan dalam setiap codeword.

37

2.2.5 Proses Encoding dan Decoding Kode Reed-Solomon

Setelah konsep dasar kode siklik, kode linear, matriks generator, dan matriks

parity check dipaparkan pada bagian sebelumnya, maka pada subbab ini dibahas

proses pembentukan codeword menggunakan matriks generator khusus pada kode

Reed–Solomon. Pembahasan difokuskan pada bagaimana vektor pesan diolah

melalui operasi aritmetika pada 𝐺𝐹(28) sehingga menghasilkan simbol-simbol

redundansi yang diperlukan untuk mendeteksi dan mengoreksi kesalahan pada

tahap decoding.

1. Proses Encoding.

Pada penelitian ini, proses encoding pada kode Reed-Solomon dilakukan

dengan merepresentasikan pesan sebagai vektor yang beranggotakan

elemen-elemen dari lapangan hingga 𝐺𝐹(2𝑚). Misalkan diberikan pesan,

𝑀 = (𝑀0, 𝑀1, … , 𝑀𝑘−1)

Dengan setiap 𝑀𝑖 ∈ 𝐺𝐹(2𝑚), pesan tersebut kemudian dikodekan menjadi

codeword berdimensi 𝑛 melalui perkalian antara vektor pesan dengan

matriks generator 𝐺, sehingga diperoleh:

𝐶 = 𝑀 ⋅ 𝐺 (2.10)

di mana:

 𝑀 : Vektor pesan berdimensi 𝑘, yaitu (𝑀0, 𝑀1, … ,𝑀𝑘−1)

 𝐺 : Matriks generator berukuran 𝑘 × 𝑛 yang dibentuk atas 𝐺𝐹(2𝑚)

Hasil dari encoding berupa codeword 𝐶 berdimensi 𝑛, yang terdiri atas 𝑘

simbol informasi dan 𝑛 − 𝑘 simbol redundansi (paritas). Simbol redundansi

inilah yang memungkinkan kode Reed–Solomon mendeteksi dan

mengoreksi kesalahan hingga sebanyak 𝑡 kesalahan.

38

2. Transmisi melalui channel.

Dalam sistem komunikasi digital, transmisi merupakan jalur yang

menghubungkan pengirim dengan penerima, yang bisa berupa kabel, udara,

atau media lainnya. Setelah proses encoding selesai, data pesan yang telah

dikodekan menjadi codeword 𝐶(𝑥) dikirimkan melalui kanal transmisi.

Pada proses transmisi inilah kemungkinan terjadi gangguan (noise),

interferensi atau kerusakan media, sehingga sebagian simbol dari codeword

mungkin berubah. Untuk mensimulasikan kondisi tersebut, dalam

implementasi program dilakukan penyisipan error (error injection) pada

satu atau beberapa simbol codeword.

Kesalahan yang terjadi direpresentasikan oleh polinomial error 𝑒(𝑥), yang

menyatakan posisi dan besarnya kesalahan pada codeword. Dengan

demikian, simbol yang diterima oleh penerima tidak lagi identik dengan

simbol yang dikirim, melainkan berbentuk vektor penerimaan 𝑣(𝑥), yang

secara matematis dimodelkan sebagai:

𝑣(𝑥) = 𝐶(𝑥) + 𝑒(𝑥) (2.11)

atau dalam bentuk vektor:

𝑟 = 𝐶 + 𝑒 (2.12)

di mana:

𝐶 : (𝐶0, 𝐶1, … , 𝐶𝑛−1) adalah codeword yang dikirim oleh

pengirim, hasil dari proses encoding.

𝑟 : (𝑟0, 𝑟1, … , 𝑟𝑛−1) adalah received word, yaitu deretan simbol

yang diterima penerima.

𝑒 : (𝑒0, 𝑒1, … , 𝑒𝑛−1) adalah vektor error.

39

Vektor error 𝑒 menggambarkan posisi simbol yang rusak selama transmisi.

Jika 𝑒𝑖 = 0, maka simbol ke-𝑖 tidak mengalami kerusakan. Sebaliknya,

jika 𝑒𝑖 ≠ 0, maka simbol pada posisi tersebut mengalami error. Dengan

demikian:

a. Jika tidak ada error sama sekali, maka 𝑟 = 𝑐.

b. Jika terdapat error pada beberapa posisi, maka 𝑟 ≠ 𝑐, dan selisihnya

ditentukan oleh nilai 𝑒.

Contoh 2.6.

Misalkan kode Reed-Solomon 𝑅𝑆(7,4) atas 𝐺𝐹(23), dengan parameter 𝑛 =

7, 𝑘 = 4 dan 𝑡 = 2. Pesan yang akan dikirim:

𝑀 = 1011

Hasil encoding (setelah penambahan simbol paritas) diperoleh codeword:

𝐶 = 1011010

Transmisi melalui channel dimodelkan dengan:

𝑟 = 𝐶 + 𝑒

dengan 𝑒 adalah vektor error.

Jika terjadi error pada bit ke−3, maka:

𝑒 = 001000

Sehingga:

𝑟 = 1011010 + 001000 = 1001010

3. Proses Decoding.

Proses decoding merupakan tahap untuk mengembalikan codeword yang

diterima menjadi pesan asli. Pada tahap ini dilakukan dua langkah utama,

yaitu proses deteksi kesalahan dan koreksi kesalahan. Jika codeword yang

40

diterima sama dengan yang dikirim, maka pesan dapat langsung dibaca

tanpa koreksi. Namun, jika terdapat perbedaan akibat noise atau gangguan

pada kanal, maka decoder harus mendeteksi lokasi kesalahan dan

memperbaiki.

a. Perhitungan Sindrom.

Pada proses decoding Reed-Solomon, sindrom digunakan untuk

mendeteksi keberadaan dan informasi tentang kesalahan dalam sebuah

codeword. Jika vektor yang diterima adalah 𝑣 = (𝑣0, 𝑣1, … , 𝑣𝑛−1), maka

sindrom ke-𝑗 didefinisikan sebagai hasil evaluasi dari polinomial

𝑣(𝑥) pada akar-akar polynomial generator:

𝑆𝑗 = ∑ 𝑣𝑖 ∙ αj∙i, 𝑗 = 1,2, … ,2𝑡𝑛−1
𝑖=0 (2.13)

dengan 𝛼 adalah elemen primitif dari 𝐺𝐹(𝑞), dan 𝑆𝑗 adalah sindrom

ke−𝑗. Secara matriks, sindrom dapat dihitung dengan mengalikan

matriks evaluasi 𝐻 dengan transpose vektor (𝑣𝑇) (Bras-amor, 2018),

yaitu:

𝑆 = 𝐻 ⋅ 𝑣𝑇 (2.14)

dengan H adalah matriks parity-check berukuran 2𝑡 × 𝑛:

𝐻 = [

1 α1 α2 ⋯ αn−1

1 α2 α4 ⋯ α2(n−1)

⋮ ⋮ ⋮ ⋱ ⋮
1 α2t α2t∙2 ⋯ α2t(n−1)

]

Apabila semua sindrom bernilai nol (𝑆1 = 𝑆2 = ⋯ = 𝑆2𝑡 = 0), maka

vektor penerimaan 𝑣 adalah codeword yang valid. Sebaliknya, jika

terdapat sindrom yang bernilai tidak nol, maka hal ini menunjukkan

adanya error pada codeword yang diterima.

41

b. Menentukan Polinomial Lokasi kesalahan dan Posisi Kesalahan.

Dalam decoding Reed-Solomon, error locator polynomial 𝜎(𝑥)

digunakan untuk menentukan posisi simbol yang mengalami kesalahan.

Polinomial ini didefinisikan sebagai:

σ(x) = ∏ (1 − 𝛽𝑗𝑥)𝑣
𝑗=1 = 1 + σ1 + xσ2x

2 + +⋯ σ𝑣x
𝑣 (2.15)

di mana:

𝛽𝑗 : 𝛼

𝑣 : Jumlah kesalahan

𝜎𝑖 : Koefisien polinomial lokasi kesalahan

Akar-akar kebalikan dari 𝜎(𝑥) menunjukkan posisi kesalahan pada

codeword. Jika:

𝜎(𝛼−𝑒) = 0,

Jika 𝛼−𝑒 = 0 adalah akar dari 𝜎(𝑥), maka posisi ke-𝑒 pada codeword

terjadi kesalahan.

Untuk memperoleh 𝜎(𝑥), digunakan Berlekamp–Massey Algorithm

(BMA), yaitu algoritma yang mencari polinomial dengan derajat terkecil

yang memenuhi relasi linier:

𝜎0𝑆𝑗 + 𝜎1𝑆𝑗−1 + 𝜎2𝑆𝑗−2 + ⋯+ 𝜎𝐿𝑆𝑗−𝐿 = 0,

untuk 𝑗 = 𝐿 + 1,… ,2𝑡,

di mana:

𝑆𝑗 ∶ Sindrom 𝑘𝑒 − 𝑗

𝜎𝑖 ∶ Koefisien polinomial locator kesalahan

𝐿 ∶ Derajat polinomial locator (jumlah error yang ditemukan)

𝑡 ∶ Jumlah error yang bisa dikoreksi

42

Dalam implementasi 𝑅𝑆 tertentu (misal 𝑅𝑆(255) dengan 𝑠 = 5), posisi

simbol ditentukan dalam langkah tertentu:

 𝑖 =
𝑒

𝑠

c. Mencari akar Polinomial Evaluasi Kesalahan (Error).

Setelah polinomial locator 𝜎(𝑥) diperoleh, langkah berikutnya adalah

menentukan akar polinomial evaluasi error 𝛺(𝑥). Polinomial ini

berfungsi untuk menghitung besar error pada setiap posisi kesalahan.

Ω(𝑥) = S(𝑥) ∙ 𝜎(𝑥) 𝑚𝑜𝑑 𝑥2𝑡, (2.16)

dengan,

𝑆(𝑥) = 𝑆1 + 𝑆2𝑥 + ⋯+ 𝑆2𝑡𝑥
2𝑡−1,

merupakan polinomial sindrom.

d. Penentuan Nilai Magnitude Kesalahan (Error Magnitude).

Setelah posisi kesalahan dan akar polinomial evaluasi kesalahan

ditemukan, langkah selanjutnya dalam proses decoding adalah

menentukan besarnya nilai kesalahan yang terjadi pada setiap posisi

tersebut. Untuk melakukan hal ini, digunakan Algoritma Forney yang

menghitung magnitudo error pada setiap posisi kesalahan tanpa

mengganggu simbol lainnya dalam vektor penerimaan. Besarnya nilai

magnitude error pada posisi 𝑗 dinotasikan dengan 𝐸𝑗, dan dapat dihitung

dengan:

𝑆𝑖 = ∑𝑒𝑗 ∙ 𝛽𝑗
𝑖 , 𝑖 = 1,2,… , 2𝑡

𝑣

𝑗=1

43

dengan 𝑒𝑗 adalah nilai kesalahan (error value) yang secara konseptual

terjadi pada posisi 𝛽𝑗.

𝐸𝑗 = −
Ω(Xj

−1)

σ′(Xj
−1)

 (2.17)

di mana:

𝛺(𝑥) ∶ Polinomial evaluasi error (error evaluator polynomial)

𝜎(𝑥) ∶ Polinomial locator kesalahan (error locator polynomial)

𝜎′(𝑥) ∶ Turunan formal dari 𝜎(𝑥)

Xj
−1 ∶ Invers dari posisi error dalam bentuk eksponensial elemen

primitif lapangan (𝛼−𝑗)

𝐸𝑗 ∶ Besarnya nilai magnitude error yang terjadi di posisi ke-𝑗

e. Koreksi Kode Kesalahan (Error).

Jika 𝑣 adalah polinomial vektor penerimaan dan 𝑒 adalah polinomial

error (yang telah diketahui posisinya dan nilainya), maka codeword yang

benar 𝑐 dapat diperoleh dengan:

𝐶 = 𝑣 − 𝑒

Karena pengurangan dalam lapangan hingga 𝐺𝐹(2𝑚) sama dengan

penjumlahan (karena karakteristiknya 2), maka:

𝐶 = 𝑣 ⊕ 𝑒 (2.18)

di mana ⊕ menyatakan operasi XOR pada koefisien-koefisien dari

vektor biner atau elemen-elemen 𝐺𝐹(2𝑚).

44

2.3 Transmisi

Teori kode pengoreksi error merupakan salah satu cabang matematika yang

bergerak dibidang transmisi dan penyimpanan data. Media informasi tidak selalu

memberikan keakuratan dalam menerima informasi, adakalanya terjadi suatu

gangguan saat pengiriman pesan/informasi. Apabila terjadi suatu error pada saat

pengiriman pesan/informasi, kesalahan tetap dapat terdeteksi bahkan diperbaiki

dengan menambahkan suatu redundansi ke dalam pesan/informasi yang telah

diubah dalam bentuk kode. Diagram sistem transmisi informasi secara umum dapat

dilihat pada Gambar 2.3.

Gambar 2.3 Diagram Proses Pengiriman Pesan/Informasi

2.3.1 Transmisi Data

Transmisi data merupakan proses pengiriman informasi (data) yang telah

dikonversi ke dalam bentuk kode tertentu melalui suatu media dari satu titik ke

titik lainnya. Seiring berkembangnya teknologi, komunikasi data didefinisikan

sebagai proses pengiriman dan penerimaan data atau informasi dari dua atau lebih

perangkat (device) yang saling terhubung dalam sebuah jaringan, baik jaringan

lokal (Local Area Network) maupun jaringan luas seperti internet.

Pada sistem transmisi data, terdapat media transmisi yang berfungsi sebagai

jalur fisik penghubung antara pengirim dan penerima sinyal. Media ini dapat

berupa media terpandu (guided media) seperti kabel tembaga, kabel koaksial,

kabel twisted pair, dan serat optik, maupun media tidak terpandu (unguided

45

media) seperti gelombang radio, gelombang mikro, atau sinyal optik yang

merambat melalui udara, ruang hampa, atau air.

Pada proses transmisi data sering menghadapi berbagai gangguan yang

dapat menyebabkan kesalahan pada data yang dikirimkan. Kesalahan transmisi

dapat berupa perubahan satu bit atau lebih dari data aslinya. Faktor-faktor yang

dapat menyebabkan kesalahan dalam transmisi data:

1. Radiasi Elektromagnetik.

Radiasi elektromagnetik merupakan gelombang energi yang dipancarkan

oleh perangkat elektronik, seperti radio, microwave, atau perangkat

komunikasi nirkabel lainnya. Radiasi ini dapat mengganggu sinyal yang

sedang ditransmisikan melalui media komunikasi. Dampaknya, sinyal dapat

mengalami distorsi, sehingga data yang diterima berbeda dari data yang

dikirimkan

2. Crosstalk (sinyal bocor).

Crosstalk terjadi ketika sinyal dari satu saluran komunikasi “bocor” ke

saluran komunikasi lain yang berdekatan. Misalnya, pada kabel yang

terhubung dengan perangkat yang saling berdekatan, atau dalam jaringan

yang menggunakan saluran fisik yang sama. Ketika ini terjadi, sinyal yang

seharusnya tetap utuh bisa terganggu oleh sinyal lain yang menyebabkan

data menjadi rusak atau tidak akurat.

3. Atenausi.

Atenuasi adalah pelemahan sinyal yang disebabkan oleh jarak antara

penerima dan pengirim yang terlalu jauh. Ini dapat terjadi karena adanya

46

halangan diantara keduanya, misalkan sinyal WiFi yang semakin lemah

ketika jauh dari Router.

4. Noise (gangguan sinyal).

Noise merupakan masuknya sinyal lain yang tidak dibutuhkan oleh media

dan menyebabkan sinyal menjadi hancur. Contoh dari noise adalah sinyal

antenna televisi menjadi kabur karena adanya pesawat yang lewat.

5. Distorsi.

Distorsi merupakan keadaan dimana sinyal yang dikirim berbeda dari media

penerima sinyal sehingga membuat rusak media. Contoh distorsi adalah

suara yang berisik pada speaker yang rusak.

Dampak dari gangguan-gangguan tersebut adalah munculnya kesalahan bit.

Kesalahan bit terjadi ketika data yang diterima tidak sesuai dengan data yang

dikirimkan. Bit adalah unit terkecil dari data digital yang hanya memiliki dua

kemungkinan nilai, yaitu 0 atau 1. Ketika terjadi kesalahan bit, nilai “0” bisa

berubah menjadi 1, atau sebaliknya, yang menyebabkan data yang diterima tidak

sesuai dengan data yang seharusnya.

Adapun macam-macam bit error sebagai berikut:

1. Single-bit error.

Single-bit error terjadi ketika hanya satu bit dalam unit data seperti bit,

karakter, atau paket, berubah dari 1 ke 0 atau sebaliknya. Kesalahan jenis

ini memiliki kemungkinan sangat kecil terjadi dalam transmisi data serial.

Misalnya, jika data ditransmisikan pada kecepatan 1 Mbps, maka setiap bit

hanya berlangsung selama 1 mikrodetik (1𝜇𝑠). Untuk menyebabkan single

bit error, gangguan (noise) harus memiliki durasi yang sangat singkat, yaitu

47

sekitar 1𝜇𝑠 yang jarang terjadi. Biasanya, noise berlangsung lebih lama dari

itu, sehingga lebih mungkin menyebabkan kesalahan yang memengaruhi

lebih dari satu bit.

2. Burst error.

Burst error terjadi ketika terdapat dua atau lebih bit pada unit data telah

berubah dari 1 ke 0 atau dari 0 ke 1. Pada kasus 0100010001000011

dikirim dan 0101110101100011 diterima, dapat diperhatikan bahwa

beberapa bit mengalami perubahan tetapi tidak harus berurutan. Panjang

burst error dihitung dari bit pertama yang rusak hingga bit terakhir yang

rusak, meskipun ada bit diantaranya yang tetap benar.

Burst error lebih sering terjadi dibandingkan single-bit error karena noise

biasanya memiliki durasi lebih panjang dari 1 bit, yang berarti bahwa ketika

noise mempengaruhi data, maka akan mempengaruhi satu set bit atau lebih

dari satu bit. Jumlah bit yang terkena efeknya tergantung pada data rate dan

durasi noise tersebut.

Untuk mengatasi permasalahan gangguan dalam proses transmisi data,

diperlukan suatu metode yang mampu mendeteksi serta memperbaiki

kesalahan yang terjadi selama pengiriman. Tujuan utama dari metode ini

adalah memastikan bahwa data yang diterima tetap akurat dan konsisten

dengan data yang dikirim, meskipun terjadi gangguan pada saluran

transmisi. Dengan demikian, informasi yang diterima oleh perangkat

penerima dapat tetap dipercaya dan digunakan sebagaimana mestinya.

Proses deteksi dan koreksi kesalahan bit berfungsi untuk mengenali serta

memperbaiki kesalahan yang muncul pada bit-bit data selama proses

48

transmisi. Kedua proses ini merupakan komponen penting dalam sistem

komunikasi digital, karena berperan besar dalam menjaga keandalan

(reliability) dan integritas (integrity) data yang dikirimkan.

2.3.2 Deteksi dan Koreksi Kesalahan Bit Pada Transmisi Data

1. Deteksi Kesalahan Bit.

Deteksi kesalahan bit merupakan proses untuk memastikan bahwa data yang

diterima sesuai dengan data yang dikirim, tanpa adanya perubahan akibat

gangguan selama transmisi. Teknik ini berperan penting dalam sistem

komunikasi maupun penyimpanan data digital, karena proses transmisi

sangat rentan terhadap gangguan seperti noise, interferensi atau kerusakan

perangkat keras.

Proses deteksi dilakukan dengan menambahkan bit kontrol atau bit

redundansi pada data asli. Bit redudansi digunakan untuk memverifikasi

kebenaran data saat diterima. Salah satu teknik yang umum digunakan

adalah kode siklik (cyclic code), yang bekerja berdasarkan polinomial

generator sebagai kunci pembentukan kode kesalahan.

Dalam proses pengkodean, polinomial data dibagi dengan polinomial

generator untuk memperoleh sisa pembagian (remainder), yang kemudian

ditambahkan ke dalam data sebagai bagian dari kode kesalahan. Pada sisi

penerima, pembagian serupa dilakukan menggunakan polinomial generator

yang sama. Jika hasil pembagian menghasilkan sisa nol, maka data dianggap

benar. Sebaliknya, jika sisa tidak nol, berarti telah terjadi kesalahan selama

transmisi.

49

Kode siklik memiliki kemampuan deteksi yang lebih handal dibandingkan

metode sederhana seperti bit paritas, karena dapat dirancang untuk

mendeteksi berbagai pola kesalahan, termasuk kesalahan tunggal, kesalahan

ganda, maupun burst error. Metode ini bersifat efisien, cepat, dan banyak

diterapkan dalam berbagai sistem modern seperti komunikasi jaringan,

penyimpanan digital, serta protokol komunikasi seperti ethernet.

2. Koreksi Kesalahan Bit.

Koreksi kesalahan bit merupakan proses lanjutan setelah deteksi, yang tidak

hanya mengidentifikasi adanya kesalahan dalam data, tetapi juga

memperbaikinya secara otomatis tanpa perlu pengiriman ulang. Teknik ini

sangat penting dalam sistem komunikasi dan penyimpanan data digital

untuk menjaga keandalan transmisi serta integritas informasi.

Teknik koreksi kesalahan bekerja dengan menambahkan informasi

tambahan atau kode khusus ke dalam data asli saat proses pengiriman.

Infomrasi ini dirancang sedemikian rupa sehingga memungkinkan sistem

penerima untuk memverifikasi integritas data yang diterima. Apabila terjadi

kesalahan, sistem dapat menentukan lokasi bit yang mengalami perubahan

dan mengembalikannya ke nilai yang seharusnya.

Langkah penting dalam koreksi adalah perhitungan nilai sindrom (syndrome

calculation), yaitu hasil operasi pembagian polinomial data yang diterima

dengan polinomial generator. Nilai sindrom menunjukkan apakah terjadi

kesalahan, sekaligus membantu menentukan lokasi kesalahan. Jika nilai

sindrom sama dengan nol, maka data dianggap bebas kesalahan. Namun,

jika tidak nol, sistem akan menggunakan algoritma decoding seperti

Berlekamp-Massey atau Chien Search untuk menemukan posisi kesalahan.

50

Setelah posisi kesalahan diketahui, sistem melakukan pembalikan nilai bit

yang rusak sehingga pesan asli dapat direkonstruksi dengan benar. Proses

koreksi kesalahan ini memberikan lapisan perlindungan tambahan terhadap

kerusakan data, terutama pada sistem di mana transmisi ulang tidak

dimungkinkan atau memerlukan waktu serta sumber daya yang besar.

2.3.3 Transmisi Ayat Al-Qur’an

Dalam penelitian mengenai “Implementasi Kode Reed–Solomon untuk

Deteksi dan Koreksi Kesalahan Transmisi Ayat Al-Qur’an”, proses transmisi

didefinisikan sebagai proses pengiriman data hasil pengkodean huruf hijaiyah

melalui saluran digital. Teks ayat Al-Qur’an terlebih dahulu dikonversi menjadi

simbol pada lapangan hingga 𝐺𝐹(28), kemudian dikodekan menggunakan kode

Reed–Solomon untuk mendapatkan codeword.

Pada proses transmisi, selalu terdapat kemungkinan terjadinya error. Untuk

mensimulasikan gangguan seperti pada transmisi nyata, penelitian ini

menyisipkan error secara sengaja (injected error) pada beberapa simbol dalam

codeword. Penyisipan ini didasarkan pada pola kesalahan penulisan ayat Al-

Qur’an di dunia nyata, misalnya pertukaran huruf (ب menjadi ت), huruf yang

hilang, kesalahan titik, penambahan atau pengurangan karakter.

Kesalahan linguistik nyata ini hanya menjadi landasan dasar, namun dalam

penelitian diterapkan sebagai kesalahan simbol pada proses transmisi, yaitu:

1. Kesalahan substitusi simbol.

Satu simbol hasil encoding diganti dengan simbol lain (𝛼³ menjadi 𝛼¹¹). Ini

menggambarkan single-symbol error.

51

2. Kesalahan burst.

Dua atau lebih simbol diganti atau diubah sekaligus dalam satu codeword.

Ini memodelkan kondisi noise panjang atau interferensi.

3. Kesalahan acak (random error).

Penelitian dapat menyisipkan error secara acak di beberapa posisi untuk

meniru kondisi saluran yang tidak stabil.

2.3.4 Proses Deteksi dan Koreksi Kesalahan pada Transmisi Ayat Al-Qur’an

Untuk menjaga keakuratan teks ayat Al-Qur’an yang dikirim, digunakan

kode Reed–Solomon (𝑅𝑆). Reed–Solomon merupakan salah satu jenis error-

correcting code yang mampu mendeteksi dan memperbaiki kesalahan pada blok

simbol.

1. Deteksi Kesalahan (Error Detection).

Setelah penerima mendapatkan codeword, langkah pertama adalah

menghitung sindrom:

𝑆𝑖 = 𝑣(𝛼𝑖), 𝑖 = 1,2, … ,2𝑡

Sindrom bernilai nol (𝑆₁ = 𝑆₂ = ⋯ = 0) berarti:

a. Tidak ada kesalahan, dan

b. Codeword diterima dengan benar.

Jika salah satu sindrom ≠ 0 → berarti terjadi kesalahan.

2. Penentuan Lokasi Kesalahan (Error Locator Polynomial).

Jika terjadi kesalahan, Reed–Solomon membentuk error locator

polynomial:

𝛬(𝑥) = 1 + 𝜆1𝑥 + ⋯+ 𝜆𝑡𝑥
𝑡

52

Polinomial ini diperoleh melalui:

a. algoritma Berlekamp–Massey, atau

b. Euclidean Algorithm.

Akar-akar dari 𝛬(𝑥) menunjukkan posisi simbol yang salah.

3. Perhitungan Nilai Besar Kesalahan (Error Magnitude).

Setelah menemukan posisi error, langkah selanjutnya adalah menghitung

besar kesalahan menggunakan Rumus Forney:

𝐸𝑗 = −
𝛺(𝑋𝑗 − 1)

𝛬′(𝑋𝑗 − 1)

Nilai ini menentukan seberapa besar simbol tersebut harus dikoreksi.

4. Koreksi Kesalahan (Error Correction).

Simbol yang salah kemudian diperbaiki:

𝐶𝑖 = 𝑣𝑖 − 𝑒𝑖

Hasilnya adalah codeword yang telah kembali benar.

Pengiriman ayat Al-Qur’an harus memiliki tingkat akurasi tinggi (zero-

tolerance error) karena:

1) Perubahan satu huruf dapat mengubah makna ayat,

2) Teks Al-Qur’an memiliki standar rasm yang baku,

3) Kesalahan penulisan dapat berpotensi menjadi kesalahan pemaknaan.

Dengan menyisipkan error secara terkendali pada proses transmisi,

penelitian ini menunjukkan bahwa:

1) Model kesalahan dapat dideteksi,

2) Kesalahan dapat diperbaiki secara matematis,

3) Ayat Al-Qur’an dapat dipulihkan sesuai teks aslinya dengan kode Reed–

Solomon.

53

2.4 Kajian Integrasi Topik Penelitian dengan Al-Qur’an

Mengintregasikan ilmu pengetahuan dengan ajaran Al-Qur’an dan Hadits

merupakan pendekatan komprehensif yang memadukan antara perkembangan sains

modern dan nilai-nilai keislaman. Pendekatan ini tidak hanya memperluas

pemahaman terhadap aspek teknologi dan sains, tetapi juga memperkuat keyakinan

bahwa menuntut ilmu dan mengaplikasikannya merupakan bagian penting dari

keimanan dan penghambaan kepada Allah SWT. Penelitian yang berjudul

"Implementasi Kode Reed-Solomon untuk Deteksi dan Koreksi Kesalahan

Transmisi Ayat Al-Qur’an Menggunakan Pengkodean Huruf Hijaiyah" merupakan

salah satu bentuk nyata dari penggunaan teknologi informasi untuk menjaga

keaslian dan ketepatan teks ayat Al-Qur’an. Dalam hal ini, penerapan metode

koreksi kesalahan digital (error correction) tidak hanya berfungsi secara teknis,

tetapi juga memiliki makna spiritual dalam mendukung upaya pelestarian kitab suci

yang telah dijamin kemurniannya oleh Allah SWT. Berikut beberapa ayat Al-Quran

dan Hadits yang relevan untuk mendukung dan memberikan perspektif religius

pada penelitian ini.

1. Kewajiban Bersikap Teliti dan Tidak Mengikuti Sesuatu Tanpa Ilmu.

Dalam ajaran Islam, sikap teliti, cermat, dan tidak tergesa-gesa dalam

menerima ataupun menyebarkan informasi merupakan prinsip yang sangat

ditekankan. Kehati-hatian tersebut menjadi landasan penting agar seseorang

tidak terjerumus pada kesalahan atau kekeliruan dalam memahami maupun

menyampaikan suatu perkara, sebagaimana disebutkan dalam Surah Al-Isra’

ayat 36 (Kementerian Agama, 2022):

54

سْ ووُلاا مَ وَلَا تَ قْفُ مَا لَيْسَ لَكَ بِّهِّۦ عِّلْمٌ ۚ إِّنَّ السَّمْعَ وَالْبَصَرَ وَالْفُؤَادَ كُلُّ أوُ۟لََٰئِّكَ كَانَ عَنْهُ
"Dan janganlah kamu mengikuti sesuatu yang tidak kamu ketahui.

Sesungguhnya pendengaran, penglihatan, dan hati, semuanya itu akan

dimintai pertanggungjawaban."(QS. Al-Isra’: 36)

Ayat ini merupakan prinsip dasar dalam Islam terkait keharusan untuk

berhati-hati dalam menerima, menyampaikan, dan memproses informasi.

Penulisan ayat Al-Qur’an yang salah baik satu huruf, harakat, maupun tanda

baca dapat menyebabkan perubahan makna atau bahkan kesalahan fatal

dalam bacaan. Oleh karena itu, deteksi dan koreksi penulisan ayat menjadi

bentuk konkret dari perintah untuk tidak mengikuti sesuatu yang belum pasti

(tidak valid). Penerapan metode ilmiah seperti kode Reed-Solomon, yang

memiliki kemampuan dalam mendeteksi dan mengoreksi kesalahan

berdasarkan prinsip matematika dan teori informasi, menunjukkan

bagaimana ilmu pengetahuan dapat menjadi alat bantu dalam menjalankan

amanah keagamaan, memastikan teks wahyu tetap utuh dan bebas dari

kesalahan.

Ayat ini mengingatkan bahwa setiap informasi yang kita terima (melalui

pendengaran, penglihatan, atau hati) harus diteliti dan dikonfirmasi

kebenarannya, karena semuanya akan dimintai pertanggungjawaban. Dalam

konteks teknologi digital, ketika teks Al-Qur’an didistribusikan melalui

aplikasi, e-book, atau media daring, tanggung jawab ini semakin besar. Maka

penggunaan teknologi koreksi otomatis adalah bagian dari ikhtiar amanah

ilmiah dan spiritual.

55

2. Tanggung Jawab Menyampaikan Al-Qur’an dengan Benar.

 خَي ْركُُمْ مَنْ تَ عَلَّمَ الْقُرْآنَ وَعَلَّمَهُ
“Sebaik-baik kalian adalah orang yang belajar Al-Qur’an dan

mengajarkannya.” (HR. Bukhari No. 5027)

Hadits ini menegaskan bahwa keutamaan umat Islam terletak pada aktivitas

pembelajaran dan pengajaran Al-Qur’an. Namun, dalam era digital, bentuk

belajar dan mengajar Al-Qur’an telah berkembang tidak hanya secara lisan

dan tulisan manual, tetapi juga dalam bentuk digitalisasi teks dan audio Al-

Qur’an yang tersebar di berbagai platform. Dalam proses digitalisasi,

kesalahan penulisan atau konversi teks Arab sangat mungkin terjadi, apalagi

jika prosesnya dilakukan tanpa deteksi atau sistem koreksi yang tepat. Hal ini

sejalan dengan hadits di atas, belajar dan mengajarkan Al-Qur’an juga

mencakup usaha melestarikan dan menyampaikan Al-Qur’an secara benar

dan akurat, baik melalui media konvensional maupun teknologi modern.

56

BAB III

METODE PENELITIAN

3.1 Jenis Penelitian

Penelitian ini merupakan penelitian kuantitatif yang menggunakan pendekatan

simulasi algoritmik. Pendekatan ini dipilih karena penelitian berfokus pada proses

pengukuran dan analisis numerik terhadap performa sistem dalam mendeteksi serta

mengoreksi kesalahan transmisi pada ayat-ayat Al-Qur’an yang dikodekan

menggunakan huruf hijaiyah. Proses simulasi dilakukan melalui dua tahapan utama,

yaitu encoding dan decoding, dengan menerapkan kode Reed-Solomon pada

representasi digital teks Al-Qur’an yang telah dikonversi ke dalam format Unicode

16-bit.

Untuk menguji efektivitas sistem, dilakukan penyisipan kesalahan secara

sistematis pada data teks ayat, kemudian diukur sejauh mana algoritma Reed-

Solomon mampu mendeteksi dan mengoreksi kesalahan tersebut. Evaluasi

dilakukan berdasarkan jumlah kesalahan yang berhasil dideteksi dan diperbaiki,

serta tingkat akurasi pemulihan data terhadap teks hijaiyah asli. Selain itu,

dilakukan pula simulasi manual sebagai langkah verifikasi guna memastikan

kesesuaian antara hasil perhitungan teoritis dan hasil pengujian menggunakan

perangkat lunak. Seluruh proses implementasi dan pengujian dalam penelitian ini

dilakukan menggunakan perangkat lunak SageMath, yang memiliki kemampuan

dalam melakukan operasi aritmetika pada lapangan hingga (Galois Field) serta

mendukung mekanisme koreksi kesalahan otomatis pada kode Reed-Solomon.

57

3.2 Data dan Sumber Data

Data yang digunakan dalam penelitian ini berupa teks ayat-ayat Al-Qur’an

yang direpresentasikan dalam bentuk biner (kode digital) menggunakan huruf-

huruf hijaiyah berdasarkan sistem Unicode 16-bit, khususnya dalam rentang

Unicode Block Arabic (𝑈𝑇𝐹 − 8). Representasi ini memungkinkan setiap huruf

hijaiyah dikodekan sebagai simbol digital yang dapat diproses secara matematis

menggunakan metode pengkodean Reed-Solomon.

Meskipun penelitian mengacu pada kasus-kasus kesalahan penulisan huruf

hijaiyah yang dapat ditemukan pada mushaf digital, aplikasi Al-Qur’an, atau situs

web yang menampilkan teks berdasarkan Rasm Utsmani, data yang digunakan

dalam simulasi tetap berupa teks ayat Al-Qur’an yang benar dengan simulasi

disisipkan error secara terkontrol (injected errors) saat proses simulasi transmisi

digital. Dengan demikian, kesalahan yang diuji bukan berasal dari kanal

komunikasi fisik, tetapi merupakan model kesalahan sintetis yang dirancang untuk

menguji kemampuan deteksi dan koreksi dari kode Reed-Solomon.

Setiap ayat diuji dengan variasi jumlah kesalahan sebanyak 1, 2, 3, 4, dan 5

kesalahan per ayat, sehingga menghasilkan berbagai kondisi kerusakan yang dapat

dianalisis secara kuantitatif. Seluruh proses encoding, penyisipan kesalahan,

perhitungan sindrom, deteksi letak kesalahan, dan proses koreksi dilakukan

menggunakan perangkat lunak SageMath.

Pendekatan ini memungkinkan penelitian mensimulasikan kondisi kesalahan

penulisan huruf hijaiyah sebagaimana terjadi dalam praktik digital, namun tetap

memelihara kemurnian teks ayat suci Al-Qur’an. Dengan demikian, sistem dapat

diuji secara realistis, terukur, dan tetap menjaga keaslian teks ayat Al-Qur’an.

58

3.3 Tahapan Penelitian

Berikut alur dari implementasi kode Reed-Solomon untuk mendeteksi dan

mengoreksi kesalahan trasmisi ayat Al-Qur’an menggunakan pengkodean huruf

hijaiyah:

Gambar 3.1 Alur Penelitian

1. Input

Input penelitian ini meliputi data teks sepuluh ayat Al-Qur’an yang dikodekan

dalam format Unicode 16 −bit sebagai dasar pembentukan simbol pada

lapangan hingga 𝐺𝐹(2⁸), serta parameter teknis kode Reed–Solomon yang

mencakup panjang codeword 𝑛 = 51, panjang pesan 𝑘 = 47, nilai 𝑚 = 8, dan

variasi kemampuan koreksi 𝑡 antara 1 sampai 5 kesalahan untuk setiap ayat.

Selain itu, penelitian ini juga menggunakan input berupa pola kesalahan yang

disisipkan secara terkontrol ke dalam codeword, yang mencakup jumlah

kesalahan, posisi simbol yang mengalami gangguan, dan nilai magnitudo

error, sehingga dapat dilakukan pengujian terhadap kemampuan deteksi dan

koreksi kesalahan dari sistem Reed–Solomon.

59

2. Simulasi Pembentukan Parameter dan Struktur Kode Reed-Solomon (RS)

Pada tahap awal dilakukan penetapan parameter-parameter dasar kode Reed-

Solomon, yang meliputi panjang codeword (𝑛) atau total simbol setelah

encoding, panjang pesan (𝑘), kemampuan koreksi kesalahan (𝑡), serta

pembentukan lapangan hingga 𝐺𝐹(2𝑚). Selanjutnya dilakukan pembentukan

matriks generator (𝐺) dan matriks parity-check (𝐻) yang digunakan dalam

proses encoding dan decoding.

Langkah-langkah untuk simulasi pembentukan parameter dan struktur kode

Reed-Solomon adalah sebagai berikut:

a. Menetapkan Jumlah Bit per Simbol.

Digunakan nilai 𝑚 = 8, sehingga setiap simbol direpresentasikan dengan

8 bit dan operasi dilakukan dalam 𝐺𝐹(28).

b. Menentukan Panjang Codeword.

Panjang codeword 𝑛 ditentukan menggunakan Shortened Reed-Solomon

code sehingga 𝑛 = 51.

c. Menentukan Toleransi Kesalahan.

Pada penelitian ini, perhitungan manual dilakukan dengan 𝑡 = 2

kesalahan, sedangkan pada implementasi komputasi (coding) dilakukan

pengujian dengan lima variasi jumlah kesalahan, yaitu 1,2,3,4, dan 5

kesalahan pada tiap ayat untuk menguji batas efisiensi sistem.

d. Menghitung Panjang Pesan.

Panjang pesan 𝑘 = 47 diperoleh dari Persamaan (2.7). Sehingga

parameter kode Reed-Solomon 𝑅𝑆(51, 47).

60

e. Membangkitkan Matriks Generator 𝐺.

Matriks generator 𝐺 berukuran 𝑘 × 𝑛, dibentuk menggunakan perangkat

lunak SageMath, berdasarkan evaluasi polinomial pesan pada titik-titik 𝛼𝑖𝑗

di 𝐺𝐹(2𝑚).

f. Membangkitkan Matriks Parity-check 𝐻.

Matriks parity-check 𝐻 berukuran (𝑛 − 𝑘) × 𝑛, di mana setiap baris

merupakan evaluasi dari 𝛼𝑗⋅𝑖 dengan 𝑗 = 1,2,… , 𝑛 − 𝑘 dan 𝑖 =

0,1,… , 𝑛 − 1.

3. Simulasi Encoding Kode Reed-Solomon pada Kesalahan Penulisan Ayat Al-

Qur’an Menggunakan Pengkodean Huruf Hijaiyah.

Proses encoding dalam kode Reed-Solomon dilakukan melalui beberapa

tahapan sistematis. Adapun langkah-langkah dalam proses encoding sebagai

berikut:

a. Menentukan Pesan Asli (plaintext).

Pesan asli direpresentasikan sebagai vektor pesan M dengan panjang k.

Dalam penelitian ini, perhitungan manual menggunakan surah Al-Kahfi ayat

8:

 "وانا لجعلون ما عليها صعيدا جرزا"

Sedangkan pada implementasi komputasi (coding) dan evaluasi performa,

dilakukan pengujian terhadap 1 − 5 kesalahan simbol kesalahan pada 10

ayat Al-Qur’an.

61

b. Mengonversi Teks ke dalam Format Biner Unicode 16-bit.

Setiap huruf Hijaiyah pada pesan dikonversi ke dalam representasi biner

menggunakan format Unicode 16-bit berdasarkan Unicode Block Arab

UTF-8.

c. Mengelompokkan Hasil Biner Menjadi Blok 8-bit dalam 𝐺𝐹(28).

Setiap 16 − bit Unicode dipecah menjadi 2 simbol masing-masing 8 − 𝑏𝑖𝑡,

kemudian setiap blok direpresentasikan sebagai elemen pada lapangan

hingga 𝐺𝐹(28). Representasi elemen pada lapangan menggunakan simbol

𝛼, yang merupakan akar primitif dari polinomial primitif 𝑝(𝑥).

d. Melakukan Padding.

e. Jika jumlah simbol pada blok pesan kurang dari panjang pesan 𝑘, maka

dilakukan proses padding dengan menambahkan simbol “0” hingga panjang

blok mencapai 𝑘. Proses ini bertujuan untuk menyeragamkan panjang setiap

vektor pesan sehingga dapat diproses lebih lanjut pada tahap encoding tanpa

memengaruhi informasi asli yang terkandung dalam pesan.

f. Melakukan Proses Encoding.

Proses encoding pada kode Reed-Solomon bertujuan untuk mengubah pesan

asli menjadi sebuah codeword yang memiliki kemampuan deteksi dan

koreksi. Dalam penelitian ini proses encoding dilakukan dengan mengalikan

pesan (𝑀) dengan matriks generator (𝐺) untuk menghasilkan codeword (𝐶)

pada lapangan hinggan 𝐺𝐹(28) menggunakan Persamaan 2.10. Hasil akhir

62

dari proses ini adalah sebuah 𝐶 berukuran 𝑛 yang akan mengalami proses

transmisi.

4. Codeword

Codeword (𝐶) adalah representasi dari data hasil proses encoding yang

mengandung informasi asli beserta bit-bit redundansi. Jika terjadi gangguan

atau kesalahan selama transmisi atau penyimpanan, codeword yang diterima

(disebut vektor diterima) berbeda dari codeword asli. Vektor ini kemudian

digunakan untuk proses koreksi kesalahan.

5. Noise

Menambahkan error (𝑒) sebanyak 𝑡 secara acak pada codeword hasil

encoding. Kesalahan ini direpresentasikan dalam bentuk polinomial error

𝑒(𝑥), sehingga membentuk vektor hasil penjumlahan antara codeword dan

error 𝑣(𝑥) = 𝐶(𝑥) + 𝑒(𝑥).

6. Simulasi Decoding Kode Reed-Solomon pada Kesalahan Penulisan Ayat Al-

Qur’an Menggunakan Pengkodean Huruf Hijaiyah.

Setelah proses encoding dan penambahan kesalahan dilakukan, tahap

selanjutnya adalah proses decoding untuk mendeteksi dan mengoreksi

kesalahan yang terjadi pada data, sehingga informasi yang diterima dapat

dikembalikan mendekati atau sama dengan pesan aslinya sesuai dengan

kemampuan koreksi kode yang digunakan. Langkah-langkah proses decoding

kode Reed-Solomon adalah sebagai berikut:

a. Menghitung Sindrom.

Sindrom dihitung dengan mengalikan matriks parity-check 𝐻 dengan

vektor transpose dari codeword yang diterima 𝑣𝑇, sebagaimana pada

63

Persamaan (2.14). Tahap perhitungan sindrom ini juga berfungsi sebagai

proses deteksi kesalahan pada data yang diterima.

b. Menentukan Polinomial Lokasi Kesalahan (Error Locator Polynomial)

Polinomial locator kesalahan 𝜎(𝑥) dan posisi kesalahan ditentukan

menggunakan algoritma Berlekamp–Massey menggunakan Persamaan

(2.15).

c. Mencari Akar Polinomial Evaluasi Kesalahan (error).

Menghitung akar polinomial evaluasi error 𝛺(𝑥) menggunakan algoritma

Chien Search, dengan Persamaan (2.16).

d. Menghitung Nilai Magnitude Kesalahan (error magnitude).

Menghitung nilai besar kesalahan 𝐸𝑗 pada posisi 𝑗 menggunakan algoritma

Forney, dengan Persamaan (2.17).

e. Melakukan Proses Decoding untuk Memperoleh Kembali ke dalam pesan

asli.

Setelah codeword diterima dan terdapat kemungkinan kesalahan, langkah

decoding dilakukan untuk mengoreksi simbol yang salah. Dengan

menggunakan sindrom, polinomial locator, dan algoritma Forney,

diperoleh posisi dan magnitudo error. Setiap simbol yang salah kemudian

diperbaiki sehingga diperoleh codeword terkoreksi (𝐶) dalam bentuk

simbol 𝐺𝐹(2𝑚):

𝐶 = 𝑣 − 𝑒

Hasil decoding ini tetap berada dalam domain 𝐺𝐹(2𝑚) dan belum

dikonversi menjadi biner maupun teks, sehingga informasi asli terjaga

sepenuhnya.

64

7. Output

Output pada penelitian ini berupa teks ayat Al-Qur’an yang telah dikoreksi

otomatis, tingkat keberhasilan deteksi kesalahan, dan tingkat keberhasilan

koreksi kesalahan. Evaluasi dilakukan berdasarkan:

a. Jumlah kesalahan yang terdeteksi dengan benar.

b. Jumlah kesalahan berhasil dikoreksi.

c. Kondisi sistem masih gagal mengoreksi (over t).

65

BAB IV

 HASIL DAN PEMBAHASAN

4.1 Simulasi Pembentukan Parameter dan Struktur Kode Reed-Solomon

Dalam kode Reed-Solomon, parameter 𝑛 menyatakan panjang total dari blok

kode (codeword), yaitu jumlah simbol setelah proses encoding. Sementara itu,

parameter 𝑘 merupakan jumlah simbol pesan asli yang dikodekan sebelum

ditambahkan simbol redudansi untuk keperluan deteksi dan koreksi kesalahan.

Dengan demikian, 𝑛 − 𝑘 menyatakan banyaknya simbol parity yang ditambahkan

pada proses encoding untuk meningkatkan kemampuan koreksi kesalahan.

Langkah pertama dalam menentukan nilai 𝑛 dan 𝑘 adalah menetapkan nilai

𝑚, yang menunjukkan banyaknya bit dalam satu simbol atau derajat dari lapangan

hingga 𝐺𝐹(2𝑚). Nilai 𝑚 harus berupa bilangan bulat positif karena menentukan

ukuran dan elemen dari lapangan hingga yang digunakan. Dalam penelitian ini

digunakan 𝑚 = 8, sehingga operasi dilakukan pada lapangan hingga 𝐺𝐹(28).

Berdasarkan teori kode Reed-Solomon, panjang maksimum blok kode ditentukan

oleh persamaan 𝑛 = 2𝑚 − 1 = 28 − 1 = 255, sehingga untuk 𝑚 = 8 diperoleh

panjang maksimum 𝑛 = 255.

Namun, karena ukuran data yang dikodekan dalam penelitian ini tidak

mencapai 255 simbol, maka digunakan bentuk shortened Reed-Solomon code atau

kode RS yang dipendekkan. Shortened code merupakan versi kode Reed-Solomon

yang panjangnya dikurangi dari panjang maksimum dengan cara menghilangkan

sejumlah simbol awal dari pesan. Proses pemendekan ini tidak mengubah

karakteristik dasar maupun kemampuan koreksi kesalahan dari kode RS asalnya,

66

tetapi menyesuaikan panjang codeword agar sesuai dengan ukuran data yang

sebenarnya digunakan.

Dalam penelitian ini digunakan kode 𝑅𝑆(51, 𝑘), yang merupakan hasil

pemendekan dari kode maksimum 𝑅𝑆(255, 251) di lapangan hingga 𝐺𝐹(28).

Artinya, setiap blok codeword terdiri atas 60 simbol pesan asli dan 4 simbol parity,

dengan kemampuan untuk mengoreksi hingga dua simbol kesalahan dalam setiap

blok. Penggunaan kode RS yang dipendekkan ini dipilih karena ukuran data (ayat

penelitian) hanya memiliki total 512 bit atau setara dengan 64 simbol di 𝐺𝐹(28),

sehingga parameter 𝑛 = 51 menjadi pilihan yang efisien dan sesuai dengan

kebutuhan sistem.

𝑛 = 51

𝑡 = 2

𝑘 = 𝑛 − 2𝑡 = 51 − 2 ∙ 2 = 47

Pada penelitian ini, perhitungan manual dilakukan dengan mensimulasikan

dua kesalahan (error) untuk menguji kemampuan sistem dalam melakukan koreksi

hingga 𝑡 = 2 kesalahan. Dengan demikian, parameter yang digunakan adalah 𝑛 =

51 , 𝑘 = 47, dan 𝑡 = 2. Lapangan hingga 𝐺𝐹(28) digunakan dengan representasi

simbol berdasarkan akar primitif α yang telah dicantumkan pada Tabel 2.5.

Matriks generator 𝐺 dibentuk menggunakan perangkat lunak sagemath

berdasarkan parameter kode yang telah ditentukan, yaitu 𝑛 = 51 dan 𝑘 = 47.

Dengan demikian, diperoleh matriks generator 𝐺 berukuran 47 × 51 sebagai

berikut:

67

𝐺 =

[

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⋯ 1
1 α5 α10 α15 α20 α25 α30 α35 α40 α45 α50 α55 α60 α65 α70 α75 α80 ⋯ α250

1 α10 α20 α30 α40 α50 α60 α70 α80 α90 α100α110α120α130α140α150α160 ⋯ α245

1 α15 α30 α45 α60 α75 α90 α105α120α135α150α165α180α195α210α222α240 ⋯ α240

1 α20 α40 α60 α80 α100α120α140α140α180α200α220α240 α5 α25 α45 α65 ⋯ α235

1 α25 α50 α75 α100α125α150α175α200α225α250 α20 α45 α70 α95 α120α145 ⋯ α230

1 α30 α60 α90 α120α150α180α210α240 α15 α45 α75 α105α135α165α195α225 ⋯ α225

1 α35 α70 α105α140α175α210α245 α25 α60 α95 α130α165α200α235 α15 α50 ⋯ α220

1 α40 α80 α120α160α200α240 α25 α65 α105 α9 α185α225 α10 α50 α90 α130 ⋯ α215

1 α45 α90 α135α180α225 α15 α60 α105α150α145α240 α30 α75 α120α165α210 ⋯ α210

1 α50 α100α150α200α250 α45 α95 α145α195α195 α40 α90 α140α190α240 α35 ⋯ α205

1 α55 α110α165α220 α20 α75 α130α185α240α245 α95 α150α205 α5 α60 α115 ⋯ α200

1 α60 α120α180α240 α45 α105α165α225 α30 α40 α150α210 α15 α75 α135α195 ⋯ α195

1 α65 α130α195 α5 α70 α135α200 α10 α75 α90 α205 α15 α80 α145α210 α20 ⋯ α190

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 α230α205α180α155α130α105 α80 α55 α30 α5 α235α210α185α160α135α110 ⋯ α25]

Selanjutnya, Matriks parity-check 𝐻 memiliki ukuran (𝑛 − 𝑘) × 𝑛 = 4 ×

51, dan berfungsi untuk mendeteksi dan mengoreksi kesalahan melalui perhitungan

syndrome. Matriks 𝐻 dibentuk menggunakan sagemath berdasarkan perpangkatan

dari elemen primitif 𝛼 di 𝐺𝐹(28). Adapun bentuk matriks 𝐻 sebagai berikut:

𝐻 = [

1 α5 α10 α15 α20 α25 α30 α35 α40 α45 α50 α55 α60 ⋯ α250

1 α10 α20 α30 α40 α50 α60 α70 α80 α90 α100 α110 α120 ⋯ α245

1 α15 α30 α45 α60 α75 α90 α105 α120 α135 α150 α165 α180 ⋯ α240

1 α20 α40 α60 α80 α100 α120 α140 α160 α180 α200 α220 α240 ⋯ α235

]

4.2 Proses Encoding

Pada proses encoding menggunakan algoritma Reed-Solomon, misalkan teks

pesan ayat Al-Qur’an صعيدا جرزا" ,terdiri dari 31 karakter Unicode "وانا لجعلون ما عليها

yang mencakup huruf hijaiyah beserta spasi sebagai pemisah kata. Setiap karakter

terlebih dahulu dikonversi ke dalam representasi Unicode 16 −bit, kemudian setiap

kode 16 −bit tersebut dipisahkan menjadi dua simbol 8 −bit, sehingga diperoleh

total 62 simbol. Dengan menggunakan parameter kode Reed-Solomon adalah 𝑛 =

51, 𝑡 = 2, 𝑘 = 47, blok pesan tersebut dibagi menjadi dua bagian, yaitu blok pesan

68

pertama 𝑀1 yang memuat 47 simbol dan blok pesan kedua 𝑀2 yang berisi 15

simbol sisanya.

Tabel 4.1 Representasi Ayat Unicode-16 dalam Bentuk Biner

No Huruf Biner-16 Bit No Huruf Biner-16 Bit

 0000011001000100 ل 17 0000011001001000 و 1

 0000011001001010 ي 18 0000011000100111 ا 2

 0000011001000111 ه 29 0000011001000110 ن 3

 0000011000100111 ا 20 0000011000100111 ا 4

5 ␣ 0000000000100000 21 ␣ 0000000000100000

 0000011000110101 ص 22 0000011001000100 ل 1

 0000011000111001 ع 23 0000011000101100 ج 7

 0000011001001010 ي 24 0000011000111001 ع 8

 0000011000101111 د 25 0000011001000100 ل 9

 0000011000100111 ا 26 0000011001001000 و 61

 0000000000100000 ␣ 27 0000011001000110 ن 16

 0000011000101100 ج 28 0000000000100000 ␣ 12

 0000011000110001 ر 29 0000011001000101 م 13

 0000011000110010 ز 30 0000011000100111 ا 14

 0000011000100111 ا 31 0000000000100000 ␣ 15

 0000011000111001 ع 16

 = وانا لجعلون ما عليها صعيدا جرزا

[0000011001001000,0000011000100111,0000011001000110,000001100010011

1,0000000000100000,0000011001000100,0000011000101100,000001100011100

1,0000011001000100,0000011001001000,0000011001000110,000000000010000

0,0000011001000101,0000011000100111,0000000000100000,000001100011100

1,0000011001000100,0000011001001010,0000011001000111,000001100010011

1,0000000000100000,0000011000110101,0000011000111001,000001100100101

0,0000011000101111,0000011000100111,0000000000100000,000001100010110

0,0000011000110001,0000011000110010,0000011000100111]

Setiap nilai 16 −bit dipisah menjadi dua bagian 8 −bit:

[0000011001001000] = [00000110]   ∥   [01001000]

Kode biner hasil konversi Unicode dibagi menjadi simbol sepanjang 8 bit sesuai

dengan panjang elemen pada 𝐺𝐹(28). Setiap blok pesan memiliki panjang 47

simbol, sesuai dengan 𝑘 = 47.

69

𝑀1 =

[

[00000110][01001000][00000110][00100111][00000110][01000110]

[00000110][00100111][00000000][00100000][00000110][01000100]
[00000110][00101100][00000110][00111001][00000110][01000100]

[00000110][01001000][00000110][01000110][00000000][00100000]
[00000110][01000101][00000110][00100111][00000000][00100000]

[00000110][00111001][00000110][01000100][00000110][01001010]
[00000110][01000111][00000110][00100111][00000000][00100000]

[00000110][00110101][00000110][00111001][00000110]]

𝑀2 =

[

[01001010][00000110][00101111][00000110][00100111][00000000]

[00100000][00000110][00101100][00000110][00110001][00000110]
[00110010][00000110][00100111][00000000][00000000][00000000]

[00000000][00000000][00000000][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]

[00000000][00000000][00000000][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]

[00000000][00000000][00000000][00000000][00000000]]

Setiap simbol 8 −bit dipetakan ke elemen 𝐺𝐹(28) berdasarkan representasi

polinomial dari Tabel 2.5.

𝑀1 = [α26, α226, α26, α33, α26, α48, α26, α33, 0, α5, α26, α102, α26, α240, α26, α154,

 α26, α102, α26, α226, α26, α48, 0, α5, α26, α221, α26, α33, 0, α5, α26, α154, α26, α102

 α26, α37, α26, α253, α26, α33, 0, α5, α26, α39, α26, α154, α26]

𝑀2 = [α37, α26, α69, α26, α33, 0, α5, α26, α240, α26, α181, α26, α194, α26, α33, 0,0,

 0,0]

Pada blok kedua (𝑀2) hanya terdapat 15 simbol representasi polinomial

pada 𝐺𝐹(28). Oleh karena itu, dilakukan penambahan padding 32 simbol bernilai

0 di bagian belakang untuk memenuhi panjang blok menjadi 47 simbol. Dengan

demikian, setiap blok pesan memiliki panjang yang seragam, yaitu 47 simbol,

sesuai dengan parameter 𝑘 pada kode Reed-Solomon.

Langkah selanjutnya adalah proses encoding menggunakan matriks

generator 𝐺. Proses encoding dilakukan dengan mengalikan vektor pesan 𝑀 = [𝑀0

, 𝑀1, . . . , 𝑀𝑘−1] dengan matriks generator 𝐺 berukuran 𝑘 × 𝑛, sehingga

menghasilkan vektor kode 𝐶 = 𝑀 × 𝐺 sepanjang 𝑛 simbol.

70

Simbol pertama codeword dihitung dari:

𝑐0 = ∑𝑚𝑖 ∙ 𝐺𝑖,0

46

𝑖=0

Karena kolom 𝑗 = 0 di mana 𝐺𝑖,0 = 1 sehingga setiap 𝑚𝑖 ⋅ 𝐺𝑖,0 = 𝑚𝑖 Jadi kolom

0 = [1, 1, 1, 1, . . . , 1] (panjang 47 simbol).

Data pesan 𝑀1 pertama:

𝑀1 = [α26, α226, α26, α33, α26, α48, α26, α33, 0, α5, α26, α102, α26, α240, α26, α154,

 α26, α102, α26, α226, α26, α48, 0, α5, α26, α221, α26, α33, 0, α5, α26, α154, α26, α102

 α26, α37, α26, α253, α26, α33, 0, α5, α26, α39, α26, α154, α26]

Maka:

𝑐0 = 𝛼26 ⋅ 1 ⊕ 𝛼226 ⋅ 1 ⊕ 𝛼26 ⋅ 1 ⊕ ⋯ ⊕ 𝛼26 ⋅ 1

Hasil perhitungan simbol-simbol codeword yang diperoleh dari proses encoding

ditampilkan pada Tabel 4.1.

Tabel 4.2 Tabel Perhitungan XOR untuk Proses Encoding
𝑖 𝑚𝑖 Operasi xor Hasil 𝑖 𝑚𝑖 Operasi xor Hasil

𝑖 = 00 α26 0 ⊕ α26 α26 𝑖 = 24 α26 α248 ⊕ α26 α197

𝑖 = 01 α226 α26 ⊕ α226 α34 𝑖 = 25 α221 α197 ⊕ α221 α59

𝑖 = 02 α26 α34 ⊕ α26 α226 𝑖 = 26 α26 α51 ⊕ α26 α31

𝑖 = 03 α33 α226 ⊕ α33 α61 𝑖 = 27 α33 α31 ⊕ α33 α203

𝑖 = 04 α26 α61 ⊕ α26 α58 𝑖 = 28 0 α203 ⊕ 0 α203

𝑖 = 05 α48 α58 ⊕ α48 α69 𝑖 = 29 α5 α203 ⊕ α5 α178

𝑖 = 06 α26 α69 ⊕ α26 α147 𝑖 = 30 α26 α178 ⊕ α26 α37

𝑖 = 07 α33 α147 ⊕ α33 α199 𝑖 = 31 α154 α37 ⊕ α154 α123

𝑖 = 08 0 α199 ⊕ 0 α199 𝑖 = 32 α26 α123 ⊕ α26 α120

𝑖 = 09 α5 α199 ⊕ α5 α130 𝑖 = 33 α102 α120 ⊕ α102 α113

𝑖 = 10 α26 α130 ⊕ α26 α53 𝑖 = 34 α26 α113 ⊕ α26 α236

𝑖 = 11 α102 α53 ⊕ α102 α250 𝑖 = 35 α37 α256 ⊕ α37 α211

𝑖 = 12 α26 α250 ⊕ α26 α40 𝑖 = 36 α26 α211 ⊕ α26 α30

𝑖 = 13 α240 α40 ⊕ α240 α48 𝑖 = 37 α253 α30 ⊕ α253 α33

𝑖 = 14 α26 α48 ⊕ α26 α54 𝑖 = 38 α26 α33 ⊕ α26 α138

𝑖 = 15 α154 α54 ⊕ α154 α152 𝑖 = 39 α33 α138 ⊕ α33 α26

𝑖 = 16 α26 α152 ⊕ α26 α134 𝑖 = 40 0 α26 ⊕ 0 α26

𝑖 = 17 α102 α134 ⊕ α102 α236 𝑖 = 41 α5 α26 ⊕ α5 α15

𝑖 = 18 α26 α236 ⊕ α26 α218 𝑖 = 42 α26 α15 ⊕ α26 α5

𝑖 = 19 α226 α218 ⊕ α226 α184 𝑖 = 43 α39 α5 ⊕ α39 α141

𝑖 = 20 α26 α184 ⊕ α26 α140 𝑖 = 44 α26 α141 ⊕ α26 α14

𝑖 = 21 α48 α140 ⊕ α48 α181 𝑖 = 45 α154 α14 ⊕ α154 α142

𝑖 = 22 0 α181 ⊕ 0 α181 𝑖 = 46 α26 α142 ⊕ α26 α240

𝑖 = 23 α5 α181 ⊕ α5 α248

71

Sehingga didapatkan simbol vektor codeword pertama adalah α240.

𝐶1 = 𝑀1 × 𝐺 =

 = [α26, α226, α26, α33, α26, α48, α26, α33, 0, α5, α26, α102, α26, α240, α26, α154,

 α26, α102, α26, α226, α26, α48, 0, α5, α26, α221, α26, α33, 0, α5, α26, α154, α26, α102

 α26, α37, α26, α253, α26, α33, 0, α5, α26, α39, α26, α154, α26] ×

[

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⋯ 1
1 α5 α10 α15 α20 α25 α30 α35 α40 α45 α50 α55 α60 α65 α70 α75 α80 ⋯ α250

1 α10 α20 α30 α40 α50 α60 α70 α80 α90 α100α110α120α130α140α150α160 ⋯ α245

1 α15 α30 α45 α60 α75 α90 α105α120α135α150α165α180α195α210α222α240 ⋯ α240

1 α20 α40 α60 α80 α100α120α140α140α180α200α220α240 α5 α25 α45 α65 ⋯ α235

1 α25 α50 α75 α100α125α150α175α200α225α250 α20 α45 α70 α95 α120α145 ⋯ α230

1 α30 α60 α90 α120α150α180α210α240 α15 α45 α75 α105α135α165α195α225 ⋯ α225

1 α35 α70 α105α140α175α210α245 α25 α60 α95 α130α165α200α235 α15 α50 ⋯ α220

1 α40 α80 α120α160α200α240 α25 α65 α105 α9 α185α225 α10 α50 α90 α130 ⋯ α215

1 α45 α90 α135α180α225 α15 α60 α105α150α145α240 α30 α75 α120α165α210 ⋯ α210

1 α50 α100α150α200α250 α45 α95 α145α195α195 α40 α90 α140α190α240 α35 ⋯ α205

1 α55 α110α165α220 α20 α75 α130α185α240α245 α95 α150α205 α5 α60 α115 ⋯ α200

1 α60 α120α180α240 α45 α105α165α225 α30 α40 α150α210 α15 α75 α135α195 ⋯ α195

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 α230α205α180α155α130α105 α80 α55 α30 α5 α235α210α185α160α135α110 ⋯ α25]

𝐶1 = [α240, α35, α39, α120, α153, α54, α227, α151, α233, α198, α85, α213, α44, α104, α3,

α50, α26, α251, α173, α65, α39, α32, α25, α231, α133, α110, α113, α1, α43, α210, α151,

α144, α11, α0, α174, α135, α84, α15, α124, α96, α18, α160, α127, α228, α178, α22, α216, α181,

α52, α40, α196]

𝐶2 = 𝑀2 × 𝐺 =

 = [α37, α26, α69, α26, α33, 0, α5, α26, α240, α26, α181, α26, α194, α26, α33, 0,0

 0,0] ×

[

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⋯ 1
1 α5 α10 α15 α20 α25 α30 α35 α40 α45 α50 α55 α60 α65 α70 α75 α80 ⋯α250

1 α10 α20 α30 α40 α50 α60 α70 α80 α90 α100α110α120α130α140α150α160 ⋯α245

1 α15 α30 α45 α60 α75 α90 α105α120α135α150α165α180α195α210α222α240 ⋯α240

1 α20 α40 α60 α80 α100α120α140α140α180α200α220α240 α5 α25 α45 α65 ⋯α235

1 α25 α50 α75 α100α125α150α175α200α225α250 α20 α45 α70 α95 α120α145 ⋯α230

1 α30 α60 α90 α120α150α180α210α240 α15 α45 α75 α105α135α165α195α225 ⋯α225

1 α35 α70 α105α140α175α210α245 α25 α60 α95 α130α165α200α235 α15 α50 ⋯α220

1 α40 α80 α120α160α200α240 α25 α65 α105 α9 α185α225 α10 α50 α90 α130 ⋯α215

1 α45 α90 α135α180α225 α15 α60 α105α150α145α240 α30 α75 α120α165α210 ⋯α210

1 α50 α100α150α200α250 α45 α95 α145α195α195 α40 α90 α140α190α240 α35 ⋯α205

1 α55 α110α165α220 α20 α75 α130α185α240α245 α95 α150α205 α5 α60 α115 ⋯α200

1 α60 α120α180α240 α45 α105α165α225 α30 α40 α150α210 α15 α75 α135α195 ⋯ α195

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 α230α205α180α155α130α105 α80 α55 α30 α5 α235α210α185α160α135α110 ⋯ α25]

72

𝐶2 = [α40, α243, α86, α119, α46, α75, α106, α116, α203, α91, α133, α21, α175, α8, α112, α21,

α27, α231, α241, α22, α205, α216, α22, α84, α101, α246, α67, α30, α184, α96, α28, α226, α219, α25,

α118, α141, α251, α182, α49, α181, α203, α46, α49, α162, α41, α113, α63, α199, α239, α72, α226]

4.3 Transmisi (Penambahan Polinomial Error)

Diasumsikan pada codeword pertama terjadi dua error, posisi error masing-

masing berlokasi pada posisi [5,20]. Nilai 𝑣1 kemudian diperoleh melalui proses

perhitungan secara komputasi yaitu,

𝑣1 = 𝐶1 + 𝑒

𝑣1 = [α240, α35, α39, α120, α153, α54, α227, α151, α233, α198, α85, α213, α44, α104, α3, α50,

α26, α251, α173, α65, α39, α32, α25, α231, α133, α110, α113, α1, α43, α210, α151, α144, α11, α0,

α174, α135, α84, α15, α124, α96, α18, α160, α127, α228, α178, α22, α216, α181, α52, α40, α196]

+ [0𝑥50 + 0𝑥49 + 0𝑥48 + 0𝑥47 + 0𝑥46 + 𝜶𝟏𝟒𝟔𝒙𝟒𝟓 + 0𝑥44 + 0𝑥43 + 0𝑥42 +

0𝑥410𝑥40 + 0𝑥39 + 0𝑥38 + 0𝑥37 + 0𝑥36 + 0𝑥35 + 0𝑥34 + 0𝑥33 + 0𝑥32 + 0𝑥31 +

𝜶𝟐𝟑𝟑𝒙𝟑𝟎 + 0𝑥29 + 0𝑥28 + 0𝑥27+0𝑥26+0𝑥25+0𝑥24 + 0𝑥23 + 0𝑥22 + 0𝑥21+0𝑥20 +

0𝑥19 + 0𝑥18 + 0𝑥17 + 0𝑥16 + 0𝑥15 + 0𝑥14 + 0𝑥13 + 0𝑥12 + 0𝑥11 + 0𝑥10 + 0𝑥9 +

0𝑥8 + 0𝑥7 + 0𝑥6 + 0𝑥5 + 0𝑥4 + 0𝑥3 + 0𝑥2 + 0𝑥1 + 0] =

𝑣1 =

[α240, α35, α39, α120, α153, 𝛂𝟕𝟑, α227, α151, α233, α198, α85, α213, α44, α104, α3, α50, α26,

α251, α173, α65, 𝛂𝟏𝟔𝟒, α32, α25, α231, α133, α110, α113, α1, α43, α210, α151, α144, α11, α0,

α174, α135, α84, α15, α124, α96, α18, α160, α127, α228, α178, α22, α216, α181, α52, α40, α196]

Pada codeword kedua, posisi error masing-masing berlokasi pada posisi [10,35]

yaitu,

𝑣2 = 𝐶2 + 𝑒

73

𝑣2 = [α40, α243, α86, α119, α46, α75, α106, α116, α203, α91, α133, α21, α175, α8, α112, α21, α27,

α231, α241, α22, α205, α216, α22, α84, α101, α246, α67, α30, α184, α96, α28, α226, α219, α25,

α118, α141, α251, α182, α49, α181, α203, α46, α49, α162, α41, α113, α63, α199, α239, α72, α226] +

+ [0𝑥50 + 0𝑥49 + 0𝑥48 + 0𝑥47 + 0𝑥46 + 0𝑥45 + 0𝑥44 + 0𝑥43 + 0𝑥42 + 0𝑥41 +

𝛂𝟏𝟖𝟖𝒙𝟒𝟎 + 0𝑥39 + 0𝑥38 + 0𝑥37 + 0𝑥36 + 0𝑥35 + 0𝑥34 + 0𝑥33 + 0𝑥32 + 0𝑥31 +

0𝑥30 + 0𝑥29 + 0𝑥28 + 0𝑥27+0𝑥26+0𝑥25+0𝑥24 + 0𝑥23 + 0𝑥22 + 0𝑥21+0𝑥20 + 0𝑥19 +

0𝑥18 + 0𝑥17 + 0𝑥16 + 𝛂𝟏𝟖𝟔𝒙𝟏𝟓 + 0𝑥14 + 0𝑥13 + 0𝑥12 + 0𝑥11 + 0𝑥10 + 0𝑥9 + 0𝑥8 +

0𝑥7 + 0𝑥6 + 0𝑥5 + 0𝑥4 + 0𝑥3 + 0𝑥2 + 0𝑥1 + 0] =

𝑣2 = [α40, α243, α86, α119, α46, α75, α106, α116, α203, α91, 𝛂𝟏𝟗𝟔, α21, α175, α8, α112, α21, α27,

α231, α241, α22, α205, α216, α22, α84, α101, α246, α67, α30, α184, α96, α28, α226, α219, α25,

α118, 𝛂𝟏𝟕𝟐, α251, α182, α49, α181, α203, α46, α49, α162, α41, α113, α63, α199, α239, α72, α226]

4.4 Proses Decoding

4.4.1 Proses Deteksi

Sindrom adalah bagian utama dalam proses decoding Reed-Solomon karena

digunakan untuk mendeteksi adanya kesalahan (error).

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯+𝑣𝑛−1,

dan α elemen primitif 𝐺𝐹(2⁸), maka sindrom ke-j:

𝑆𝑗 = 𝑣(αj)∑ 𝑣𝑖 ∙ (α5(0+i))𝑗𝑛−1
𝑖=0 , 𝑗 = 1, 2,… , 2𝑡.

𝑆𝑗 = ∑ 𝑣𝑖 ∙ (α5i)𝑗50
𝑖=0 , 𝑗 = 1, 2,3,4. Atau,

𝑆 = 𝐻 × 𝑣𝑖
𝑇

1. Hitung 𝑆1 = 𝑣1

Dalam perhitungan sindrom bisa juga menggunakan rumu𝑠

𝑆1 = 𝐻 × 𝑣1
𝑇

74

𝑆1 = [

1 α5 α10α15α20 α25 α30 α35 α40 α45 α50 α55 α60 ⋯ α250

1 α10α20α30α40 α50 α60 α70 α80 α90 α100α110α120 ⋯ α245

1 α15α30α45α60 α75 α90 α105α120α135α150α165α180 ⋯ α240

1 α20α40α60α80α100α120α140α160α180α200α220α240 ⋯ α235

] ×

[

𝛼240

𝛼35

𝛼39

𝛼120

𝛼153

𝛼73

𝛼227

𝛼151

𝛼233

𝛼198

𝛼85

𝛼213

𝛼44

𝛼104

𝛼3

𝛼50

𝛼26

𝛼251

𝛼173

𝛼65

𝛼39

𝛼32

𝛼25

⋮
𝛼196]

𝑆1 = [

𝛼236

𝛼163

𝛼49

𝛼51

]

𝑆1(𝑥) = 𝑠0 + 𝑠1𝑥 + 𝑠2𝑥
2 + 𝑠3𝑥

3.

𝑆1(𝑥) = 𝛼236 + 𝛼163𝑥 + 𝛼49𝑥2 + 𝛼51𝑥3.

2. Hitung 𝑆2 = 𝑣2

 𝑆2 = 𝐻 × 𝑣2
𝑇

𝑆2 = [

1 α5 α10α15α20 α25 α30 α35 α40 α45 α50 α55 α60 ⋯ α250

1 α10α20α30α40 α50 α60 α70 α80 α90 α100α110α120 ⋯ α245

1 α15α30α45α60 α75 α90 α105α120α135α150α165α180 ⋯ α240

1 α20α40α60α80α100α120α140α160α180α200α220α240 ⋯ α235

] ×

[

𝛼40

𝛼243

𝛼86

𝛼119

𝛼46

𝛼75

𝛼106

𝛼116

𝛼203

𝛼91

𝛼196

𝛼21

𝛼175

𝛼8

𝛼112

𝛼21

𝛼27

𝛼231

𝛼241

𝛼22

𝛼205

𝛼216

𝛼22

𝛼84

⋮
𝛼226]

75

𝑆2 = [

𝛼166

𝛼138

𝛼247

𝛼248

]

𝑆1(𝑥) = 𝑠0+𝑠1𝑥 + 𝑠2𝑥
2 + 𝑠3𝑥

3.

𝑆1(𝑥) = 𝛼166 + 𝛼138𝑥+𝛼247𝑥2 + 𝛼248𝑥3.

4.4.2 Menentukan Polonomial Lokasi Kesalahan

Menentukan polynomial locator error menggunakan metode algoritma

Berlekamp–Massey.

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2

1. Diketahui 𝑣1

𝑆1 = [𝑠0, 𝑠1, 𝑠2, 𝑠3] = [𝛼236, 𝛼163, 𝛼49, 𝛼51]

Inisialisasi

𝐶(𝑥) = [𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2], polinomial penentu kesalahan 𝜎(𝑥)

𝐵(𝑥) = Polinomial koneksi cadangan

𝐿 = Derajat polinomial penentu kesalahan 𝐶(𝑥)

𝑚 = Selisih iterasi sejak terakhir kali 𝐿 diperbarui

𝑏 = Pembagi normalisasi

𝑑 = Discrepancy (ketidaksesuaian) pada iterasi ke-n

𝑆𝑖 = [𝑠0, 𝑠1, 𝑠2, 𝑠3] Sindrom ke-i

a. Iterasi 𝑘𝑒 − 0 (𝑛 = 0)

𝐶(𝑥) = 1

𝐵(𝑥) = 1

𝐿 = 0

𝑚 = 1

76

𝑏 = 1

𝑑 = ∑𝑐𝑖𝑠𝑛−𝑖

𝐿

𝑖=0

𝑑 = 𝑐0𝑠0 = 1 ∙ 𝑠0 = α236

Karena 𝑑 ≠ 0

𝑇(𝑥) = 𝐶(𝑥)

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥)

𝐶(𝑥) = 1 ⊕
𝛼236

1
𝑥 ⋅ 1 = 1 + 𝛼236𝑥

Karena 2𝐿 ≤ 𝑛 (0 ≤ 0), maka:

𝐶(𝑥) = 1 + 𝛼236𝑥

𝐿 = 1

𝐵(𝑥) = 1

𝑏 = 𝛼236

𝑚 = 1

b. Iterasi 𝑘𝑒 − 1 (𝑛 = 1)

𝐶(𝑥) = 1 + 𝛼236𝑥

𝐿 = 1

𝐵(𝑥) = 1

𝑏 = 𝛼236

𝑚 = 1

𝑑 = 𝑐0𝑠1 + 𝑐1𝑠0

𝑑 = 𝑠1 + 𝑐1 ⋅ 𝑠0

 𝑑 = α163 ⊕ (α236 ⋅ α236)

77

 𝑑 = α163 ⊕ α217 = α116

Karena 𝑑 ≠ 0

𝑇(𝑥) = 𝐶(𝑥)

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥)

 = (1 + 𝛼236) ⊕
𝛼116

𝛼236 𝑥 ⋅ 1

 = (1 + 𝛼236) ⊕ 𝛼135𝑥

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥

Karena 2𝐿 ≤ 𝑛 (2 ≤ 1 false) tidak terpenuhi, maka:

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥

𝐿 = 1, tetap

𝐵(𝑥) = 1

𝑏 = 𝛼236

𝑚 + 1 = 2

c. Iterasi 𝑘𝑒 − 2 (𝑛 = 2)

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥

𝐿 = 1

𝐵(𝑥) = 1

𝑏 = 𝛼236

𝑚 = 2

 𝑑 = 𝑐0𝑠2 + 𝑐1𝑠1 + 𝑐2𝑠0

 𝑑 = 𝑠2 + 𝑐1 ∙ 𝑠1 + 0 ⋅ 𝑠0

 𝑑 = α49 ⊕ ((α236 ⊕ α135) ⋅ α163) ⊕ (0 ⋅ α236)

78

 𝑑 = α49 ⊕ ((α236 ⊕ α135) ⋅ α163)

 𝑑 = α49 ⊕ ((α236 ⋅ α163)(α135 ⊕ α163))

 𝑑 = α49 ⊕ α144 ⊕ α43 = α206

Karena 𝑑 ≠ 0

𝑇(𝑥) = 𝐶(𝑥)

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥)

 = (1 + (α236 ⊕ 𝛼135)𝑥) ⊕
𝛼206

𝛼236 𝑥2 ⋅ 1

 = (1 + (α236 ⊕ 𝛼135)𝑥) ⊕ 𝛼225𝑥2

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥 + 𝛼225𝑥2

Karena 2𝐿 ≤ 𝑛 (2 ≤ 2) terpenuhi, maka:

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥 + 𝛼225𝑥2

𝐿 = 𝑛 + 1 − 𝐿 = 2

𝐵(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥

𝑏 = 𝛼206

𝑚 = 1

d. Iterasi 𝑘𝑒 − 3 (𝑛 = 3)

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥 + 𝛼225𝑥2

𝐿 = 2

𝐵(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥

𝑏 = 𝛼206

𝑚 = 1

 𝑑 = 𝑐0𝑠3 + 𝑐1𝑠2 + 𝑐2

 𝑑 = 𝑠3 + 𝑐1 ∙ 𝑠2 + 𝑐2 ⋅ 𝑠1

79

 𝑑 = α51 ⊕ ((α236 ⊕ α135) ⋅ α49) ⊕ (α225 ⋅ α163)

 𝑑 = α51 ⊕ ((α236 ⊕ α135) ⋅ α49)

 𝑑 = α51 ⊕ (α236 ⋅ α49) ⊕ (α135 ⋅ α49) ⊕ α133

 𝑑 = α51 ⊕ (α30 ⊕ α184) ⊕ α133 = α153

Karena 𝑑 ≠ 0

𝑇(𝑥) = 𝐶(𝑥)

𝐶(𝑥) = 𝐶(𝑥) −
153

206
𝑥𝑚 ∙ 𝐵(𝑥)

𝐶(𝑥) = (1 + (α236 ⊕ 𝛼135)𝑥 + 𝛼225𝑥2) ⊕ α202𝑥 ⋅ (1 +

(α236 ⊕ 𝛼135)𝑥)

𝐶(𝑥) = (1 + (α236 ⊕ 𝛼135)𝑥 + 𝛼225𝑥2) ⊕ (α202𝑥 + α202(α236 ⊕

𝛼135)𝑥2)

C1new = c1 ⊕ α202 = (α236 ⊕ 𝛼135) ⊕ α202 = α224

C2new = c2 ⊕ (α202B1) = α225 ⊕ (α202(α236 ⊕ 𝛼135))

C2new = α225 ⊕ (α183 ⊕ α82) = α125

Jadi hasil akhir:

𝐶(𝑥) = 1 + α224𝑥 + α125𝑥2

Maka

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2, 𝜎1 = α224, 𝜎2 = α125.

2. Diketahui 𝑣2

S2 = [𝑠0, 𝑠1, 𝑠2, 𝑠3] = [α166, α138, α247, α248]

a. Iterasi 𝑘𝑒 − 0 (𝑛 = 0)

𝐶(𝑥) = 1

𝐵(𝑥) = 1

80

𝐿 = 0

𝑚 = 1

𝑏 = 1

𝑑 = ∑𝑐𝑖𝑠𝑛−𝑖

𝐿

𝑖=0

𝑑 = 𝑐0𝑠0 = 1 ∙ 𝑠0 = α166

Karena 𝑑 ≠ 0

𝑇(𝑥) = 𝐶(𝑥)

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥) = 1 ⊕

𝛼166

1
𝑥 ⋅ 1 = 1 + 𝛼166𝑥

Karena 2𝐿 ≤ 𝑛 (0 ≤ 0), maka:

𝐶(𝑥) = 1 + 𝛼166𝑥

𝐿 = 1

𝐵(𝑥) = 1

𝑏 = 𝛼166

𝑚 = 1

b. Iterasi 𝑘𝑒 − 1 (𝑛 = 1)

𝐶(𝑥) = 1 + 𝛼166𝑥

𝐿 = 1

𝐵(𝑥) = 𝑇(𝑥) = 1

𝑏 = 𝛼166

𝑚 = 1

𝑑 = 𝑐0𝑠1 + 𝑐1𝑠0

𝑑 = 𝑠1 + 𝑐1 ∙ 𝑠0 = α138 ⊕ (α166 ∙ α166) = α138 ⊕ α77 = α8

Karena 𝑑 ≠ 0

81

𝑇(𝑥) = 𝐶(𝑥)

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥) = (1 + 𝛼166𝑥) ⊕

𝛼8

𝛼166 𝑥 ⋅ 1 =

(1 + 𝛼166) ⊕ 𝛼97𝑥

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥 = 1 + 𝛼227𝑥

Karena 2𝐿 ≤ 𝑛 tidak terpenuhi (2 ≤ 1 false), maka:

𝐶(𝑥) = 1 + 𝛼227𝑥

𝐿 = 1, tetap

𝐵(𝑥) = 1

𝑏 = 𝛼166

𝑚 + 1 = 2

c. Iterasi 𝑘𝑒 − 2 (𝑛 = 2)

𝐶(𝑥) = 1 + 𝛼227𝑥

𝐿 = 1

𝐵(𝑥) = 1

𝑏 = 𝛼166

𝑚 = 2

 𝑑 = 𝑐0𝑠2 + 𝑐1𝑠1 + 𝑐2𝑠0

 𝑑 = 𝑠2 + 𝑐1 ∙ 𝑠1 + 0 ⋅ 𝑠0

 𝑑 = α247 ⊕ (α227 ⋅ α163) ⊕ 0

 𝑑 = α247 ⊕ α(227+138)mod255 = α247 ⊕ α110

𝑑 = α156

Karena 𝑑 ≠ 0

𝑇(𝑥) = 𝐶(𝑥)

82

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥)

 = (1 + α227𝑥) ⊕
𝛼156

𝛼166 𝑥2 ⋅ 1

 = (1 + α227𝑥) ⊕ 𝛼245𝑥2

𝐶(𝑥) = 1 + α227𝑥 + 𝛼245𝑥2

Karena 2𝐿 ≤ 𝑛 terpenuhi (2 ≤ 2), maka:

𝐶(𝑥) = 1 + α227𝑥 + 𝛼245𝑥2

𝐿 = 𝑛 + 1 − 𝐿 = 2

𝐵(𝑥) = 1 + α227𝑥

𝑏 = 𝛼156

𝑚 = 1

d. Iterasi 𝑘𝑒 − 3 (𝑛 = 3)

𝐶(𝑥) = 1 + α227𝑥 + 𝛼245𝑥2

𝐿 = 𝑛 + 1 − 𝐿 = 2

𝐵(𝑥) = 1 + α227𝑥

𝑏 = 𝛼156

𝑚 = 1

 𝑑 = 𝑐0𝑠3 + 𝑐1𝑠2 + 𝑐2𝑠1

 = 𝑠3 + 𝑐1 ∙ 𝑠2 + 𝑐2 ⋅ 𝑠1

 = α248 ⊕ (α227 ⋅ α247) ⊕ (α245 ⋅ α138)

 = α248 ⊕ α219 ⊕ α128 = α196

Karena 𝑑 ≠ 0

𝑇(𝑥) = 𝐶(𝑥)

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥)

83

 = (1 + α227𝑥 + 𝛼245𝑥2) ⊕
196

156
𝑥 ⋅ (1 + α227𝑥)

𝐶(𝑥) = (1 + α227𝑥 + 𝛼245𝑥2) ⊕ α40𝑥 ⋅ (1 + α227𝑥)

𝐶(𝑥) = (1 + α227𝑥 + 𝛼245𝑥2) ⊕ (α40𝑥 + α12𝑥2)

C1new = α227 ⊕ α202 = α244

 C2new = α245 ⊕ α12 = α225

Jadi hasil akhir:

𝐶(𝑥) = 1 + α244𝑥 + α225𝑥2

Maka

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2, 𝜎1 = α244, 𝜎2 = α225.

4.4.3 Menentukan Posisi Kesalahan (Error Positions)

1. 𝑣1

Polynomial locator 𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2

 𝜎(𝑥) = 1 + 𝛼224𝑥 + 𝛼125𝑥2

𝜎0 = 1

𝜎1 = 𝛼224

𝜎2 = 𝛼125

𝑥 = 𝜎(𝛼−𝑒) = 0

𝜎(𝛼−𝑒) = 1 + 𝛼224𝛼−𝑒 + 𝛼125𝛼−2𝑒

Untuk setiap 𝑒 = 0,1,2, … ,254

𝜎(𝛼−𝑒) = 1 + α224𝛼−𝑒 + α125𝛼−2𝑒

𝜎(𝛼−25) = 1 + α224𝛼−25 + α125𝛼−2∙25

𝜎(𝛼−25) = 1 + α224−25 + α125−50

𝜎(𝛼−25) = 1 + α199 + α75

84

𝜎(𝛼−25) = 0

𝜎(𝛼−𝑒) = 1 + α224𝛼−𝑒 + α125𝛼−2𝑒

𝜎(𝛼−100) = 1 + α224𝛼−100 + α125𝛼−2∙100

𝜎(𝛼−100) = 1 + α224−100 + α125−200

𝜎(𝛼−100) = 1 + α124 + α180

𝜎(𝛼−100) = 0

Jadi lokasi kesalahan pada 𝑣1, 𝑒 = 25, 𝑒 = 100

Karena dalam codingan di 𝑅𝑆(255) peneliti menggunakan step 𝑠 = 5, maka

𝑖 =
𝑒

𝑠

𝑒 = 25 ⇒ 𝑖 =
25

5
= 5

𝑒 = 100 ⇒ 𝑖 =
100

5
= 20

2. 𝑣2

Polynomial locator 𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2

𝜎(𝑥) = 1 + α244𝑥 + α225𝑥2

𝜎0 = 1

𝜎1 = α244

𝜎2 = α225

𝑥 = 𝜎(𝛼−𝑒) = 0

𝜎(𝛼−𝑒) = 1 + α244𝛼−𝑒 + α225𝛼−2𝑒

Untuk setiap 𝑒 = 0,1,2, … ,254

𝜎(𝛼−𝑒) = 1 + α244𝛼−𝑒 + α225𝛼−2𝑒

𝜎(𝛼−50) = 1 + α244𝛼−50 + α225𝛼−2∙50

85

𝜎(𝛼−50) = 1 + α244−50 + α225−100

𝜎(𝛼−50) = 1 + α194 + α125

𝜎(𝛼−50) = 0

𝜎(𝛼−𝑒) = 1 + α244𝛼−𝑒 + α225𝛼−2𝑒

𝜎(𝛼−175) = 1 + α244𝛼−175 + α225𝛼−2∙175

𝜎(𝛼−175) = 1 + α244−175 + α225−350

𝜎(𝛼−175) = 1 + α69 + α130

𝜎(𝛼−175) = 0

Jadi lokasi kesalahan pada 𝑣1, 𝑒 = 50, 𝑒 = 175

Karena dalam codingan di 𝑅𝑆(255) peneliti menggunakan step 𝑠 = 5, maka

𝑖 =
𝑒

𝑠

𝑒 = 50 ⇒ 𝑖 =
50

5
= 10

𝑒 = 175 ⇒ 𝑖 =
175

5
= 35

4.4.4 Menentukan Akar Polinomial Evaluasi Kesalahan (Error Evaluator

Polynomial)

1. 𝑣1

𝛺(𝑥) = 𝜎(𝑥) ∙ 𝑆(𝑥)𝑚𝑜𝑑𝑥2𝑡

𝜎(𝑥) = 1 + α224𝑥 + α125𝑥2

𝑠0 = 𝛼236, 𝑠1 = 𝛼163, 𝑠2 = 𝛼49, 𝑠3 = 𝛼51, 𝜎1 = α224, 𝜎2 = α125

𝛺0 = 𝑠0

 = 𝛼236

86

𝛺1 = 𝑠1 ⊕ (𝑠0 ⋅ 𝜎1)

 = 𝛼163 ⊕ (𝛼236 ⋅ 𝛼224)

 = 𝛼163 ⊕ 𝛼205 = 𝛼183

𝛺2 = 𝑠2 ⊕ (𝑠1 ⋅ 𝜎1) ⊕ (𝑠0 ⋅ 𝜎2)

 = 𝛼49 ⊕ (𝛼163 ⋅ α224) ⊕ (α236 ⋅ α125)

 = 𝛼49 ⊕ α132 ⊕ α106 = 0

𝛺3 = 𝑠3 ⊕ (𝑠2 ⋅ 𝜎1) ⊕ (𝑠1 ⋅ 𝜎2)

 = 𝛼51 ⊕ (𝛼49 ⋅ 𝛼224) ⊕ (𝛼163 ⋅ 𝛼125)

 = 𝛼51 ⊕ α18 ⊕ α33 = 0

𝛺(𝑥) = 𝛼236 + 𝛼183𝑥 + 0𝑥2 + 0𝑥3

2. 𝑣2

𝜎(𝑥) = 1 + α244𝑥 + α225𝑥2

𝛺(𝑥) = 𝜎(𝑥) ⋅ 𝑆(𝑥)𝑚𝑜𝑑𝑥2𝑡

𝑠0 = 𝛼166, 𝑠1 = 𝛼138, 𝑠2 = 𝛼247, 𝑠3 = 𝛼248, 𝜎1 = α244, 𝜎2 = α225

𝛺0 = 𝑠0

 = 𝛼166

𝛺1 = 𝑠1 ⊕ (𝑠0 ⋅ 𝜎1)

 = 𝛼138 ⊕ (𝛼166 ⋅ α244)

 = 𝛼138 ⊕ 𝛼155 = 𝛼206

𝛺2 = 𝑠2 ⊕ (𝑠1 ⋅ 𝜎1) ⊕ (𝑠0 ⋅ 𝜎2)

 = 𝛼247 ⊕ (𝛼138 ⋅ α244) ⊕ (α166 ⋅ α225)

 = 𝛼247 ⊕ α127 ⊕ α136 = 0

𝛺3 = 𝑠3 ⊕ (𝑠2 ⋅ 𝜎1) ⊕ (𝑠1 ⋅ 𝜎2)

 = 𝛼248 ⊕ (𝛼247 ⋅ 𝛼244) ⊕ (𝛼138 ⋅ 𝛼225)

87

 = 𝛼248 ⊕ α236 ⊕ α108 = 0

𝛺(𝑥) = 𝛼166 + 𝛼206𝑥 + 0𝑥2 + 0𝑥3

4.4.5 Menghitung Nilai Besar Kesalahan (Error Magnitude)

1. 𝑣1

Untuk 𝑒 = 25 (posisi 5)

𝐸𝑗 = −
Ω(Xj

−1)

σ′(Xj
−1)

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2

𝜎′(𝑥) = 𝜎1 + 2𝜎2𝑥

𝜎′(𝑥) = 𝜎1

𝑥 = 𝛼−𝑒 = 𝛼255−𝑒

𝛺(𝑥) = 𝛼236 + 𝛼183𝑥

Tetapi, karena 2 = 0 di 𝐺𝐹(2), 2𝜎2𝑥 = 0. Jadi,

 𝐸𝑗 =
Ω(𝛼−𝑒𝑗)

𝜎1

 =
𝛼236 + 𝛼183 ∙ 𝛼255−25

𝛼224

=
𝛼236 + 𝛼183 ∙ 𝛼230

𝛼224

 =
𝛼236 + 𝛼158

𝛼224
=

𝛼115

𝛼224
= 𝛼146

Untuk 𝑒 = 100 (posisi 20)

𝐸𝑗 = −
Ω(Xj

−1)

σ′(Xj
−1)

88

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2

𝜎′(𝑥) = 𝜎1 + 2𝜎2𝑥

𝜎′(𝑥) = 𝜎1

𝑥 = 𝛼−𝑒 = 𝛼255−𝑒

𝛺(𝑥) = 𝛼236 + 𝛼183𝑥

Tetapi, karena 2 = 0 di 𝐺𝐹(2), 2𝜎2𝑥 = 0. Jadi,

 𝐸𝑗 =
Ω(𝛼−𝑒𝑗)

𝜎1

 =
𝛼236 + 𝛼183 ∙ 𝛼255−100

𝛼224

=
𝛼236 + 𝛼183 ∙ 𝛼155

𝛼224

 =
𝛼236 + 𝛼83

𝛼224
=

𝛼202

𝛼224
= 𝛼233

Jadi, pada 𝑣1 nilai magnitude error pada posisi [5,20] adalah [𝛼146, 𝛼233].

2. 𝑣2

Untuk 𝑒 = 50 (posisi 10)

𝐸𝑗 = −
Ω(Xj

−1)

σ′(Xj
−1)

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2

𝜎′(𝑥) = 𝜎1 + 2𝜎2𝑥

𝜎′(𝑥) = 𝜎1

𝑥 = 𝛼−𝑒 = 𝛼255−𝑒

𝛺(𝑥) = 𝛼166 + 𝛼206𝑥

Tetapi, karena 2 = 0 di 𝐺𝐹(2), 2𝜎2𝑥 = 0. Jadi,

89

𝐸𝑗 =
Ω(𝛼𝑒𝑗)

σ1

 =
𝛼166 + 𝛼206 ∙ 𝛼255−50

𝛼244

 =
𝛼166 + 𝛼206 ∙ 𝛼205

𝛼224

 =
𝛼166 + 𝛼156

𝛼244
=

𝛼177

𝛼244
= 𝛼188

Untuk 𝑒 = 175 (posisi 35)

𝐸𝑗 = −
Ω(Xj

−1)

σ′(Xj
−1)

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2

𝜎′(𝑥) = 𝜎1 + 2𝜎2𝑥

𝜎′(𝑥) = 𝜎1

𝑥 = 𝛼−𝑒 = 𝛼255−𝑒

𝛺(𝑥) = 𝛼166 + 𝛼206𝑥

Tetapi, karena 2 = 0 di 𝐺𝐹(2), 2𝜎2𝑥 = 0. Jadi,

 𝐸𝑗 =
Ω(𝛼−𝑒𝑗)

σ1

 =
𝛼166 + 𝛼206 ∙ 𝛼255−175

𝛼244

 =
𝛼166 + 𝛼183 ∙ 𝛼80

𝛼224

 =
𝛼166 + 𝛼31

𝛼244
=

𝛼175

𝛼244
= 𝛼186

90

Jadi, pada 𝑣2 nilai magnitude error pada posisi [10,35] adalah

[𝛼188, 𝛼186].

4.4.6 Melakukan Koreksi Kesalahan pada Codeword

Proses koreksi dilakukan menggunakan persamaan:

𝐶 = 𝑣 − 𝑒

1. Koreksi pada Codeword (𝐶1)

Pada codeword pertama terdeteksi dua kesalahan (error), yaitu masing-

masing pada posisi ke−[5,20] dan nilai magnitude error-nya [𝛼146, 𝛼233].

Dengan demikian proses koreksi dilakukan sebagai:

𝐶1 = 𝑣1 − 𝑒

𝐶1 = [α240, α35, α39, α120, α153, 𝛂𝟕𝟑, α227, α151, α233, α198, α85, α213, α44, α104,

α3, α50, α26, α251, α173, α65, 𝛂𝟏𝟔𝟒, α32, α25, α231, α133, α110, α113, α1, α43, α210,

α151, α144, α11, α0, α174, α135, α84, α15, α124, α96, α18, α160, α127, α228, α178,

α22, α216, α181, α52, α40, α196] −

[0𝑥50 + 0𝑥49 + 0𝑥48 + 0𝑥47 + 0𝑥46 + 𝜶𝟏𝟒𝟔𝒙𝟒𝟓 + 0𝑥44 + 0𝑥43 +

0𝑥42 + 0𝑥41 + 0𝑥40 + 0𝑥39 + 0𝑥38 + 0𝑥37 + 0𝑥36 + 0𝑥35 + 0𝑥34 +

0𝑥33 + 0𝑥32 + 0𝑥31 + 𝜶𝟐𝟑𝟑𝒙𝟑𝟎 + 0𝑥29 + 0𝑥28 + 0𝑥27+0𝑥26+0𝑥25 +

0𝑥24 + 0𝑥23 + 0𝑥22 + 0𝑥21+0𝑥20 + 0𝑥19 + 0𝑥18 + 0𝑥17 + 0𝑥16 +

0𝑥15 + 0𝑥14 + 0𝑥13 + 0𝑥12 + 0𝑥11 + 0𝑥10 + 0𝑥9 + 0𝑥8 + 0𝑥7 + 0𝑥6 +

0𝑥5 + 0𝑥4 + 0𝑥3 + 0𝑥2 + 0𝑥1 + 0]

= [α240, α35, α39, α120, α153, 𝛂𝟓𝟒, α227, α151, α233, α198, α85, α213, α44, α104,

α3, α50, α26, α251, α173, α65, 𝛂𝟑𝟗, α32, α25, α231, α133, α110, α113, α1, α43, α210,

α151, α144, α11, α0, α174, α135, α84, α15, α124, α96, α18, α160, α127, α228, α178,

91

α22, α216, α181, α52, α40, α196]

Hasil ini menunjukkan bahwa kedua error pada posisi [5,20] telah berhasil

diperbaiki, sehingga nilai (𝐶1) kembali sesuai dengan hasil encoding awal.

2. Koreksi pada Codeword (𝐶2)

 Pada codeword kedua terdeteksi dua kesalahan (error), yaitu masing-

masing pada posisi ke−[10,35] dan nilai magnitude error-nya [𝛼188, 𝛼186].

Dengan demikian proses koreksi dilakukan sebagai:

𝐶2 = 𝑣2 − 𝑒

𝐶2 = [α40, α243, α86, α119, α46, α75, α106, α116, α203, α91, 𝛂𝟏𝟗𝟔, α21, α175, α8, α112,

α21, α27, α231, α241, α22, α205, α216, α22, α84, α101, α246, α67, α30, α184, α96, α28,

 α226, α219, α25, α118, 𝛂𝟏𝟕𝟐, α251, α182, α49, α181, α203, α46, α49, α162, α41, α113, α63,

α239, α72, α226] +

[0𝑥50 + 0𝑥49 + 0𝑥48 + 0𝑥47 + 0𝑥46 + 0𝑥45 + 0𝑥44 + 0𝑥43 + 0𝑥42 +

0𝑥41 + 𝜶𝟏𝟖𝟖𝒙𝟒𝟎 + 0𝑥39 + 0𝑥38 + 0𝑥37 + 0𝑥36 + 0𝑥35 + 0𝑥34 + 0𝑥33 +

0𝑥32 + 0𝑥31 + 0𝑥30 + 0𝑥29 + 0𝑥28 + 0𝑥27+0𝑥26+0𝑥25 + 0𝑥24 +

0𝑥23 + 0𝑥22 + 0𝑥21+0𝑥20 + 0𝑥19 + 0𝑥18 + 0𝑥17 + 0𝑥16 + 𝜶𝟏𝟖𝟔𝒙𝟏𝟓 +

0𝑥14 + 0𝑥13 + 0𝑥12 + 0𝑥11 + 0𝑥10 + 0𝑥9 + 0𝑥8 + 0𝑥7 + 0𝑥6 + 0𝑥5 +

0𝑥4 + 0𝑥3 + 0𝑥2 + 0𝑥1 + 0] =

[α40, α243, α86, α119, α46, α75, α106, α116, α203, α91, 𝛂𝟏𝟑𝟑, α21, α175, α8, α112,

α21, α27, α231, α241, α22, α205, α216, α22, α84, α101, α246, α67, α30, α184, α96, α28,

 α226, α219, α25, α118, 𝛂𝟏𝟒𝟏, α251, α182, α49, α181, α203, α46, α49, α162, α41, α113, α63,

α239, α72, α226]

Hasil ini menunjukkan bahwa kedua error pada posisi [10,35] telah berhasil

diperbaiki, sehingga nilai (𝐶2) kembali sesuai dengan hasil encoding awal.

92

4.4.7 Proses Decoding untuk Mengembalikan Codeword yang Telah

Dikoreksi dengan Pesan Asli

Setelah codeword terkoreksi maka perlu mengembalikan codeword ke

bentuk pesan aslinya dengan mengambil 𝑘 simbol pertama menggunakan

SageMath maka di peroleh kembali,

𝐶1 = [α26, α226, α26, α33, α26, α48, α26, α33, 0, α5, α26, α102, α26, α240, α26, α154,

 α26, α102, α26, α102, α26, α48, 0, α5, α26, α221, α26, α33, 0, α5, α26, α154, α26, α102

 α26, α37, α26, α253, α26, α33, 0, α5, α26, α39, α26, α154, α26]

𝐶1 =

[

[00000110][01001000][00000110][00100111][00000110][01000110]

[00000110][00100111][00000000][00100000][00000110][01000100]

[00000110][00101100][00000110][00111001][00000110][01000100]

[00000110][01001000][00000110][01000110][00000000][00100000]
[00000110][01000101][00000110][00100111][00000000][00100000]

[00000110][00111001][00000110][01000100][00000110][01001010]

[00000110][01000111][00000110][00100111][00000000][00100000]

[00000110][00110101][00000110][00111001][00000110]]

𝐶2 = [α37, α26, α69, α26, α33, 0, α5, α26, α240, α26, α181, α26, α194, α26, α33, 0,0,

0,0]

𝐶2 =

[

[01001010][00000110][00101111][00000110][00100111][00000000]
[00100000][00000110][00101100][00000110][00110001][00000110]
[00110010][00000110][00100111][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]

[00000000][00000000][00000000][00000000][00000000]]

Tahap terakhir dalam proses ini adalah membagi deretan bit tersebut

menjadi beberapa blok dengan panjang masing-masing 8-bit. Proses ini bertujuan

untuk mengkonversi setiap blok biner menjadi karakter yang sesuai berdasarkan

tabel Unicode. Setelah dilakukan pembagian dan konversi, diperoleh karakter

karakter sebagai berikut:

93

Tabel 4.3 Hasil Decoding Kembali ke Pesan Asli

Huruf Biner-16 Bit Huruf Biner-16 Bit

 [0000011001000100] ل [0000011001001000] و
 [0000011001001010] ي [0000011000100111] ا
 [0000011001000111] ه [0000011001000110] ن
 [0000011000100111] ا [0000011000100111] ا

␣ [0000000000100000] ␣ [0000000000100000]

 [0000011000110101] ص [0000011001000100] ل
 [0000011000111001] ع [0000011000101100] ج
 [0000011001001010] ي [0000011000111001] ع
 [0000011000101111] د [0000011001000100] ل
 [0000011000100111] ا [0000011001001000] و
 [0000000000100000] ␣ [0000011001000110] ن

 [0000011000101100] ج [0000000000100000] ␣

 [0000011000110001] ر [0000011001000101] م
 [0000011000110010] ز [0000011000100111] ا

 [0000011000100111] ا [0000000000100000] ␣

 [0000011000111001] ع

Dengan demikian, hasil akhir dari proses decoding berhasil memulihkan

pesan asli yang dikirimkan, yakni lafadz "وانا لجعلون ما عليها صعيدا جرزا" secara

benar dan tanpa kesalahan.

4.5 Analisis Hasil dengan Beberapa Paremeter Kode Reed-Solomon

Pada penelitian ini, kode Reed–Solomon diterapkan pada sepuluh ayat Al-

Qur’an dengan panjang kode tetap 𝑛 = 51. Jumlah kesalahan yang disisipkan pada

tiap ayat divariasikan antara satu hingga lima simbol sehingga parameter

kemampuan koreksi 𝑡 menyesuaikan, dengan nilai 𝑘 = 𝑛 − 2𝑡 dihitung otomatis

oleh sistem. Seluruh komputasi dilakukan pada lapangan hingga 𝐺𝐹(2⁸)

menggunakan SageMath. Analisis kinerja difokuskan pada empat aspek utama:

94

keberhasilan deteksi, keberhasilan koreksi, konsistensi parameter, dan stabilitas

decoding ketika jumlah error meningkat.

Tabel 4.4 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 1 Kesalahan
No Surah:Ayat Banyak

Simbol

𝑹𝑺(𝒏, 𝒌, 𝒕) Posisi Error Hasil Deteksi

& Koreksi

Keterangan

1 18:48 31 (51,49,1) 𝐶1 = 5, 𝐶2 = 10 1 error Sesuai

2 2:2 33 (51,49,1) 𝐶1 = 2, 𝐶2 = 7 1 error Sesuai

3 4:48 39 (51,49,1) 𝐶1 = 3, 𝐶2 = 5 1 error Sesuai

4 8:3 39 (51,49,1) 𝐶1 = 1, 𝐶2 = 8 1 error Sesuai

5 79:15 17 (51,49,1) 𝐶1 = 4, 𝐶2 = 2 1 error Sesuai

6 15:55 38 (51,49,1) 𝐶1 = 6, 𝐶2 = 14 1 error Sesuai

7 23:49 35 (51,49,1) 𝐶1 = 0, 𝐶2 = 20 1 error Sesuai

8 35:16 28 (51,49,1) 𝐶1 = 9, 𝐶2 = 3 1 error Sesuai

9 68:33 46 (51,49,1) 𝐶1 = 12, 𝐶2 = 6 1 error Sesuai

10 89:5 21 (51,49,1) 𝐶1 = 2, 𝐶2 = 5 1 error Sesuai

Berdasarkan Tabel 4.4 yang memuat sepuluh ayat uji pada konfigurasi 𝑡 =

 1 pada pengujian ini memakan waktu sekitar 5 detik, seluruh ayat memiliki

parameter (51, 49, 1). Konfigurasi ini memungkinkan sistem mendeteksi serta

mengoreksi tepat satu kesalahan simbol pada setiap codeword. Data pada tabel

menunjukkan konsistensi penuh: setiap ayat mengalami satu error selama

transmisi, dan seluruh error berhasil dikoreksi sebagaimana ditunjukkan oleh

kecocokan antara kolom “Hasil Deteksi”, “Hasil Koreksi”, dan keterangan

“Sesuai”.

Proses decoding pada 𝑡 = 1 bersifat paling sederhana karena hanya

memerlukan dua sindrom awal, yaitu 𝑆1 = 𝑣(𝛼), dan 𝑆2 = 𝑣(𝛼2), dengan 𝑣(𝑥)

merupakan codeword yang diterima. Kedua sindrom tersebut selanjutnya

digunakan untuk menyusun polinomial error locator.

𝛬(𝑥) = 1 + 𝜆1𝑥, 𝜆1 =
𝑆1

𝑆2
,

Pencarian akar polinomial ini hanya menghasilkan satu posisi kesalahan, dan

magnitudo error dihitung menggunakan bentuk dasar rumus Forney. Akibatnya,

95

decoding berlangsung cepat dan deterministik. Seluruh codeword berhasil

dipulihkan ke bentuk valid.

Tabel 4.5 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 2 Kesalahan
No Surah:Ayat Banyak

Simbol

𝑹𝑺

(𝒏, 𝒌, 𝒕)
Posisi Error Hasil Deteksi

& Koreksi

Keterangan

1 18:48 31 (51,47,2) 𝐶1 = 5,20

𝐶2 = 10,35

2 error Sesuai

2 2:2 33 (51,47,2) 𝐶1 = 2,14

𝐶2 = 7,30
2 error Sesuai

3 4:48 39 (51,47,2) 𝐶1 = 3,15

𝐶2 = 5,22
2 error Sesuai

4 8:3 39 (51,47,2) 𝐶1 = 1,37

𝐶2 = 8,3
2 error Sesuai

5 79:15 17 (51,47,2) 𝐶1 = 4,18

𝐶2 = 2,28
2 error Sesuai

6 15:55 38 (51,47,2) 𝐶1 = 6,11

𝐶2 = 14,26
2 error Sesuai

7 23:49 35 (51,47,2) 𝐶1 = 0,16

𝐶2 = 20,40
2 error Sesuai

8 35:16 28 (51,47,2) 𝐶1 = 9,21

𝐶2 = 3,17
2 error Sesuai

9 68:33 46 (51,47,2) 𝐶1 = 12,13

𝐶2 = 6,48
2 error Sesuai

10 89:5 21 (51,47,2) 𝐶1 = 2,30

𝐶2 = 5,25
2 error Sesuai

Berdasarkan Tabel 4.5, pada pengujian ini memakan waktu sekitar 6 detik

dengan konfigurasi 𝑡 = 2 menggunakan parameter (51, 47, 2) , sehingga kode

Reed–Solomon dapat mengoreksi dua kesalahan simbol dalam satu codeword.

Proses decoding dimulai dengan menghitung empat sindrom awal, yaitu 𝑆1, 𝑆2, 𝑆3

, dan 𝑆4. Keempat sindrom ini memberikan informasi yang cukup untuk

memastikan bahwa jumlah kesalahan berada dalam batas toleransi sistem.

Secara matematis, dua kesalahan menghasilkan polinomial error locator

berderajat dua,

𝛬(𝑥) = 1 + 𝜆1𝑥 + 𝜆2𝑥
2,

yang dihitung melalui algoritma Berlekamp–Massey. Akar-akar polinomial

tersebut menentukan dua posisi simbol yang rusak melalui pengujian 𝛬(𝛼−𝑖) =0.

Setelah posisi kesalahan ditemukan, magnitudo masing-masing kesalahan dihitung

96

menggunakan rumus Forney. Pada kasus dua error, perhitungan melibatkan

turunan formal 𝛬′(𝑥) serta evaluasi sindrom dalam 𝐺𝐹 (28). Koreksi kemudian

diberikan dengan mengurangi magnitudo kesalahan dari dua simbol yang rusak,

sehingga codeword kembali ke bentuk yang valid.

Dengan demikian, meskipun kompleksitas decoding meningkat akibat jumlah

sindrom yang lebih banyak dan polinomial berderajat lebih tinggi, konfigurasi 𝑡 =

 2 tetap mampu memulihkan pesan selama jumlah kesalahan tidak melebihi dua

simbol.

Berdasarkan Tabel 4.6, pada pengujian ini memakan waktu sekitar 5 detik

dengan peningkatan kemampuan koreksi 𝑡 = 3 dan parameter (51, 45, 3)

memungkinkan sistem menangani hingga tiga kesalahan simbol dalam satu

codeword. Proses decoding dimulai dengan perhitungan enam sindrom pertama

(𝑆1 − 𝑆6) yang memberikan informasi lengkap mengenai struktur kerusakan.

Tabel 4.6 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 3 Kesalahan
No Surah:Ayat Banyak

Simbol

𝑹𝑺

(𝒏, 𝒌, 𝒕)

Posisi Error Hasil Deteksi

& Koreksi

Keterangan

1 18:48 31 (51,45,3) 𝐶1 = 5,20,34

𝐶2 = 10,35,21

3 error Sesuai

2 2:2 33 (51,45,3) 𝐶1 = 2,14,17

𝐶2 = 7,30,34

3 error Sesuai

3 4:48 39 (51,45,3) 𝐶1 = 3,15,30

𝐶2 = 5,22,47

3 error Sesuai

4 8:3 39 (51,45,3) 𝐶1 = 1,37, 30

𝐶2 = 8,45,45

3 error Sesuai

5 79:15 17 (51,45,3) 𝐶1 = 4,18,7

𝐶2 = 2,28,30

3 error Sesuai

6 15:55 38 (51,45,3) 𝐶1 = 6,11,24

𝐶2 = 14,31,47

3 error Sesuai

7 23:49 35 (51,45,3) 𝐶1 = 0,2,47

𝐶2 = 20,40,32

3 error Sesuai

8 35:16 28 (51,45,3) 𝐶1 = 9,21,49

𝐶2 = 3,17,45

3 error Sesuai

9 68:33 46 (51,45,3) 𝐶1 = 12,13,14

𝐶2 = 6,22,20

3 error Sesuai

10 89:5 21 (51,45,3) 𝐶1 = 2,30,48

𝐶2 = 5,25,24

3 error Sesuai

97

Algoritma Berlekamp–Massey menghasilkan polinomial error locator 𝛬(𝑥),

berderajat tiga,

𝛬(𝑥) = 1 + 𝜆1𝑥 + 𝜆2𝑥
2 + 𝜆3𝑥

3.

Derajat dari polinomial ini bersifat penting, karena mencerminkan jumlah

error yang terdeteksi. Jika derajatnya tepat tiga, maka sistem secara matematis

konsisten bahwa terdapat tiga simbol yang rusak. Setelah posisi error diketahui,

tahap berikutnya adalah perhitungan magnitudo kesalahan melalui rumus Forney

yang telah diperluas untuk kasus lebih dari dua kerusakan. Rumus Forney untuk

derajat tiga melibatkan evaluasi turunan polinomial locator serta polinomial

evaluator 𝛺(𝑥).

Ketika ketiga simbol telah dikoreksi, codeword kembali memenuhi seluruh

persamaan paritas kode Reed–Solomon. Dengan demikian, pesan asli dapat

dipulihkan tanpa kehilangan informasi apa pun. Kasus 𝑡 = 3 memperlihatkan

bahwa walaupun beban komputasi meningkat, kode Reed–Solomon tetap dapat

bekerja secara optimal untuk koreksi kesalahan multi-simbol selama jumlah

kesalahan masih berada di bawah kapasitas koreksi maksimum.

Berdasarkan Tabel 4.7, pada pengujian ini memakan waktu sekitar 5 detik

dengan konfigurasi 𝑡 = 4 dan parameter (51, 43, 4) menunjukkan bahwa setiap

codeword dapat menampung hingga empat kesalahan simbol. Hasil uji

memperlihatkan bahwa seluruh ayat yang mengandung empat error berhasil

dipulihkan secara tepat oleh decoder. Hal ini dibuktikan melalui kesesuaian antara

jumlah kesalahan yang terdeteksi, kesalahan yang dikoreksi, serta hasil akhir yang

kembali identik dengan pesan asli. Dari sisi proses, decoding memerlukan delapan

sindrom (𝑆1, … , 𝑆8) dan menghasilkan polinomial error locator berderajat empat,

98

𝛬(𝑥) = 1 + 𝜆1𝑥 + 𝜆2𝑥
2 + 𝜆3𝑥

3 + 𝜆4𝑥
4.

Tabel 4.7 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 4 Kesalahan
No Surah:Ayat Banyak

Simbol

𝑹𝑺

(𝒏, 𝒌, 𝒕)
Posisi Error Hasil Deteksi

& Koreksi

Keterangan

1 18:48 31 (51,43,4) 𝐶1 = 5,20,22,10

𝐶2 = 10,35,39,27

4 error Sesuai

2 2:2 33 (51,43,4) 𝐶1 = 2,14,15,48

𝐶2 = 7,30,10,10

4 error Sesuai

3 4:48 39 (51,43,4) 𝐶1 = 3,15,30,10

𝐶2 = 5,22,23,50
4 error Sesuai

4 8:3 39 (51,43,4) 𝐶1 = 1,3, 44,39

𝐶2 = 8,23,48,45
4 error Sesuai

5 79:15 17 (51,43,4) 𝐶1 = 4,18,1,36

𝐶2 = 2,28,27,26
4 error Sesuai

6 15:55 38 (51,43,4) 𝐶1 = 6,11,24,11

𝐶2 = 14,35,25,17
4 error Sesuai

7 23:49 35 (51,43,4) 𝐶1 = 0,28,14,45

𝐶2 = 20,40,24,11
4 error Sesuai

8 35:16 28 (51,43,4) 𝐶1 = 9,21,19,15

𝐶2 = 3,17,45,32
4 error Sesuai

9 68:33 46 (51,43,4) 𝐶1 = 12,13,14,15

𝐶2 = 6,39,39,25
4 error Sesuai

10 89:5 21 (51,43,4) 𝐶1 = 2,30,48,49

𝐶2 = 5,25,31,20
4 error Sesuai

Meskipun peningkatan nilai 𝑡 menyebabkan bertambahnya beban komputasi

terutama pada tahap pencarian akar dan perhitungan magnitudo kesalahan seluruh

langkah tetap berjalan stabil dan konsisten. Keberhasilan pemulihan seluruh

codeword pada konfigurasi ini menunjukkan bahwa sistem masih berada dalam

batas kapasitas koreksi maksimum dan seluruh mekanisme decoding bekerja secara

deterministik.

Dengan demikian, pada 𝑡 = 4 algoritma tetap mampu melakukan deteksi

serta koreksi multi-simbol dengan tingkat akurasi penuh, meskipun kompleksitas

matematis meningkat secara signifikan dibandingkan konfigurasi 𝑡 yang lebih

rendah.

99

Tabel 4.8 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 5 Kesalahan
No Surah:Ayat Banyak

Simbol

𝑹𝑺

(𝒏, 𝒌, 𝒕)
Posisi Error Hasil

Deteksi &

Koreksi

Keterangan

1 18:48 31 (51,41,5) 𝐶1 = 5,20,0,29,37

𝐶2 = 10,35,5,7,47

5 error Sesuai

2 2:2 33 (51,41,5) 𝐶1 = 2,14,14,13,46

𝐶2 = 7,30,37,21,45

5 error Sesuai

3 4:48 39 (51,41,5) 𝐶1 = 3,15,30,9,23

𝐶2 = 5,22,33,35,25
5 error Sesuai

4 8:3 39 (51,41,5) 𝐶1 = 1,32, 15,26,24

𝐶2 = 8,28,2,24,49
5 error Sesuai

5 79:15 17 (51,41,5) 𝐶1 = 4,18,32,17,33

𝐶2 = 2,28,22,8,35
5 error Sesuai

6 15:55 38 (51,41,5) 𝐶1 = 6,11,24,28,6

𝐶2 = 14,47,27,35,48
5 error Sesuai

7 23:49 35 (51,41,5) 𝐶1 = 0,3,13,48,39

𝐶2 = 20,40,36,12,31
5 error Sesuai

8 35:16 28 (51,41,5) 𝐶1 = 9,21,39,41,24

𝐶2 = 3,17,45,38,28
5 error Sesuai

9 68:33 46 (51,41,5) 𝐶1 = 12,13,14,15,5

𝐶2 = 6,10,45,21,33
5 error Sesuai

10 89:5 21 (51,41,5) 𝐶1 = 2,30,48,49,50

𝐶2 = 5,25,1,13,50
5 error Sesuai

Berdasarkan Tabel 4.8, pada pengujian ini memakan waktu sekitar 9 detik

dengan konfigurasi 𝑡 = 5 dan parameter (51, 41, 5) menunjukkan bahwa sistem

Reed–Solomon beroperasi pada batas maksimum kemampuan koreksi, yakni lima

kesalahan simbol per codeword. Hasil pengujian memperlihatkan bahwa seluruh

codeword yang mengalami lima error berhasil dipulihkan sepenuhnya oleh proses

decoding. Hal ini menegaskan bahwa mekanisme deteksi dan koreksi masih bekerja

secara stabil meskipun berada pada tingkat kompleksitas tertinggi. Sepuluh sindrom

pertama (𝑆1 − 𝑆10) dan derajat polinomial error locator berderajat lima,

𝛬(𝑥) = 1 + 𝜆1𝑥 + 𝜆2𝑥
2 + 𝜆3𝑥

3 + 𝜆4𝑥
4 + 𝜆5𝑥

5.

Menunjukkan jika jumlah sindrom dan derajat polinomial locator yang

meningkat menambah beban komputasi, namun tidak mengganggu determinisme

algoritma: posisi kelima error dapat diidentifikasi dengan benar dan koreksi

melalui perhitungan magnitudo berlangsung konsisten. Dengan keberhasilan

pemulihan seluruh blok uji, konfigurasi 𝑡 = 5 membuktikan bahwa kode Reed–

100

Solomon mampu mencapai performa optimal hingga kapasitas koreksi

maksimalnya. Sistem tetap akurat selama jumlah kesalahan tidak melebihi lima

simbol. Apabila noise kanal lebih besar dari kapasitas ini, keberhasilan decoding

tidak lagi terjamin.

4.6 Kajian Hasil Penelitian dalam Perspektif Islam

Penelitian mengenai implementasi kode Reed–Solomon untuk deteksi dan

koreksi kesalahan transmisi ayat Al-Qur’an menggunakan pengkodean huruf

hijaiyah menunjukkan bahwa teknologi informasi modern dapat menjadi sarana

strategis dalam menjaga keaslian teks wahyu, terutama di era digital. Saat ini, ayat-

ayat Al-Qur’an tersebar melalui berbagai platform elektronik seperti aplikasi Al-

Qur’an, mushaf digital, perangkat lunak pembelajaran, hingga penyimpanan

berbasis awan. Proses pengiriman dan penyimpanan digital tersebut membuka

peluang terjadinya distorsi data, misalnya hilangnya huruf, tertukarnya karakter,

atau kerusakan bit. Contoh nyata dapat ditemukan pada kasus kesalahan penulisan

ayat Al-Kahf ayat 8, di mana huruf -atau kesalahan pada Al ,ه tertukar menjadi ع

Ankabut ayat 45 yang mengalami pengurangan huruf pada lafadz لَوةَ الص . Kasus-

kasus seperti ini menunjukkan bahwa kesalahan penulisan ayat tetap berpotensi

terjadi pada media digital.

Selain itu, potensi kesalahan juga dapat muncul dalam konteks digitalisasi teks,

misalnya saat proses pemindaian mushaf, konversi huruf hijaiyah ke kode digital,

atau saat penyalinan file melalui jaringan. Kesalahan seperti huruf yang tidak

terbaca, karakter yang salah terbaca oleh sistem OCR, atau kerusakan data selama

proses penyimpanan dan distribusi digital dapat menyebabkan penyimpangan pada

101

penulisan ayat. Berdasarkan temuan penelitian, algoritma Reed–Solomon terbukti

mampu mendeteksi sekaligus mengoreksi bentuk-bentuk kesalahan tersebut

sehingga teks ayat dapat direstorasi kembali sesuai naskah aslinya.

Nilai-nilai Islam mengajarkan pentingnya ketelitian (itqān) dan amanah dalam

setiap pekerjaan, termasuk dalam penulisan dan penjagaan naskah Al-Qur’an.

Penerapan algoritma koreksi kesalahan merupakan representasi nyata dari nilai

itqān, karena sistem mampu melakukan deteksi dan koreksi hingga satu sampai

lima kesalahan pada satu ayat, lalu mengembalikannya ke bentuk asli secara akurat.

Hal ini selaras dengan hadits:

بُّ إِّذَا عَمِّلَ أَحَدكُُمْ عَمَلاا أَنْ يُ تْقِّنَهُ إِّنَّ الل َٰ هَ يُحِّ
Artinya: “Sesungguhnya Allah mencintai seseorang yang ketika bekerja, ia

melakukannya dengan sungguh-sungguh dan sempurna.” (HR. al-Baihaqi)

Dalam penelitian ini, ketelitian sistem direpresentasikan melalui kemampuan

Reed–Solomon untuk mendeteksi kesalahan hingga lima error pada ayat-ayat Al-

Qur’an dan mengembalikannya ke bentuk asli dengan akurat. Hal ini

mencerminkan praktik itqān dalam konteks digital, di mana teknologi digunakan

untuk memastikan setiap karakter atau simbol tetap sesuai dengan naskah asli, tanpa

distorsi maupun kehilangan informasi. Keberhasilan sistem ini juga berkontribusi

terhadap pencapaian tujuan maqāṣid al-syarī‘ah, khususnya hifẓ ad-dīn (penjagaan

agama), karena menjaga kemurnian teks Al-Qur’an merupakan bagian dari menjaga

syariat dan ajaran agama dari kesalahan penafsiran akibat kelalaian teknis.

Implementasi Reed–Solomon memungkinkan transmisi dan penyimpanan teks Al-

Qur’an secara digital lebih aman dan andal, sehingga dapat digunakan dalam

mushaf digital, aplikasi pembelajaran, dan platform penyimpanan elektronik

102

dengan risiko kesalahan yang minimal. Selain itu, penerapan algoritma ini selaras

dengan prinsip al-ṣidq (keaslian) dan al-dabṭ (ketepatan) dalam ilmu qirā’ah dan

rasm mushaf. Reed–Solomon tidak dimaksudkan untuk memodifikasi atau

mengubah teks Al-Qur’an, tetapi untuk memulihkan teks yang telah mengalami

gangguan transmisi agar kembali ke bentuk aslinya.

Berdasarkan hasil penelitian, implementasi kode Reed–Solomon tidak hanya

mengoreksi kesalahan teknis pada transmisi ayat, tetapi juga mendukung tanggung

jawab umat Islam dalam menyampaikan Al-Qur’an secara benar. Mekanisme

koreksi otomatis yang terbukti mampu mengembalikan ayat ke bentuk asli

membuat distribusi ayat melalui media elektronik menjadi lebih aman dan akurat.

Prinsip ini terhubung erat dengan hadis Nabi SAW:

Artinya: “Sebaik-baik kalian adalah yang belajar Al-Qur’an dan mengajarkannya”

(HR. Bukhari No. 5027)

Dalam konteks penelitian ini, penggunaan kode Reed–Solomon tidak hanya

dipahami sebagai proses teknis dalam mengoreksi kesalahan data, tetapi juga

sebagai bagian dari ikhtiar menjaga amanah penyampaian Al-Qur’an di era digital.

Pada masa ketika ayat-ayat Al-Qur’an disebarkan melalui berbagai media

elektronik, kebutuhan untuk memastikan bahwa setiap huruf, kata, dan susunan ayat

tersampaikan tanpa perubahan menjadi semakin mendesak. Teknologi koreksi

kesalahan seperti Reed–Solomon berfungsi sebagai lapisan perlindungan tambahan

yang memastikan teks Al-Qur’an tetap akurat meskipun melewati jaringan digital

yang rawan mengalami gangguan, seperti hilangnya bit, tergesernya karakter, atau

rusaknya sebagian data.

103

Dengan demikian, implementasi Reed–Solomon dapat dipandang sebagai

bentuk modern dari tugas “mengajarkan” dan “menyampaikan” Al-Qur’an secara

benar. Jika pada masa klasik ketelitian para kuttāb dan ḥuffāẓ menjadi kunci

menjaga orisinalitas mushaf, maka pada masa digital ketelitian tersebut diwujudkan

melalui sistem yang mampu menjaga integritas simbol huruf hijaiyah dalam proses

transmisi. Upaya ini sejalan dengan prinsip amanah dan ketelitian (itqān) yang

diajarkan Islam, bahwa seluruh urusan yang terkait penyampaian wahyu harus

dilakukan secara hati-hati, presisi, dan dapat dipertanggungjawabkan. Dengan kode

Reed–Solomon, proses distribusi dan penyebaran ayat Al-Qur’an pada generasi

digital dapat berlangsung lebih aman, akurat, dan sesuai dengan standar kebenaran

yang dituntut oleh syariat.

104

BAB V

 PENUTUP

5.1 Kesimpulan

1. Simulasi proses deteksi kesalahan pada transmisi ayat Al-Qur’an

menggunakan kode Reed-Solomon dengan panjang kode tetap 𝑛 = 51

menunjukkan kinerja yang akurat dan konsisten pada seluruh konfigurasi

kemampuan koreksi 𝑡 = 1 hingga 𝑡 = 5. Hasil perhitungan sindrom selalu

memberikan nilai non-nol ketika terjadi penyisipan error, sehingga mekanisme

deteksi berjalan efektif untuk seluruh ayat uji. Penyesuaian panjang pesan 𝑘 =

𝑛 − 2𝑡 pada setiap konfigurasi tidak menimbulkan gangguan terhadap proses

deteksi meskipun jumlah simbol ayat berbeda-beda. Hal ini membuktikan

bahwa struktur kode Reed–Solomon bersifat stabil, dan dapat diterapkan secara

seragam pada berbagai bentuk data ayat Al-Qur’an.

2. Simulasi proses koreksi kesalahan menunjukkan bahwa kode Reed–Solomon

mampu memulihkan seluruh codeword yang mengalami kerusakan selama

jumlah kesalahan tidak melebihi kapasitas koreksi 𝑡. Melalui penerapan

algoritma Berlekamp–Massey untuk membentuk polinomial error locator,

pencarian akar menggunakan metode Chien Search, serta perhitungan

magnitudo error melalui rumus Forney, sistem berhasil menentukan lokasi dan

besar kesalahan secara tepat. Pada seluruh pengujian, mulai dari satu hingga

lima simbol error, semua ayat berhasil direstorasi ke bentuk semula tanpa

kehilangan informasi. Hasil ini menegaskan bahwa kode Reed–Solomon tidak

hanya efektif tetapi juga sangat reliabel dalam menjaga integritas teks ayat Al-

105

Qur’an pada proses transmisi digital, bahkan hingga mencapai batas

maksimum kemampuan koreksinya.

5.2 Saran

Berdasarkan hasil penelitian yang telah dilakukan, beberapa saran dapat

diberikan untuk penelitian selanjutnya guna memperluas cakupan implementasi dan

memperdalam pemahaman terkait kode Reed-Solomon untuk deteksi dan koreksi

kesalahan transmisi ayat Al-Qur’an menggunakan pengkodean huruf hijaiyah,

antara lain:

1. Disarankan untuk menguji sistem pada kondisi transmisi yang lebih kompleks,

seperti noise acak (random noise), burst error, atau kanal komunikasi yang

menyerupai kondisi nyata.. Hal ini bertujuan untuk mengevaluasi kestabilan

kode Reed-Solomon dalam menghadapi kondisi nyata yang lebih beragam.

2. Sistem dapat dikembangkan lebih lanjut dengan mengintegrasikan kode Reed-

Solomon dengan teknik pengkodean lain atau metode kriptografi, seperti

McEliece atau Reed-Muller, untuk meningkatkan keandalan dan keamanan

transmisi teks Al-Qur’an.

3. Disarankan untuk mengaplikasikan sistem ini pada perangkat digital, aplikasi

pembelajaran, atau platform penyalinan ayat Al-Qur’an, sehingga dapat

membantu meminimalkan kesalahan sekaligus meningkatkan kualitas

pembelajaran dan pengiriman/transmisi teks Al-Qur’an secara digital.

106

DAFTAR PUSTAKA

Alqahtani, Y. (2013). New Approach of Arabic Encryption / Decryption Technique

Using Vigenere Cipher on Mod 39. International Journal of Advanced

Research in IT and Engineering, 2(12), 1–9.

Bras-amor, M. (2018). A decoding approach to Reed–Solomon codes from their

definition. Mathematics, 6(10), 194. https://doi.org/10.3390/math6100194 A

Bierbrauer. J. (2019). Introduction to coding theory (2nd ed). In Sustainability

(Switzerland) (Vol. 11, Issue 1). Universitat Rostock.

Darmadi, D., Imansyah, F., R. R. Y. (2020). Simulasi Eliminasi Noise Dengan

Metode Transformasi Wavelet Berbantuan Graphical User Interface (GUI)

Matlab. Jurnal Fakultas Teknik Universitas Tanjungpura Pontianak, 8.

Dummit, D. S., & Foote, R. M. (2004). Abstract Algebra (3rd ed). Hoboken, NJ:

John Wiley & Sons, Inc.

Gallian, J. A. (2021). Contemporary abstract algebra (10th ed.). CRC Press.

https://doi.org/10.1201/9781003142331

Hadist riwayat Al-Baihaqi. As-Sunan al-Kubrá (Vol. 3). Dār al-Kutub al-‘Ilmiyyah.

Hadist riwayat Al-Bukhori. Ṣaḥīḥ al-Bukhārī (Vol. 7). Dār Ṭawq al-Najāḥ. Hadist

No. 5027.

Jamal, R. P., Haryanto, L., & Amir, A. K. (2012). Konstruksi Kode Reed-Solomon

sebagai Kode Siklik dengan Polinomial Generator. Jurnal Matematika,

Statistika dan Komputasi, 14(1), 100–105.

Jariyah, A., Suwadi & Hendrantoro, G. (2013). Pengkodean Kanal Reed Solomon

berbasis FPGA untuk Transmisi Citra pada Satelit Nano. Jurnal Teknik

POMITS, 2(1), 51–56.

Kemenag. (2023). Empat Kali Beredar Ulang Foto Salah Cetak Al-Kahfi: 8, Ini

Penjelasan Kemenag. https://kemenag.go.id/pers-rilis/empat-kali-beredar-

ulang-foto-salah-cetak-al-kahfi-8-ini-penjelasan-kemenag-fSlkJ
(Diakses pada 5 September 2024)

Kementrian Agama Republik Indonesia. (2022). Al-Qur'an dan terjemahannya..

Lajnah Penthasihan Mushaf Al-Qur'an, Kementrian Agama RI.

Makhomah, R., Santoso, K. A., & Kamsyakawuni, A. (2021). Pengkodean Teks

Menggunakan Kombinasi Hill Cipher dan Operasi XOR. PRISMA, Prosiding

Seminar Nasional Matematika, 4, 548–552. Universitas Negeri Semarang.

107

Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of

applied cryptography. CRC Press.

Nasution, Z. (2020). Metode Pembelajaran Dalam Pengenalan Huruf Hijaiyah.

Jurnal Al-Fatih, III(1), 173–184. http://jurnal.stit-al-

ittihadiyahlabura.ac.id/index.php/alfatih/article/view/85

Oktavia, R. E., Utomo, P. H., & Martini, T. S. (2023). Penerapan Kode Reed

Solomon Pada Kriptosistem Mceliece. FIBONACCI: Jurnal Pendidikan

Matematika Dan Matematika, 9(1), 79. https://doi.org/10.24853/fbc.9.1.79-88

Republika. (2017). Kesalahan Penulisan Alquran, Penyeleksian Harus Diperluas.

https://khazanah.republika.co.id/berita/oyl5es396/kesalahan-penulisan-

alquran-penyeleksian-harus-diperluas

Riyanto, M. Z. (2019). Pengkodean Huruf Hijaiyah Untuk Deteksi dan Koreksi

Kesalahan Penulisan Ayat Al-Qur’an Menggunakan Kode Linear.

Shihab, M. Q. (2007). Mukjizat al-Qur‟an (Ditinjau dari Aspek Kebahasaan,

Isyarat Ilmiah, dan Pemberitaan Gaib.

https://books.google.co.id/books?id=pD5Djck2jeMC&printsec=frontcover&

hl=id#v=onepage&q&f=false

Wicker, S. B. (2005). An Introduction to Reed-Solomon Codes. Gigiena i

Sanitariia, 1, 30–32.

Widiastuti, N., Lestari, D., & Dhoruri, A. (2016.) Sifat dan karakteristik kode Reed

Solomon beserta aplikasinya pada steganography. Seminar Nasional

Matematika dan Pendidikan Matematika UNY 2016 (hlm. 21–26).

Yogyakarta: Universitas Negeri Yogyakarta. ISBN 978-602-73403-1-2

108

LAMPIRAN

Lampiran 1. Representasi Polinomial, Biner, dan Desimal 𝐺𝐹(256)
=== Lapangan GF(2^8): P(x) = x^8 + x^4 + x^3 + x^2 + 1 ===

Elemen primitif α = 0x02

=== Tabel Representasi GF(256) ===

Pangkat Polinomial Biner Desimal Hex

α^0 1 00000001 1 0x01

α^1 a 00000010 2 0x02

α^2 a^2 00000100 4 0x04

α^3 a^3 00001000 8 0x08

α^4 a^4 00010000 16 0x10

α^5 a^5 00100000 32 0x20

α^6 a^6 01000000 64 0x40

α^7 a^7 10000000 128 0x80

α^8 a^4 + a^3 + a^2 + 1 00011101 29 0x1d

α^9 a^5 + a^4 + a^3 + a 00111010 58 0x3a

α^10 a^6 + a^5 + a^4 + a^2 01110100 116 0x74

α^11 a^7 + a^6 + a^5 + a^3 11101000 232 0xe8

α^12 a^7 + a^6 + a^3 + a^2 + 1 11001101 205 0xcd

α^13 a^7 + a^2 + a + 1 10000111 135 0x87

α^14 a^4 + a + 1 00010011 19 0x13

α^15 a^5 + a^2 + a 00100110 38 0x26

α^16 a^6 + a^3 + a^2 01001100 76 0x4c

α^17 a^7 + a^4 + a^3 10011000 152 0x98

α^18 a^5 + a^3 + a^2 + 1 00101101 45 0x2d

α^19 a^6 + a^4 + a^3 + a 01011010 90 0x5a

α^20 a^7 + a^5 + a^4 + a^2 10110100 180 0xb4

α^21 a^6 + a^5 + a^4 + a^2 + 1 01110101 117 0x75

α^22 a^7 + a^6 + a^5 + a^3 + a 11101010 234 0xea

α^23 a^7 + a^6 + a^3 + 1 11001001 201 0xc9

α^24 a^7 + a^3 + a^2 + a + 1 10001111 143 0x8f

α^25 a + 1 00000011 3 0x03

α^26 a^2 + a 00000110 6 0x06

α^27 a^3 + a^2 00001100 12 0x0c

α^28 a^4 + a^3 00011000 24 0x18

α^29 a^5 + a^4 00110000 48 0x30

α^30 a^6 + a^5 01100000 96 0x60

α^31 a^7 + a^6 11000000 192 0xc0

α^32 a^7 + a^4 + a^3 + a^2 + 1 10011101 157 0x9d

α^33 a^5 + a^2 + a + 1 00100111 39 0x27

α^34 a^6 + a^3 + a^2 + a 01001110 78 0x4e

α^35 a^7 + a^4 + a^3 + a^2 10011100 156 0x9c

α^36 a^5 + a^2 + 1 00100101 37 0x25

α^37 a^6 + a^3 + a 01001010 74 0x4a

α^38 a^7 + a^4 + a^2 10010100 148 0x94

α^39 a^5 + a^4 + a^2 + 1 00110101 53 0x35

α^40 a^6 + a^5 + a^3 + a 01101010 106 0x6a

α^41 a^7 + a^6 + a^4 + a^2 11010100 212 0xd4

α^42 a^7 + a^5 + a^4 + a^2 + 1 10110101 181 0xb5

α^43 a^6 + a^5 + a^4 + a^2 + a + 1 01110111 119 0x77

α^44 a^7 + a^6 + a^5 + a^3 + a^2 + a 11101110 238 0xee

α^45 a^7 + a^6 + 1 11000001 193 0xc1

α^46 a^7 + a^4 + a^3 + a^2 + a + 1 10011111 159 0x9f

α^47 a^5 + a + 1 00100011 35 0x23

α^48 a^6 + a^2 + a 01000110 70 0x46

α^49 a^7 + a^3 + a^2 10001100 140 0x8c

α^50 a^2 + 1 00000101 5 0x05

α^51 a^3 + a 00001010 10 0x0a

α^52 a^4 + a^2 00010100 20 0x14

α^53 a^5 + a^3 00101000 40 0x28

α^54 a^6 + a^4 01010000 80 0x50

109

α^55 a^7 + a^5 10100000 160 0xa0

α^56 a^6 + a^4 + a^3 + a^2 + 1 01011101 93 0x5d

α^57 a^7 + a^5 + a^4 + a^3 + a 10111010 186 0xba

α^58 a^6 + a^5 + a^3 + 1 01101001 105 0x69

α^59 a^7 + a^6 + a^4 + a 11010010 210 0xd2

α^60 a^7 + a^5 + a^4 + a^3 + 1 10111001 185 0xb9

α^61 a^6 + a^5 + a^3 + a^2 + a + 1 01101111 111 0x6f

α^62 a^7 + a^6 + a^4 + a^3 + a^2 + a 11011110 222 0xde

α^63 a^7 + a^5 + 1 10100001 161 0xa1

α^64 a^6 + a^4 + a^3 + a^2 + a + 1 01011111 95 0x5f

α^65 a^7 + a^5 + a^4 + a^3 + a^2 + a 10111110 190 0xbe

α^66 a^6 + a^5 + 1 01100001 97 0x61

α^67 a^7 + a^6 + a 11000010 194 0xc2

α^68 a^7 + a^4 + a^3 + 1 10011001 153 0x99

α^69 a^5 + a^3 + a^2 + a + 1 00101111 47 0x2f

α^70 a^6 + a^4 + a^3 + a^2 + a 01011110 94 0x5e

α^71 a^7 + a^5 + a^4 + a^3 + a^2 10111100 188 0xbc

α^72 a^6 + a^5 + a^2 + 1 01100101 101 0x65

α^73 a^7 + a^6 + a^3 + a 11001010 202 0xca

α^74 a^7 + a^3 + 1 10001001 137 0x89

α^75 a^3 + a^2 + a + 1 00001111 15 0x0f

α^76 a^4 + a^3 + a^2 + a 00011110 30 0x1e

α^77 a^5 + a^4 + a^3 + a^2 00111100 60 0x3c

α^78 a^6 + a^5 + a^4 + a^3 01111000 120 0x78

α^79 a^7 + a^6 + a^5 + a^4 11110000 240 0xf0

α^80 a^7 + a^6 + a^5 + a^4 + a^3 + a^2 + 1 11111101 253

 0xfd

α^81 a^7 + a^6 + a^5 + a^2 + a + 1 11100111 231 0xe7

α^82 a^7 + a^6 + a^4 + a + 1 11010011 211 0xd3

α^83 a^7 + a^5 + a^4 + a^3 + a + 1 10111011 187 0xbb

α^84 a^6 + a^5 + a^3 + a + 1 01101011 107 0x6b

α^85 a^7 + a^6 + a^4 + a^2 + a 11010110 214 0xd6

α^86 a^7 + a^5 + a^4 + 1 10110001 177 0xb1

α^87 a^6 + a^5 + a^4 + a^3 + a^2 + a + 1 01111111 127

 0x7f

α^88 a^7 + a^6 + a^5 + a^4 + a^3 + a^2 + a 11111110 254

 0xfe

α^89 a^7 + a^6 + a^5 + 1 11100001 225 0xe1

α^90 a^7 + a^6 + a^4 + a^3 + a^2 + a + 1 11011111 223

 0xdf

α^91 a^7 + a^5 + a + 1 10100011 163 0xa3

α^92 a^6 + a^4 + a^3 + a + 1 01011011 91 0x5b

α^93 a^7 + a^5 + a^4 + a^2 + a 10110110 182 0xb6

α^94 a^6 + a^5 + a^4 + 1 01110001 113 0x71

α^95 a^7 + a^6 + a^5 + a 11100010 226 0xe2

α^96 a^7 + a^6 + a^4 + a^3 + 1 11011001 217 0xd9

α^97 a^7 + a^5 + a^3 + a^2 + a + 1 10101111 175 0xaf

α^98 a^6 + a + 1 01000011 67 0x43

α^99 a^7 + a^2 + a 10000110 134 0x86

α^100 a^4 + 1 00010001 17 0x11

α^101 a^5 + a 00100010 34 0x22

α^102 a^6 + a^2 01000100 68 0x44

α^103 a^7 + a^3 10001000 136 0x88

α^104 a^3 + a^2 + 1 00001101 13 0x0d

α^105 a^4 + a^3 + a 00011010 26 0x1a

α^106 a^5 + a^4 + a^2 00110100 52 0x34

α^107 a^6 + a^5 + a^3 01101000 104 0x68

α^108 a^7 + a^6 + a^4 11010000 208 0xd0

α^109 a^7 + a^5 + a^4 + a^3 + a^2 + 1 10111101 189 0xbd

α^110 a^6 + a^5 + a^2 + a + 1 01100111 103 0x67

α^111 a^7 + a^6 + a^3 + a^2 + a 11001110 206 0xce

α^112 a^7 + 1 10000001 129 0x81

α^113 a^4 + a^3 + a^2 + a + 1 00011111 31 0x1f

α^114 a^5 + a^4 + a^3 + a^2 + a 00111110 62 0x3e

α^115 a^6 + a^5 + a^4 + a^3 + a^2 01111100 124 0x7c

110

α^116 a^7 + a^6 + a^5 + a^4 + a^3 11111000 248 0xf8

α^117 a^7 + a^6 + a^5 + a^3 + a^2 + 1 11101101 237 0xed

α^118 a^7 + a^6 + a^2 + a + 1 11000111 199 0xc7

α^119 a^7 + a^4 + a + 1 10010011 147 0x93

α^120 a^5 + a^4 + a^3 + a + 1 00111011 59 0x3b

α^121 a^6 + a^5 + a^4 + a^2 + a 01110110 118 0x76

α^122 a^7 + a^6 + a^5 + a^3 + a^2 11101100 236 0xec

α^123 a^7 + a^6 + a^2 + 1 11000101 197 0xc5

α^124 a^7 + a^4 + a^2 + a + 1 10010111 151 0x97

α^125 a^5 + a^4 + a + 1 00110011 51 0x33

α^126 a^6 + a^5 + a^2 + a 01100110 102 0x66

α^127 a^7 + a^6 + a^3 + a^2 11001100 204 0xcc

α^128 a^7 + a^2 + 1 10000101 133 0x85

α^129 a^4 + a^2 + a + 1 00010111 23 0x17

α^130 a^5 + a^3 + a^2 + a 00101110 46 0x2e

α^131 a^6 + a^4 + a^3 + a^2 01011100 92 0x5c

α^132 a^7 + a^5 + a^4 + a^3 10111000 184 0xb8

α^133 a^6 + a^5 + a^3 + a^2 + 1 01101101 109 0x6d

α^134 a^7 + a^6 + a^4 + a^3 + a 11011010 218 0xda

α^135 a^7 + a^5 + a^3 + 1 10101001 169 0xa9

α^136 a^6 + a^3 + a^2 + a + 1 01001111 79 0x4f

α^137 a^7 + a^4 + a^3 + a^2 + a 10011110 158 0x9e

α^138 a^5 + 1 00100001 33 0x21

α^139 a^6 + a 01000010 66 0x42

α^140 a^7 + a^2 10000100 132 0x84

α^141 a^4 + a^2 + 1 00010101 21 0x15

α^142 a^5 + a^3 + a 00101010 42 0x2a

α^143 a^6 + a^4 + a^2 01010100 84 0x54

α^144 a^7 + a^5 + a^3 10101000 168 0xa8

α^145 a^6 + a^3 + a^2 + 1 01001101 77 0x4d

α^146 a^7 + a^4 + a^3 + a 10011010 154 0x9a

α^147 a^5 + a^3 + 1 00101001 41 0x29

α^148 a^6 + a^4 + a 01010010 82 0x52

α^149 a^7 + a^5 + a^2 10100100 164 0xa4

α^150 a^6 + a^4 + a^2 + 1 01010101 85 0x55

α^151 a^7 + a^5 + a^3 + a 10101010 170 0xaa

α^152 a^6 + a^3 + 1 01001001 73 0x49

α^153 a^7 + a^4 + a 10010010 146 0x92

α^154 a^5 + a^4 + a^3 + 1 00111001 57 0x39

α^155 a^6 + a^5 + a^4 + a 01110010 114 0x72

α^156 a^7 + a^6 + a^5 + a^2 11100100 228 0xe4

α^157 a^7 + a^6 + a^4 + a^2 + 1 11010101 213 0xd5

α^158 a^7 + a^5 + a^4 + a^2 + a + 1 10110111 183 0xb7

α^159 a^6 + a^5 + a^4 + a + 1 01110011 115 0x73

α^160 a^7 + a^6 + a^5 + a^2 + a 11100110 230 0xe6

α^161 a^7 + a^6 + a^4 + 1 11010001 209 0xd1

α^162 a^7 + a^5 + a^4 + a^3 + a^2 + a + 1 10111111 191

 0xbf

α^163 a^6 + a^5 + a + 1 01100011 99 0x63

α^164 a^7 + a^6 + a^2 + a 11000110 198 0xc6

α^165 a^7 + a^4 + 1 10010001 145 0x91

α^166 a^5 + a^4 + a^3 + a^2 + a + 1 00111111 63 0x3f

α^167 a^6 + a^5 + a^4 + a^3 + a^2 + a 01111110 126 0x7e

α^168 a^7 + a^6 + a^5 + a^4 + a^3 + a^2 11111100 252 0xfc

α^169 a^7 + a^6 + a^5 + a^2 + 1 11100101 229 0xe5

α^170 a^7 + a^6 + a^4 + a^2 + a + 1 11010111 215 0xd7

α^171 a^7 + a^5 + a^4 + a + 1 10110011 179 0xb3

α^172 a^6 + a^5 + a^4 + a^3 + a + 1 01111011 123 0x7b

α^173 a^7 + a^6 + a^5 + a^4 + a^2 + a 11110110 246 0xf6

α^174 a^7 + a^6 + a^5 + a^4 + 1 11110001 241 0xf1

α^175 a^7 + a^6 + a^5 + a^4 + a^3 + a^2 + a + 1 11111111 255

 0xff

α^176 a^7 + a^6 + a^5 + a + 1 11100011 227 0xe3

α^177 a^7 + a^6 + a^4 + a^3 + a + 1 11011011 219 0xdb

α^178 a^7 + a^5 + a^3 + a + 1 10101011 171 0xab

111

α^179 a^6 + a^3 + a + 1 01001011 75 0x4b

α^180 a^7 + a^4 + a^2 + a 10010110 150 0x96

α^181 a^5 + a^4 + 1 00110001 49 0x31

α^182 a^6 + a^5 + a 01100010 98 0x62

α^183 a^7 + a^6 + a^2 11000100 196 0xc4

α^184 a^7 + a^4 + a^2 + 1 10010101 149 0x95

α^185 a^5 + a^4 + a^2 + a + 1 00110111 55 0x37

α^186 a^6 + a^5 + a^3 + a^2 + a 01101110 110 0x6e

α^187 a^7 + a^6 + a^4 + a^3 + a^2 11011100 220 0xdc

α^188 a^7 + a^5 + a^2 + 1 10100101 165 0xa5

α^189 a^6 + a^4 + a^2 + a + 1 01010111 87 0x57

α^190 a^7 + a^5 + a^3 + a^2 + a 10101110 174 0xae

α^191 a^6 + 1 01000001 65 0x41

α^192 a^7 + a 10000010 130 0x82

α^193 a^4 + a^3 + 1 00011001 25 0x19

α^194 a^5 + a^4 + a 00110010 50 0x32

α^195 a^6 + a^5 + a^2 01100100 100 0x64

α^196 a^7 + a^6 + a^3 11001000 200 0xc8

α^197 a^7 + a^3 + a^2 + 1 10001101 141 0x8d

α^198 a^2 + a + 1 00000111 7 0x07

α^199 a^3 + a^2 + a 00001110 14 0x0e

α^200 a^4 + a^3 + a^2 00011100 28 0x1c

α^201 a^5 + a^4 + a^3 00111000 56 0x38

α^202 a^6 + a^5 + a^4 01110000 112 0x70

α^203 a^7 + a^6 + a^5 11100000 224 0xe0

α^204 a^7 + a^6 + a^4 + a^3 + a^2 + 1 11011101 221 0xdd

α^205 a^7 + a^5 + a^2 + a + 1 10100111 167 0xa7

α^206 a^6 + a^4 + a + 1 01010011 83 0x53

α^207 a^7 + a^5 + a^2 + a 10100110 166 0xa6

α^208 a^6 + a^4 + 1 01010001 81 0x51

α^209 a^7 + a^5 + a 10100010 162 0xa2

α^210 a^6 + a^4 + a^3 + 1 01011001 89 0x59

α^211 a^7 + a^5 + a^4 + a 10110010 178 0xb2

α^212 a^6 + a^5 + a^4 + a^3 + 1 01111001 121 0x79

α^213 a^7 + a^6 + a^5 + a^4 + a 11110010 242 0xf2

α^214 a^7 + a^6 + a^5 + a^4 + a^3 + 1 11111001 249 0xf9

α^215 a^7 + a^6 + a^5 + a^3 + a^2 + a + 1 11101111 239

 0xef

α^216 a^7 + a^6 + a + 1 11000011 195 0xc3

α^217 a^7 + a^4 + a^3 + a + 1 10011011 155 0x9b

α^218 a^5 + a^3 + a + 1 00101011 43 0x2b

α^219 a^6 + a^4 + a^2 + a 01010110 86 0x56

α^220 a^7 + a^5 + a^3 + a^2 10101100 172 0xac

α^221 a^6 + a^2 + 1 01000101 69 0x45

α^222 a^7 + a^3 + a 10001010 138 0x8a

α^223 a^3 + 1 00001001 9 0x09

α^224 a^4 + a 00010010 18 0x12

α^225 a^5 + a^2 00100100 36 0x24

α^226 a^6 + a^3 01001000 72 0x48

α^227 a^7 + a^4 10010000 144 0x90

α^228 a^5 + a^4 + a^3 + a^2 + 1 00111101 61 0x3d

α^229 a^6 + a^5 + a^4 + a^3 + a 01111010 122 0x7a

α^230 a^7 + a^6 + a^5 + a^4 + a^2 11110100 244 0xf4

α^231 a^7 + a^6 + a^5 + a^4 + a^2 + 1 11110101 245 0xf5

α^232 a^7 + a^6 + a^5 + a^4 + a^2 + a + 1 11110111 247

 0xf7

α^233 a^7 + a^6 + a^5 + a^4 + a + 1 11110011 243 0xf3

α^234 a^7 + a^6 + a^5 + a^4 + a^3 + a + 1 11111011 251

 0xfb

α^235 a^7 + a^6 + a^5 + a^3 + a + 1 11101011 235 0xeb

α^236 a^7 + a^6 + a^3 + a + 1 11001011 203 0xcb

α^237 a^7 + a^3 + a + 1 10001011 139 0x8b

α^238 a^3 + a + 1 00001011 11 0x0b

α^239 a^4 + a^2 + a 00010110 22 0x16

α^240 a^5 + a^3 + a^2 00101100 44 0x2c

112

α^241 a^6 + a^4 + a^3 01011000 88 0x58

α^242 a^7 + a^5 + a^4 10110000 176 0xb0

α^243 a^6 + a^5 + a^4 + a^3 + a^2 + 1 01111101 125 0x7d

α^244 a^7 + a^6 + a^5 + a^4 + a^3 + a 11111010 250 0xfa

α^245 a^7 + a^6 + a^5 + a^3 + 1 11101001 233 0xe9

α^246 a^7 + a^6 + a^3 + a^2 + a + 1 11001111 207 0xcf

α^247 a^7 + a + 1 10000011 131 0x83

α^248 a^4 + a^3 + a + 1 00011011 27 0x1b

α^249 a^5 + a^4 + a^2 + a 00110110 54 0x36

α^250 a^6 + a^5 + a^3 + a^2 01101100 108 0x6c

α^251 a^7 + a^6 + a^4 + a^3 11011000 216 0xd8

α^252 a^7 + a^5 + a^3 + a^2 + 1 10101101 173 0xad

α^253 a^6 + a^2 + a + 1 01000111 71 0x47

α^254 a^7 + a^3 + a^2 + a 10001110 142 0x8e

α^255 1 00000001 1 0x01

113

Lampiran 2. Script Code Sagemath: Proses Encoding dan Decoding
import random

R.<x> = PolynomialRing(GF(2))

irreducible polynomial: x^8 + x^4 + x^3 + x^2 + 1 (0x11D)

F.<a> = GF(2^8, modulus = x^8 + x^4 + x^3 + x^2 + 1)

print("=== Lapangan GF(2^8): P(x) = x^8 + x^4 + x^3 + x^2 + 1 ===")

print("Elemen primitif α = 0x02\n")

====== Helper ======

def poly_to_int(p):

 coeffs = p.coefficients(sparse=False)

 val = 0

 for i, c in enumerate(coeffs):

 if int(c) == 1:

 val += (1 << i)

 return val

def element_to_alpha_power(elem):

 if elem == 0:

 return "0"

 for i in range(255):

 if a**i == elem:

 return f"α^{i}"

 return "?"

====== Konversi Arabic -> 16-bit biner per huruf ======

def arabic_to_binary16(text):

 hasil = []

 for i, huruf in enumerate(text, start=1):

 if huruf == " ":

 bits = "0000000000100000"

 else:

 bits = format(ord(huruf), '016b')

 hasil.append((i, huruf, bits))

 return hasil

====== Ubah teks -> dua blok k-symbol (8-bit/simbol) dinamically ======

def text_to_two_blocks_for_k(text, k):

 """

 Menghasilkan dua blok masing-masing panjang k (symbol 8-bit).

 Jika data kurang, dipad dengan 0; jika lebih, di-truncate.

 """

 bytes8 = []

 for huruf in text:

 if huruf == " ":

 bits16 = "0000000000100000"

 else:

 bits16 = format(ord(huruf), "016b")

 bytes8.append(bits16[:8])

 bytes8.append(bits16[8:])

 ints = [int(b,2) for b in bytes8]

 # pad agar minimal 2*k simbol

 if len(ints) < 2*k:

 ints += [0]*(2*k - len(ints))

 # truncate jika lebih

 if len(ints) > 2*k:

 ints = ints[:2*k]

 m1 = ints[:k]

 m2 = ints[k:2*k]

 return m1, m2

====== konversi int -> GF element (sesuai field) ======

def int_to_GF256(v):

 bits = [int(b) for b in format(v, '08b')]

 p = sum(bits[-(i+1)] * x**i for i in range(8))

 return F(p)

====== Syndromes, BM, Chien, Forney (generik) ======

def syndromes_from_vector_sagemath(r, t, step=5, start=0):

 n_local = len(r)

 S = []

114

 for j in range(1, 2*t + 1):

 sj = F(0)

 for i in range(n_local):

 sj += r[i] * (a**((start + step*i) * j))

 S.append(sj)

 return S

def berlekamp_massey(S):

 N = len(S)

 C = [F(1)] + [F(0)] * N

 B = [F(1)] + [F(0)] * N

 L = 0; m = 1; b = F(1)

 for n in range(N):

 d = S[n]

 for i in range(1, L+1):

 d += C[i]*S[n-i]

 if d == 0:

 m += 1

 else:

 coef = d / b

 T = C[:]

 for i in range(0, N+1-m):

 C[i+m] -= coef * B[i]

 if 2*L <= n:

 L = n + 1 - L

 B = T

 b = d

 m = 1

 else:

 m += 1

 return C[:L+1], L

def chien_search(sigma_coeffs, n_local, step=5, start=0):

 errors = []

 for i in range(n_local):

 xinv = a**(-(start + step*i))

 val = F(0)

 for j, c in enumerate(sigma_coeffs):

 val += c * (xinv**j)

 if val == 0:

 errors.append(i)

 return errors

def forney_magnitudes(S, sigma_coeffs, error_positions, t, step=5, start=0):

 PR = PolynomialRing(F, 'X')

 X = PR.gen()

 S_poly = PR(0)

 for j, Sj in enumerate(S):

 S_poly += Sj * X**j

 sigma_poly = PR(0)

 for j, cj in enumerate(sigma_coeffs):

 sigma_poly += cj * X**j

 Omega = (S_poly * sigma_poly) % (X**(2*t))

 sigma_prime = sigma_poly.derivative()

 magnitudes = {}

 for pos in error_positions:

 xinv = a**(-(start + step*pos))

 num = Omega(xinv)

 den = sigma_prime(xinv)

 if den == 0:

 magnitudes[pos] = None

 else:

 magnitudes[pos] = - num / den

 return magnitudes

====== Fungsi tampil codeword ======

def show_cw(title, cw):

 print(f"\n--- {title} ---")

 print("α^i:", [element_to_alpha_power(c) for c in cw])

 print("dec:", [poly_to_int(c.polynomial()) for c in cw])

 print("hex:", [f"0x{poly_to_int(c.polynomial()):02x}" for c in cw])

====== MAIN: proses 10 ayat (t dipaksa 2) ======

n = 51 # tetap

115

FORCED_T = 1 # memaksa 2 error per codeword

daftar_ayat = [

 # (teks_arab, ep1_list, ev1_list, ep2_list, ev2_list)

 (" 5,,0وانا لجعلون ما عليها صعيدا جرزا",]], [5x9A,0xF3], [10,35],

[0xA5,0x6E]),

 (" 2,,,يسئلونك عن الساعة ايان مرساها",]], [5xB1,0xC3], [7,30], [0x9F,0x77]),

 (" 5,,0,,,فاما من اعطى واتقى",]], [5xB2,0xC4,0x5E], [5,22], [0x88,0xAA]),

 (" ,اقم الصلاة لذكري",]], [5xA2], [8], [0x5B]),

 (" 4,,2هل أتاك حديث موسى",]], [5x91,0xE1], [2,28], [0x77,0x33]),

 (" 2,,,,,4ربنا اغفر لنا وارحمنا",]], [5xAF,0xC8,0x10], [14], [0x99]),

 (" 5انما المؤمنون اخوة",]], [5x80], [20,40], [0xDE,0xAD]),

 (" ,,,1واذا سألك عبادي عني",]], [5xFE,0x01], [3,17,45], [0x55,0x66,0x77]),

 (" 0,,2,,,,,,,فاسألوا اهل الذكر ان كنتم لا تعلمون",]], [5x11,0x22,0x33,0x44],

[6], [0xAB]),

 (" 0[]:5,24,21,05,,,قل جاء الحق وزهق الباطل",]], [5x12,0x34,0x56,0x78,0x9A],

[5,25], [0xDE,0xAD])

]

Pastikan tepat 10

if len(daftar_ayat) != 10:

 raise ValueError("daftar_ayat harus berisi tepat 10 entri.")

for idx, (text, ep1, ev1, ep2, ev2) in enumerate(daftar_ayat, start=1):

 print("\n" + "="*80)

 print(f"=== Proses Ayat {idx} ===")

 print("="*80)

 print("Teks Arab:", text)

 # --------------- MODIF: PAKSA 2 ERROR SAJA -----------------

 # ambil hanya 2 elemen jika ada, kalau kosong buat sampai 2 error acak

 ep1 = list(ep1)[:FORCED_T]

 ev1 = list(ev1)[:FORCED_T]

 ep2 = list(ep2)[:FORCED_T]

 ev2 = list(ev2)[:FORCED_T]

 # jika kurang dari FORCED_T, tambahkan posisi/magnitude acak nonzero

 while len(ep1) < FORCED_T:

 pos = random.randint(0, n-1)

 mag = random.randint(1,255)

 ep1.append(pos)

 ev1.append(mag)

 while len(ep2) < FORCED_T:

 pos = random.randint(0, n-1)

 mag = random.randint(1,255)

 ep2.append(pos)

 ev2.append(mag)

 # sekarang t_needed = FORCED_T (2)

 t_needed = FORCED_T

 # hitung k sesuai t_needed

 k_ayat = n - 2 * t_needed # t=2 -> k=47

 if k_ayat <= 0:

 raise ValueError(f"t_needed={t_needed} terlalu besar -> k_ayat={k_ayat}

<= 0. Kurangi jumlah error.")

 print(f"Memaksa t = {t_needed} (2 error per codeword). Jadi k = {k_ayat}

(simbol pesan per block).")

 # --

 # 1) tabel 16-bit

 print("\n=== Pesan Arab ke Representasi Biner (16-bit) ===")

 tbl = arabic_to_binary16(text)

 for no, huruf, bits in tbl:

 print(f"{no:2d}\t{huruf}\t{bits}")

 # 2) buat blok k-symbol sesuai k_ayat

 m1_full, m2_full = text_to_two_blocks_for_k(text, k_ayat)

 print(f"\nBlok pesan 1 (panjang asli {len(m1_full)} simbol):\n{m1_full}\n")

 print(f"Blok pesan 2 (panjang asli {len(m2_full)} simbol):\n{m2_full}\n")

 # pad/truncate m1 dan m2 agar panjang == k_ayat (fungsi already does, still

keep)

 def adjust_block_for_k(block, k):

 bl = list(block)

116

 if len(bl) < k:

 bl = bl + [0] * (k - len(bl))

 print(f" - Block dipad dari {len(block)} -> {k} simbol (dengan 0).")

 elif len(bl) > k:

 bl = bl[:k]

 print(f" - PERINGATAN: Block dipotong dari {len(block)} -> {k}

simbol (truncate!).")

 return bl

 m1 = adjust_block_for_k(m1_full, k_ayat)

 m2 = adjust_block_for_k(m2_full, k_ayat)

 # 3) bangun RS khusus ayat ini (k berubah)

 print(f"\n=== Bangun RS untuk ayat {idx}: n={n}, k={k_ayat} (t capability =

{(n-k_ayat)//2}) ===")

 C = codes.ReedSolomonCode(F, n, k_ayat)

 G = C.generator_matrix()

 H = C.parity_check_matrix()

 # --- TAMBAHAN: fungsi untuk menampilkan matriks G dan H secara rapi ---

 def pretty_print_matrix_alpha_hex(name, M):

 try:

 rows = M.nrows()

 cols = M.ncols()

 print(f"\n{name} (nrows={rows}, ncols={cols}):")

 for r in range(rows):

 row = M.row(r)

 alpha_row = [element_to_alpha_power(el) for el in row]

 hex_row = []

 for el in row:

 try:

 dec = poly_to_int(el.polynomial())

 hex_row.append(f"0x{dec:02x}")

 except Exception:

 # fallback if el not polynomial

 try:

 hex_row.append(hex(int(el)))

 except Exception:

 hex_row.append(str(el))

 print(f"r{r:02d} | alpha: {alpha_row} | hex: {hex_row}")

 except Exception as e:

 print(f"Gagal tampilkan matriks {name}: {e}")

 # panggil pretty print untuk G dan H

 pretty_print_matrix_alpha_hex("Generator matrix G", G)

 pretty_print_matrix_alpha_hex("Parity-check matrix H", H)

 # 4) encoding (pakai G ayat ini)

 def encode_rs_with_G(msg_bits, G_local):

 # v harus length k_ayat

 v = vector(F, [F(s) for s in msg_bits])

 c = v * G_local

 return list(c)

 def make_message_vector_from_ints(int_list):

 # setiap elemen int_list harus 0..255

 return vector(F, [int_to_GF256(int(v)) for v in int_list])

 # contoh penggunaan untuk m1 dan m2:

 msg_vec1 = make_message_vector_from_ints(m1) # vektor atas F, panjang

k_ayat

 msg_vec2 = make_message_vector_from_ints(m2)

 # sekarang gunakan C.encode (mengharapkan vector atas F, panjang = k)

 cw = C.encode(msg_vec1)

 cw2 = C.encode(msg_vec2)

 print("\n=== Codeword 1 (α^i) ===")

 print([element_to_alpha_power(c) for c in cw])

 print("\n=== Codeword 2 (α^i) ===")

 print([element_to_alpha_power(c) for c in cw2])

 show_cw("cw", cw)

 show_cw("cw2", cw2)

117

 # 5) sisip error sesuai input (pos harus < n)

 print("\n=== Simulasi Penambahan Error ===")

 print("Codeword1: posisi", ep1, "nilai(hex)", [hex(v) for v in ev1], " =>

(α^i):", [element_to_alpha_power(int_to_GF256(v)) for v in ev1])

 print("Codeword2: posisi", ep2, "nilai(hex)", [hex(v) for v in ev2], " =>

(α^i):", [element_to_alpha_power(int_to_GF256(v)) for v in ev2])

 def add_errors_to_cw(cw, positions, values):

 corrupted = list(cw)

 for pos, val in zip(positions, values):

 if pos < 0 or pos >= len(corrupted):

 raise IndexError(f"Posisi error {pos} di luar jangkauan

(0..{len(corrupted)-1})")

 corrupted[pos] += int_to_GF256(val)

 return corrupted

 # fungsi konversi magnitude -> elemen F (sudah diperbaiki)

 def gf_element_from_maybe_int(x):

 """

 Jika x sudah elemen lapangan F => kembalikan apa adanya.

 Jika x bisa dikonversi ke int (0..255) => kembalikan

int_to_GF256(int(x)).

 Jika tidak bisa keduanya, raise ValueError.

 """

 try:

 px = getattr(x, 'parent', None)

 if callable(px):

 try:

 parent_of_x = x.parent()

 if parent_of_x is F:

 return x

 except Exception:

 pass

 else:

 if px is F:

 return x

 except Exception:

 pass

 try:

 xi = int(x)

 except Exception as e:

 raise ValueError(f"tidak bisa konversi magnitude {x!r} ke int atau

elemen F: {e}")

 if xi < 0 or xi > 255:

 raise ValueError("int magnitude harus di rentang 0..255")

 return int_to_GF256(xi)

 def add_errors_at_positions(cw, positions, magnitudes):

 """

 cw: list/sequence elemen F atau vector over F

 positions: list of int indices (0..n-1)

 magnitudes: list with same length; each magnitude int 0..255 atau elemen

F

 Mengembalikan: list elemen F (salinan cw dengan error additive di posisi

tsb).

 """

 if len(positions) != len(magnitudes):

 raise ValueError("positions dan magnitudes harus sama panjang")

 res = [c for c in list(cw)]

 n_local = len(res)

 for pos, mag in zip(positions, magnitudes):

 if not (0 <= pos < n_local):

 raise IndexError(f"pos {pos} out of range (0..{n_local-1})")

 mag_el = gf_element_from_maybe_int(mag)

 res[pos] = res[pos] + mag_el

 return res

 # fungsi bantu random errors (tetap bisa digunakan)

 def add_random_errors(cw, num_errors=1, allow_replacement=False,

mag_nonzero=True):

 n_local = len(cw)

 if not allow_replacement and num_errors > n_local:

 raise ValueError("num_errors > n_local dan allow_replacement=False")

118

 if allow_replacement:

 positions = [random.randrange(0, n_local) for _ in

range(num_errors)]

 else:

 positions = random.sample(range(n_local), num_errors)

 magnitudes = []

 for _ in range(num_errors):

 m = 0

 while True:

 m = random.randint(1,255) if mag_nonzero else

random.randint(0,255)

 if not mag_nonzero or m != 0:

 break

 magnitudes.append(m)

 res = add_errors_at_positions(cw, positions, magnitudes)

 return res, positions, magnitudes

 # gunakan posisi/magnitude dari daftar ep1/ev1 (sudah dipaksa FORCED_T

elemen)

 cw1_err = add_errors_to_cw(cw, ep1, ev1)

 cw2_err = add_errors_to_cw(cw2, ep2, ev2)

 print("\nCodeword1 asli (α^i):", [element_to_alpha_power(c) for c in cw])

 print("Codeword1 rusak (α^i):", [element_to_alpha_power(c) for c in

cw1_err])

 print("\nCodeword2 asli (α^i):", [element_to_alpha_power(c) for c in cw2])

 print("Codeword2 rusak (α^i):", [element_to_alpha_power(c) for c in

cw2_err])

 # diagnose & convert ambient jika diperlukan sebelum decode

 def diagnose_ambient_and_fix(word, C_obj, field_F, expected_n):

 diag = {}

 try:

 ambient = C_obj.ambient_space()

 diag['ambient_repr'] = ambient

 except Exception as e:

 diag['ambient_repr'] = f"Could not fetch ambient via

C_obj.ambient_space(): {e}"

 try:

 seq = list(word)

 except Exception:

 raise ValueError("word tidak bisa dikonversi menjadi list; berikan

list/vector.")

 diag['given_length'] = len(seq)

 diag['expected_length'] = expected_n

 converted = []

 problems = []

 for i, e in enumerate(seq):

 converted_el = None

 try:

 if hasattr(e, 'parent') and callable(e.parent):

 try:

 if e.parent() is field_F:

 converted_el = e

 except Exception:

 pass

 except Exception:

 pass

 if converted_el is None:

 try:

 ei = int(e)

 if not (0 <= ei <= 255):

 problems.append((i, e, "int out of range 0..255"))

 else:

 converted_el = int_to_GF256(ei)

 except Exception as ex:

 problems.append((i, e, f"cannot cast to int: {ex}"))

 converted.append(converted_el)

119

 diag['conversion_problems'] = problems

 if len(converted) != expected_n:

 raise ValueError(f"Panjang word ({len(converted)}) != expected n

({expected_n}). "

 "Pastikan word length = n. Diagnostics: " +

repr(diag))

 final_vec = vector(field_F, converted)

 diag['final_vector_parent'] = final_vec.parent()

 return final_vec, diag

 # contoh penggunaan diagnosa + decode via C.decode

 try:

 # use example 'corrupted' from earlier deterministic injection if

exists, else use cw1_err

 corrupted_for_decode = None

 try:

 corrupted_for_decode = corrupted # from example injection earlier

(may or may not exist)

 except NameError:

 corrupted_for_decode = cw1_err

 fixed_vec, diagnostics = diagnose_ambient_and_fix(corrupted_for_decode,

C, F, n)

 print("Diagnostik:", diagnostics)

 corrected = C.decode(fixed_vec)

 print("\nDecode sukses. Hasil corrected codeword:")

 show_cw("corrected", corrected)

 print("corrected (hex):", [f"0x{poly_to_int(c.polynomial()):02x}" for c

in list(corrected)])

 except ValueError as e:

 print("ValueError saat persiapan decode:", e)

 except Exception as e:

 print("Error lain saat decode:", e)

 # 6) sindrom dan validasi

 t_capability = (n - k_ayat) // 2

 print(f"\n=== Hitung sindrom (2t = {2*t_capability}) dan validasi (evaluasi

& H•v^T) ===")

 S_eval_1 = syndromes_from_vector_sagemath(cw1_err, t_capability, step=5,

start=0)

 S_hv_1 = list(H * vector(F, cw1_err))

 print("\n-- Sindrom Codeword1 (evaluasi) --")

 for i, s in enumerate(S_eval_1, 1):

 print(f"S_{i} = {element_to_alpha_power(s)} (dec

{poly_to_int(s.polynomial())})")

 print("\n-- Sindrom Codeword1 (H•v^T) --")

 for i, s in enumerate(S_hv_1, 1):

 print(f"S_{i} = {element_to_alpha_power(s)} (dec

{poly_to_int(s.polynomial())})")

 same1 = all(S_eval_1[i] == S_hv_1[i] for i in range(len(S_eval_1)))

 print("Validasi sindrom codeword1:", "Cocok ✅" if same1 else "Tidak cocok

⚠")

 S_eval_2 = syndromes_from_vector_sagemath(cw2_err, t_capability, step=5,

start=0)

 S_hv_2 = list(H * vector(F, cw2_err))

 print("\n-- Sindrom Codeword2 (evaluasi) --")

 for i, s in enumerate(S_eval_2, 1):

 print(f"S_{i} = {element_to_alpha_power(s)} (dec

{poly_to_int(s.polynomial())})")

 print("\n-- Sindrom Codeword2 (H•v^T) --")

 for i, s in enumerate(S_hv_2, 1):

 print(f"S_{i} = {element_to_alpha_power(s)} (dec

{poly_to_int(s.polynomial())})")

 same2 = all(S_eval_2[i] == S_hv_2[i] for i in range(len(S_eval_2)))

 print("Validasi sindrom codeword2:", "Cocok ✅" if same2 else "Tidak cocok

⚠")

 # 7) decode: BM + Chien + Forney (menggunakan t_capability)

 print("\n=== Dekoding (Berlekamp–Massey -> Chien -> Forney) untuk codeword1

===")

120

 S1 = S_eval_1

 sigma1, L1 = berlekamp_massey(S1)

 print("Berlekamp–Massey hasil: degree L =", L1)

 print("sigma coeffs (α^i):", [element_to_alpha_power(c) for c in sigma1])

 errs_pos1 = chien_search(sigma1, n, step=5, start=0)

 print("Posisi error (Chien):", errs_pos1)

 mags1 = forney_magnitudes(S1, sigma1, errs_pos1, t_capability, step=5,

start=0)

 for pos, val in mags1.items():

 if val is None:

 print(f"pos {pos}: magnitude = ERROR(div0)")

 else:

 print(f"pos {pos}: magnitude = {element_to_alpha_power(val)} (dec

{poly_to_int(val.polynomial())})")

 # koreksi

 cw1_corr = list(cw1_err)

 for pos, mag in mags1.items():

 if mag is not None:

 cw1_corr[pos] -= mag

 print("\nSindrom setelah koreksi (codeword1):", [element_to_alpha_power(s)

for s in syndromes_from_vector_sagemath(cw1_corr, t_capability, step=5,

start=0)])

 print("Dekoding codeword1 sukses?" , "YA" if all(s==0 for s in

syndromes_from_vector_sagemath(cw1_corr, t_capability, step=5, start=0)) else

"TIDAK")

 print("\n=== Dekoding untuk codeword2 ===")

 S2 = S_eval_2

 sigma2, L2 = berlekamp_massey(S2)

 print("Berlekamp–Massey hasil: degree L =", L2)

 print("sigma coeffs (α^i):", [element_to_alpha_power(c) for c in sigma2])

 errs_pos2 = chien_search(sigma2, n, step=5, start=0)

 print("Posisi error (Chien):", errs_pos2)

 mags2 = forney_magnitudes(S2, sigma2, errs_pos2, t_capability, step=5,

start=0)

 for pos, val in mags2.items():

 if val is None:

 print(f"pos {pos}: magnitude = ERROR(div0)")

 else:

 print(f"pos {pos}: magnitude = {element_to_alpha_power(val)} (dec

{poly_to_int(val.polynomial())})")

 cw2_corr = list(cw2_err)

 for pos, mag in mags2.items():

 if mag is not None:

 cw2_corr[pos] -= mag

 print("\nSindrom setelah koreksi (codeword2):", [element_to_alpha_power(s)

for s in syndromes_from_vector_sagemath(cw2_corr, t_capability, step=5,

start=0)])

 print("Dekoding codeword2 sukses?" , "YA" if all(s==0 for s in

syndromes_from_vector_sagemath(cw2_corr, t_capability, step=5, start=0)) else

"TIDAK")

 # 8) tampil akhir

 show_cw("cw1 (rusak)", cw1_err)

 show_cw("cw1 (terkoreksi)", cw1_corr)

 show_cw("cw2 (rusak)", cw2_err)

 show_cw("cw2 (terkoreksi)", cw2_corr)

 try:

 fixed_vec, diagnostics = diagnose_ambient_and_fix(cw1_corr, C, F, n)

 print("Diagnostik:", diagnostics)

 except Exception as e:

 print("Diagnostik/gagal:", e)

 try:

 pw = C.decode_to_message(vector(F, [int_to_GF256(

poly_to_int(c.polynomial())) if hasattr(c,'polynomial') else

int_to_GF256(int(c)) for c in cw1_corr]))

 show_cw("pw1 (hasil decoding)", pw)

 except Exception as e:

 print("Gagal decode_to_message untuk cw1_corr:", e)

 try:

 fixed_vec2, diagnostics2 = diagnose_ambient_and_fix(cw2_corr, C, F, n)

121

 print("Diagnostik cw2:", diagnostics2)

 except Exception as e:

 print("Diagnostik cw2/gagal:", e)

 try:

 pw2 = C.decode_to_message(vector(F, [int_to_GF256(

poly_to_int(c.polynomial())) if hasattr(c,'polynomial') else

int_to_GF256(int(c)) for c in cw2_corr]))

 show_cw("pw2 (hasil decoding)", pw2)

 except Exception as e:

 print("Gagal decode_to_message untuk cw2_corr:", e)

=== SELESAI LOOP 10 AYAT ===

print("\n=== Semua ayat telah diproses (dengan 2 error per codeword, k = {0}).

===".format(k_ayat))

122

Lampiran 3. Matriks Generator dalam Bentuk Representasi 𝛼𝑖 𝐺𝐹(28)
Generator matrix G (nrows=47, ncols=51):

r00 | ['α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0',

'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0',

'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0',

'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0',

'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0']

r01 | ['α^0', 'α^5', 'α^10', 'α^15', 'α^20', 'α^25', 'α^30', 'α^35', 'α^40',

'α^45', 'α^50', 'α^55', 'α^60', 'α^65', 'α^70', 'α^75', 'α^80', 'α^85', 'α^90',

'α^95', 'α^100', 'α^105', 'α^110', 'α^115', 'α^120', 'α^125', 'α^130', 'α^135',

'α^140', 'α^145', 'α^150', 'α^155', 'α^160', 'α^165', 'α^170', 'α^175', 'α^180',

'α^185', 'α^190', 'α^195', 'α^200', 'α^205', 'α^210', 'α^215', 'α^220', 'α^225',

'α^230', 'α^235', 'α^240', 'α^245', 'α^250']

r02 | ['α^0', 'α^10', 'α^20', 'α^30', 'α^40', 'α^50', 'α^60', 'α^70', 'α^80',

'α^90', 'α^100', 'α^110', 'α^120', 'α^130', 'α^140', 'α^150', 'α^160', 'α^170',

'α^180', 'α^190', 'α^200', 'α^210', 'α^220', 'α^230', 'α^240', 'α^250', 'α^5',

'α^15', 'α^25', 'α^35', 'α^45', 'α^55', 'α^65', 'α^75', 'α^85', 'α^95', 'α^105',

'α^115', 'α^125', 'α^135', 'α^145', 'α^155', 'α^165', 'α^175', 'α^185', 'α^195',

'α^205', 'α^215', 'α^225', 'α^235', 'α^245']

r03 | ['α^0', 'α^15', 'α^30', 'α^45', 'α^60', 'α^75', 'α^90', 'α^105', 'α^120',

'α^135', 'α^150', 'α^165', 'α^180', 'α^195', 'α^210', 'α^225', 'α^240', 'α^0',

'α^15', 'α^30', 'α^45', 'α^60', 'α^75', 'α^90', 'α^105', 'α^120', 'α^135',

'α^150', 'α^165', 'α^180', 'α^195', 'α^210', 'α^225', 'α^240', 'α^0', 'α^15',

'α^30', 'α^45', 'α^60', 'α^75', 'α^90', 'α^105', 'α^120', 'α^135', 'α^150',

'α^165', 'α^180', 'α^195', 'α^210', 'α^225', 'α^240']

r04 | ['α^0', 'α^20', 'α^40', 'α^60', 'α^80', 'α^100', 'α^120', 'α^140',

'α^160', 'α^180', 'α^200', 'α^220', 'α^240', 'α^5', 'α^25', 'α^45', 'α^65',

'α^85', 'α^105', 'α^125', 'α^145', 'α^165', 'α^185', 'α^205', 'α^225', 'α^245',

'α^10', 'α^30', 'α^50', 'α^70', 'α^90', 'α^110', 'α^130', 'α^150', 'α^170',

'α^190', 'α^210', 'α^230', 'α^250', 'α^15', 'α^35', 'α^55', 'α^75', 'α^95',

'α^115', 'α^135', 'α^155', 'α^175', 'α^195', 'α^215', 'α^235']

r05 | ['α^0', 'α^25', 'α^50', 'α^75', 'α^100', 'α^125', 'α^150', 'α^175',

'α^200', 'α^225', 'α^250', 'α^20', 'α^45', 'α^70', 'α^95', 'α^120', 'α^145',

'α^170', 'α^195', 'α^220', 'α^245', 'α^15', 'α^40', 'α^65', 'α^90', 'α^115',

'α^140', 'α^165', 'α^190', 'α^215', 'α^240', 'α^10', 'α^35', 'α^60', 'α^85',

'α^110', 'α^135', 'α^160', 'α^185', 'α^210', 'α^235', 'α^5', 'α^30', 'α^55',

'α^80', 'α^105', 'α^130', 'α^155', 'α^180', 'α^205', 'α^230']

r06 | ['α^0', 'α^30', 'α^60', 'α^90', 'α^120', 'α^150', 'α^180', 'α^210',

'α^240', 'α^15', 'α^45', 'α^75', 'α^105', 'α^135', 'α^165', 'α^195', 'α^225',

'α^0', 'α^30', 'α^60', 'α^90', 'α^120', 'α^150', 'α^180', 'α^210', 'α^240',

'α^15', 'α^45', 'α^75', 'α^105', 'α^135', 'α^165', 'α^195', 'α^225', 'α^0',

'α^30', 'α^60', 'α^90', 'α^120', 'α^150', 'α^180', 'α^210', 'α^240', 'α^15',

'α^45', 'α^75', 'α^105', 'α^135', 'α^165', 'α^195', 'α^225']

r07 | ['α^0', 'α^35', 'α^70', 'α^105', 'α^140', 'α^175', 'α^210', 'α^245',

'α^25', 'α^60', 'α^95', 'α^130', 'α^165', 'α^200', 'α^235', 'α^15', 'α^50',

'α^85', 'α^120', 'α^155', 'α^190', 'α^225', 'α^5', 'α^40', 'α^75', 'α^110',

'α^145', 'α^180', 'α^215', 'α^250', 'α^30', 'α^65', 'α^100', 'α^135', 'α^170',

'α^205', 'α^240', 'α^20', 'α^55', 'α^90', 'α^125', 'α^160', 'α^195', 'α^230',

'α^10', 'α^45', 'α^80', 'α^115', 'α^150', 'α^185', 'α^220']

r08 | ['α^0', 'α^40', 'α^80', 'α^120', 'α^160', 'α^200', 'α^240', 'α^25',

'α^65', 'α^105', 'α^145', 'α^185', 'α^225', 'α^10', 'α^50', 'α^90', 'α^130',

'α^170', 'α^210', 'α^250', 'α^35', 'α^75', 'α^115', 'α^155', 'α^195', 'α^235',

'α^20', 'α^60', 'α^100', 'α^140', 'α^180', 'α^220', 'α^5', 'α^45', 'α^85',

'α^125', 'α^165', 'α^205', 'α^245', 'α^30', 'α^70', 'α^110', 'α^150', 'α^190',

'α^230', 'α^15', 'α^55', 'α^95', 'α^135', 'α^175', 'α^215']

r09 | ['α^0', 'α^45', 'α^90', 'α^135', 'α^180', 'α^225', 'α^15', 'α^60',

'α^105', 'α^150', 'α^195', 'α^240', 'α^30', 'α^75', 'α^120', 'α^165', 'α^210',

'α^0', 'α^45', 'α^90', 'α^135', 'α^180', 'α^225', 'α^15', 'α^60', 'α^105',

'α^150', 'α^195', 'α^240', 'α^30', 'α^75', 'α^120', 'α^165', 'α^210', 'α^0',

'α^45', 'α^90', 'α^135', 'α^180', 'α^225', 'α^15', 'α^60', 'α^105', 'α^150',

'α^195', 'α^240', 'α^30', 'α^75', 'α^120', 'α^165', 'α^210']

r10 | ['α^0', 'α^50', 'α^100', 'α^150', 'α^200', 'α^250', 'α^45', 'α^95',

'α^145', 'α^195', 'α^245', 'α^40', 'α^90', 'α^140', 'α^190', 'α^240', 'α^35',

'α^85', 'α^135', 'α^185', 'α^235', 'α^30', 'α^80', 'α^130', 'α^180', 'α^230',

'α^25', 'α^75', 'α^125', 'α^175', 'α^225', 'α^20', 'α^70', 'α^120', 'α^170',

'α^220', 'α^15', 'α^65', 'α^115', 'α^165', 'α^215', 'α^10', 'α^60', 'α^110',

'α^160', 'α^210', 'α^5', 'α^55', 'α^105', 'α^155', 'α^205']

r11 | ['α^0', 'α^55', 'α^110', 'α^165', 'α^220', 'α^20', 'α^75', 'α^130',

'α^185', 'α^240', 'α^40', 'α^95', 'α^150', 'α^205', 'α^5', 'α^60', 'α^115',

'α^170', 'α^225', 'α^25', 'α^80', 'α^135', 'α^190', 'α^245', 'α^45', 'α^100',

'α^155', 'α^210', 'α^10', 'α^65', 'α^120', 'α^175', 'α^230', 'α^30', 'α^85',

'α^140', 'α^195', 'α^250', 'α^50', 'α^105', 'α^160', 'α^215', 'α^15', 'α^70',

'α^125', 'α^180', 'α^235', 'α^35', 'α^90', 'α^145', 'α^200']

123

r12 | ['α^0', 'α^60', 'α^120', 'α^180', 'α^240', 'α^45', 'α^105', 'α^165',

'α^225', 'α^30', 'α^90', 'α^150', 'α^210', 'α^15', 'α^75', 'α^135', 'α^195',

'α^0', 'α^60', 'α^120', 'α^180', 'α^240', 'α^45', 'α^105', 'α^165', 'α^225',

'α^30', 'α^90', 'α^150', 'α^210', 'α^15', 'α^75', 'α^135', 'α^195', 'α^0',

'α^60', 'α^120', 'α^180', 'α^240', 'α^45', 'α^105', 'α^165', 'α^225', 'α^30',

'α^90', 'α^150', 'α^210', 'α^15', 'α^75', 'α^135', 'α^195']

r13 | ['α^0', 'α^65', 'α^130', 'α^195', 'α^5', 'α^70', 'α^135', 'α^200', 'α^10',

'α^75', 'α^140', 'α^205', 'α^15', 'α^80', 'α^145', 'α^210', 'α^20', 'α^85',

'α^150', 'α^215', 'α^25', 'α^90', 'α^155', 'α^220', 'α^30', 'α^95', 'α^160',

'α^225', 'α^35', 'α^100', 'α^165', 'α^230', 'α^40', 'α^105', 'α^170', 'α^235',

'α^45', 'α^110', 'α^175', 'α^240', 'α^50', 'α^115', 'α^180', 'α^245', 'α^55',

'α^120', 'α^185', 'α^250', 'α^60', 'α^125', 'α^190']

r14 | ['α^0', 'α^70', 'α^140', 'α^210', 'α^25', 'α^95', 'α^165', 'α^235',

'α^50', 'α^120', 'α^190', 'α^5', 'α^75', 'α^145', 'α^215', 'α^30', 'α^100',

'α^170', 'α^240', 'α^55', 'α^125', 'α^195', 'α^10', 'α^80', 'α^150', 'α^220',

'α^35', 'α^105', 'α^175', 'α^245', 'α^60', 'α^130', 'α^200', 'α^15', 'α^85',

'α^155', 'α^225', 'α^40', 'α^110', 'α^180', 'α^250', 'α^65', 'α^135', 'α^205',

'α^20', 'α^90', 'α^160', 'α^230', 'α^45', 'α^115', 'α^185']

r15 | ['α^0', 'α^75', 'α^150', 'α^225', 'α^45', 'α^120', 'α^195', 'α^15',

'α^90', 'α^165', 'α^240', 'α^60', 'α^135', 'α^210', 'α^30', 'α^105', 'α^180',

'α^0', 'α^75', 'α^150', 'α^225', 'α^45', 'α^120', 'α^195', 'α^15', 'α^90',

'α^165', 'α^240', 'α^60', 'α^135', 'α^210', 'α^30', 'α^105', 'α^180', 'α^0',

'α^75', 'α^150', 'α^225', 'α^45', 'α^120', 'α^195', 'α^15', 'α^90', 'α^165',

'α^240', 'α^60', 'α^135', 'α^210', 'α^30', 'α^105', 'α^180']

r16 | ['α^0', 'α^80', 'α^160', 'α^240', 'α^65', 'α^145', 'α^225', 'α^50',

'α^130', 'α^210', 'α^35', 'α^115', 'α^195', 'α^20', 'α^100', 'α^180', 'α^5',

'α^85', 'α^165', 'α^245', 'α^70', 'α^150', 'α^230', 'α^55', 'α^135', 'α^215',

'α^40', 'α^120', 'α^200', 'α^25', 'α^105', 'α^185', 'α^10', 'α^90', 'α^170',

'α^250', 'α^75', 'α^155', 'α^235', 'α^60', 'α^140', 'α^220', 'α^45', 'α^125',

'α^205', 'α^30', 'α^110', 'α^190', 'α^15', 'α^95', 'α^175']

r17 | ['α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170',

'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0',

'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85',

'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170',

'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0',

'α^85', 'α^170']

r18 | ['α^0', 'α^90', 'α^180', 'α^15', 'α^105', 'α^195', 'α^30', 'α^120',

'α^210', 'α^45', 'α^135', 'α^225', 'α^60', 'α^150', 'α^240', 'α^75', 'α^165',

'α^0', 'α^90', 'α^180', 'α^15', 'α^105', 'α^195', 'α^30', 'α^120', 'α^210',

'α^45', 'α^135', 'α^225', 'α^60', 'α^150', 'α^240', 'α^75', 'α^165', 'α^0',

'α^90', 'α^180', 'α^15', 'α^105', 'α^195', 'α^30', 'α^120', 'α^210', 'α^45',

'α^135', 'α^225', 'α^60', 'α^150', 'α^240', 'α^75', 'α^165']

r19 | ['α^0', 'α^95', 'α^190', 'α^30', 'α^125', 'α^220', 'α^60', 'α^155',

'α^250', 'α^90', 'α^185', 'α^25', 'α^120', 'α^215', 'α^55', 'α^150', 'α^245',

'α^85', 'α^180', 'α^20', 'α^115', 'α^210', 'α^50', 'α^145', 'α^240', 'α^80',

'α^175', 'α^15', 'α^110', 'α^205', 'α^45', 'α^140', 'α^235', 'α^75', 'α^170',

'α^10', 'α^105', 'α^200', 'α^40', 'α^135', 'α^230', 'α^70', 'α^165', 'α^5',

'α^100', 'α^195', 'α^35', 'α^130', 'α^225', 'α^65', 'α^160']

r20 | ['α^0', 'α^100', 'α^200', 'α^45', 'α^145', 'α^245', 'α^90', 'α^190',

'α^35', 'α^135', 'α^235', 'α^80', 'α^180', 'α^25', 'α^125', 'α^225', 'α^70',

'α^170', 'α^15', 'α^115', 'α^215', 'α^60', 'α^160', 'α^5', 'α^105', 'α^205',

'α^50', 'α^150', 'α^250', 'α^95', 'α^195', 'α^40', 'α^140', 'α^240', 'α^85',

'α^185', 'α^30', 'α^130', 'α^230', 'α^75', 'α^175', 'α^20', 'α^120', 'α^220',

'α^65', 'α^165', 'α^10', 'α^110', 'α^210', 'α^55', 'α^155']

r21 | ['α^0', 'α^105', 'α^210', 'α^60', 'α^165', 'α^15', 'α^120', 'α^225',

'α^75', 'α^180', 'α^30', 'α^135', 'α^240', 'α^90', 'α^195', 'α^45', 'α^150',

'α^0', 'α^105', 'α^210', 'α^60', 'α^165', 'α^15', 'α^120', 'α^225', 'α^75',

'α^180', 'α^30', 'α^135', 'α^240', 'α^90', 'α^195', 'α^45', 'α^150', 'α^0',

'α^105', 'α^210', 'α^60', 'α^165', 'α^15', 'α^120', 'α^225', 'α^75', 'α^180',

'α^30', 'α^135', 'α^240', 'α^90', 'α^195', 'α^45', 'α^150']

r22 | ['α^0', 'α^110', 'α^220', 'α^75', 'α^185', 'α^40', 'α^150', 'α^5',

'α^115', 'α^225', 'α^80', 'α^190', 'α^45', 'α^155', 'α^10', 'α^120', 'α^230',

'α^85', 'α^195', 'α^50', 'α^160', 'α^15', 'α^125', 'α^235', 'α^90', 'α^200',

'α^55', 'α^165', 'α^20', 'α^130', 'α^240', 'α^95', 'α^205', 'α^60', 'α^170',

'α^25', 'α^135', 'α^245', 'α^100', 'α^210', 'α^65', 'α^175', 'α^30', 'α^140',

'α^250', 'α^105', 'α^215', 'α^70', 'α^180', 'α^35', 'α^145']

r23 | ['α^0', 'α^115', 'α^230', 'α^90', 'α^205', 'α^65', 'α^180', 'α^40',

'α^155', 'α^15', 'α^130', 'α^245', 'α^105', 'α^220', 'α^80', 'α^195', 'α^55',

'α^170', 'α^30', 'α^145', 'α^5', 'α^120', 'α^235', 'α^95', 'α^210', 'α^70',

'α^185', 'α^45', 'α^160', 'α^20', 'α^135', 'α^250', 'α^110', 'α^225', 'α^85',

'α^200', 'α^60', 'α^175', 'α^35', 'α^150', 'α^10', 'α^125', 'α^240', 'α^100',

'α^215', 'α^75', 'α^190', 'α^50', 'α^165', 'α^25', 'α^140']

r24 | ['α^0', 'α^120', 'α^240', 'α^105', 'α^225', 'α^90', 'α^210', 'α^75',

'α^195', 'α^60', 'α^180', 'α^45', 'α^165', 'α^30', 'α^150', 'α^15', 'α^135',

124

'α^0', 'α^120', 'α^240', 'α^105', 'α^225', 'α^90', 'α^210', 'α^75', 'α^195',

'α^60', 'α^180', 'α^45', 'α^165', 'α^30', 'α^150', 'α^15', 'α^135', 'α^0',

'α^120', 'α^240', 'α^105', 'α^225', 'α^90', 'α^210', 'α^75', 'α^195', 'α^60',

'α^180', 'α^45', 'α^165', 'α^30', 'α^150', 'α^15', 'α^135']

r25 | ['α^0', 'α^125', 'α^250', 'α^120', 'α^245', 'α^115', 'α^240', 'α^110',

'α^235', 'α^105', 'α^230', 'α^100', 'α^225', 'α^95', 'α^220', 'α^90', 'α^215',

'α^85', 'α^210', 'α^80', 'α^205', 'α^75', 'α^200', 'α^70', 'α^195', 'α^65',

'α^190', 'α^60', 'α^185', 'α^55', 'α^180', 'α^50', 'α^175', 'α^45', 'α^170',

'α^40', 'α^165', 'α^35', 'α^160', 'α^30', 'α^155', 'α^25', 'α^150', 'α^20',

'α^145', 'α^15', 'α^140', 'α^10', 'α^135', 'α^5', 'α^130']

r26 | ['α^0', 'α^130', 'α^5', 'α^135', 'α^10', 'α^140', 'α^15', 'α^145', 'α^20',

'α^150', 'α^25', 'α^155', 'α^30', 'α^160', 'α^35', 'α^165', 'α^40', 'α^170',

'α^45', 'α^175', 'α^50', 'α^180', 'α^55', 'α^185', 'α^60', 'α^190', 'α^65',

'α^195', 'α^70', 'α^200', 'α^75', 'α^205', 'α^80', 'α^210', 'α^85', 'α^215',

'α^90', 'α^220', 'α^95', 'α^225', 'α^100', 'α^230', 'α^105', 'α^235', 'α^110',

'α^240', 'α^115', 'α^245', 'α^120', 'α^250', 'α^125']

r27 | ['α^0', 'α^135', 'α^15', 'α^150', 'α^30', 'α^165', 'α^45', 'α^180',

'α^60', 'α^195', 'α^75', 'α^210', 'α^90', 'α^225', 'α^105', 'α^240', 'α^120',

'α^0', 'α^135', 'α^15', 'α^150', 'α^30', 'α^165', 'α^45', 'α^180', 'α^60',

'α^195', 'α^75', 'α^210', 'α^90', 'α^225', 'α^105', 'α^240', 'α^120', 'α^0',

'α^135', 'α^15', 'α^150', 'α^30', 'α^165', 'α^45', 'α^180', 'α^60', 'α^195',

'α^75', 'α^210', 'α^90', 'α^225', 'α^105', 'α^240', 'α^120']

r28 | ['α^0', 'α^140', 'α^25', 'α^165', 'α^50', 'α^190', 'α^75', 'α^215',

'α^100', 'α^240', 'α^125', 'α^10', 'α^150', 'α^35', 'α^175', 'α^60', 'α^200',

'α^85', 'α^225', 'α^110', 'α^250', 'α^135', 'α^20', 'α^160', 'α^45', 'α^185',

'α^70', 'α^210', 'α^95', 'α^235', 'α^120', 'α^5', 'α^145', 'α^30', 'α^170',

'α^55', 'α^195', 'α^80', 'α^220', 'α^105', 'α^245', 'α^130', 'α^15', 'α^155',

'α^40', 'α^180', 'α^65', 'α^205', 'α^90', 'α^230', 'α^115']

r29 | ['α^0', 'α^145', 'α^35', 'α^180', 'α^70', 'α^215', 'α^105', 'α^250',

'α^140', 'α^30', 'α^175', 'α^65', 'α^210', 'α^100', 'α^245', 'α^135', 'α^25',

'α^170', 'α^60', 'α^205', 'α^95', 'α^240', 'α^130', 'α^20', 'α^165', 'α^55',

'α^200', 'α^90', 'α^235', 'α^125', 'α^15', 'α^160', 'α^50', 'α^195', 'α^85',

'α^230', 'α^120', 'α^10', 'α^155', 'α^45', 'α^190', 'α^80', 'α^225', 'α^115',

'α^5', 'α^150', 'α^40', 'α^185', 'α^75', 'α^220', 'α^110']

r30 | ['α^0', 'α^150', 'α^45', 'α^195', 'α^90', 'α^240', 'α^135', 'α^30',

'α^180', 'α^75', 'α^225', 'α^120', 'α^15', 'α^165', 'α^60', 'α^210', 'α^105',

'α^0', 'α^150', 'α^45', 'α^195', 'α^90', 'α^240', 'α^135', 'α^30', 'α^180',

'α^75', 'α^225', 'α^120', 'α^15', 'α^165', 'α^60', 'α^210', 'α^105', 'α^0',

'α^150', 'α^45', 'α^195', 'α^90', 'α^240', 'α^135', 'α^30', 'α^180', 'α^75',

'α^225', 'α^120', 'α^15', 'α^165', 'α^60', 'α^210', 'α^105']

r31 | ['α^0', 'α^155', 'α^55', 'α^210', 'α^110', 'α^10', 'α^165', 'α^65',

'α^220', 'α^120', 'α^20', 'α^175', 'α^75', 'α^230', 'α^130', 'α^30', 'α^185',

'α^85', 'α^240', 'α^140', 'α^40', 'α^195', 'α^95', 'α^250', 'α^150', 'α^50',

'α^205', 'α^105', 'α^5', 'α^160', 'α^60', 'α^215', 'α^115', 'α^15', 'α^170',

'α^70', 'α^225', 'α^125', 'α^25', 'α^180', 'α^80', 'α^235', 'α^135', 'α^35',

'α^190', 'α^90', 'α^245', 'α^145', 'α^45', 'α^200', 'α^100']

r32 | ['α^0', 'α^160', 'α^65', 'α^225', 'α^130', 'α^35', 'α^195', 'α^100',

'α^5', 'α^165', 'α^70', 'α^230', 'α^135', 'α^40', 'α^200', 'α^105', 'α^10',

'α^170', 'α^75', 'α^235', 'α^140', 'α^45', 'α^205', 'α^110', 'α^15', 'α^175',

'α^80', 'α^240', 'α^145', 'α^50', 'α^210', 'α^115', 'α^20', 'α^180', 'α^85',

'α^245', 'α^150', 'α^55', 'α^215', 'α^120', 'α^25', 'α^185', 'α^90', 'α^250',

'α^155', 'α^60', 'α^220', 'α^125', 'α^30', 'α^190', 'α^95']

r33 | ['α^0', 'α^165', 'α^75', 'α^240', 'α^150', 'α^60', 'α^225', 'α^135',

'α^45', 'α^210', 'α^120', 'α^30', 'α^195', 'α^105', 'α^15', 'α^180', 'α^90',

'α^0', 'α^165', 'α^75', 'α^240', 'α^150', 'α^60', 'α^225', 'α^135', 'α^45',

'α^210', 'α^120', 'α^30', 'α^195', 'α^105', 'α^15', 'α^180', 'α^90', 'α^0',

'α^165', 'α^75', 'α^240', 'α^150', 'α^60', 'α^225', 'α^135', 'α^45', 'α^210',

'α^120', 'α^30', 'α^195', 'α^105', 'α^15', 'α^180', 'α^90']

r34 | ['α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85',

'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0',

'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170',

'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85',

'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0',

'α^170', 'α^85']

r35 | ['α^0', 'α^175', 'α^95', 'α^15', 'α^190', 'α^110', 'α^30', 'α^205',

'α^125', 'α^45', 'α^220', 'α^140', 'α^60', 'α^235', 'α^155', 'α^75', 'α^250',

'α^170', 'α^90', 'α^10', 'α^185', 'α^105', 'α^25', 'α^200', 'α^120', 'α^40',

'α^215', 'α^135', 'α^55', 'α^230', 'α^150', 'α^70', 'α^245', 'α^165', 'α^85',

'α^5', 'α^180', 'α^100', 'α^20', 'α^195', 'α^115', 'α^35', 'α^210', 'α^130',

'α^50', 'α^225', 'α^145', 'α^65', 'α^240', 'α^160', 'α^80']

r36 | ['α^0', 'α^180', 'α^105', 'α^30', 'α^210', 'α^135', 'α^60', 'α^240',

'α^165', 'α^90', 'α^15', 'α^195', 'α^120', 'α^45', 'α^225', 'α^150', 'α^75',

'α^0', 'α^180', 'α^105', 'α^30', 'α^210', 'α^135', 'α^60', 'α^240', 'α^165',

'α^90', 'α^15', 'α^195', 'α^120', 'α^45', 'α^225', 'α^150', 'α^75', 'α^0',

125

'α^180', 'α^105', 'α^30', 'α^210', 'α^135', 'α^60', 'α^240', 'α^165', 'α^90',

'α^15', 'α^195', 'α^120', 'α^45', 'α^225', 'α^150', 'α^75']

r37 | ['α^0', 'α^185', 'α^115', 'α^45', 'α^230', 'α^160', 'α^90', 'α^20',

'α^205', 'α^135', 'α^65', 'α^250', 'α^180', 'α^110', 'α^40', 'α^225', 'α^155',

'α^85', 'α^15', 'α^200', 'α^130', 'α^60', 'α^245', 'α^175', 'α^105', 'α^35',

'α^220', 'α^150', 'α^80', 'α^10', 'α^195', 'α^125', 'α^55', 'α^240', 'α^170',

'α^100', 'α^30', 'α^215', 'α^145', 'α^75', 'α^5', 'α^190', 'α^120', 'α^50',

'α^235', 'α^165', 'α^95', 'α^25', 'α^210', 'α^140', 'α^70']

r38 | ['α^0', 'α^190', 'α^125', 'α^60', 'α^250', 'α^185', 'α^120', 'α^55',

'α^245', 'α^180', 'α^115', 'α^50', 'α^240', 'α^175', 'α^110', 'α^45', 'α^235',

'α^170', 'α^105', 'α^40', 'α^230', 'α^165', 'α^100', 'α^35', 'α^225', 'α^160',

'α^95', 'α^30', 'α^220', 'α^155', 'α^90', 'α^25', 'α^215', 'α^150', 'α^85',

'α^20', 'α^210', 'α^145', 'α^80', 'α^15', 'α^205', 'α^140', 'α^75', 'α^10',

'α^200', 'α^135', 'α^70', 'α^5', 'α^195', 'α^130', 'α^65']

r39 | ['α^0', 'α^195', 'α^135', 'α^75', 'α^15', 'α^210', 'α^150', 'α^90',

'α^30', 'α^225', 'α^165', 'α^105', 'α^45', 'α^240', 'α^180', 'α^120', 'α^60',

'α^0', 'α^195', 'α^135', 'α^75', 'α^15', 'α^210', 'α^150', 'α^90', 'α^30',

'α^225', 'α^165', 'α^105', 'α^45', 'α^240', 'α^180', 'α^120', 'α^60', 'α^0',

'α^195', 'α^135', 'α^75', 'α^15', 'α^210', 'α^150', 'α^90', 'α^30', 'α^225',

'α^165', 'α^105', 'α^45', 'α^240', 'α^180', 'α^120', 'α^60']

r40 | ['α^0', 'α^200', 'α^145', 'α^90', 'α^35', 'α^235', 'α^180', 'α^125',

'α^70', 'α^15', 'α^215', 'α^160', 'α^105', 'α^50', 'α^250', 'α^195', 'α^140',

'α^85', 'α^30', 'α^230', 'α^175', 'α^120', 'α^65', 'α^10', 'α^210', 'α^155',

'α^100', 'α^45', 'α^245', 'α^190', 'α^135', 'α^80', 'α^25', 'α^225', 'α^170',

'α^115', 'α^60', 'α^5', 'α^205', 'α^150', 'α^95', 'α^40', 'α^240', 'α^185',

'α^130', 'α^75', 'α^20', 'α^220', 'α^165', 'α^110', 'α^55']

r41 | ['α^0', 'α^205', 'α^155', 'α^105', 'α^55', 'α^5', 'α^210', 'α^160',

'α^110', 'α^60', 'α^10', 'α^215', 'α^165', 'α^115', 'α^65', 'α^15', 'α^220',

'α^170', 'α^120', 'α^70', 'α^20', 'α^225', 'α^175', 'α^125', 'α^75', 'α^25',

'α^230', 'α^180', 'α^130', 'α^80', 'α^30', 'α^235', 'α^185', 'α^135', 'α^85',

'α^35', 'α^240', 'α^190', 'α^140', 'α^90', 'α^40', 'α^245', 'α^195', 'α^145',

'α^95', 'α^45', 'α^250', 'α^200', 'α^150', 'α^100', 'α^50']

r42 | ['α^0', 'α^210', 'α^165', 'α^120', 'α^75', 'α^30', 'α^240', 'α^195',

'α^150', 'α^105', 'α^60', 'α^15', 'α^225', 'α^180', 'α^135', 'α^90', 'α^45',

'α^0', 'α^210', 'α^165', 'α^120', 'α^75', 'α^30', 'α^240', 'α^195', 'α^150',

'α^105', 'α^60', 'α^15', 'α^225', 'α^180', 'α^135', 'α^90', 'α^45', 'α^0',

'α^210', 'α^165', 'α^120', 'α^75', 'α^30', 'α^240', 'α^195', 'α^150', 'α^105',

'α^60', 'α^15', 'α^225', 'α^180', 'α^135', 'α^90', 'α^45']

r43 | ['α^0', 'α^215', 'α^175', 'α^135', 'α^95', 'α^55', 'α^15', 'α^230',

'α^190', 'α^150', 'α^110', 'α^70', 'α^30', 'α^245', 'α^205', 'α^165', 'α^125',

'α^85', 'α^45', 'α^5', 'α^220', 'α^180', 'α^140', 'α^100', 'α^60', 'α^20',

'α^235', 'α^195', 'α^155', 'α^115', 'α^75', 'α^35', 'α^250', 'α^210', 'α^170',

'α^130', 'α^90', 'α^50', 'α^10', 'α^225', 'α^185', 'α^145', 'α^105', 'α^65',

'α^25', 'α^240', 'α^200', 'α^160', 'α^120', 'α^80', 'α^40']

r44 | ['α^0', 'α^220', 'α^185', 'α^150', 'α^115', 'α^80', 'α^45', 'α^10',

'α^230', 'α^195', 'α^160', 'α^125', 'α^90', 'α^55', 'α^20', 'α^240', 'α^205',

'α^170', 'α^135', 'α^100', 'α^65', 'α^30', 'α^250', 'α^215', 'α^180', 'α^145',

'α^110', 'α^75', 'α^40', 'α^5', 'α^225', 'α^190', 'α^155', 'α^120', 'α^85',

'α^50', 'α^15', 'α^235', 'α^200', 'α^165', 'α^130', 'α^95', 'α^60', 'α^25',

'α^245', 'α^210', 'α^175', 'α^140', 'α^105', 'α^70', 'α^35']

r45 | ['α^0', 'α^225', 'α^195', 'α^165', 'α^135', 'α^105', 'α^75', 'α^45',

'α^15', 'α^240', 'α^210', 'α^180', 'α^150', 'α^120', 'α^90', 'α^60', 'α^30',

'α^0', 'α^225', 'α^195', 'α^165', 'α^135', 'α^105', 'α^75', 'α^45', 'α^15',

'α^240', 'α^210', 'α^180', 'α^150', 'α^120', 'α^90', 'α^60', 'α^30', 'α^0',

'α^225', 'α^195', 'α^165', 'α^135', 'α^105', 'α^75', 'α^45', 'α^15', 'α^240',

'α^210', 'α^180', 'α^150', 'α^120', 'α^90', 'α^60', 'α^30']

r46 | ['α^0', 'α^230', 'α^205', 'α^180', 'α^155', 'α^130', 'α^105', 'α^80',

'α^55', 'α^30', 'α^5', 'α^235', 'α^210', 'α^185', 'α^160', 'α^135', 'α^110',

'α^85', 'α^60', 'α^35', 'α^10', 'α^240', 'α^215', 'α^190', 'α^165', 'α^140',

'α^115', 'α^90', 'α^65', 'α^40', 'α^15', 'α^245', 'α^220', 'α^195', 'α^170',

'α^145', 'α^120', 'α^95', 'α^70', 'α^45', 'α^20', 'α^250', 'α^225', 'α^200',

'α^175', 'α^150', 'α^125', 'α^100', 'α^75', 'α^50', 'α^25']

126

Lampiran 4. Matriks Generator dan Parity-Check dalam Bentuk Desimal

127

RIWAYAT HIDUP

Tahira Khuwalidia Shabirah Ma’ruf lahir di Pasuruan pada

tanggal 30 Maret 2003. Penulis berasal dari keluarga yang

senantiasa menanamkan nilai-nilai pendidikan, kedisiplinan,

dan keimanan sebagai bekal utama dalam kehidupan.

Pendidikan formal penulis dimulai di TK Sri Wiji Handayani,

kemudian dilanjutkan di SDN Pucangsari 1 hingga lulus pada

tahun 2015. Selanjutnya, penulis menempuh pendidikan di SMP Modern Al-Rifai’e

2 dan lulus pada tahun 2018, kemudian melanjutkan pendidikan menengah atas di

SMA Ma’arif NU Pandaan dan lulus pada tahun 2021. Pada tahun yang sama,

penulis melanjutkan studi di Universitas Islam Negeri Maulana Malik Ibrahim

Malang, Program Studi Matematika, Fakultas Sains dan Teknologi. Selama masa

perkuliahan, penulis aktif dalam berbagai kegiatan akademik dan organisasi

kemahasiswaan, antara lain sebagai asisten praktikum mata kuliah Analisis

Numerik, tergabung dalam Himpunan Mahasiswa Program Studi (HMPS) Integral

Matematika, serta menjabat sebagai Ketua Divisi Fundraising pada kegiatan

KOMET XXII. Selain itu, penulis juga mengikuti berbagai kegiatan organisasi lain

yang mendukung pengembangan diri. Di luar kegiatan akademik, penulis mengikuti

program magang di PT Icon Plus PLN Surabaya serta aktif mengajar bimbingan

belajar di Elfaza. Berbagai pengalaman tersebut menjadi bekal penting bagi penulis

dalam membentuk karakter, memperluas wawasan, serta mempersiapkan diri untuk

berkontribusi secara profesional maupun sosial di masa mendatang.

https://v3.camscanner.com/user/download

https://v3.camscanner.com/user/download

