SEGMENTASI PARU-PARU PADA CITRA DIGITAL HASIL X-RAY THORAX MENGGUNAKAN METODE LEVEL SET UNTUK MENGHITUNG DIAMETER MAKSIMAL PARU-PARU

SKRIPSI

Oleh:

RATRI NUR KUMALA HAYATI NIM. 07650088

JURUSAN TEKNIK INFORMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2013

SEGMENTASI PARU-PARU PADA CITRA DIGITAL HASIL X-RAY THORAK MENGGUNAKAN METODE LEVEL SET UNTUK MENGHITUNG DIAMETER MAKSIMAL PARU-PARU

SKRIPSI

Diajukan Kepada:

Universitas Islam Negeri Maulana Malik Ibrahim Malang Untuk Memenuhi Salah Satu Persyaratan dalam Memperoleh Gelar Sarjana Komputer (S.Kom)

Oleh:

RATRI NUR KUMALA HAYATI NIM. 07650088

JURUSAN TEKNIK INFORMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2013

SEGMENTASI PARU-PARU PADA CITRA DIGITAL HASIL X-RAY THORAK MENGGUNAKAN METODE LEVEL SET UNTUK MENGHITUNG DIAMETER MAKSIMAL PARU-PARU

SKRIPSI

Oleh:

RATRI NUR KUMALA HAYATI

NIM. 07650088

Telah Diperiksa dan Disetujui untuk Diuji:

Tanggal, 10 Januari 2013

Pembimbing I,

Pembimbing II,

M. Amin Hariyadi, M.T NIP. 19670118 200501 1 001 **Syahiduz Zaman, M.Kom** NIP. 19700502 200501 1 005

Mengetahui,

Ketua Jurusan Teknik Informatika

Ririen Kusumawati, M.Kom

NIP. 19720309 200501 2 002

SEGMENTASI PARU-PARU PADA CITRA DIGITAL HASIL X-RAY THORAK MENGGUNAKAN METODE LEVEL SET UNTUK MENGHITUNG DIAMETER MAKSIMAL PARU-PARU

SKRIPSI

Oleh:

RATRI NUR KUMALA HAYATI

NIM. 07650088

Telah Dipertahankan di Depan Dewan Penguji Skripsi dan Dinyatakan Diterima sebagai Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Komputer (S.Kom)

Tanggal, 10 Januari 2013

Susunan Dewan Penguji:			Tanda Tangan	
1.	Penguji Utama	: Zainal Abidin, M.Kom NIP. 19760613 200501 1 004)
2.	Ketua	: <u>Dr. Cahyo Crysdian</u> NIP. 19740424 200901 1 008	()
3.	Sekretaris	: M. Amin Hariyadi, M.T NIP. 19670118 200501 1 001)
4.	Anggota	: <u>Syahiduz Zaman, M.Kom</u> NIP. 19700502 200501 1 005)

Mengesahkan,

Ketua Jurusan Teknik Informatika

Ririen Kusumawati, M.Kom

NIP. 19720309 200501 2 002

PERNYATAAN KEASLIAN TULISAN

Saya yang bertanda tangan di bawah ini:

Nama : Ratri Nur Kumala Hayati

NIM : 07650088

Jurusan : Teknik Informatika

Menyatakan bahwa skripsi yang saya buat untuk memenuhi persyaratan kelulusan pada Fakultas Sains dan Teknologi, Jurusan Teknik Informatika Universitas Islam Negeri Malang Dengan Judul SEGMENTASI PARU-PARU PADA CITRA DIGITAL HASIL X-RAY THORAK MENGGUNAKAN METODE LEVEL SET UNTUK MENGHITUNG DIAMETER MAKSIMAL PARU-PARU ini adalah hasil karya sendiri dan bukan duplikasi karya orang lain baik sebagian ataupun keseluruhan, kecuali dalam bentuk kutipan yang telah disebutkan sumbernya. Selanjutnya apabila di kemudian hari ada Klaim dari pihak lain, bukan menjadi tanggung jawab dosen pembimbing dan atau pengelola Fakultas Sains dan Teknologi Jurusan Teknik Informatika Universitas Islam Negeri Maulana Malik Ibrahim Malang tetapi menjadi tanggung jawab saya sendiri.

Demikian surat pernyataan ini saya buat dengan sebenar-benarnya dan apabila pernyataan ini tidak benar, saya bersedia mendapatkan sanksi akademis.

Malang, 10 Januari 2013 Yang membuat pernyataan,

Ratri Nur Kumala Hayati NIM. 07650088

PERSEMBAHAN

Sembah sujud serta syukur kepada Allah SWJ dzat Pencipta dan Pemilik seluruh Alam Raya

Kupersembahkan Karya sederhana ini Kepada semua orang yang mencintaiku

Ayah dan Ibuku <mark>y</mark>ang telah mengasihi <mark>da</mark>n merawatku dari lahir hingga dewasa kasih dan sayang kalian hanya bisa kub<mark>al</mark>as dengan kebanggaan karena telah melahirkanku.

Adikku Mutiara Khairil Vmami dan seluruh keluarga besarku yang telah mendo'akanku sehingga aku dapat menyelesaikan skripsi ini

Mein freunden=>7 kurcacai (Vneen, Cunti, Vma, Dinil, Nisa, Vco), Roni, Aris, Whildan, Wachid, Vlil, Abror, Citra, Anisa, Desi, Rieka. Vielen dank für Ihre unterstützung guys..

Mein Jeam=>Cika, Didikz, Riena, Ipiet, Hantu, Bara £ndlich können wir es tun!!

Vnd Freunden VKM Jhepret Club insbesondere "Difoto 09"

MOTTO

"Usaha, Kerja keras, dan Doa yang akan membawa kita pada kesuksesan."

KATA PENGANTAR

Assalamu'alaikum Wr.Wb.

Segala puji bagi Allah SWT karena atas rahmat, taufiq, dan hidayah-Nya penulis dapat menyelesaikan penulisan tugas akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer (S.Kom) pada Jurusan Teknik Informatika Universitas Islam Negeri Maulana Malik Ibrahim Malang.

Ucapan terima kasih penulis sampaikan kepada:

- Amin Hariyadi, M.T selaku pembimbing sains yang telah bersedia meluangkan waktu, tenaga, pikiran serta memberikan arahan dan masukan yang sangat berguna dalam menyelesaikan skripsi ini.
- Prof. Dr. H. Dr. H. Imam Suprayogo selaku Rektor Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang.
- 3. Prof. Drs. Sutiman Bambang Sumitro, SU., D.Sc selaku Dekan Fakultas Sains dan Teknologi, UIN Maulana Malik Ibrahim Malang.
- 4. Ririen Kusumawati, M.Kom selaku Ketua Jurusan Teknik Informatika, Fakultas Sains dan Teknologi, UIN Maulana Malik Ibrahim Malang.
- 5. Muhammad Faisal, M.T selaku dosen wali yang telah memberikan nasehat serta semangat kepada penulis selama menjalani perkuliahan.
- 6. Syahiduz Zaman, M.Kom selaku pembimbing agama yang telah bersedia memberikan pengarahan keagamaan dalam penyelesaian skripsi ini.
- Segenap dosen Teknik Informatika dan staf pengajar, terima kasih atas semua ilmu yang telah diberikan.

- Semua sahabat di TI-UIN Malang khususnya angkatan 2007 semoga Allah SWT memberikan balasan yang setimpal atas jasa dan bantuan yang telah diberikan.
- 9. Dan kepada seluruh pihak yang mendukung penulisan skripsi yang tidak dapat disebutkan satu persatu penulis ucapkan terimakasih yang sebesar-besarnya. Semoga penulisan laporan skripsi ini bermanfaat bagi pembaca sekalian.

Penulis menyadari bahwa skripsi ini masih jauh dari kesempurnaan, dan mengandung banyak kekurangan, sehingga dengan segala kerendahan hati penulis mengharapkan kritik dan saran yang membangun dari pembaca.

Malang, 10 Januari 2013

Penulis

DAFTAR ISI

HALAN	IAN	JUDUL	i
HALAN	IAN	PENGAJUAN	ii
		PERSETUJUAN	
HALAN	IAN	PENGESAHAN	iv
HALAN	IAN	PERNYATAAN KEASLIAN TULISAN	v
HALAN	IAN	PERSEMBAHAN	vi
HALAN	IAN	MOTTO	vii
KATA F	PENC	GANTAR	viii
DAFTA	R IS		X
DAFTA	R GA	AMBAR	xiii
DAFTA	R TA	ABEL	xv
ABSTR	AK		xvi
ABSTR	ACT		xvii
BAB I		NDAHULUAN	
		Latar Belakang	
	1.2	Rumusan Masalah	4
	1.3	Tujuan Penelitian	4
		Manfaat Penelitian	
		Batasan Masalah	
	1.6	Metode Penelitian	5
	1.7	Sistematika Penulisan	6
BAB II	TIN	NJAUN PUSTAKA	
	2.1	Penelitian Terkait	8
	2.2	Citra Digital	9
		2.2.1 Definisi Citra Digital	9
		2.2.2 Piksel	11
		2.2.3 Citra RGB	12

	2.2.4 Citra Grayscale	12
	2.3 Pengolahan Citra	13
	2.4 Grayscalling	16
	2.5 Gaussian Filter	16
	2.6 Image Gradient	
	2.7 Segmentasi Citra	18
	2.8 Level Set	
	2.9 ROI	22
	2.10Deteksi Tepi	23
	2.11 Citra Medis	24
	2.12 Citra <i>X-ray</i>	25
	2.13 <i>Thorax</i>	26
	2.14 Paru-Paru	27
	2.15 CTR (Cardio Thoracic Ratio)	29
	2.16 Validasi	31
	2.17 Eucledian	32
BAB III	METODE PENELITIAN	
	3.1 Deskripsi Sistem	34
	3.2 Perancangan Sistem	34
	3.2.1 Data	36
	3.2.2 Desain Proses	36
	3.2.2.1 Grayscalling	36
	3.2.2.2 Segmentasi	37
	3.2.2.3 Perhitungan Diameter	38
	3.2.2.4 Validasi	49
	3.3 Desain Antarmuka	40

	3.2.1 Antarmuka Menu Utama Segmentasi	41
	3.2.2 Antarmuka Menu Diameter	41
	3.2.3 Antarmuka Menu Validasi	42
	3.2.4 Antarmuka Menu Bantuan	44
	3.2.5 Antarmuka Menu Informasi	45
BAB IV	ANALISA DAN PEMBAHASAAN	
	4.1 Implementasi Sistem	46
	4.1.1 Implementasi Antarmuka Menu Segmentasi	46
	4.1.1.1 Iimplrmentasi Proses Grayscalling	48
	4.1.1.2 Implementasi Proses Penentuan Edge	48
	4.1.1.3 Implementasi Proses Inisialisasi Model	50
	4.1.2 Implementasi Antarmuka Menu Diameter	54
	4.1.3 Implementasi Antarmuka Menu Validasi	57
	4.1.4 Implementasi Antarmuka Menu Bantuan	60
	4.1.5 Implementasi Antarmuka Menu informasi	61
	4.2 Hasil Uji Coba Sistem	61
	4.2.1 Hasil Uji Coba Validasi Segmentasi Paru-Paru	61
	4.2.2 Hasil Perhitungan Diameter Maksimal Paru-Paru	64
	4.2 Kajian Integrasi Sains dan Islam Citra X-ray thorax	65
BAB V	PENUTUP	
	5.1 Kesimpulan	67
	5.2 Saran	67
DAFTA	R PUSTAKA	68
I AMPII	PAN	

DAFTAR GAMBAR

Gambar 2.1	Perbedaan ketepatan warna bitmap	12
Gambar 2.2	Citra grayscale	13
Gambar 2.3	Bentuk grafis fungsi lowpass filter, Hasil gambar dengan fun	ıgs
	lowpass filter, Bentuk garafis fungsi highpass filter, Hasil gam	ba
	dengan fungsi highpass filter	17
Gambar 2.4	Fungsi gaussian lowpass filter	17
Gambar 2.5	Image Gradient	18
Gambar 2.6	Daerah inisialisasi awal	
Gambar 2.7	Pembentukan tepi suatu citra	24
Gambar 2.8	Citra hasil deteksi tepi menggunakan differensial	24
Gambar 2.9	Citra X-ray thorax	27
Gambar 2.10	Paru-paru manusia	29
Gambar 2.11	Gambar garis bantu untuk perhitungan CTR	30
Gambar 2.12	Perbedaan antara citra paru-paru asli dengan citra hasil segmenta	ısi
		31
Gambar 2.13	Formulasi matriks dari TP, TN, FP, FN	32
Gambar 2.14	Eucledian	32
Gambar 3.1	Diagram blok sistem	35
Gambar 3.2	Citra X-ray thorax	36
Gambar 3.3	Diagram alir grayscalling	37
Gambar 3.4	Diagram alir proses segmentasi dengan metode Level Set	38
Gambar 3.5	Diagram alir proses perhitungan diameter	39
Gambar 3.6	Diagram alir proses validasi	40
Gambar 3.7	Rancangan antarmuka menu utama segmentasi	41
Gambar 3.8	Rancangan antarmuka menu diameter	42
Gambar 3.9	Rancangan antarmuka menu validasi	44
Gambar 3.10	Rancangan antarmuka menu bantuan	45
Gambar 3.11	Rancangan antarmuka menu informasi	45

Gambar 4.1	Antarmuka menu segmentasi	47
Gambar 4.2	Sourcecode grayscalling	48
Gambar 4.3	Sourcecode filtering menggunakan gaussian lowpass filter	49
Gambar 4.4	(a) Mask gaussian lowpass filter (b) Citra hasil konvolusi	49
Gambar 4.5	Source code pencarian gradien citra terhadap sumbu x dan y	49
Gambar 4.6	Hasil gradien citra terhadap sumbu x dan y	49
Gambar 4.7	Sourcecode penentuan edge	50
Gambar 4.8	Hasil penentuan edge	50
Gambar 4.9	Sourcecode pembentukan daerah pergerakan model	50
Gambar 4.10	Sourcecode untuk menampilkan inisialisasi model awal	51
Gambar 4.11	Hasil proses pembentukan daerah pergerakan model	51
Gambar 4.12	Inisialisasi model awal	51
Gambar 4.13	Sourcecode evolusi model	52
Gambar 4.14	Sourcecode update evolusi	52
Gambar 4.15	Sourcecode fungsi-fungsi yang dipanggil dalam fungsi evol	lusi
		53
Gambar 4.16	Antarmuka menu diameter	55
Gambar 4.17	Sourcecode Invers dan covert citra ke biner	56
Gambar 4.18	Sourcecode ROI	56
Gambar 4.19	Sourcecode perhitungan diameter	57
Gambar 4.20	Antarmuka menu validasi (paru-paru kiri)	58
Gambar 4.21	Antarmuka menu validasi (paru-paru kanan)	58
Gambar 4.22	Sourcecode perhitungan validasi	60
Gambar 4.22	Antarmuka menu bantuan	60
Gambar 4.23	Antarmuka menu informasi	61

DAFTAR TABEL

Tabel 4.1	Hasil proses evolusi Level Set	62
Tabel 4.2	Hasil rata-rata perhitungan citra hasil segmentasi Level Set pada par	
	paru kiri	62
Tabel 4.3	Hasil rata-rata perhitungan citra hasil segmentasi Level Set pada	
	paru-paru kanan	63
Tabel 4.4	Hasil uji coba perhitungan diameter maksimal paru-paru	64

ABSTRAK

Hayati, Ratri NK. 2012. Segmentasi Paru-Paru Pada Citra Digital Hasil X-Ray Thorax Menggunakan Level Set Untuk Menghitung Diameter Maksimal Paru-Paru. Skripsi. Jurusan Teknik Informatika, Fakultas Sains dan Teknologi. Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang.

Pembimbing: (1) M. Amin Hariyadi, M.T (2) Syahiduz Zaman, M. Kom

Kata Kunci :Citra X-ray thorax, Level Set, paru-paru

Pada pemeriksaan *X-ray thorax*, kadang ditemukan dimana ukuran bayangan jantung terlihat lebih besar dari biasanya. Untuk menentukan apakah jantung tersebut mengalami pembesaran atau tidak, maka diperlukan perhitungan CTR. Salah satu informasi yang diperlukan dalam perhitungan CTR adalah mengetahui diameter maksimal paru-paru dengan cara mengukur jarak maksimal titik terluar bayangan paru kanan dan kiri. Pada perhitungan manual terkadang kurang efektif. Karena dalam citra *X-ray* thorax bukan hanya citra paru-paru saja yang nampak. Sehingga untuk memisahkan obyek-obyek tersebut perlu dilakukan segmentasi. Dalam penelitian ini metode yang digunakan adalah *Level Set*.

Metode *Level Set* merupakan suatu teknik numerik untuk mendeteksi permukaan dan bentuk sehingga dapat digunakan dalam segmentasi citra. Metode ini dapat melakukan segmentasi terhadap berbagai bentuk baik itu cembung maupun cekung.

Penelitian dilakukan pada citra *X-ray thorax*, sebanyak 20 citra. Untuk menguji kinerja dari metode yang diusulkan, hasil segmentasi *Level Set* dibandingkan dengan segmentasi manual, dan diperoleh hasil bahwa dengan menggunakan metode *Level Set*, segmentasi yang dihasilkan mempunyai nilai rata-rata akurasi 93.98%, sensitifitas 69.95 %, dan spesifisitas 98.30% untuk paru-paru kiri. Sedangkan paru-paru kanan mempunyai nilai rata-rata akurasi 95.39%, sensitifitas 79.11 %, dan spesifisitas 98.94%.

ABSTRAK

Hayati, Ratri NK. 2012. Lung Segmentation In X-Ray Image Thorax Using Level Set Method To Determine Maximum Diameter of Lungs. Thesis. Department of Informathics Engineering, Faculty of Science and Technology. State Islamic University Maulana Malik Ibrahim Malang Advisors: 1. M. Amin Hariyadi, M.T 2. Syahiduz Zaman, M. Kom

Kata Kunci : Citra X-ray thorax, Level Set, Lung

In the X-ray examination of the thorax, sometimes found where the size of the heart shadow look bigger than usual. To determine whether the have an enlarged heart or not, it is necessary calculations CTR. One of the information required in the calculation of CTR is to know the maximum diameter of the lungs by measuring the maximum distance of the outermost point of the right and left lung shadows. In manual calculations sometimes less effective. Because the X-ray image of the thorax and not just the image of the lungs are visible. So as to separate the objects necessary segmentation. In this study the method used is Level Set.

Level Set method is a numerical technique for detecting surface and forms that can be used in image segmentation. This method can perform segmentation of the various forms of both convex and concave.

The study was conducted at the X-ray image of the thorax, as many as 20 images. To test the performance of the proposed method, Level Set segmentation results compared to manual segmentation, and the obtained results show that by using the Level Set method, the resulting segmentation has average accuracy of 93.98%, sensitivity 69.95% and specificity 98.30% for lung the left lung. While the right lung has average accuracy of 95.39%, 79.11% sensitivity and 98.94% specificity.

BAB I

PENDAHULUAN

1.1 Latar Belakang

Manusia diciptakan oleh Allah sebagai makhluk yang sempurna diantara makhluk-makhluk lainnya. Hal ini disebutkan dalam firman Allah Q.S Al-Isra' [17]: 70

Dan Sesunggu<mark>hnya telah Kami mu</mark>liakan anak-anak Adam, Kami angkut mereka di daratan dan di lautan, Kami beri mereka rezki dari yang baik-baik dan Kami lebihkan <mark>mer</mark>eka dengan kelebihan yang sempurna atas kebanyakan makhluk yang telah Kami ciptakan.

Allah menjadikan manusia sebagai makhluk unik yang memiliki kehormatan dalam kedudukannya baik itu terhadap yang taat maupun yang durhaka. Berbagai macam kenikmatan Allah berikan kepada manusia. Mereka diciptakan dengan bentuk tubuh yang bagus, memiliki kemampuan berbicara dan berpikir. Diciptakan-Nya dan ditundukkan-Nya pula alat transportasi baik itu di darat maupun di lautan dengan cara mengilhami mereka atas pembuatannya agar manusia dapat menjelajahi bumi dan angkasa. Dan Allah memberi rizqi dari yang baik-baik sesuai kebutuhan mereka untuk pertumbuhan fisik dan jiwa mereka. Allah juga melebihkan mereka atas makhluk lainnya yang telah Allah ciptakan yaitu dengan kelebihan yang sempurna. Dilebihkan mereka dari hewan, dengan

akal dan daya cipta sehingga menjadi makhluk yang tanggung jawab (Shihab, 2002: 513).

Sebagai manusia yang telah dianugrahi akal oleh Allah, tentunya akan memanfaatkan potensi yang dimiliki itu untuk meraih ilmu pengetahuan. *Trial and error* (coba-coba), pengamatan, percobaan dan tes-tes kemungkinan (*probability*) merupakan cara-cara yang digunakan manusia untuk meraih pengetahuan. (Shihab, 2001:437). Dalam Q.S Al-Imran [3]: 190-191 Allah berfirman:

إِنَّ فِي خَلْقِ ٱلسَّمَوَاتِ وَٱلْأَرْضِ وَٱخْتِلَفِ ٱلَّيْلِ وَٱلنَّهَارِ لَاَيَتِ لِلْأُوْلِى ٱلْأَلْبَبِ

اللَّهَ قِيَامًا وَقُعُودًا وَعَلَىٰ جُنُوبِهِمْ وَيَتَفَكَّرُونَ فِي خَلْقِ

السَّمَوَاتِ وَٱلْأَرْضِ رَبَّنَا مَا خَلَقْتَ هَنذَا بَنْظِلًا شُبْحَننَكَ فَقِنَا عَذَابَ ٱلنَّارِ ﴿

Sesungguhnya dalam penciptaan langit dan bumi, dan silih bergantinya malam dan siang terdapat tanda-tanda bagi orang-orang yang berakal. (yaitu) orang-orang yang mengingat Allah sambil berdiri atau duduk atau dalam keadan berbaring dan mereka memikirkan tentang penciptaan langit dan bumi (seraya berkata): "Ya Tuhan Kami, Tiadalah Engkau menciptakan ini dengan sia-sia, Maha suci Engkau, Maka peliharalah Kami dari siksa neraka.

Dalam ayat di atas tergambar dua ciri pokok *ulil albab* (orang yang berakal), yaitu tafakur dan dzikir. Kemudian keduanya menghasilkan *natijah*. *Natijah* bukanlah sekedar ide-ide yang tersusun dalam benak, melainkan melampauinya sampai pada pengamalan dan pemanfaatan dalam kehidupan sehari-hari (Shihab, 2001:).

Muhammad Quthb dan kitabnya *Manhaj Attarbiyah Al-Islamiah* mengomentari ayat Al-Imran di atas sebagai berikut: Ayat-ayat tersebut menggambarkan secara sempurna penalaran dan pengamatan islami terhadap

alam. Ayat-ayat itu mengarahkan akal manusia kepada fungsi pertamanya diantara sekian banyak fungsinya, yakni mempelajari ayat-ayat Tuhan yang tersaji di alam raya ini. Ayat-ayat tersebut bermula dengan tafakur dan berakhir dengan amal (Shihab, 2007:443). Dengan kemampuan berfikir inilah yang kemudian menuntun manusia mengungkap rahasia-rahasia alam, dan selanjutnya mengarahkan mereka untuk menciptakan teknologi yang menghasilkan kemudahan dan manfaat bagi manusia. Salah satunya adalah pencitraan biomedika, yaitu *X-ray*.

Pada pemeriksaan X-ray khususnya X-ray thorax, kadang-kadang ditemukan dimana ukuran bayangan jantung terlihat lebih besar dari biasanya. Meskipun terlihat lebih besar dari biasanya, tidak bisa langsung dikatakan bahwa jantung tersebut mengalami pembesaran. Untuk menentukan apakah jantung tersebut mengalami pembesaran, maka diperlukan sebuah perhitungan yang disebut dengan CTR (Cardiothoracic Ratio). Dalam melakukan perhitungan CTR salah satu informasi yang diperlukan adalah mengetahui diameter maksimal paru-paru dengan cara mengukur jarak maksimal titik terluar bayangan paru-paru kanan dan paru-paru kiri.

Pada perhitungan manual terkadang kurang efektif. Hal ini disebabkan adanya noise pada citra hasil *X-ray* yang membuat kualitas citra kurang baik. Selain itu dalam citra *X-ray thorax* bukan hanya citra paru-paru saja yang nampak, tapi masih bercampur dengan obyek-obyek lain, seperti jantung, dan tulang rusuk. Untuk memisahkan obyek-obyek tersebut diperlukan segmentasi citra (*image segmentation*). Ada banyak metode untuk melakukan segmentasi citra. Dalam penelitian ini, metode yang digunakan adalah *Level Set*.

Metode *Level Set* diimplementasikan untuk mendapatkan kontur paru-paru sehingga dapat mempermudah pangukuran diameter maksimal paru-paru. Pemilihan metode ini karena *Level Set* mempunyai kelebihan yaitu dapat melakukan segmentasi citra dalam berbagai bentuk geometri, baik itu cembung maupun cekung (Gunardi dkk, 2007:130).

1.2 Rumusan Masalah

Berdasarkan penjelasan pada latar belakang, maka rumusan masalah dalam penelitian ini adalah:

Bagaimana mengimplementasikan metode *Level Set* dalam segmentasi paru-paru pada citra digital hasil *X-ray thorax* untuk mengukur diameter maksimal paru-paru.

1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah mengimplementasikan metode *Level Set* dalam segmentasi paru-paru pada citra digital hasil *X-ray thorax* untuk mengukur diameter maksimal paru-paru.

1.4 Manfaat Penelitian

Manfaat yang dihasilkan dari penelitian dalam skripsi ini salah satunya adalah dapat membantu radiolog untuk mempercepat perhitungan diameter maksimal paru-paru.

1.5 Batasan Masalah

Agar penyusunan skripsi ini tidak keluar dari pokok permasalahan yang dirumuskan, maka ruang lingkup pembahasan dibatasi pada:

- a. Citra yang digunakan dalam penelitian ini berupa citra *X-ray thorax* yang diperoleh dari database public http://www.isi.uu.nl/Research/Database/SCR.
- b. Resolusi citra 256x256.
- c. Mode evolusi *Level Set* yang digunakan adalah mode mengempis.

1.6 Metode Penelitian

Untuk mencapai tujuan yang telah dirumuskan sebelumnya, maka metodologi penelitian yang dilakukan adalah:

a. Studi Literatur

Mencari dan mempelajari literatur yang mendukung penyusunan skripsi. Literatur yang digunakan meliputi buku referensi, buku Tugas Akhir mahasiswa jurusan teknik informatika, jurnal, paper IEEE serta dokumentasi internet.

b. Perancangan dan Desain Sistem

Membuat perancangan dan alur sistem dari program yang akan dibuat.

c. Pembuatan Perangkat Lunak

Pembuatan perangkat lunak sesuai dengan perancangan perangkat lunak yang telah dilakukan.

6

d. Uji Coba dan Evaluasi

Menguji coba algoritma yang diterapkan dalam proses segmentasi, dan mengevaluasi perangkat lunak untuk memastikan sistem yang telah dibuat sudah sesuai dengan tujuan yang hendak dicapai.

e. Penyusunan Laporan

Membuat dan menyusun laporan berkaitan dengan penelitian yang dilakukan.

1.7 Sistematika Penyusunan

Dalam penulisan skripsi ini, secara keseluruhan terdiri dari lima bab yang masing-masing bab disusun dalam sistematika sebagai berikut:

BAB I PENDAHULUAN

Bab ini berisi latar belakang, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, metodologi penelitian dan sistematika penyusunan.

BAB II TINJAUAN PUSTAKA

Bab ini membahas teori yang mendukung dan berhubungan dengan judul penelitian dan integrasi agama yang berkaitan dengan judul penelitian.

BAB III ANALISIS DAN PERANCANGAN SISTEM

Bab ini menjelaskan kebutuhan sistem yang akan dilalui dalam penyelesaian tugas akhir, yaitu: pembuatan rancangan arsitektur sistem, mulai dari preprocessing, segmentasi, pangukuran diameter maksimal dan desain interface (antar muka).

BAB IV HASIL DAN PEMBAHASAN

Bab ini membahas tentang implementasi dari aplikasi segmentasi digital hasil *X-ray thorax* menggunakan metode *Level Set* untuk mengukur diameter

maksimal paru-paru yang dibuat secara keseluruhan. Serta melakukan pengujian terhadap aplikasi yang dibuat untuk mengetahui aplikasi tersebut telah dapat menyelesaikan permasalahan yang dihadapi sesuai dengan yang diharapkan.

BAB V PENUTUP

Bab ini berisi tentang kesimpulan dan saran yang diharapkan dapat bermanfaat untuk pengembangan pembuatan program aplikasi selanjutnya.

BAB II

TINJAUAN PUSTAKA

2.1 Penelitian Terkait

Beberapa penelitian sebelumnya yang mendasari penelitian yang akan dilakukan adalah Gunadi dkk (2007) dalam penelitiannya melakukan segmentasi gambar yaitu memisahkan satu obyek dengan yang lain dengan menggunakan metode *Level Set* yang di implementasikan pada gambar yang mempunyai perbedaan gradasi. Untuk mempercepat proses perhitungan dari metode *Level Set* penelitiannya dibantu denggan menggunakan metode narrow band. Hasil dari metode tersebut akan lebih baik jika gambar yang digunakan memiliki variasi warna yang sedikit.

Indriyani dkk (2009) dalam penelitiannya melakukan segmentasi *cortial bone* pada citra *dental panoramic radiograph* menggunakan watershed berintegrasi dengan *active countour* berbasis *Level Set.* Penelitian ini mengintegrasi kedua metode tersebut karena memiliki kemampuan lebih untuk membentuk *countour* tertutup dengan ketebalan satu piksel. Proses awal dari penelitian ini yaitu pengambilan sample *cortial bone*, pembentukan citra *watershed* kemudian memperhalus citra hasil *watershed* dengan menggunakan gaussian filter setelah itu baru dilakukan proses segmentasi dengan menggunakan *Level Set.* Hasil dari penelitian ini memiliki selisih rata-rata akurasi 7.80%, sensitifitas 9.80% dan spesifisitas 5.80%.

Lailyana (2009) mengimplementasikan metode *active contour* (*Level Set*) untuk segmentasi paru-paru. Citra *X-ray* yang diteliti merupakan citra yang diperoleh dari hasil rekam medis dan telah tersimpan berupa file. Penelitian ini menggunakan 40 citra *X-ray* paru-paru. Pengujian kinerja dari metode yang diusulkan hasil segmentasi level set dibandingkan dengan segmentasi manual, diperoleh hasil sensitifitas 93,36%, akurasi 96,17%, dan spesifitas 96,78% untuk paru-paru kiri serta sensitifitas 93,47%, akurasi 95,88%, dan spesifitas 96,31% untuk paru-paru kanan.

2.2 Citra Digital

Secara harfiah, citra (*image*) adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus (*continu*) dari intensitas cahaya pada bidang dwimatra. Sumber cahaya menerangi objek-objek memantulkan kembali sebagian dari berkas cahaya tersebut. Pantulan cahaya ini ditangkap oleh alat-alat optik, misalnya mata pada manusia, kamera, scanner, dan sebagainya. Sehingga bayangan objek yang disebut citra tersebut terekam. (Munir, 2004: 2).

2.2.1 Definisi Citra Digital

Sebuah citra dapat dianggap sebagai sebuah bidang datar yang mempunyai fungsi dua dimensi f(x,y), dimana x dan y adalah koordinat bidang datar dan amplitudo dari f dapat disebut intensitas atau gray-level dari sebuah gambar pada titik yang terletak pada koordinat x dan y (Gonzalez, 1992: 2).

Citra digital adalah jenis citra yang dapat diolah menggunakan komputer. Jenis citra lain, jika hendak diolah dengan computer harus diubah dulu menjadi citra digital. Misalnya foto pemindai (*scan*) dengan *scanner*, persebaran panas tubuh ditangkap dengan kamera infra merah dan diubah menjadi informasi numeris, informasi dentitas dan komposisi bagian dalam tubuh manusia ditangkap dengan bantuan pesawat sinar—X dan sistem deteksi radiasi menjadi informasi digital. Kegiatan untuk mengubah informasi citra fisik non-digital menjadi digital disebut dengan pencitraan (imaging). (Balza.A dan Kartika F, 2004:3).

Citra digital yang berukuran $N \times M$ lazim dinyatakan dengan matriks yang berukuran N baris dan M kolom sebagai berikut:

$$f(x,y) \approx \begin{pmatrix} f(0,0) & f(0,1) & \dots & f(0,M) \\ f(1,0) & f(1,1) & \dots & f(1,M) \\ f(N-1,0) & f(N-1,1) & \dots & f(N-1,M-1) \end{pmatrix}$$

Masing-masing elemen pada citra digital (berarti elemen matriks) disebut *image element, picture element* atau *pixel*. Jadi, citra yang berukuran $N \times M$ mempunyai NM buah piksel. Sebagai contoh misalkan sebuah citra berukuran 256 x 256 piksel dan direpresentasikan secara numerik dengan matriks yang terdiri dari 256 buah piksel baris (di-indeks dari 0 sampai 255) dan 256 buah kolom (di-indeks dari 0 sampai 255) (Munir, 2004: 19).

2.2.2 Piksel

Pixel (Picture Elements) adalah nilai tiap-tiap entri matriks pada bitmap. Rentang nilai-nilai pixel ini dipengaruhi oleh banyaknya warna yang dapat ditampilkan. Jika suatu bitmap dapat menampilkan 256 warna maka nilai-nilai pixelnya dibatasi dari 0 hingga 255. Suatu bitmap dianggap mempunyai ketepatan yang tinggi jika dapat menampilkan lebih banyak warna. Prinsip ini dapat dilihat dari contoh pada gambar 2.1 yang memberikan contoh dua buah bitmap dapat memiliki perbedaan dalam menangani transisi warna putih ke warna hitam.

Perbedaan ketepatan warna bitmap pada gambar 2.1 menjelaskan bahwa bitmap sebelah atas memberikan nilai untuk warna lebih sedikit daripada bitmap dibawahnya. Untuk bitmap dengan pola yang lebih kompleks dan dimensi yang lebih besar, perbedaan keakuratan dalam memberikan nilai warna akan terlihat lebih jelas. (Munir, 2004)

Menurut Usman Ahmad (2005:14) sebuah *pixel* adalah sampel dari pemandangan yang mengandung intensitas citra yang dinyatakan dalam bilangan bulat. Sebuah citra adalah kumpulan *pixel-pixel* yang disusun dalam larik dua dimensi. Indeks baris dan kolom (*x*, *y*) dari sebuah *pixel* dinyatakan dalam bilangan bulat. *Pixel* (0,0) terletak pada sudut kiri atas pada citra, indeks *x* begerak ke kanan dan indeks *y* bergerak ke bawah. Konvensi ini dipakai merujuk pada cara penulisan larik yang digunakan dalam pemrograman komputer. Letak titik origin pada koordinat grafik citra dan koordinat pada grafik matematika terdapat perbedaan. Hal yang berlawanan untuk arah vertikal berlaku pada kenyataan dan

juga pada sistem grafik dalam matematika yang sudah lebih dulu dikenal. Gambar berikut memperlihatkan perbedaan kedua sistem ini.

2.2.3 Citra RGB

Citra RGB disebut juga citra truecolor. Citra RGB merupakan citra digital yang mengandung matriks data berukuran m x n x 3 yang merepresentasikan warna merah, hijau, dan biru untuk setiap pikselnya. Setiap warna dasar diberi rentang nilai. Untuk monitor komputer, nilai rentang paling kecil 0 dan paling besar 255. Pemilihan skala 256 ini didasarkan pada cara mengungkap 8 digit bilangan biner yang digunakan oleh komputer. Sehingga total warna yang dapat diperoleh adalah lebih dari 16 juta warna. Warna dari tiap pixel ditentukan oleh kombinasi dari intensitas merah, hijau, dan biru. (Simanjuntak, 2009)

2.2.4 Citra Grayscale

Citra *Grayscale* adalah citra yang hanya memiliki satu nilai kanal pada setiap pixelnya, dengan kata lain nilai bagian Red = Green = Blue. Nilai tersebut digunakan untuk menunjukkan tingkat intensitas. Warna yang dimiliki adalah warna dari hitam, keabuan dan putih. Tingkat keabuan di sini merupakan warna abu dengan berbagai tingkatan dari hitam hingga mendekati putih.

Citra *grayscale* berbeda dengan citra "hitam-putih", dimana pada konteks komputer, citra hitam putih hanya terdiri atas 2 warna saja yaitu "hitam" dan

"putih" saja. Pada citra grayscale warna bervariasi antara hitam dan putih, tetapi variasi warna diantaranya sangat banyak. Citra grayscale seringkali merupakan perhitungan dari intensitas cahaya pada setiap piksel pada spektrum elektromagnetik single band.

Pada citra digital banyaknya kemungkinan nilai dan nilai maksimumnya bergantung pada jumlah bit yang digunakan. Misalnya pada citra skala keabuan 4 bit, maka jumlah kemungkinan nilainya adalah 24 = 16 dan nilai maksimumnya adalah 24 -1 = 15. Sedangkan untuk skala keabuan 8 bit, maka jumlah kemungkinan nilainya adalah 28 = 256, dan nilai maksimumnya adalah 28 -1 =255. Sehingga makin besar angka grayscale, citra yang terbentuk makin mendekati kenyataan. (Balza dan Kartika, 2005)

Gambar 2.2 Citra grayscale (Seetharaman, 2012)

2.3 Pengolahan Citra

Kualitas citra sangat dipengaruhi oleh tingkat keberadaan noise (derau). Citra yang didapatkan secara optik, elektro-optik, atau elektronik sangat dipengaruhi alat penginderaan. Hal-hal yang memungkinkan terjadinya penurunan kualitas

citra antara lain, sensor nois, kamera tidak fokus, guncangan. Untuk mengatasi noise, citra yang didapat biasanya diperhalus dengan tapis citra. Piksel-piksel yang berdekatan dimanipulasi sedemikian rupa sehingga citra menjadi lebih halus tanpa mengganggu bentuk sudut benda dalam citra.

Agar citra yang mengalami gangguan mudah diinterpretasi (baik oleh manusia maupun mesin), maka citra tersebut perlu dimanipulasi menjadi citra lain yang kualitasnya lebih baik. Bidang studi yang menyangkut hal ini adalah pengolahan citra (image processing).

Umumnya, operasi-operasi pada pengolahan citra diterapkan pada citra bila:

- a. Perbaikan atau modifikasi citra perlu dilakukan untuk meningkatkan kualitas penampakan atau untuk menonjolkan beberapa aspek informasi yang terkandung di dalam citra,
- b. Elemen di dalam citra perlu dikelompokkan, dicocokkan, atau diukur,
- c. Citra perlu digabung dengan citra lain (Munir, 2004: 3).

Pengolahan citra pada dasarnya dilakukan dengan cara memodifikasi setiap titik dalam citra tersebut sesuai keperluan. Secara garis besar, modifikasi tersebut dikelompokkan menjadi:

- a. Operasi titik, di mana setiap titik diolah secara tidak menempel terhadap titiktitik yang lain
- b. Operasi global, di mana karakteristik global (biasanya berupa sifat statistik)
 dari citra digunakan untuk memodifikasi nilai setiap titik.
- c. Operasi temporal/berbasis bingkai, di mana citra diolah dengan cara dikombinasikan dengan citra lain.

- d. Operasi geometri, yaitu operasi pengolah citra yang berhubungan dengan perubahan bentuk geometri citra, baik bentuk, ukuran, atau orientasinya. Beberapa contoh pada operasi geometri, di antaranya: pencerminan (flipping), rotasi/pemutaran (rotating), penskalaan (scaling/zooming), pemotongan (cropping), dan pendoyongan (skew).
- e. Operasi banyak titik bertetangga, di mana data dari titik-titik yang bersebelahan (bertetangga) dengan titik yang ditinjau ikut berperan dalam mengubah nilai.
- f. Operasi morfologi, yaitu operasi yang berdasarkan segmen atau bagian dalam citra yang menjadi perhatian.

Terdapat 3 tingkat tingkat dari image processing:

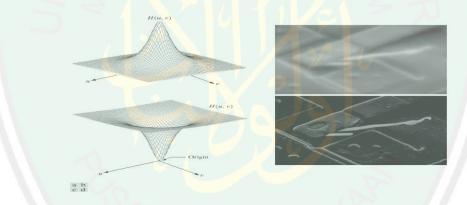
- a. Low-level process: proses-proses yang berhubungan dengan operasi primitif seperti image pre-processing untuk mengurangi noise, meningkatkan kontras dan mempertajam citra digital. Karakteristik dari low-level process adalah input dan output-nya berupa citra digital.
- b. *Mid-level process:* meliputi proses-proses seperti segmentasi citra digital (membagi citra digital menjadi obyek-obyek), pengenalan (*recognition*) suatu obyek individu. Karakteristik dari *mid-level process* adalah *input* berupa citra digital namun *output*-nya berupa atribut yang diambil dari proses yang dilakukan citra digital tersebut seperti tepi (*border/edges*), *contour*, dan identitas dari obyek-obyek individu.
- c. *High-level process:* proses-proses yang menjadikan gambar "masuk akal" bagi penglihatan manusia dengan melakukan fungsi *cognitive* (Siswanto, 2006:6).

2.4 Grayscalling

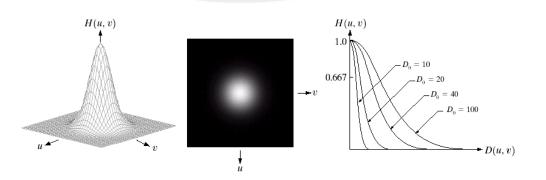
Grayscalling adalah proses perubahan nilai pixel dari warna (RGB) menjadi graylevel. Pada dasarnya proses ini dilakukan dengan meratakan nilai piksel dari 3 nilai RGB menjadi 1 nilai. Untuk memperoleh hasil yang lebih baik, nilai piksel tidak langsung dibagi menjadi 3 melainkan terdapat persentasi dari masingmasing nilai. Salah satu persentasi yang sering digunakan adalah 29,9% dari warna merah (Red), 58,7% dari warna hijau (Green), dan 11,4% dari warna biru (Blue). Niali piksel didapat dari jumlah persentasi 3 niali tersebut. (Gonzales, 2002)

2.5 Gaussian Filter

Filter *gaussian* merupakan salah satu filter linear dengan nilai pembobotan untuk setiap anggotanya dipilih berdasarkan bentuk fungsi *gaussian*. Filter ini sangat baik untuk menghilangkan nois yang bersifat sebaran normal, yang banyak dijumpai pada citra hasil proses digitasi menggunakan kamera karena merupakan fenomena alamiah akibat sifat pantulan cahaya dan kepekaan sensor cahaya pada kamera itu sendiri. *Zero mean* dari fungsi *gaussian* dalam satu dimensi adalah sebagai berikut: (Gonzales & Woods, 2008)


$$H(u,v) = e^{-D^2(u,v)/2\sigma^2}$$
 (2.1)

Dalam persamaan 2.1, parameter sebaran σ adalah lebar dari fungsi *gaussian*, yang akan mempengaruhi bentuk grafis tiga dimensi hasil plot titik-titik hasil perhitungannya. Untuk pengolahan citra digital yang merupakan bidang dua


dimensi, *zero mean gaussian* yang digunakan juga harus dalam dua dimensi, sehingga sama-sama mengandung dua variabel bebas. *Zero mean gaussian* dengan dua variabel untuk bidang dinyatakan dalam persamaan 2.2 dalam bentuk persamaan dengan dua variabel bebas yang bersifat diskrit, sebagai berikut :

$$H(u,v) = e^{-D^2(u,v)/2D_0^2}$$
 (2.2)

Persamaan 2.2 digunakan sebagai formula untuk menghitung atau menentukan nilai-nilai setiap elemen dalam filter penghalus gaussian yang akan dibentuk. (Bryan Morse, 2003)

Gambar 2.3 (a) Bentuk grafis fungsi *lowpass filter* 2D (b) Hasil gambar dengan fungsi *lowpass filter* (c) Bentuk grafis fungsi *highpass filter* 2D (d) Hasil gambar dengan fungsi *highpass filter* (Gonzales & Woods, 2008)

Gambar 2.4 fungsi gaussian lowpass filter (Gonzales & Woods, 2008)

2.6 Imge Gradient

Image gradient adalah suatu cara yang bertujuan untuk mengubah informasi dari image. Image gradient menyediakan dua buah informasi. Fungsi dari gradient image adalah (Jacob,2005)

$$\nabla I\left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right) \tag{2.3}$$

Turunan tingkat pertama dari gradient image adalah

$$\frac{\partial I}{\partial x}(i,j) = \frac{1}{2} \Big(\Big(I(i,j+1) - I(i,j) \Big) + \Big(I(i+1,j+1) - I(i+1,j) \Big) \Big)$$
 (2.4)

dan

$$\frac{\partial I}{\partial y}(i,j) = \frac{1}{2} \Big(\Big(I(i+1,j) - I(i,j) \Big) + \Big(I(i+1,j+1) - I(i,j+1) \Big) \Big)$$
 (2.5)

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

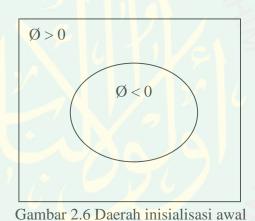
$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

Gambar 2.5 Image Gradient (Jacob, 2005)

2.7 Segmentasi Citra

Untuk melakukan manipulasi pada suatu obyek dalam citra tentunya bukan hal mudah. Akan sulit melakukan manipulasi tanpa menyentuh obyek lainnya karena obyek tersebut masih bercampur dengan objek-objek lain. Sehingga untuk memisahkannya diperlukan salah satu metode pengolahan citra digital, yaitu segmentasi.

19


Segmentasi citra bertujuan untuk membagi wilayah-wilayah yang homogen. Segmentasi adalah salah satu metode penting yang digunakan untuk mengubah citra input ke dalam citra output berdasarkan atribut yang diambil dari citra tersebut. Segmentasi membagi citra ke dalam daerah intensitasnya masing-masing sehingga bisa membedakan antara obyek dan background-nya. Pembagian ini tergantung pada masalah yang akan diselesaikan. Segmentasi harus dihentikan apabila masing-masing objek telah terisolasi atau terlihat dengan jelas. Tingkat keakurasian segmentasi bergantung pada tingkat keberhasilan prosedur analisis yang dilakukan. Dan, diharapkan proses segmentasi memiliki tingkat keakuratan yang tinggi. (Sutoyo dkk, 2009: 225)

2.8 Level Set

Kontur aktif diperkenalkan oleh Kass, Witkiins, dan Terzopoulos untuk membagi obyek dalam gambar menggunakan kurva dinamis. Model kontur aktif secara umum dikelompokkan menjadi model kontur parametris aktif dan model kontur geometris aktif. Kontur parametris aktif menampilkan secara eksplisit sedangkan kontur geometris aktif menampilkan secara implisit seperti fungsi $Level\ Set$ dua dimensi. Metode $Level\ Set$ adalah metode untuk mendeteksi kurva yang bergerak, pertama kali dikenalkan oleh Stanley Osher dan J. Sethian pada tahun 1987. Metode $Level\ Set$ merupakan suatu teknik numerik untuk mendeteksi permukaan dan bentuk. Pergerakan kontur dimana $Zero\ Level\ Set$ disebut sebagai Interface dimunculkan dengan variabel $C(t) = \{(x,y) \mid \emptyset\ (t,x,y) = 0\}$ dari fungsi level set $\emptyset\ (t,x,y)$.

Inisialisasi model awal diletakkan dekat dengan obyek yang akan disegmentasi. Jika inisialisasi model awal berada di luar obyek maka tanda C0 bernilai positif, sebaliknya jika inisialisasi model awal berada di dalam obyek maka tanda C0 bernilai negatif. Dimana C0 adalah konstanta customable seperti berikut ini:

$$\emptyset_0(x,y) = \begin{cases} -C_0 & \emptyset_0(x,y) < 0 \\ C_0 & otherwise \end{cases}$$
(2.6)

Metode *Level Set* memiliki fungsi *edge indicator* yang berfungsi agar perkembangan evolusi *Level Set* mendekati solusi yang optimal, fungsi *edge indicator* dinyatakan dengan (Chunming dkk, 2005)

(Kartika, 2007)

$$g = \frac{1}{1 + |\nabla G\sigma * I|^2}$$
(2.7)

Dimana $|\nabla G_{\sigma} * I|$ merupakan citra konvolusi I dengan filter *Gaussian* kernel yang memiliki standar deviasi σ dan ∇ merupakan operasi gradien dari sebuah

citra. Hasil konvolusi digunakan untuk menghaluskan citra dan mereduksi nois. Sedangkan g merupakan fungsi indikator tepi.

Untuk proses evolusi kontur diperlukan energi internal dan energi eksternal. Energi internal berfungsi mengatur kelenturan dari kontur serta tingkat kekerasan dari kontur yang akan bergerak. Sedangkan energi eksternal berfungsi menggerakkan kontur menuju batas obyek. Dari energi internal dan energi eksternal, selanjutnya ditentukan total energi. Total energi akan berhenti apabila telah mencapai minimal, jika total energi belum minimal maka akan kembali melakukan evolusi kontur. Persamaan energi total adalah sebagai berikut:

$$\varepsilon(\emptyset) = \mu \rho(\emptyset) + \lambda L_g(\emptyset) + \alpha A_g(\emptyset)$$
(2.8)

Fungsi $\rho(\emptyset)$ diperoleh dari persamaan :

$$\rho(\emptyset) = \int_{\Omega} \frac{1}{2} (|\nabla \emptyset| - 1)^2 dx dy$$
(2.9)

Fungsi $L_g(\emptyset)$ dan $A_g(\emptyset)$ didefinisikan dengan persamaan :

$$L_{g}(\emptyset) = \int_{\Omega} g\delta(\emptyset) |\nabla \emptyset| dx dy$$
(2.10)

dan

$$A_{g}(\emptyset) = \int_{\Omega} gH(-\emptyset) \, dx dy \tag{2.11}$$

 $\mu\rho(\emptyset)$ merupakan fungsi jarak disebut juga sebagai energi internal. Sedangkan $\lambda L_g(\emptyset) + \alpha A_g(\emptyset)$ merupakan energi eksternal. Fungsi energi pada persamaan (2.8) dapat dituliskan menjadi persamaan *gradient flow* sebagai berikut:

$$\frac{\partial \emptyset}{\partial t}(\emptyset) = \mu \operatorname{div}(\rho(|\nabla \emptyset|) \nabla \emptyset) + \lambda \delta(\emptyset) \operatorname{div}(g \frac{\nabla \emptyset}{|\nabla \emptyset|}) + \alpha g \delta(\emptyset)$$
(2.12)

Dimana $\mu > 0$ adalah parameter yang mengendalikan efek dari penyimpangan \emptyset dari fungsi jarak, $\lambda > 0$, α bernilai positif jika inisialisasi berada di luar obyek dan bernilai negatrif jika inisialisasi di dalam obyek. (Chunming dkk, 2010)

Persamaan *Dirac function* $\delta(x)$ yaitu

$$\delta(x) = \begin{cases} 0, & |x| > \varepsilon \\ \frac{1}{2\varepsilon} [1 + \cos(\xi)], & |x| \le \varepsilon \end{cases}$$
(2.13)

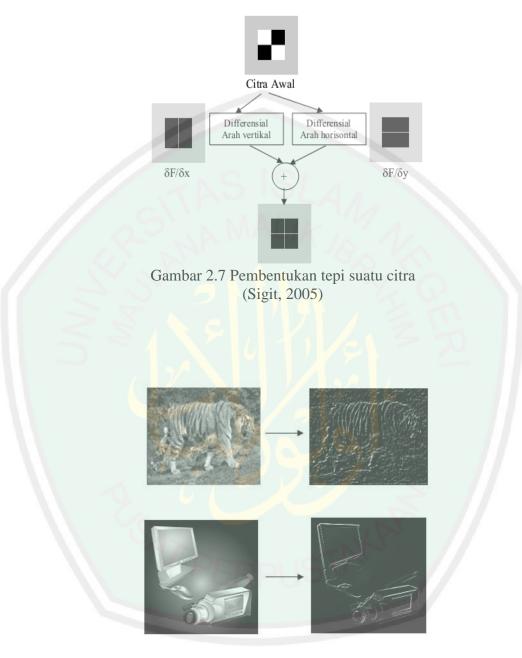
2.9 **ROI**

Region of interest (ROI) adalah suatu konsep yang paling penting dalam image processing. Kegunaan dari ROI adalah suatu dari image processing yang dapat dilakukan hanya dalam daerah yang dibatasi oleh ROI tersebut dan mengabaikan daerah luarnya.

ROI memungkinkan dilakukannya pengkodean secara berbeda pada area tertentu dari citra dijital, sehingga mempunyai kualitas yang lebih baik dari area sekitarnya (background). Fitur ini menjadi sangat penting, bila terdapat bagian tertentu dari citra dijital yang dirasakan lebih penting dari bagian yang lainnya.

ROI sangat membantu untuk segmentasi dalam pemrosesan citra karena dengan menggunakan teknik ini citra atau obyek dapat lebih mudah dikenali.

Karena obyek sudah akan dibagi dalam region-region tertentu sesuai dengan citra obyeknya. (Rekha, 2010)


2.10 Deteksi Tepi

Deteksi tepi (*Edge Detection*) pada suatu citra adalah suatu proses yang menghasilkan tepi dari obyek dalam suatu citra, tujuannya adalah:

- a. Untuk menandai bagian yang menjadi detail citra
- b. Untuk memperbaiki detail dari citra yang kabur, yang terjadi karena error atau adanya efek dari proses akuisisi citra.

Suatu titik (*x*,*y*) dikatakan sebagai tepi (*edge*) dari suatu citra bila titik tersebut mempunyai perbedaan yang tinggi dengan tetangganya. Gambar di bawah ini menggambarkan bagaimana tepi suatu gambar diperoleh.

Perhatikan hasil deteksi dari beberapa citra menggunakan model differensial ini, Pada gambar 2.7 terlihat bahwa hasil deteksi tepi berupa tepi-tepi dari suatu gambar. Bila diperhatikan bahwa tepi suatu gambar terletak pada titik-titik yang memiliki perbedaan tinggi.

Gambar 2.8 Citra hasil deteksi tepi menggunakan differensial (Sigit, 2005)

2.11 Citra Medis

Pencitraan medis (*medical image*) adalah teknik dan proses yang digunakan untuk membuat gambar tubuh manusia atau bagian-bagian dan fungsi daripadanya

untuk tujuan klinis yaitu prosedur medis yang berusaha untuk mengungkapkan keadaan anatomi dan fisiologi tubuh, mendiagnosis atau memeriksa penyakit. Sebagai disiplin dan dalam arti luas, ini adalah bagian dari pencitraan biologis dan memasukkan radiologi (dalam arti yang lebih luas) kedokteran, nuklir, investigasi ilmuradiologis, endoskopi, (medis) *Thermography*, fotografi medis dan mikroskopi (misalnya untuk penyelidikan patologis manusia). Pengukuran dan teknik perekaman yang tidak terutama dirancang untuk menghasilkan gambar, seperti *electroencephalography* (EEG), *magnetoencephalography* (MEG), *electrocardiography* (EKG) dan lain-lain, tetapi yang menghasilkan data yang rentan untuk diwakili sebagaipeta (yaitu yang berisi informasi posisi), dapat dilihat sebagai bentuk pencitraan medis. (Suci, 2009)

2.12 Citra *X-Ray*

Diantara sumber radiasi elektromagnetik yang tertua yang digunakan untuk pencitraan adalah *X-ray*. Penggunaan *X-ray* tidak hanya untuk diagnosa medis, tetapi juga digunakan secara ekstensif pada industri dan bidang lainnya, misalnya astronomi. *X-ray* untuk pencitraan medis dan industri menggunakan tabung *X-ray*, yaitu tabung hampa udara dengan katoda dan anoda (Gonzalez, 1992: 9).

X-ray merupakan suatu bentuk radiasi seperti cahaya atau gelombang bunyi. X-ray dapat melewati banyak objek termasuk tubuh. Mesin X-ray menghasilkan pancaran radiasi kecil yang melewati tubuh, merekam citra pada film atau plat khusus untuk merekam gambar digital (RSNA, 2012).

Masing-masing bagian tubuh menyerap *X-ray* dengan dosis bervariasi.

Tulang yang padat menerima radiasi yang lebih besar dibanding bagian yang lebih

lunak seperti otot, lemak ataupun organ. Sebagai hasilnya, tulang tergambar putih pada *X-ray*, bagian yang lunak tergambar abu-abu dan udara hitam. Pada *X-ray* dada, tulang rusuk dan tulang belakang akan menyerap banyak radiasi dan tampak abu-abu putih atau terang pada gambar. Jaringan paru-paru menyerap radiasi kecil dan akan terlihat gelap pada gambar (RSNA, 2012).

Manfaat *X-ray* dalam ilmu kedokteran, yaitu *X-ray* dapat digunakan untuk melihat kondisi tulang, gigi, paru-paru serta organ tubuh yang lain tanpa melakukan pembedahan langsung pada tubuh pasien. Selain bermanfaat, *X-ray* mempunyai efek atau dampak yang sangat berbahaya bagi tubuh kita yaitu apabila digunakan secara berlebihan dapat menimbulkan penyakit yang berbahaya, misalnya kanker. Oleh sebab itu, para dokter tidak menganjurkan terlalu sering memakai "foto rontgen" secara berlebihan. (Gabriel, 1996)

2.13 Thorax

Thorax (atau dada) adalah daerah tubuh yang terletak diantara leher dan abdomen. Thorax rata di bagian depan dan belakang tetapi melengkung dibagian samping. Rangka dinding thorax yang dinamakan cavea thoracis dibentuk oleh columna vertebralis di belakang, costae dan spatium intercostale di samping, serta sternum dan cartilago costalis di depan. Di bagian atas, thorax berhubungan dengan leher dan di bagian bawah dipisahkan dari abdomen oleh diaphragma. Cavea thoracis melindungi paru dan jantung dan merupakan tempat perlekatan otot-otot thorax, extremitas superior, abdomen dan punggung.

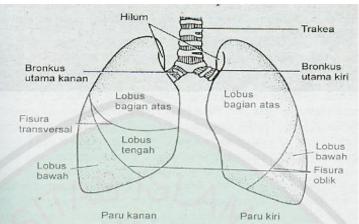
Cavitas thoracis (rongga thorax) dapat dibagi menjadi: bagian tengah yang disebut mediastinum dan bagian lateral yang ditempati pleura dan paru. Paru

diliputi oleh selapis membran tipis yang disebut pleura viscelaris, yang beralih di hilus pulmonalis (tempat saluran udara utama dan pembuluh darah masuk ke paruparu) menjadi pleura parietalis dan menuju ke permukaan dalam dinding thorax. Dengan cara ini terbentuk dua kantong membranosa yang dinamakan cavitas pleuralis pada setiap sisi thorax, di antar paru-paru dan dinding thorax. (Richard S. Snell, 2006)

Gambar 2.9 Citra X-Ray Thorax (http://www.isi.uu.nl/Research/Databases/SCR/)

2.14 Paru-Paru

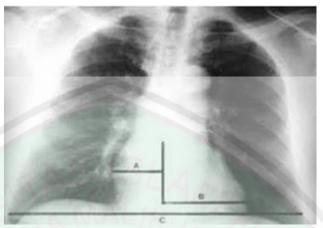
Paru-paru adalah dua organ yang berbentuk seperti bunga karang besar yang terletak di dalam torak pada sisi lain jantung dan pembuluh darah besar. Paru-paru memanjang mulai dari akar leher menuju diafragma dan secara kasar berbentuk kerucut dengan puncak di sebelah atas dan alas di sebelah bawah.


Paru-paru dibagi menjadi lobus-lobus. Paru-paru sebelah kiri mempunyai dua lobus, yang dipisahkan oleh belahan miring. Lobus superior terletak di atas dan di depan lobus inferior yang berbentuk kerucut. Paru-paru sebelah kanan mempunyai tiga lobus. Lobus bagian bawah dipisahkan oleh fisura oblik dengan

posisi yang sama terhadap lobus inferior kiri. Sisa paru lainnya dipisahkan oleh suatu fisura horisontal menjadi lobus atas dan lobus tengah. Setiap lobus selanjutnya dibagi menjadi segmen-segmen yang disebut bronko-pulmoner, mereka dipisahkan satu sama lain oleh sebuah dinding jaringan koneknif, masingmasing satu arteri dan satu vena.

Allah telah menciptakan organ pernafasan ini dengan sangat detail, berikut sistem koordinasi antar organ lainnya, tersusun dengan seimbang dalam tubuh manusia. Sebagaimana firman Allah dalam Q.S Al-Infithar [82]: 6-8 yang berbunyi:

Hai manusia, Apakah yang telah memperdayakan kamu (berbuat durhaka) terhadap Tuhanmu yang Maha Pemurah. Yang telah menciptakan kamu lalu menyempurnakan kejadianmu dan menjadikan (susunan tubuh)mu seimbang, Dalam bentuk apa saja yang Dia kehendaki, Dia menyusun tubuhmu.


Anggota badan manusia diciptakan begitu menakjubkan. Penyesuaian berbagai kemampuan dan keseimbangan proporsi anggota badannya, bagian-bagian tubuhnya diciptakan dengan simetris. Begitu juga Koordinasi internal dan hubungan antar organ tubuh satu sama lain semua saling melengkapi fungsi masing-masing. Seperti, sistem pernafasan yang melengkapi sistem peredaran darah, dan sebaliknya. Sistem peredaran melengkapi sistem pernafasan (Faqih, 2006: 288).

Gambar 2.10 Paru-paru manusia (Dorce Mengkidi, 2006)

2.15 CTR (Cardio Toracic Ratio)

Postero-anterior standar radiografi dada telah diterapkan pada departemen radiologi. Cardiothoracic ratio seperti yang telah dijelaskan oleh Danzer, garis vertikal ditarik pada depan film melalui pembesaran procardiac spinosus vertebra. Jumlah jarak maksimal dari baris ini ke kanan dan kiri batas jantung adalah diameter transversal. Nilai ini dibagi dengan lebar terbesar dada, yang diukur dari dalam margin dari tulang rusuk, untuk memberikan rasio kardiotoraks. Rasio kardiotoraks telah dikoreksi untuk tahap inspirium sebagai dijelaskan oleh Onat. Pembesaran jantung terjadi jika cardiothoracic ratio bernilai > 0.50. (Kadir Babaoglu. 2007

Gambar 2.11 Gambar garis bantu untuk perhitungan CTR (http://catatanradiograf.blogspot.com/2010/08/sekilas-tentang-ctr-cardio-thoracic.html)

 $CTR = A + B/C \tag{2.14}$

Keterangan:

A: jarak MSP dengan dinding kanan terjauh jantung.

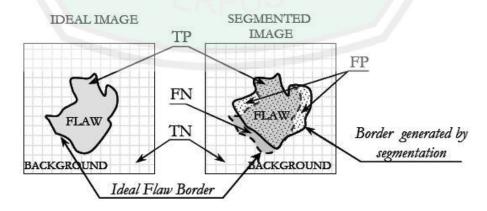
B: jarak MSP dengan dinding kiri terjauh jantung.

C: jarak titik terluar bayangan paru kanan dan kiri.

Nilai CTR yang lebih beesar dari 0.5 (50%) mengindikasikan pembesaran jantung, meskipun ada variable lain seperti bentuk dari rongga dada yang harus diperhitungkan. Sedangkan pada bayi yang baru lahir, nilai CTR 66% adalah nilai batas normal. Perhitungan CTR ini sangat berguna untuk mendeteksi penyakit jantung terutama yang ditandai dengan adanya pembesaran ukuran jantung (cardiomegally). Kemungkinan penyebab CTR lebih dari 50% diantaranya:

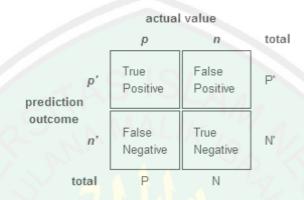
- a. Kegagalan jantung (cardiac failure)
- b. Pericardial effusion
- c. Left or right ventricullar hypertrophy

2.16 Validasi


Validasi yaitu menghitung nilai akurasi, sensitifitas, dan spesifitas pada citra hasil segmentasi dengan membandingkan hasil segmentasi citra ujicoba pada citra asli. Adapun rumus dari ketiga nilai tersebut adalah (Lailyana, 2009)

Akurasi
$$= \frac{TP + TN}{TP + TN + FP + FN}$$
 (2.15)

Sensitifitas =
$$\frac{TP}{TP+FN}$$
 (2.16)


Spesifitas =
$$\frac{TN}{TN+FP}$$
 (2.17)

dimana TP adalah *true positif* (nilai kebenaran antara hasil gambar uji coba dengan paru-paru), TN adalah *true negatif* (nilai kebenaran antara hasil gambar ujicoba dengan background), FP adalah *false positif* (nilai ketidaktepatan antara hasil gambar ujicoba dengan paru-paru), dan FN adalah *false negatif* (nilai ketidaktepatan antara hasil gambar ujicoba dengan background). Yang dihitung berdasarkan jumlah pixel yang dilingkupi. Gambar 2.12 menggambarkan pembagian daerah TP, TN, FN, dan FP pada citra paru-paru asli dengan citra hasil segmentasi (Lailyana, 2009).

Gambar 2.12 Perbedaan antara citra paru-paru asli dengan citra hasil segmentasi.

Keempat nilai diatas dihitung berdasar jumlah pixel yang dilingkupi dan dapat diformulasikan dengan menggunakan matriks 2x2 seperti pada Gambar 2.13 (Lailyana, 2009)

Gambar 2.13 Formulasi matriks dari TP, TN, FP, FN (Lailyana, 2009)

2.17 Eucledian

Metode *eucledian* adalah metode pengukuran jarak garis lurus (*straight line*) antara titik $x(x_1, x_2, ...x_n)$ dan $y(y_1, y_2, ...y_n)$. Gambar 2.14 dibawah ini adalah penggambaran dari metode Eucledian, yaitu berupa garis lurus. (Kurniawan, 2008)

Gambar 2.14 *Eucledian* (Kurniawan, 2008)

Metode Eucledian sendiri memiliki rumus (*formula*) pengembangannya sesuai dengan keadaan ruang. Dalam hal ini akan kita gunakan ruang satu dimensi.

Jarak satu dimensi dengan titik $A(x_1)$ dan $B(y_1)$ yang diakuisisi dari data sample maupun testing. Persamaan eucledian distance pada jarak 1 dimensi dapat dituliskan sebagai berikut:

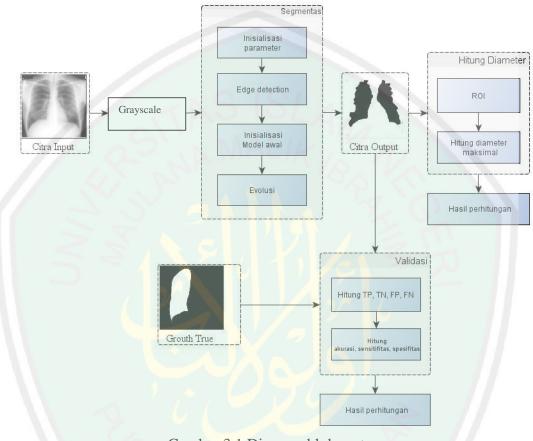
$$d(x,y) = \sqrt{(x1 - y1)}$$
 (2.18)

BAB III

ANALISIS DAN PERANCANGAN SISTEM

3.1 Deskripsi Sistem

Aplikasi segmentasi paru-paru citra *X-ray thorax* menggunakan *Level Set* merupakan sebuah sistem yang bertujuan untuk memisahkan obyek paru-paru pada citra digital hasil *X-ray thorax*. Sistem menerima masukan berupa file citra medis *X-ray thorax* kemudian dilakukan proses segmentasi menggunakan metode *Level Set*.


Tahapan proses dalam segmentasi adalah menginputkan citra thorax, grayscalling, segmentasi citra dengan Level Set, dan menghitung diameter maksimal paru-paru. Kemudian hasil segmentasi program yang telah diperoleh dibandingkan dengan hasil segmentasi manual dengan proses validasi, untuk mengetahui nilai akurasi, sensitifitas dan spesifisitas.

Proses *grayscalling* adalah citra yang semula RGB diubah menjadi *grayscale*. Sedangkan dalam proses segmentasi menggunakan metode *Level Set*, terdapat beberapa tahap, inisialisasi parameter, *edge detection*, inisialisasi model awal, dan evolusi model.

3.2 Perancangan Sistem

Perancangan sistem ini meliputi desain data dan desain proses. Desain data berisi penjelasan data yang diperlukan untuk dapat menerapkan metode *Level Set*. Sedangkan desain proses berupa algoritma yang digunakan dalam sistem yang

digambarkan dengan diagram alir. Blok diagram sistem secara umum dapat ditunjukkan pada gambar 3.1.

Gambar 3.1 Diagram blok system

Dari gambar 3.1 tersebut dapat dijelaskan bahwa yang dilakukan sistem pertama kali adalah menerima input dari user. Input berupa citra *x-ray thorax* dengan resolusi 256x256. Kemudian dilakukan *grayscalling* dengan mengubah citra yang semula RGB menjadi citra *grayscale*.

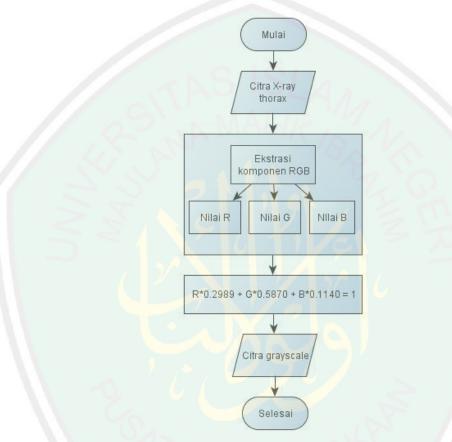
Setelah itu dilakukan proses kedua yaitu segmentasi dengan *Level Set* meliputi proses inisialisasi parameter, *edge detection*, inisialisasi model awal, dan evolusi model. Dari proses segmentasi ini akan mendapatkan citra output berupa kontur paru-paru, kemudian dihitung diameter maksimalnya. Selain itu juga

36

dilakukan proses validasi menggunakan yaitu perhitungan *true positif* (TP), *true negatif* (TN), *false positif* (FP), dan *false negatif* (FN) antara hasil segmentasi uji coba dengan hasil segmentasi manual. Perhitungan validasi tersebut akan mendapatkan nilai presentase akurasi, sensitivitas, dan spesifisitas.

3.2.1 Data

Data input citra yang digunakan adalah citra *X-ray thorax* dalam bentuk file gambar dengan format *Joint Photographic Experts Group* (*.jpeg) dengan resolusi 256x256 seperti yang ditunjukkan pada gambar 3.2

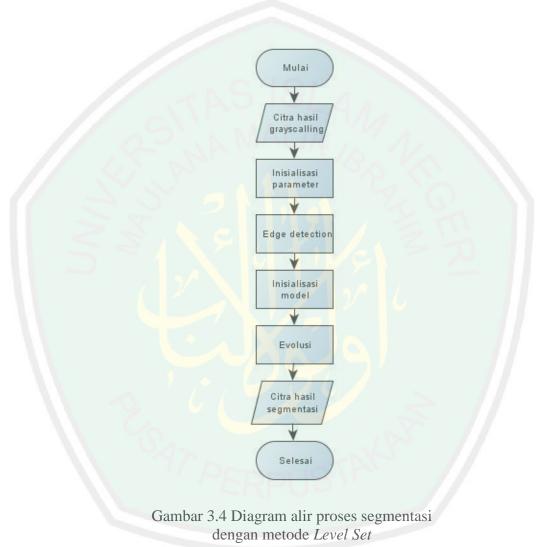

Gambar 3.2 Citra *X-ray thorax* (http://www.isi.uu.nl/Research/Databases/SCR/)

3.2.2 Desain Proses

Pada subbab ini akan dijelaskan mengenai desain proses yang digunakan untuk mengetahui proses apa saja yang digunakan untuk segmentasi menggunakan metode *Level Set*.

3.2.2.1 Grayscalling

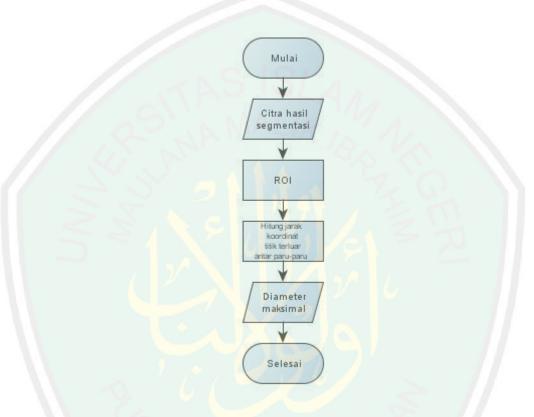
Untuk mempermudah pada proses selanjutnya maka dilakukan pengubahan citra RGB menjadi *grayscale* dengan proses *grayscalling*. seperti yang ditunjukkan pada gambar 3.3


Gambar 3.3 Diagram alir grayscalling

3.2.2.2 Segmentasi

Ada 4 (empat) proses di dalam segmentasi penelitian ini yaitu, inisialisasi parameter, *edge detection*, inisialisasi model dan evolusi model. Inisialisasi parameter, yaitu menentukan parameter yang digunakan dalam proses segmentasi menggunakan *Level Set*. Inisialisasi model pada citra *X-ray thorax* bisa diletakkan di luar atau di dalam obyek. Sedangkan proses evolusi model berjalan berdasarkan letak inisialisasi model. Evolusi perkembangan model yang dipilih adalah mode

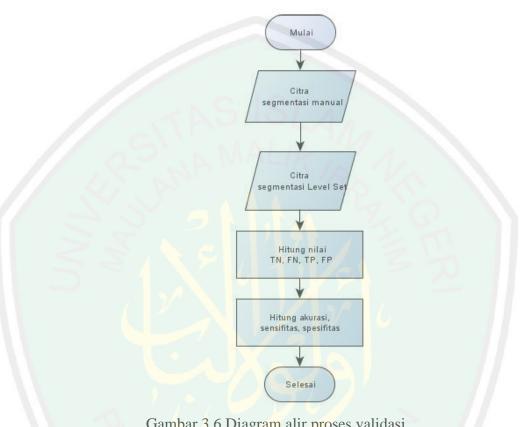
38


mengempis. Sehingga inisialisasi model berada di luar obyek atau lebih besar dari obyek yang akan disegmentasi. Gambar 3.4 merupakan proses segmentasi dengan *Level Set*.

3.2.2.3 Perhitungan Diameter

Citra hasil segmentasi yang akan dihitung diameter maksimalnya terlebih dahulu dilakukan proses ROI untuk menghilangkan obyek lain yang ikut tersegmentasi di sekitar kontur paru-paru yang dianggap mengganggu proses perhitungan diameter. Perhitungan diameter maksimal dapat dihitung dengan cara

mencari koordinat titik terluar paru-paru kiri dan paru-paru kanan, kemudian menghitung jarak antara kedua titik tersebut. Gambar 3.5 merupakan proses perhitungan diameter secara umum.



Gambar 3.5 Diagram alir proses perhitungan diameter

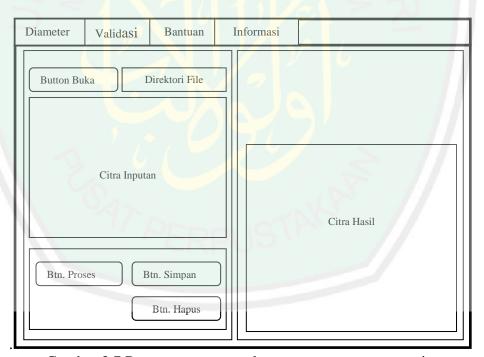
3.2.2.4 Validasi

Hasil segmentasi dapat diukur dengan menggunakan proses validasi. Validasi menyatakan probabilitas terjadinya kesalahan ataupun kebenaran pencocokan pada sistem. Gambar 3.8 menunjukkan diagram alir dari proses pengukuran validasi, pada langkah awal hasil segmentasi dicari nilai TP, TN, FP, dan FN yaitu membandingkan hasil segmentasi otomatis yang dilakukan peneliti dengan hasil segmentasi secara manual dari database public http://www.isi.uu.nl/Research/Databases/SCR/. Setelah nilai tersebut ditemukan,

nilai akan dimasukkan kedalam rumus akurasi pada persamaan (2.15), sensitivitas pada persamaan (2.16), dan spesifisitas pada persamaan (2.17).

Gambar 3.6 Diagram alir proses validasi

3.3 **Desain Antarmuka**


Antarmuka merupakan bentuk visual aplikasi yang dimaksudkan sebagai perantara antara pengguna dengan program aplikasi. Aplikasi ini dibangun dengan desain antarmuka yang terdiri dari 5 tampilan, yaitu antarmuka menu segmentasi, diameter, validasi, bantuan, dan informasi.

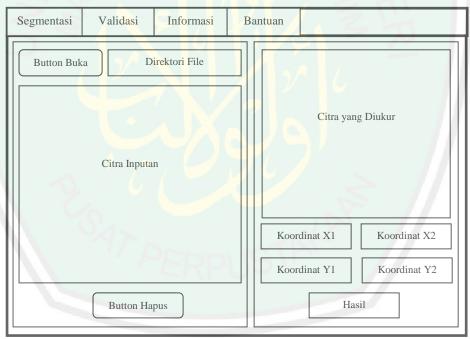
3.3.1 Antarmuka Menu Utama Segmentasi

Menu segmentasi merupakan menu utama dalam aplikasi ini. Di dalam menu ini user menginputkan citra thorax kemudian melakukan proses segmentasi untuk mendapatkan kontur dari paru-paru. Desain antarmuka menu segmentasi dapat dilihat pada gambar 3.7.

Pada menu segmentasi terdiri dari 4 *button*, yaitu: buka, proses., simpan, dan hapus.

- a. Buka : untuk memilih atau memasukkan citra x-ray thorax yang akan dilakukan proses segmentasi menggunakan *Level Set*. Citra yang semula RGB diubah menjadi *grayscale*.
- Proses: untuk melakukan proses segmentasi menggunakan metode Level
 Set.
- c. Simpan: untuk menyimpan citra hasil segmentasi.
- d. Hapus: untuk menghapus tampilan (citra inputan dan citra hasil)

Gambar 3.7 Rancangan antarmuka menu utama segmentasi

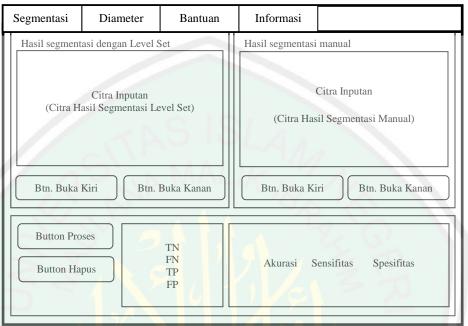

3.3.2 Antarmuka Menu Diameter

Pada menu diameter terdapat proses untuk menghitung diameter maksimal paru-paru. Di dalam menu ini, user menginputkan citra hasil segmentasi kemudian

akan mengetahui diameter maksimal paru-paru tersebut. Desain antarmuka menu diameter dapat dilihat pada gambar 3.8.

Pada menu diameter terdiri dari 2 button, yaitu: buka, dan hapus

- a. Buka : untuk memilih atau memasukkan citra *x-ray thorax* hasil segmentasi yaitu berupa kontur paru-paru. Kemudian menampilkan hasilnya pada kotak axes "Citra Inputan". Kemudian dilakukan proses ROI untuk menghilangkan obyek disekitar paru-paru yang ikut tersegmentasi yang dianggap mengganggu proses perhitungan diameter. Setelah dilakukan ROI, secara otomatis sistem akan menghitung diameter maksimal paru-paru.
- b. Hapus: untuk menghapus tampilan.


Gambar 3.8 Rancangan antarmuka menu diameter

3.3.3 Antarmuka Menu Validasi

Pada menu validasi terdapat proses untuk menghitung akurasi, sensitifitas, dan spesifitas. Di dalam menu ini, user menginputkan citra hasil segmentasi manual dan citra hasil segmentasi sistem. Citra hasil segmentasi menggunakan metode sistem kemudian dibandingkan dengan citra hasil segmentasi manual untuk mengetahui tingkat akurasi, sensitifitas, dan spesifitas citra tersebut. Desain antarmuka menu validasi dapat dilihat pada gambar 3.9.

Pada menu diameter terdiri dari 6 *button*, yaitu: 2 *button* buka kiri, 2 *button* buka kanan, proses, hapus.

- a. Buka Kiri (pada kotak "Hasil segmentasi dengan Level Set") : untuk memilih atau memasukkan citra x-ray thorax hasil segmentasi berupa kontur paru-paru bagian kiri.
- b. Buka Kanan (pada kotak "Hasil segmentasi dengan Level Set") : untuk memilih atau memasukkan citra x-ray thorax hasil segmentasi berupa kontur paru-paru bagian kanan.
- c. Buka Kiri (pada kotak "Hasil segmentasi manual"): untuk memilih atau memasukkan citra x-ray thorax hasil segmentasi manual berupa kontur paruparu bagian kiri.
- d. Buka Kanan (pada kotak "Hasil segmentasi dengan Level Set") : untuk memilih atau memasukkan citra x-ray thorax hasil segmentasi berupa kontur paru-paru bagian kanan.
- e. Proses: untuk melakukan proses perhitungan nilai TN, FN, TP, FP, akurasi, sensifitas, dan spesifitas.
- f. Hapus: untuk menghapus tampilan.

Gambar 3.9 Rancangan antarmuka menu validasi

3.3.4 Antar Muka Menu Bantuan

Menu bantuan merupakan menu yang berisi tentang bagaimana cara menggunakan aplikasi. Sehingga user dapat mengetahui fungsi untuk tiap-tiap menu. Pada menu ini hanya terdapat *button* kembali, yaitu *button* yang digunakan untuk kembali ke menu awal. Rancangan antarmuka menu help dapat dilihat pada gambar 3.10.

Gambar 3.10 Rancangan antarmuka menu bantuan

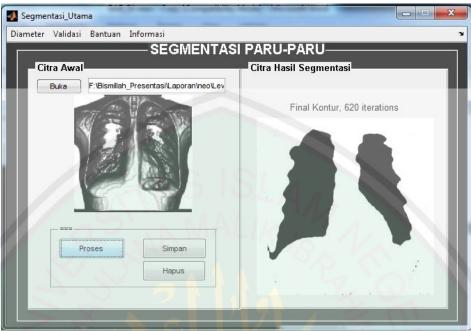
3.3.5 Antarmuka Menu Informasi

Menu informasi merupakan menu yang berisi tentang informasi pembuat sistem. Pada menu ini hanya terdapat *button* kembali, yaitu *button* yang digunakan untuk kembali ke menu awal. Rancangan antarmuka menu help dapat dilihat pada gambar 3.11.

Gambar 3.11 Rancangan antarmuka menu informasi

BAB IV

HASIL DAN PEMBAHASAN


4.1 Implementasi Sistem

Pada bagian implementasi ini akan dibahas hal-hal yang berkaitan dengan implementasi sistem segmentasi paru-paru pada citra hasil *X-ray thorax* sesuai dengan perancangan sistem pada bab 3.

Implementasi sistem dibagi menjadi empat bagian, yaitu implementasi proses grayscalling, proses segmentasi, proses perhitungan diameter, dan proses validasi. Implementasi proses grayscalling digunakan untuk merubah citra masukan yang semula RGB menjadi grayscale. Kemudian implementasi proses segmentasi digunakan untuk memisahkan objek dengan latar belakangnya menggunakan Level Set. Implementasi perhitungan diameter digunakan untuk menghitung diameter maksimal citra hasil segmentasi. Dan implementasi validasi digunakan untuk mnghitung validasi citra hasil segmentasi manual dengan citra hasil segmentasi segmentasi menggunakan Level Set.

4.1.1 Implementasi Antarmuka Menu Segmentasi

Implementasi antarmuka menu segmentasi merupakan tampilan yang muncul pertama kali setiap menjalankan aplikasi ini. Di dalam menu ini user menginputkan citra digital *X-ray thorax* kemudian citra yang diinputkan dilakukan proses segmentasi untuk mendapatkan kontur dari paru-paru. Untuk tampilan implementasi antarmuka menu segmentasi dapat dilihat di gambar 4.1.

Gambar 4.1 Antarmuka menu segmentasi

Pada antarmuka menu utama terdapat 4 menu, yaitu diameter, validasi, bantuan, dan informasi:

- a. Diameter: untuk membuka menu "Diameter".
- b. Validasi : untuk membuka menu "Validasi".
- c. Bantuan : untuk membuka menu "Help".
- d. Informasi: untuk membuka menu "About".

Pada menu segmentasi terdiri dari 4 *button*, yaitu: buka, proses, simpan, dan hapus.

- a. Buka : *button* yang digunakan untuk memilih atau memasukkan citra *X-ray thorax* yang akan dilakukan proses segmentasi menggunakan *Level Set*.
- b. Simpan: untuk menyimpan citra hasil segmentasi.
- c. Hapus: untuk menghapus tampilan.

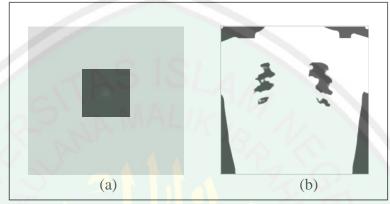
d. Proses : untuk melakukan proses segmentasi menggunakan metode *Level*Set.

4.1.1.1 Implementasi Proses Grayscalling

Citra masukan yang semula RGB diubah menjadi *grayscale* dengan proses *grayscalling*. Proses ini dilakukan dengan *sourcecode* pada gambar 4.2

Segmentasi2 merupakan variabel yang menampung data citra masukan. Data citra masukan yang semula RGB diubah menjadi grayscale, dengan menyamakan semua nilai komponen RGB menjadi nilai 1. Nilai red dikalikan dengan nilai 0.2989, nilai green dikalikan dengan 0.5870 dan nilai blue dikalikan dengan 0.1140. Nilai ketiganya dijumlahkan, kemudian ditampung dalam variabel graylev. Citra yang dihasilkan akan mempunyai intensitas 0 – 255.

```
segmentasi2=imread(fullfile(direktori, namafile));
axes(handles.axes1);
red=segmentasi2(:,:,1);
green=segmentasi2(:,:,2);
blue=segmentasi2(:,:,3);
graylev=0.2989*red + 0.5870*green + 0.1140*blue;
```

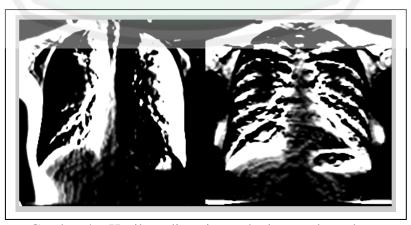

Gambar 4.2 Sourcecode grayscalling

4.1.1.2 Implementasi Proses Penentuan Edge

Citra yang sudah di*grayscale* kemudian diproses untuk mendapatkan *edge* sesuai pada persamaan (2.7). Untuk mempermudah mendapatkan tepi *edge* (tepi) dari citra terlabih dahulu dilakukan *smoothing* menggunakan *lowpass gaussian filter*. Proses ini ditunjukkan dalam *sourcecode* 4.3. Dan hasil dari proses ini ditunjukkan pada gambar 4.4.

```
Img=double(graylev(:,:,1));
sigma=1.5;
G=fspecial('gaussian',25,sigma);
Img smooth=conv2(Img,G,'same');
```

Gambar 4.3 Sorcecode filtering menggunakan gaussian lowpass filter

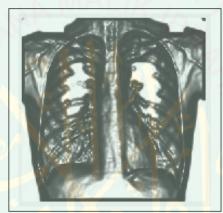


Gambar 4.4 (a) Mask Gaussian lowpass filter (b) Citra hasil konvolusi

G merupakan variabel yang menampung *mask gaussian lowpass filter*. *Img_smooth* digunakan untuk menampung citra hasil konvolusi dengan *gaussian lowpass filter G*. Citra hasil konvolusi kemudian dicari gradiennya terhadap sumbu *x* dan sumbu *y*. *Sourcecode* pencarian gradien ditunjukkan pada gambar 4.5. Dan hasilnya ditunjukkan pada gambar 4.6.

```
[Ix, Iy] = gradient (Img_smooth);
```

Gambar 4.5 Sourcecode pencarian gradien citra terhadap sumbu x dan y



Gambar 4.6 Hasil gradien citra terhadap sumbu x dan y

[Ix,Iy] merupakan variabel yang menampung gradien dari citra hasil *smoothing* terhadap sumbu *x* dan sumbu *y*. Hasil gradien citra kemudian dimasukkan ke dalam persamaan (2.7) yaitu persamaan *edge detector*. *Sourcecode* perhitungan ini ditunjukkan pada gambar 4.7. Dan hasilnya ditunjukkan pada Gambar 4.8.

```
f=Ix.^2+Iy.^2;
g=1./(1+f);
```

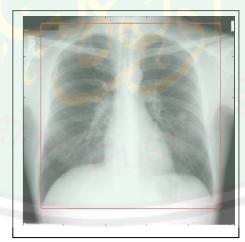
Gambar 4.7 Sourcecode penentuan edge

Gambar 4.8 Hasil penentuan edge

4.1.1.3 Implementasi Proses Inisialisasi Model

Setelah dilakukan proses *edge detection*, selanjutnya dilakukan proses inisialisasi model dengan cara membentuk daerah yang akan dijadikan pergerakan model. *Sourcecode* ditunjukkan pada gambar 4.9. Kemudian menampilkan inisialisasi, dengan *sourcecode* pada gambar 4.10. Dan untuk hasilnya ditunjukkan pada gambar 4.11 dan gambar 4.12.

```
[nrow, ncol]=size(Img);
c0=3;
initialLSF=c0*ones(nrow,ncol);
w=8;
initialLSF(w+2:end-w-15, w+15: end-w-10)=-c0;
```


Gambar 4.9 Sourcecode pembentukan daerah pergerakan model

```
u=initLSF;
figure;
imagesc(Img, [0, 255]);
colormap(gray);
hold on;
[c,h] = contour(u,[1 1],'r');
title('Initialisasi');
```

Gambar 4.10 Sourcecode untuk menampilakan inisialisasi model

Gambar 4.11 Hasil proses pembentukan daerah pergerakan model

Gambar 4.12 Inisialisasi model awal

Setelah diberi inisialisasi model awal, kemudian inisialisasi ini akan melakukan evolusi sampai menemukan kontur dari obyek. *Sourcecode* evolusi model ditunjukkan pada gambar 4.13.

```
epsilon=1.5
timestep=5;
             mu=0.2/timestep;
lambda=5;
alf=2;
for n=1:620
    u=evolusi(u, g ,lambda, mu, alf, epsilon, timestep, 1);
    if mod(n, 20) == 0
        pause (0.001);
        imagesc(Img, [0, 255]);
        colormap(gray);
        hold on;
        [c,h] = contour(u,[0 0],'r');
        iterNum=[num2str(n), ' iterations'];
        title(iterNum);
        hold off;
    end
end
imagesc(Img, [0, 255]);
colormap(gray);
hold on;
[c,h] = contour(u,[0 0],'r');
totalIterNum=[num2str(n), ' iterations'];
title(['Final Kontur, ', totalIterNum]);
imshow(u);
```

Gambar 4.13 Sourcecode evolusi model

Selama melakukan evolusi, di setiap iterasinya akan memamnggil *sourcecode* yang ada pada gambar 4.14. Dan menggunakan fungsi-fungsi pada *sourcecode* pada gambar 4.15.

```
function u ev = evolusi(u, g, lambda, mu, alf, epsilon,
timestep, numIter)
[vx,vy] = gradient(g);
for k=1:numIter
    u=N(u);
    [ux,uy] = gradient(u);
    grad=sqrt(ux.^2 + uy.^2);
    Nx=ux./grad;
    Ny=uy./grad;
    diracU=Dirac(u,epsilon);
    K=curvature central(Nx,Ny);
    Lt=lambda*diracU.*(vx.*Nx + vy.*Ny + g.*K);
    Pt=mu*(4*del2(u)-K);
    At=alf.*diracU.*g;
    u ev=u+timestep*(Lt + At + Pt);
 end
```

Gambar 4.14 Sourcecode update evolusi

```
function f = Dirac(u, epsilon)
f=(1/2/epsilon)*(1+cos(pi*u/epsilon));
b = (u \le epsilon) & (u \ge -epsilon);
f = f.*b;
function K = curvature central(nx,ny);
[nxx,junk]=gradient(nx);
[junk, nyy] = gradient(ny);
K=nxx+nyy;
function nu = N(h)
[nrow, ncol] = size(h);
nu = h;
nu([1 nrow],[1 ncol]) = nu([3 nrow-2],[3 ncol-2]);
nu([1 nrow], 2:end-1) = nu([3 nrow-2], 2:end-1);
nu(2:end-1,[1 ncol]) = nu(2:end-1,[3 ncol-2]);
nu(2:end-1,2:end-1) = nu(2:end-1,2:end-1);
```

Gambar 4.15 Sourcecode fungsi-fungsi yang dipanggil dalam fungsi evolusi

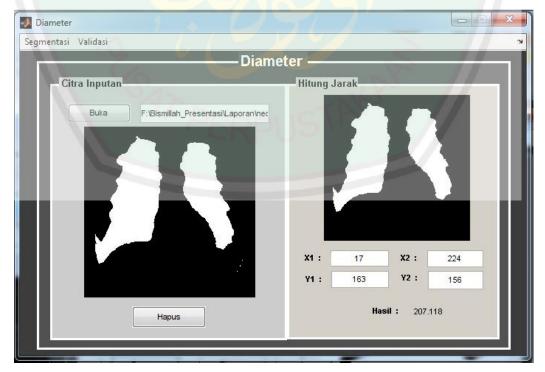
Hasil dari segmentasi menggunakan metode Level Set dapat ditunjukkan pada tabel 4.1.

Tabel 4.1 Hasil Proses Evolusi Level Set

No	Proses Segmentasi	Hasil proses Segmentasi
1	<pre>[vx,vy]=gradient(g);</pre>	Gradient (g) terhadap x dan y
2	[ux,uy]=gradient(u);	Gradient (u) terhadap x dan y

3	<pre>[ux,uy]=gradient(u); grad=sqrt(ux.^2 + uy.^2)</pre>	Gradient (u)
5	Nx=ux./grad;	Gradien (u) terhadap x per gradien (u)
6	Ny=uy./grad;	Gradien (u) terhadap x per gradien (u)
7	<pre>Lt=lambda*diracU.*(vx.*N x + vy.*Ny + g.*K); Pt=mu*(4*del2(u)-K); At=alf.*diracU.*g; u_ev=u+timestep*(Lt + At + Pt);</pre>	Kontur paru-paru

4.1.2 Implementasi Antarmuka Diameter


Implementasi antarmuka diameter merupakan tampilan untuk proses penghitungan diameter maksimal paru-paru. Proses ini dilakukan setelah proses segmentasi. Proses perhitungan dilakukan dengan cara mencari titik terluar paruparu kanan dan titik terluar paru paru kiri citra hasil segmentasi. Kemudian mengukur jarak antara kedua titik tersebut dalam satuan piksel. Tampilan implementasi antarmuka menu diameter dapat dilihat pada gambar 4.16.

Pada antarmuka menu utama terdapat 2 menu, yaitu:

- a. Segmentasi: untuk membuka menu "Segmentasi".
- b. Validasi: untuk membuka menu "Validasi".

Pada menu diameter terdiri dari 2 button, yaitu: buka, dan hapus

- a. Buka : untuk memilih atau memasukkan citra *X--ray thorax* hasil segmentasi yaitu berupa kontur paru-paru. Kemudian menampilkan hasilnya pada kotak axes "Citra Inputan". Kemudian dilakukan proses ROI untuk menghilangkan obyek disekitar paru-paru yang ikut tersegmentasi yang dianggap mengganggu proses perhitungan diameter. Setelah dilakukan ROI kemudian dilakukan perhitungan diameter.
- b. Hapus : untuk menghapus tampilan.

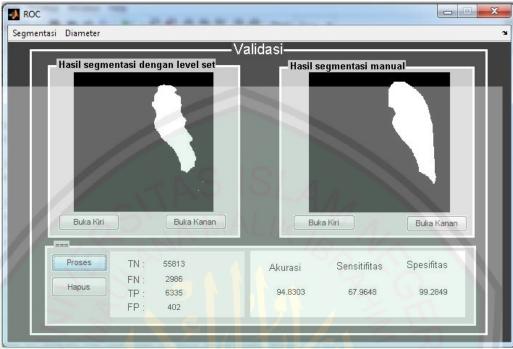
Gambar 4.16 Antarmuka menu diameter

Sebelum dilakukan perhitungan diameter, data citra inputan yang semula grayscale diinverskan, kemudian diubah menjadi citra biner. Sourcecode proses ini ditunjukkan pada gambar 4.17. Citra yang sudah diajadikan biner kemudian dilakukan proses ROI untuk menghilangkan obyek-obyek lain disekitar paru-paru yang dianggap menggaggu proses perhitungan diameter dengan cara menginputkan 4 titik untuk memberi batas pada citra. Sourcecode proses ini ditunjukkan pada gambar 4.18. Hasil citra yang sudah dilakukan proses ROI kemudian diukur diameternya dengan menghitung jumlah piksel yang terletak antara 2 titik atau 2 piksel terluar hasil segmentasi yang bernilai 1. Sourcecode proses ini ditunjukkan pada gambar 4.19.

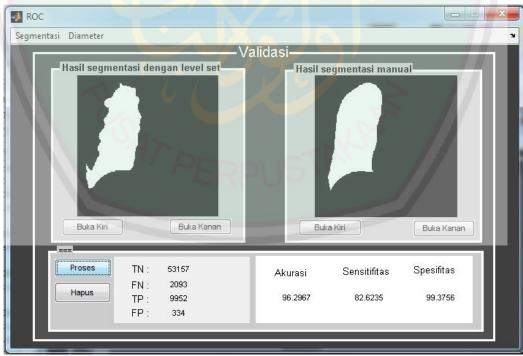
```
dim=255-di; level = graythresh(dim); bw = im2bw(dim, level);
```

Gambar 4.17 Sourcecode invers dan convert citra ke biner

```
for i = 1 : 4
    [y,x]=ginput(1)
    titik x(i) = x
    titik y(i)=y
Hasil = ones(size(bw));
min x = min(titik x)
\max x = \max(\text{titik } x)
min y = min(titik y)
\max y = \max(\text{titik } y)
for x= 1 : size(Hasil, 1);
   for y = 1 : size(Hasil, 2);
        if x > min x && x < max x &&...</pre>
                 y > min_y && y < max_y
             if bw(x,y) == 1
                  Hasil (x,y) = 0;
              else
                  Hasil (x,y)=1;
             end
        end
   end
end
```


Gambar 4.18 Sourcecode ROI

```
nX=size(H,1);
nY=size(H,2);
v1=zeros(1,2);
for i=1:nY
    for j=1:nX
        if(H(j,i) == 1)
             v1=[i,j];
             break;
    end
    if (v1(1) ~=0 && v1(2) ~=0)
        break;
    end
end
set(handles.edit x1, 'String', v1(1));
set(handles.edit y1, 'String', v1(2));
v2=zeros(1,2);
for i=nY:-1:1
    for j=1:nX
         if(H(j,i) == 1)
             v2=[i,j];
             break;
    end
    if(v2(1) \sim = 0 \&\& v2(2) \sim = 0)
        break;
    end
end
set(handles.edit x2, 'String', v2(1));
set(handles.edit_y2,'String',v2(2));
s = sqrt(sum((v1-v2).^2));
```


Gambar 4.19 Sourcecode perhitungan diameter

4.1.3 Implementasi Antarmuka Validasi

Implementasi antarmuka validasi merupakan tampilan untuk proses penghitungan validasi yaitu membandingkan antara hasil segmentasi manual dengan hasil segmentasi sistem dan untuk mengetahui nilai nilai TN, FN, TP, FP, dan juga nilai akurasi, sensitifitas dan spesifisitas. Gambar 4.20 merupakan tampilan validasi saat diimplementasikan pada paru-paru bagian kiri. Sedangkan gambar 4.21 merupakan tampilan validasi saat diimplementasikan pada paru-paru bagian kanan.

Gambar 4.20 Antarmuka menu validasi (paru-paru kiri)

Gambar 4.21 Antarmuka menu validasi (paru-paru kanan)

59

Segmentasi: untuk membuka menu "Segmentasi".

Pada antarmuka menu utama ini terdapat 2 menu, yaitu:

b. Diameter: untuk membuka menu "Diameter".

a.

- Pada antarmuka menu utama terdapat 6 button, yaitu:
- a. Buka kiri (2 button): untuk membuka file citra hasil segmentasi bagian kiri.
- b. *Buka kanan* (2 button): untuk membuka file citra hasil segmentasi bagian kanan.
- c. *Proses*: untuk melakukan proses perhitungan TN, FN, TP, FP, akurasi, sensitifitas, dan spesifitas.
- d. Hapus : untuk menghapus citra masukan.

Proses validasi dilakukan untuk menghitung nilai akurasi, sensitivitas, dan spesifisitas antara hasil segmentasi manual dengan hasil segmentasi uji coba. Citra yang diinputkan ditampung dalam variabel hasil1 dan hasil2. Variabel hasil1 merupakan variabel segmentasi manual, variabel hasil2 merupakan hasil segmentasi dalam penelitian, dan variabel roc merupakan penjumlahan antara variabel hasil1 dan hasil2 sehingga kedua gambar dapat dihitung perbedaan nilai pikselnya. Variabel TN, TP, FN, dan FP sama seperti yang dijelaskan pada subbab 2.16 Perhitungan sensitifitas, akurasi, dan spesifitas dikalikan dengan 100 sehingga hasilnya berupa presentase, dengan fungsi perhitungan pada persamaan (2.12), persamaan (2.13), dan persamaan (2.14). Proses perhitungan validasi dapat dilihat pada gambar 4.21.

```
roc=hasil1+hasil2;
TN=0; TP=0; FN=0; FP=0;
for i=1:size(roc,1)
    for j=1:size(roc, 2)
         if roc(i,j) == 2
             TP=TP+1;
         elseif roc(i,j) == 1
             FN=FN+1;
         end
    end
end
a=sum(sum(hasil1==1));
FP=a-TP;
TN = (256 * 256) - (TP + FN + FP);
[TN FN TP FP]
akurasi r=100*(TP+TN)/(TP+FN+FP+TN)
sensitifitas r=100*(TP/(TP+FN))
spesifitas r=100*(TN/(FP+TN))
```

Gambar 4.21 Sourcecode perhitungan validasi

4.1.4 Implementasi Antarmuka Bantuan

Implementasi antarmuka menu bantuan merupakan implemantasi yang menampilkan cara menjalankan aplikasi segmentasi. Dalam menu ini ini terdapat 1 *button* yaitu *button* "kembali" yang digunakan untuk kembali ke menu utama.

Gambar 4.22 Antarmuka menu bantuan

4.1.5 Implementasi Antarmuka Informasi

Merupakan tampilan menu informasi. Pada tampilan menu informasi ini terdapat satu *button* "kembali" yaitu, *button* kembali yang digunakan untuk kembali ke menu utama.

Gambar 4.23 Antarmuka menu informasi

4.2 Hasil Uji Coba Sistem

Pengujian pada segmentasi paru-paru menggunakan data masukan sebanyak 20 citra *thorax*. Pengujian yang dilakukan digunakan untuk mengetahui validasi dan untuk mengetahui diameter maksimal paru-paru.

4.2.1 Hasil Uji Coba Validasi Segmentasi Paru-Paru

Penghitungan validasi dilakukan dengan cara melakukan penghitungan nilai ketepatan dan ketidaktepatan citra hasil segmentasi otomatis kemudian dibandingkan dengan citra hasil segmentasi manual. Dari perbandingan tersebut akan diperoleh nilai TP: *True Positive*, FN: *False Negative*, TN: *True Negative*,

dan FP: False Positive, yang dihitung berdasar jumlah piksel yang dilingkupi. TP merupakan gambar paru-paru dan dikenali sebagai paru-paru, FN adalah gambar paru-paru namun tidak dikenali sebagai paru-paru, TN adalah bukan gambar paru-paru dan dikenali sebagai paru-paru, dan FP merupakan gambar bukan paru-paru namun dikenali sebagai paru-paru. Berdasarkan nilai ntersebut maka dapat diukur nilai sensitifitas, akurasi dan spesifitas menggunakan persamaan yang dijelaskan pada subbab 2.16.

Tabel 4.2 Hasil rata-rata perhitungan validasi citra hasil segmentasi *Level Set*

		pada paru-pa		
No	Data Citra	4.1	Validasi	G 1011 (01)
-		Akurasi (%)	Sensitivitas (%)	Spesifisitas (%)
1	JPCLN007	93.2083	67.1001	98.1234
2	JPCLN008	93.9850	75.0429	98.3390
3	JPCLN014	94.8883	75.8523	98.2696
4	JPCLN016	88.2111	56.2420	94.0909
5	JPCLN019	94.8303	67.9648	99.2849
6	JPCLN020	91.8274	62.4892	97.3695
7	JPCLN022	94.2596	66.6529	99.0527
8	JPCLN024	95.0424	68.9998	98.9540
9	JPCLN026	94.6411	70.8615	98.7337
10	JPCLN033	94.2764	75.5224	97.4090
11	JPCLN035	95.6787	85.9350	97.8000
12	JPCLN045	93.8995	61.3634	99.5293
13	JPCLN047	94.6259	75.4993	98.4905
14	JPCLN051	95.0180	79.3079	97.7982
15	JPCLN057	93.1427	65.6116	97.9800
16	JPCLN063	93.2251	75.1366	97.4648
17	JPCLN073	94.2688	65.9668	99.3662
18	JPCLN075	94.3634	71.5232	99.0546
19	JPCLN085	95.2286	60.5024	99.4912
20	JPCLN087	95.0745	71.5843	99.4428
F	Rata – Rata	93.984755	69.95792	98.302215

Tabel 4.2 merupakan informasi hasil perhitungan validasi pada citra uji coba paru-paru kiri dengan segmentasi manual. Hasil perhitungan menunjukkan

rata – rata akurasi sebesar 93.98%, sensitivitas sebesar 69.95 %, dan spesifisitas sebesar 98.30%. Diantara 20 citra yang dilakukan proses segmentasi, citra JPCLN0016 menghasilkan nilai sensitivitas yang paling rendah yakni 56.24%.

Tabel 4.3 Hasil rata-rata perhitungan citra hasil segmentasi *Level Set* pada paru-paru kanan

No	Data Citra		Validasi	
110	Data Citia	Akurasi (%)	Sensitivitas (%)	Spesifisitas (%)
1	JPCLN007	93.1351	77.1387	97.1685
2	JPCLN008	96.0953	83.4116	99.4912
3	JPCLN014	95.1553	82.2437	97.6475
4	JPCLN016	92.7185	77.5002	96.0634
5	JPCLN019	96.2967	82.6235	99.3756
6	JPCLN020	94.8853	76.1393	98.9669
7	JPCLN022	95.2286	71.5619	99.7997
8	JPCLN024	95.5139	79.0390	98.5793
9	JPCLN026	96.3120	81.0124	99.9905
10	JPCLN033	97.1802	87.0008	99.2994
11	JPCLN035	96.5637	87.3340	98.8709
12	JPCLN045	95.9839	81.7004	99.9922
13	JPCLN047	94.3481	77.6985	98.8174
14	JPCLN051	96.6019	82.3456	99.2891
15	JPCLN057	95.6100	80.4109	98.5622
16	JPCLN063	95.9625	84.8634	98.6990
17	JPCLN073	94.8990	71.6576	99.0546
18	JPCLN075	94.7662	75.3375	99.4545
19	JPCLN085	97.2900	81.0596	99.9379
20	JPCLN087	93.3670	62.1554	99.7811
F	Rata – Rata	95.39566	79.1117	98.942045

Tabel 4.3 merupakan informasi hasil perhitungan validasi pada citra uji coba paru-paru kanan dengan segmentasi manual. Hasil perhitungan menunjukkan rata-rata akurasi sebesar 95.39%, sensitivitas sebesar 79.11 %, dan spesifisitas sebesar 98.94%. Diantara 20 citra yang dilakukan proses segmentasi, citra JPCLN087 menghasilkan nilai sensitivitas yang paling rendah yakni 62.15%.

Pada uji coba segmentasi paru-paru ini, paru-paru kanan memiliki nilai rata-rata akurasi, sensitivitas, dan spesifisitas yang lebih besar dibandingkan tulang paru-paru kanan.

4.2.2 Hasil Perhitungan Diameter Maksimal Paru-Paru

Perhitungan diameter maksimal paru-paru dilakukan dengan menghitung jarak titik terluar paru-paru kiri dan paru-paru kanan citra hasil segmentasi. Hasil uji coba pada 20 citra percobaan dapat dilihat pada tabel 4.4

Tabel 4.4 Hasil uji coba perhitungan diameter maksimal paru-paru

No No	Citr Uji Coba	Diameter Maksimal
1	JPCLN07	202.121
2	JPCLN08	207.039
3	JPCLN14	215.541
4	JPCLN16	209.022
5	JPCLN19	218.769
6	JPCLN20	214.002
7	JPCLN22	215.058
8	JPCLN24	198.706
9	JPCLN26	217.665
10	JPCLN33	204.414
11	JPCLN35	215.037
12	JPCLN45	211.993
13	JPCLN47	212.763
14	JPCLN51	207.762
15	JPCLN57	164.222
16	JPCLN63	215.128
17	JPCLN73	209.038
18	JPCLN75	215.523
19	JPCLN85	164.222
20	JPCLN87	196.787
	Rata-Rata	205.7406

4.3 Kajian Integrasi Sains dan Islam Citra X-Ray Thorax

Dalam bidang medis, sinar-x digunakan untuk diagnosis gambar medikal. Al-Qur'an memberikan penjelasan tentang sinar yang disebutkan dalam surat An-Nur sebagai berikut berikut:

ٱللَّهُ نُورُ ٱلسَّمَوَّ تِ وَٱلْأَرْضِ مَثُل نُورِهِ عَمِشْكُوةٍ فِيهَا مِصْبَاحُ ۗ ٱلْمِصْبَا حِ فِي زُجَاجَةٍ ۖ ٱلنُّرُخَاجَةُ كَأَنَّهَا كَوْ كَبُ دُرِّى يُّ يُوقَدُ مِن شَجَرَةٍ مُّبَرَكَةٍ زَيْتُونَةٍ لَّا شَرَقِيَّةٍ وَلَا غَرْبِيَّةٍ يَكَادُ زَيْتُهَا يُضِي ءُ وَلَوْ لَمْ تَمْسَسْهُ نَارُ أَنُّورُ مِعَلَىٰ نُورٍ مَلَىٰ نُورٍ مَلَىٰ نُورٍ مَا كَانُورِهِ عَلَىٰ نُورٍ مَا كَانُهُ لِنُورِهِ عَلَىٰ نُورٍ مَا كَانُ اللهُ لِنُورِهِ عَلَىٰ نُورٍ مَا كَانُ اللهُ لِنُورِهِ عَلَىٰ مُن يَشَاءُ وَيَضَرُّرِ بُ ٱللهُ ٱلْأَمْتَالَ لِلنَّاسِ وَٱللَّهُ بِكُلِّ شَيْءٍ عَلِيمُ ﴿

"Allah (Pemberi) cahaya (kepada) langit dan bumi. Perumapamaan cahaya Allah, adalah seperti sebuah lubang yang tak tembus, yang di dalamnya ada pelita besar. Pelita ini di dalam kaca (dan) kaca itu seakan-akan bintang (yang bercahaya) seperti mutiara, yang dinyalakan dengan minyak dari pohon yang berkahnya, (yaitu) pohon zaitun yang tumbuh tidak di sebelah timur (sesuatu) dan tidak pula di sebelah barat(nya), yang minyaknya (saja) hamper-hampir menerangi, walaupun tidak disentuh api. Cahaya di atas cahaya (berlapis-lapis), Allah membimbing kepada cahaya-Nya siapa yang Dia kehendaki, dan Allah memperbuat perumpamaan-perumpamaan bagi manusia, dan Allah Maha mengetahui segala sesuatu." (QS An-Nur [24]: 35).

Dari surat An-Nur ayat 35 tersebut menjelaskan cahaya yang diciptakan Allah mempunyai kekuatan yang luar biasa sehingga tetap nampak dan dapat menyinari meskipun berada dalam sebuah benda atau tempat yang tak tembus pandang atau tak berlubang. Lafal yang artinya "seperti sebuah lubang yang tak tembus" memiliki maksud seperti lubang pada dinding rumah yang tidak tembus sampai ke sebelahnya. Adapun lafal yang artinya "pohon zaitun yang tumbuh tidak di sebelah timur (sesuatu) dan tidak pula di sebelah barat(nya)" memiliki pengertian

bahwasannya Allah telah menciptakan *nur* (cahaya) di langit yang berupa matahari, bulan, bintang-bintang, planet-planet, arasy, dan para malaikat. Sedangkan cahaya yang diciptakan oleh Allah di bumi ini meliputi lentera, lampu (sinar), para nabi, para ulama, dan orang-orang sholeh. (Kauma, 2000).

Berdasarkan penafsiran tersebut, apabila dikaitkan dengan perkembangan teknologi maka sifat cahaya yang diciptakan Allah tersebut sama dengan sifat sinar-x yang dapat menembus benda-benda seperti daging, kulit. Sehingga dalam bidang medis, digunakan untuk pengambilan foto *rontgen* dan diagnosis gambar medikal seperti *X-ray thorax*.

BAB V

PENUTUP

5.1 Kesimpulan

Dari perancangan, implementasi, dan uji coba sistem yang telah dilakukan, maka dapat disimpulkan beberapa hal sebagai berikut:

- a. Sistem yang dibangun mampu melakukan segmentasi paru-paru menggunakan metode *Level Set* dengan tingkat rata-rata akurasi paru-paru kanan 95.39%, sensitifitas 79.11%, dan spesifitas 98.94%. sedangkan untuk paru-paru kiri rata-rata akurasi 93.98%, sensitifitas 69.95%, dan spesifisitas 98.30%.
- b. Diameter maksimal paru-paru didapatkan melalui titik terluar hasil segmentasi. Dari hasil perhitungan diketahui rata-rata diameter maksimal paru-paru adalah 205 piksel.

5.2 Saran

Untuk penelitian lebih lanjut, ada beberapa hal yang disarankan, yaitu:

- a. Sistem ini hanya terbatas pada segmentasi citra paru-paru, sehingga perlu adanya pengembangan pada deteksi penyakit atau kelainan pada paru-paru.
- b. Menggunakan data citra *X-ray thorax* asli sehingga hasil perhitungan lebih akurat.

DAFTAR PUSTAKA

- Ahmad, Balza dan Kartika Firdausy. 2005. *Teknik Pengolahan Citra Digital Menggunakan Delphi*. Yogyakarta: Ardi Publishing.
- Ahmad, Usman. 2005. *Pengolahan Citra Digital Dan Teknik Pemrogramnnya Edisi 1*. Yogyakarta: Graha Ilmu.
- Artawijaya, Ajunk. 2010. *Sekilas Tentang CTR (Cardio Thoracic Ratio)*. http://catatanradiograf.blogspot.com/2010/08/sekilas-tentang-ctr-cardio-thoracic.html. Diakses tanggal 2 Januari 2012.
- Al-Jazairi, Syaikh Abu Bakar Jabir. 2007. *Tafsir Al-qur'an Al-Aisar, Jilid* 2. Terjemahan M. Azhari Hatim dan Abdurrahim Mukti. Jakarta: Darus Sunnah.
- Al-Jazairi, Syaikh Abu Bakar Jabir. 2009. *Tafsir Al-qur'an Al-Aisar*, *Jilid* 7. Terjemahan Fityan Amaly dan Edi Suwanto. Jakarta: Darus Sunnah.
- Babaoglu, K., Yilmaz, E., & dkk. (2007). *Predictive Value of Cardiothoracic Ratio as a Marker of Severity of Aortic Regurgitation and Mitral Regurgitation*. Istanbul: Istanbul University.
- Dorce, M. (Gangguan Fungsi Paru dan Faktor-faktor yang Mempengaruhinya pada Karyawan PT. Semen Tanosa Pengkep Sulawesi Selatan). 2006. Semarang: Universitas Diponegoro.
- Fakih, Allamah Kamal. 2006. *Tafsir Nurul Qur'an*. Terjemahan Rudy Mulyo**no**. Jakarta: Al-Huda.
- Gabriel, J. F., 1996, Fisika Kedokteran, Penerbit Buku Kedokteran, EGC: Jakarta.
- Ginneken, Bram van. 2001. Computer-Aided Diagnosis in Chest Radiography.
- Gonzalez, Rafael C. 1992. Digital Image Processing, Second Edition. New Jersey: Prentice Hall.
- Gonzalez Rafael C and Richard E. Woods. 2008. *Digital Image Processing Using MATLAB*. Amerika: Gatesmark Publishing.
- Gunardi, Kartika dkk. 2007. *Aplikasi Segmentasi Gambar dengan Menggunakan Metode Level Set*, Jurnal Informatika, Vol.8/No.2, 2007: 130-133.

- Hawari, Dadang. 2004. *Al Qur'an: Ilmu Kedokteran Jiwa dan Kesehatan Jiwa*. Yogyakarta: PT. DANA BHAKTI PRIMA YASA.
- Indriyani, Tutuk dkk. 2009. Segmentasi Cortical Bone Pada Citra Dental Panoramoc Radiograph Menggunakan Watershed Berintegrasi Dengan Active Contour Berbasis Level Set. Jurnal Teknik Informatika Institut Teknologi Sepuluh November. Surabaya.
- Jannah, Asmaniatul. 2009. Analisis Perbandingan Metode Filter Gaussian, Mean dan Median Terhadap Reduksi Noise Salt And Pappers. Tugas akhir, Jurusan Teknik Informatika Fakultas Sains dan Teknologi Universitas Islam Negeri Malang, Malang.
- Kauma, Fuad. 2000. Tamsil Al-Qur'an. Yogyakarta: Mitra Pustaka.
- Kurniawan, Harry dan Taufik Hidayat. 2008. Perancangan Program Pengenalan Wajah Menggunakan Fungsi Jarak Metode Eucledian Pada Matlab, SNATI, Jurusan Teknik Informatika Fakultas Teknologi Industri, Universitas Islam Indonesia, Yogyakarta.
- Lailyana, E. 2009. Segmentasi Paru-paru pada citra X-ray menggunakan Level Set, Tesis, Jurusan Teknik Elektro Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember, Surabaya.
- Li, Chunning, dkk. 2005. Level Set Evolution Without Re-initialization: A New Variational Formulation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
- Li, Chunming, dkk. 2010. Distance Regularized Level Set Evolution and its Application to Image Segmentation. IEEE Transactions On Image Processing, Vol.19, No.12.
- Munir, Rinaldi. 2004. Pengolahan Citra Digital Dengan Pendekatan Algoritmik. Bandung: INFORMATIKA.
- Putra, Darma. 2010. Pengolahan Citra Digital. Yogyakarta: ANDI
- Radiological Society of Nort America. 2010. Chest X-Ray, North America: Radiological Siciety of North America. http://www.radiologyinfo.org/en/info.cfm?PG=chestrad. Diakses tanggal 23 Januari 2012.
- Seetharaman, K. 2012. A Block-oriented in Grayscale Images Using Full Range Autoregressive Model.
- Shihab, M.Quraish. 2001. Wawasan Al-Qur'an Tafsir Maudhu'i atas Pelbagai Persolan Umat. Bandung: Mizan.

- Shihab, M.Quraish. 2007. Wawasan Al-Qur'an Tafsir Tematik atas Pelbagai Persolan Umat. Bandung: Mizan.
- Sigit, Riyanto. 2005. Step by Step Pengolahan Citra Digital. Yogyakarta: ANDI.
- Simanjuntak, Ferdinand. 2009. Pengolahan Citra Digital, IT Telkom. http://http://digilib.ittelkom.ac.id/index.php?view=article&catid=15:pemrosesan-sinyal&id=573:pengolahan-citra-digital&tmpl=component&print=1&page=Diakses tanggal 2 Januari 2012.
- Siswanto, Yohan. 2006. Perancangan dan Pembuatan Aplikasi Segmentasi Gambar dengan Menggunakan Metode Level Set, Tesis, Petra Christian University.
- Snell, Richard S. 2006. *Anatomi Klinik Untuk Mahasiswa Kedokteran*. Jakarta: Buku Kedokteran EGC.
- Suci. 2009. Medical Image: Medical Image/Imaging. http://suciidisini.blogspot.com/2009/12/medical-image.html. Diakses tanggal 2 Januari 2012.
- Sutoyo, T, dkk. 2009. Teori Pengolahan Citra Digital. Semarang: ANDI.

LAMPIRAN

Lampiran 1 Hasil perhitungan validasi citra hasil segmentasi *Level Set* pada paru-paru kiri

	Data		1			Validasi		
No	Data Citra	TN	FN	TP	FP	Akurasi	Sensitivit as	Spesifisitas
1	JPCLN007	54118	3416	6967	1035	93.2083	67.1001	98.1234
2	JPCLN008	52411	3054	9183	888	93.9850	75.0429	98.3390
3	JPCLN014	54688	2387	7498	963	94.8883	75.8523	98.2696
4	JPCLN016	52084	4455	5726	3271	88.2111	56.2420	94.0909
5	JPCLN019	55813	2986	6335	402	94.8303	67.9648	99.2849
6	JPCLN020	53262	2796	8922	556	91.8274	62.4892	97.3695
7	JPCLN022	54817	3017	7592	110	94.2596	66.6529	99.0527
8	JPCLN024	56382	2653	5905	596	95.0424	68.9998	98.9540
9	JPCLN026	55205	2804	6819	708	94.6411	70.8615	98.7337
10	JPCLN033	54701	2296	7084	1455	94.2764	75.5224	97.4090
11	JPCLN035	52635	1648	10069	1184	95.6787	85.9350	97.8000
12	JPCLN045	55606	3735	5932	263	93.8995	61.3634	99.5293
13	JPCLN047	53697	2699	8317	823	94.6259	75.4993	98.4905
14	JPCLN051	54456	2039	7815	1226	95.0180	79.3079	97.7982
15	JPCLN057	54616	3368	6426	1126	93.1427	65.6116	97.9800
16	JPCLN063	51746	3094	9350	1346	93.2251	75.1366	97.4648
17	JPCLN073	55182	3404	6598	352	94.2688	65.9668	99.3662
18	JPCLN075	53855	3180	7987	514	94.3634	71.5232	99.0546
19	JPCLN085	58074	2830	4335	297	95.2286	60.5024	99.4912
20	JPCLN087	54952	2920	7356	308	95.0745	71.5843	99.4428

Lampiran 2 Hasil Perhitungan validasi citra hasil segmentasi *Level Set* pada paru-paru kanan

	D-4-					Validasi		
No	Data Citra	TN	FN	TP	FP	Akurasi	Sensitivit as	Spesifisitas
1	JPCLN007	54118	3416	6967	1035	93.1351	77.1387	97.1685
2	JPCLN008	52411	3054	9183	888	96.0953	83.4116	99.4912
3	JPCLN014	54688	2387	7498	963	95.1553	82.2437	97.6475
4	JPCLN016	52085	4455	5726	3271	92.7185	77.5002	96.0634
5	JPCLN019	53157	2093	9952	334	96.2967	82.6235	99.3756
6	JPCLN020	53262	2796	8922	556	94.8853	76.1393	98.9669
7	JPCLN022	54817	3017	7592	110	95.2286	71.5619	99.7997
8	JPCLN024	54470	2155	8126	785	95.5139	79.0390	98.5793
9	JPCLN026	52828	2412	10291	5	96.3120	81.0124	99.9905
10	JPCLN033	53863	1468	9825	380	97.1802	87.0008	99.2994
11	JPCLN035	51838	1660	11446	592	96.5637	87.3340	98.8709
12	JPCLN045	51171	2628	11733	4	95.9839	81.7004	99.9922
13	JPCLN047	51056	3093	10776	611	94.3481	77.6985	98.8174
14	JPCLN051	54750	1835	8559	392	96.6019	82.3456	99.2891
15	JPCLN057	54088	2088	8571	789	95.6100	80.4109	98.5622
16	JPCLN063	51890	1962	11000	648	95.9625	84.8634	98.6990
17	JPCLN073	54191	3165	8002	178	94.8990	71.6576	99.0546
18	JPCLN075	52508	3142	9598	288	94.7662	75.3375	99.4545
19	JPCLN085	56309	1741	7451	35	97.2900	81.0596	99.9379
20	JPCLN087	54245	4228	6944	119	93.3670	62.1554	99.7811

Lampiran 3 Hasil Segmentasi Paru-Paru Menggunakan Level Set

No.	Nama Citra	Citra Asli	Citra Hasil Segmentasi Paru- Paru Kanan	Citra Hasil Segmentasi Paru- Paru Kiri
1.	JPCLN007			
2.	JPCLN008	Simple.		
3.	JPCLN0014			
4.	JPCLN0016			
5.	JPCLN019			
6.	JPCLN020			
7.	JPCLN022			

8.	JPCLN024		
9.	JPCLN026		
10.	JPCLN033		
11.	JPCLN035		
12.	JPCLN045		
13.	JPCLN047		
14.	JPCLN051		
15.	JPCLN057		

16.	JPCLN063	
17.	JPCLN073	
18.	JPCLN075	
19.	JPCLN085	
20.	JPCLN087	1

Lampiran 4 Hasil Perhitungan Diameter Maksimal Paru-Paru

No.	Nama Citra	Citra Hasil Segmentasi	Diameter (piksel)
1.	JPCLN007		202.121
2.	JPCLN008		207.039
3.	JPCLN014		215.541
4.	JPCLN016		209.022
5.	JPCLN019		218.769
6.	JPCLN020		214.002
7.	JPCLN022		215.058

8.	JPCLN024	198.706
9.	JPCLN026	217.665
10.	JPCLN033	204.414
11.	JPCLN035	215.037
12.	JPCLN045	211.993
13.	JPCLN047	212.763
14.	JPCLN051	207.762

15.	JPCLN057	164.222
16.	JPCLN063	215.128
17.	JPCLN073	209.038
18.	JPCLN075	215.523
19.	JPCLN085	164.222
20.	JPCLN087	196.787