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MOTO 

“Allah tidak membebani seseorang melainkan sesuai dengan kesanggupannya” 

-Q.S Al-Baqarah: 286 

 

 

 

“Aku lahir dengan mempertaruhkan nyawa seorang Ibu, maka aku harus menjadi 

alasan semua pengorbanannya bermakna. Ayah lelah setiap hari demi langkahku, 

maka biarlah setiap tetes peluhnya berbuah bangga.” 

 

 

 

“Skripsi ini mungkin tidak sempurna, namun ia adalah bukti perjalanan panjang 

yang mengantar langkahku gelar S.Mat. Bismillah untuk segala hal-hal baik yang 

sedang diperjuangkan.”  
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ABSTRAK 

Ma’ruf, Tahira Khuwalidia Shabirah. 2025. Implementasi Kode Reed–Solomon untuk 

Deteksi dan Koreksi Kesalahan Transmisi Ayat Al-Qur’an Menggunakan 

Pengkodean Huruf Hijaiyah. Skripsi. Program Studi Matematika, Fakultas 

Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. 

Pembimbing: (I) Muhammad Khudzaifah, M.Si. (II) Dr. Fachrur Rozi, M.Si. 

 

Kata Kunci: Reed–Solomon, Huruf Hijaiyah, Deteksi Kesalahan, Koreksi Kesalahan, 

Transmisi Digital. 

 

Kesalahan penulisan huruf hijaiyah dalam ayat Al-Qur’an berpotensi mengubah makna 

ayat serta menurunkan keakuratan penyampaian teks. Penelitian ini bertujuan untuk 

mendeskripsikan proses deteksi dan koreksi kesalahan transmisi ayat Al-Qur’an 

menggunakan kode Reed–Solomon. Ayat Al-Qur’an direpresentasikan dalam bentuk kode 

Unicode huruf hijaiyah sebagai data digital. Data penelitian terdiri atas penulisan sepuluh 

ayat Al-Qur’an yang digunakan sebagai data uji, dengan penambahan kesalahan secara 

sengaja dan terkontrol pada tahap transmisi untuk mensimulasikan kondisi transmisi 

digital. Setiap huruf hijaiyah dikonversi kedalam representasi Unicode 16-bit, kemudian 

dilakukan proses encoding menggunakan parameter kode 𝑅𝑆(𝑛, 𝑘, 2𝑡). Selanjutnya, 

kesalahan disisipkan secara terkontrol untuk mensimulasikan gangguan transmisi, dan 

proses decoding dilakukan menggunakan algoritma Reed–Solomon berbasis Galois Field 

melalui perangkat lunak SageMath. Hasil analisis menunjukkan bahwa kode Reed–

Solomon mampu mendeteksi dan mengoreksi kesalahan simbol sesuai dengan kapasitas 

koreksi 𝑡 secara konsisten pada berbagai variasi jumlah error. Pada seluruh skenario 

pengujian, huruf hijaiyah yang mengalami gangguan berhasil dikembalikan ke bentuk 

aslinya melalui tahapan perhitungan sindrom, pembentukan polinomial lokasi kesalahan, 

perhitungan polinomial evaluator, hingga proses koreksi akhir pada codeword. Penelitian 

ini membuktikan bahwa kode Reed–Solomon dapat berfungsi sebagai mekanisme 

verifikasi yang efektif untuk menjaga keakuratan teks Al-Qur’an dalam sistem digital serta 

mendukung upaya pelestarian kemurnian ayat melalui pendekatan teori pengkodean. 
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ABSTRACT 

Ma’ruf, Tahira Khuwalidia Shabirah. 2025. Implementation of Reed–Solomon Codes for 

Error Detection and Correction in the Transmission of Qur’anic Verses 

Using Hijaiyah Character Coding. Thesis. Department of Mathematics, 

Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik 

Ibrahim Malang. Advisors: (I) Muhammad Khudzaifah, M.Si. (II) Dr. Fachrur 

Rozi, M.Si. 

 

Keywords: Reed–Solomon, Hijaiyah Characters, Error Detection, Error Correction, 

Digital Transmission. 

 

Errors in the representation of Hijaiyah characters in Qur’anic verses may alter the semantic 

meaning of the text and reduce transmission accuracy. This study aims to describe the error 

detection and error correction processes in the digital transmission of Qur’anic verses using 

Reed–Solomon codes. The Qur’anic verses are modeled as digital data by encoding 

Hijaiyah characters into their corresponding Unicode representations. The research data 

consist of ten Qur’anic verses used as test data, in which errors are intentionally and 

controllably introduced during the transmission stage to simulate digital transmission 

conditions. Each Hijaiyah letter is converted into a 16-bit Unicode representation, followed 

by an encoding process using Reed–Solomon code parameters 𝑅𝑆(𝑛, 𝑘, 2𝑡). Subsequently, 

controlled errors are inserted to model transmission disturbances, and the decoding process 

is performed using a Reed–Solomon algorithm over a Galois Field implemented in 

SageMath software. The results show that the Reed–Solomon code is capable of 

consistently detecting and correcting symbol errors in accordance with its error-correction 

capability 𝑡 under various error scenarios. In all test cases, corrupted Hijaiyah characters 

are successfully restored to their original form through syndrome computation, 

construction of the error locator polynomial, evaluation of the error evaluator polynomial, 

and the final correction of the received codeword. This study demonstrates that Reed–

Solomon codes can serve as an effective verification mechanism to preserve the accuracy 

of Qur’anic text in digital systems and support efforts to maintain the integrity of Qur’anic 

verses through coding theory approaches.  
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  مستخلصا البحث
 

سولومون لاكتشاف وتصحيح الأخطاء في نقل آيات القرآن –تطبيق شفرة ريد .٠٢٠٢معروف، تاهيرا خوواليديا شابيره. 
الرياضيات، كلية العلوم والتكنولوجيا،  قسمي. جامعالبحث ال .الكريم باستخدام ترميز الحروف الهجائية العربية

العلوم. في ماجستير اليفة، ذ( محمد خ١: )فة الحكومية مالانج. المشر جامعة مولانا مالك إبراهيم الإسلامي
 .العلوم في ماجستيرالزي، افخر الر  . ( الدكتور٠)

 
 .النقل الرقمي ،تصحيح الأخطاء ،اكتشاف الأخطاء ،الحروف الهجائية العربية؛ ،سولومون–ريد :الأساسيةالكلمات 

 
دف آيات القرآن الكريم قد تؤدي إلى تغي ر المعنى وتقليل دق ة نقل النص. وتهإنَّ الأخطاء في كتابة الحروف الهجائية في 

–Reed)هذه الدراسة إلى وصف عملية الكشف عن الأخطاء وتصحيحها في نقل آيات القرآن الكريم باستخدام شفرة 

Solomon) ، ى ترميز وتمثَّل آيات القرآن الكريم في هذه الدراسة في صورة بيانات رقمية بالاعتماد عل(Unicode) 

استُخدمت كبيانات اختبار، مع عشر آيات من القرآن الكريم  كتابة، حيث تتكو ن بيانات البحث من  للحروف الهجائية
رف ، ويُحوَّل كل حإدخال أخطاء بشكل متعم د ومُتحكَّم فيه في مرحلة الإرسال، وذلك لمحاكاة ظروف الإرسال الرقمي

 سولومون من النوع–بت، ثم تُجرى عملية الترميز باستخدام معاملات شفرة ريد 61 هجائي إلى تمثيل يونيكود بطول
𝑅𝑆(𝑛, 𝑘, 2𝑡) وبعد ذلك تدُرج الأخطاء بشكل مُتحكَّم فيه لمحاكاة اضطرابات الإرسال، وتنُفَّذ عملية فك الترميز ،

 SageMathمن خلال برنامج (Galois Field) سولومون المعتمدة على الحقول المنتهية–باستخدام خوارزميات ريد

سولومون قادرة على الكشف عن أخطاء الرموز وتصحيحها بما يتوافق مع سعة –نتائج التحليل أن شفرة ريد ت، وظهر 
وبصورة مت سقة عبر مختلف سيناريوهات عدد الأخطاء، حيث أعُيدت في جميع حالات الاختبار الحروف  t التصحيح

ب إلى صورتها الأصلية من خلال مراحل حساب المتلازمات، وبناء كثير حدود تحديد الهجائية التي تعر ضت للاضطرا
مواقع الأخطاء، وحساب كثير حدود مُقي ِّم الأخطاء، وصولاا إلى عملية التصحيح النهائية للكلمة المشفَّرة، مما يثبت أن 

مية، وتسهم قرآن الكريم في الأنظمة الرقسولومون يمكن أن تعمل كآلية تحقق فع الة للحفاظ على دقة نصوص ال–شفرة ريد
 .في دعم جهود صون سلامة الآيات والمحافظة على نقائها من خلال منهجية نظرية الترميز
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BAB I  

PENDAHULUAN 

1.1    Latar Belakang 

Ketepatan dalam penulisan huruf hijaiyah merupakan aspek yang sangat 

penting, khususnya dalam penulisan ayat Al-Qur’an, karena kesalahan dalam 

penulisan dapat mengubah bentuk lafaz dan berpotensi memengaruhi makna ayat. 

Dalam kajian penulisan teks suci Islam, bentuk tertulis dari ayat-ayat Al-Qur’an 

dikenal dengan istilah mushaf Al-Qur’an, yaitu kumpulan ayat Al-Qur’an yang 

dituliskan dan dibukukan secara sistematis sebagai representasi dari bacaan yang 

telah terjaga keasliannya. (Shihab, 2007).  

Pada masa Rasulullah SAW, wahyu yang diturunkan belum dibukukan dalam 

satu mushaf yang utuh karena proses pewahyuan masih berlangsung. Oleh sebab 

itu, penjagaan Al-Qur’an dilakukan melalui hafalan para sahabat serta pencatatan 

ayat-ayat pada berbagai media sederhana. Setelah Rasulullah SAW wafat pada 

tahun 632 M, upaya penghimpunan ayat-ayat Al-Qur’an dilakukan pada masa 

Khalifah Abu Bakar Ash-Shiddiq dan kemudian disempurnakan pada masa 

Khalifah Utsman bin Affan melalui standarisasi mushaf yang dikenal sebagai Rasm 

Utsmani. 

Seiring dengan perkembangan sejarah penulisan mushaf, dilakukan berbagai 

penyempurnaan teknis seperti penambahan tanda titik, harakat, dan tanda baca. 

Penyempurnaan tersebut bertujuan untuk menjaga kejelasan dan ketepatan 

penulisan ayat serta menghindari kesalahan pembacaan, tanpa mengubah substansi 

ayat. Dalam perkembangan selanjutnya, istilah Al-Qur’an digunakan secara luas 
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oleh masyarakat untuk merujuk tidak hanya pada wahyu dalam bentuk bacaan, 

tetapi juga pada mushaf sebagai bentuk tertulisnya. 

Perkembangan dalam aspek penulisan Al-Qur’an tersebut sejalan dengan 

janji Allah SWT dalam Surah Al-Hijr ayat 9 (Kementerian Agama, 2022): 

.نَّ نَحْنُ نَ زَّلْنَا الذ ِّكْرَوَاِّنَّالَهُ لَحَافِّظوُْنَ اِّ   

"Sesungguhnya Kami yang menurunkan Al-Qur’an, dan sesungguhnya Kami 

benar-benar menjaganya."(Qs. Al-Hijr : 9). 

 

Ayat ini menegaskan bahwa penjagaan Allah SWT terhadap Al-Qur’an tidak 

hanya bersifat spiritual, tetapi juga berlangsung secara historis dan teknis, termasuk 

dalam aspek penulisan mushaf dan transmisi teks. Dalam perkembangan teknologi 

digital saat ini, tantangan penjagaan tersebut juga mencakup proses penulisan, 

penyimpanan, dan distribusi teks ayat Al-Qur’an dalam bentuk digital. Kesalahan 

penulisan huruf hijaiyah dalam sistem digital berpotensi mengubah makna ayat dan 

menurunkan keakuratan penyampaian teks. 

 Di era modern, upaya menjaga kemurnian Al-Qur’an terus dilakukan, baik 

melalui publikasi mushaf standar oleh lembaga resmi seperti Lajnah Pentashihan 

Mushaf Al-Qur’an (LPMQ), pelatihan dan sertifikasi qari dan hafidz, maupun 

pengembangan aplikasi digital Al-Qur’an yang dilengkapi fitur tajwid. Namun 

demikian, kesalahan penulisan ayat Al-Qur’an tetap dapat terjadi. Misalnya, dalam 

proses pengiriman atau pertukaran data ayat Al-Qur’an melalui media digital, 

seperti aplikasi pesan, media sosial, atau sistem penyimpanan, teks ayat dapat 

mengalami gangguan (noise) yang menyebabkan huruf berubah, hilang, atau 

tertukar. Kesalahan ini dapat muncul akibat konversi format teks, kerusakan file, 

atau ketidakcocokan sistem encoding karakter Arab. Meskipun tampak sederhana, 
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perubahan satu huruf saja dapat memengaruhi makna dan keutuhan teks ayat. 

Kesalahan serupa juga ditemukan pada media cetak. Salah satu contohnya adalah 

kasus kesalahan cetak dalam mushaf Al-Qur'an pada surah Al-Kahfi ayat 8, di mana 

huruf ’ain (ع) diganti dengan ha (ه), sehingga kata lajaa'iluuna tertulis sebagai 

lajaahiluuna (Kemenag, 2023). Selain itu beberapa buku Pendidikan Agama Islam 

juga dilaporkan mengandung kesalahan penulisan ayat Al-Qur’an, sebagaimana 

diberitakan oleh Republika pada tanggal 29 Oktober 2017 (Republika, 2017). 

Fenomena ini menunjukkan bahwa keakuratan dalam penulisan Al-Qur'an tetap 

menjadi tantangan, meskipun teknologi telah berkembang pesat. 

Untuk meminimalisir kesalahan serupa di era digital, diperlukan representasi 

huruf Al-Qur’an dalam bentuk numerik agar dapat diolah oleh sistem komputer. 

Dalam hal ini, huruf hijaiyah digunakan sebagai simbol yang direpresentasikan 

dalam bentuk kode numerik. Setiap huruf hijaiyah memiliki nilai Unicode yang 

berbeda, yang kemudian dapat dikonversi ke dalam bilangan desimal maupun biner. 

Dengan representasi ini, huruf-huruf hijaiyah dalam Al-Qur’an dapat digunakan 

sebagai data digital yang siap diproses menggunakan kode Reed-Solomon. Sebagai 

contoh, huruf hijaiyah ب (ba) direpresentasikan dalam Unicode dengan kode 

U+0628 dengan nilai  desimal 1576. Representasi ini selanjutnya dikonversi ke 

dalam biner 16-bit, yaitu 0000011000101000, sehingga dapat digunakan dalam 

proses encoding dan decoding. Melalui mekanisme ini, setiap huruf Al-Qur’an 

dapat diubah ke dalam bentuk biner standar yang konsisten, sehingga lebih mudah 

dikelola dalam proses deteksi dan koreksi kesalahan. 

Salah satu pendekatan yang relevan untuk mengatasi permasalahan pada 

kasus di atas adalah dengan menerapkan teori pengkodean (coding theory). Teori 
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ini mempelajari karakteristik dan aplikasi kode dalam berbagai sistem, seperti 

kompresi data, kriptografi, dan kode pengoreksi error (error-correction codes). 

Tujuan utama dari teori pengkodean adalah untuk memberikan kode dengan tingkat 

informasi yang tinggi, kemampuan koreksi kesalahan yang kuat dan kompleksitas 

encoding dan decoding yang rendah (Widiastuti dkk., 2016). Dalam sistem 

komunikasi digital, proses pengkodean terbagi menjadi dua proses. Proses pertama 

adalah encoding (mengubah pesan menjadi codeword) dan proses kedua adalah 

decoding (mengembalikan codeword menjadi pesan asli), serta mengantisipasi 

kemungkinan kesalahan selama transmisi data (Oktavia dkk., 2023). Salah satu 

gangguan utama kesalahan dalam transmisi data adalah noise. Noise (derau) 

merupakan suatu sinyal pengganggu atau perusak sinyal, sehingga perlu dilakukan 

penghilangan noise agar sinyal informasi akan terpisah dari noise.  

Dalam proses pengiriman sinyal informasi ke penerima akan melewati suatu 

media transmisi. Transmisi merupakan pengiriman sinyal dalam sistem komunikasi 

digital. Dalam ilmu komunikasi data, data berarti informasi yang disajikan dalam 

bentuk isyarat digital biner. Transmisi data merupakan proses pengiriman informasi 

di antara dua titik menggunakan kode biner melewati saluran transmisi dan 

peralatan switching, bisa antara komputer dan komputer, komputer dengan 

terminal, atau komputer dengan perlatan, atau peralatan dengan peralatan. Pada 

proses pengiriman ini maka akan muncul noise sehingga mengakibatkan sinyal 

informasi yang diterima mengalami gangguan dan bercampur dengan sinyal-sinyal 

yang tidak diinginkan sehingga dapat mengganggu keaslian informasi (Darmadi 

dkk., 2020).  
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Dalam penelitian ini, istilah transmisi tidak hanya dimaknai sebagai 

pengiriman sinyal dalam sistem komunikasi digital, tetapi juga sebagai proses 

penyampaian teks ayat Al-Qur’an dari satu media ke media lain, seperti dari mushaf 

cetak ke aplikasi digital atau dari hasil pengetikan manual ke database komputer. 

Pada proses ini, kemungkinan terjadi kesalahan pengiriman penulisan ayat Al-

Qur’an dalam huruf hijaiyah dapat dipandang sebagai bentuk kesalahan (error) 

dalam transmisi data. Oleh karena itu, diperlukan mekanisme deteksi dan koreksi 

untuk memastikan teks yang diterima tetap sesuai dengan naskah aslinya. Deteksi 

kesalahan bertujuan untuk menemukan adanya perubahan atau kerusakan data 

selama proses transmisi, sedangkan koreksi kesalahan berfungsi untuk 

memperbaiki data yang rusak agar sesuai dengan aslinya. Dalam konteks transmisi 

ayat Al-Qur’an, deteksi dimaknai sebagai proses mengidentifikasi huruf hijaiyah 

yang mengalami perubahan atau ketidaksesuaian selama pengiriman. Adapun 

koreksi merujuk pada pengembalian huruf tersebut ke bentuk yang benar sesuai 

teks asli. 

Salah satu metode yang banyak digunakan dalam deteksi dan koreksi 

kesalahan pada sistem komunikasi digital adalah kode Reed- Solomon. Kode Reed-

Solomon diperkenalkan oleh Irving S. Reed dan Gustave Solomon pada tahun 1960. 

Reed-Solomon merupakan kode blok 𝑅𝑆(𝑛, 𝑘) yang mampu mendeteksi dan 

mengoreksi kesalahan hingga sejumlah 𝑡 <  (𝑛 −  𝑘)/2 simbol. Kode ini banyak 

diterapkan pada sistem komunikasi satelit, pemutar CD/DVD, QR Code, serta 

sistem penyimpanan RAID karena efektivitasnya dalam menangani kesalahan 

dalam jumlah besar (Jariyah dkk., 2013). Selain itu, kode ini juga dikenal memiliki 

algoritma encoding dan decoding yang efisien (Oktavia dkk., 2023). Wicker dan 
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Bhargava menjelaskan bahwa terdapat tiga metode dalam membangun kode Reed-

Solomon, yaitu menggunakan aritmatika pada lapangan hingga, polinomial 

generator, serta transformasi Fourier (Wicker, 2005).  

Penelitian sebelumnya telah mengkaji berbagai metode untuk meningkatkan 

keamanan komunikasi dalam bahasa Arab dan mendeteksi kesalahan penulisan ayat 

Al-Qur'an. Alqahtani (2013), mengusulkan modifikasi algoritma Vigenère cipher 

menggunakan modulus 39 untuk enkripsi teks Arab, yang terbukti lebih aman dan 

efisien dibandingkan metode klasik. Riyanto (2019), menerapkan kode linear, 

khususnya kode Hamming berorde 3, untuk mendeteksi dan mengoreksi kesalahan 

satu huruf dalam penulisan huruf hijaiyah menggunakan representasi biner 5 bit, 

sehingga menjaga akurasi teks Al-Qur'an. Sementara itu, Oktavia dkk. (2023),  

mengkaji penerapan kode Reed Solomon 𝑅𝑆(15,9) dalam kriptosistem McEliece 

untuk melindungi transmisi pesan dari serangan komputer kuantum, dengan koreksi 

hingga 3 kesalahan bit menggunakan galois field 𝐺𝐹(2⁴), menunjukkan bahwa 

pendekatan ini efektif dalam mempertahankan keamanan data. 

Berdasarkan literatur pada penelitian sebelumnya, tujuan dari penelitian ini 

adalah untuk mengimplementasikan kode Reed-Solomon dalam mendeteksi serta 

mengoreksi kesalahan transmisi ayat Al-Qur’an berbasis huruf hijaiyah. Proses 

implementasi akan dilakukan menggunakan perangkat lunak SageMath. Melalui 

penerapan metode ini, diharapkan dapat meningkatkan akurasi dan ketelitian dalam 

pengiriman penulisan huruf hijaiyah, sehingga kesalahan yang umum terjadi dapat 

teridentifikasi dan diperbaiki secara otomatis. Penelitian ini juga menjadi langkah 

awal dalam memanfaatkan teori pengkodean untuk menjaga kemurnian teks suci 

Al-Qur’an secara digital. 
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1.2    Rumusan Masalah 

Berdasarkan uraian latar belakang yang telah disampaikan, rumusan masalah 

dalam penelitian ini adalah sebagai berikut: 

1. Bagaimana simulasi proses deteksi kesalahan transmisi ayat Al-Qur’an 

menggunakan kode Reed-Solomon? 

2. Bagaimana simulasi proses koreksi kesalahan transmisi ayat Al-Qur’an 

menggunakan kode Reed-Solomon? 

 

1.3    Tujuan Penelitian 

Berdasarkan rumusan masalah di atas, maka tujuan penelitian yang akan 

dicapai adalah sebagai berikut: 

1. Untuk mendeskripsikan proses deteksi kesalahan transmisi ayat Al-Qur’an 

menggunakan kode Reed-Solomon.  

2. Untuk mendeskripsikan proses koreksi kesalahan transmisi ayat Al-Qur’an 

menggunakan kode Reed-Solomon. 

 

1.4    Manfaat Penelitian 

Berdasarkan tujuan penelitian yang telah dikemukakan, hasil penelitian ini 

diharapkan dapat memberikan manfaat sebagai berikut: 

1. Manfaat Teoritis: 

Penelitian ini diharapkan dapat memberikan kontribusi dalam penerapan teori 

kode Reed-Solomon dalam bidang pemrosesan teks digital, khususnya untuk 

mendeteksi dan mengoreksi kesalahan transmisi ayat-ayat Al-Qur’an. 

Penerapan ini difokuskan pada teks berbahasa Arab yang menggunakan huruf 
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hijaiyah, sehingga diharapkan dapat meningkatkan akurasi dan keandalan 

dalam penyimpanan maupun transmisi data teks Al-Qur’an secara digital. 

2. Manfaat Praktis: 

a. Memberikan ilustrasi teknis dan simulasi bagaimana kode Reed-

Solomon dapat dimanfaatkan untuk mendeteksi dan memperbaiki 

kesalahan transmisi ayat Al-Qur’an secara otomatis. 

b. Menjadi rujukan atau dasar bagi penelitian selanjutnya dalam 

pengembangan sistem koreksi teks digital yang berbasis pada 

pengkodean huruf hijaiyah, baik untuk teks keagamaan maupun aplikasi 

teks Arab lainnya. 

c.  Mendukung upaya pelestarian keakuratan dan kemurnian tulisan ayat-

ayat Al-Qur’an dalam bentuk digital melalui pendekatan matematis dan 

teknologi informatika, sehingga dapat meningkatkan keandalan dalam 

distribusi dan penyimpanan data teks Al-Qur’an. 

 

1.5    Batasan Masalah 

Agar penelitian ini tidak keluar dari batas kajian yang ditetapkan, maka ruang 

lingkup penelitian dibatasi pada hal-hal berikut: 

1. Penelitian ini menggunakan teks ayat Al-Qur'an dengan huruf hijaiyah dasar 

tanpa disertai: 

a. Harakat (tanda vokal seperti fathah, kasrah, dammah, dan sebagainya). 

b. Tanda baca (tanda waqaf, nomor ayat, rukuk, dan lainnya). 

c. Bentuk huruf yang berbeda (awal, tengah, akhir) tetap direpresentasikan 

menggunakan Unicode yang sama, kecuali huruf khusus yang memang 
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memiliki Unicode berbeda seperti berbagai bentuk hamzah, Tāʼ 

Marbūṭah (ة), Alif Maqṣūrah (ى) dan spasi. 

2. Setiap huruf hijaiyah direpresentasikan dalam bentuk kode Unicode 16-bit, 

khususnya dalam rentang Unicode Block Arabic (𝑈𝑇𝐹 − 8).  

3. Sumber penulisan ayat Al-Qur’an.  

a. Penelitian menggunakan ayat Al-Qur’an dalam bentuk digital, seperti 

mushaf elektronik, aplikasi web, atau dokumen digital lainnya.  

b. Penelitian mengikuti standar khat Naskhi yang digunakan dalam mushaf 

Rasm Utsmani cetakan Indonesia, serta tidak membahas perbedaan 

bentuk tulisan pada mushaf versi internasional. 

c. Data yang digunakan adalah sepuluh penulisan ayat Al-Qur’an sebagai 

data uji, di mana kesalahan simbol ditambahkan secara sengaja dan 

terkontrol untuk mensimulasikan kondisi transmisi digital. 

4. Penelitian ini difokuskan pada objek kesalahan sebagai berikut: 

a. Kesalahan yang timbul akibat ketidaksesuaian penulisan huruf hijaiyah 

dalam aplikasi digital, situs web, atau sistem input teks. 

b. Penyimpangan atau penyelewengan penulisan ayat, baik disengaja 

maupun tidak disengaja, yang menyebabkan perubahan struktur teks 

huruf hijaiyah. 

c. Model kesalahan dalam penelitian ini merupakan kesalahan yang sengaja 

disisipkan (injected errors) selama proses transmisi digital, bukan 

kesalahan dari kanal komunikasi nyata. Tujuannya adalah untuk menguji 

kemampuan deteksi dan koreksi dari kode Reed-Solomon secara 

terkontrol.  
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d. Setiap kesalahan penulisan huruf hijaiyah direpresentasikan sebagai 

symbol error dalam proses transmisi pada kode Reed-Solomon. 

5. Penelitian ini tidak membahas aspek tajwid, tafsir, maupun qira’at (variasi 

bacaan), serta tidak mencakup keseluruhan sistem Rasm Utsmani secara 

komprehensif.  

6. Batasan pada Implementasi Reed-Solomon. 

a. Penelitian ini hanya menguji kemampuan deteksi dan koreksi kesalahan 

(error) pada level simbol (huruf hijaiyah yang diubah menjadi simbol 16-

bit). 

b. Penelitian tidak membahas optimasi algoritma atau implementasi Reed–

Solomon untuk skala besar, melainkan hanya menerapkan 𝑅𝑆 dengan 

parameter yang digunakan dalam studi kasus.  

c. Pengujian dilakukan dalam lingkungan simulasi perangkat lunak 

SageMath bukan pada sistem transmisi fisik sebenarnya. 

 

1.6    Definisi Istilah  

Terdapat beberapa istilah yang digunakan dalam penelitian ini, yakni sebagai 

berikut: 

Unicode : Standar pengkodean karakter yang memberikan 

kode unik untuk setiap huruf, angka, dan simbol 

dari berbagai bahasa di dunia. 

Coding : Proses pemberian kode atau representasi 

tertentu terhadap data atau informasi ke dalam 

bentuk simbol, bilangan, atau rangkaian bit agar 
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dapat diproses, disimpan, atau ditransmisikan 

oleh suatu sistem. 

Encoding  : Encoding adalah metode dalam teori 

pengkodean yang berfungsi mengubah data asli 

menjadi bentuk kode tertentu, biasanya dalam 

bentuk simbol, kode, atau format digital, agar 

dapat disimpan, diproses, atau dikirim secara 

lebih efisien. 

Decoding : Decoding adalah proses kebalikan dari encoding 

yaitu metode dalam teori koding yang 

mengubah kembali informasi yang telah 

dikodekan tersebut menjadi data asli. 

Deteksi : Deteksi adalah usaha untuk menemukan, 

mengenali, dan menentukan keberadaan suatu 

kesalahan atau penyimpangan. 

Koreksi : Koreksi adalah proses perbaikan atau 

pembetulan terhadap suatu kesalahan yang 

ditemukan agar sesuai dengan bentuk yang 

benar. 

Teori Pengkodean : Teori pengkodean adalah cabang ilmu dalam 

matematika terapan dan teknik informatika yang 

mempelajari cara merepresentasikan informasi 

ke dalam bentuk simbol atau kode tertentu 
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dengan tujuan meningkatkan keandalan dan 

efisiensi komunikasi. 

Kode Reed-Solomon         : Reed Solomon adalah sebuah metode dalam 

teori kode error yang digunakan untuk 

mendeteksi dan memperbaiki kesalahan dalam 

transmisi data. 

Shortened Code Reed-

Solomon 

: Kode Reed–Solomon yang dipendekkan, yaitu 

teknik memperpendek panjang codeword 

dengan menambahkan simbol isian (padding) 

pada awal pesan, kemudian membuangnya 

setelah proses pengkodean. 

Codeword : Hasil encoding berupa data yang telah diubah 

menjadi bentuk vektor untuk proses decoding. 

Padding : Proses menambahkan data tambahan (biasanya 

berupa bit tertentu) ke suatu pesan agar pesan 

tersebut memenuhi ukuran atau panjang yang 

diperlukan oleh suatu algoritma, sistem, atau 

blok data. 

SageMath : Perangkat lunak open-source berbasis Python 

yang digunakan untuk komputasi matematika, 

termasuk aljabar, kriptografi, teori bilangan, dan 

teori pengkodean. 

Transmisi : Pengiriman (penerusan) pesan dan sebagainya 

dari seseorang kepada orang (benda) lain. 
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Transmisi Data : Proses pengiriman data dari satu sumber ke 

penerima data. 

Transmisi Ayat Al-Qur’an : Transmisi ayat Al-Qur’an adalah proses 

pengiriman atau penyampaian teks ayat dari satu 

media atau perangkat ke media lain secara 

digital. 

Kesalahan (error) : Hal yang terjadi apabila suatu hal tidak 

bertindak semestinya, seperti salah sasaran, 

kehilangan satu bit, atau juga berubah datanya. 
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BAB II  

KAJIAN TEORI 

2.1  Lapangan 

Definisi 2.1  

Lapangan adalah suatu ring komutatif yang memiliki elemen identitas, di mana 

setiap elemen yang bukan nol adalah suatu unit (mempunyai invers terhadap 

perkalian) (Gallian, 2021). 

Definisi 2.2  

Lapangan 𝐹 merupakan himpunan elemen-elemen tertutup yang memuat dua 

operasi biner yaitu penjumlahan dan perkalian dinotasikan dengan “+” dan “∙” 

sehingga aksioma-aksioma di bawah ini terpenuhi untuk semua  𝑎, 𝑏, 𝑐 ∈ 𝐹 

(Menezes dkk., 1996).    

1. 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 

2. 𝑎 + 𝑏 = 𝑏 + 𝑎 

3. Terdapat elemen identitas 0 ∈ 𝐹 sedemikian sehingga 𝑎 + 0 = 𝑎 

4. Terdapat elemen −𝑎 ∈ 𝐹 sedemikian sehingga 𝑎 + (−𝑎) = 0 

5. 𝑎 ∙ (𝑏 ∙ 𝑐) = (𝑎 ∙ 𝑏) ∙ 𝑐 

6. 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎 

7. Terdapat elemen 1 ∈ 𝐹 sedemikian sehingga 𝑎 ∙ 1 = 𝑎 

8. untuk setiap 𝑎 ≠ 0, terdapat elemen 𝑎−1 ∈ 𝐹 sedemikian sehingga  

𝑎 ∙ 𝑎−1 = 1 

9. 𝑎 ∙ (𝑏 + 𝑐) = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐. 
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Contoh 2.3 

Himpunan ℤ5 = {[0], [1], [2], [3]. [4]} merupakan himpunan semua kelas sisa 

bilangan bulat modulo 5. Dengan +5 dan ∗5 pada himpunan ℤ5 membentuk suatu 

lapangan. 

Bukti: 

Tabel 2.1 Operasi Penjumlahan Modulo 5 di ℤ5 

+5 [0]  [1] [2] [3] [4] 

[0] [0] [1] [2] [3] [4] 

[1] [1] [2]  [3] [4] [0] 

[2] [2]  [3] [4] [0] [1] 

[3] [3] [4] [0] [1] [2]  

[4] [4] [0] [1] [2]  [3] 

 

Tabel 2.2 Operasi Perkalian Modulo 5 di ℤ5 

∗5 [0]  [1] [2] [3] [4] 

[0] [0] [0] [0] [0] [0] 

[1] [0] [1]  [2] [3] [4] 

[2] [0]  [2] [4] [1] [3] 

[3] [0] [3] [1] [4] [2]  

[4] [0] [4] [3] [2]  [1] 

 

Dengan memperhatikan Tabel 2.1 untuk operasi +5 sifat tertutup terpenuhi, 

karena untuk setiap [𝑎], [𝑏] ∈ ℤ5, berlaku [𝑎]+5[𝑏] ∈ ℤ5. Elemen identitas 

terhadap penjumlahan adalah [0], dan setiap elemen [𝑎] ∈ ℤ5 juga memiliki invers 

penjumlahan yang dinyatakan dengan −[𝑎], sehingga berlaku (−[𝑎]+5[𝑎]) =

[𝑎]+5(−[𝑎]) = [0]. Selain itu, tabel penjumlahan bersifat simetris terhadap 

diagonal utama, sehingga operasi +5 bersifat komutatif, yaitu [𝑎]+5[𝑏] = [𝑏]+5

[𝑎], ∀[𝑎], [𝑏] ∈ ℤ5. 
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Selanjutnya, berdasarkan Tabel 2.2 untuk operasi ∗5, himpunan ℤ5 bersifat 

tertutup terhadap perkalian., karena untuk setiap [𝑎], [𝑏] ∈ ℤ5 berlaku [𝑎] ∗5 [𝑏] ∈

ℤ5. Elemen identitas terhadap perkalian adalah [1], dan setiap elemen tak nol [𝑎] ∈

 ℤ𝟓 memiliki invers perkalian, yaitu elemen [𝑎]−1 yang memenuhi [𝑎] ∗5 [𝑎]−1 =

[𝑎]−1 ∗5 [𝑎] = [1]. Tabel perkalian juga simetris terhadap diagonal utama, 

sehingga operasi ∗5 bersifat komutatif. Karena ℤ𝟓 memenuhi sifat tertutup, 

memiliki elemen identitas, setiap elemen memiliki invers terhadap operasi 

penjumlahan dan perkalian, serta kedua operasi bersifat komutatif dan asosiatif, 

maka dapat disimpulkan bahwa (ℤ5, +5,∗5) merupakan suatu lapangan (field). 

 

2.1.1 Lapangan Hingga (Galois Field) 

Definisi 2.3  

Suatu lapangan yang memiliki elemen sebanyak berhingga disebut dengan 

galois field “lapangan berhingga” (Dummit & Foote, 2004). 

Jika suatu lapangan memiliki 𝑝𝑛 elemen, dengan 𝑝 adalah bilangan prima dan 

𝑛 ∈ ℤ+. Maka lapangan hingga dinotasikan dengan 𝐺𝐹(𝑞) atau 𝐹𝑞, dengan 𝑞 =

𝑝𝑛. Untuk 𝑛 = 1, elemen lapangan 𝐺𝐹(𝑝) sama dengan {0,1,2, … , 𝑝 − 1}, dengan 

operasi penjumlahan (+) dan perkalian (∙) dilakukan secara modulo 𝑝. Sebagai 

contoh, 𝐺𝐹(2) memiliki 2 elemen {0,1}, sedangkan 𝐺𝐹(3) memiliki 3 elemen 

{0,1,2}. Jika 𝑛 > 1 maka lapangan 𝐺𝐹(𝑝𝑛) dibangun dari polinomial irreduksibel 

derajat 𝑛 atas 𝐺𝐹(𝑝𝑛). Misalnya, 𝐺𝐹(22) dapat dibentuk dari ℤ2[𝑥]/𝑝(𝑥), 

dengan 𝑝(𝑥) = 𝑥2 + 𝑥 + 1 sehingga memiliki 4 elemen berbeda.  
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2.1.2 Aritmatika pada Galois Field 

Dalam galois field, operasi penjumlahan, pengurangan, perkalian, dan 

pembagian dapat dilakukan, namun berbeda dengan operasi pada bilangan real. 

Setiap hasil operasi antar elemen dalam galois field selalu menghasilkan elemen 

lain yang masih berada dalam himpunan terbatas tersebut. 

1. Operasi Penjumlahan dan Pengurangan. 

Cara melakukan operasi penjumlahan adalah sebagai berikut, (𝑎𝑚𝑥𝑚 + ⋯ +

𝑎1𝑥 + 𝑎0) + (𝑏𝑚𝑥𝑚 + ⋯ + 𝑏1𝑥 + 𝑏0) = 𝑐𝑚𝑥𝑚 + ⋯ + 𝑐1𝑥 + 𝑐0, dimana 𝑐𝑖 =

𝑎𝑖 + 𝑏𝑖 untuk (𝑚 − 1) ≥ 𝑖 ≥ 0. Sama halnya dalam operasi pengurangan 

dua elemen 𝐺𝐹(𝑎𝑚𝑥𝑚 + ⋯+ 𝑎1𝑥 + 𝑎0) − (𝑏𝑚𝑥𝑚 + ⋯+ 𝑏1𝑥 + 𝑏0) =

𝑐𝑚𝑥𝑚 + ⋯+ 𝑐1𝑥 + 𝑐0, dimana 𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 untuk  (𝑚 − 1) ≥ 𝑖 ≥ 0. 

Operasi + dan − dilakukan dengan modulo 2. Sehingga, baik penjumlahan 

maupun pengurangan akan didapatkan hasil 𝑐𝑖 = 0 untuk 𝑎𝑖 = 𝑏𝑖 dan 𝑐𝑖 =

1 untuk 𝑎𝑖 ≠ 𝑏𝑖. Dengan kata lain, penjumlahan dan pengurangan adalah 

identik dalam Galois Field. 

Sebagai contoh, pada 𝐺𝐹(16) kita dapat mengurangkan 𝛼3 + 𝛼 dengan 

𝛼3 + 𝛼2 + 𝛼 + 1, sehingga (𝛼3 + 𝛼) − (𝛼3 + 𝛼2 + 𝛼 + 1) = 𝛼2 + 1. 

Dalam representasi biner, (1010) − (1111) = (1010) + (1111) = 0101. 

Ataupun dalam representasi desimal, 10 − 15 = 10 + 15 = 5. 

2. Operasi Perkalian dan Pembagian. 

Dengan primitive polinomial dapat ditentukan bentuk tiap elemen 

bilangan 𝐺𝐹, baik dalam bentuk polinomial, biner, ataupun desimal. Dengan 

mengetahui bentuk elemen bilangan tersebut, dapat dicari hasil operasi 

perkalian dua elemen bilangan 𝐺𝐹. Pada 𝐺𝐹(2𝑚) perkalian dua elemen 
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bilangan 𝑎(𝑥) = 𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥
𝑚−1 + ⋯+ 𝑎1𝑥

1 + 𝑎0 dan 𝑏(𝑥) =

𝑏𝑚𝑥𝑚 + 𝑏𝑚−1𝑥
𝑚−1 + ⋯ + 𝑏1𝑥

1 + 𝑏0 akan menghasilkan 𝑐(𝑥) = 𝑐𝑚𝑥𝑚 +

𝑐𝑚−1𝑥
𝑚−1 + ⋯+ 𝑐1𝑥

1 + 𝑐0, dimana konstanta 𝑐𝑚, . . . , 𝑐0 didapatkan dari 

reduksi bilangan berdasarkan primitive polynomial. 

Sebagai contoh, operasi perkalian antara bilangan 14 dengan 11 pada 

𝐺𝐹(24). Representasi hasil perkalian dalam bentuk index adalah 

𝛼(jumlah kedua 𝑖𝑛𝑑𝑒𝑥)𝑚𝑜𝑑(2𝑚−1). Bilangan 14 merepresentasikan 𝛼11 dan 

bilangan 11 merepresentasikan 𝛼7. Sehingga,  𝛼11 × 𝛼7 = 𝛼18𝑚𝑜𝑑(15) =

𝛼3 = 8, atau 14 × 11 = 8 pada 𝐺𝐹(24). 

Operasi pembagian 8 dengan 14 pada 𝐺𝐹(24) mirip dengan perkalian. 

Representasi hasil pembagian dalam bentuk indeks adalah 

𝛼(selisih kedua 𝑖𝑛𝑑𝑒𝑥)𝑚𝑜𝑑(2𝑚−1).  Bilangan 8 merepresentasikan 𝛼3 dan 

bilangan 14 merepresentasikan 𝛼11. Sehingga, 𝛼3/𝛼11  =

 𝛼(3−11)𝑚𝑜𝑑15 = 𝛼−(8)𝑚𝑜𝑑(15) = 𝛼7 =  11. Elemen invers dari 𝐺𝐹 

didefinisikan sebagai nilai elemen bilangan yang jika dikalikan 

menghasilkan nilai 1. Jika 14 merepresentasikan 𝛼11 maka inversnya 

adalah 𝛼−11 = α(−11)mod(15) = α4 = 3. Maka, 8/14 =  8 𝑥 3 =  𝛼3 ×

𝛼4 = 𝛼7𝑚𝑜𝑑(15) = 𝛼7 = 11, atau 8/14 =  11. 

3. Exclusive-OR (XOR).  

Pada pengolahan data digital, salah satu operasi biner yang paling mendasar 

dan sering digunakan dalam proses encoding dan decoding adalah operasi 

Exclusive-OR (XOR), yang dilambangkan dengan simbol “ ⊕ ”. Operasi 

XOR merupakan bentuk penjumlahan dalam modulo 2 pada lapangan 

hingga 𝐺𝐹(2), yaitu suatu himpunan bilangan biner yang hanya terdiri dari 
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dua elemen, yaitu 0 dan 1. Secara matematis, operasi XOR didefinisikan 

sebagai 𝑎 ⊕ 𝑏 = (𝑎 + 𝑏) 𝑚𝑜𝑑 2. Operasi ini mendefinisikan bahwa dua bit 

yang berbeda akan menghasilkan nilai 1, sedangkan dua bit yang bernilai 

sama menghasilkan nilai 0 (Makhomah dkk., 2021). 

Misalkan 𝑎, 𝑏, 𝑐 merupakan peubah Boolean dalam 𝐺𝐹(2), maka operasi 

XOR memiliki beberapa sifat penting sebagai berikut:  

a. 𝑎 ⊕ 𝑎 = 0 (Sifat invers penjumlahan), 

b. 𝑎 ⊕ 0 = 𝑎 ( Sifat identitas), 

c. 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 (Sifat komutatif), 

d. 𝑎 ⊕ (𝑏 ⊕ 𝑐) = (𝑎 ⊕ 𝑏) ⊕ c (Sifat asosiatif). 

Contoh 2.1 

a. 1 ⊕ 1 = (1 + 1) mod 2 = 0 

b. 0 ⊕ 0 = (0 + 0) mod 2 = 0 

c. 1 ⊕ 0 = 0 ⊕ 1 =  1  

d. 1 ⊕ (0 ⊕ 1) = (1 ⊕ 0) ⊕ 1 = 0 

Jika dua bilangan biner dioperasikan menggunakan XOR, maka operasi 

dilakukan dengan menerapkan XOR pada setiap pasangan bit yang 

bersesuaian. 

Contoh 2.2 

10011 ⊕ 11001 = 01010 

pada hal ini, hasilnya diperoleh sebagai berikut: 

1 0 0 1 1
1 1 0 0 1

1 ⊕ 1 0 ⊕ 1 0 ⊕ 0 1 ⊕ 0 11
0 1 0 1 0

 
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2.1.3 Polinomial Galois Field 

Sebuah polinomial 𝑎(𝑥) berderajat 𝑚 pada lapangan hingga 𝐺𝐹(𝑝) 

dituliskan sebagai,  

𝑎(𝑥) =  𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥
𝑚−1 + … + 𝑎1𝑥 + 𝑎0 (2.1) 

dengan koefisien 𝑎𝑖 ∈ 𝐺𝐹(𝑝) dan  𝑎𝑚 ≠ 0. Derajat (degree) dari polinomial 𝑎(𝑥) 

adalah pangkat tertinggi dari 𝑥, yaitu 𝑚. Polinomial tersebut dapat dijumlahkan, 

dikurangkan, dikalikan, dan dibagi dengan polinomial pada field yang sama. 

Misalkan 𝑛(𝑥) dan 𝑚(𝑥) adalah polinomial pada 𝐺𝐹(256), maka 𝑛(𝑥) +

𝑚(𝑥), 𝑛(𝑥) − 𝑚(𝑥), 𝑛(𝑥) × 𝑚(𝑥), dan 𝑛(𝑥)/𝑚(𝑥) terdefinisi. 

Lapangan hingga 𝐺𝐹(𝑝𝑚) dapat direpresentasikan dengan suatu elemen 

primitif (primitive element) 𝛼, yaitu  

𝐺𝐹(𝑝𝑚) =  {0, 𝛼0, 𝛼1, 𝛼2, … , 𝛼(𝑝𝑚−2)}. 

Setiap elemen 𝛼𝑖 dapat direpresentasikan dalam bentuk polinomial berderajat 

kurang dari 𝑚, yaitu 

𝑎𝑚−1𝑥
𝑚−1 + … + 𝑎1𝑥 + 𝑎0, 

dengan koefisien 𝛼𝑗 ∈ {0,1}. Representasi ini juga dapat dinyatakan dalam bentuk 

bilangan biner 𝑚 − 𝑏𝑖𝑡 maupun bentuk desimal. Dalam pengkodean Reed-

Solomon, elemen primitif 𝛼 umumnya dipilih dengan representasi desimal 2.  

Definisi 2.5 

 Polinomial tak tereduksi 𝑓(𝑥) dengan derajat 𝑚 atas 𝐺𝐹(𝑞) dikatakan 

primitif jika 𝑛 adalah bilangan bulat positif terkecil, untuk 𝑓(𝑥) faktor dari 𝑥𝑛 −

1, berlaku 𝑛 = 𝑞𝑚 − 1. 
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 Sebagai contoh, lapangan hingga 𝐺𝐹(8)  =  𝐺𝐹(23) memiliki 𝑚 = 3 dan 

dapat direpresentasikan menggunaka polinomial primitif 𝑝(𝑥) = 𝑥3 + 𝑥 + 1. Jika 

𝛼 adalah akar dari 𝑝(𝑥), maka berlaku,  

𝛼3 + 𝛼 + 1 = 0 ⇒ 𝛼3 = 𝛼 + 1. 

Setiap elemen di 𝐺𝐹(8) dapat direpresentasikan sebagai 𝛼2𝑥
2 + 𝛼1𝑥

1 +

𝛼0𝑥
0, 𝛼𝑗 ∈ {0,1}. Dengan 𝛼2, 𝛼1, 𝛼0 berkorespondensi dengan nilai biner 000 

sampai 111, atau dalam bentuk desimal 0 sampai 7 (Wicker, 2005). 

Tabel 2.3 Tabel Representasi Eksponensial dan Polinomial Elemen 𝐺𝐹(2𝑛) 

Representasi Eksponensial Representasi Polinomial 

1 1  

𝛼1 𝛼  

𝛼2 𝛼2  

𝛼3 𝛼3 = 𝛼 + 1  

𝛼4 α(α + 1) = 𝛼2 + 𝛼  

𝛼5 𝛼3 + 𝛼2 = 𝛼2 + 𝛼 + 1  

𝛼6 𝛼3 + 𝛼2 + 𝛼 = 𝛼2 + 1  

0 0  

 

Sebuah polinomial pada galois field yang dituliskan sebagai 𝑝(𝑥) disebut 

primitive polinomial. Polinomial ini digunakan untuk membangkitkan seluruh 

elemen dalam lapangan hingga melalui proses perkalian antar elemen. Dalam 

galois field dengan ukuran tertentu, bentuk polinomial primitif yang umum 

digunakan dapat dilihat pada Tabel 2.4. 

Tabel 2.4 Tabel Primitif Polinomial GF 
m Primitive polynomial 𝐺𝐹 m Primitive polynomial 𝐺𝐹 

2 1 + 𝑥 + 𝑥2 13 1 + 𝑥 + 𝑥3 + 𝑥4 + 𝑥13 

3 1 + 𝑥 + 𝑥3, 1 + 𝑥2 + 𝑥3 14 1 + 𝑥 + 𝑥6 + 𝑥10 + 𝑥14 

4 1 + 𝑥 + 𝑥4 15 1 + 𝑥 + 𝑥15 

5 1 + 𝑥2 + 𝑥5 16 1 + 𝑥 + 𝑥3 + 𝑥12 + 𝑥16 

6 1 + 𝑥 + 𝑥6 17 1 + 𝑥3 + 𝑥17 

7 1 + 𝑥3 + 𝑥7 18 1 + 𝑥7 + 𝑥18 

8 1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥8 19 1 + 𝑥 + 𝑥2 + 𝑥5 + 𝑥19 

9 1 + 𝑥4 + 𝑥9 20 1 + 𝑥3 + 𝑥20 

10 1 + 𝑥3 + 𝑥10 21 1 + 𝑥2 + 𝑥21 

11 1 + 𝑥2 + 𝑥11 22 1 + 𝑥 + 𝑥22 

12 1 + 𝑥 + 𝑥4 + 𝑥6 + 𝑥12 23 1 + 𝑥 + 𝑥22 



22 

 

2.1.4 Representasi Galois Field 

Seperti yang dijelaskan sebelumnya, galois field direpresentasikan sebagai 

himpunan terbatas dengan jumlah elemen maksimum sebesar 2𝑚. Pada kasus 

𝐺𝐹(16) dengan 𝑚 = 4, jumlah elemennya adalah 24 = 16. Untuk 

membangunnya, diperlukan sebuah polinomial primitif 𝑝(𝑥) = 𝑥4 + 𝑥 + 1, maka 

substitusi 𝑝(𝑥) =  0 dihasilkan 𝛼4 = 𝛼 + 1. 

Relasi ini sangat penting karena digunakan untuk menyederhanakan nilai-

nilai pangkat 𝛼𝑖  yang lebih tinggi dengan cara mengganti 𝛼4 dan kelipatannya 

menggunakan 𝛼 + 1. Kemudian melakukan operasi penjumlahan polinomial 

dalam 𝐺𝐹(2). Proses ini dilakukan berulang hingga seluruh elemen dalam 

𝐺𝐹(16) terbentuk. Sehingga diperoleh 𝐺𝐹(16) = {0,1, 𝛼, 𝛼2, 𝛼3, 𝛼4, … , 𝛼14}. 

Tabel 2.5 menunjukkan representasi elemen 𝐺𝐹(16) dalam bentuk pangkat 

𝛼𝑖, polinomial, biner 4-bit, dan desimal. 

Tabel 2.5 Representasi Polinomial, Biner, dan Desimal pada 𝐺𝐹(24) 

α𝑖 Representasi Polinomial Biner Desimal 

0 0 0000 0 

1 1 0001 1 

α1 α 0010 2 

α2 α2 0100 4 

α3 α3 1000 8 

α4 α + 1 0011 3 

α5 α2 + α 0110 6 

α6 α3 + α2 1100 12 

α7 α3 + α + 1 1011 11 

α8 α2 + 1 0101 5 

α9 α3 + α 1010 10 

α10 α2 + α + 1 0111 7 

α11 α3 + α2 + α 1110 14 

α12 α3 + α2 + α + 1 1111 15 

α13 α13 = α3 + α2 + 1 1101 13 

α14 α3 + 1 1001 9 
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Sementara itu, untuk 𝐺𝐹(256) dengan 𝑚 = 8, jumlah elemennya adalah 

𝐺𝐹(256) = 28 = 256. Dengan memilih polinomial primitif misalnya 𝑝(𝑥) =

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1. Maka diperoleh 𝛼8 = 𝛼4 + 𝛼3 + 𝛼2 + 1. Representasi 

elemen 𝐺𝐹(256) juga dapat disajikan dalam bentuk pangkat 𝛼𝑖, polinomial, biner 

8-bit, dan desimal pada Tabel 2.6. 

Tabel 2.6 Representasi Polinomial, Biner, dan Desimal pada 𝐺𝐹(28) 

α𝑖  Representasi Polinomial Biner Desimal 

𝛼0 α0  00000001 1 

α1  α1  00000010 2 

α2  α2  00000100 4 

α3  α3    00001000 8 

α4  α4  00010000 16 

α5  α5  00100000 32 

α6  α6  01000000 64 

α7  α7  10000000 128 

α8  α4 + α3 + α2 + α0  00011101 29 

α9  α5 + α4 + α3 + α1  00111010 58 

α10  α6 + α5 + α4 + α2  01110100 116 

α11  α7 + α6 + α5 + α3  11101000 232 

α12  α7 + α6 + α3 + α2 + α0  11001101 205 

α13  α7 + α2 + α1 + α0  10000111 135 

α14  α4 + α1 + α0  00010011 19 

α15  α5 + α2 + α1  00100110 38 

⋮  ⋮  ⋮ ⋮  
α255  α0  00000001 1 

 

2.1.5 Ruang Vektor atas Lapangan Hingga 

 Suatu ruang vektor 𝑉 atas lapangan 𝐹 adalah himpunan tak kosong yang 

dilengkapi dengan dua operasi, yaitu penjumlahan vektor dan perkalian dengan 

skalar (Lang dkk., 2015). Untuk setiap vektor 𝒖, 𝒗, 𝒘, ∈ 𝑉 dan skalar 𝜆, 𝜇 ∈ 𝐹, 

berlaku aksioma-aksioma vektor berikut: 

1. 𝒖 + 𝒗 ∈ 𝑉. 

2. (𝒖 + 𝒗) + 𝒘 = 𝒖 + (𝒗 + 𝒘). 
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3. Terdapat 𝐎 ∈ 𝑉 untuk setiap 𝒗 ∈ 𝑉 sedemikian sehingga memenuhi 𝐎 +

𝒗 = 𝒗 + 𝐎 = 𝒗. 

4. Untuk setiap 𝒖 ∈ 𝑉 terdapat −𝒖 ∈ 𝑉 sedemikian sehingga memenuhi 𝒖 +

(−𝒖) = (−𝒖) + 𝒖 = 𝐎. 

5. 𝒖 + 𝒗 = 𝒗 + 𝒖. 

6. 𝜆𝒗 ∈ 𝑉. 

7. 𝜆(𝒖 + 𝒗) = 𝜆𝒖 + 𝜆𝒗. 

8. (𝜆 + 𝜇)𝒖 = 𝜆𝒖 + 𝜇𝒖. 

9. (𝜆𝜇)𝒖 = 𝜆(𝜇𝒖). 

10. 1𝒖 = 𝒖. 

Ruang vektor digunakan untuk merepresentasikan pesan dan kode sebagai 

vektor berdimensi tetap atas lapangan hingga 𝐺𝐹(𝑝𝑛). Proses encoding dengan 

menggunakan matriks generator merupakan bentuk transformasi linier dalam 

ruang vektor,  

di mana: 

1. Pesan berupa vektor 𝑚 ∈ 𝐺𝐹(𝑝𝑛)𝑘. 

2. Dikalikan dengan matriks generator 𝐺 ∈ 𝐺𝐹(𝑝𝑛)𝑘×𝑛. 

3. Menghasilkan kode 𝐶 = 𝑚𝐺 ∈ 𝐺𝐹(𝑝𝑛). 

 

2.2 Teori Pengkodean (Coding Theory) 

Teori pengkodean merupakan cabang ilmu matematika terapan yang 

mempelajari cara merepresentasikan informasi dalam bentuk kode sehingga data 

dapat ditransmisikan atau disimpan secara efisien dan tetap tahan terhadap 

gangguan (noise). Ketika data dikirimkan melalui saluran komunikasi, 
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kemungkinan terjadinya gangguan (noise) sangat besar sehingga data yang diterima 

dapat berbeda dari yang dikirim. Fokus utama teori pengkodean adalah merancang 

kode yang memungkinkan deteksi dan koreksi kesalahan, sehingga informasi dapat 

dipulihkan meskipun terjadi kerusakan data selama proses pengiriman. 

Secara umum, teori pengkodean menggabungkan konsep-konsep matematika 

seperti aljabar linear, teori bilangan, polinomial, dan lapangan hingga (Galois 

Field). Dalam konteks transmisi digital, suatu kode dibangun untuk mengubah 

pesan asli ke dalam bentuk codeword yang memiliki redundansi tertentu. 

Redundansi inilah yang memungkinkan penerima mendeteksi dan memperbaiki 

kesalahan yang terjadi selama proses transmisi. 

Teori koding digunakan untuk mengkoreksi kesalahan pada saluran informasi 

yang apabila terjadi gangguan dapat membuat data tidak terkirim sempurna. 

Encoding atau enkripsi adalah suatu cara atau metode dalam teori koding yang 

mengubah suatu data asli menjadi kode-kode yang melambangkan data tersebut. 

Decoding atau dekripsi merupakan suatu proses kebalikan dari encoding. 

Pengertian decoding yaitu suatu cara atau metode dalam teori koding yang 

mengubah kode-kode data tersebut menjadi data asli. (Munir, 2006). 

 

2.2.1 Kode Siklik 

Sebuah kode linier 𝐶 dikatakan siklik jika untuk setiap vektor 𝑐 =

 (𝑐1, 𝑐2, … , 𝑐𝑛−1) ∈ 𝐶. Contohnya, jika (1,1,0,1) adalah elemen sebuah kode 

siklik, maka (1,1,1,0) juga termuat dalam kode siklik tersebut (Jamal dkk., 2012). 

Dengan demikian, operasi pergeseran siklik memetakan kode 𝐶 ke dirinya sendiri. 

Sehingga jika diberikan suatu matriks 𝐺 yang merentang kode siklik, untuk 
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menentukan semua vektor kode dari kode sikliknya dapat dilakukan dengan 

melakukan pergeseran secara siklik pada vektor perentangnya. 

 

2.2.2 Kode Linear 

Definisi 2.6  

Suatu kode linear 𝐶 dengan panjang 𝑛 atas 𝐹𝑞 adalah subruang dari 𝐹𝑛
𝑞
. 

Dimensi dari kode linear 𝐶 adalah dimensi dari 𝐶 sebagai ruang vektor atas 𝐹𝑞 

yang dinotasikan dim 𝐶 (Bierbrauer, 2019). 

𝐹𝑞
𝑛 = {(𝑣1, 𝑣2, … , 𝑣𝑛) | 𝑣𝑖 ∈ 𝐹𝑞}    (2.2) 

di mana: 

𝐹𝑞   : Lapangan hingga dengan 𝑞 elemen 

𝐹𝑞
𝑛  : Ruang vektor berdimensi 𝑛 atas 𝐹𝑞 

𝑣𝑖  : Elemen ke-i dari vektor 

(𝑣1, 𝑣2, … , 𝑣𝑛)  : Vektor berdimensi 𝑛 

Kode linear dengan panjang 𝑛 dan dimensi 𝑘 disebut sebagai kode (𝑛, 𝑘). 

Artinya, kode linear 𝐶 terdiri atas 𝑞𝑘  codeword, karena terdapat 𝑞𝑘 kombinasi 

linear yang dapat dibentuk dari basis berdimensi 𝑘 di 𝐹𝑞
𝑛. 

1. Matriks Generator. 

Pada teori pengkodean, sebuah kode linear  𝐶[𝑛, 𝑘] atas lapangan 𝐹𝑞 dapat 

direpresentasikan menggunakan matriks generator 𝐺 berukuran 𝑘 × 𝑛. 

Baris-baris pada matriks ini membentuk basis dari subruang 𝐶 ⊆ 𝐹𝑞
𝑛. 

Dengan demikian, setiap codeword 𝑐 ∈ 𝐶 dapat diperoleh dari hasil 

perkalian antara vektor pesan 𝑣 ∈ 𝐹𝑞
𝑘 dengan matriks 𝐺, yaitu:  
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𝑐 = 𝑣 ∙ 𝐺 (2.3) 

Matriks generator 𝐺 dinotasikan dengan: 

                                             𝐺 = [𝐼𝑘 ∣ 𝐴]  (2.4) 

di mana: 

𝐼𝑘 : Matriks identitas berukuran 𝑘 × 𝑘 

𝐴 : Matriks berukuran 𝑘 × (𝑛 − 𝑘) 

Misalkan, diberikan dua vektor pesan sebagai berikut: 

𝑣1 = (1011),    𝑣2 = (0101) 

dan matriks generator 𝐺 sebagai berikut:  

𝐺 = [

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 0
0 0 0 1 0 1 1

] 

Dengan demikian, diperoleh: 

𝑐1 = 𝑣1 ⋅ 𝐺 = (1 0 1 1 0 0 0) 

𝑐2 = 𝑣2 ⋅ 𝐺 = (0 1 0 1 1 0 1) 

Untuk kode Reed–Solomon (𝑅𝑆), matriks generator tidak dibentuk dari 𝐺 =

[𝐼𝑘|𝐴] secara langsung, tetapi melalui konstruk Vandermonde matrix di 

lapangan hingga 𝐺𝐹(2𝑚). Matriks generator 𝑅𝑆 berukuran 𝑘 × 𝑛 umumnya 

dituliskan sebagai: 

𝐺 =

[
 
 
 
 

1 1 1 ⋯ 1
𝑥0 𝑥1 𝑥2 ⋯ 𝑥𝑛−1

𝑥0
2 𝑥1

2 𝑥2
2 ⋯ 𝑥𝑛−1

2

⋮ ⋮ ⋮ ⋱ ⋮
𝑥0

𝑘−1 𝑥1
𝑘−1 𝑥2

𝑘−1 ⋯ 𝑥𝑛−1
𝑘−1]

 
 
 
 

 

Dengan 𝑥𝑗 = 𝛼5𝑗 merupakan titik evaluasi yang berbeda pada 𝐺𝐹(2𝑚), dan 

𝑗 = 0,1,… , 𝑛 − 1 menyatakan indeks kolom matriks generator. 
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Dalam penelitian ini titik evaluasi dipilih menggunakan pola aritmatika 

dengan parameter start= 0 dan step= 5, dan titik evaluasi menjadi: 

𝑥𝑗 = 𝛼5𝑗 . 

Dengan demikian, kolom ke-j dari matriks generator adalah: 

[ 1,  𝛼5𝑗 ,  𝛼10𝑗,  𝛼15𝑗, … , 𝛼𝑘−1(5𝑗) ]
𝑇
. 

Karena pada 𝐺𝐹(28) berlaku 𝛼255 = 𝛼0 = 1, semua eksponen dipandang 

modulo 255. Dengan 𝑔𝑐𝑑(5,255) = 5, deret 5𝑗 (𝑚𝑜𝑑255) akan 

mengulangi setiap 255/5 = 51 langkah, oleh karena itu jumlah kolom unik 

maksimum tanpa pengulangan eksponen adalah 51. Untuk menjamin bahwa 

semua titik evaluasi berbeda (sehingga submatriks Vandermonde 𝑘 ×

𝑘 nonsingular), dipastikan 𝑛 ≤ 51 saat menggunakan pola 𝑠𝑡𝑎𝑟𝑡 = 0, 

𝑠𝑡𝑒𝑝 = 5 pada 𝐺𝐹(28). 

𝐺 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⋯ 1
1 α5 α10 α15 α20 α25 α30 α35 α40 α45 α50 α55 α60 α65 α70 α75 ⋯ α250

1 α10 α20 α30 α40 α50 α60 α70 α80 α90 α100α110α120α130α140α150 ⋯ α245

1 α15 α30 α45 α60 α75 α90 α105α120α135α150α165α180α195α210α222 ⋯ α240

1 α20 α40 α60 α80 α100α120α140α140α180α200α220α240 α5 α25 α45 ⋯ α235

1 α25 α50 α75 α100α125α150α175α200α225α250 α20 α45 α70 α95 α120 ⋯ α230

1 α30 α60 α90 α120α150α180α210α240 α15 α45 α75 α105α135α165α195 ⋯ α225

1 α35 α70 α105α140α175α210α245 α25 α60 α95 α130α165α200α235 α15 ⋯ α220

1 α40 α80 α120α160α200α240 α25 α65 α105 α9 α185α225 α10 α50 α90 ⋯ α215

1 α45 α90 α135α180α225 α15 α60 α105α150α145α240 α30 α75 α120α165 ⋯ α210

1 α50 α100α150α200α250 α45 α95 α145α195α195 α40 α90 α140α190α240 ⋯ α205

1 α55 α110α165α220 α20 α75 α130α185α240α245 α95 α150α205 α5 α60 ⋯ α200

1 α60 α120α180α240 α45 α105α165α225 α30 α40 α150α210 α15 α75 α135 ⋯ α195

1 α65 α130α195 α5 α70 α135α200 α10 α75 α90 α205 α15 α80 α145α210 ⋯ α190

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 α230α205α180α155α130α105 α80 α55 α30 α5 α235α210α185α160α135 ⋯ α25 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2. Matriks Parity-Check. 

Setiap kode linear 𝐶[𝑛, 𝑘] atas lapangan 𝐹𝑞, terdapat matriks pemeriksa 

paritas (parity-check matrix) H berukuran 𝑟 × 𝑛 dengan 𝑟 = 𝑛 − 𝑘. Baris-

baris pada matriks ini membentuk basis dari ruang ortogonal terhadap 𝐶. 

Suatu vektor 𝑥 ∈ 𝐹𝑞
𝑛 merupakan codeword jika dan hanya jika memenuhi: 
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𝐶 = {𝑥 ∈ 𝐹𝑞
𝑛 ∣ 𝐻𝑥

𝑇 = 0}. 

Dengan kata lain, C merupakan himpunan solusi dari sistem persamaan 

linear homogen (SPLH) 𝐻𝑥𝑇 = 0, atau disebut juga kernel dari H.  

Mengkonstruksi kode linear dengan panjang 𝑛 dan berdimensi 𝑘 sama 

artinya dengan mendefinisikan matriks cek paritas H.  

Dalam proses decoding, matriks cek paritas berfungsi untuk menentukan 

simbol-simbol redundansi agar codeword yang terbentuk tetap berada di 

ruang solusi.  

Misalkan vektor pesan sepanjang 𝑘: 

𝑢 = (𝑢1, 𝑢2, … , 𝑢k), 

Yang kemudian di encoding menjadi codeword sepanjang 𝑛: 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 

Dengan 𝑥1 = 𝑢1, … , 𝑥𝑘 = 𝑢k. Sisa 𝑟 = (𝑛 − 𝑘) simbol berikutnya yaitu,  

𝑥𝑘+1, 𝑥𝑘+2, … , 𝑥𝑛, 

adalah simbol cek (parity symbols) yang diperoleh dari penyelesaian SPL: 

𝐻𝑥𝑇 = 0 ⟺ 𝐻 (

𝑥1

𝑥2

⋮
𝑥𝑛

) = (

0
0
⋮
0

) 

Matriks H biasanya dinyatakan dalam bentuk standar, yaitu 

𝐻 = [𝐴 ∣∣ 𝐼𝑟 ],                                                  (2.5)  

di mana: 

𝐴  :  Matriks berukuran 𝑟 × 𝑘 

𝐼𝑟 : Matriks identitas berukuran 𝑟 × 𝑟 

Karena Reed–Solomon merupakan evaluation code, matriks H yang 

digunakan dalam penelitian ini dibentuk dengan cara mengevaluasi pangkat 
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elemen primitif α pada eksponen tertentu. Jika titik evaluasi untuk matriks 

generator menggunakan 

𝑥𝑗 = 𝛼5𝑗, 

maka titik evaluasi untuk matriks parity-check adalah titik dual, yaitu nilai-

nilai 𝛼𝑡(𝑗) untuk beberapa t derajat paritas. Baris-baris matriks H memiliki 

bentuk umum: 

𝐻𝑖 = (1,    𝛼5𝑖 ,   𝛼10𝑖,   𝛼15𝑖,   𝛼20𝑖,  … ,  𝛼250𝑖), 

di mana eksponen selalu dihitung modulo 255 (karena 𝛼255 = 1 di 𝐺𝐹(28)). 

Dengan demikian, matriks parity-check yang digunakan dapat dituliskan 

sebagai: 

𝐻 = [

1 α5 α10α15α20 α25 α30 α35 α40 α45 α50 α55 ⋯ α250

1 α10α20α30α40 α50 α60 α70 α80 α90 α100α110 ⋯ α245

1 α15α30 α45 α60 α75 α90 α105α120α135α150α165 ⋯ α240

1 α20α40α60α80α100α120α140α160α180α200α220 ⋯ α235

] 

3. Codeword. 

Definisi 2.7  

Diberikan 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑞} adalah suatu himpunan yang berukuran 𝑞, 

yang dapat disebut alfabet kode dan elemen-elemennya disebut codeword 

(Ling & Xing, 2004).  

a. Suatu word 𝑞 − 𝑒𝑟 panjang 𝑛 yaitu barisan 𝑤 = 𝑤1, 𝑤2, … ,𝑤𝑛  dengan 

𝑤𝑖 ∈ 𝑋 untuk setiap 𝑖. 

b. Kode blok 𝑞 − 𝑒𝑟 dengan panjang 𝑛 atas 𝑋 merupakan himpunan tak 

kosong 𝐶 pada word 𝑞 − 𝑒𝑟 mempunyai panjang yang sama.  

c. Elemen dari 𝐶 disebut dengan codeword.  

d. Kode dengan panjang 𝑛 dan berukuran 𝑚 disebut dengan kode-(𝑛,𝑚). 
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Contoh 2.4. 

Suatu himpunan yang beranggotakan hewan yaitu 𝐻 = {kucing, anjing, 

burung, ikan, kelinci, ayam} akan dikodekan menjadi suatu pesan rahasia 

yang terdiri dari angka biner 0 dan 1 dengan panjang 3-bit pada Tabel 2.7. 

Tabel 2.7 Tabel Korespondensi Hewan dan Kode Biner 

Hewan Kode 

Kucing 000 

Anjing 001 

Burung 010 

Ikan 011 

Kelinci 100 

Ayam 101 

 

Jadi himpunan 𝐻 dapat ditulis dalam bentuk kode yaitu,  

𝐻 = {000,001,010,011,100,101}. 

 

2.2.3 Pengkodean Huruf Hijaiyah 

Huruf hijaiyah adalah abjad yang digunakan dalam penulisan teks Al-

Qur’an. Kata huruf berasal dari bahasa Arab“harf” (حرف), dan bentuk jamaknya 

adalah “ḥurūf” (حروف). Huruf Arab disebut juga huruf hija’iyah (هجائية) . Kata 

hija’iyah berasal dari kata kerja hajjaa )هجى( yang artinya mengeja, menghitung 

huruf, atau membaca huruf demi huruf. (Nasution, 2020).  

Adapun huruf-huruf hijaiyah dapat dilihat pada Gambar 2.1. 
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Gambar 2.1 Huruf Hijaiyah  

 

Pada penelitian ini, teks yang akan dikodekan menggunakan kode Reed-

Solomon adalah ayat-ayat Al-Qur'an yang ditulis menggunakan huruf hijaiyah 

tanpa menggunakan harakat. Untuk mengubah ayat-ayat tersebut menjadi bentuk 

yang dapat diolah dalam sistem pengkodean, huruf-huruf hijaiyah dikonversikan 

menjadi angka-angka berdasarkan representasi Unicode, yaitu sistem pengkodean 

karakter universal yang memberikan setiap huruf Arab kode numerik unik dalam 

bentuk bilangan desimal dan biner 16-bit. Sehingga membentuk vektor dalam 

ruang vektor 𝑉𝑘(𝐹). Representasi ini menjadi dasar dalam proses encoding dan 

decoding kode Reed-Solomon untuk mendeteksi serta mengoreksi kesalahan 

penulisan ayat Al-Qur'an. 

Tabel 2.8 menyajikan nilai Unicode dari huruf-huruf hijaiyah dasar dalam 

format Hex, Desimal, dan biner 16-bit. Nilai Unicode (Hex & Desimal), 

sedangkan kolom Representasi Biner (16-bit) merupakan hasil konversi peneliti 

(nilai Unicode desimal diubah menjadi biner 16-bit). 

  



33 

 

Tabel 2.8 Korespondensi Huruf Hijaiyah dan Vektor Biner 

No Huruf 

Hijaiyah 

Nama 

Karakter 

Unicode 

(Hex) 

Unicode 

(Desimal) 

Representasi Biner 

(16-bit) 

Hamzah 𝑈 ء 1 + 0621 1569 0000011000100001 

 Alif Hamzah أ 2

di atas 
𝑈 + 0623 1571 0000011000100011 

 Wāw ؤ 3

Hamzah 
𝑈 + 0624 1572 0000011000100100 

 Alif Hamzah إ 4

di bawah 
𝑈 + 0625 1573 0000011000100101 

Yāʼ Hamzah 𝑈 ئ 5 + 0626 1574 0000011000100110 

Alif 𝑈 ا 6 + 0627 1575 0000011000100111 

Bāʼ 𝑈 ب 7 + 0628 1576 0000011000101000 

Tāʼ 𝑈 ت 8 + 062𝐴 1578 0000011000101010 

Thāʼ 𝑈 ث 9 + 062𝐵 1579 0000011000101011 

Jīm 𝑈 ج 10 + 062𝐶 1580 0000011000101100 

Ḥāʼ 𝑈 ح 11 + 062𝐷 1581 0000011000101101 

Khāʼ 𝑈 خ 12 + 062𝐸 1582 0000011000101110 

Dāl 𝑈 د 13 + 062𝐹 1583 0000011000101111 

Dhāl 𝑈 ذ 14 + 0630 1584 0000011000110000 

Rāʼ 𝑈 ر 15 + 0631 1585 0000011000110001 

Zāy 𝑈 ز 16 + 0632 1586 0000011000110010 

Sīn 𝑈 س 17 + 0633 1587 0000011000110011 

Shīn 𝑈 ش 18 + 0634 1588 0000011000110100 

Ṣād 𝑈 ص 19 + 0635 1589 0000011000110101 

Ḍād 𝑈 ض 20 + 0636 1590 0000011000110110 

Ṭāʼ 𝑈 ط 21 + 0637 1591 0000011000110111 

Ẓāʼ 𝑈 ظ 22 + 0638 1592 0000011000111000 

ʿAyn 𝑈 ع 23 + 0639 1593 0000011000111001 

Ghayn 𝑈 غ 24 + 063𝐴 1594 0000011000111010 

Fāʼ 𝑈 ف 25 + 0641 1601 0000011001000001 

Qāf 𝑈 ق 26 + 0642 1602 0000011001000010 

Kāf 𝑈 ك 27 + 0643 1603 0000011001000011 

Lām 𝑈 ل 28 + 0644 1604 0000011001000100 

Mīm 𝑈 م 29 + 0645 1605 0000011001000101 

Nūn 𝑈 ن 30 + 0646 1606 0000011001000110 

Hāʼ 𝑈 ه 31 + 0647 1607 0000011001000111 

Wāw 𝑈 و 32 + 0648 1608 0000011001001000 

Lam Alif 𝑈 لا 33 + 𝐹𝐸𝐹𝐵 65275 1111111011111011 

Yāʼ 𝑈 ي 34 + 064𝐴 1610 0000011001001010 

 Alif ى 35

Maqṣūrah 
𝑈 + 0649 1609 0000011001001001 

 Tāʼ ة 36

Marbūṭah 
𝑈 + 0629 1577 0000011000101001 

37 ␣ Spasi 𝑈 + 0020 32 0000000000100000 
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2.2.4 Kode Reed-Solomon 

Kode Reed-Solomon (𝑅𝑆) merupakan salah satu jenis kode blok linier yang 

bersifat siklik non-biner, didefinisikan atas lapangan hingga 𝐺𝐹(𝑞), dan 𝐺𝐹(2𝑚). 

Kode ini pertama kali diperkenalkan oleh Irving S. Reed dan Gustave Solomon 

pada tahun 1960 dalam publikasi berjudul “Polynomial Codes over Certain Finite 

Fields”. Kode Reed-Solomon merupakan kode blok, yang berarti pesan yang akan 

ditransmisikan dibagi menjadi blok-blok data yang terpisah. Kode ini disebut juga 

kode sistematik yang artinya proses encoding tidak merubah simbol-simbol pesan 

dan simbol proteksi ditambahkan pada tempat yang terpisah pada blok data 

tersebut. Kode Reed-Solomon disebut juga kode linear (dengan menjumlahkan 

dua codeword akan menghasilkan codeword yang lain), dan juga siklik (dengan 

menggeser sebuah codeword secara siklik akan menghasilkan codeword lain). 

Reed-Solomon Code termasuk dalam keluarga pengkodean Bose-Choundhuri-

Hocquenghem (BCH) non biner.  

Kode Reed–Solomon merupakan salah satu jenis kode koreksi kesalahan 

yang bekerja dengan menambahkan simbol-simbol redundansi pada pesan asli 

sehingga sistem mampu mendeteksi dan memperbaiki kerusakan yang terjadi 

selama proses transmisi. Pada tahap encoding, pesan yang telah direpresentasikan 

dalam bentuk simbol pada lapangan hingga ditambahkan sejumlah simbol paritas 

yang berfungsi sebagai penanda untuk melacak kesalahan. Ketika codeword 

dikirim melalui kanal, sebagian simbol dapat berubah akibat gangguan. Pada saat 

penerimaan, decoder akan memeriksa konsistensi hubungan matematis antar-

simbol untuk menentukan apakah terjadi kesalahan. Jika ditemukan 

ketidakcocokan, sistem kemudian mengidentifikasi posisi simbol yang rusak 



35 

 

dengan memanfaatkan informasi yang tersimpan pada simbol-simbol paritas. 

Setelah posisi kesalahan diketahui, Reed–Solomon menghitung nilai asli simbol 

tersebut dan menggantinya dengan nilai yang benar sehingga codeword kembali 

valid.  

Sebagai ilustrasi, misalkan surah Al-Kahf : 48 telah melalui proses encoding 

dan menghasilkan sebuah codeword yang berisi 51 simbol. Ketika dikirim, satu 

simbol berubah akibat gangguan. Pada tahap penerimaan, decoder mendeteksi 

bahwa susunan simbol tidak lagi sesuai dengan struktur matematis yang 

seharusnya. Sistem kemudian menelusuri posisi kesalahan tersebut misalnya pada 

simbol ke−31 dan menghitung nilai simbol yang benar berdasarkan informasi 

paritas. Setelah simbol itu diganti, codeword kembali sesuai dengan kondisi awal, 

dan surah Al-Kahf : 48 dapat dipulihkan sepenuhnya tanpa kehilangan satu huruf 

pun. Proses yang sama juga berlaku untuk dua, tiga, hingga lima kesalahan, 

selama jumlah kerusakan tidak melampaui batas kemampuan koreksi kode Reed–

Solomon. 

Dalam sistem komunikasi digital, kode Reed-Solomon memiliki dua proses:  

1. Encoding, yaitu proses mengubah pesan menjadi codeword dengan 

menambahkan simbol paritas. 

2. Decoding, yaitu proses mengembalikan codeword menjadi pesan asli 

sekaligus melakukan deteksi dan koreksi kesalahan yang mungkin terjadi 

selama transmisi. 

Diagram struktur kode Reed-Solomon secara umum dapat dilihat pada 

Gambar 2.2. 
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Gambar 2.2 Diagram Struktur Kode Reed–Solomon (𝑛, 𝑘, 2𝑡) 

 

Kode Reed-Solomon atas 𝐺𝐹(2𝑚) umumnya menggunakan parameter 

sebagai berikut: 

1. 𝑛 = 2𝑚 − 1, panjang codeword dalam simbol. (2.6) 

2. 𝑘 = 𝑛 − 2𝑡 , jumlah simbol data (pesan). (2.7) 

3. 2𝑡 = 𝑛 − 𝑘 , jumlah simbol paritas, dengan 𝑡 merupakan jumlah simbol 

yang dapat dikoreksi sehingga 𝑡 = ⌊
𝑛−𝑘

2
⌋. (2.8) 

4. 𝑑𝑚𝑖𝑛 = 2𝑡 + 1 = 𝑛 − 𝑘 + 1, jarak minimum antar-codeword. (2.9) 

Kode Reed-Solomon biasanya dilambangkan sebagai: 

𝑅𝑆(𝑛, 𝑘) atas 𝐺𝐹(𝑞) 

Definisi 2.8  

Kode Reed-Solomon 𝑅𝑆(𝑛, 𝑘) pengoreksi 𝑡-kesalahan adalah sebuah kode BCH 

primitif dengan panjang  𝑛 = 𝑞 − 1  atas lapangan 𝐺𝐹(𝑞𝑚). 

Contoh 2.5.  

Misalkan lapangan hingga 𝐺𝐹(24) dan parameter:   

𝑛 = 15,       𝑘 = 11 

Maka: 

𝑡 = ⌊
𝑛 − 𝑘

2
⌋ = ⌊

15 − 11

2
⌋ = 2 

Sehingga, kode 𝑅𝑆(15, 11) mampu mendeteksi hingga 4 kesalahan dan 

mongerksi hingga 2 kesalahan dalam setiap codeword. 
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2.2.5 Proses Encoding dan Decoding Kode Reed-Solomon 

Setelah konsep dasar kode siklik, kode linear, matriks generator, dan matriks 

parity check dipaparkan pada bagian sebelumnya, maka pada subbab ini dibahas 

proses pembentukan codeword menggunakan matriks generator khusus pada kode 

Reed–Solomon. Pembahasan difokuskan pada bagaimana vektor pesan diolah 

melalui operasi aritmetika pada 𝐺𝐹(28) sehingga menghasilkan simbol-simbol 

redundansi yang diperlukan untuk mendeteksi dan mengoreksi kesalahan pada 

tahap decoding. 

1. Proses Encoding.  

Pada penelitian ini, proses encoding pada kode Reed-Solomon dilakukan 

dengan merepresentasikan pesan sebagai vektor yang beranggotakan 

elemen-elemen dari lapangan hingga 𝐺𝐹(2𝑚). Misalkan diberikan pesan, 

𝑀 = (𝑀0, 𝑀1, … , 𝑀𝑘−1) 

Dengan setiap 𝑀𝑖 ∈ 𝐺𝐹(2𝑚), pesan tersebut kemudian dikodekan menjadi 

codeword berdimensi 𝑛 melalui perkalian antara vektor pesan dengan 

matriks generator 𝐺, sehingga diperoleh: 

𝐶 = 𝑀 ⋅ 𝐺                                             (2.10) 

di mana: 

       𝑀 : Vektor pesan berdimensi 𝑘, yaitu (𝑀0, 𝑀1, … ,𝑀𝑘−1) 

       𝐺  : Matriks generator berukuran 𝑘 × 𝑛 yang dibentuk atas 𝐺𝐹(2𝑚) 

Hasil dari encoding berupa codeword 𝐶 berdimensi 𝑛, yang terdiri atas 𝑘 

simbol informasi dan 𝑛 − 𝑘 simbol redundansi (paritas). Simbol redundansi 

inilah yang memungkinkan kode Reed–Solomon mendeteksi dan 

mengoreksi kesalahan hingga sebanyak 𝑡 kesalahan. 
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2. Transmisi melalui channel. 

Dalam sistem komunikasi digital, transmisi merupakan jalur yang 

menghubungkan pengirim dengan penerima, yang bisa berupa kabel, udara, 

atau media lainnya. Setelah proses encoding selesai, data pesan yang telah 

dikodekan menjadi codeword 𝐶(𝑥) dikirimkan melalui kanal transmisi. 

Pada proses transmisi inilah kemungkinan terjadi gangguan (noise), 

interferensi atau kerusakan media, sehingga sebagian simbol dari codeword 

mungkin berubah. Untuk mensimulasikan kondisi tersebut, dalam 

implementasi program dilakukan penyisipan error (error injection) pada 

satu atau beberapa simbol codeword.  

Kesalahan yang terjadi direpresentasikan oleh polinomial error 𝑒(𝑥), yang 

menyatakan posisi dan besarnya kesalahan pada codeword. Dengan 

demikian, simbol yang diterima oleh penerima tidak lagi identik dengan 

simbol yang dikirim, melainkan berbentuk vektor penerimaan 𝑣(𝑥), yang 

secara matematis dimodelkan sebagai: 

𝑣(𝑥) = 𝐶(𝑥) + 𝑒(𝑥)                                        (2.11) 

atau dalam bentuk vektor: 

𝑟 = 𝐶 + 𝑒                                              (2.12) 

di mana: 

𝐶 : (𝐶0, 𝐶1, … , 𝐶𝑛−1) adalah codeword yang dikirim oleh 

pengirim, hasil dari proses encoding. 

𝑟 : (𝑟0, 𝑟1, … , 𝑟𝑛−1) adalah received word, yaitu deretan simbol 

yang diterima penerima. 

𝑒 : (𝑒0, 𝑒1, … , 𝑒𝑛−1) adalah vektor error. 
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Vektor error 𝑒 menggambarkan posisi simbol yang rusak selama transmisi. 

Jika 𝑒𝑖 = 0, maka simbol ke-𝑖 tidak mengalami kerusakan. Sebaliknya, 

jika 𝑒𝑖 ≠ 0, maka simbol pada posisi tersebut mengalami error. Dengan 

demikian: 

a. Jika tidak ada error sama sekali, maka 𝑟 = 𝑐. 

b. Jika terdapat error pada beberapa posisi, maka 𝑟 ≠ 𝑐, dan selisihnya 

ditentukan oleh nilai 𝑒. 

Contoh 2.6. 

Misalkan kode Reed-Solomon 𝑅𝑆(7,4) atas 𝐺𝐹(23), dengan parameter 𝑛 =

7, 𝑘 = 4 dan 𝑡 = 2. Pesan yang akan dikirim: 

𝑀 = 1011 

Hasil encoding (setelah penambahan simbol paritas) diperoleh codeword: 

𝐶 = 1011010 

Transmisi melalui channel dimodelkan dengan: 

𝑟 = 𝐶 + 𝑒 

dengan 𝑒 adalah vektor error.  

Jika terjadi error pada bit ke−3, maka: 

𝑒 = 001000 

Sehingga:  

𝑟 = 1011010 + 001000 = 1001010 

3. Proses Decoding.  

Proses decoding merupakan tahap untuk mengembalikan codeword yang 

diterima menjadi pesan asli. Pada tahap ini dilakukan dua langkah utama, 

yaitu proses deteksi kesalahan dan koreksi kesalahan. Jika codeword yang 
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diterima sama dengan yang dikirim, maka pesan dapat langsung dibaca 

tanpa koreksi. Namun, jika terdapat perbedaan akibat noise atau gangguan 

pada kanal, maka decoder harus mendeteksi lokasi kesalahan dan 

memperbaiki.  

a. Perhitungan Sindrom. 

Pada proses decoding Reed-Solomon, sindrom digunakan untuk 

mendeteksi keberadaan dan informasi tentang kesalahan dalam sebuah 

codeword. Jika vektor yang diterima adalah  𝑣 = (𝑣0, 𝑣1, … , 𝑣𝑛−1), maka 

sindrom ke-𝑗 didefinisikan sebagai hasil evaluasi dari polinomial 

𝑣(𝑥) pada akar-akar polynomial generator: 

𝑆𝑗 = ∑ 𝑣𝑖 ∙ αj∙i, 𝑗 = 1,2, … ,2𝑡𝑛−1
𝑖=0                            (2.13) 

dengan 𝛼 adalah elemen primitif dari 𝐺𝐹(𝑞), dan 𝑆𝑗 adalah sindrom 

ke−𝑗. Secara matriks, sindrom dapat dihitung dengan mengalikan 

matriks evaluasi 𝐻 dengan transpose vektor (𝑣𝑇) (Bras-amor, 2018), 

yaitu: 

𝑆 = 𝐻 ⋅ 𝑣𝑇                                     (2.14) 

dengan H adalah matriks parity-check berukuran 2𝑡 × 𝑛: 

𝐻 = [

1 α1 α2 ⋯ αn−1

1 α2 α4 ⋯ α2(n−1)

⋮ ⋮ ⋮ ⋱ ⋮
1 α2t α2t∙2 ⋯ α2t(n−1)

] 

Apabila semua sindrom bernilai nol (𝑆1 = 𝑆2 = ⋯ = 𝑆2𝑡 =  0), maka 

vektor penerimaan 𝑣 adalah codeword yang valid. Sebaliknya, jika 

terdapat sindrom yang bernilai tidak nol, maka hal ini menunjukkan 

adanya error pada codeword yang diterima. 
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b. Menentukan Polinomial Lokasi kesalahan dan Posisi Kesalahan. 

Dalam decoding Reed-Solomon, error locator polynomial 𝜎(𝑥) 

digunakan untuk menentukan posisi simbol yang mengalami kesalahan. 

Polinomial ini didefinisikan sebagai: 

σ(x) = ∏ (1 − 𝛽𝑗𝑥)𝑣
𝑗=1 = 1 + σ1 + xσ2x

2 + +⋯ σ𝑣x
𝑣                 (2.15) 

di mana: 

𝛽𝑗 : 𝛼  

𝑣 : Jumlah kesalahan 

𝜎𝑖 : Koefisien polinomial lokasi kesalahan 

Akar-akar kebalikan dari 𝜎(𝑥) menunjukkan posisi kesalahan pada 

codeword. Jika: 

𝜎(𝛼−𝑒) = 0, 

Jika 𝛼−𝑒 = 0 adalah akar dari 𝜎(𝑥), maka posisi ke-𝑒 pada codeword 

terjadi kesalahan.  

Untuk memperoleh 𝜎(𝑥), digunakan Berlekamp–Massey Algorithm 

(BMA), yaitu algoritma yang mencari polinomial dengan derajat terkecil 

yang memenuhi relasi linier: 

𝜎0𝑆𝑗 + 𝜎1𝑆𝑗−1 + 𝜎2𝑆𝑗−2 + ⋯+ 𝜎𝐿𝑆𝑗−𝐿 = 0, 

untuk 𝑗 = 𝐿 + 1,… ,2𝑡, 

di mana: 

𝑆𝑗 ∶ Sindrom 𝑘𝑒 − 𝑗  

𝜎𝑖 ∶ Koefisien polinomial locator kesalahan  

𝐿 ∶ Derajat polinomial locator (jumlah error yang ditemukan)  

𝑡 ∶ Jumlah error yang bisa dikoreksi  
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Dalam implementasi 𝑅𝑆 tertentu (misal 𝑅𝑆(255) dengan 𝑠 = 5), posisi 

simbol ditentukan dalam langkah tertentu: 

 𝑖 =
𝑒

𝑠
 

c. Mencari akar Polinomial Evaluasi Kesalahan (Error).      

Setelah polinomial locator 𝜎(𝑥) diperoleh, langkah berikutnya adalah 

menentukan akar polinomial evaluasi error 𝛺(𝑥). Polinomial ini 

berfungsi untuk menghitung besar error pada setiap posisi kesalahan.  

Ω(𝑥) = S(𝑥) ∙ 𝜎(𝑥) 𝑚𝑜𝑑 𝑥2𝑡,                               (2.16) 

dengan, 

𝑆(𝑥) = 𝑆1 + 𝑆2𝑥 + ⋯+ 𝑆2𝑡𝑥
2𝑡−1, 

merupakan polinomial sindrom. 

d. Penentuan Nilai Magnitude Kesalahan (Error Magnitude). 

Setelah posisi kesalahan dan akar polinomial evaluasi kesalahan 

ditemukan, langkah selanjutnya dalam proses decoding adalah 

menentukan besarnya nilai kesalahan yang terjadi pada setiap posisi 

tersebut. Untuk melakukan hal ini, digunakan Algoritma Forney yang 

menghitung magnitudo error pada setiap posisi kesalahan tanpa 

mengganggu simbol lainnya dalam vektor penerimaan. Besarnya nilai 

magnitude error pada posisi 𝑗 dinotasikan dengan 𝐸𝑗, dan dapat dihitung 

dengan: 

𝑆𝑖 = ∑𝑒𝑗 ∙ 𝛽𝑗
𝑖 ,   𝑖 = 1,2,… , 2𝑡

𝑣

𝑗=1
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dengan  𝑒𝑗  adalah nilai kesalahan (error value) yang secara konseptual 

terjadi pada posisi 𝛽𝑗.   

𝐸𝑗 = −
Ω(Xj

−1)

σ′(Xj
−1)

                                           (2.17) 

di mana: 

𝛺(𝑥)  ∶ Polinomial evaluasi error (error evaluator polynomial) 

𝜎(𝑥)  ∶ Polinomial locator kesalahan (error locator polynomial) 

𝜎′(𝑥) ∶ Turunan formal dari 𝜎(𝑥) 

Xj
−1    ∶ Invers dari posisi error dalam bentuk eksponensial elemen  

primitif lapangan (𝛼−𝑗) 

𝐸𝑗       ∶ Besarnya nilai magnitude error yang terjadi di posisi ke-𝑗 

e. Koreksi Kode Kesalahan (Error). 

Jika 𝑣 adalah polinomial vektor penerimaan dan 𝑒 adalah polinomial 

error (yang telah diketahui posisinya dan nilainya), maka codeword yang 

benar 𝑐 dapat diperoleh dengan: 

𝐶 = 𝑣 − 𝑒  

Karena pengurangan dalam lapangan hingga 𝐺𝐹(2𝑚) sama dengan 

penjumlahan (karena karakteristiknya 2), maka: 

𝐶 = 𝑣 ⊕ 𝑒                                            (2.18)  

di mana ⊕ menyatakan operasi XOR pada koefisien-koefisien dari 

vektor biner atau elemen-elemen 𝐺𝐹(2𝑚). 
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2.3  Transmisi 

Teori kode pengoreksi error merupakan salah satu cabang matematika yang 

bergerak dibidang transmisi dan penyimpanan data. Media informasi tidak selalu 

memberikan keakuratan dalam menerima informasi, adakalanya terjadi suatu 

gangguan saat pengiriman pesan/informasi. Apabila terjadi suatu error pada saat 

pengiriman pesan/informasi, kesalahan tetap dapat terdeteksi bahkan diperbaiki 

dengan menambahkan suatu redundansi ke dalam pesan/informasi yang telah 

diubah dalam bentuk kode. Diagram sistem transmisi informasi secara umum dapat 

dilihat pada Gambar 2.3.  

 

Gambar 2.3 Diagram Proses Pengiriman Pesan/Informasi 

 

2.3.1 Transmisi Data 

Transmisi data merupakan proses pengiriman informasi (data) yang telah 

dikonversi ke dalam bentuk kode tertentu melalui suatu media dari satu titik ke 

titik lainnya. Seiring berkembangnya teknologi, komunikasi data didefinisikan 

sebagai proses pengiriman dan penerimaan data atau informasi dari dua atau lebih 

perangkat (device) yang saling terhubung dalam sebuah jaringan, baik jaringan 

lokal (Local Area Network) maupun jaringan luas seperti internet. 

Pada sistem transmisi data, terdapat media transmisi yang berfungsi sebagai 

jalur fisik penghubung antara pengirim dan penerima sinyal. Media ini dapat 

berupa media terpandu (guided media) seperti kabel tembaga, kabel koaksial, 

kabel twisted pair, dan serat optik, maupun media tidak terpandu (unguided 
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media) seperti gelombang radio, gelombang mikro, atau sinyal optik yang 

merambat melalui udara, ruang hampa, atau air.  

Pada proses transmisi data sering menghadapi berbagai gangguan yang 

dapat menyebabkan kesalahan pada data yang dikirimkan. Kesalahan transmisi 

dapat berupa perubahan satu bit atau lebih dari data aslinya. Faktor-faktor yang 

dapat menyebabkan kesalahan dalam transmisi data: 

1. Radiasi Elektromagnetik.  

Radiasi elektromagnetik merupakan gelombang energi yang dipancarkan 

oleh perangkat elektronik, seperti radio, microwave, atau perangkat 

komunikasi nirkabel lainnya. Radiasi ini dapat mengganggu sinyal yang 

sedang ditransmisikan melalui media komunikasi. Dampaknya, sinyal dapat 

mengalami distorsi, sehingga data yang diterima berbeda dari data yang 

dikirimkan 

2. Crosstalk (sinyal bocor). 

Crosstalk terjadi ketika sinyal dari satu saluran komunikasi “bocor” ke 

saluran komunikasi lain yang berdekatan. Misalnya, pada kabel yang 

terhubung dengan perangkat yang saling berdekatan, atau dalam jaringan 

yang menggunakan saluran fisik yang sama. Ketika ini terjadi, sinyal yang 

seharusnya tetap utuh bisa terganggu oleh sinyal lain yang menyebabkan 

data menjadi rusak atau tidak akurat.   

3. Atenausi. 

Atenuasi adalah pelemahan sinyal yang disebabkan oleh jarak antara 

penerima dan pengirim yang terlalu jauh. Ini dapat terjadi karena adanya 
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halangan diantara keduanya, misalkan sinyal WiFi yang semakin lemah 

ketika jauh dari Router. 

4. Noise (gangguan sinyal). 

Noise merupakan masuknya sinyal lain yang tidak dibutuhkan oleh media 

dan menyebabkan sinyal menjadi hancur. Contoh dari noise adalah sinyal 

antenna televisi menjadi kabur karena adanya pesawat yang lewat. 

5. Distorsi. 

Distorsi merupakan keadaan dimana sinyal yang dikirim berbeda dari media 

penerima sinyal sehingga membuat rusak media. Contoh distorsi adalah 

suara yang berisik pada speaker yang rusak. 

Dampak dari gangguan-gangguan tersebut adalah munculnya kesalahan bit. 

Kesalahan bit terjadi ketika data yang diterima tidak sesuai dengan data yang 

dikirimkan. Bit adalah unit terkecil dari data digital yang hanya memiliki dua 

kemungkinan nilai, yaitu 0 atau 1. Ketika terjadi kesalahan bit, nilai “0” bisa 

berubah menjadi 1, atau sebaliknya, yang menyebabkan data yang diterima tidak 

sesuai dengan data yang seharusnya.  

Adapun macam-macam bit error sebagai berikut: 

1. Single-bit error. 

Single-bit error terjadi ketika hanya satu bit dalam unit data seperti bit, 

karakter, atau paket, berubah dari 1 ke 0 atau sebaliknya. Kesalahan jenis 

ini memiliki kemungkinan sangat kecil terjadi dalam transmisi data serial. 

Misalnya, jika data ditransmisikan pada kecepatan 1 Mbps, maka setiap bit 

hanya berlangsung selama 1 mikrodetik (1𝜇𝑠). Untuk menyebabkan single 

bit error, gangguan (noise) harus memiliki durasi yang sangat singkat, yaitu 
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sekitar 1𝜇𝑠 yang jarang terjadi. Biasanya, noise berlangsung lebih lama dari 

itu, sehingga lebih mungkin menyebabkan kesalahan yang memengaruhi 

lebih dari satu bit. 

2. Burst error. 

Burst error terjadi ketika terdapat dua atau lebih bit pada unit data telah 

berubah dari 1 ke 0 atau dari 0 ke 1. Pada kasus 0100010001000011 

dikirim dan 0101110101100011 diterima, dapat diperhatikan bahwa 

beberapa bit mengalami perubahan tetapi tidak harus berurutan. Panjang 

burst error dihitung dari bit pertama yang rusak hingga bit terakhir yang 

rusak, meskipun ada bit diantaranya yang tetap benar. 

Burst error lebih sering terjadi dibandingkan single-bit error karena noise 

biasanya memiliki durasi lebih panjang dari 1 bit, yang berarti bahwa ketika 

noise mempengaruhi data, maka akan mempengaruhi satu set bit atau lebih 

dari satu bit. Jumlah bit yang terkena efeknya tergantung pada data rate dan 

durasi noise tersebut.  

Untuk mengatasi permasalahan gangguan dalam proses transmisi data, 

diperlukan suatu metode yang mampu mendeteksi serta memperbaiki 

kesalahan yang terjadi selama pengiriman. Tujuan utama dari metode ini 

adalah memastikan bahwa data yang diterima tetap akurat dan konsisten 

dengan data yang dikirim, meskipun terjadi gangguan pada saluran 

transmisi. Dengan demikian, informasi yang diterima oleh perangkat 

penerima dapat tetap dipercaya dan digunakan sebagaimana mestinya. 

Proses deteksi dan koreksi kesalahan bit berfungsi untuk mengenali serta 

memperbaiki kesalahan yang muncul pada bit-bit data selama proses 
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transmisi. Kedua proses ini merupakan komponen penting dalam sistem 

komunikasi digital, karena berperan besar dalam menjaga keandalan 

(reliability) dan integritas (integrity) data yang dikirimkan.  

 

2.3.2 Deteksi dan Koreksi Kesalahan Bit Pada Transmisi Data 

1. Deteksi Kesalahan Bit. 

Deteksi kesalahan bit merupakan proses untuk memastikan bahwa data yang 

diterima sesuai dengan data yang dikirim, tanpa adanya perubahan akibat 

gangguan selama transmisi. Teknik ini berperan penting dalam sistem 

komunikasi maupun penyimpanan data digital, karena proses transmisi 

sangat rentan terhadap gangguan seperti noise, interferensi atau kerusakan 

perangkat keras.  

Proses deteksi dilakukan dengan menambahkan bit kontrol atau bit 

redundansi pada data asli.  Bit redudansi digunakan untuk memverifikasi 

kebenaran data saat diterima. Salah satu teknik yang umum digunakan 

adalah kode siklik (cyclic code), yang bekerja berdasarkan polinomial 

generator sebagai kunci pembentukan kode kesalahan. 

Dalam proses pengkodean, polinomial data dibagi dengan polinomial 

generator untuk memperoleh sisa pembagian (remainder), yang kemudian 

ditambahkan ke dalam data sebagai bagian dari kode kesalahan. Pada sisi 

penerima, pembagian serupa dilakukan menggunakan polinomial generator 

yang sama. Jika hasil pembagian menghasilkan sisa nol, maka data dianggap 

benar. Sebaliknya, jika sisa tidak nol, berarti telah terjadi kesalahan selama 

transmisi. 
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Kode siklik memiliki kemampuan deteksi yang lebih handal dibandingkan 

metode sederhana seperti bit paritas, karena dapat dirancang untuk 

mendeteksi berbagai pola kesalahan, termasuk kesalahan tunggal, kesalahan 

ganda, maupun burst error. Metode ini bersifat efisien, cepat, dan banyak 

diterapkan dalam berbagai sistem modern seperti komunikasi jaringan, 

penyimpanan digital, serta protokol komunikasi seperti ethernet. 

2. Koreksi Kesalahan Bit. 

Koreksi kesalahan bit merupakan proses lanjutan setelah deteksi, yang tidak 

hanya mengidentifikasi adanya kesalahan dalam data, tetapi juga 

memperbaikinya secara otomatis tanpa perlu pengiriman ulang. Teknik ini 

sangat penting dalam sistem komunikasi dan penyimpanan data digital 

untuk menjaga keandalan transmisi serta integritas informasi.  

Teknik koreksi kesalahan bekerja dengan menambahkan informasi 

tambahan atau kode khusus ke dalam data asli saat proses pengiriman. 

Infomrasi ini dirancang sedemikian rupa sehingga memungkinkan sistem 

penerima untuk memverifikasi integritas data yang diterima. Apabila terjadi 

kesalahan, sistem dapat menentukan lokasi bit yang mengalami perubahan 

dan mengembalikannya ke nilai yang seharusnya.  

Langkah penting dalam koreksi adalah perhitungan nilai sindrom (syndrome 

calculation), yaitu hasil operasi pembagian polinomial data yang diterima 

dengan polinomial generator. Nilai sindrom menunjukkan apakah terjadi 

kesalahan, sekaligus membantu menentukan lokasi kesalahan. Jika nilai 

sindrom sama dengan nol, maka data dianggap bebas kesalahan. Namun, 

jika tidak nol, sistem akan menggunakan algoritma decoding seperti 

Berlekamp-Massey atau Chien Search untuk menemukan posisi kesalahan. 
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Setelah posisi kesalahan diketahui, sistem melakukan pembalikan nilai bit 

yang rusak sehingga pesan asli dapat direkonstruksi dengan benar. Proses 

koreksi kesalahan ini memberikan lapisan perlindungan tambahan terhadap 

kerusakan data, terutama pada sistem di mana transmisi ulang tidak 

dimungkinkan atau memerlukan waktu serta sumber daya yang besar. 

 

2.3.3 Transmisi Ayat Al-Qur’an 

Dalam penelitian mengenai “Implementasi Kode Reed–Solomon untuk 

Deteksi dan Koreksi Kesalahan Transmisi Ayat Al-Qur’an”, proses transmisi 

didefinisikan sebagai proses pengiriman data hasil pengkodean huruf hijaiyah 

melalui saluran digital. Teks ayat Al-Qur’an terlebih dahulu dikonversi menjadi 

simbol pada lapangan hingga 𝐺𝐹(28), kemudian dikodekan menggunakan kode 

Reed–Solomon untuk mendapatkan codeword.  

Pada proses transmisi, selalu terdapat kemungkinan terjadinya error. Untuk 

mensimulasikan gangguan seperti pada transmisi nyata, penelitian ini 

menyisipkan error secara sengaja (injected error) pada beberapa simbol dalam 

codeword. Penyisipan ini didasarkan pada pola kesalahan penulisan ayat Al-

Qur’an di dunia nyata, misalnya pertukaran huruf (ب menjadi ت), huruf yang 

hilang, kesalahan titik, penambahan atau pengurangan karakter. 

Kesalahan linguistik nyata ini hanya menjadi landasan dasar, namun dalam 

penelitian diterapkan sebagai kesalahan simbol pada proses transmisi, yaitu: 

1. Kesalahan substitusi simbol. 

Satu simbol hasil encoding diganti dengan simbol lain (𝛼³ menjadi 𝛼¹¹). Ini 

menggambarkan single-symbol error. 
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2. Kesalahan burst. 

Dua atau lebih simbol diganti atau diubah sekaligus dalam satu codeword. 

Ini memodelkan kondisi noise panjang atau interferensi. 

3. Kesalahan acak (random error). 

Penelitian dapat menyisipkan error secara acak di beberapa posisi untuk 

meniru kondisi saluran yang tidak stabil. 

 

2.3.4 Proses Deteksi dan Koreksi Kesalahan pada Transmisi Ayat Al-Qur’an 

Untuk menjaga keakuratan teks ayat Al-Qur’an yang dikirim, digunakan 

kode Reed–Solomon (𝑅𝑆). Reed–Solomon merupakan salah satu jenis error-

correcting code yang mampu mendeteksi dan memperbaiki kesalahan pada blok 

simbol. 

1. Deteksi Kesalahan (Error Detection). 

Setelah penerima mendapatkan codeword, langkah pertama adalah 

menghitung sindrom: 

𝑆𝑖 = 𝑣(𝛼𝑖),     𝑖 = 1,2, … ,2𝑡  

Sindrom bernilai nol (𝑆₁ = 𝑆₂ = ⋯ = 0) berarti: 

a. Tidak ada kesalahan, dan 

b. Codeword diterima dengan benar. 

Jika salah satu sindrom ≠  0 → berarti terjadi kesalahan. 

2. Penentuan Lokasi Kesalahan (Error Locator Polynomial). 

Jika terjadi kesalahan, Reed–Solomon membentuk error locator 

polynomial: 

𝛬(𝑥) = 1 + 𝜆1𝑥 + ⋯+ 𝜆𝑡𝑥
𝑡  
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Polinomial ini diperoleh melalui: 

a. algoritma Berlekamp–Massey, atau 

b. Euclidean Algorithm. 

Akar-akar dari 𝛬(𝑥) menunjukkan posisi simbol yang salah. 

3. Perhitungan Nilai Besar Kesalahan (Error Magnitude). 

Setelah menemukan posisi error, langkah selanjutnya adalah menghitung 

besar kesalahan menggunakan Rumus Forney: 

𝐸𝑗 = −
𝛺(𝑋𝑗 − 1) 

𝛬′(𝑋𝑗 − 1)
 

Nilai ini menentukan seberapa besar simbol tersebut harus dikoreksi. 

4. Koreksi Kesalahan (Error Correction). 

Simbol yang salah kemudian diperbaiki: 

𝐶𝑖 = 𝑣𝑖 − 𝑒𝑖 

Hasilnya adalah codeword yang telah kembali benar. 

Pengiriman ayat Al-Qur’an harus memiliki tingkat akurasi tinggi (zero-

tolerance error) karena: 

1) Perubahan satu huruf dapat mengubah makna ayat, 

2) Teks Al-Qur’an memiliki standar rasm yang baku, 

3) Kesalahan penulisan dapat berpotensi menjadi kesalahan pemaknaan. 

Dengan menyisipkan error secara terkendali pada proses transmisi, 

penelitian ini menunjukkan bahwa: 

1) Model kesalahan dapat dideteksi, 

2) Kesalahan dapat diperbaiki secara matematis, 

3) Ayat Al-Qur’an dapat dipulihkan sesuai teks aslinya dengan kode Reed–

Solomon. 
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2.4    Kajian Integrasi Topik Penelitian dengan Al-Qur’an 

Mengintregasikan ilmu pengetahuan dengan ajaran Al-Qur’an dan Hadits 

merupakan pendekatan komprehensif yang memadukan antara perkembangan sains 

modern dan nilai-nilai keislaman. Pendekatan ini tidak hanya memperluas 

pemahaman terhadap aspek teknologi dan sains, tetapi juga memperkuat keyakinan 

bahwa menuntut ilmu dan mengaplikasikannya merupakan bagian penting dari 

keimanan dan penghambaan kepada Allah SWT. Penelitian yang berjudul 

"Implementasi Kode Reed-Solomon untuk Deteksi dan Koreksi Kesalahan 

Transmisi Ayat Al-Qur’an Menggunakan Pengkodean Huruf Hijaiyah" merupakan 

salah satu bentuk nyata dari penggunaan teknologi informasi untuk menjaga 

keaslian dan ketepatan teks ayat Al-Qur’an. Dalam hal ini, penerapan metode 

koreksi kesalahan digital (error correction) tidak hanya berfungsi secara teknis, 

tetapi juga memiliki makna spiritual dalam mendukung upaya pelestarian kitab suci 

yang telah dijamin kemurniannya oleh Allah SWT. Berikut beberapa ayat Al-Quran 

dan Hadits yang relevan untuk mendukung dan memberikan perspektif religius 

pada penelitian ini. 

1. Kewajiban Bersikap Teliti dan Tidak Mengikuti Sesuatu Tanpa Ilmu.  

Dalam ajaran Islam, sikap teliti, cermat, dan tidak tergesa-gesa dalam 

menerima ataupun menyebarkan informasi merupakan prinsip yang sangat 

ditekankan. Kehati-hatian tersebut menjadi landasan penting agar seseorang 

tidak terjerumus pada kesalahan atau kekeliruan dalam memahami maupun 

menyampaikan suatu perkara, sebagaimana disebutkan dalam Surah Al-Isra’ 

ayat 36 (Kementerian Agama, 2022): 
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سْ ووُلاا مَ  وَلَا تَ قْفُ مَا لَيْسَ لَكَ بِّهِّۦ عِّلْمٌ ۚ إِّنَّ السَّمْعَ وَالْبَصَرَ وَالْفُؤَادَ كُلُّ أوُ۟لََٰئِّكَ كَانَ عَنْهُ    
"Dan janganlah kamu mengikuti sesuatu yang tidak kamu ketahui. 

Sesungguhnya pendengaran, penglihatan, dan hati, semuanya itu akan 

dimintai pertanggungjawaban."(QS. Al-Isra’: 36) 

 

Ayat ini merupakan prinsip dasar dalam Islam terkait keharusan untuk 

berhati-hati dalam menerima, menyampaikan, dan memproses informasi. 

Penulisan ayat Al-Qur’an yang salah baik satu huruf, harakat, maupun tanda 

baca dapat menyebabkan perubahan makna atau bahkan kesalahan fatal 

dalam bacaan. Oleh karena itu, deteksi dan koreksi penulisan ayat menjadi 

bentuk konkret dari perintah untuk tidak mengikuti sesuatu yang belum pasti 

(tidak valid). Penerapan metode ilmiah seperti kode Reed-Solomon, yang 

memiliki kemampuan dalam mendeteksi dan mengoreksi kesalahan 

berdasarkan prinsip matematika dan teori informasi, menunjukkan 

bagaimana ilmu pengetahuan dapat menjadi alat bantu dalam menjalankan 

amanah keagamaan, memastikan teks wahyu tetap utuh dan bebas dari 

kesalahan. 

Ayat ini mengingatkan bahwa setiap informasi yang kita terima (melalui 

pendengaran, penglihatan, atau hati) harus diteliti dan dikonfirmasi 

kebenarannya, karena semuanya akan dimintai pertanggungjawaban. Dalam 

konteks teknologi digital, ketika teks Al-Qur’an didistribusikan melalui 

aplikasi, e-book, atau media daring, tanggung jawab ini semakin besar. Maka 

penggunaan teknologi koreksi otomatis adalah bagian dari ikhtiar amanah 

ilmiah dan spiritual. 
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2. Tanggung Jawab Menyampaikan Al-Qur’an dengan Benar. 

 خَي ْركُُمْ مَنْ تَ عَلَّمَ الْقُرْآنَ وَعَلَّمَهُ 
“Sebaik-baik kalian adalah orang yang belajar Al-Qur’an dan 

mengajarkannya.” (HR. Bukhari No. 5027) 

 

Hadits ini menegaskan bahwa keutamaan umat Islam terletak pada aktivitas 

pembelajaran dan pengajaran Al-Qur’an. Namun, dalam era digital, bentuk 

belajar dan mengajar Al-Qur’an telah berkembang tidak hanya secara lisan 

dan tulisan manual, tetapi juga dalam bentuk digitalisasi teks dan audio Al-

Qur’an yang tersebar di berbagai platform. Dalam proses digitalisasi, 

kesalahan penulisan atau konversi teks Arab sangat mungkin terjadi, apalagi 

jika prosesnya dilakukan tanpa deteksi atau sistem koreksi yang tepat. Hal ini 

sejalan dengan hadits di atas, belajar dan mengajarkan Al-Qur’an juga 

mencakup usaha melestarikan dan menyampaikan Al-Qur’an secara benar 

dan akurat, baik melalui media konvensional maupun teknologi modern. 
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BAB III  

METODE PENELITIAN 

3.1  Jenis Penelitian  

Penelitian ini merupakan penelitian kuantitatif yang menggunakan pendekatan 

simulasi algoritmik. Pendekatan ini dipilih karena penelitian berfokus pada proses 

pengukuran dan analisis numerik terhadap performa sistem dalam mendeteksi serta 

mengoreksi kesalahan transmisi pada ayat-ayat Al-Qur’an yang dikodekan 

menggunakan huruf hijaiyah. Proses simulasi dilakukan melalui dua tahapan utama, 

yaitu encoding dan decoding, dengan menerapkan kode Reed-Solomon pada 

representasi digital teks Al-Qur’an yang telah dikonversi ke dalam format Unicode 

16-bit. 

Untuk menguji efektivitas sistem, dilakukan penyisipan kesalahan secara 

sistematis pada data teks ayat, kemudian diukur sejauh mana algoritma Reed-

Solomon mampu mendeteksi dan mengoreksi kesalahan tersebut. Evaluasi 

dilakukan berdasarkan jumlah kesalahan yang berhasil dideteksi dan diperbaiki, 

serta tingkat akurasi pemulihan data terhadap teks hijaiyah asli. Selain itu, 

dilakukan pula simulasi manual sebagai langkah verifikasi guna memastikan 

kesesuaian antara hasil perhitungan teoritis dan hasil pengujian menggunakan 

perangkat lunak. Seluruh proses implementasi dan pengujian dalam penelitian ini 

dilakukan menggunakan perangkat lunak SageMath, yang memiliki kemampuan 

dalam melakukan operasi aritmetika pada lapangan hingga (Galois Field) serta 

mendukung mekanisme koreksi kesalahan otomatis pada kode Reed-Solomon. 
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3.2  Data dan Sumber Data 

Data yang digunakan dalam penelitian ini berupa teks ayat-ayat Al-Qur’an 

yang direpresentasikan dalam bentuk biner (kode digital) menggunakan huruf-

huruf hijaiyah berdasarkan sistem Unicode 16-bit, khususnya dalam rentang 

Unicode Block Arabic (𝑈𝑇𝐹 − 8). Representasi ini memungkinkan setiap huruf 

hijaiyah dikodekan sebagai simbol digital yang dapat diproses secara matematis 

menggunakan metode pengkodean Reed-Solomon. 

Meskipun penelitian mengacu pada kasus-kasus kesalahan penulisan huruf 

hijaiyah yang dapat ditemukan pada mushaf digital, aplikasi Al-Qur’an, atau situs 

web yang menampilkan teks berdasarkan Rasm Utsmani, data yang digunakan 

dalam simulasi tetap berupa teks ayat Al-Qur’an yang benar dengan simulasi 

disisipkan error secara terkontrol (injected errors) saat proses simulasi transmisi 

digital. Dengan demikian, kesalahan yang diuji bukan berasal dari kanal 

komunikasi fisik, tetapi merupakan model kesalahan sintetis yang dirancang untuk 

menguji kemampuan deteksi dan koreksi dari kode Reed-Solomon. 

Setiap ayat diuji dengan variasi jumlah kesalahan sebanyak 1, 2, 3, 4, dan 5 

kesalahan per ayat, sehingga menghasilkan berbagai kondisi kerusakan yang dapat 

dianalisis secara kuantitatif. Seluruh proses encoding, penyisipan kesalahan, 

perhitungan sindrom, deteksi letak kesalahan, dan proses koreksi dilakukan 

menggunakan perangkat lunak SageMath.  

Pendekatan ini memungkinkan penelitian mensimulasikan kondisi kesalahan 

penulisan huruf hijaiyah sebagaimana terjadi dalam praktik digital, namun tetap 

memelihara kemurnian teks ayat suci Al-Qur’an. Dengan demikian, sistem dapat 

diuji secara realistis, terukur, dan tetap menjaga keaslian teks ayat Al-Qur’an. 
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3.3  Tahapan Penelitian 

Berikut alur dari implementasi kode Reed-Solomon untuk mendeteksi dan 

mengoreksi kesalahan trasmisi ayat Al-Qur’an menggunakan pengkodean huruf 

hijaiyah: 

 

Gambar 3.1 Alur Penelitian 

 

1. Input 

Input penelitian ini meliputi data teks sepuluh ayat Al-Qur’an yang dikodekan 

dalam format Unicode 16 −bit sebagai dasar pembentukan simbol pada 

lapangan hingga 𝐺𝐹(2⁸), serta parameter teknis kode Reed–Solomon yang 

mencakup panjang codeword 𝑛 = 51, panjang pesan 𝑘 = 47, nilai 𝑚 = 8, dan 

variasi kemampuan koreksi 𝑡 antara 1 sampai 5 kesalahan untuk setiap ayat. 

Selain itu, penelitian ini juga menggunakan input berupa pola kesalahan yang 

disisipkan secara terkontrol ke dalam codeword, yang mencakup jumlah 

kesalahan, posisi simbol yang mengalami gangguan, dan nilai magnitudo 

error, sehingga dapat dilakukan pengujian terhadap kemampuan deteksi dan 

koreksi kesalahan dari sistem Reed–Solomon. 
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2. Simulasi Pembentukan Parameter dan Struktur Kode Reed-Solomon (RS) 

Pada tahap awal dilakukan penetapan parameter-parameter dasar kode Reed-

Solomon, yang meliputi panjang codeword (𝑛) atau total simbol setelah 

encoding, panjang pesan (𝑘), kemampuan koreksi kesalahan (𝑡), serta 

pembentukan lapangan hingga 𝐺𝐹(2𝑚). Selanjutnya dilakukan pembentukan 

matriks generator (𝐺) dan matriks parity-check (𝐻) yang digunakan dalam 

proses encoding dan decoding.  

Langkah-langkah untuk simulasi pembentukan parameter dan struktur kode 

Reed-Solomon adalah sebagai berikut: 

a. Menetapkan Jumlah Bit per Simbol.  

Digunakan nilai 𝑚 = 8, sehingga setiap simbol direpresentasikan dengan 

8 bit dan operasi dilakukan dalam 𝐺𝐹(28).  

b. Menentukan Panjang Codeword. 

Panjang codeword 𝑛 ditentukan menggunakan Shortened Reed-Solomon 

code sehingga 𝑛 = 51. 

c. Menentukan Toleransi Kesalahan. 

Pada penelitian ini, perhitungan manual dilakukan dengan 𝑡 = 2 

kesalahan, sedangkan pada implementasi komputasi (coding) dilakukan 

pengujian dengan lima variasi jumlah kesalahan, yaitu 1,2,3,4, dan 5 

kesalahan pada tiap ayat untuk menguji batas efisiensi sistem. 

d. Menghitung Panjang Pesan.  

Panjang pesan 𝑘 = 47 diperoleh dari Persamaan (2.7). Sehingga 

parameter kode Reed-Solomon 𝑅𝑆(51, 47). 
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e. Membangkitkan Matriks Generator 𝐺.  

Matriks generator 𝐺 berukuran 𝑘 × 𝑛, dibentuk menggunakan perangkat 

lunak SageMath, berdasarkan evaluasi polinomial pesan pada titik-titik 𝛼𝑖𝑗 

di 𝐺𝐹(2𝑚).  

f. Membangkitkan Matriks Parity-check 𝐻.  

Matriks parity-check 𝐻 berukuran (𝑛 − 𝑘) × 𝑛, di mana setiap baris 

merupakan evaluasi dari 𝛼𝑗⋅𝑖 dengan 𝑗 = 1,2,… , 𝑛 − 𝑘 dan 𝑖 =

0,1,… , 𝑛 − 1. 

3. Simulasi Encoding Kode Reed-Solomon pada Kesalahan Penulisan Ayat Al-

Qur’an Menggunakan Pengkodean Huruf Hijaiyah. 

Proses encoding dalam kode Reed-Solomon dilakukan melalui beberapa 

tahapan sistematis. Adapun langkah-langkah dalam proses encoding sebagai 

berikut: 

a. Menentukan Pesan Asli (plaintext). 

Pesan asli direpresentasikan sebagai vektor pesan M dengan panjang k. 

Dalam penelitian ini, perhitungan manual menggunakan surah Al-Kahfi ayat 

8: 

 "وانا لجعلون ما عليها صعيدا جرزا"

Sedangkan pada implementasi komputasi (coding) dan evaluasi performa, 

dilakukan pengujian terhadap 1 − 5 kesalahan simbol kesalahan pada 10 

ayat Al-Qur’an. 
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b. Mengonversi Teks ke dalam Format Biner Unicode 16-bit.  

Setiap huruf Hijaiyah pada pesan dikonversi ke dalam representasi biner 

menggunakan format Unicode 16-bit berdasarkan Unicode Block Arab 

UTF-8. 

c. Mengelompokkan Hasil Biner Menjadi Blok 8-bit dalam 𝐺𝐹(28).  

Setiap 16 − bit Unicode dipecah menjadi 2 simbol masing-masing 8 − 𝑏𝑖𝑡, 

kemudian setiap blok direpresentasikan sebagai elemen pada lapangan  

hingga 𝐺𝐹(28). Representasi elemen pada lapangan menggunakan simbol 

𝛼, yang merupakan akar primitif dari polinomial primitif 𝑝(𝑥). 

d. Melakukan Padding. 

e. Jika jumlah simbol pada blok pesan kurang dari panjang pesan 𝑘, maka 

dilakukan proses padding dengan menambahkan simbol “0” hingga panjang 

blok mencapai 𝑘. Proses ini bertujuan untuk menyeragamkan panjang setiap 

vektor pesan sehingga dapat diproses lebih lanjut pada tahap encoding tanpa 

memengaruhi informasi asli yang terkandung dalam pesan. 

f. Melakukan Proses Encoding. 

Proses encoding pada kode Reed-Solomon bertujuan untuk mengubah pesan 

asli menjadi sebuah codeword yang memiliki kemampuan deteksi dan 

koreksi. Dalam penelitian ini proses encoding dilakukan dengan mengalikan 

pesan (𝑀) dengan matriks generator (𝐺) untuk menghasilkan codeword (𝐶) 

pada lapangan hinggan 𝐺𝐹(28) menggunakan Persamaan 2.10. Hasil akhir 
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dari proses ini adalah sebuah 𝐶 berukuran 𝑛 yang akan mengalami proses 

transmisi.  

4. Codeword 

Codeword (𝐶) adalah representasi dari data hasil proses encoding yang 

mengandung informasi asli beserta bit-bit redundansi. Jika terjadi gangguan 

atau kesalahan selama transmisi atau penyimpanan, codeword yang diterima 

(disebut vektor diterima) berbeda dari codeword asli. Vektor ini kemudian 

digunakan untuk proses koreksi kesalahan. 

5. Noise 

Menambahkan error (𝑒) sebanyak 𝑡 secara acak pada codeword hasil 

encoding. Kesalahan ini direpresentasikan dalam bentuk polinomial error 

𝑒(𝑥), sehingga membentuk vektor hasil penjumlahan antara codeword dan 

error 𝑣(𝑥) = 𝐶(𝑥) + 𝑒(𝑥). 

6. Simulasi Decoding Kode Reed-Solomon pada Kesalahan Penulisan Ayat Al-

Qur’an Menggunakan Pengkodean Huruf Hijaiyah. 

Setelah proses encoding dan penambahan kesalahan dilakukan, tahap 

selanjutnya adalah proses decoding untuk mendeteksi dan mengoreksi 

kesalahan yang terjadi pada data, sehingga informasi yang diterima dapat 

dikembalikan mendekati atau sama dengan pesan aslinya sesuai dengan 

kemampuan koreksi kode yang digunakan. Langkah-langkah proses decoding 

kode Reed-Solomon adalah sebagai berikut: 

a. Menghitung Sindrom. 

Sindrom dihitung dengan mengalikan matriks parity-check 𝐻 dengan 

vektor transpose dari codeword yang diterima 𝑣𝑇, sebagaimana pada 
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Persamaan (2.14). Tahap perhitungan sindrom ini juga berfungsi sebagai 

proses deteksi kesalahan pada data yang diterima. 

b. Menentukan Polinomial Lokasi Kesalahan (Error Locator Polynomial)  

Polinomial locator kesalahan 𝜎(𝑥) dan posisi kesalahan ditentukan 

menggunakan algoritma Berlekamp–Massey menggunakan Persamaan 

(2.15).  

c. Mencari Akar Polinomial Evaluasi Kesalahan (error).      

Menghitung akar polinomial evaluasi error 𝛺(𝑥) menggunakan algoritma 

Chien Search, dengan Persamaan (2.16). 

d. Menghitung Nilai Magnitude Kesalahan (error magnitude). 

Menghitung nilai besar kesalahan 𝐸𝑗 pada posisi 𝑗 menggunakan algoritma 

Forney, dengan Persamaan (2.17). 

e. Melakukan Proses Decoding untuk Memperoleh Kembali ke dalam pesan 

asli. 

Setelah codeword diterima dan terdapat kemungkinan kesalahan, langkah 

decoding dilakukan untuk mengoreksi simbol yang salah. Dengan 

menggunakan sindrom, polinomial locator, dan algoritma Forney, 

diperoleh posisi dan magnitudo error. Setiap simbol yang salah kemudian 

diperbaiki sehingga diperoleh codeword terkoreksi (𝐶) dalam bentuk 

simbol 𝐺𝐹(2𝑚): 

𝐶 = 𝑣 − 𝑒 

Hasil decoding ini tetap berada dalam domain 𝐺𝐹(2𝑚) dan belum 

dikonversi menjadi biner maupun teks, sehingga informasi asli terjaga 

sepenuhnya. 
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7. Output 

Output pada penelitian ini berupa teks ayat Al-Qur’an yang telah dikoreksi 

otomatis, tingkat keberhasilan deteksi kesalahan, dan tingkat keberhasilan 

koreksi kesalahan. Evaluasi dilakukan berdasarkan: 

a. Jumlah kesalahan yang terdeteksi dengan benar. 

b. Jumlah kesalahan berhasil dikoreksi. 

c. Kondisi sistem masih gagal mengoreksi (over t). 
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BAB IV  

 HASIL DAN PEMBAHASAN 

4.1    Simulasi Pembentukan Parameter dan Struktur Kode Reed-Solomon 

Dalam kode Reed-Solomon, parameter 𝑛 menyatakan panjang total dari blok 

kode (codeword), yaitu jumlah simbol setelah proses encoding. Sementara itu, 

parameter 𝑘 merupakan jumlah simbol pesan asli yang dikodekan sebelum 

ditambahkan simbol redudansi untuk keperluan deteksi dan koreksi kesalahan. 

Dengan demikian, 𝑛 − 𝑘 menyatakan banyaknya simbol parity yang ditambahkan 

pada proses encoding untuk meningkatkan kemampuan koreksi kesalahan. 

Langkah pertama dalam menentukan nilai 𝑛 dan 𝑘 adalah menetapkan nilai 

𝑚, yang menunjukkan banyaknya bit dalam satu simbol atau derajat dari lapangan 

hingga  𝐺𝐹(2𝑚). Nilai 𝑚 harus berupa bilangan bulat positif karena menentukan 

ukuran dan elemen dari lapangan hingga yang digunakan. Dalam penelitian ini 

digunakan 𝑚 = 8, sehingga operasi dilakukan pada lapangan hingga 𝐺𝐹(28). 

Berdasarkan teori kode Reed-Solomon, panjang maksimum blok kode ditentukan 

oleh persamaan 𝑛 = 2𝑚 − 1 = 28 − 1 = 255, sehingga untuk 𝑚 = 8 diperoleh 

panjang maksimum 𝑛 = 255. 

Namun, karena ukuran data yang dikodekan dalam penelitian ini tidak 

mencapai 255 simbol, maka digunakan bentuk shortened Reed-Solomon code atau 

kode RS yang dipendekkan. Shortened code merupakan versi kode Reed-Solomon 

yang panjangnya dikurangi dari panjang maksimum dengan cara menghilangkan 

sejumlah simbol awal dari pesan. Proses pemendekan ini tidak mengubah 

karakteristik dasar maupun kemampuan koreksi kesalahan dari kode RS asalnya, 
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tetapi menyesuaikan panjang codeword agar sesuai dengan ukuran data yang 

sebenarnya digunakan. 

Dalam penelitian ini digunakan kode 𝑅𝑆(51, 𝑘), yang merupakan hasil 

pemendekan dari kode maksimum 𝑅𝑆(255, 251) di lapangan hingga 𝐺𝐹(28). 

Artinya, setiap blok codeword terdiri atas 60 simbol pesan asli dan 4 simbol parity, 

dengan kemampuan untuk mengoreksi hingga dua simbol kesalahan dalam setiap 

blok. Penggunaan kode RS yang dipendekkan ini dipilih karena ukuran data (ayat 

penelitian) hanya memiliki total 512 bit atau setara dengan 64 simbol di 𝐺𝐹(28), 

sehingga parameter 𝑛 = 51 menjadi pilihan yang efisien dan sesuai dengan 

kebutuhan sistem. 

𝑛 = 51  

𝑡 = 2  

𝑘 = 𝑛 − 2𝑡 = 51 − 2 ∙ 2 = 47 

Pada penelitian ini, perhitungan manual dilakukan dengan mensimulasikan 

dua kesalahan (error) untuk menguji kemampuan sistem dalam melakukan koreksi 

hingga 𝑡 = 2 kesalahan. Dengan demikian, parameter yang digunakan adalah 𝑛 =

51 , 𝑘 = 47, dan 𝑡 = 2. Lapangan hingga 𝐺𝐹(28) digunakan dengan representasi 

simbol berdasarkan akar primitif α yang telah dicantumkan pada Tabel 2.5. 

Matriks generator 𝐺 dibentuk menggunakan perangkat lunak sagemath 

berdasarkan parameter kode yang telah ditentukan, yaitu 𝑛 = 51 dan 𝑘 = 47.  

Dengan demikian, diperoleh matriks generator 𝐺 berukuran 47 × 51 sebagai 

berikut: 
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𝐺 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⋯ 1
1 α5 α10 α15 α20 α25 α30 α35 α40 α45 α50 α55 α60 α65 α70 α75 α80 ⋯ α250

1 α10 α20 α30 α40 α50 α60 α70 α80 α90 α100α110α120α130α140α150α160 ⋯ α245

1 α15 α30 α45 α60 α75 α90 α105α120α135α150α165α180α195α210α222α240 ⋯ α240

1 α20 α40 α60 α80 α100α120α140α140α180α200α220α240 α5 α25 α45 α65 ⋯ α235

1 α25 α50 α75 α100α125α150α175α200α225α250 α20 α45 α70 α95 α120α145 ⋯ α230

1 α30 α60 α90 α120α150α180α210α240 α15 α45 α75 α105α135α165α195α225 ⋯ α225

1 α35 α70 α105α140α175α210α245 α25 α60 α95 α130α165α200α235 α15 α50 ⋯ α220

1 α40 α80 α120α160α200α240 α25 α65 α105 α9 α185α225 α10 α50 α90 α130 ⋯ α215

1 α45 α90 α135α180α225 α15 α60 α105α150α145α240 α30 α75 α120α165α210 ⋯ α210

1 α50 α100α150α200α250 α45 α95 α145α195α195 α40 α90 α140α190α240 α35 ⋯ α205

1 α55 α110α165α220 α20 α75 α130α185α240α245 α95 α150α205 α5 α60 α115 ⋯ α200

1 α60 α120α180α240 α45 α105α165α225 α30 α40 α150α210 α15 α75 α135α195 ⋯ α195

1 α65 α130α195 α5 α70 α135α200 α10 α75 α90 α205 α15 α80 α145α210 α20 ⋯ α190

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 α230α205α180α155α130α105 α80 α55 α30 α5 α235α210α185α160α135α110 ⋯ α25 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Selanjutnya, Matriks parity-check 𝐻 memiliki ukuran (𝑛 − 𝑘) × 𝑛 = 4 ×

51, dan berfungsi untuk mendeteksi dan mengoreksi kesalahan melalui perhitungan 

syndrome. Matriks 𝐻 dibentuk menggunakan sagemath berdasarkan perpangkatan 

dari elemen primitif 𝛼 di 𝐺𝐹(28). Adapun bentuk matriks 𝐻 sebagai berikut: 

𝐻 = [

1 α5 α10 α15 α20 α25 α30 α35 α40 α45 α50 α55 α60 ⋯ α250

1 α10 α20 α30 α40 α50 α60 α70 α80 α90 α100 α110 α120 ⋯ α245

1 α15 α30 α45 α60 α75 α90 α105 α120 α135 α150 α165 α180 ⋯ α240

1 α20 α40 α60 α80 α100 α120 α140 α160 α180 α200 α220 α240 ⋯ α235

] 

 

4.2  Proses Encoding 

Pada proses encoding menggunakan algoritma Reed-Solomon, misalkan teks 

pesan ayat Al-Qur’an صعيدا جرزا"    ,terdiri dari 31 karakter Unicode  "وانا لجعلون ما عليها 

yang mencakup huruf hijaiyah beserta spasi sebagai pemisah kata. Setiap karakter 

terlebih dahulu dikonversi ke dalam representasi Unicode 16 −bit, kemudian setiap 

kode 16 −bit tersebut dipisahkan menjadi dua simbol 8 −bit, sehingga diperoleh 

total 62 simbol. Dengan menggunakan parameter kode Reed-Solomon adalah 𝑛 =

51, 𝑡 = 2, 𝑘 = 47, blok pesan tersebut dibagi menjadi dua bagian, yaitu blok pesan 
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pertama 𝑀1 yang memuat 47 simbol dan blok pesan kedua 𝑀2 yang berisi 15 

simbol sisanya.  

Tabel 4.1 Representasi Ayat Unicode-16 dalam Bentuk Biner 

No Huruf Biner-16 Bit No Huruf Biner-16 Bit 

 0000011001000100 ل 17 0000011001001000 و 1

 0000011001001010 ي 18 0000011000100111 ا 2

 0000011001000111 ه 29 0000011001000110 ن 3

 0000011000100111 ا 20 0000011000100111 ا 4

5 ␣ 0000000000100000 21 ␣ 0000000000100000 

 0000011000110101 ص 22 0000011001000100 ل 1

 0000011000111001 ع 23 0000011000101100 ج 7

 0000011001001010 ي 24 0000011000111001 ع 8

 0000011000101111 د 25 0000011001000100 ل 9

 0000011000100111 ا 26 0000011001001000 و 61

 0000000000100000 ␣ 27 0000011001000110 ن 16

 0000011000101100 ج 28 0000000000100000 ␣ 12

 0000011000110001 ر 29 0000011001000101 م 13

 0000011000110010 ز 30 0000011000100111 ا 14

 0000011000100111 ا 31 0000000000100000 ␣ 15

    0000011000111001 ع 16

 

 = وانا لجعلون ما عليها صعيدا جرزا

[0000011001001000,0000011000100111,0000011001000110,000001100010011

1,0000000000100000,0000011001000100,0000011000101100,000001100011100

1,0000011001000100,0000011001001000,0000011001000110,000000000010000

0,0000011001000101,0000011000100111,0000000000100000,000001100011100

1,0000011001000100,0000011001001010,0000011001000111,000001100010011

1,0000000000100000,0000011000110101,0000011000111001,000001100100101

0,0000011000101111,0000011000100111,0000000000100000,000001100010110

0,0000011000110001,0000011000110010,0000011000100111] 

Setiap nilai 16 −bit dipisah menjadi dua bagian 8 −bit: 

[0000011001001000] = [00000110]   ∥   [01001000] 

Kode biner hasil konversi Unicode dibagi menjadi simbol sepanjang 8 bit sesuai 

dengan panjang elemen pada 𝐺𝐹(28). Setiap blok pesan memiliki panjang 47 

simbol, sesuai dengan 𝑘 = 47. 
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𝑀1 =

[
 
 
 
 
 
 
 
 
[00000110][01001000][00000110][00100111][00000110][01000110]

[00000110][00100111][00000000][00100000][00000110][01000100]
[00000110][00101100][00000110][00111001][00000110][01000100]

[00000110][01001000][00000110][01000110][00000000][00100000]
[00000110][01000101][00000110][00100111][00000000][00100000]

[00000110][00111001][00000110][01000100][00000110][01001010]
[00000110][01000111][00000110][00100111][00000000][00100000]

[00000110][00110101][00000110][00111001][00000110] ]
 
 
 
 
 
 
 
 

 

𝑀2 =

[
 
 
 
 
 
 
 
 
[01001010][00000110][00101111][00000110][00100111][00000000]

[00100000][00000110][00101100][00000110][00110001][00000110]
[00110010][00000110][00100111][00000000][00000000][00000000]

[00000000][00000000][00000000][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]

[00000000][00000000][00000000][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]

[00000000][00000000][00000000][00000000][00000000] ]
 
 
 
 
 
 
 
 

 

Setiap simbol 8 −bit dipetakan ke elemen 𝐺𝐹(28) berdasarkan representasi 

polinomial dari Tabel 2.5. 

𝑀1 = [α26, α226, α26, α33, α26, α48, α26, α33, 0, α5, α26, α102, α26, α240, α26, α154, 

           α26, α102, α26, α226, α26, α48, 0, α5, α26, α221, α26, α33, 0, α5, α26, α154, α26, α102 

             α26, α37, α26, α253, α26, α33, 0, α5, α26, α39, α26, α154, α26]  

𝑀2 = [α37, α26, α69, α26, α33, 0, α5, α26, α240, α26, α181, α26, α194, α26, α33, 0,0,  

             0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]  

Pada blok kedua (𝑀2) hanya terdapat 15 simbol representasi polinomial 

pada 𝐺𝐹(28). Oleh karena itu, dilakukan penambahan padding 32 simbol bernilai 

0 di bagian belakang untuk memenuhi panjang blok menjadi 47 simbol. Dengan 

demikian, setiap blok pesan memiliki panjang yang seragam, yaitu 47 simbol, 

sesuai dengan parameter 𝑘 pada kode Reed-Solomon. 

Langkah selanjutnya adalah proses encoding menggunakan matriks 

generator 𝐺. Proses encoding dilakukan dengan mengalikan vektor pesan 𝑀 = [𝑀0

, 𝑀1, . . . , 𝑀𝑘−1] dengan matriks generator 𝐺 berukuran 𝑘 × 𝑛, sehingga 

menghasilkan vektor kode 𝐶 = 𝑀 × 𝐺 sepanjang 𝑛 simbol. 
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Simbol pertama codeword dihitung dari: 

𝑐0 = ∑𝑚𝑖 ∙ 𝐺𝑖,0

46

𝑖=0

 

Karena kolom 𝑗 = 0 di mana 𝐺𝑖,0 = 1 sehingga setiap 𝑚𝑖 ⋅ 𝐺𝑖,0 = 𝑚𝑖 Jadi kolom 

0 =  [1, 1, 1, 1, . . . , 1] (panjang 47 simbol). 

Data pesan  𝑀1 pertama: 

𝑀1 = [α26, α226, α26, α33, α26, α48, α26, α33, 0, α5, α26, α102, α26, α240, α26, α154,  

           α26, α102, α26, α226, α26, α48, 0, α5, α26, α221, α26, α33, 0, α5, α26, α154, α26, α102  

           α26, α37, α26, α253, α26, α33, 0, α5, α26, α39, α26, α154, α26] 

Maka: 

𝑐0 = 𝛼26 ⋅ 1 ⊕ 𝛼226 ⋅ 1 ⊕ 𝛼26 ⋅ 1 ⊕ ⋯ ⊕ 𝛼26 ⋅ 1  

Hasil perhitungan simbol-simbol codeword yang diperoleh dari proses encoding 

ditampilkan pada Tabel 4.1. 

Tabel 4.2 Tabel Perhitungan XOR untuk Proses Encoding 
𝑖 𝑚𝑖 Operasi xor Hasil 𝑖 𝑚𝑖 Operasi xor Hasil 

𝑖 = 00 α26 0 ⊕  α26  α26 𝑖 = 24 α26  α248 ⊕  α26  α197 

𝑖 = 01 α226 α26 ⊕ α226  α34 𝑖 = 25 α221 α197 ⊕ α221  α59 

𝑖 = 02 α26 α34 ⊕ α26  α226 𝑖 = 26 α26 α51 ⊕ α26  α31 

𝑖 = 03 α33 α226 ⊕ α33  α61 𝑖 = 27 α33 α31 ⊕ α33  α203 

𝑖 = 04 α26 α61 ⊕ α26  α58 𝑖 = 28 0 α203 ⊕ 0  α203 

𝑖 = 05 α48 α58 ⊕ α48  α69 𝑖 = 29 α5 α203 ⊕ α5  α178 

𝑖 = 06 α26 α69 ⊕ α26  α147 𝑖 = 30 α26 α178 ⊕ α26  α37 

𝑖 = 07 α33 α147 ⊕ α33  α199 𝑖 = 31 α154 α37 ⊕ α154  α123 

𝑖 = 08 0 α199 ⊕ 0  α199 𝑖 = 32 α26 α123 ⊕  α26  α120 

𝑖 = 09 α5 α199 ⊕ α5  α130 𝑖 = 33 α102 α120 ⊕ α102  α113 

𝑖 = 10 α26 α130 ⊕ α26  α53 𝑖 = 34 α26 α113 ⊕ α26  α236 

𝑖 = 11 α102 α53 ⊕ α102  α250 𝑖 = 35 α37 α256 ⊕ α37  α211 

𝑖 = 12 α26 α250 ⊕ α26  α40 𝑖 = 36 α26 α211 ⊕ α26  α30 

𝑖 = 13 α240 α40 ⊕ α240  α48 𝑖 = 37 α253 α30 ⊕ α253  α33 

𝑖 = 14 α26 α48 ⊕ α26  α54 𝑖 = 38 α26 α33 ⊕ α26  α138 

𝑖 = 15 α154 α54 ⊕ α154  α152 𝑖 = 39 α33 α138 ⊕ α33  α26 

𝑖 = 16 α26 α152 ⊕ α26  α134 𝑖 = 40 0 α26 ⊕ 0  α26 

𝑖 = 17 α102 α134 ⊕ α102  α236 𝑖 = 41 α5 α26 ⊕ α5  α15 

𝑖 = 18 α26 α236 ⊕ α26  α218 𝑖 = 42 α26 α15 ⊕ α26  α5 

𝑖 = 19 α226 α218 ⊕ α226  α184 𝑖 = 43 α39 α5 ⊕ α39  α141 

𝑖 = 20 α26 α184 ⊕ α26  α140 𝑖 = 44 α26 α141 ⊕ α26  α14 

𝑖 = 21 α48 α140 ⊕ α48  α181 𝑖 = 45 α154 α14 ⊕ α154  α142 

𝑖 = 22 0 α181 ⊕ 0  α181 𝑖 = 46 α26 α142 ⊕ α26  α240 

𝑖 = 23 α5 α181 ⊕ α5  α248     
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Sehingga didapatkan simbol vektor codeword pertama adalah α240. 

𝐶1 = 𝑀1 × 𝐺 =  

 = [α26, α226, α26, α33, α26, α48, α26, α33, 0, α5, α26, α102, α26, α240, α26, α154, 

           α26, α102, α26, α226, α26, α48, 0, α5, α26, α221, α26, α33, 0, α5, α26, α154, α26, α102 

             α26, α37, α26, α253, α26, α33, 0, α5, α26, α39, α26, α154, α26]  × 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⋯ 1
1 α5 α10 α15 α20 α25 α30 α35 α40 α45 α50 α55 α60 α65 α70 α75 α80 ⋯ α250

1 α10 α20 α30 α40 α50 α60 α70 α80 α90 α100α110α120α130α140α150α160 ⋯ α245

1 α15 α30 α45 α60 α75 α90 α105α120α135α150α165α180α195α210α222α240 ⋯ α240

1 α20 α40 α60 α80 α100α120α140α140α180α200α220α240 α5 α25 α45 α65 ⋯ α235

1 α25 α50 α75 α100α125α150α175α200α225α250 α20 α45 α70 α95 α120α145 ⋯ α230

1 α30 α60 α90 α120α150α180α210α240 α15 α45 α75 α105α135α165α195α225 ⋯ α225

1 α35 α70 α105α140α175α210α245 α25 α60 α95 α130α165α200α235 α15 α50 ⋯ α220

1 α40 α80 α120α160α200α240 α25 α65 α105 α9 α185α225 α10 α50 α90 α130 ⋯ α215

1 α45 α90 α135α180α225 α15 α60 α105α150α145α240 α30 α75 α120α165α210 ⋯ α210

1 α50 α100α150α200α250 α45 α95 α145α195α195 α40 α90 α140α190α240 α35 ⋯ α205

1 α55 α110α165α220 α20 α75 α130α185α240α245 α95 α150α205 α5 α60 α115 ⋯ α200

1 α60 α120α180α240 α45 α105α165α225 α30 α40 α150α210 α15 α75 α135α195 ⋯ α195

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 α230α205α180α155α130α105 α80 α55 α30 α5 α235α210α185α160α135α110 ⋯ α25 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐶1 = [α240, α35, α39, α120, α153, α54, α227, α151, α233, α198, α85, α213, α44, α104, α3,  

α50, α26, α251, α173, α65, α39, α32, α25, α231, α133, α110, α113, α1, α43, α210, α151,  

α144, α11, α0, α174, α135, α84, α15, α124, α96, α18, α160, α127, α228, α178, α22, α216, α181,  

α52, α40, α196]  

𝐶2 = 𝑀2 × 𝐺 =  

      = [α37, α26, α69, α26, α33, 0, α5, α26, α240, α26, α181, α26, α194, α26, α33, 0,0  

             0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] × 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ⋯ 1
1 α5 α10 α15 α20 α25 α30 α35 α40 α45 α50 α55 α60 α65 α70 α75 α80 ⋯α250

1 α10 α20 α30 α40 α50 α60 α70 α80 α90 α100α110α120α130α140α150α160 ⋯α245

1 α15 α30 α45 α60 α75 α90 α105α120α135α150α165α180α195α210α222α240 ⋯α240

1 α20 α40 α60 α80 α100α120α140α140α180α200α220α240 α5 α25 α45 α65 ⋯α235

1 α25 α50 α75 α100α125α150α175α200α225α250 α20 α45 α70 α95 α120α145 ⋯α230

1 α30 α60 α90 α120α150α180α210α240 α15 α45 α75 α105α135α165α195α225 ⋯α225

1 α35 α70 α105α140α175α210α245 α25 α60 α95 α130α165α200α235 α15 α50 ⋯α220

1 α40 α80 α120α160α200α240 α25 α65 α105 α9 α185α225 α10 α50 α90 α130 ⋯α215

1 α45 α90 α135α180α225 α15 α60 α105α150α145α240 α30 α75 α120α165α210 ⋯α210

1 α50 α100α150α200α250 α45 α95 α145α195α195 α40 α90 α140α190α240 α35 ⋯α205

1 α55 α110α165α220 α20 α75 α130α185α240α245 α95 α150α205 α5 α60 α115 ⋯α200

1 α60 α120α180α240 α45 α105α165α225 α30 α40 α150α210 α15 α75 α135α195 ⋯ α195

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 α230α205α180α155α130α105 α80 α55 α30 α5 α235α210α185α160α135α110 ⋯ α25 ]
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𝐶2 = [α40, α243, α86, α119, α46, α75, α106, α116, α203, α91, α133, α21, α175, α8, α112, α21,  

α27, α231, α241, α22, α205, α216, α22, α84, α101, α246, α67, α30, α184, α96, α28, α226, α219, α25,  

α118, α141, α251, α182, α49, α181, α203, α46, α49, α162, α41, α113, α63, α199, α239, α72, α226]   

 

4.3  Transmisi (Penambahan Polinomial Error) 

Diasumsikan pada codeword pertama terjadi dua error, posisi error masing-

masing berlokasi pada posisi [5,20]. Nilai 𝑣1 kemudian diperoleh melalui proses 

perhitungan secara komputasi yaitu, 

𝑣1 = 𝐶1 + 𝑒 

𝑣1 = [α240, α35, α39, α120, α153, α54, α227, α151, α233, α198, α85, α213, α44, α104, α3, α50, 

α26, α251, α173, α65, α39, α32, α25, α231, α133, α110, α113, α1, α43, α210, α151, α144, α11, α0,  

α174, α135, α84, α15, α124, α96, α18, α160, α127, α228, α178, α22, α216, α181, α52, α40, α196] 

+ [0𝑥50 + 0𝑥49 + 0𝑥48 + 0𝑥47 + 0𝑥46 + 𝜶𝟏𝟒𝟔𝒙𝟒𝟓 + 0𝑥44 + 0𝑥43 + 0𝑥42 +

0𝑥410𝑥40 + 0𝑥39 + 0𝑥38 + 0𝑥37 + 0𝑥36 + 0𝑥35 + 0𝑥34 + 0𝑥33 + 0𝑥32 + 0𝑥31 +

𝜶𝟐𝟑𝟑𝒙𝟑𝟎 + 0𝑥29 + 0𝑥28 + 0𝑥27+0𝑥26+0𝑥25+0𝑥24 + 0𝑥23 + 0𝑥22 + 0𝑥21+0𝑥20 +

0𝑥19 + 0𝑥18 + 0𝑥17 + 0𝑥16 + 0𝑥15 + 0𝑥14 + 0𝑥13 + 0𝑥12 + 0𝑥11 + 0𝑥10 + 0𝑥9 +

0𝑥8 + 0𝑥7 + 0𝑥6 + 0𝑥5 + 0𝑥4 + 0𝑥3 + 0𝑥2 + 0𝑥1 + 0] = 

𝑣1 =

[α240, α35, α39, α120, α153, 𝛂𝟕𝟑, α227, α151, α233, α198, α85, α213, α44, α104, α3, α50, α26,  

α251, α173, α65, 𝛂𝟏𝟔𝟒, α32, α25, α231, α133, α110, α113, α1, α43, α210, α151, α144, α11, α0,  

α174, α135, α84, α15, α124, α96, α18, α160, α127, α228, α178, α22, α216, α181, α52, α40, α196] 

  

Pada codeword kedua, posisi error masing-masing berlokasi pada posisi [10,35] 

yaitu,  

𝑣2 = 𝐶2 + 𝑒 
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𝑣2 = [α40, α243, α86, α119, α46, α75, α106, α116, α203, α91, α133, α21, α175, α8, α112, α21, α27,  

α231, α241, α22, α205, α216, α22, α84, α101, α246, α67, α30, α184, α96, α28, α226, α219, α25,  

α118, α141, α251, α182, α49, α181, α203, α46, α49, α162, α41, α113, α63, α199, α239, α72, α226] +   

+ [0𝑥50 + 0𝑥49 + 0𝑥48 + 0𝑥47 + 0𝑥46 + 0𝑥45 + 0𝑥44 + 0𝑥43 + 0𝑥42 + 0𝑥41 +

𝛂𝟏𝟖𝟖𝒙𝟒𝟎 + 0𝑥39 + 0𝑥38 + 0𝑥37 + 0𝑥36 + 0𝑥35 + 0𝑥34 + 0𝑥33 + 0𝑥32 + 0𝑥31 +

0𝑥30 + 0𝑥29 + 0𝑥28 + 0𝑥27+0𝑥26+0𝑥25+0𝑥24 + 0𝑥23 + 0𝑥22 + 0𝑥21+0𝑥20 + 0𝑥19 +

0𝑥18 + 0𝑥17 + 0𝑥16 + 𝛂𝟏𝟖𝟔𝒙𝟏𝟓 + 0𝑥14 + 0𝑥13 + 0𝑥12 + 0𝑥11 + 0𝑥10 + 0𝑥9 + 0𝑥8 +

0𝑥7 + 0𝑥6 + 0𝑥5 + 0𝑥4 + 0𝑥3 + 0𝑥2 + 0𝑥1 + 0] = 

𝑣2 = [α40, α243, α86, α119, α46, α75, α106, α116, α203, α91, 𝛂𝟏𝟗𝟔, α21, α175, α8, α112, α21, α27,  

α231, α241, α22, α205, α216, α22, α84, α101, α246, α67, α30, α184, α96, α28, α226, α219, α25,  

α118, 𝛂𝟏𝟕𝟐, α251, α182, α49, α181, α203, α46, α49, α162, α41, α113, α63, α199, α239, α72, α226] 

 

4.4  Proses Decoding 

4.4.1 Proses Deteksi 

Sindrom adalah bagian utama dalam proses decoding Reed-Solomon karena 

digunakan untuk mendeteksi adanya kesalahan (error). 

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯+𝑣𝑛−1, 

dan α elemen primitif 𝐺𝐹(2⁸), maka sindrom ke-j: 

𝑆𝑗 = 𝑣(αj)∑ 𝑣𝑖 ∙ (α5(0+i))𝑗𝑛−1
𝑖=0 , 𝑗 = 1, 2,… , 2𝑡.  

𝑆𝑗 = ∑ 𝑣𝑖 ∙ (α5i)𝑗50
𝑖=0 , 𝑗 = 1, 2,3,4.  Atau, 

𝑆 = 𝐻 × 𝑣𝑖
𝑇 

1. Hitung 𝑆1 = 𝑣1 

Dalam perhitungan sindrom bisa juga menggunakan rumu𝑠 

𝑆1 = 𝐻 × 𝑣1
𝑇 
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𝑆1 = [

1 α5 α10α15α20 α25 α30 α35 α40 α45 α50 α55 α60 ⋯ α250

1 α10α20α30α40 α50 α60 α70 α80 α90 α100α110α120 ⋯ α245

1 α15α30α45α60 α75 α90 α105α120α135α150α165α180 ⋯ α240

1 α20α40α60α80α100α120α140α160α180α200α220α240 ⋯ α235

] ×

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛼240

𝛼35

𝛼39

𝛼120

𝛼153

𝛼73

𝛼227

𝛼151

𝛼233

𝛼198

𝛼85

𝛼213

𝛼44

𝛼104

𝛼3

𝛼50

𝛼26

𝛼251

𝛼173

𝛼65

𝛼39

𝛼32

𝛼25

⋮
𝛼196]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑆1 = [

𝛼236

𝛼163

𝛼49

𝛼51

] 

𝑆1(𝑥) = 𝑠0 + 𝑠1𝑥 + 𝑠2𝑥
2 + 𝑠3𝑥

3. 

𝑆1(𝑥) = 𝛼236 + 𝛼163𝑥 + 𝛼49𝑥2 + 𝛼51𝑥3. 

 

2. Hitung 𝑆2 = 𝑣2 

 𝑆2 = 𝐻 × 𝑣2
𝑇 

𝑆2 = [

1 α5 α10α15α20 α25 α30 α35 α40 α45 α50 α55 α60 ⋯ α250

1 α10α20α30α40 α50 α60 α70 α80 α90 α100α110α120 ⋯ α245

1 α15α30α45α60 α75 α90 α105α120α135α150α165α180 ⋯ α240

1 α20α40α60α80α100α120α140α160α180α200α220α240 ⋯ α235

] ×

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛼40

𝛼243

𝛼86

𝛼119

𝛼46

𝛼75

𝛼106

𝛼116

𝛼203

𝛼91

𝛼196

𝛼21

𝛼175

𝛼8

𝛼112

𝛼21

𝛼27

𝛼231

𝛼241

𝛼22

𝛼205

𝛼216

𝛼22

𝛼84

⋮
𝛼226]
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𝑆2 = [

𝛼166

𝛼138

𝛼247

𝛼248

] 

𝑆1(𝑥) = 𝑠0+𝑠1𝑥 + 𝑠2𝑥
2 + 𝑠3𝑥

3. 

𝑆1(𝑥) = 𝛼166 + 𝛼138𝑥+𝛼247𝑥2 + 𝛼248𝑥3. 

 

4.4.2 Menentukan Polonomial Lokasi Kesalahan 

Menentukan polynomial locator error menggunakan metode algoritma 

Berlekamp–Massey. 

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2 

1. Diketahui 𝑣1 

𝑆1 = [𝑠0, 𝑠1, 𝑠2, 𝑠3] = [𝛼236, 𝛼163, 𝛼49, 𝛼51] 

Inisialisasi 

𝐶(𝑥) = [𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2], polinomial penentu kesalahan 𝜎(𝑥) 

𝐵(𝑥) = Polinomial koneksi cadangan 

𝐿 = Derajat polinomial penentu kesalahan 𝐶(𝑥) 

𝑚 = Selisih iterasi sejak terakhir kali 𝐿 diperbarui 

𝑏 = Pembagi normalisasi 

𝑑 = Discrepancy (ketidaksesuaian) pada iterasi ke-n  

𝑆𝑖 = [𝑠0, 𝑠1, 𝑠2, 𝑠3] Sindrom ke-i  

a. Iterasi 𝑘𝑒 − 0 (𝑛 = 0) 

𝐶(𝑥) = 1  

𝐵(𝑥) = 1  

𝐿       = 0  

𝑚      = 1  
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𝑏       = 1  

𝑑 = ∑𝑐𝑖𝑠𝑛−𝑖

𝐿

𝑖=0

 

𝑑 = 𝑐0𝑠0 = 1 ∙ 𝑠0 = α236 

Karena 𝑑 ≠ 0 

𝑇(𝑥) = 𝐶(𝑥)  

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥)  

𝐶(𝑥) = 1 ⊕
𝛼236

1
𝑥 ⋅ 1 = 1 + 𝛼236𝑥  

Karena 2𝐿 ≤ 𝑛 (0 ≤ 0), maka: 

𝐶(𝑥) = 1 + 𝛼236𝑥  

𝐿       = 1  

𝐵(𝑥) = 1  

𝑏       = 𝛼236   

𝑚      = 1  

b. Iterasi 𝑘𝑒 − 1 (𝑛 = 1) 

𝐶(𝑥) = 1 + 𝛼236𝑥  

𝐿       = 1  

𝐵(𝑥) = 1  

𝑏       = 𝛼236   

𝑚      = 1  

𝑑 = 𝑐0𝑠1 + 𝑐1𝑠0 

𝑑 = 𝑠1 + 𝑐1 ⋅ 𝑠0 

                  𝑑 = α163 ⊕ (α236 ⋅ α236) 
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                 𝑑 = α163 ⊕ α217 = α116 

Karena 𝑑 ≠ 0 

𝑇(𝑥) = 𝐶(𝑥)  

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥)  

          = (1 + 𝛼236) ⊕
𝛼116

𝛼236 𝑥 ⋅ 1  

          = (1 + 𝛼236) ⊕ 𝛼135𝑥  

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥  

Karena 2𝐿 ≤ 𝑛 (2 ≤ 1 false) tidak terpenuhi, maka: 

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥  

𝐿       = 1, tetap  

𝐵(𝑥) = 1  

𝑏       = 𝛼236   

𝑚 + 1 = 2  

 

c. Iterasi 𝑘𝑒 − 2 (𝑛 = 2) 

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥  

𝐿       = 1  

𝐵(𝑥) = 1  

𝑏        = 𝛼236   

𝑚     = 2  

     𝑑 = 𝑐0𝑠2 + 𝑐1𝑠1 + 𝑐2𝑠0 

      𝑑 = 𝑠2 + 𝑐1 ∙ 𝑠1 + 0 ⋅ 𝑠0 

                                         𝑑 = α49 ⊕ ((α236 ⊕ α135) ⋅ α163) ⊕ (0 ⋅ α236) 
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                          𝑑 = α49 ⊕ ((α236 ⊕ α135) ⋅ α163) 

                                      𝑑 = α49 ⊕ ((α236 ⋅ α163)(α135 ⊕ α163)) 

                   𝑑 = α49 ⊕ α144 ⊕ α43 = α206 

Karena 𝑑 ≠ 0 

𝑇(𝑥) = 𝐶(𝑥)  

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥)  

          = (1 + (α236 ⊕ 𝛼135)𝑥) ⊕
𝛼206

𝛼236 𝑥2 ⋅ 1  

         = (1 + (α236 ⊕ 𝛼135)𝑥) ⊕ 𝛼225𝑥2  

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥 + 𝛼225𝑥2  

Karena 2𝐿 ≤ 𝑛 (2 ≤ 2) terpenuhi, maka: 

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥 + 𝛼225𝑥2   

𝐿       = 𝑛 + 1 − 𝐿 = 2  

𝐵(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥  

𝑏       = 𝛼206   

𝑚      = 1  

d. Iterasi 𝑘𝑒 − 3 (𝑛 = 3) 

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥 + 𝛼225𝑥2  

𝐿       = 2  

𝐵(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥  

𝑏       = 𝛼206   

𝑚      = 1  

                                   𝑑 = 𝑐0𝑠3 + 𝑐1𝑠2 + 𝑐2  

                                   𝑑 = 𝑠3 + 𝑐1 ∙ 𝑠2 + 𝑐2 ⋅ 𝑠1  
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            𝑑 = α51 ⊕ ((α236 ⊕ α135) ⋅ α49) ⊕ (α225 ⋅ α163) 

                                   𝑑 = α51 ⊕ ((α236 ⊕ α135) ⋅ α49)  

          𝑑 = α51 ⊕ (α236 ⋅ α49) ⊕ (α135 ⋅ α49) ⊕ α133 

                               𝑑 = α51 ⊕ (α30 ⊕ α184) ⊕ α133 = α153 

Karena 𝑑 ≠ 0 

𝑇(𝑥) = 𝐶(𝑥)  

𝐶(𝑥) = 𝐶(𝑥) −
153

206
𝑥𝑚 ∙ 𝐵(𝑥)  

𝐶(𝑥) = (1 + (α236 ⊕ 𝛼135)𝑥 + 𝛼225𝑥2) ⊕ α202𝑥 ⋅ (1 +

(α236 ⊕ 𝛼135)𝑥)  

𝐶(𝑥) = (1 + (α236 ⊕ 𝛼135)𝑥 + 𝛼225𝑥2) ⊕ (α202𝑥 + α202(α236 ⊕

𝛼135)𝑥2)   

C1new = c1 ⊕ α202 = (α236 ⊕ 𝛼135) ⊕ α202 = α224 

C2new = c2 ⊕ (α202B1) = α225 ⊕ (α202(α236 ⊕ 𝛼135)) 

C2new = α225 ⊕ (α183 ⊕ α82) = α125 

Jadi hasil akhir: 

𝐶(𝑥) = 1 + α224𝑥 + α125𝑥2  

Maka 

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2,        𝜎1 = α224, 𝜎2 = α125. 

2. Diketahui 𝑣2 

S2 = [𝑠0, 𝑠1, 𝑠2, 𝑠3] = [α166, α138, α247, α248] 

a. Iterasi 𝑘𝑒 − 0 (𝑛 = 0) 

𝐶(𝑥) = 1  

𝐵(𝑥) = 1  
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𝐿 = 0  

𝑚 = 1  

𝑏 = 1  

𝑑 = ∑𝑐𝑖𝑠𝑛−𝑖

𝐿

𝑖=0

 

𝑑 = 𝑐0𝑠0 = 1 ∙ 𝑠0 = α166 

Karena 𝑑 ≠ 0 

𝑇(𝑥) = 𝐶(𝑥)  

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥) = 1 ⊕

𝛼166

1
𝑥 ⋅ 1 = 1 + 𝛼166𝑥  

Karena 2𝐿 ≤ 𝑛 (0 ≤ 0), maka: 

𝐶(𝑥) = 1 + 𝛼166𝑥  

𝐿 = 1  

𝐵(𝑥) = 1  

𝑏 = 𝛼166   

𝑚 = 1  

b. Iterasi 𝑘𝑒 − 1 (𝑛 = 1) 

𝐶(𝑥) = 1 + 𝛼166𝑥  

𝐿 = 1  

𝐵(𝑥) = 𝑇(𝑥) = 1  

𝑏 = 𝛼166   

𝑚 = 1  

𝑑 = 𝑐0𝑠1 + 𝑐1𝑠0 

𝑑 = 𝑠1 + 𝑐1 ∙ 𝑠0 = α138 ⊕ (α166 ∙ α166) = α138 ⊕ α77 = α8 

Karena 𝑑 ≠ 0 
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𝑇(𝑥) = 𝐶(𝑥)  

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥) = (1 + 𝛼166𝑥) ⊕

𝛼8

𝛼166 𝑥 ⋅ 1 =

(1 + 𝛼166) ⊕ 𝛼97𝑥  

𝐶(𝑥) = 1 + (α236 ⊕ 𝛼135)𝑥 = 1 + 𝛼227𝑥 

Karena 2𝐿 ≤ 𝑛 tidak terpenuhi (2 ≤ 1 false), maka: 

𝐶(𝑥) = 1 + 𝛼227𝑥  

𝐿 = 1, tetap  

𝐵(𝑥) = 1  

𝑏 = 𝛼166   

𝑚 + 1 = 2  

c. Iterasi 𝑘𝑒 − 2 (𝑛 = 2) 

𝐶(𝑥) = 1 + 𝛼227𝑥  

𝐿 = 1  

𝐵(𝑥) = 1  

𝑏 = 𝛼166   

𝑚 = 2  

     𝑑 = 𝑐0𝑠2 + 𝑐1𝑠1 + 𝑐2𝑠0 

      𝑑 = 𝑠2 + 𝑐1 ∙ 𝑠1 + 0 ⋅ 𝑠0 

                  𝑑 = α247 ⊕ (α227 ⋅ α163) ⊕ 0 

                                              𝑑 = α247 ⊕ α(227+138)mod255 = α247 ⊕ α110 

𝑑 = α156                               

Karena 𝑑 ≠ 0 

𝑇(𝑥) = 𝐶(𝑥)  
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𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥)  

          = (1 + α227𝑥) ⊕
𝛼156

𝛼166 𝑥2 ⋅ 1  

          = (1 + α227𝑥) ⊕ 𝛼245𝑥2  

𝐶(𝑥) = 1 + α227𝑥 + 𝛼245𝑥2  

Karena 2𝐿 ≤ 𝑛 terpenuhi (2 ≤ 2), maka: 

𝐶(𝑥) = 1 + α227𝑥 + 𝛼245𝑥2   

𝐿       = 𝑛 + 1 − 𝐿 = 2  

𝐵(𝑥) = 1 + α227𝑥  

𝑏       = 𝛼156   

𝑚      = 1  

d. Iterasi 𝑘𝑒 − 3 (𝑛 = 3) 

𝐶(𝑥) = 1 + α227𝑥 + 𝛼245𝑥2   

𝐿       = 𝑛 + 1 − 𝐿 = 2  

𝐵(𝑥) = 1 + α227𝑥  

𝑏       = 𝛼156   

𝑚      = 1  

 𝑑 = 𝑐0𝑠3 + 𝑐1𝑠2 + 𝑐2𝑠1     

   = 𝑠3 + 𝑐1 ∙ 𝑠2 + 𝑐2 ⋅ 𝑠1 

                                   = α248 ⊕ (α227 ⋅ α247) ⊕ (α245 ⋅ α138) 

                   = α248 ⊕ α219 ⊕ α128 = α196   

Karena 𝑑 ≠ 0 

𝑇(𝑥) = 𝐶(𝑥)  

𝐶(𝑥) = 𝐶(𝑥) ⊕
𝑑

𝑏
𝑥𝑚 ∙ 𝐵(𝑥)  
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          = (1 + α227𝑥 + 𝛼245𝑥2) ⊕
196

156
𝑥 ⋅ (1 + α227𝑥 )  

𝐶(𝑥) = (1 + α227𝑥 + 𝛼245𝑥2) ⊕ α40𝑥 ⋅ (1 + α227𝑥 )   

𝐶(𝑥) = (1 + α227𝑥 + 𝛼245𝑥2) ⊕ (α40𝑥 + α12𝑥2 )  

C1new = α227 ⊕ α202 = α244 

              C2new = α245 ⊕ α12 = α225 

Jadi hasil akhir: 

𝐶(𝑥) = 1 + α244𝑥 + α225𝑥2  

Maka 

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2,        𝜎1 = α244, 𝜎2 = α225. 

 

4.4.3 Menentukan Posisi Kesalahan (Error Positions) 

1. 𝑣1 

Polynomial locator 𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2 

  𝜎(𝑥) = 1 + 𝛼224𝑥 + 𝛼125𝑥2 

𝜎0 = 1  

𝜎1 = 𝛼224  

𝜎2 = 𝛼125  

𝑥 = 𝜎(𝛼−𝑒) = 0 

𝜎(𝛼−𝑒) = 1 + 𝛼224𝛼−𝑒 + 𝛼125𝛼−2𝑒 

Untuk setiap 𝑒 = 0,1,2, … ,254 

𝜎(𝛼−𝑒)   = 1 + α224𝛼−𝑒 + α125𝛼−2𝑒   

𝜎(𝛼−25) = 1 + α224𝛼−25 + α125𝛼−2∙25 

𝜎(𝛼−25) = 1 + α224−25 + α125−50 

𝜎(𝛼−25) = 1 + α199 + α75 
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𝜎(𝛼−25) = 0 

 

𝜎(𝛼−𝑒)     = 1 + α224𝛼−𝑒 + α125𝛼−2𝑒 

𝜎(𝛼−100) = 1 + α224𝛼−100 + α125𝛼−2∙100 

𝜎(𝛼−100) = 1 + α224−100 + α125−200 

𝜎(𝛼−100) = 1 + α124 + α180 

𝜎(𝛼−100) = 0 

Jadi lokasi kesalahan pada 𝑣1, 𝑒 = 25, 𝑒 = 100 

Karena dalam codingan di 𝑅𝑆(255) peneliti menggunakan step 𝑠 = 5, maka 

𝑖 =
𝑒

𝑠
 

𝑒 = 25 ⇒ 𝑖 =
25

5
= 5  

𝑒 = 100 ⇒ 𝑖 =
100

5
= 20  

2. 𝑣2 

Polynomial locator 𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2 

𝜎(𝑥) = 1 + α244𝑥 + α225𝑥2 

𝜎0 = 1  

𝜎1 = α244  

𝜎2 = α225  

𝑥 = 𝜎(𝛼−𝑒) = 0 

𝜎(𝛼−𝑒) = 1 + α244𝛼−𝑒 + α225𝛼−2𝑒 

Untuk setiap 𝑒 = 0,1,2, … ,254 

𝜎(𝛼−𝑒)   = 1 + α244𝛼−𝑒 + α225𝛼−2𝑒   

𝜎(𝛼−50) = 1 + α244𝛼−50 + α225𝛼−2∙50 
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𝜎(𝛼−50) = 1 + α244−50 + α225−100 

𝜎(𝛼−50) = 1 + α194 + α125 

𝜎(𝛼−50) = 0 

 

𝜎(𝛼−𝑒)     = 1 + α244𝛼−𝑒 + α225𝛼−2𝑒 

𝜎(𝛼−175) = 1 + α244𝛼−175 + α225𝛼−2∙175 

𝜎(𝛼−175) = 1 + α244−175 + α225−350 

𝜎(𝛼−175) = 1 + α69 + α130 

𝜎(𝛼−175) = 0 

Jadi lokasi kesalahan pada 𝑣1, 𝑒 = 50, 𝑒 = 175 

Karena dalam codingan di 𝑅𝑆(255) peneliti menggunakan step 𝑠 = 5, maka 

𝑖 =
𝑒

𝑠
 

𝑒 = 50 ⇒ 𝑖 =
50

5
= 10  

𝑒 = 175 ⇒ 𝑖 =
175

5
= 35  

 

4.4.4 Menentukan Akar Polinomial Evaluasi Kesalahan (Error Evaluator 

Polynomial) 

1. 𝑣1 

𝛺(𝑥) = 𝜎(𝑥) ∙ 𝑆(𝑥)𝑚𝑜𝑑𝑥2𝑡 

𝜎(𝑥) = 1 + α224𝑥 + α125𝑥2 

𝑠0 = 𝛼236, 𝑠1 = 𝛼163, 𝑠2 = 𝛼49, 𝑠3 = 𝛼51, 𝜎1 = α224, 𝜎2 = α125  

𝛺0 = 𝑠0  

     = 𝛼236  
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𝛺1 = 𝑠1 ⊕ (𝑠0 ⋅ 𝜎1)  

      = 𝛼163 ⊕ (𝛼236 ⋅ 𝛼224)  

      = 𝛼163 ⊕ 𝛼205 = 𝛼183 

𝛺2 = 𝑠2 ⊕ (𝑠1 ⋅ 𝜎1) ⊕ (𝑠0 ⋅ 𝜎2)   

      = 𝛼49 ⊕ (𝛼163 ⋅ α224) ⊕ (α236 ⋅ α125)       

      = 𝛼49 ⊕ α132 ⊕ α106 = 0     

𝛺3 = 𝑠3 ⊕ (𝑠2 ⋅ 𝜎1) ⊕ (𝑠1 ⋅ 𝜎2)   

      = 𝛼51 ⊕ (𝛼49 ⋅ 𝛼224) ⊕ (𝛼163 ⋅ 𝛼125)   

      = 𝛼51 ⊕ α18 ⊕ α33 = 0      

𝛺(𝑥) = 𝛼236 + 𝛼183𝑥 + 0𝑥2 + 0𝑥3 

2. 𝑣2 

𝜎(𝑥) = 1 + α244𝑥 + α225𝑥2 

𝛺(𝑥) = 𝜎(𝑥) ⋅ 𝑆(𝑥)𝑚𝑜𝑑𝑥2𝑡 

𝑠0 = 𝛼166, 𝑠1 = 𝛼138, 𝑠2 = 𝛼247, 𝑠3 = 𝛼248, 𝜎1 = α244, 𝜎2 = α225  

𝛺0 = 𝑠0  

     = 𝛼166  

𝛺1 = 𝑠1 ⊕ (𝑠0 ⋅ 𝜎1)  

      = 𝛼138 ⊕ (𝛼166 ⋅ α244)  

      = 𝛼138 ⊕ 𝛼155 = 𝛼206 

𝛺2 = 𝑠2 ⊕ (𝑠1 ⋅ 𝜎1) ⊕ (𝑠0 ⋅ 𝜎2)   

      = 𝛼247 ⊕ (𝛼138 ⋅ α244) ⊕ (α166 ⋅ α225)       

      = 𝛼247 ⊕ α127 ⊕ α136 = 0     

𝛺3 = 𝑠3 ⊕ (𝑠2 ⋅ 𝜎1) ⊕ (𝑠1 ⋅ 𝜎2)   

      = 𝛼248 ⊕ (𝛼247 ⋅ 𝛼244) ⊕ (𝛼138 ⋅ 𝛼225)   
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      = 𝛼248 ⊕ α236 ⊕ α108 = 0      

𝛺(𝑥) = 𝛼166 + 𝛼206𝑥 + 0𝑥2 + 0𝑥3 

 

4.4.5 Menghitung Nilai Besar Kesalahan (Error Magnitude) 

1. 𝑣1 

Untuk 𝑒 = 25 (posisi 5) 

𝐸𝑗 = −
Ω(Xj

−1)

σ′(Xj
−1)

 

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2  

𝜎′(𝑥) = 𝜎1 + 2𝜎2𝑥  

𝜎′(𝑥) = 𝜎1  

𝑥 = 𝛼−𝑒 = 𝛼255−𝑒  

𝛺(𝑥) = 𝛼236 + 𝛼183𝑥  

Tetapi, karena 2 = 0 di 𝐺𝐹(2), 2𝜎2𝑥 = 0. Jadi, 

                                     𝐸𝑗 =
Ω(𝛼−𝑒𝑗)

𝜎1
 

     =
𝛼236 + 𝛼183 ∙ 𝛼255−25

𝛼224
 

=
𝛼236 + 𝛼183 ∙ 𝛼230

𝛼224
 

                =
𝛼236 + 𝛼158

𝛼224
=

𝛼115

𝛼224
= 𝛼146 

Untuk 𝑒 = 100 (posisi 20) 

𝐸𝑗 = −
Ω(Xj

−1)

σ′(Xj
−1)
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𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2  

𝜎′(𝑥) = 𝜎1 + 2𝜎2𝑥  

𝜎′(𝑥) = 𝜎1  

𝑥 = 𝛼−𝑒 = 𝛼255−𝑒  

𝛺(𝑥) = 𝛼236 + 𝛼183𝑥  

Tetapi, karena 2 = 0 di 𝐺𝐹(2), 2𝜎2𝑥 = 0. Jadi, 

                                    𝐸𝑗 =
Ω(𝛼−𝑒𝑗)

𝜎1
 

    =
𝛼236 + 𝛼183 ∙ 𝛼255−100

𝛼224
 

=
𝛼236 + 𝛼183 ∙ 𝛼155

𝛼224
 

           =
𝛼236 + 𝛼83

𝛼224
=

𝛼202

𝛼224
= 𝛼233 

Jadi, pada 𝑣1 nilai magnitude error pada posisi [5,20] adalah [𝛼146, 𝛼233]. 

2. 𝑣2 

Untuk 𝑒 = 50 (posisi 10) 

𝐸𝑗 = −
Ω(Xj

−1)

σ′(Xj
−1)

 

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2  

𝜎′(𝑥) = 𝜎1 + 2𝜎2𝑥  

𝜎′(𝑥) = 𝜎1  

𝑥 = 𝛼−𝑒 = 𝛼255−𝑒  

𝛺(𝑥) = 𝛼166 + 𝛼206𝑥  

Tetapi, karena 2 = 0 di 𝐺𝐹(2), 2𝜎2𝑥 = 0. Jadi, 
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𝐸𝑗 =
Ω(𝛼𝑒𝑗)

σ1
 

    =
𝛼166 + 𝛼206 ∙ 𝛼255−50

𝛼244
 

             =
𝛼166 + 𝛼206 ∙ 𝛼205

𝛼224
 

                =
𝛼166 + 𝛼156

𝛼244
=

𝛼177

𝛼244
= 𝛼188 

Untuk 𝑒 = 175 (posisi 35) 

𝐸𝑗 = −
Ω(Xj

−1)

σ′(Xj
−1)

 

𝜎(𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥
2  

𝜎′(𝑥) = 𝜎1 + 2𝜎2𝑥  

𝜎′(𝑥) = 𝜎1  

𝑥 = 𝛼−𝑒 = 𝛼255−𝑒  

𝛺(𝑥) = 𝛼166 + 𝛼206𝑥  

Tetapi, karena 2 = 0 di 𝐺𝐹(2), 2𝜎2𝑥 = 0. Jadi, 

                                  𝐸𝑗  =
Ω(𝛼−𝑒𝑗)

σ1
 

       =
𝛼166 + 𝛼206 ∙ 𝛼255−175

𝛼244
 

             =
𝛼166 + 𝛼183 ∙ 𝛼80

𝛼224
 

               =
𝛼166 + 𝛼31

𝛼244
=

𝛼175

𝛼244
= 𝛼186 
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Jadi, pada 𝑣2 nilai magnitude error pada posisi [10,35] adalah 

[𝛼188, 𝛼186]. 

 

4.4.6 Melakukan Koreksi Kesalahan pada Codeword 

Proses koreksi dilakukan menggunakan persamaan: 

𝐶 = 𝑣 − 𝑒  

1. Koreksi pada Codeword (𝐶1) 

Pada codeword pertama terdeteksi dua kesalahan (error), yaitu masing-

masing pada posisi ke−[5,20] dan nilai magnitude error-nya [𝛼146, 𝛼233]. 

Dengan demikian proses koreksi dilakukan sebagai: 

𝐶1 = 𝑣1 − 𝑒 

𝐶1 = [α240, α35, α39, α120, α153, 𝛂𝟕𝟑, α227, α151, α233, α198, α85, α213, α44, α104,  

α3, α50, α26, α251, α173, α65, 𝛂𝟏𝟔𝟒, α32, α25, α231, α133, α110, α113, α1, α43, α210,  

α151, α144, α11, α0, α174, α135, α84, α15, α124, α96, α18, α160, α127, α228, α178,  

α22, α216, α181, α52, α40, α196] −  

[0𝑥50 + 0𝑥49 + 0𝑥48 + 0𝑥47 + 0𝑥46 + 𝜶𝟏𝟒𝟔𝒙𝟒𝟓 + 0𝑥44 + 0𝑥43 +

0𝑥42 + 0𝑥41 + 0𝑥40 + 0𝑥39 + 0𝑥38 + 0𝑥37 + 0𝑥36 + 0𝑥35 + 0𝑥34 +

0𝑥33 + 0𝑥32 + 0𝑥31 + 𝜶𝟐𝟑𝟑𝒙𝟑𝟎 + 0𝑥29 + 0𝑥28 + 0𝑥27+0𝑥26+0𝑥25 +

0𝑥24 + 0𝑥23 + 0𝑥22 + 0𝑥21+0𝑥20 + 0𝑥19 + 0𝑥18 + 0𝑥17 + 0𝑥16 +

0𝑥15 + 0𝑥14 + 0𝑥13 + 0𝑥12 + 0𝑥11 + 0𝑥10 + 0𝑥9 + 0𝑥8 + 0𝑥7 + 0𝑥6 +

0𝑥5 + 0𝑥4 + 0𝑥3 + 0𝑥2 + 0𝑥1 + 0] 

= [α240, α35, α39, α120, α153, 𝛂𝟓𝟒, α227, α151, α233, α198, α85, α213, α44, α104,  

α3, α50, α26, α251, α173, α65, 𝛂𝟑𝟗, α32, α25, α231, α133, α110, α113, α1, α43, α210,  

α151, α144, α11, α0, α174, α135, α84, α15, α124, α96, α18, α160, α127, α228, α178,  
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α22, α216, α181, α52, α40, α196]  

Hasil ini menunjukkan bahwa kedua error pada posisi [5,20] telah berhasil 

diperbaiki, sehingga nilai (𝐶1) kembali sesuai dengan hasil encoding awal. 

2. Koreksi pada Codeword (𝐶2) 

 Pada codeword kedua terdeteksi dua kesalahan (error), yaitu masing-

masing pada posisi ke−[10,35] dan nilai magnitude error-nya [𝛼188, 𝛼186]. 

Dengan demikian proses koreksi dilakukan sebagai: 

𝐶2 = 𝑣2 − 𝑒 

𝐶2 = [α40, α243, α86, α119, α46, α75, α106, α116, α203, α91, 𝛂𝟏𝟗𝟔, α21, α175, α8, α112, 

α21, α27, α231, α241, α22, α205, α216, α22, α84, α101, α246, α67, α30, α184, α96, α28,  

               α226, α219, α25, α118, 𝛂𝟏𝟕𝟐, α251, α182, α49, α181, α203, α46, α49, α162, α41, α113, α63, 

α239, α72, α226] +  

[0𝑥50 + 0𝑥49 + 0𝑥48 + 0𝑥47 + 0𝑥46 + 0𝑥45 + 0𝑥44 + 0𝑥43 + 0𝑥42 +

0𝑥41 + 𝜶𝟏𝟖𝟖𝒙𝟒𝟎 + 0𝑥39 + 0𝑥38 + 0𝑥37 + 0𝑥36 + 0𝑥35 + 0𝑥34 + 0𝑥33 +

0𝑥32 + 0𝑥31 + 0𝑥30 + 0𝑥29 + 0𝑥28 + 0𝑥27+0𝑥26+0𝑥25 + 0𝑥24 +

0𝑥23 + 0𝑥22 + 0𝑥21+0𝑥20 + 0𝑥19 + 0𝑥18 + 0𝑥17 + 0𝑥16 + 𝜶𝟏𝟖𝟔𝒙𝟏𝟓 +

0𝑥14 + 0𝑥13 + 0𝑥12 + 0𝑥11 + 0𝑥10 + 0𝑥9 + 0𝑥8 + 0𝑥7 + 0𝑥6 + 0𝑥5 +

0𝑥4 + 0𝑥3 + 0𝑥2 + 0𝑥1 + 0] = 

[α40, α243, α86, α119, α46, α75, α106, α116, α203, α91, 𝛂𝟏𝟑𝟑, α21, α175, α8, α112,  

α21, α27, α231, α241, α22, α205, α216, α22, α84, α101, α246, α67, α30, α184, α96, α28,  

               α226, α219, α25, α118, 𝛂𝟏𝟒𝟏, α251, α182, α49, α181, α203, α46, α49, α162, α41, α113, α63, 

α239, α72, α226]  

Hasil ini menunjukkan bahwa kedua error pada posisi [10,35] telah berhasil 

diperbaiki, sehingga nilai (𝐶2) kembali sesuai dengan hasil encoding awal. 
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4.4.7 Proses Decoding untuk Mengembalikan Codeword yang Telah 

Dikoreksi dengan Pesan Asli 

Setelah codeword terkoreksi maka perlu mengembalikan codeword ke 

bentuk pesan aslinya dengan mengambil 𝑘 simbol pertama menggunakan 

SageMath maka di peroleh kembali, 

𝐶1 = [α26, α226, α26, α33, α26, α48, α26, α33, 0, α5, α26, α102, α26, α240, α26, α154, 

           α26, α102, α26, α102, α26, α48, 0, α5, α26, α221, α26, α33, 0, α5, α26, α154, α26, α102 

             α26, α37, α26, α253, α26, α33, 0, α5, α26, α39, α26, α154, α26]  

𝐶1 =

[
 
 
 
 
 
 
 
 
[00000110][01001000][00000110][00100111][00000110][01000110]

[00000110][00100111][00000000][00100000][00000110][01000100]

[00000110][00101100][00000110][00111001][00000110][01000100]

[00000110][01001000][00000110][01000110][00000000][00100000]
[00000110][01000101][00000110][00100111][00000000][00100000]

[00000110][00111001][00000110][01000100][00000110][01001010]

[00000110][01000111][00000110][00100111][00000000][00100000]

[00000110][00110101][00000110][00111001][00000110] ]
 
 
 
 
 
 
 
 

 

 

𝐶2 = [α37, α26, α69, α26, α33, 0, α5, α26, α240, α26, α181, α26, α194, α26, α33, 0,0, 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]   

𝐶2 =

[
 
 
 
 
 
 
 
 
[01001010][00000110][00101111][00000110][00100111][00000000]
[00100000][00000110][00101100][00000110][00110001][00000110]
[00110010][00000110][00100111][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]
[00000000][00000000][00000000][00000000][00000000][00000000]

[00000000][00000000][00000000][00000000][00000000] ]
 
 
 
 
 
 
 
 

 

Tahap terakhir dalam proses ini adalah membagi deretan bit tersebut 

menjadi beberapa blok dengan panjang masing-masing 8-bit. Proses ini bertujuan 

untuk mengkonversi setiap blok biner menjadi karakter yang sesuai berdasarkan 

tabel Unicode. Setelah dilakukan pembagian dan konversi, diperoleh karakter 

karakter sebagai berikut: 
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Tabel 4.3 Hasil Decoding Kembali ke Pesan Asli 

Huruf Biner-16 Bit Huruf Biner-16 Bit 

 [0000011001000100] ل [0000011001001000] و
 [0000011001001010] ي [0000011000100111] ا
 [0000011001000111] ه [0000011001000110] ن
 [0000011000100111] ا [0000011000100111] ا

␣ [0000000000100000] ␣ [0000000000100000] 

 [0000011000110101] ص [0000011001000100] ل
 [0000011000111001] ع [0000011000101100] ج
 [0000011001001010] ي [0000011000111001] ع
 [0000011000101111] د [0000011001000100] ل
 [0000011000100111] ا [0000011001001000] و
 [0000000000100000] ␣ [0000011001000110] ن

 [0000011000101100] ج [0000000000100000] ␣

 [0000011000110001] ر [0000011001000101] م
 [0000011000110010] ز [0000011000100111] ا

 [0000011000100111] ا [0000000000100000] ␣

   [0000011000111001] ع

 

Dengan demikian, hasil akhir dari proses decoding berhasil memulihkan 

pesan asli yang dikirimkan, yakni lafadz "وانا لجعلون ما عليها صعيدا جرزا"  secara 

benar dan tanpa kesalahan. 

 

4.5 Analisis Hasil dengan Beberapa Paremeter Kode Reed-Solomon 

Pada penelitian ini, kode Reed–Solomon diterapkan pada sepuluh ayat Al-

Qur’an dengan panjang kode tetap 𝑛 = 51. Jumlah kesalahan yang disisipkan pada 

tiap ayat divariasikan antara satu hingga lima simbol sehingga parameter 

kemampuan koreksi 𝑡 menyesuaikan, dengan nilai 𝑘 = 𝑛 − 2𝑡 dihitung otomatis 

oleh sistem. Seluruh komputasi dilakukan pada lapangan hingga 𝐺𝐹(2⁸) 

menggunakan SageMath. Analisis kinerja difokuskan pada empat aspek utama: 
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keberhasilan deteksi, keberhasilan koreksi, konsistensi parameter, dan stabilitas 

decoding ketika jumlah error meningkat. 

Tabel 4.4 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 1 Kesalahan 
No  Surah:Ayat Banyak 

Simbol 

𝑹𝑺(𝒏, 𝒌, 𝒕) Posisi Error Hasil Deteksi 

& Koreksi 

Keterangan 

1 18:48  31 (51,49,1) 𝐶1 = 5, 𝐶2 = 10 1 error Sesuai 

2 2:2 33 (51,49,1) 𝐶1 = 2, 𝐶2 = 7 1 error Sesuai 

3 4:48 39 (51,49,1) 𝐶1 = 3, 𝐶2 = 5 1 error Sesuai 

4 8:3 39 (51,49,1) 𝐶1 = 1, 𝐶2 = 8 1 error Sesuai 

5 79:15 17 (51,49,1) 𝐶1 = 4, 𝐶2 = 2 1 error Sesuai 

6 15:55 38 (51,49,1) 𝐶1 = 6, 𝐶2 = 14 1 error Sesuai 

7 23:49 35 (51,49,1) 𝐶1 = 0, 𝐶2 = 20 1 error Sesuai 

8 35:16 28 (51,49,1) 𝐶1 = 9, 𝐶2 = 3 1 error Sesuai 

9 68:33 46 (51,49,1) 𝐶1 = 12, 𝐶2 = 6 1 error Sesuai 

10 89:5 21 (51,49,1) 𝐶1 = 2, 𝐶2 = 5 1 error Sesuai 

 

Berdasarkan Tabel 4.4 yang memuat sepuluh ayat uji pada konfigurasi 𝑡 =

 1 pada pengujian ini memakan waktu sekitar 5 detik, seluruh ayat memiliki 

parameter (51, 49, 1). Konfigurasi ini memungkinkan sistem mendeteksi serta 

mengoreksi tepat satu kesalahan simbol pada setiap codeword. Data pada tabel 

menunjukkan konsistensi penuh: setiap ayat mengalami satu error selama 

transmisi, dan seluruh error berhasil dikoreksi sebagaimana ditunjukkan oleh 

kecocokan antara kolom “Hasil Deteksi”, “Hasil Koreksi”, dan keterangan 

“Sesuai”. 

Proses decoding pada 𝑡 = 1 bersifat paling sederhana karena hanya 

memerlukan dua sindrom awal, yaitu 𝑆1 = 𝑣(𝛼), dan  𝑆2 = 𝑣(𝛼2), dengan 𝑣(𝑥) 

merupakan codeword yang diterima. Kedua sindrom tersebut selanjutnya 

digunakan untuk menyusun polinomial error locator. 

𝛬(𝑥) = 1 + 𝜆1𝑥,           𝜆1 =
𝑆1

𝑆2
,  

Pencarian akar polinomial ini hanya menghasilkan satu posisi kesalahan, dan 

magnitudo error dihitung menggunakan bentuk dasar rumus Forney. Akibatnya, 
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decoding berlangsung cepat dan deterministik. Seluruh codeword berhasil 

dipulihkan ke bentuk valid. 

Tabel 4.5 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 2 Kesalahan 
No  Surah:Ayat Banyak 

Simbol 

𝑹𝑺 

(𝒏, 𝒌, 𝒕) 
Posisi Error Hasil Deteksi 

& Koreksi 

Keterangan 

1 18:48  31 (51,47,2)  𝐶1 = 5,20  

𝐶2 = 10,35  

2 error Sesuai 

2 2:2 33 (51,47,2) 𝐶1 = 2,14  

𝐶2 = 7,30  
2 error Sesuai 

3 4:48 39 (51,47,2) 𝐶1 = 3,15  

𝐶2 = 5,22  
2 error Sesuai 

4 8:3 39 (51,47,2) 𝐶1 = 1,37  

𝐶2 = 8,3  
2 error Sesuai 

5 79:15 17 (51,47,2) 𝐶1 = 4,18  

𝐶2 = 2,28  
2 error Sesuai 

6 15:55 38 (51,47,2) 𝐶1 = 6,11  

𝐶2 = 14,26  
2 error Sesuai 

7 23:49 35 (51,47,2) 𝐶1 = 0,16  

𝐶2 = 20,40  
2 error Sesuai 

8 35:16 28 (51,47,2) 𝐶1 = 9,21  

𝐶2 = 3,17  
2 error Sesuai 

9 68:33 46 (51,47,2) 𝐶1 = 12,13  

𝐶2 = 6,48  
2 error Sesuai 

10 89:5 21 (51,47,2) 𝐶1 = 2,30  

𝐶2 = 5,25  
2 error Sesuai 

 

Berdasarkan Tabel 4.5, pada pengujian ini memakan waktu sekitar 6 detik 

dengan konfigurasi 𝑡 = 2 menggunakan parameter (51, 47, 2) , sehingga kode 

Reed–Solomon dapat mengoreksi dua kesalahan simbol dalam satu codeword. 

Proses decoding dimulai dengan menghitung empat sindrom awal, yaitu 𝑆1, 𝑆2, 𝑆3

, dan 𝑆4. Keempat sindrom ini memberikan informasi yang cukup untuk 

memastikan bahwa jumlah kesalahan berada dalam batas toleransi sistem. 

Secara matematis, dua kesalahan menghasilkan polinomial error locator 

berderajat dua, 

𝛬(𝑥) = 1 + 𝜆1𝑥 + 𝜆2𝑥
2, 

yang dihitung melalui algoritma Berlekamp–Massey. Akar-akar polinomial 

tersebut menentukan dua posisi simbol yang rusak melalui pengujian 𝛬(𝛼−𝑖) =0. 

Setelah posisi kesalahan ditemukan, magnitudo masing-masing kesalahan dihitung 



96 

 

menggunakan rumus Forney. Pada kasus dua error, perhitungan melibatkan 

turunan formal 𝛬′(𝑥) serta evaluasi sindrom dalam 𝐺𝐹 (28). Koreksi kemudian 

diberikan dengan mengurangi magnitudo kesalahan dari dua simbol yang rusak, 

sehingga codeword kembali ke bentuk yang valid. 

Dengan demikian, meskipun kompleksitas decoding meningkat akibat jumlah 

sindrom yang lebih banyak dan polinomial berderajat lebih tinggi, konfigurasi 𝑡 =

 2 tetap mampu memulihkan pesan selama jumlah kesalahan tidak melebihi dua 

simbol. 

Berdasarkan Tabel 4.6, pada pengujian ini memakan waktu sekitar 5 detik 

dengan peningkatan kemampuan koreksi 𝑡 = 3 dan parameter (51, 45, 3) 

memungkinkan sistem menangani hingga tiga kesalahan simbol dalam satu 

codeword. Proses decoding dimulai dengan perhitungan enam sindrom pertama 

(𝑆1 − 𝑆6) yang memberikan informasi lengkap mengenai struktur kerusakan. 

Tabel 4.6 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 3 Kesalahan 
No  Surah:Ayat Banyak 

Simbol 

𝑹𝑺 

(𝒏, 𝒌, 𝒕) 

Posisi Error Hasil Deteksi 

& Koreksi 

Keterangan 

1 18:48  31 (51,45,3)  𝐶1 = 5,20,34  

𝐶2 = 10,35,21  

3 error Sesuai 

2 2:2 33 (51,45,3) 𝐶1 = 2,14,17  

𝐶2 = 7,30,34  

3 error Sesuai 

3 4:48 39 (51,45,3) 𝐶1 = 3,15,30  

𝐶2 = 5,22,47  

3 error Sesuai 

4 8:3 39 (51,45,3) 𝐶1 = 1,37, 30  

𝐶2 = 8,45,45  

3 error Sesuai 

5 79:15 17 (51,45,3) 𝐶1 = 4,18,7  

𝐶2 = 2,28,30  

3 error Sesuai 

6 15:55 38 (51,45,3) 𝐶1 = 6,11,24  

𝐶2 = 14,31,47   

3 error Sesuai 

7 23:49 35 (51,45,3) 𝐶1 = 0,2,47  

𝐶2 = 20,40,32  

3 error Sesuai 

8 35:16 28 (51,45,3) 𝐶1 = 9,21,49  

𝐶2 = 3,17,45  

3 error Sesuai 

9 68:33 46 (51,45,3) 𝐶1 = 12,13,14 

𝐶2 = 6,22,20  

3 error Sesuai 

10 89:5 21 (51,45,3) 𝐶1 = 2,30,48  

𝐶2 = 5,25,24  

3 error Sesuai 
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Algoritma Berlekamp–Massey menghasilkan polinomial error locator 𝛬(𝑥), 

berderajat tiga, 

𝛬(𝑥) = 1 + 𝜆1𝑥 + 𝜆2𝑥
2 + 𝜆3𝑥

3.  

Derajat dari polinomial ini bersifat penting, karena mencerminkan jumlah 

error yang terdeteksi. Jika derajatnya tepat tiga, maka sistem secara matematis 

konsisten bahwa terdapat tiga simbol yang rusak. Setelah posisi error diketahui, 

tahap berikutnya adalah perhitungan magnitudo kesalahan melalui rumus Forney 

yang telah diperluas untuk kasus lebih dari dua kerusakan. Rumus Forney untuk 

derajat tiga melibatkan evaluasi turunan polinomial locator serta polinomial 

evaluator 𝛺(𝑥).  

Ketika ketiga simbol telah dikoreksi, codeword kembali memenuhi seluruh 

persamaan paritas kode Reed–Solomon. Dengan demikian, pesan asli dapat 

dipulihkan tanpa kehilangan informasi apa pun. Kasus 𝑡 = 3 memperlihatkan 

bahwa walaupun beban komputasi meningkat, kode Reed–Solomon tetap dapat 

bekerja secara optimal untuk koreksi kesalahan multi-simbol selama jumlah 

kesalahan masih berada di bawah kapasitas koreksi maksimum. 

Berdasarkan Tabel 4.7, pada pengujian ini memakan waktu sekitar 5 detik 

dengan konfigurasi 𝑡 = 4 dan parameter (51, 43, 4) menunjukkan bahwa setiap 

codeword dapat menampung hingga empat kesalahan simbol. Hasil uji 

memperlihatkan bahwa seluruh ayat yang mengandung empat error berhasil 

dipulihkan secara tepat oleh decoder. Hal ini dibuktikan melalui kesesuaian antara 

jumlah kesalahan yang terdeteksi, kesalahan yang dikoreksi, serta hasil akhir yang 

kembali identik dengan pesan asli. Dari sisi proses, decoding memerlukan delapan 

sindrom (𝑆1, … , 𝑆8) dan menghasilkan polinomial error locator berderajat empat,   
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𝛬(𝑥) = 1 + 𝜆1𝑥 + 𝜆2𝑥
2 + 𝜆3𝑥

3 + 𝜆4𝑥
4.  

Tabel 4.7 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 4 Kesalahan 
No  Surah:Ayat Banyak 

Simbol 

𝑹𝑺 

(𝒏, 𝒌, 𝒕) 
Posisi Error Hasil Deteksi 

& Koreksi 

Keterangan 

1 18:48  31 (51,43,4)  𝐶1 = 5,20,22,10  

𝐶2 = 10,35,39,27  

4 error Sesuai 

2 2:2 33 (51,43,4) 𝐶1 = 2,14,15,48  

𝐶2 = 7,30,10,10  

4 error Sesuai 

3 4:48 39 (51,43,4) 𝐶1 = 3,15,30,10  

𝐶2 = 5,22,23,50  
4 error Sesuai 

4 8:3 39 (51,43,4) 𝐶1 = 1,3, 44,39  

𝐶2 = 8,23,48,45  
4 error Sesuai 

5 79:15 17 (51,43,4) 𝐶1 = 4,18,1,36  

𝐶2 = 2,28,27,26  
4 error Sesuai 

6 15:55 38 (51,43,4) 𝐶1 = 6,11,24,11  

𝐶2 = 14,35,25,17   
4 error Sesuai 

7 23:49 35 (51,43,4) 𝐶1 = 0,28,14,45  

𝐶2 = 20,40,24,11  
4 error Sesuai 

8 35:16 28 (51,43,4) 𝐶1 = 9,21,19,15  

𝐶2 = 3,17,45,32  
4 error Sesuai 

9 68:33 46 (51,43,4) 𝐶1 = 12,13,14,15 

𝐶2 = 6,39,39,25  
4 error Sesuai 

10 89:5 21 (51,43,4) 𝐶1 = 2,30,48,49  

𝐶2 = 5,25,31,20  
4 error Sesuai 

 

Meskipun peningkatan nilai 𝑡 menyebabkan bertambahnya beban komputasi 

terutama pada tahap pencarian akar dan perhitungan magnitudo kesalahan seluruh 

langkah tetap berjalan stabil dan konsisten. Keberhasilan pemulihan seluruh 

codeword pada konfigurasi ini menunjukkan bahwa sistem masih berada dalam 

batas kapasitas koreksi maksimum dan seluruh mekanisme decoding bekerja secara 

deterministik. 

Dengan demikian, pada 𝑡 =  4 algoritma tetap mampu melakukan deteksi 

serta koreksi multi-simbol dengan tingkat akurasi penuh, meskipun kompleksitas 

matematis meningkat secara signifikan dibandingkan konfigurasi 𝑡 yang lebih 

rendah. 
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Tabel 4.8 Hasil Analisis Parameter Kode RS Sepuluh Ayat Al-Qur'an 5 Kesalahan 
No  Surah:Ayat Banyak 

Simbol 

𝑹𝑺 

(𝒏, 𝒌, 𝒕) 
Posisi Error Hasil 

Deteksi & 

Koreksi 

Keterangan 

1 18:48  31 (51,41,5)  𝐶1 = 5,20,0,29,37  

𝐶2 = 10,35,5,7,47  

5 error Sesuai 

2 2:2 33 (51,41,5) 𝐶1 = 2,14,14,13,46  

𝐶2 = 7,30,37,21,45  

5 error Sesuai 

3 4:48 39 (51,41,5) 𝐶1 = 3,15,30,9,23  

𝐶2 = 5,22,33,35,25  
5 error Sesuai 

4 8:3 39 (51,41,5) 𝐶1 = 1,32, 15,26,24  

𝐶2 = 8,28,2,24,49  
5 error Sesuai 

5 79:15 17 (51,41,5) 𝐶1 = 4,18,32,17,33  

𝐶2 = 2,28,22,8,35  
5 error Sesuai 

6 15:55 38 (51,41,5) 𝐶1 = 6,11,24,28,6  

𝐶2 = 14,47,27,35,48   
5 error Sesuai 

7 23:49 35 (51,41,5) 𝐶1 = 0,3,13,48,39  

𝐶2 = 20,40,36,12,31  
5 error Sesuai 

8 35:16 28 (51,41,5) 𝐶1 = 9,21,39,41,24  

𝐶2 = 3,17,45,38,28  
5 error Sesuai 

9 68:33 46 (51,41,5) 𝐶1 = 12,13,14,15,5  

𝐶2 = 6,10,45,21,33  
5 error Sesuai 

10 89:5 21 (51,41,5) 𝐶1 = 2,30,48,49,50  

𝐶2 = 5,25,1,13,50  
5 error Sesuai 

 

Berdasarkan Tabel 4.8, pada pengujian ini memakan waktu sekitar 9 detik 

dengan konfigurasi 𝑡 = 5 dan parameter (51, 41, 5) menunjukkan bahwa sistem 

Reed–Solomon beroperasi pada batas maksimum kemampuan koreksi, yakni lima 

kesalahan simbol per codeword. Hasil pengujian memperlihatkan bahwa seluruh 

codeword yang mengalami lima error berhasil dipulihkan sepenuhnya oleh proses 

decoding. Hal ini menegaskan bahwa mekanisme deteksi dan koreksi masih bekerja 

secara stabil meskipun berada pada tingkat kompleksitas tertinggi. Sepuluh sindrom 

pertama (𝑆1 − 𝑆10) dan derajat polinomial error locator berderajat lima, 

𝛬(𝑥) = 1 + 𝜆1𝑥 + 𝜆2𝑥
2 + 𝜆3𝑥

3 + 𝜆4𝑥
4 + 𝜆5𝑥

5.  

Menunjukkan jika jumlah sindrom dan derajat polinomial locator yang 

meningkat menambah beban komputasi, namun tidak mengganggu determinisme 

algoritma: posisi kelima error dapat diidentifikasi dengan benar dan koreksi 

melalui perhitungan magnitudo berlangsung konsisten. Dengan keberhasilan 

pemulihan seluruh blok uji, konfigurasi 𝑡 = 5 membuktikan bahwa kode Reed–
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Solomon mampu mencapai performa optimal hingga kapasitas koreksi 

maksimalnya. Sistem tetap akurat selama jumlah kesalahan tidak melebihi lima 

simbol. Apabila noise kanal lebih besar dari kapasitas ini, keberhasilan decoding 

tidak lagi terjamin.  

 

4.6 Kajian Hasil Penelitian dalam Perspektif Islam  

Penelitian mengenai implementasi kode Reed–Solomon untuk deteksi dan 

koreksi kesalahan transmisi ayat Al-Qur’an menggunakan pengkodean huruf 

hijaiyah menunjukkan bahwa teknologi informasi modern dapat menjadi sarana 

strategis dalam menjaga keaslian teks wahyu, terutama di era digital. Saat ini, ayat-

ayat Al-Qur’an tersebar melalui berbagai platform elektronik seperti aplikasi Al-

Qur’an, mushaf digital, perangkat lunak pembelajaran, hingga penyimpanan 

berbasis awan. Proses pengiriman dan penyimpanan digital tersebut membuka 

peluang terjadinya distorsi data, misalnya hilangnya huruf, tertukarnya karakter, 

atau kerusakan bit. Contoh nyata dapat ditemukan pada kasus kesalahan penulisan 

ayat Al-Kahf ayat 8, di mana huruf -atau kesalahan pada Al ,ه tertukar menjadi  ع

Ankabut ayat 45 yang mengalami pengurangan huruf pada lafadz   لَوةَ الص . Kasus-

kasus seperti ini menunjukkan bahwa kesalahan penulisan ayat tetap berpotensi 

terjadi pada media digital. 

Selain itu, potensi kesalahan juga dapat muncul dalam konteks digitalisasi teks, 

misalnya saat proses pemindaian mushaf, konversi huruf hijaiyah ke kode digital, 

atau saat penyalinan file melalui jaringan. Kesalahan seperti huruf yang tidak 

terbaca, karakter yang salah terbaca oleh sistem OCR, atau kerusakan data selama 

proses penyimpanan dan distribusi digital dapat menyebabkan penyimpangan pada 
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penulisan ayat. Berdasarkan temuan penelitian, algoritma Reed–Solomon terbukti 

mampu mendeteksi sekaligus mengoreksi bentuk-bentuk kesalahan tersebut 

sehingga teks ayat dapat direstorasi kembali sesuai naskah aslinya.  

Nilai-nilai Islam mengajarkan pentingnya ketelitian (itqān) dan amanah dalam 

setiap pekerjaan, termasuk dalam penulisan dan penjagaan naskah Al-Qur’an. 

Penerapan algoritma koreksi kesalahan merupakan representasi nyata dari nilai 

itqān, karena sistem mampu melakukan deteksi dan koreksi hingga satu sampai 

lima kesalahan pada satu ayat, lalu mengembalikannya ke bentuk asli secara akurat. 

Hal ini selaras dengan hadits: 

بُّ إِّذَا عَمِّلَ أَحَدكُُمْ عَمَلاا أَنْ يُ تْقِّنَهُ إِّنَّ الل َٰ  هَ يُحِّ  
Artinya: “Sesungguhnya Allah mencintai seseorang yang ketika bekerja, ia 

melakukannya dengan sungguh-sungguh dan sempurna.” (HR. al-Baihaqi)  
 

Dalam penelitian ini, ketelitian sistem direpresentasikan melalui kemampuan 

Reed–Solomon untuk mendeteksi kesalahan hingga lima error pada ayat-ayat Al-

Qur’an dan mengembalikannya ke bentuk asli dengan akurat. Hal ini 

mencerminkan praktik itqān dalam konteks digital, di mana teknologi digunakan 

untuk memastikan setiap karakter atau simbol tetap sesuai dengan naskah asli, tanpa 

distorsi maupun kehilangan informasi. Keberhasilan sistem ini juga berkontribusi 

terhadap pencapaian tujuan maqāṣid al-syarī‘ah, khususnya hifẓ ad-dīn (penjagaan 

agama), karena menjaga kemurnian teks Al-Qur’an merupakan bagian dari menjaga 

syariat dan ajaran agama dari kesalahan penafsiran akibat kelalaian teknis. 

Implementasi Reed–Solomon memungkinkan transmisi dan penyimpanan teks Al-

Qur’an secara digital lebih aman dan andal, sehingga dapat digunakan dalam 

mushaf digital, aplikasi pembelajaran, dan platform penyimpanan elektronik 
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dengan risiko kesalahan yang minimal. Selain itu, penerapan algoritma ini selaras 

dengan prinsip al-ṣidq (keaslian) dan al-dabṭ (ketepatan) dalam ilmu qirā’ah dan 

rasm mushaf. Reed–Solomon tidak dimaksudkan untuk memodifikasi atau 

mengubah teks Al-Qur’an, tetapi untuk memulihkan teks yang telah mengalami 

gangguan transmisi agar kembali ke bentuk aslinya. 

Berdasarkan hasil penelitian, implementasi kode Reed–Solomon tidak hanya 

mengoreksi kesalahan teknis pada transmisi ayat, tetapi juga mendukung tanggung 

jawab umat Islam dalam menyampaikan Al-Qur’an secara benar. Mekanisme 

koreksi otomatis yang terbukti mampu mengembalikan ayat ke bentuk asli 

membuat distribusi ayat melalui media elektronik menjadi lebih aman dan akurat. 

Prinsip ini terhubung erat dengan hadis Nabi SAW: 

Artinya: “Sebaik-baik kalian adalah yang belajar Al-Qur’an dan mengajarkannya” 

(HR. Bukhari No. 5027)  

 

Dalam konteks penelitian ini, penggunaan kode Reed–Solomon tidak hanya 

dipahami sebagai proses teknis dalam mengoreksi kesalahan data, tetapi juga 

sebagai bagian dari ikhtiar menjaga amanah penyampaian Al-Qur’an di era digital. 

Pada masa ketika ayat-ayat Al-Qur’an disebarkan melalui berbagai media 

elektronik, kebutuhan untuk memastikan bahwa setiap huruf, kata, dan susunan ayat 

tersampaikan tanpa perubahan menjadi semakin mendesak. Teknologi koreksi 

kesalahan seperti Reed–Solomon berfungsi sebagai lapisan perlindungan tambahan 

yang memastikan teks Al-Qur’an tetap akurat meskipun melewati jaringan digital 

yang rawan mengalami gangguan, seperti hilangnya bit, tergesernya karakter, atau 

rusaknya sebagian data. 
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Dengan demikian, implementasi Reed–Solomon dapat dipandang sebagai 

bentuk modern dari tugas “mengajarkan” dan “menyampaikan” Al-Qur’an secara 

benar. Jika pada masa klasik ketelitian para kuttāb dan ḥuffāẓ menjadi kunci 

menjaga orisinalitas mushaf, maka pada masa digital ketelitian tersebut diwujudkan 

melalui sistem yang mampu menjaga integritas simbol huruf hijaiyah dalam proses 

transmisi. Upaya ini sejalan dengan prinsip amanah dan ketelitian (itqān) yang 

diajarkan Islam, bahwa seluruh urusan yang terkait penyampaian wahyu harus 

dilakukan secara hati-hati, presisi, dan dapat dipertanggungjawabkan. Dengan kode 

Reed–Solomon, proses distribusi dan penyebaran ayat Al-Qur’an pada generasi 

digital dapat berlangsung lebih aman, akurat, dan sesuai dengan standar kebenaran 

yang dituntut oleh syariat.
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BAB V  

 PENUTUP 

5.1 Kesimpulan 

1. Simulasi proses deteksi kesalahan pada transmisi ayat Al-Qur’an 

menggunakan kode Reed-Solomon dengan panjang kode tetap 𝑛 = 51 

menunjukkan kinerja yang akurat dan konsisten pada seluruh konfigurasi 

kemampuan koreksi 𝑡 = 1 hingga 𝑡 = 5. Hasil perhitungan sindrom selalu 

memberikan nilai non-nol ketika terjadi penyisipan error, sehingga mekanisme 

deteksi berjalan efektif untuk seluruh ayat uji. Penyesuaian panjang pesan 𝑘 =

𝑛 − 2𝑡 pada setiap konfigurasi tidak menimbulkan gangguan terhadap proses 

deteksi meskipun jumlah simbol ayat berbeda-beda. Hal ini membuktikan 

bahwa struktur kode Reed–Solomon bersifat stabil, dan dapat diterapkan secara 

seragam pada berbagai bentuk data ayat Al-Qur’an. 

2. Simulasi proses koreksi kesalahan menunjukkan bahwa kode Reed–Solomon 

mampu memulihkan seluruh codeword yang mengalami kerusakan selama 

jumlah kesalahan tidak melebihi kapasitas koreksi 𝑡. Melalui penerapan 

algoritma Berlekamp–Massey untuk membentuk polinomial error locator, 

pencarian akar menggunakan metode Chien Search, serta perhitungan 

magnitudo error melalui rumus Forney, sistem berhasil menentukan lokasi dan 

besar kesalahan secara tepat. Pada seluruh pengujian, mulai dari satu hingga 

lima simbol error, semua ayat berhasil direstorasi ke bentuk semula tanpa 

kehilangan informasi. Hasil ini menegaskan bahwa kode Reed–Solomon tidak 

hanya efektif tetapi juga sangat reliabel dalam menjaga integritas teks ayat Al-
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Qur’an pada proses transmisi digital, bahkan hingga mencapai batas 

maksimum kemampuan koreksinya. 

 

5.2 Saran 

Berdasarkan hasil penelitian yang telah dilakukan, beberapa saran dapat 

diberikan untuk penelitian selanjutnya guna memperluas cakupan implementasi dan 

memperdalam pemahaman terkait kode Reed-Solomon untuk deteksi dan koreksi 

kesalahan transmisi ayat Al-Qur’an menggunakan pengkodean huruf hijaiyah, 

antara lain: 

1. Disarankan untuk menguji sistem pada kondisi transmisi yang lebih kompleks, 

seperti noise acak (random noise), burst error, atau kanal komunikasi yang 

menyerupai kondisi nyata.. Hal ini bertujuan untuk mengevaluasi kestabilan 

kode Reed-Solomon dalam menghadapi kondisi nyata yang lebih beragam. 

2. Sistem dapat dikembangkan lebih lanjut dengan mengintegrasikan kode Reed-

Solomon dengan teknik pengkodean lain atau metode kriptografi, seperti 

McEliece atau Reed-Muller, untuk meningkatkan keandalan dan keamanan 

transmisi teks Al-Qur’an. 

3. Disarankan untuk mengaplikasikan sistem ini pada perangkat digital, aplikasi 

pembelajaran, atau platform penyalinan ayat Al-Qur’an, sehingga dapat 

membantu meminimalkan kesalahan sekaligus meningkatkan kualitas 

pembelajaran dan pengiriman/transmisi teks Al-Qur’an secara digital.
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LAMPIRAN 

Lampiran 1. Representasi Polinomial, Biner, dan Desimal 𝐺𝐹(256) 
=== Lapangan GF(2^8): P(x) = x^8 + x^4 + x^3 + x^2 + 1 === 

Elemen primitif α = 0x02 

 

=== Tabel Representasi GF(256) === 

Pangkat Polinomial                Biner      Desimal Hex 

α^0   1                         00000001 1       0x01 

α^1   a                         00000010 2       0x02 

α^2   a^2                       00000100 4       0x04 

α^3   a^3                       00001000 8       0x08 

α^4   a^4                       00010000 16      0x10 

α^5   a^5                       00100000 32      0x20 

α^6   a^6                       01000000 64      0x40 

α^7   a^7                       10000000 128     0x80 

α^8   a^4 + a^3 + a^2 + 1       00011101 29      0x1d 

α^9   a^5 + a^4 + a^3 + a       00111010 58      0x3a 

α^10  a^6 + a^5 + a^4 + a^2     01110100 116     0x74 

α^11  a^7 + a^6 + a^5 + a^3     11101000 232     0xe8 

α^12  a^7 + a^6 + a^3 + a^2 + 1 11001101 205     0xcd 

α^13  a^7 + a^2 + a + 1         10000111 135     0x87 

α^14  a^4 + a + 1               00010011 19      0x13 

α^15  a^5 + a^2 + a             00100110 38      0x26 

α^16  a^6 + a^3 + a^2           01001100 76      0x4c 

α^17  a^7 + a^4 + a^3           10011000 152     0x98 

α^18  a^5 + a^3 + a^2 + 1       00101101 45      0x2d 

α^19  a^6 + a^4 + a^3 + a       01011010 90      0x5a 

α^20  a^7 + a^5 + a^4 + a^2     10110100 180     0xb4 

α^21  a^6 + a^5 + a^4 + a^2 + 1 01110101 117     0x75 

α^22  a^7 + a^6 + a^5 + a^3 + a 11101010 234     0xea 

α^23  a^7 + a^6 + a^3 + 1       11001001 201     0xc9 

α^24  a^7 + a^3 + a^2 + a + 1   10001111 143     0x8f 

α^25  a + 1                     00000011 3       0x03 

α^26  a^2 + a                   00000110 6       0x06 

α^27  a^3 + a^2                 00001100 12      0x0c 

α^28  a^4 + a^3                 00011000 24      0x18 

α^29  a^5 + a^4                 00110000 48      0x30 

α^30  a^6 + a^5                 01100000 96      0x60 

α^31  a^7 + a^6                 11000000 192     0xc0 

α^32  a^7 + a^4 + a^3 + a^2 + 1 10011101 157     0x9d 

α^33  a^5 + a^2 + a + 1         00100111 39      0x27 

α^34  a^6 + a^3 + a^2 + a       01001110 78      0x4e 

α^35  a^7 + a^4 + a^3 + a^2     10011100 156     0x9c 

α^36  a^5 + a^2 + 1             00100101 37      0x25 

α^37  a^6 + a^3 + a             01001010 74      0x4a 

α^38  a^7 + a^4 + a^2           10010100 148     0x94 

α^39  a^5 + a^4 + a^2 + 1       00110101 53      0x35 

α^40  a^6 + a^5 + a^3 + a       01101010 106     0x6a 

α^41  a^7 + a^6 + a^4 + a^2     11010100 212     0xd4 

α^42  a^7 + a^5 + a^4 + a^2 + 1 10110101 181     0xb5 

α^43  a^6 + a^5 + a^4 + a^2 + a + 1 01110111 119     0x77 

α^44  a^7 + a^6 + a^5 + a^3 + a^2 + a 11101110 238     0xee 

α^45  a^7 + a^6 + 1             11000001 193     0xc1 

α^46  a^7 + a^4 + a^3 + a^2 + a + 1 10011111 159     0x9f 

α^47  a^5 + a + 1               00100011 35      0x23 

α^48  a^6 + a^2 + a             01000110 70      0x46 

α^49  a^7 + a^3 + a^2           10001100 140     0x8c 

α^50  a^2 + 1                   00000101 5       0x05 

α^51  a^3 + a                   00001010 10      0x0a 

α^52  a^4 + a^2                 00010100 20      0x14 

α^53  a^5 + a^3                 00101000 40      0x28 

α^54  a^6 + a^4                 01010000 80      0x50 
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α^55  a^7 + a^5                 10100000 160     0xa0 

α^56  a^6 + a^4 + a^3 + a^2 + 1 01011101 93      0x5d 

α^57  a^7 + a^5 + a^4 + a^3 + a 10111010 186     0xba 

α^58  a^6 + a^5 + a^3 + 1       01101001 105     0x69 

α^59  a^7 + a^6 + a^4 + a       11010010 210     0xd2 

α^60  a^7 + a^5 + a^4 + a^3 + 1 10111001 185     0xb9 

α^61  a^6 + a^5 + a^3 + a^2 + a + 1 01101111 111     0x6f 

α^62  a^7 + a^6 + a^4 + a^3 + a^2 + a 11011110 222     0xde 

α^63  a^7 + a^5 + 1             10100001 161     0xa1 

α^64  a^6 + a^4 + a^3 + a^2 + a + 1 01011111 95      0x5f 

α^65  a^7 + a^5 + a^4 + a^3 + a^2 + a 10111110 190     0xbe 

α^66  a^6 + a^5 + 1             01100001 97      0x61 

α^67  a^7 + a^6 + a             11000010 194     0xc2 

α^68  a^7 + a^4 + a^3 + 1       10011001 153     0x99 

α^69  a^5 + a^3 + a^2 + a + 1   00101111 47      0x2f 

α^70  a^6 + a^4 + a^3 + a^2 + a 01011110 94      0x5e 

α^71  a^7 + a^5 + a^4 + a^3 + a^2 10111100 188     0xbc 

α^72  a^6 + a^5 + a^2 + 1       01100101 101     0x65 

α^73  a^7 + a^6 + a^3 + a       11001010 202     0xca 

α^74  a^7 + a^3 + 1             10001001 137     0x89 

α^75  a^3 + a^2 + a + 1         00001111 15      0x0f 

α^76  a^4 + a^3 + a^2 + a       00011110 30      0x1e 

α^77  a^5 + a^4 + a^3 + a^2     00111100 60      0x3c 

α^78  a^6 + a^5 + a^4 + a^3     01111000 120     0x78 

α^79  a^7 + a^6 + a^5 + a^4     11110000 240     0xf0 

α^80  a^7 + a^6 + a^5 + a^4 + a^3 + a^2 + 1 11111101 253    

 0xfd 

α^81  a^7 + a^6 + a^5 + a^2 + a + 1 11100111 231     0xe7 

α^82  a^7 + a^6 + a^4 + a + 1   11010011 211     0xd3 

α^83  a^7 + a^5 + a^4 + a^3 + a + 1 10111011 187     0xbb 

α^84  a^6 + a^5 + a^3 + a + 1   01101011 107     0x6b 

α^85  a^7 + a^6 + a^4 + a^2 + a 11010110 214     0xd6 

α^86  a^7 + a^5 + a^4 + 1       10110001 177     0xb1 

α^87  a^6 + a^5 + a^4 + a^3 + a^2 + a + 1 01111111 127    

 0x7f 

α^88  a^7 + a^6 + a^5 + a^4 + a^3 + a^2 + a 11111110 254    

 0xfe 

α^89  a^7 + a^6 + a^5 + 1       11100001 225     0xe1 

α^90  a^7 + a^6 + a^4 + a^3 + a^2 + a + 1 11011111 223    

 0xdf 

α^91  a^7 + a^5 + a + 1         10100011 163     0xa3 

α^92  a^6 + a^4 + a^3 + a + 1   01011011 91      0x5b 

α^93  a^7 + a^5 + a^4 + a^2 + a 10110110 182     0xb6 

α^94  a^6 + a^5 + a^4 + 1       01110001 113     0x71 

α^95  a^7 + a^6 + a^5 + a       11100010 226     0xe2 

α^96  a^7 + a^6 + a^4 + a^3 + 1 11011001 217     0xd9 

α^97  a^7 + a^5 + a^3 + a^2 + a + 1 10101111 175     0xaf 

α^98  a^6 + a + 1               01000011 67      0x43 

α^99  a^7 + a^2 + a             10000110 134     0x86 

α^100 a^4 + 1                   00010001 17      0x11 

α^101 a^5 + a                   00100010 34      0x22 

α^102 a^6 + a^2                 01000100 68      0x44 

α^103 a^7 + a^3                 10001000 136     0x88 

α^104 a^3 + a^2 + 1             00001101 13      0x0d 

α^105 a^4 + a^3 + a             00011010 26      0x1a 

α^106 a^5 + a^4 + a^2           00110100 52      0x34 

α^107 a^6 + a^5 + a^3           01101000 104     0x68 

α^108 a^7 + a^6 + a^4           11010000 208     0xd0 

α^109 a^7 + a^5 + a^4 + a^3 + a^2 + 1 10111101 189     0xbd 

α^110 a^6 + a^5 + a^2 + a + 1   01100111 103     0x67 

α^111 a^7 + a^6 + a^3 + a^2 + a 11001110 206     0xce 

α^112 a^7 + 1                   10000001 129     0x81 

α^113 a^4 + a^3 + a^2 + a + 1   00011111 31      0x1f 

α^114 a^5 + a^4 + a^3 + a^2 + a 00111110 62      0x3e 

α^115 a^6 + a^5 + a^4 + a^3 + a^2 01111100 124     0x7c 
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α^116 a^7 + a^6 + a^5 + a^4 + a^3 11111000 248     0xf8 

α^117 a^7 + a^6 + a^5 + a^3 + a^2 + 1 11101101 237     0xed 

α^118 a^7 + a^6 + a^2 + a + 1   11000111 199     0xc7 

α^119 a^7 + a^4 + a + 1         10010011 147     0x93 

α^120 a^5 + a^4 + a^3 + a + 1   00111011 59      0x3b 

α^121 a^6 + a^5 + a^4 + a^2 + a 01110110 118     0x76 

α^122 a^7 + a^6 + a^5 + a^3 + a^2 11101100 236     0xec 

α^123 a^7 + a^6 + a^2 + 1       11000101 197     0xc5 

α^124 a^7 + a^4 + a^2 + a + 1   10010111 151     0x97 

α^125 a^5 + a^4 + a + 1         00110011 51      0x33 

α^126 a^6 + a^5 + a^2 + a       01100110 102     0x66 

α^127 a^7 + a^6 + a^3 + a^2     11001100 204     0xcc 

α^128 a^7 + a^2 + 1             10000101 133     0x85 

α^129 a^4 + a^2 + a + 1         00010111 23      0x17 

α^130 a^5 + a^3 + a^2 + a       00101110 46      0x2e 

α^131 a^6 + a^4 + a^3 + a^2     01011100 92      0x5c 

α^132 a^7 + a^5 + a^4 + a^3     10111000 184     0xb8 

α^133 a^6 + a^5 + a^3 + a^2 + 1 01101101 109     0x6d 

α^134 a^7 + a^6 + a^4 + a^3 + a 11011010 218     0xda 

α^135 a^7 + a^5 + a^3 + 1       10101001 169     0xa9 

α^136 a^6 + a^3 + a^2 + a + 1   01001111 79      0x4f 

α^137 a^7 + a^4 + a^3 + a^2 + a 10011110 158     0x9e 

α^138 a^5 + 1                   00100001 33      0x21 

α^139 a^6 + a                   01000010 66      0x42 

α^140 a^7 + a^2                 10000100 132     0x84 

α^141 a^4 + a^2 + 1             00010101 21      0x15 

α^142 a^5 + a^3 + a             00101010 42      0x2a 

α^143 a^6 + a^4 + a^2           01010100 84      0x54 

α^144 a^7 + a^5 + a^3           10101000 168     0xa8 

α^145 a^6 + a^3 + a^2 + 1       01001101 77      0x4d 

α^146 a^7 + a^4 + a^3 + a       10011010 154     0x9a 

α^147 a^5 + a^3 + 1             00101001 41      0x29 

α^148 a^6 + a^4 + a             01010010 82      0x52 

α^149 a^7 + a^5 + a^2           10100100 164     0xa4 

α^150 a^6 + a^4 + a^2 + 1       01010101 85      0x55 

α^151 a^7 + a^5 + a^3 + a       10101010 170     0xaa 

α^152 a^6 + a^3 + 1             01001001 73      0x49 

α^153 a^7 + a^4 + a             10010010 146     0x92 

α^154 a^5 + a^4 + a^3 + 1       00111001 57      0x39 

α^155 a^6 + a^5 + a^4 + a       01110010 114     0x72 

α^156 a^7 + a^6 + a^5 + a^2     11100100 228     0xe4 

α^157 a^7 + a^6 + a^4 + a^2 + 1 11010101 213     0xd5 

α^158 a^7 + a^5 + a^4 + a^2 + a + 1 10110111 183     0xb7 

α^159 a^6 + a^5 + a^4 + a + 1   01110011 115     0x73 

α^160 a^7 + a^6 + a^5 + a^2 + a 11100110 230     0xe6 

α^161 a^7 + a^6 + a^4 + 1       11010001 209     0xd1 

α^162 a^7 + a^5 + a^4 + a^3 + a^2 + a + 1 10111111 191    

 0xbf 

α^163 a^6 + a^5 + a + 1         01100011 99      0x63 

α^164 a^7 + a^6 + a^2 + a       11000110 198     0xc6 

α^165 a^7 + a^4 + 1             10010001 145     0x91 

α^166 a^5 + a^4 + a^3 + a^2 + a + 1 00111111 63      0x3f 

α^167 a^6 + a^5 + a^4 + a^3 + a^2 + a 01111110 126     0x7e 

α^168 a^7 + a^6 + a^5 + a^4 + a^3 + a^2 11111100 252     0xfc 

α^169 a^7 + a^6 + a^5 + a^2 + 1 11100101 229     0xe5 

α^170 a^7 + a^6 + a^4 + a^2 + a + 1 11010111 215     0xd7 

α^171 a^7 + a^5 + a^4 + a + 1   10110011 179     0xb3 

α^172 a^6 + a^5 + a^4 + a^3 + a + 1 01111011 123     0x7b 

α^173 a^7 + a^6 + a^5 + a^4 + a^2 + a 11110110 246     0xf6 

α^174 a^7 + a^6 + a^5 + a^4 + 1 11110001 241     0xf1 

α^175 a^7 + a^6 + a^5 + a^4 + a^3 + a^2 + a + 1 11111111 255    

 0xff 

α^176 a^7 + a^6 + a^5 + a + 1   11100011 227     0xe3 

α^177 a^7 + a^6 + a^4 + a^3 + a + 1 11011011 219     0xdb 

α^178 a^7 + a^5 + a^3 + a + 1   10101011 171     0xab 
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α^179 a^6 + a^3 + a + 1         01001011 75      0x4b 

α^180 a^7 + a^4 + a^2 + a       10010110 150     0x96 

α^181 a^5 + a^4 + 1             00110001 49      0x31 

α^182 a^6 + a^5 + a             01100010 98      0x62 

α^183 a^7 + a^6 + a^2           11000100 196     0xc4 

α^184 a^7 + a^4 + a^2 + 1       10010101 149     0x95 

α^185 a^5 + a^4 + a^2 + a + 1   00110111 55      0x37 

α^186 a^6 + a^5 + a^3 + a^2 + a 01101110 110     0x6e 

α^187 a^7 + a^6 + a^4 + a^3 + a^2 11011100 220     0xdc 

α^188 a^7 + a^5 + a^2 + 1       10100101 165     0xa5 

α^189 a^6 + a^4 + a^2 + a + 1   01010111 87      0x57 

α^190 a^7 + a^5 + a^3 + a^2 + a 10101110 174     0xae 

α^191 a^6 + 1                   01000001 65      0x41 

α^192 a^7 + a                   10000010 130     0x82 

α^193 a^4 + a^3 + 1             00011001 25      0x19 

α^194 a^5 + a^4 + a             00110010 50      0x32 

α^195 a^6 + a^5 + a^2           01100100 100     0x64 

α^196 a^7 + a^6 + a^3           11001000 200     0xc8 

α^197 a^7 + a^3 + a^2 + 1       10001101 141     0x8d 

α^198 a^2 + a + 1               00000111 7       0x07 

α^199 a^3 + a^2 + a             00001110 14      0x0e 

α^200 a^4 + a^3 + a^2           00011100 28      0x1c 

α^201 a^5 + a^4 + a^3           00111000 56      0x38 

α^202 a^6 + a^5 + a^4           01110000 112     0x70 

α^203 a^7 + a^6 + a^5           11100000 224     0xe0 

α^204 a^7 + a^6 + a^4 + a^3 + a^2 + 1 11011101 221     0xdd 

α^205 a^7 + a^5 + a^2 + a + 1   10100111 167     0xa7 

α^206 a^6 + a^4 + a + 1         01010011 83      0x53 

α^207 a^7 + a^5 + a^2 + a       10100110 166     0xa6 

α^208 a^6 + a^4 + 1             01010001 81      0x51 

α^209 a^7 + a^5 + a             10100010 162     0xa2 

α^210 a^6 + a^4 + a^3 + 1       01011001 89      0x59 

α^211 a^7 + a^5 + a^4 + a       10110010 178     0xb2 

α^212 a^6 + a^5 + a^4 + a^3 + 1 01111001 121     0x79 

α^213 a^7 + a^6 + a^5 + a^4 + a 11110010 242     0xf2 

α^214 a^7 + a^6 + a^5 + a^4 + a^3 + 1 11111001 249     0xf9 

α^215 a^7 + a^6 + a^5 + a^3 + a^2 + a + 1 11101111 239    

 0xef 

α^216 a^7 + a^6 + a + 1         11000011 195     0xc3 

α^217 a^7 + a^4 + a^3 + a + 1   10011011 155     0x9b 

α^218 a^5 + a^3 + a + 1         00101011 43      0x2b 

α^219 a^6 + a^4 + a^2 + a       01010110 86      0x56 

α^220 a^7 + a^5 + a^3 + a^2     10101100 172     0xac 

α^221 a^6 + a^2 + 1             01000101 69      0x45 

α^222 a^7 + a^3 + a             10001010 138     0x8a 

α^223 a^3 + 1                   00001001 9       0x09 

α^224 a^4 + a                   00010010 18      0x12 

α^225 a^5 + a^2                 00100100 36      0x24 

α^226 a^6 + a^3                 01001000 72      0x48 

α^227 a^7 + a^4                 10010000 144     0x90 

α^228 a^5 + a^4 + a^3 + a^2 + 1 00111101 61      0x3d 

α^229 a^6 + a^5 + a^4 + a^3 + a 01111010 122     0x7a 

α^230 a^7 + a^6 + a^5 + a^4 + a^2 11110100 244     0xf4 

α^231 a^7 + a^6 + a^5 + a^4 + a^2 + 1 11110101 245     0xf5 

α^232 a^7 + a^6 + a^5 + a^4 + a^2 + a + 1 11110111 247    

 0xf7 

α^233 a^7 + a^6 + a^5 + a^4 + a + 1 11110011 243     0xf3 

α^234 a^7 + a^6 + a^5 + a^4 + a^3 + a + 1 11111011 251    

 0xfb 

α^235 a^7 + a^6 + a^5 + a^3 + a + 1 11101011 235     0xeb 

α^236 a^7 + a^6 + a^3 + a + 1   11001011 203     0xcb 

α^237 a^7 + a^3 + a + 1         10001011 139     0x8b 

α^238 a^3 + a + 1               00001011 11      0x0b 

α^239 a^4 + a^2 + a             00010110 22      0x16 

α^240 a^5 + a^3 + a^2           00101100 44      0x2c 
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α^241 a^6 + a^4 + a^3           01011000 88      0x58 

α^242 a^7 + a^5 + a^4           10110000 176     0xb0 

α^243 a^6 + a^5 + a^4 + a^3 + a^2 + 1 01111101 125     0x7d 

α^244 a^7 + a^6 + a^5 + a^4 + a^3 + a 11111010 250     0xfa 

α^245 a^7 + a^6 + a^5 + a^3 + 1 11101001 233     0xe9 

α^246 a^7 + a^6 + a^3 + a^2 + a + 1 11001111 207     0xcf 

α^247 a^7 + a + 1               10000011 131     0x83 

α^248 a^4 + a^3 + a + 1         00011011 27      0x1b 

α^249 a^5 + a^4 + a^2 + a       00110110 54      0x36 

α^250 a^6 + a^5 + a^3 + a^2     01101100 108     0x6c 

α^251 a^7 + a^6 + a^4 + a^3     11011000 216     0xd8 

α^252 a^7 + a^5 + a^3 + a^2 + 1 10101101 173     0xad 

α^253 a^6 + a^2 + a + 1         01000111 71      0x47 

α^254 a^7 + a^3 + a^2 + a       10001110 142     0x8e 

α^255 1                         00000001 1       0x01 
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Lampiran 2. Script Code Sagemath: Proses Encoding dan Decoding 
import random 

 

R.<x> = PolynomialRing(GF(2)) 

# irreducible polynomial: x^8 + x^4 + x^3 + x^2 + 1 (0x11D) 

F.<a> = GF(2^8, modulus = x^8 + x^4 + x^3 + x^2 + 1) 

 

print("=== Lapangan GF(2^8): P(x) = x^8 + x^4 + x^3 + x^2 + 1 ===") 

print("Elemen primitif α = 0x02\n") 

 

# ====== Helper ====== 

def poly_to_int(p): 

    coeffs = p.coefficients(sparse=False) 

    val = 0 

    for i, c in enumerate(coeffs): 

        if int(c) == 1: 

            val += (1 << i) 

    return val 

 

def element_to_alpha_power(elem): 

    if elem == 0: 

        return "0" 

    for i in range(255): 

        if a**i == elem: 

            return f"α^{i}" 

    return "?" 

 

# ====== Konversi Arabic -> 16-bit biner per huruf ====== 

def arabic_to_binary16(text): 

    hasil = [] 

    for i, huruf in enumerate(text, start=1): 

        if huruf == " ": 

            bits = "0000000000100000" 

        else: 

            bits = format(ord(huruf), '016b') 

        hasil.append((i, huruf, bits)) 

    return hasil 

 

# ====== Ubah teks -> dua blok k-symbol (8-bit/simbol) dinamically ====== 

def text_to_two_blocks_for_k(text, k): 

    """ 

    Menghasilkan dua blok masing-masing panjang k (symbol 8-bit). 

    Jika data kurang, dipad dengan 0; jika lebih, di-truncate. 

    """ 

    bytes8 = [] 

    for huruf in text: 

        if huruf == " ": 

            bits16 = "0000000000100000" 

        else: 

            bits16 = format(ord(huruf), "016b") 

        bytes8.append(bits16[:8]) 

        bytes8.append(bits16[8:]) 

    ints = [int(b,2) for b in bytes8] 

    # pad agar minimal 2*k simbol 

    if len(ints) < 2*k: 

        ints += [0]*(2*k - len(ints)) 

    # truncate jika lebih 

    if len(ints) > 2*k: 

        ints = ints[:2*k] 

    m1 = ints[:k] 

    m2 = ints[k:2*k] 

    return m1, m2 

 

# ====== konversi int -> GF element (sesuai field) ====== 

def int_to_GF256(v): 

    bits = [int(b) for b in format(v, '08b')] 

    p = sum(bits[-(i+1)] * x**i for i in range(8)) 

    return F(p) 

 

# ====== Syndromes, BM, Chien, Forney (generik) ====== 

def syndromes_from_vector_sagemath(r, t, step=5, start=0): 

    n_local = len(r) 

    S = [] 
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    for j in range(1, 2*t + 1): 

        sj = F(0) 

        for i in range(n_local): 

            sj += r[i] * (a**((start + step*i) * j)) 

        S.append(sj) 

    return S 

 

def berlekamp_massey(S): 

    N = len(S) 

    C = [F(1)] + [F(0)] * N 

    B = [F(1)] + [F(0)] * N 

    L = 0; m = 1; b = F(1) 

    for n in range(N): 

        d = S[n] 

        for i in range(1, L+1): 

            d += C[i]*S[n-i] 

        if d == 0: 

            m += 1 

        else: 

            coef = d / b 

            T = C[:] 

            for i in range(0, N+1-m): 

                C[i+m] -= coef * B[i] 

            if 2*L <= n: 

                L = n + 1 - L 

                B = T 

                b = d 

                m = 1 

            else: 

                m += 1 

    return C[:L+1], L 

 

def chien_search(sigma_coeffs, n_local, step=5, start=0): 

    errors = [] 

    for i in range(n_local): 

        xinv = a**(-(start + step*i)) 

        val = F(0) 

        for j, c in enumerate(sigma_coeffs): 

            val += c * (xinv**j) 

        if val == 0: 

            errors.append(i) 

    return errors 

 

def forney_magnitudes(S, sigma_coeffs, error_positions, t, step=5, start=0): 

    PR = PolynomialRing(F, 'X') 

    X = PR.gen() 

    S_poly = PR(0) 

    for j, Sj in enumerate(S): 

        S_poly += Sj * X**j 

    sigma_poly = PR(0) 

    for j, cj in enumerate(sigma_coeffs): 

        sigma_poly += cj * X**j 

    Omega = (S_poly * sigma_poly) % (X**(2*t)) 

    sigma_prime = sigma_poly.derivative() 

    magnitudes = {} 

    for pos in error_positions: 

        xinv = a**(-(start + step*pos)) 

        num = Omega(xinv) 

        den = sigma_prime(xinv) 

        if den == 0: 

            magnitudes[pos] = None 

        else: 

            magnitudes[pos] = - num / den 

    return magnitudes 

 

# ====== Fungsi tampil codeword ====== 

def show_cw(title, cw): 

    print(f"\n--- {title} ---") 

    print("α^i:", [element_to_alpha_power(c) for c in cw]) 

    print("dec:", [poly_to_int(c.polynomial()) for c in cw]) 

    print("hex:", [f"0x{poly_to_int(c.polynomial()):02x}" for c in cw]) 

 

# ====== MAIN: proses 10 ayat (t dipaksa 2) ====== 

n = 51  # tetap 
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FORCED_T = 1  # memaksa 2 error per codeword 

daftar_ayat = [ 

    # (teks_arab, ep1_list, ev1_list, ep2_list, ev2_list) 

    (" 5,,0وانا لجعلون ما عليها صعيدا جرزا", ] ], [5x9A,0xF3], [10,35], 

[0xA5,0x6E]), 

    (" 2,,,يسئلونك عن الساعة ايان مرساها", ] ], [5xB1,0xC3], [7,30], [0x9F,0x77]), 

    (" 5,,0,,,فاما من اعطى واتقى", ] ], [5xB2,0xC4,0x5E], [5,22], [0x88,0xAA]), 

    (" ,اقم الصلاة لذكري", ] ], [5xA2], [8], [0x5B]), 

    (" 4,,2هل أتاك حديث موسى", ] ], [5x91,0xE1], [2,28], [0x77,0x33]), 

    (" 2,,,,,4ربنا اغفر لنا وارحمنا", ] ], [5xAF,0xC8,0x10], [14], [0x99]), 

    (" 5انما المؤمنون اخوة", ] ], [5x80], [20,40], [0xDE,0xAD]), 

    (" ,,,1واذا سألك عبادي عني", ] ], [5xFE,0x01], [3,17,45], [0x55,0x66,0x77]), 

    (" 0,,2,,,,,,,فاسألوا اهل الذكر ان كنتم لا تعلمون", ] ], [5x11,0x22,0x33,0x44], 

[6], [0xAB]), 

    (" 0[]:5,24,21,05,,,قل جاء الحق وزهق الباطل", ] ], [5x12,0x34,0x56,0x78,0x9A], 

[5,25], [0xDE,0xAD]) 

] 

 

# Pastikan tepat 10 

if len(daftar_ayat) != 10: 

    raise ValueError("daftar_ayat harus berisi tepat 10 entri.") 

 

for idx, (text, ep1, ev1, ep2, ev2) in enumerate(daftar_ayat, start=1): 

    print("\n" + "="*80) 

    print(f"=== Proses Ayat {idx} ===") 

    print("="*80) 

    print("Teks Arab:", text) 

 

    # --------------- MODIF: PAKSA 2 ERROR SAJA ----------------- 

    # ambil hanya 2 elemen jika ada, kalau kosong buat sampai 2 error acak 

    ep1 = list(ep1)[:FORCED_T] 

    ev1 = list(ev1)[:FORCED_T] 

    ep2 = list(ep2)[:FORCED_T] 

    ev2 = list(ev2)[:FORCED_T] 

 

    # jika kurang dari FORCED_T, tambahkan posisi/magnitude acak nonzero 

    while len(ep1) < FORCED_T: 

        pos = random.randint(0, n-1) 

        mag = random.randint(1,255) 

        ep1.append(pos) 

        ev1.append(mag) 

    while len(ep2) < FORCED_T: 

        pos = random.randint(0, n-1) 

        mag = random.randint(1,255) 

        ep2.append(pos) 

        ev2.append(mag) 

 

    # sekarang t_needed = FORCED_T (2) 

    t_needed = FORCED_T 

    # hitung k sesuai t_needed 

    k_ayat = n - 2 * t_needed  # t=2 -> k=47 

    if k_ayat <= 0: 

        raise ValueError(f"t_needed={t_needed} terlalu besar -> k_ayat={k_ayat} 

<= 0. Kurangi jumlah error.") 

 

    print(f"Memaksa t = {t_needed} (2 error per codeword). Jadi k = {k_ayat} 

(simbol pesan per block).") 

    # ---------------------------------------------------------- 

 

    # 1) tabel 16-bit 

    print("\n=== Pesan Arab ke Representasi Biner (16-bit) ===") 

    tbl = arabic_to_binary16(text) 

    for no, huruf, bits in tbl: 

        print(f"{no:2d}\t{huruf}\t{bits}") 

 

    # 2) buat blok k-symbol sesuai k_ayat 

    m1_full, m2_full = text_to_two_blocks_for_k(text, k_ayat) 

    print(f"\nBlok pesan 1 (panjang asli {len(m1_full)} simbol):\n{m1_full}\n") 

    print(f"Blok pesan 2 (panjang asli {len(m2_full)} simbol):\n{m2_full}\n") 

 

    # pad/truncate m1 dan m2 agar panjang == k_ayat (fungsi already does, still 

keep) 

    def adjust_block_for_k(block, k): 

        bl = list(block) 
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        if len(bl) < k: 

            bl = bl + [0] * (k - len(bl)) 

            print(f" - Block dipad dari {len(block)} -> {k} simbol (dengan 0).") 

        elif len(bl) > k: 

            bl = bl[:k] 

            print(f" - PERINGATAN: Block dipotong dari {len(block)} -> {k} 

simbol (truncate!).") 

        return bl 

 

    m1 = adjust_block_for_k(m1_full, k_ayat) 

    m2 = adjust_block_for_k(m2_full, k_ayat) 

 

    # 3) bangun RS khusus ayat ini (k berubah) 

    print(f"\n=== Bangun RS untuk ayat {idx}: n={n}, k={k_ayat} (t capability = 

{(n-k_ayat)//2}) ===") 

    C = codes.ReedSolomonCode(F, n, k_ayat) 

    G = C.generator_matrix() 

    H = C.parity_check_matrix() 

 

    # --- TAMBAHAN: fungsi untuk menampilkan matriks G dan H secara rapi --- 

    def pretty_print_matrix_alpha_hex(name, M): 

        try: 

            rows = M.nrows() 

            cols = M.ncols() 

            print(f"\n{name} (nrows={rows}, ncols={cols}):") 

            for r in range(rows): 

                row = M.row(r) 

                alpha_row = [element_to_alpha_power(el) for el in row] 

                hex_row = [] 

                for el in row: 

                    try: 

                        dec = poly_to_int(el.polynomial()) 

                        hex_row.append(f"0x{dec:02x}") 

                    except Exception: 

                        # fallback if el not polynomial 

                        try: 

                            hex_row.append(hex(int(el))) 

                        except Exception: 

                            hex_row.append(str(el)) 

                print(f"r{r:02d} | alpha: {alpha_row} | hex: {hex_row}") 

        except Exception as e: 

            print(f"Gagal tampilkan matriks {name}: {e}") 

 

    # panggil pretty print untuk G dan H 

    pretty_print_matrix_alpha_hex("Generator matrix G", G) 

    pretty_print_matrix_alpha_hex("Parity-check matrix H", H) 

 

    # 4) encoding (pakai G ayat ini) 

    def encode_rs_with_G(msg_bits, G_local): 

        # v harus length k_ayat 

        v = vector(F, [F(s) for s in msg_bits]) 

        c = v * G_local 

        return list(c) 

 

    def make_message_vector_from_ints(int_list): 

        # setiap elemen int_list harus 0..255 

        return vector(F, [ int_to_GF256(int(v)) for v in int_list ]) 

 

    # contoh penggunaan untuk m1 dan m2: 

    msg_vec1 = make_message_vector_from_ints(m1)   # vektor atas F, panjang 

k_ayat 

    msg_vec2 = make_message_vector_from_ints(m2) 

 

    # sekarang gunakan C.encode (mengharapkan vector atas F, panjang = k) 

    cw = C.encode(msg_vec1) 

    cw2 = C.encode(msg_vec2) 

 

    print("\n=== Codeword 1 (α^i) ===") 

    print([element_to_alpha_power(c) for c in cw]) 

    print("\n=== Codeword 2 (α^i) ===") 

    print([element_to_alpha_power(c) for c in cw2]) 

    show_cw("cw", cw) 

    show_cw("cw2", cw2) 
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    # 5) sisip error sesuai input (pos harus < n) 

    print("\n=== Simulasi Penambahan Error ===") 

    print("Codeword1: posisi", ep1, "nilai(hex)", [hex(v) for v in ev1], " => 

(α^i):", [element_to_alpha_power(int_to_GF256(v)) for v in ev1]) 

    print("Codeword2: posisi", ep2, "nilai(hex)", [hex(v) for v in ev2], " => 

(α^i):", [element_to_alpha_power(int_to_GF256(v)) for v in ev2]) 

 

    def add_errors_to_cw(cw, positions, values): 

        corrupted = list(cw) 

        for pos, val in zip(positions, values): 

            if pos < 0 or pos >= len(corrupted): 

                raise IndexError(f"Posisi error {pos} di luar jangkauan 

(0..{len(corrupted)-1})") 

            corrupted[pos] += int_to_GF256(val) 

        return corrupted 

 

    # fungsi konversi magnitude -> elemen F (sudah diperbaiki) 

    def gf_element_from_maybe_int(x): 

        """ 

        Jika x sudah elemen lapangan F => kembalikan apa adanya. 

        Jika x bisa dikonversi ke int (0..255) => kembalikan 

int_to_GF256(int(x)). 

        Jika tidak bisa keduanya, raise ValueError. 

        """ 

        try: 

            px = getattr(x, 'parent', None) 

            if callable(px): 

                try: 

                    parent_of_x = x.parent() 

                    if parent_of_x is F: 

                        return x 

                except Exception: 

                    pass 

            else: 

                if px is F: 

                    return x 

        except Exception: 

            pass 

 

        try: 

            xi = int(x) 

        except Exception as e: 

            raise ValueError(f"tidak bisa konversi magnitude {x!r} ke int atau 

elemen F: {e}") 

        if xi < 0 or xi > 255: 

            raise ValueError("int magnitude harus di rentang 0..255") 

        return int_to_GF256(xi) 

 

    def add_errors_at_positions(cw, positions, magnitudes): 

        """ 

        cw: list/sequence elemen F atau vector over F 

        positions: list of int indices (0..n-1) 

        magnitudes: list with same length; each magnitude int 0..255 atau elemen 

F 

        Mengembalikan: list elemen F (salinan cw dengan error additive di posisi 

tsb). 

        """ 

        if len(positions) != len(magnitudes): 

            raise ValueError("positions dan magnitudes harus sama panjang") 

        res = [c for c in list(cw)] 

        n_local = len(res) 

        for pos, mag in zip(positions, magnitudes): 

            if not (0 <= pos < n_local): 

                raise IndexError(f"pos {pos} out of range (0..{n_local-1})") 

            mag_el = gf_element_from_maybe_int(mag) 

            res[pos] = res[pos] + mag_el 

        return res 

 

    # fungsi bantu random errors (tetap bisa digunakan) 

    def add_random_errors(cw, num_errors=1, allow_replacement=False, 

mag_nonzero=True): 

        n_local = len(cw) 

        if not allow_replacement and num_errors > n_local: 

            raise ValueError("num_errors > n_local dan allow_replacement=False") 
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        if allow_replacement: 

            positions = [ random.randrange(0, n_local) for _ in 

range(num_errors) ] 

        else: 

            positions = random.sample(range(n_local), num_errors) 

        magnitudes = [] 

        for _ in range(num_errors): 

            m = 0 

            while True: 

                m = random.randint(1,255) if mag_nonzero else 

random.randint(0,255) 

                if not mag_nonzero or m != 0: 

                    break 

            magnitudes.append(m) 

        res = add_errors_at_positions(cw, positions, magnitudes) 

        return res, positions, magnitudes 

 

    # gunakan posisi/magnitude dari daftar ep1/ev1 (sudah dipaksa FORCED_T 

elemen) 

    cw1_err = add_errors_to_cw(cw, ep1, ev1) 

    cw2_err = add_errors_to_cw(cw2, ep2, ev2) 

 

    print("\nCodeword1 asli (α^i):", [element_to_alpha_power(c) for c in cw]) 

    print("Codeword1 rusak (α^i):", [element_to_alpha_power(c) for c in 

cw1_err]) 

    print("\nCodeword2 asli (α^i):", [element_to_alpha_power(c) for c in cw2]) 

    print("Codeword2 rusak (α^i):", [element_to_alpha_power(c) for c in 

cw2_err]) 

 

    # diagnose & convert ambient jika diperlukan sebelum decode 

    def diagnose_ambient_and_fix(word, C_obj, field_F, expected_n): 

        diag = {} 

        try: 

            ambient = C_obj.ambient_space() 

            diag['ambient_repr'] = ambient 

        except Exception as e: 

            diag['ambient_repr'] = f"Could not fetch ambient via 

C_obj.ambient_space(): {e}" 

 

        try: 

            seq = list(word) 

        except Exception: 

            raise ValueError("word tidak bisa dikonversi menjadi list; berikan 

list/vector.") 

 

        diag['given_length'] = len(seq) 

        diag['expected_length'] = expected_n 

 

        converted = [] 

        problems = [] 

        for i, e in enumerate(seq): 

            converted_el = None 

            try: 

                if hasattr(e, 'parent') and callable(e.parent): 

                    try: 

                        if e.parent() is field_F: 

                            converted_el = e 

                    except Exception: 

                        pass 

            except Exception: 

                pass 

 

            if converted_el is None: 

                try: 

                    ei = int(e) 

                    if not (0 <= ei <= 255): 

                        problems.append((i, e, "int out of range 0..255")) 

                    else: 

                        converted_el = int_to_GF256(ei) 

                except Exception as ex: 

                    problems.append((i, e, f"cannot cast to int: {ex}")) 

 

            converted.append(converted_el) 
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        diag['conversion_problems'] = problems 

 

        if len(converted) != expected_n: 

            raise ValueError(f"Panjang word ({len(converted)}) != expected n 

({expected_n}). " 

                             "Pastikan word length = n. Diagnostics: " + 

repr(diag)) 

 

        final_vec = vector(field_F, converted) 

        diag['final_vector_parent'] = final_vec.parent() 

        return final_vec, diag 

 

    # contoh penggunaan diagnosa + decode via C.decode 

    try: 

        # use example 'corrupted' from earlier deterministic injection if 

exists, else use cw1_err 

        corrupted_for_decode = None 

        try: 

            corrupted_for_decode = corrupted  # from example injection earlier 

(may or may not exist) 

        except NameError: 

            corrupted_for_decode = cw1_err 

 

        fixed_vec, diagnostics = diagnose_ambient_and_fix(corrupted_for_decode, 

C, F, n) 

        print("Diagnostik:", diagnostics) 

        corrected = C.decode(fixed_vec) 

        print("\nDecode sukses. Hasil corrected codeword:") 

        show_cw("corrected", corrected) 

        print("corrected (hex):", [f"0x{poly_to_int(c.polynomial()):02x}" for c 

in list(corrected)]) 

    except ValueError as e: 

        print("ValueError saat persiapan decode:", e) 

    except Exception as e: 

        print("Error lain saat decode:", e) 

 

    # 6) sindrom dan validasi 

    t_capability = (n - k_ayat) // 2 

    print(f"\n=== Hitung sindrom (2t = {2*t_capability}) dan validasi (evaluasi 

& H•v^T) ===") 

    S_eval_1 = syndromes_from_vector_sagemath(cw1_err, t_capability, step=5, 

start=0) 

    S_hv_1 = list(H * vector(F, cw1_err)) 

    print("\n-- Sindrom Codeword1 (evaluasi) --") 

    for i, s in enumerate(S_eval_1, 1): 

        print(f"S_{i} = {element_to_alpha_power(s)} (dec 

{poly_to_int(s.polynomial())})") 

    print("\n-- Sindrom Codeword1 (H•v^T) --") 

    for i, s in enumerate(S_hv_1, 1): 

        print(f"S_{i} = {element_to_alpha_power(s)} (dec 

{poly_to_int(s.polynomial())})") 

    same1 = all(S_eval_1[i] == S_hv_1[i] for i in range(len(S_eval_1))) 

    print("Validasi sindrom codeword1:", "Cocok ✅" if same1 else "Tidak cocok 

⚠") 
 

    S_eval_2 = syndromes_from_vector_sagemath(cw2_err, t_capability, step=5, 

start=0) 

    S_hv_2 = list(H * vector(F, cw2_err)) 

    print("\n-- Sindrom Codeword2 (evaluasi) --") 

    for i, s in enumerate(S_eval_2, 1): 

        print(f"S_{i} = {element_to_alpha_power(s)} (dec 

{poly_to_int(s.polynomial())})") 

    print("\n-- Sindrom Codeword2 (H•v^T) --") 

    for i, s in enumerate(S_hv_2, 1): 

        print(f"S_{i} = {element_to_alpha_power(s)} (dec 

{poly_to_int(s.polynomial())})") 

    same2 = all(S_eval_2[i] == S_hv_2[i] for i in range(len(S_eval_2))) 

    print("Validasi sindrom codeword2:", "Cocok ✅" if same2 else "Tidak cocok 

⚠") 
 

    # 7) decode: BM + Chien + Forney (menggunakan t_capability) 

    print("\n=== Dekoding (Berlekamp–Massey -> Chien -> Forney) untuk codeword1 

===") 
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    S1 = S_eval_1 

    sigma1, L1 = berlekamp_massey(S1) 

    print("Berlekamp–Massey hasil: degree L =", L1) 

    print("sigma coeffs (α^i):", [element_to_alpha_power(c) for c in sigma1]) 

    errs_pos1 = chien_search(sigma1, n, step=5, start=0) 

    print("Posisi error (Chien):", errs_pos1) 

    mags1 = forney_magnitudes(S1, sigma1, errs_pos1, t_capability, step=5, 

start=0) 

    for pos, val in mags1.items(): 

        if val is None: 

            print(f"pos {pos}: magnitude = ERROR(div0)") 

        else: 

            print(f"pos {pos}: magnitude = {element_to_alpha_power(val)} (dec 

{poly_to_int(val.polynomial())})") 

    # koreksi 

    cw1_corr = list(cw1_err) 

    for pos, mag in mags1.items(): 

        if mag is not None: 

            cw1_corr[pos] -= mag 

    print("\nSindrom setelah koreksi (codeword1):", [element_to_alpha_power(s) 

for s in syndromes_from_vector_sagemath(cw1_corr, t_capability, step=5, 

start=0)]) 

    print("Dekoding codeword1 sukses?" , "YA" if all(s==0 for s in 

syndromes_from_vector_sagemath(cw1_corr, t_capability, step=5, start=0)) else 

"TIDAK") 

 

    print("\n=== Dekoding untuk codeword2 ===") 

    S2 = S_eval_2 

    sigma2, L2 = berlekamp_massey(S2) 

    print("Berlekamp–Massey hasil: degree L =", L2) 

    print("sigma coeffs (α^i):", [element_to_alpha_power(c) for c in sigma2]) 

    errs_pos2 = chien_search(sigma2, n, step=5, start=0) 

    print("Posisi error (Chien):", errs_pos2) 

    mags2 = forney_magnitudes(S2, sigma2, errs_pos2, t_capability, step=5, 

start=0) 

    for pos, val in mags2.items(): 

        if val is None: 

            print(f"pos {pos}: magnitude = ERROR(div0)") 

        else: 

            print(f"pos {pos}: magnitude = {element_to_alpha_power(val)} (dec 

{poly_to_int(val.polynomial())})") 

    cw2_corr = list(cw2_err) 

    for pos, mag in mags2.items(): 

        if mag is not None: 

            cw2_corr[pos] -= mag 

    print("\nSindrom setelah koreksi (codeword2):", [element_to_alpha_power(s) 

for s in syndromes_from_vector_sagemath(cw2_corr, t_capability, step=5, 

start=0)]) 

    print("Dekoding codeword2 sukses?" , "YA" if all(s==0 for s in 

syndromes_from_vector_sagemath(cw2_corr, t_capability, step=5, start=0)) else 

"TIDAK") 

 

    # 8) tampil akhir 

    show_cw("cw1 (rusak)", cw1_err) 

    show_cw("cw1 (terkoreksi)", cw1_corr) 

    show_cw("cw2 (rusak)", cw2_err) 

    show_cw("cw2 (terkoreksi)", cw2_corr) 

 

    try: 

        fixed_vec, diagnostics = diagnose_ambient_and_fix(cw1_corr, C, F, n) 

        print("Diagnostik:", diagnostics) 

    except Exception as e: 

        print("Diagnostik/gagal:", e) 

 

    try: 

        pw = C.decode_to_message(vector(F, [int_to_GF256( 

poly_to_int(c.polynomial()) ) if hasattr(c,'polynomial') else 

int_to_GF256(int(c)) for c in cw1_corr])) 

        show_cw("pw1 (hasil decoding)", pw) 

    except Exception as e: 

        print("Gagal decode_to_message untuk cw1_corr:", e) 

 

    try: 

        fixed_vec2, diagnostics2 = diagnose_ambient_and_fix(cw2_corr, C, F, n) 
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        print("Diagnostik cw2:", diagnostics2) 

    except Exception as e: 

        print("Diagnostik cw2/gagal:", e) 

 

    try: 

        pw2 = C.decode_to_message(vector(F, [int_to_GF256( 

poly_to_int(c.polynomial()) ) if hasattr(c,'polynomial') else 

int_to_GF256(int(c)) for c in cw2_corr])) 

        show_cw("pw2 (hasil decoding)", pw2) 

    except Exception as e: 

        print("Gagal decode_to_message untuk cw2_corr:", e) 

 

# === SELESAI LOOP 10 AYAT === 

print("\n=== Semua ayat telah diproses (dengan 2 error per codeword, k = {0}). 

===".format(k_ayat)) 
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Lampiran 3. Matriks Generator dalam Bentuk Representasi 𝛼𝑖 𝐺𝐹(28) 
Generator matrix G (nrows=47, ncols=51): 

r00 | ['α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 

'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 

'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 

'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 

'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0', 'α^0'] 

r01 | ['α^0', 'α^5', 'α^10', 'α^15', 'α^20', 'α^25', 'α^30', 'α^35', 'α^40', 

'α^45', 'α^50', 'α^55', 'α^60', 'α^65', 'α^70', 'α^75', 'α^80', 'α^85', 'α^90', 

'α^95', 'α^100', 'α^105', 'α^110', 'α^115', 'α^120', 'α^125', 'α^130', 'α^135', 

'α^140', 'α^145', 'α^150', 'α^155', 'α^160', 'α^165', 'α^170', 'α^175', 'α^180', 

'α^185', 'α^190', 'α^195', 'α^200', 'α^205', 'α^210', 'α^215', 'α^220', 'α^225', 

'α^230', 'α^235', 'α^240', 'α^245', 'α^250'] 

r02 | ['α^0', 'α^10', 'α^20', 'α^30', 'α^40', 'α^50', 'α^60', 'α^70', 'α^80', 

'α^90', 'α^100', 'α^110', 'α^120', 'α^130', 'α^140', 'α^150', 'α^160', 'α^170', 

'α^180', 'α^190', 'α^200', 'α^210', 'α^220', 'α^230', 'α^240', 'α^250', 'α^5', 

'α^15', 'α^25', 'α^35', 'α^45', 'α^55', 'α^65', 'α^75', 'α^85', 'α^95', 'α^105', 

'α^115', 'α^125', 'α^135', 'α^145', 'α^155', 'α^165', 'α^175', 'α^185', 'α^195', 

'α^205', 'α^215', 'α^225', 'α^235', 'α^245'] 

r03 | ['α^0', 'α^15', 'α^30', 'α^45', 'α^60', 'α^75', 'α^90', 'α^105', 'α^120', 

'α^135', 'α^150', 'α^165', 'α^180', 'α^195', 'α^210', 'α^225', 'α^240', 'α^0', 

'α^15', 'α^30', 'α^45', 'α^60', 'α^75', 'α^90', 'α^105', 'α^120', 'α^135', 

'α^150', 'α^165', 'α^180', 'α^195', 'α^210', 'α^225', 'α^240', 'α^0', 'α^15', 

'α^30', 'α^45', 'α^60', 'α^75', 'α^90', 'α^105', 'α^120', 'α^135', 'α^150', 

'α^165', 'α^180', 'α^195', 'α^210', 'α^225', 'α^240'] 

r04 | ['α^0', 'α^20', 'α^40', 'α^60', 'α^80', 'α^100', 'α^120', 'α^140', 

'α^160', 'α^180', 'α^200', 'α^220', 'α^240', 'α^5', 'α^25', 'α^45', 'α^65', 

'α^85', 'α^105', 'α^125', 'α^145', 'α^165', 'α^185', 'α^205', 'α^225', 'α^245', 

'α^10', 'α^30', 'α^50', 'α^70', 'α^90', 'α^110', 'α^130', 'α^150', 'α^170', 

'α^190', 'α^210', 'α^230', 'α^250', 'α^15', 'α^35', 'α^55', 'α^75', 'α^95', 

'α^115', 'α^135', 'α^155', 'α^175', 'α^195', 'α^215', 'α^235'] 

r05 | ['α^0', 'α^25', 'α^50', 'α^75', 'α^100', 'α^125', 'α^150', 'α^175', 

'α^200', 'α^225', 'α^250', 'α^20', 'α^45', 'α^70', 'α^95', 'α^120', 'α^145', 

'α^170', 'α^195', 'α^220', 'α^245', 'α^15', 'α^40', 'α^65', 'α^90', 'α^115', 

'α^140', 'α^165', 'α^190', 'α^215', 'α^240', 'α^10', 'α^35', 'α^60', 'α^85', 

'α^110', 'α^135', 'α^160', 'α^185', 'α^210', 'α^235', 'α^5', 'α^30', 'α^55', 

'α^80', 'α^105', 'α^130', 'α^155', 'α^180', 'α^205', 'α^230'] 

r06 | ['α^0', 'α^30', 'α^60', 'α^90', 'α^120', 'α^150', 'α^180', 'α^210', 

'α^240', 'α^15', 'α^45', 'α^75', 'α^105', 'α^135', 'α^165', 'α^195', 'α^225', 

'α^0', 'α^30', 'α^60', 'α^90', 'α^120', 'α^150', 'α^180', 'α^210', 'α^240', 

'α^15', 'α^45', 'α^75', 'α^105', 'α^135', 'α^165', 'α^195', 'α^225', 'α^0', 

'α^30', 'α^60', 'α^90', 'α^120', 'α^150', 'α^180', 'α^210', 'α^240', 'α^15', 

'α^45', 'α^75', 'α^105', 'α^135', 'α^165', 'α^195', 'α^225'] 

r07 | ['α^0', 'α^35', 'α^70', 'α^105', 'α^140', 'α^175', 'α^210', 'α^245', 

'α^25', 'α^60', 'α^95', 'α^130', 'α^165', 'α^200', 'α^235', 'α^15', 'α^50', 

'α^85', 'α^120', 'α^155', 'α^190', 'α^225', 'α^5', 'α^40', 'α^75', 'α^110', 

'α^145', 'α^180', 'α^215', 'α^250', 'α^30', 'α^65', 'α^100', 'α^135', 'α^170', 

'α^205', 'α^240', 'α^20', 'α^55', 'α^90', 'α^125', 'α^160', 'α^195', 'α^230', 

'α^10', 'α^45', 'α^80', 'α^115', 'α^150', 'α^185', 'α^220'] 

r08 | ['α^0', 'α^40', 'α^80', 'α^120', 'α^160', 'α^200', 'α^240', 'α^25', 

'α^65', 'α^105', 'α^145', 'α^185', 'α^225', 'α^10', 'α^50', 'α^90', 'α^130', 

'α^170', 'α^210', 'α^250', 'α^35', 'α^75', 'α^115', 'α^155', 'α^195', 'α^235', 

'α^20', 'α^60', 'α^100', 'α^140', 'α^180', 'α^220', 'α^5', 'α^45', 'α^85', 

'α^125', 'α^165', 'α^205', 'α^245', 'α^30', 'α^70', 'α^110', 'α^150', 'α^190', 

'α^230', 'α^15', 'α^55', 'α^95', 'α^135', 'α^175', 'α^215'] 

r09 | ['α^0', 'α^45', 'α^90', 'α^135', 'α^180', 'α^225', 'α^15', 'α^60', 

'α^105', 'α^150', 'α^195', 'α^240', 'α^30', 'α^75', 'α^120', 'α^165', 'α^210', 

'α^0', 'α^45', 'α^90', 'α^135', 'α^180', 'α^225', 'α^15', 'α^60', 'α^105', 

'α^150', 'α^195', 'α^240', 'α^30', 'α^75', 'α^120', 'α^165', 'α^210', 'α^0', 

'α^45', 'α^90', 'α^135', 'α^180', 'α^225', 'α^15', 'α^60', 'α^105', 'α^150', 

'α^195', 'α^240', 'α^30', 'α^75', 'α^120', 'α^165', 'α^210'] 

r10 | ['α^0', 'α^50', 'α^100', 'α^150', 'α^200', 'α^250', 'α^45', 'α^95', 

'α^145', 'α^195', 'α^245', 'α^40', 'α^90', 'α^140', 'α^190', 'α^240', 'α^35', 

'α^85', 'α^135', 'α^185', 'α^235', 'α^30', 'α^80', 'α^130', 'α^180', 'α^230', 

'α^25', 'α^75', 'α^125', 'α^175', 'α^225', 'α^20', 'α^70', 'α^120', 'α^170', 

'α^220', 'α^15', 'α^65', 'α^115', 'α^165', 'α^215', 'α^10', 'α^60', 'α^110', 

'α^160', 'α^210', 'α^5', 'α^55', 'α^105', 'α^155', 'α^205'] 

r11 | ['α^0', 'α^55', 'α^110', 'α^165', 'α^220', 'α^20', 'α^75', 'α^130', 

'α^185', 'α^240', 'α^40', 'α^95', 'α^150', 'α^205', 'α^5', 'α^60', 'α^115', 

'α^170', 'α^225', 'α^25', 'α^80', 'α^135', 'α^190', 'α^245', 'α^45', 'α^100', 

'α^155', 'α^210', 'α^10', 'α^65', 'α^120', 'α^175', 'α^230', 'α^30', 'α^85', 

'α^140', 'α^195', 'α^250', 'α^50', 'α^105', 'α^160', 'α^215', 'α^15', 'α^70', 

'α^125', 'α^180', 'α^235', 'α^35', 'α^90', 'α^145', 'α^200'] 
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r12 | ['α^0', 'α^60', 'α^120', 'α^180', 'α^240', 'α^45', 'α^105', 'α^165', 

'α^225', 'α^30', 'α^90', 'α^150', 'α^210', 'α^15', 'α^75', 'α^135', 'α^195', 

'α^0', 'α^60', 'α^120', 'α^180', 'α^240', 'α^45', 'α^105', 'α^165', 'α^225', 

'α^30', 'α^90', 'α^150', 'α^210', 'α^15', 'α^75', 'α^135', 'α^195', 'α^0', 

'α^60', 'α^120', 'α^180', 'α^240', 'α^45', 'α^105', 'α^165', 'α^225', 'α^30', 

'α^90', 'α^150', 'α^210', 'α^15', 'α^75', 'α^135', 'α^195'] 

r13 | ['α^0', 'α^65', 'α^130', 'α^195', 'α^5', 'α^70', 'α^135', 'α^200', 'α^10', 

'α^75', 'α^140', 'α^205', 'α^15', 'α^80', 'α^145', 'α^210', 'α^20', 'α^85', 

'α^150', 'α^215', 'α^25', 'α^90', 'α^155', 'α^220', 'α^30', 'α^95', 'α^160', 

'α^225', 'α^35', 'α^100', 'α^165', 'α^230', 'α^40', 'α^105', 'α^170', 'α^235', 

'α^45', 'α^110', 'α^175', 'α^240', 'α^50', 'α^115', 'α^180', 'α^245', 'α^55', 

'α^120', 'α^185', 'α^250', 'α^60', 'α^125', 'α^190'] 

r14 | ['α^0', 'α^70', 'α^140', 'α^210', 'α^25', 'α^95', 'α^165', 'α^235', 

'α^50', 'α^120', 'α^190', 'α^5', 'α^75', 'α^145', 'α^215', 'α^30', 'α^100', 

'α^170', 'α^240', 'α^55', 'α^125', 'α^195', 'α^10', 'α^80', 'α^150', 'α^220', 

'α^35', 'α^105', 'α^175', 'α^245', 'α^60', 'α^130', 'α^200', 'α^15', 'α^85', 

'α^155', 'α^225', 'α^40', 'α^110', 'α^180', 'α^250', 'α^65', 'α^135', 'α^205', 

'α^20', 'α^90', 'α^160', 'α^230', 'α^45', 'α^115', 'α^185'] 

r15 | ['α^0', 'α^75', 'α^150', 'α^225', 'α^45', 'α^120', 'α^195', 'α^15', 

'α^90', 'α^165', 'α^240', 'α^60', 'α^135', 'α^210', 'α^30', 'α^105', 'α^180', 

'α^0', 'α^75', 'α^150', 'α^225', 'α^45', 'α^120', 'α^195', 'α^15', 'α^90', 

'α^165', 'α^240', 'α^60', 'α^135', 'α^210', 'α^30', 'α^105', 'α^180', 'α^0', 

'α^75', 'α^150', 'α^225', 'α^45', 'α^120', 'α^195', 'α^15', 'α^90', 'α^165', 

'α^240', 'α^60', 'α^135', 'α^210', 'α^30', 'α^105', 'α^180'] 

r16 | ['α^0', 'α^80', 'α^160', 'α^240', 'α^65', 'α^145', 'α^225', 'α^50', 

'α^130', 'α^210', 'α^35', 'α^115', 'α^195', 'α^20', 'α^100', 'α^180', 'α^5', 

'α^85', 'α^165', 'α^245', 'α^70', 'α^150', 'α^230', 'α^55', 'α^135', 'α^215', 

'α^40', 'α^120', 'α^200', 'α^25', 'α^105', 'α^185', 'α^10', 'α^90', 'α^170', 

'α^250', 'α^75', 'α^155', 'α^235', 'α^60', 'α^140', 'α^220', 'α^45', 'α^125', 

'α^205', 'α^30', 'α^110', 'α^190', 'α^15', 'α^95', 'α^175'] 

r17 | ['α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 

'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 

'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 

'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 

'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 'α^85', 'α^170', 'α^0', 

'α^85', 'α^170'] 

r18 | ['α^0', 'α^90', 'α^180', 'α^15', 'α^105', 'α^195', 'α^30', 'α^120', 

'α^210', 'α^45', 'α^135', 'α^225', 'α^60', 'α^150', 'α^240', 'α^75', 'α^165', 

'α^0', 'α^90', 'α^180', 'α^15', 'α^105', 'α^195', 'α^30', 'α^120', 'α^210', 

'α^45', 'α^135', 'α^225', 'α^60', 'α^150', 'α^240', 'α^75', 'α^165', 'α^0', 

'α^90', 'α^180', 'α^15', 'α^105', 'α^195', 'α^30', 'α^120', 'α^210', 'α^45', 

'α^135', 'α^225', 'α^60', 'α^150', 'α^240', 'α^75', 'α^165'] 

r19 | ['α^0', 'α^95', 'α^190', 'α^30', 'α^125', 'α^220', 'α^60', 'α^155', 

'α^250', 'α^90', 'α^185', 'α^25', 'α^120', 'α^215', 'α^55', 'α^150', 'α^245', 

'α^85', 'α^180', 'α^20', 'α^115', 'α^210', 'α^50', 'α^145', 'α^240', 'α^80', 

'α^175', 'α^15', 'α^110', 'α^205', 'α^45', 'α^140', 'α^235', 'α^75', 'α^170', 

'α^10', 'α^105', 'α^200', 'α^40', 'α^135', 'α^230', 'α^70', 'α^165', 'α^5', 

'α^100', 'α^195', 'α^35', 'α^130', 'α^225', 'α^65', 'α^160'] 

r20 | ['α^0', 'α^100', 'α^200', 'α^45', 'α^145', 'α^245', 'α^90', 'α^190', 

'α^35', 'α^135', 'α^235', 'α^80', 'α^180', 'α^25', 'α^125', 'α^225', 'α^70', 

'α^170', 'α^15', 'α^115', 'α^215', 'α^60', 'α^160', 'α^5', 'α^105', 'α^205', 

'α^50', 'α^150', 'α^250', 'α^95', 'α^195', 'α^40', 'α^140', 'α^240', 'α^85', 

'α^185', 'α^30', 'α^130', 'α^230', 'α^75', 'α^175', 'α^20', 'α^120', 'α^220', 

'α^65', 'α^165', 'α^10', 'α^110', 'α^210', 'α^55', 'α^155'] 

r21 | ['α^0', 'α^105', 'α^210', 'α^60', 'α^165', 'α^15', 'α^120', 'α^225', 

'α^75', 'α^180', 'α^30', 'α^135', 'α^240', 'α^90', 'α^195', 'α^45', 'α^150', 

'α^0', 'α^105', 'α^210', 'α^60', 'α^165', 'α^15', 'α^120', 'α^225', 'α^75', 

'α^180', 'α^30', 'α^135', 'α^240', 'α^90', 'α^195', 'α^45', 'α^150', 'α^0', 

'α^105', 'α^210', 'α^60', 'α^165', 'α^15', 'α^120', 'α^225', 'α^75', 'α^180', 

'α^30', 'α^135', 'α^240', 'α^90', 'α^195', 'α^45', 'α^150'] 

r22 | ['α^0', 'α^110', 'α^220', 'α^75', 'α^185', 'α^40', 'α^150', 'α^5', 

'α^115', 'α^225', 'α^80', 'α^190', 'α^45', 'α^155', 'α^10', 'α^120', 'α^230', 

'α^85', 'α^195', 'α^50', 'α^160', 'α^15', 'α^125', 'α^235', 'α^90', 'α^200', 

'α^55', 'α^165', 'α^20', 'α^130', 'α^240', 'α^95', 'α^205', 'α^60', 'α^170', 

'α^25', 'α^135', 'α^245', 'α^100', 'α^210', 'α^65', 'α^175', 'α^30', 'α^140', 

'α^250', 'α^105', 'α^215', 'α^70', 'α^180', 'α^35', 'α^145'] 

r23 | ['α^0', 'α^115', 'α^230', 'α^90', 'α^205', 'α^65', 'α^180', 'α^40', 

'α^155', 'α^15', 'α^130', 'α^245', 'α^105', 'α^220', 'α^80', 'α^195', 'α^55', 

'α^170', 'α^30', 'α^145', 'α^5', 'α^120', 'α^235', 'α^95', 'α^210', 'α^70', 

'α^185', 'α^45', 'α^160', 'α^20', 'α^135', 'α^250', 'α^110', 'α^225', 'α^85', 

'α^200', 'α^60', 'α^175', 'α^35', 'α^150', 'α^10', 'α^125', 'α^240', 'α^100', 

'α^215', 'α^75', 'α^190', 'α^50', 'α^165', 'α^25', 'α^140'] 

r24 | ['α^0', 'α^120', 'α^240', 'α^105', 'α^225', 'α^90', 'α^210', 'α^75', 

'α^195', 'α^60', 'α^180', 'α^45', 'α^165', 'α^30', 'α^150', 'α^15', 'α^135', 
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'α^0', 'α^120', 'α^240', 'α^105', 'α^225', 'α^90', 'α^210', 'α^75', 'α^195', 

'α^60', 'α^180', 'α^45', 'α^165', 'α^30', 'α^150', 'α^15', 'α^135', 'α^0', 

'α^120', 'α^240', 'α^105', 'α^225', 'α^90', 'α^210', 'α^75', 'α^195', 'α^60', 

'α^180', 'α^45', 'α^165', 'α^30', 'α^150', 'α^15', 'α^135'] 

r25 | ['α^0', 'α^125', 'α^250', 'α^120', 'α^245', 'α^115', 'α^240', 'α^110', 

'α^235', 'α^105', 'α^230', 'α^100', 'α^225', 'α^95', 'α^220', 'α^90', 'α^215', 

'α^85', 'α^210', 'α^80', 'α^205', 'α^75', 'α^200', 'α^70', 'α^195', 'α^65', 

'α^190', 'α^60', 'α^185', 'α^55', 'α^180', 'α^50', 'α^175', 'α^45', 'α^170', 

'α^40', 'α^165', 'α^35', 'α^160', 'α^30', 'α^155', 'α^25', 'α^150', 'α^20', 

'α^145', 'α^15', 'α^140', 'α^10', 'α^135', 'α^5', 'α^130'] 

r26 | ['α^0', 'α^130', 'α^5', 'α^135', 'α^10', 'α^140', 'α^15', 'α^145', 'α^20', 

'α^150', 'α^25', 'α^155', 'α^30', 'α^160', 'α^35', 'α^165', 'α^40', 'α^170', 

'α^45', 'α^175', 'α^50', 'α^180', 'α^55', 'α^185', 'α^60', 'α^190', 'α^65', 

'α^195', 'α^70', 'α^200', 'α^75', 'α^205', 'α^80', 'α^210', 'α^85', 'α^215', 

'α^90', 'α^220', 'α^95', 'α^225', 'α^100', 'α^230', 'α^105', 'α^235', 'α^110', 

'α^240', 'α^115', 'α^245', 'α^120', 'α^250', 'α^125'] 

r27 | ['α^0', 'α^135', 'α^15', 'α^150', 'α^30', 'α^165', 'α^45', 'α^180', 

'α^60', 'α^195', 'α^75', 'α^210', 'α^90', 'α^225', 'α^105', 'α^240', 'α^120', 

'α^0', 'α^135', 'α^15', 'α^150', 'α^30', 'α^165', 'α^45', 'α^180', 'α^60', 

'α^195', 'α^75', 'α^210', 'α^90', 'α^225', 'α^105', 'α^240', 'α^120', 'α^0', 

'α^135', 'α^15', 'α^150', 'α^30', 'α^165', 'α^45', 'α^180', 'α^60', 'α^195', 

'α^75', 'α^210', 'α^90', 'α^225', 'α^105', 'α^240', 'α^120'] 

r28 | ['α^0', 'α^140', 'α^25', 'α^165', 'α^50', 'α^190', 'α^75', 'α^215', 

'α^100', 'α^240', 'α^125', 'α^10', 'α^150', 'α^35', 'α^175', 'α^60', 'α^200', 

'α^85', 'α^225', 'α^110', 'α^250', 'α^135', 'α^20', 'α^160', 'α^45', 'α^185', 

'α^70', 'α^210', 'α^95', 'α^235', 'α^120', 'α^5', 'α^145', 'α^30', 'α^170', 

'α^55', 'α^195', 'α^80', 'α^220', 'α^105', 'α^245', 'α^130', 'α^15', 'α^155', 

'α^40', 'α^180', 'α^65', 'α^205', 'α^90', 'α^230', 'α^115'] 

r29 | ['α^0', 'α^145', 'α^35', 'α^180', 'α^70', 'α^215', 'α^105', 'α^250', 

'α^140', 'α^30', 'α^175', 'α^65', 'α^210', 'α^100', 'α^245', 'α^135', 'α^25', 

'α^170', 'α^60', 'α^205', 'α^95', 'α^240', 'α^130', 'α^20', 'α^165', 'α^55', 

'α^200', 'α^90', 'α^235', 'α^125', 'α^15', 'α^160', 'α^50', 'α^195', 'α^85', 

'α^230', 'α^120', 'α^10', 'α^155', 'α^45', 'α^190', 'α^80', 'α^225', 'α^115', 

'α^5', 'α^150', 'α^40', 'α^185', 'α^75', 'α^220', 'α^110'] 

r30 | ['α^0', 'α^150', 'α^45', 'α^195', 'α^90', 'α^240', 'α^135', 'α^30', 

'α^180', 'α^75', 'α^225', 'α^120', 'α^15', 'α^165', 'α^60', 'α^210', 'α^105', 

'α^0', 'α^150', 'α^45', 'α^195', 'α^90', 'α^240', 'α^135', 'α^30', 'α^180', 

'α^75', 'α^225', 'α^120', 'α^15', 'α^165', 'α^60', 'α^210', 'α^105', 'α^0', 

'α^150', 'α^45', 'α^195', 'α^90', 'α^240', 'α^135', 'α^30', 'α^180', 'α^75', 

'α^225', 'α^120', 'α^15', 'α^165', 'α^60', 'α^210', 'α^105'] 

r31 | ['α^0', 'α^155', 'α^55', 'α^210', 'α^110', 'α^10', 'α^165', 'α^65', 

'α^220', 'α^120', 'α^20', 'α^175', 'α^75', 'α^230', 'α^130', 'α^30', 'α^185', 

'α^85', 'α^240', 'α^140', 'α^40', 'α^195', 'α^95', 'α^250', 'α^150', 'α^50', 

'α^205', 'α^105', 'α^5', 'α^160', 'α^60', 'α^215', 'α^115', 'α^15', 'α^170', 

'α^70', 'α^225', 'α^125', 'α^25', 'α^180', 'α^80', 'α^235', 'α^135', 'α^35', 

'α^190', 'α^90', 'α^245', 'α^145', 'α^45', 'α^200', 'α^100'] 

r32 | ['α^0', 'α^160', 'α^65', 'α^225', 'α^130', 'α^35', 'α^195', 'α^100', 

'α^5', 'α^165', 'α^70', 'α^230', 'α^135', 'α^40', 'α^200', 'α^105', 'α^10', 

'α^170', 'α^75', 'α^235', 'α^140', 'α^45', 'α^205', 'α^110', 'α^15', 'α^175', 

'α^80', 'α^240', 'α^145', 'α^50', 'α^210', 'α^115', 'α^20', 'α^180', 'α^85', 

'α^245', 'α^150', 'α^55', 'α^215', 'α^120', 'α^25', 'α^185', 'α^90', 'α^250', 

'α^155', 'α^60', 'α^220', 'α^125', 'α^30', 'α^190', 'α^95'] 

r33 | ['α^0', 'α^165', 'α^75', 'α^240', 'α^150', 'α^60', 'α^225', 'α^135', 

'α^45', 'α^210', 'α^120', 'α^30', 'α^195', 'α^105', 'α^15', 'α^180', 'α^90', 

'α^0', 'α^165', 'α^75', 'α^240', 'α^150', 'α^60', 'α^225', 'α^135', 'α^45', 

'α^210', 'α^120', 'α^30', 'α^195', 'α^105', 'α^15', 'α^180', 'α^90', 'α^0', 

'α^165', 'α^75', 'α^240', 'α^150', 'α^60', 'α^225', 'α^135', 'α^45', 'α^210', 

'α^120', 'α^30', 'α^195', 'α^105', 'α^15', 'α^180', 'α^90'] 

r34 | ['α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 

'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 

'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 

'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 

'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 'α^170', 'α^85', 'α^0', 

'α^170', 'α^85'] 

r35 | ['α^0', 'α^175', 'α^95', 'α^15', 'α^190', 'α^110', 'α^30', 'α^205', 

'α^125', 'α^45', 'α^220', 'α^140', 'α^60', 'α^235', 'α^155', 'α^75', 'α^250', 

'α^170', 'α^90', 'α^10', 'α^185', 'α^105', 'α^25', 'α^200', 'α^120', 'α^40', 

'α^215', 'α^135', 'α^55', 'α^230', 'α^150', 'α^70', 'α^245', 'α^165', 'α^85', 

'α^5', 'α^180', 'α^100', 'α^20', 'α^195', 'α^115', 'α^35', 'α^210', 'α^130', 

'α^50', 'α^225', 'α^145', 'α^65', 'α^240', 'α^160', 'α^80'] 

r36 | ['α^0', 'α^180', 'α^105', 'α^30', 'α^210', 'α^135', 'α^60', 'α^240', 

'α^165', 'α^90', 'α^15', 'α^195', 'α^120', 'α^45', 'α^225', 'α^150', 'α^75', 

'α^0', 'α^180', 'α^105', 'α^30', 'α^210', 'α^135', 'α^60', 'α^240', 'α^165', 

'α^90', 'α^15', 'α^195', 'α^120', 'α^45', 'α^225', 'α^150', 'α^75', 'α^0', 
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'α^180', 'α^105', 'α^30', 'α^210', 'α^135', 'α^60', 'α^240', 'α^165', 'α^90', 

'α^15', 'α^195', 'α^120', 'α^45', 'α^225', 'α^150', 'α^75'] 

r37 | ['α^0', 'α^185', 'α^115', 'α^45', 'α^230', 'α^160', 'α^90', 'α^20', 

'α^205', 'α^135', 'α^65', 'α^250', 'α^180', 'α^110', 'α^40', 'α^225', 'α^155', 

'α^85', 'α^15', 'α^200', 'α^130', 'α^60', 'α^245', 'α^175', 'α^105', 'α^35', 

'α^220', 'α^150', 'α^80', 'α^10', 'α^195', 'α^125', 'α^55', 'α^240', 'α^170', 

'α^100', 'α^30', 'α^215', 'α^145', 'α^75', 'α^5', 'α^190', 'α^120', 'α^50', 

'α^235', 'α^165', 'α^95', 'α^25', 'α^210', 'α^140', 'α^70'] 

r38 | ['α^0', 'α^190', 'α^125', 'α^60', 'α^250', 'α^185', 'α^120', 'α^55', 

'α^245', 'α^180', 'α^115', 'α^50', 'α^240', 'α^175', 'α^110', 'α^45', 'α^235', 

'α^170', 'α^105', 'α^40', 'α^230', 'α^165', 'α^100', 'α^35', 'α^225', 'α^160', 

'α^95', 'α^30', 'α^220', 'α^155', 'α^90', 'α^25', 'α^215', 'α^150', 'α^85', 

'α^20', 'α^210', 'α^145', 'α^80', 'α^15', 'α^205', 'α^140', 'α^75', 'α^10', 

'α^200', 'α^135', 'α^70', 'α^5', 'α^195', 'α^130', 'α^65'] 

r39 | ['α^0', 'α^195', 'α^135', 'α^75', 'α^15', 'α^210', 'α^150', 'α^90', 

'α^30', 'α^225', 'α^165', 'α^105', 'α^45', 'α^240', 'α^180', 'α^120', 'α^60', 

'α^0', 'α^195', 'α^135', 'α^75', 'α^15', 'α^210', 'α^150', 'α^90', 'α^30', 

'α^225', 'α^165', 'α^105', 'α^45', 'α^240', 'α^180', 'α^120', 'α^60', 'α^0', 

'α^195', 'α^135', 'α^75', 'α^15', 'α^210', 'α^150', 'α^90', 'α^30', 'α^225', 

'α^165', 'α^105', 'α^45', 'α^240', 'α^180', 'α^120', 'α^60'] 

r40 | ['α^0', 'α^200', 'α^145', 'α^90', 'α^35', 'α^235', 'α^180', 'α^125', 

'α^70', 'α^15', 'α^215', 'α^160', 'α^105', 'α^50', 'α^250', 'α^195', 'α^140', 

'α^85', 'α^30', 'α^230', 'α^175', 'α^120', 'α^65', 'α^10', 'α^210', 'α^155', 

'α^100', 'α^45', 'α^245', 'α^190', 'α^135', 'α^80', 'α^25', 'α^225', 'α^170', 

'α^115', 'α^60', 'α^5', 'α^205', 'α^150', 'α^95', 'α^40', 'α^240', 'α^185', 

'α^130', 'α^75', 'α^20', 'α^220', 'α^165', 'α^110', 'α^55'] 

r41 | ['α^0', 'α^205', 'α^155', 'α^105', 'α^55', 'α^5', 'α^210', 'α^160', 

'α^110', 'α^60', 'α^10', 'α^215', 'α^165', 'α^115', 'α^65', 'α^15', 'α^220', 

'α^170', 'α^120', 'α^70', 'α^20', 'α^225', 'α^175', 'α^125', 'α^75', 'α^25', 

'α^230', 'α^180', 'α^130', 'α^80', 'α^30', 'α^235', 'α^185', 'α^135', 'α^85', 

'α^35', 'α^240', 'α^190', 'α^140', 'α^90', 'α^40', 'α^245', 'α^195', 'α^145', 

'α^95', 'α^45', 'α^250', 'α^200', 'α^150', 'α^100', 'α^50'] 

r42 | ['α^0', 'α^210', 'α^165', 'α^120', 'α^75', 'α^30', 'α^240', 'α^195', 

'α^150', 'α^105', 'α^60', 'α^15', 'α^225', 'α^180', 'α^135', 'α^90', 'α^45', 

'α^0', 'α^210', 'α^165', 'α^120', 'α^75', 'α^30', 'α^240', 'α^195', 'α^150', 

'α^105', 'α^60', 'α^15', 'α^225', 'α^180', 'α^135', 'α^90', 'α^45', 'α^0', 

'α^210', 'α^165', 'α^120', 'α^75', 'α^30', 'α^240', 'α^195', 'α^150', 'α^105', 

'α^60', 'α^15', 'α^225', 'α^180', 'α^135', 'α^90', 'α^45'] 

r43 | ['α^0', 'α^215', 'α^175', 'α^135', 'α^95', 'α^55', 'α^15', 'α^230', 

'α^190', 'α^150', 'α^110', 'α^70', 'α^30', 'α^245', 'α^205', 'α^165', 'α^125', 

'α^85', 'α^45', 'α^5', 'α^220', 'α^180', 'α^140', 'α^100', 'α^60', 'α^20', 

'α^235', 'α^195', 'α^155', 'α^115', 'α^75', 'α^35', 'α^250', 'α^210', 'α^170', 

'α^130', 'α^90', 'α^50', 'α^10', 'α^225', 'α^185', 'α^145', 'α^105', 'α^65', 

'α^25', 'α^240', 'α^200', 'α^160', 'α^120', 'α^80', 'α^40'] 

r44 | ['α^0', 'α^220', 'α^185', 'α^150', 'α^115', 'α^80', 'α^45', 'α^10', 

'α^230', 'α^195', 'α^160', 'α^125', 'α^90', 'α^55', 'α^20', 'α^240', 'α^205', 

'α^170', 'α^135', 'α^100', 'α^65', 'α^30', 'α^250', 'α^215', 'α^180', 'α^145', 

'α^110', 'α^75', 'α^40', 'α^5', 'α^225', 'α^190', 'α^155', 'α^120', 'α^85', 

'α^50', 'α^15', 'α^235', 'α^200', 'α^165', 'α^130', 'α^95', 'α^60', 'α^25', 

'α^245', 'α^210', 'α^175', 'α^140', 'α^105', 'α^70', 'α^35'] 

r45 | ['α^0', 'α^225', 'α^195', 'α^165', 'α^135', 'α^105', 'α^75', 'α^45', 

'α^15', 'α^240', 'α^210', 'α^180', 'α^150', 'α^120', 'α^90', 'α^60', 'α^30', 

'α^0', 'α^225', 'α^195', 'α^165', 'α^135', 'α^105', 'α^75', 'α^45', 'α^15', 

'α^240', 'α^210', 'α^180', 'α^150', 'α^120', 'α^90', 'α^60', 'α^30', 'α^0', 

'α^225', 'α^195', 'α^165', 'α^135', 'α^105', 'α^75', 'α^45', 'α^15', 'α^240', 

'α^210', 'α^180', 'α^150', 'α^120', 'α^90', 'α^60', 'α^30'] 

r46 | ['α^0', 'α^230', 'α^205', 'α^180', 'α^155', 'α^130', 'α^105', 'α^80', 

'α^55', 'α^30', 'α^5', 'α^235', 'α^210', 'α^185', 'α^160', 'α^135', 'α^110', 

'α^85', 'α^60', 'α^35', 'α^10', 'α^240', 'α^215', 'α^190', 'α^165', 'α^140', 

'α^115', 'α^90', 'α^65', 'α^40', 'α^15', 'α^245', 'α^220', 'α^195', 'α^170', 

'α^145', 'α^120', 'α^95', 'α^70', 'α^45', 'α^20', 'α^250', 'α^225', 'α^200', 

'α^175', 'α^150', 'α^125', 'α^100', 'α^75', 'α^50', 'α^25'] 
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Lampiran 4. Matriks Generator dan Parity-Check dalam Bentuk Desimal 
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