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MOTO 

Tidak ada proses yang mudah untuk tujuan yang indah, kita masih dalam zona 

perjuangan, takdir milik Allah SWT tapi doa dan usaha milik kita. 
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ABSTRAK 

Sari, Vina Tri Wahyu. 2025. Pemodelan Multivariate Adaptive Generalized Poisson 

Regression Spline (Magprs) Pada Kasus Polio Di Jawa Timur. Skripsi. Program 

Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri 

Maulana Malik Ibrahim Malang. Pembimbing: (I) Dr. Fachrur Rozi, M.Si. (II) Erna 

Herawati, M.Pd. 

 

Kata Kunci: Polio, MAGPRS, Data Cacah, Fungsi Basis, Overdispersi. 

 

Poliomielitis (polio) merupakan penyakit menular yang disebabkan oleh virus polio 

dan masih menjadi permasalahan kesehatan masyarakat di Indonesia, khususnya di 

Provinsi Jawa Timur. Data kasus polio umumnya berbentuk data cacah (count data) yang 

sering kali tidak memenuhi asumsi equidispersi, sehingga diperlukan pendekatan 

pemodelan yang lebih fleksibel. Penelitian ini bertujuan untuk memodelkan banyaknya 

kasus polio di Jawa Timur menggunakan metode Multivariate Adaptive Generalized 

Poisson Regression Splines (MAGPRS). Metode MAGPRS merupakan pengembangan 

dari Multivariate Adaptive Regression Splines (MARS) yang dikombinasikan dengan 

estimator Generalized Poisson untuk mengakomodasi hubungan nonlinier dan kondisi 

overdispersi pada data. Hasil penelitian menunjukkan bahwa model MAGPRS terbaik 

diperoleh pada kombinasi BF =3, MI = 2, dan MO = 3. Setelah dilakukan backward 

stepwise, fungsi basis model tersebut menjadi 29, di mana akan menysusun persamaan 

MAGPRS. Variabel prediktor yang paling berpengaruh terhadap model secara berurutan 

adalah persentase kunjungan Neonatal 1 kali, persentase Desa UCI, persentase balita 

memiliki buku KIA, persentase imunisasi Polio 4, persentase pemberian vitamin A. 
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ABSTRACT 

Sari, Vina Tri Wahyu. 2025. Multivariate Adaptive Generalized Poisson Regression 

Spline (MAGPRS) Modeling of Polio Cases in East Java. Thesis. Mathematics 

Study Program, Faculty of Science and Technology, Universitas Islam Negeri 

Maulana Malik Ibrahim Malang. Supervisors: (I) Dr. Fachrur Rozi, M.Sc. (II) 

Erna Herawati, M.Pd. 

 

Keywords: Polio, MAGPRS, Count Data, Basis Functions, Overdispersion. 

 

Poliomyelitis (polio) is an infectious disease caused by the poliovirus and remains 

a public health problem in Indonesia, particularly in East Java Province. Polio case data 

are generally in the form of count data, which often violate the assumption of 

equidispersion; therefore, a more flexible modeling approach is required. This study aims 

to model the number of polio cases in East Java using the Multivariate Adaptive 

Generalized Poisson Regression Splines (MAGPRS) method. The MAGPRS method is 

an extension of Multivariate Adaptive Regression Splines (MARS) combined with a 

Generalized Poisson estimator to accommodate nonlinear relationships and 

overdispersion conditions in the data. The results indicate that the best MAGPRS model 

is obtained with the combination BF = 3, MI = 2, and MO = 3. After applying the 

backward stepwise procedure, the number of basis functions in the model is reduced to 

29, which are then used to construct the MAGPRS equation. The most influential 

predictor variables in the model, in descending order, are the percentage of one-time 

neonatal visits, the percentage of UCI villages, the percentage of children under five 

possessing a Maternal and Child Health (KIA) book, the percentage of Polio 4 

immunizations, and the percentage of vitamin A supplementation. 
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 مستخلص البحث 

و  تري  فينا  )   .٢٠٢٥يو.  حساري،  المتغيرات  متعدد  المعمم  التكيفي  الانحدار  في حالات شلل  (  Magprsنمذجة 
جامعة مولانا مالك إبراهيم   ، كلية العلوم والتكنولوجيا،  البحث العلمي. قسم الرياضيات  الأطفال في شرق جاوة.  

مالانج الحكومية  )الإسلامية  المشرف:  فخر  ١.  الدكتور  ) في الماجستير،  زيار ال(  إ٢العلوم.  هيراواتي،  ي(  رنا 
 ة. تربياجستير في ال الم

 
 . بيانات التعداد؛ الوظيفة الأساسية؛ التشتت الزائد، MAGPRS: شلل الأطفال، الكلمات الأساسية: 

 
في   عامة  صحية  مشكلة  يزال  ولا  الأطفال  شلل  فيروس  يسببه  معد  مرض  هو  الأطفال(  )شلل  الأطفال  شلل 
إندونيسيا، خاصة في مقاطعة جاوة الشرقية. عادة ما تكون بيانات حالات شلل الأطفال على شكل بيانات عد غالبا لا  
عدد   نمذجة  إلى  الدراسة  هذه  تهدف  مرونة.  أكثر  نمذجة  نهج  إلى  حاجة  هناك  لذا  المتساوي،  التشتت  بافتراضات  تفي 
المتغيرات   متعددة  والتكيفية  المعمم  بواسون  السريع  الانحدار  طريقة  باستخدام  الشرقية  جاوة  في  الأطفال  شلل  حالات 

(MAGPRS  .)  طريقةMAGPRS  ( المتغيرات  متعددة  التكيفية  الانحدار  لسلاسل  تطوير  مع  (  MARSهي 
النتائج أن أفضل   البيانات. أظهرت  الزائد في  التشتت  مقدرات بواسون المعممة لاستيعاب العلاقات غير الخطية وظروف 

مزيج من    MAGPRSنموذج   عند  عليه  الحصول  و ٢=    MI،  ٣=    BFتم   ، MO    =النموذج  ٣ تنفيذ  بعد   .
كانت أكثر المتغيرات المؤثرة .  MAGPRS، حيث يتم تجميع معادلة  ٩٢خطوة بالعكس، تصبح دالة القاعدة للنموذج  

ونسبة الأطفال الصغار الذين لديهم سجل  ،  UCIتأثيرا على النموذج هي نسبة زيارة واحدة لحديثي الولادة، ونسبة قرى  
KIA ،ونسبة إعطاء فيتامين ٤ضد شلل الأطفال  ونسبة التطعيم ،A . 
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BAB I  

PENDAHULUAN 

1.1 Latar Belakang 

Multivariate Adaptive Regression Splines (MARS) adalah teknik yang 

dikembangkan untuk mensimulasikan hubungan non-linear satu atau lebih 

variabel independen dan dependen. Dikembangkan oleh Jerome H. Friedman pada 

tahun 1991 (Annur dkk., 2015). Metode ini merupakan salah satu hasil 

pengembangan dari metode regresi splines yang sangat berguna dalam situasi di 

mana hubungan antara variabel tidak dapat dengan mudah direpresentasikan 

dengan model linier sederhana. Metode ini mampu menghasilkan hasil prediksi 

yang akurat dalam bentuk kurva regresi (Ampulembang dkk., 2015). Metode 

MARS adalah kombinasi dari metode truncated spline dan recursive partitioning 

regression (RPR).  

Metode truncated spline memiliki kelemahan dalam mengidentifikasi posisi 

dan jumlah knot yang diterapkan ketika mengaitkan banyak prediktor. Selain itu 

akan ada begitu banyak kombinasi yang berkaitan dengan jumlah prediktor, posisi 

knot, dan jumlah knot. Dalam hal ini, metode MARS dapat mengatasi kekurangan 

dari truncated spline diakibatkan perolehan knot dalam MARS tidak diperoleh 

dengan cara individual dari kombinasi tersebut, melainkan melalui tahapan adaptif 

(Friedman, 1991). Tahapan dalam metode MARS terdiri atas proses forward 

selection dan backward selection. Forward selection membangun model dengan 

menambah basis functions truncated spline berdasarkan interaksi dan titik knot 

untuk mencapai kompleksitas model yang optimal. Sebaliknya, backward 

selection bertujuan menyederhanakan model dengan mengeliminasi fungsi basis 
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yang memiliki pengaruh kecil pada prediksi berdasarkan nilai Generalized Cross-

Validation (GCV) terendah (Mattalunru dkk., 2022). 

Secara umum, modifikasi penggunaan metode MARS telah diaplikasikan 

pada data dengan respon kontinu atau kategorik. Suatu respon dianggap kontinu 

apabila  data berupa data interval atau rasio, sedangkan suatu respon dianggap 

kategorik apabila data atau variabel berupa data nominal atau ordinal. Beberapa 

penelitian telah menerapkan penggunaan metode MARS untuk respon kontinu 

dan kategorik. Penelitian yang menerapkan MARS pada respon kontinu antara 

lain, penelitian Kartini & Laelatul (2022), menjelaskan tentang perancangan 

model untuk kasus balita Stunting di Kabupaten Bojonegoro menggunakan 

metode MARS dan Geographically Weighted Regression (GWR). Penelitian ini 

meneliti perbandingan metode GWR dan MARS. Hasil perbandingan kedua 

model menunjukkan model MARS lebih baik. Perbedaan nilai R-Square antara 

kedua metode tersebut relatif kecil, sementara nilai MSE (Mean Squared Error) 

model MARS secara signifikan lebih rendah dibandingkan GWR. Sehingga model 

MARS memiliki performa prediksi yang lebih optimal. 

Irmawati dkk. (2019), juga melakukan penelitian pemodelan MARS pada 

risiko kesehatan bayi dengan berat badan lahir rendah. Hasil penelitian yang 

diperoleh yakni model MARS yang optimal dengan kombinasi BF = 28, MI = 3, 

MO = 2, nilai GCV terkecil yaitu 0,17766. Faktor anemia (𝑋2), paritas (𝑋4), 

riwayat pendidikan (𝑋5), gizi ibu (𝑋6), dan usia kehamilan (𝑋7) berpengaruh 

terhadap kejadian BBLR. Di sisi lain, penelitian Nidhomuddin & Otok, (2015) 

membahas tentang pengelompokkan penderita HIV/AIDS menggunakan metode 
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random forest dan MARS, didapat hasil bahwa kinerja metode random forest 

lebih unggul dibandingkan MARS maupun kombinasi keduanya. 

Penelitian yang dilakukan oleh  Yasmirullah dkk. (2021)  menerapkan 

metode Multivariate Adaptive Poisson Regression Spline (MAPRS). Metode ini 

merupakan gabungan antara MARS dan regresi Poisson, yang dirancang untuk 

menangani data count (hitungan) dengan karakteristik non-linear dan diharapkan 

dapat memodelkan data secara lebih efektif berdasarkan jenis dan distribusinya. 

Hasil penelitian yang diperoleh ketika MAPRS diterapkan untuk memodelkan 

jumlah kasus tuberkulosis (TBC) di Kabupaten Lamongan, model terbaik 

diperoleh dengan nilai GCV 0,1145, dengan kombinasi parameter BF = 28, MI = 

3, dan MO = 3. Lebih lanjut, berdasarkan kriteria nilai 𝑅² dan RMSE, model 

MAPRS yang diusulkan mengungguli model regresi Poisson. Model MAPRS 

dengan nilai RMSE yang lebih kecil dan R² yang lebih tinggi dibandingkan model 

regresi Poisson.  

Prastika dkk. (2021) juga melakukan penelitian menggunakan metode 

penggabungan MARS dengan regresi Poisson. Penelitian ini menerapkan estimasi 

Generalized Poisson, sehingga membentuk metode gabungan yang dikenal 

sebagai Multivariate Adaptive Generalized Poisson Regression Splines 

(MAGPRS). Pendekatan tersebut dipilih disebabkan oleh variabel yang dianalisis 

memiliki pola tidak linier, dengan variabel respon berupa data cacah (count) yang 

diduga mengikuti distribusi Poisson. Namun, karena terdapat indikasi bahwa 

asumsi distribusi Poisson gagal terpenuhi yakni mean tidak sama dengan varians 

maka digunakanlah Generalized Poisson sebagai alternatif.  
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Pemilihan metode MAGPRS dalam penelitian ini juga didasari oleh studi 

terdahulu. Kartini & Laelatul (2022) dalam penelitiannya membandingkan model 

MARS dan Geographically Weighted Regression (GWR) untuk kasus Stunting di 

Kabupaten Bojonegoro. MARS menunjukkan performa yang lebih baik dalam hal 

Mean Squared Error (MSE). Namun, metode tersebut belum mempertimbangkan 

struktur data cacah yang khas pada data kasus penyakit. Oleh karena itu, 

MAGPRS sebagai pengembangan dari MARS dengan pendekatan distribusi 

Generalized Poisson menjadi solusi yang lebih relevan. 

MAGPRS sangat ideal digunakan dalam pemodelan data count seperti kasus 

penyakit menular karena mampu menangani dua tantangan utama: non-linearitas 

dan overdispersi. Penelitian Famoye & Singh (2021) tidak secara eksplisit 

meneliti kasus epidemiologi, penelitian tersebut mengidentifikasi kelemahan 

regresi Poisson standar pada data cacah yang memiliki variansi tidak sama dengan 

rata-rata. Karena data epidemiologi juga umumnya berbentuk data cacah dan 

mengalami overdispersi, model Generalized Poisson Regression yang diterapkan 

sangat relevan dalam konteks tersebut. Dalam konteks penelitian polio, metode ini 

belum banyak digunakan. Pada studi sebelumnya menggunakan metode regresi 

linear, regresi Poisson klasik, atau GWR dalam pemodelan penyakit menular. 

Seperti penelitian Desiana & Melaniani (2021) menerapkan metode Generalized 

Poisson Regression untuk memodelkan jumlah kasus difteri di Kota Surabaya, 

sementara Alwi dkk. (2022) menggunakan metode serupa dalam menganalisis 

faktor-faktor yang memengaruhi kejadian pneumonia pada balita di Provinsi 

Sulawesi Selatan.  
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Penelitian yang secara khusus meninjau penyebaran penyakit polio di 

Indonesia dapat ditemukan pada studi Umam dkk. (2016) mengembangkan model 

epidemi SEIV berbasis Ordinary Differential Equation (ODE) untuk memodelkan 

penyebaran polio di Indonesia. Namun, pendekatan deterministik tersebut kurang 

tepat untuk data surveilans epidemiologi berbentuk data cacah karena tidak 

mengakomodasi overdispersi dan hubungan non-linear antar variabel prediktor. 

Oleh sebab itu, penelitian ini mengadopsi metode Multivariate Adaptive 

Generalized Poisson Regression Splines (MAGPRS) yang mampu menangani 

data cacah dengan overdispersi sekaligus memodelkan hubungan non-linear 

secara adaptif menggunakan basis functions . 

Berdasarkan analisis yang telah dilakukan oleh Prastika dkk. (2021), hasil 

penelitian menunjukkan bahwa MAGPRS memberikan hasil rata-rata angka 

kematian ibu di Jawa Timur pada tahun 2018 adalah 13,737. Model yang paling 

efektif guna memprediksi jumlah kematian ibu yaitu model MAGPRS dengan 

kombinasi parameter BF = 28, MI = 2, dan MO = 2. Hasil ini membuktikan 

bahwa MAGPRS sangat cocok digunakan untuk data kesehatan yang bersifat 

count dan memiliki pola kompleks.  

MAGPRS memiliki keunggulan signifikan dibanding metode regresi lain 

seperti Poisson regression maupun MARS, karena mampu mengatasi dua isu 

utama dalam pemodelan data cacah: non-linearitas hubungan antar variabel dan 

ketidaksesuaian antara mean dan varians (over/under dispersi). Model ini bekerja 

dengan pendekatan adaptive spline yang memilih titik knot secara otomatis 

berdasarkan kriteria Generalized Cross Validation (GCV), serta memanfaatkan 
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distribusi Poisson yang telah digeneralisasi untuk fleksibilitas yang lebih tinggi 

dalam menangani variasi data (Yasmirullah dkk., 2021). 

Penggunaan model statistik seperti MAGPRS yang bertujuan memahami 

pola dan keteraturan dalam data. Hal ini menggambarkan keteraturan ciptaan 

Allah SWT SWT, pentingnya ilmu pengetahuan, dan ikhtiar manusia dalam 

memahami alam semesta. Pemodelan MAGPRS adalah ikhtiar ilmiah manusia 

untuk memahami keteraturan dan pola yang mungkin tersembunyi dalam data 

yang tampak acak. Ayat Al-Qur’an yang relevan untuk pemodelan statistik 

disebutkan dalam QS. Al-Mulk ayat 3 (Kemenag, 2025a): 

نْ الَّذِيْ خَلَقَ سَبْعَ سََٰوٰتٍ طِبَاقاًۗ مَا تَ رٰى فيْ خَلْقِ الرَّحْْٰنِ مِنْ تَ فٰوُتٍۗ فاَرْجِعِ الْبَصَرََۙ هَلْ تَ رٰى مِ 
۝٣فُطوُْرٍ    

Artinya:  

“(Dia juga) yang menciptakan tujuh langit berlapis-lapis. Kamu tidak akan 

melihat pada ciptaan Tuhan Yang Maha Pengasih ketidakseimbangan sedikit pun. 

Maka, lihatlah sekali lagi! Adakah kamu melihat suatu cela?”(QS. Al-Mulk 

[67]:3). 

 

Ayat ini menjelaskan tentang semua ciptaan Allah SWT termasuk alam 

semesta dan hukum-hukumnya memiliki keteraturan, keseimbangan, dan harmoni 

yang sangat sempurna. Tidak ada satu pun ciptaan-Nya yang sia-sia atau tanpa 

pola. Dalam ilmu statistik, khususnya dalam pemodelan seperti MAGPRS, para 

peneliti berusaha untuk mengidentifikasi dan memahami pola-pola keteraturan 

dalam data dunia nyata baik dalam bidang sosial, ekonomi, kesehatan, maupun 

lingkungan. Ini mencerminkan pengakuan bahwa ada struktur dan hukum 

tersembunyi dalam fenomena dunia, yang dapat dijelaskan melalui analisis data. 

Ayat ini mengandung dorongan untuk mengamati secara berulang dan teliti, serta 

menguji kesempurnaan ciptaan Allah SWT. Dalam statistik, proses ini tergambar 

melalui langkah-langkah eksplorasi data, pengujian model, dan validasi hasil. 
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Semua dilakukan untuk mencari kesesuaian antara data dan model, serta 

memastikan bahwa tidak ada cacat atau kesalahan logika dalam analisis. 

Dalam penelitian ini, metode MAGPRS diimplementasikan untuk 

memodelkan data kasus polio di Indonesia. Pada dasarnya, polio merupakan suatu 

penyakit yang diakibatkan oleh virus Polio. Virus ini merusak medula spinalis 

pada sumsum tulang belakang dan menyerang sistem pencernaan bahkan dapat 

mengakibatkan lumpuh (Umam dkk., 2016). Dalam perspektif islam, pentingnya 

menjaga kesehatan tercermin pada QS. Yunus ayat 57 (Kemenag, 2025b): 

يَ ُّهَا النَّاسُ قَدْ جَاۤءَتْكُمْ مَّوْعِظَةٌ مِ نْ رَّبِ كُمْ وَشِفَاۤءٌ لِ مَا فِِ الصُّدُوْرَِۙ وَهُدًى وَّرَحْْةٌَ ل ِ  ۝٥٧ لْمُؤْمِنِيْنَ يااٰ  

Artinya:  

“Wahai manusia, sungguh telah datang kepadamu pelajaran (Al-Qur’an) dari 

Tuhanmu, penyembuh bagi sesuatu (penyakit) yang terdapat dalam dada, dan 

petunjuk serta rahmat bagi orang-orang mukmin.”(QS. Yunus [10]:57). 

 

Ayat ini menekankan pentingnya menjaga kesehatan fisik dan mental. Polio 

merupakan penyakit serius yang mempengaruhi sistem saraf dan bisa 

menyebabkan kelumpuhan. Meskipun ayat ini tidak secara langsung menyebutkan 

penyakit fisik, prinsip di baliknya mengajak umat untuk mencari penyembuhan 

baik melalui usaha medis maupun spiritual. Pentingnya Usaha Medis dalam 

menghadapi polio, upaya pencegahan melalui vaksinasi sangat penting. Al-Qur’an 

memberi petunjuk agar setiap individu bertanggung jawab atas kesehatan diri. 

Dengan demikian, Surat Yunus ayat 57 dapat menjadi motivasi untuk tidak hanya 

mencari pengobatan fisik tetapi juga memperkuat iman dan ketahanan mental 

dalam menghadapi tantangan kesehatan seperti polio. 

Adapun alasan pemilihan kasus poliomielitis (polio) dalam penelitian ini 

adalah karena penyakit ini masih menjadi masalah kesehatan serius di Indonesia. 

Virus polio menyerang sistem saraf pusat dan dapat menyebabkan kelumpuhan 
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permanen (Umam dkk., 2016).  Menurut data dari WHO (World Health 

Organization), virus polio masih menjadi ancaman kesehatan di didunia hingga 

84% salah satunya wilayah di Indonesia (Kashi dkk., 2018).  Kementerian 

Kesehatan mencatat bahwa pada tahun 2022 sampai tahun 2024, Indonesia telah 

melaporkan 12 insiden kelumpuhan akibat virus polio, 11 kasus terjadi akibat 

virus polio tipe 2. Sementara itu, satu kasus diakibatkan oleh virus polio tipe 1 

menyikapi kondisi ini, pemerintah menetapkan Kejadian Luar Biasa (KLB) dan 

melaksanakan Sub PIN Polio dengan cakupan target imunisasi minimal 95% 

(Kesehatan, 2024).  

Tiga insiden terbaru ditemukan pada awal tahun 2024 di Jawa Timur dan 

Jawa Tengah. Menanggapi situasi tersebut, Kementerian Kesehatan melaporkan 

Kejadian Luar Biasa (KLB) polio di kedua provinsi tersebut dan melaksanakan 

Sub PIN Polio. Imunisasi tambahan ini ditujukan untuk anak usia 0 hingga 7 

tahun dan dilaksanakan dalam dua putaran, dimulai pada 15 Januari dan 19 

Februari 2024, dengan target cakupan minimal 95% di setiap wilayah. Selain itu, 

vaksin polio jenis baru, Novel Oral Polio Vaccine tipe 2 (NOPV2), digunakan 

dalam program ini untuk meningkatkan efektivitas imunisasi (Negeriku, 2024).  

Kasus polio dipilih dalam penelitian ini tidak hanya karena urgensinya 

sebagai masalah kesehatan nasional, tetapi juga karena data yang tersedia 

memiliki karakteristik yang cocok untuk pendekatan statistik lanjutan seperti 

MAGPRS. Polio termasuk dalam kategori penyakit yang dapat dicegah dengan 

imunisasi (PD3I), namun cakupan imunisasi di beberapa daerah di Jawa Timur 

masih belum merata. Selain itu, laporan WHO mencatat bahwa Indonesia masih 

tergolong sebagai negara dengan risiko tinggi terhadap penyebaran polio karena 
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adanya kasus yang bersumber dari virus polio tipe 2 yang bermutasi akibat vaksin 

oral (cVDPV2). Oleh karena itu, diperlukan analisis yang tepat untuk memahami 

variabel-variabel penyebab banyaknya kasus polio di Jawa Timur. 

Penelitian ini bertujuan untuk menerapkan metode MAGPRS pada 

banyaknya kasus polio di Provinsi Jawa Timur. Harapannya, penelitian ini dapat 

memberi pemahaman mendalam terkait variabel penyebab banyaknya kasus polio 

di Provinsi Jawa Timur serta membantu pemerintah provinsi Jawa Timur  

membuat kebijakan yang lebih efektif untuk mengatasi masalah polio. 

 

1.2 Rumusan Masalah 

Berdasarkan latar belakang yang telah dijelaskan didapatkan rumusan 

masalah sebagai berikut: 

1. Bagaimana model MAGPRS pada kasus Polio di Provinsi Jawa Timur? 

2. Bagaimana pengaruh variabel-variabel penyebab banyaknya kasus Polio di 

Provinsi Jawa Timur berdasarkan model MAGPRS? 

 

1.3 Tujuan Penelitian 

Berdasarkan rumusan masalah tersebut, tujuan penelitian ini meliputi: 

1. Menentukan model MAGPRS pada Kasus Polio di Provinsi Jawa Timur. 

2. Mengetahui pengaruh variabel-variabel penyebab banyaknya kasus Polio 

di Provinsi Jawa Timur berdasarkan model MAGPRS. 
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1.4 Manfaat Penelitian 

Manfaat yang diharapkan yakni: 

1. Bagi Penulis 

Meningkatkan pemahaman tentang penerapan metode MAGPRS pada 

banyaknya kasus Polio di Jawa Timur. 

2. Bagi Prodi Matematika 

Memberikan Sumber refrensi bacaan untuk mahasiswa prodi matematika 

tentang implementasi metode MAGPRS pada banyaknya kasus Polio di 

Jawa Timur. 

3. Bagi Dinas Kesehatan Provinsi Jawa Timur 

Menambah pemahaman tentang variabel-variabel yang memengaruhi 

kejadian polio di Provinsi Jawa Timur. Hal ini dapat menjadi langkah 

preventif atau pencegahan bagi Dinas Kesehatan Provinsi Jawa Timur 

dalam menentukan kebijakan untuk menurunkan kasus Polio. 

 

1.5 Batasan Masalah 

Agar penelitian terpusat dan fokus, maka batasan yang akan dilakukan 

yaitu: 

1. Pemilihan model MAGPRS menggunakan kombinasi BF, MI, dan MO 

dengan kriteria Generalized Cross Validation (GCV) terkecil. Pemilihan 

nilai BF ditentukan sekitar dua hingga empat kali jumlah total variabel 

independen.   

2. Penelitian ini menggunakan  banyaknya kasus Polio di Jawa Timur tahun 

2023. 
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3. Penelitian ini dibatasi pada penggunaan sembilan variabel independen. 

Variabel Independen (𝑥) yang digunakan yaitu Persentase Rumah Tangga 

dengan Fasilitas Tempat Buang Air Besar Sendiri (𝑥1), Persentase Keluarga 

dengan Akses Air Minum Layak (𝑥2), Persentase Imunisasi Polio 4 (𝑥3),  

Persentase Balita Memiliki Buku KIA (𝑥4), Persentase Kunjungan Neonatal 

1 Kali (𝑥5), Persentase Kunjungan Neonatal 3 Kali (KN Lengkap) (𝑥6), 

Persentase Pemberian ASI Eksklusif (𝑥7), Persentase Desa UCI (𝑥8), dan 

Persentase Pemberian Vitamin A (𝑥9). Pembatasan variabel dilakukan 

karena keterbatasan akses data, sehingga tidak semua indikator yang diduga 

memengaruhi banyaknya kasus Polio di Jawa Timur dapat dianalisis dalam 

penelitian ini. 
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BAB II  

KAJIAN TEORI 

2.1 Teori Pendukung 

2.1.1 Analisis Deskriptif 

Analisis deskriptif dilakukan guna menganalisis data bertujuan untuk 

mendeskripsikan data-data yang telah terkumpul. Kemudian menarik keputusan 

secara umum (Sugiyono, 2016). Metode ini membantu untuk memahami 

karakteristik data, pola yang ada, dan hubungan antara variabel. Informasi yang 

didapat dari analisis deskriptif digunakan untuk interpretasi hasil penelitian, 

pemilihan metode analisis data yang tepat, dan untuk pengambilan keputusan. 

 

2.1.2 Scatterplot 

Scatterplot merupakan salah satu metode visualisasi yang digunakan 

untuk menggambarkan hubungan antara dua variabel kuantitatif dalam bentuk 

titik-titik pada bidang kartesius. Scatterplot digunakan sebagai langkah awal 

untuk mengevaluasi kemungkinan hubungan antara variabel, yang kemudian 

dapat dikonfirmasi secara numerik melalui penghitungan koefisien korelasi. 

Koefisien korelasi yakni ukuran statistik untuk menilai kekuatan dan arah 

hubungan linier antar variabel, dengan kisaran nilai dari −1 ≤ 𝜌𝑥,𝑦 ≤ 1. Jika 

pola titik pada scatterplot membentuk garis lurus yang jelas, maka besar 

kemungkinan nilai koefisien korelasi  yang mendekati 1 atau -1 menunjukkan 

hubungan positif atau negatif yang kuat, sedangkan nilai yang mendekati 0 

menunjukkan sedikit atau tidak ada hubungan linier. Rumus koefisien korelasi 

Spearman diberikan sebagai berikut (Cahyono, 2017): 
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𝜌𝑥,𝑦 = 1 −
6∑di

2

n(n2 − 1)
 (2.1) 

𝜌𝑥,𝑦 : Koefisien korelasi Spearman 

di
2 : Selisih peringkat antara nilai 𝑥𝑖 dan 𝑦 (di mana d𝑖 = 𝑅(𝑥𝑖) − 𝑅(𝑦)) 

Dengan hipotesis pengujian sebagai berikut. 

𝐻0: 𝜌𝑥,𝑦 = 0 (Tidak terdapat hubungan antar variabel) 

 𝐻1: 𝜌𝑥,𝑦 ≠ 0 (Terdapat hubungan antar variabel) 

Berikut rumus pengujian korelasi antar variabel. 

𝑡 =
𝜌𝑥,𝑦√𝑛 − 2

√1 − (𝜌𝑥,𝑦)
2
 

(2.2) 

Tolak 𝐻0 jika |𝑡| > 𝑡(𝑎
2
,(𝑛−2)) atau p-value < 𝛼. 

 

2.1.3 Distribusi Poisson 

Distribusi Poisson merupakan salah satu jenis distribusi probabilitas 

yang digunakan untuk memodelkan jumlah kejadian dalam suatu interval waktu 

atau ruang tertentu(Sudjana, 1996). Distribusi ini cocok digunakan untuk data 

dengan karakteristik berupa variabel diskrit, khususnya dalam kasus perhitungan 

frekuensi kejadian yang jarang namun tetap mungkin terjadi dalam periode atau 

area tertentu. Suatu variabel acak 𝑌 berupa variabel diskrit akan mengikuti 

distribusi Poisson dengan fungsi probabilitas sebagai berikut (Cameron & 

Trivedi, 2013): 

𝑓(𝑦𝑖; 𝜇𝑖) =
𝑒−𝜇𝑖𝜇𝑦𝑖

𝑦𝑖!
; 𝑦𝑖 = 0,1,2, . . ;  𝜇 > 0 (2.3) 

Mean dan variansi dari distribusi Poisson dinyatakan pada persamaan berikut 
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𝐸(𝑌) = 𝑉𝑎𝑟(𝑌) =  𝜇 

Uji statistik yang digunakan untuk memeriksa apakah data mengikuti distribusi 

Poisson yaitu uji Kolmogorov-Smirnov. Rumus uji Kolmogorov-smirnov sebagai 

berikut (Quraisy, 2022): 

𝐷 = 𝑚𝑎𝑥|𝐹𝑛(𝑌) − 𝐹(𝑌)| (2.4) 

dengan: 

𝐹𝑛(𝑌)  : Fungsi distribusi kumulatif skor pengamatan 

𝐹(𝑌)   : Fungsi distribusi kumulatif distribusi Poisson 

Hipotesis pengujinya sebagai berikut (Cahyandari, 2014): 

𝐻0 : Variabel respon berdistribusi Poisson 

𝐻1 : Variabel respon tidak berdistribusi Poisson 

Kriteria pengujian yaitu tolak 𝐻0 apabila nilai 𝐷 > 𝐷𝑡𝑎𝑏𝑒𝑙 dan p-value < 𝛼. 

 

2.1.4 Regresi Poisson 

Model standar untuk data cacah (count data) adalah model regresi 

Poisson, yang merupakan model regresi nonlinier. Regresi Poisson 

menggambarkan hubungan antara antara variabel respon Y dan variabel 

prediktor X dengan mengasumsikan variabel Y berdistribusi Poisson. Jika 

pendekatannya secara parametrik dan melibatkan kovariat eksogen tetapi tidak 

ada sumber variasi stokastik lainnya, maka regresi Poisson standar. Jika fungsi 

berkaitan dengan 𝜇 dan kovariatnya stokastik, kemungkinan karena melibatkan 

variabel acak yang tidak teramati, maka regresi Poisson campuran (mixed 

Poisson regression)(Cameron & Trivedi, 2013).  
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Regresi Poisson merupakan bagian dari Generalized Linear Model 

(GLM), yaitu kerangka pemodelan yang tidak mensyaratkan variabel respon 

harus berdistribusi normal. Dalam GLM, rata-rata variabel respon dihubungkan 

dengan kombinasi linier dari parameter 𝜷 dan variabel prediktor sebanyak 𝑝 

yaitu 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑝   melalui fungsi penghubung (link function) sebagai 

berikut (Cahyandari, 2014): 

ℎ(𝜇𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯+ 𝛽𝑝𝑖𝑥𝑝𝑖 (2.5) 

Persamaan (2.6) dibentuk dalam notasi matriks sebagai berikut. 

ℎ(𝜇𝑖) = 𝒙𝒊
𝑻𝜷 (2.6) 

dengan  

𝒙𝒊 = (1, 𝑥1𝑖 , 𝑥2𝑖, … , 𝑥𝑝𝑖)
𝑇
, 𝜷 = (𝛽0, 𝛽1, 𝛽2, … . , 𝛽𝑝)

𝑇
 

Pada model regresi Poisson, fungsi penghubung yang paling umum digunakan 

adalah fungsi penghubung logaritma natural, karena fungsi ini menjamin bahwa 

nilai rataan 𝜇𝑖 selalu bernilai positif sebagaimana disyaratkan oleh distribusi 

Poisson. Berdasarkan persamaan (2.7) diperoleh fungsi penghubung logaritma 

natural sebagai berikut. 

ℎ(𝜇𝑖) = 𝑙𝑛 𝜇𝑖 = 𝒙𝒊
𝑻𝜷 

𝜇𝑖 = ℎ−1(𝒙𝒊, 𝜷) = 𝑒𝒙𝒊
𝑻𝜷 (2.7) 

Karena 𝜇𝑖 adalah fungsi dari 𝒙𝒊 dan 𝜷, berdasarkan persamaan (2.8) dapat ditulis 

𝜇𝑖(𝒙𝒊, 𝜷) = 𝑒𝑥𝑝 (𝒙𝒊
𝑻𝜷) ↔ 𝑙𝑛 𝜇𝑖 (𝒙𝒊, 𝜷) = 𝒙𝒊

𝑻𝜷 (2.8) 

Berdasarkan persamaan (2.3) dan (2.9) fungsi massa peluang distribusi Poisson 

dapat dituliskan sebagai berikut(Cameron & Trivedi, 2013): 

𝑓(𝑦𝑖; 𝒙𝒊, 𝜷) =
𝑒−[𝜇𝑖(𝒙𝒊,𝜷)][𝜇𝑖(𝒙𝒊, 𝜷)]𝑦𝑖

𝑦𝑖!
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dengan  𝜇𝑖(𝒙𝒊, 𝜷) adalah mean Poisson dan vektor 𝜷 menunjukkan parameter 

yang akan ditaksir. 

 

2.1.5 Penaksir Parameter Regresi Poisson 

Metode Maximum Likelihood Estimation (MLE) adalah pendekatan yang 

umum diterapkan untuk menaksir parameter dalam model regresi Poisson, 

dengan asumsi bahwa data respon mengikuti distribusi Poisson. Bentuk umum 

dari fungsi likelihood model regresi Poisson sebagai berikut(Cameron & 

Trivedi, 2013). 

𝐿(𝜷) = ∏𝑓(𝑦𝑖; 𝒙𝒊, 𝜷)

𝑛

𝑖=1

   

= ∏(
[𝜇𝑖(𝒙𝒊, 𝜷)]𝑦𝑖𝑒𝑥𝑝 [−𝜇𝑖(𝒙𝒊, 𝜷)]

𝑦𝑖!
)

𝑛

𝑖=1

   

dengan [𝜇𝑖(𝒙𝒊, 𝜷)]  = 𝑒𝑥𝑝 (𝒙𝒊
𝑻𝜷)  

𝐿(𝜷) = ∏([𝑒𝑥𝑝(𝒙𝒊
𝑻𝜷)]

𝑦𝑖 𝑒𝑥𝑝 [−𝑒𝑥𝑝(𝒙𝒊
𝑻𝜷)]

𝑦𝑖!
)

𝑛

𝑖=1

 

= (
∏ [𝑒𝑥𝑝(𝒙𝒊

𝑻𝜷)
𝑦𝑖

]𝑛
𝑖=1 𝑒𝑥𝑝[−∑ (𝒙𝒊

𝑻𝜷)𝑛
𝑖=1 ]

∏ yi!
𝑛
𝑖=1

) (2.9) 

Selanjutnya logaritma natural 𝐿(𝜷) dari persamaan 2.10 sebagai berikut. 

𝑙𝑛 𝐿(𝜷) = 𝑙𝑛 (
∏ [𝑒𝑥𝑝(𝒙𝒊

𝑻𝜷)
𝑦𝑖

]𝑛
𝑖=1 𝑒𝑥𝑝[−∑ (𝒙𝒊

𝑻𝜷)𝑛
𝑖=1 ]

∏ yi!
𝑛
𝑖=1

) 

𝑙𝑛 𝐿(𝜷) = ∑𝑦𝑖(𝒙𝒊
𝑻𝜷) − ∑𝑒𝑥𝑝(𝒙𝒊

𝑻𝜷)

𝑛

𝑖=1

− ∑𝑙𝑛yi!

𝑛

𝑖=1

𝑛

𝑖=1

 

Turunan pertama ln 𝐿(𝜷)  disamadengankan nol adalah sebagai berikut 
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𝜕𝑙𝑛 𝐿(𝜷)

𝜕𝜷𝑻
= ∑𝑦𝑖𝒙𝒊

𝑛

𝑖=1

− ∑𝒙𝒊𝑒𝑥𝑝(𝒙𝒊
𝑻𝜷)

𝑛

𝑖=1

= 0 (2.10) 

Karena persamaan (2.10) tidak dapat diselesaikan secara langsung, maka 

penyelesaiannya melalui pendekatan numerik menggunakan metode Newton-

Raphson sebagaimana dijelaskan oleh Cameron & Trivedi (1998). Berikut 

persamaan menggunakan metode Newton-Raphson. 

𝜷̂(ℓ+1) = 𝜷̂(ℓ) − 𝐇−1 (𝜷̂(ℓ))𝒈(𝜷̂(ℓ)) (2.11) 

dengan: 

𝜷̂(ℓ) : Nilai taksiran parameter pada iterasi ke-ℓ 

𝒈(𝜷̂(ℓ)): Vektor gradien dari parameter 𝜷̂(ℓ), yaitu 

𝒈(𝜷̂(𝓵))
(𝒑+𝟏)×𝟏

= 

[
 
 
 
 
 
 
 
𝜕𝑙𝑛𝐿(𝜷)

𝜕𝛽0

𝜕𝑙𝑛𝐿(𝜷)

𝜕𝛽1

⋮
𝜕𝑙𝑛𝐿(𝜷)

𝜕𝛽𝑝

 

]
 
 
 
 
 
 
 
𝜷=𝜷̂(ℓ)

 (2.12) 

𝑯−1(𝜷̂(ℓ)): Invers dari matriks Hessian 𝑯(𝜷̂(ℓ)), dengan  

𝑯(𝜷̂
(ℓ)

)
(𝑝+1)(𝑝+1)

=

[
 
 
 
 
 
 
 
𝜕2 ln 𝐿(𝜷)

𝜕𝛽0
2

𝜕2 ln 𝐿(𝜷)

𝜕𝛽0𝜕𝛽1
⋯

𝜕2 ln 𝐿(𝜷)

𝜕𝛽0𝜕𝛽𝑝

𝜕2 ln 𝐿(𝜷)

𝜕𝛽0𝜕𝛽1

𝜕2 ln 𝐿(𝜷)

𝜕𝛽1
2 ⋯

𝜕2 ln 𝐿(𝜷)

𝜕𝛽1𝜕𝛽𝑝

⋮ ⋮ ⋱ ⋮
𝜕2 ln 𝐿(𝜷)

𝜕𝛽0𝜕𝛽𝑝

𝜕2 ln 𝐿(𝜷)

𝜕𝛽1𝜕𝛽𝑝
⋯

𝜕2 ln 𝐿(𝜷)

𝜕𝛽𝑃
2 ]

 
 
 
 
 
 
 
𝜷=𝜷̂

(ℓ)

 (2.13) 

Persamaan (2.11) digunakan untuk menaksir 𝜷 pada iterasi ke-ℓ (ℓ = 0,1,2… ). 

langkah pertama yang akan dilakukan yaitu memilih nilai taksiran awal  𝜷, yaitu  
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𝜷̂(𝑝+1)×1
(0)

= 

[
 
 
 
 𝛽̂0

(0)

𝛽̂0
(0)

⋮

𝛽̂𝑝
(0)

]
 
 
 
 

 

Nilai taksiran awal 𝜷̂(0) diperoleh menggunakan metode Ordinary Least 

Squares (OLS). Hal ini dilakukan karena proses estimasi parameter pada regresi 

Poisson menggunakan metode Maximum Likelihood Estimation (MLE) 

memerlukan nilai awal parameter 𝜷̂(0) untuk memulai iterasi numerik. Taksiran 

awal 𝜷̂(0) menggunakan metode OLS, sebagai berikut. 

𝜷̂(0) = (𝑿𝑻𝑿)−1𝑿𝑻𝒀 (2.14) 

Nilai 𝜷̂(0) ini kemudian dijadikan sebagai starting point (titik awal) 

dalam algoritma Newton-Raphson. 𝜷̂(0) akan di subtitusikan pada elemen-

elemen vektor gradient 𝒈 pada persamaan (2.12) dan matriks hessian 𝐇, pada 

persamaan (2.13) sehingga diperoleh 𝒈̂(𝜷(𝟎)) dan 𝑯̂(𝜷(𝟎)). Iterasi di mulai dari 

ℓ = 0, karena pada langkah ini nilai 𝜷̂(0) berfungsi sebagai nilai awal (belum 

ada iterasi) yang menjadi dasar untuk memperoleh estimasi parameter iterasi 

berikutnya. ℓ = 0 bukanlah hasil iterasi, melainkan penomoran awal yang 

menandai titik awal proses dan iterasi dapat dihentikan apabila telah menemukan 

nilai taksiran yang konvergen pada suatu nilai yaitu 𝜷̂(ℓ+1) ≈ 𝜷̂(ℓ) atau 

‖𝜷̂(ℓ+1) − 𝜷̂(ℓ)‖ < 𝜀, di mana 𝜀 > 0,001 dan sangat kecil. 

 

2.1.6 Pengujian Equidispersion 

Regresi Poisson memiliki asumsi dasar yang dikenal sebagai 

equidispersi, yaitu kondisi di mana nilai rata-rata dan variansi dari variabel 

dependen adalah sama. Namun, dalam praktiknya, sering dijumpai kondisi 
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overdispersi, yakni ketika variansi variabel dependen lebih besar dibandingkan 

nilai rata-ratanya. Keberadaan overdispersi dapat menyebabkan estimasi 

parameter regresi tetap konsisten, tetapi menjadi tidak efisien, sehingga standar 

error terestimasi lebih rendah dari semestinya. 

Overdispersi dapat disebabkan oleh adanya pencilan (outlier) dalam 

data. Untuk mengetahui apakah data memenuhi asumsi equidispersi, dilakukan 

uji equidispersi yang bertujuan menguji kesamaan antara nilai rata-rata dan 

varians data. Uji ini dilakukan dengan membandingkan varians sampel terhadap 

rata-rata. Pengujian equidispersi juga dapat dilakukan dengan bantuan perangkat 

lunak R melalui fungsi dispersiontest() pada paket AER, yang merupakan 

implementasi dari uji dispersi(Cameron & Trivedi, 2013). Adapun hipotesis 

pada pengujian ini yaitu:  

𝐻0: 𝑉𝑎𝑟 (𝑌) =   𝜇𝑖 tidak terjadi overdispersi, data mengikuti asumsi distribusi 

Poisson. 

𝐻1: 𝑉𝑎𝑟 (𝑌) =   𝜇𝑖 + 𝛾𝑔(. ) terjadi overdispersi 

kriteria pengujian tolak 𝐻0 apabila 𝛾 > 0, di mana 𝛾 merupakan koefisien yang 

diestimasi melalui persamaan auxiliary OLS regression sebagai berikut. 

(𝑦𝑖 − 𝜇̂𝑖)
2 − 𝑦𝑖

𝜇̂𝑖
= 𝛾 + 𝑢𝑖 (2.15) 

dengan: 

• 𝑦𝑖 adalah variabel respon  

• 𝜇̂𝑖 adalah nilai prediksi rata-rata dari model regresi Poisson. 

• 𝛾 adalah koefisien regresi yang menjadi penaksir tingkat overdispersi, 

• 𝑢𝑖  adalah error acak. 
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misalkan ruas kiri persamaan (2.15) didefinisikan sebagai suatu peubah baru 𝑉𝑖, 

sehingga 

𝑉𝑖 =
(𝑦𝑖 − 𝜇̂𝑖)

2 − 𝑦𝑖

𝜇̂𝑖
 

dan model auxiliary regression dapat ditulis sebagai berikut 

𝑉𝑖 = 𝛾 + 𝑢𝑖 ,  (2.16) 

untuk menaksir menaksir konstanta 𝛾 pada persamaan (2.16) digunakan metode 

Ordinary Least Squares (OLS), yaitu dengan meminimalkan jumlah kuadrat 

galat. 

𝑆(𝛾) = ∑(𝑉𝑖 − 𝛾)2 

𝑛

𝑖=1

  

turunkan 𝑆(𝛾) terhadap 𝛾 

𝜕𝑆

𝜕𝛾
= −2∑(𝑉𝑖 − 𝛾)2 

𝑛

𝑖=1

= 0 

sehingga 

∑𝑉𝑖 − 𝑛𝛾 = 0

𝑛

𝑖=1

 

sehingga diperoleh penaksir 

𝛾 =
1

𝑛
∑𝑉𝑖

𝑛

𝑖=1

= 𝑉̅ 

 

2.1.7 Generalized Poisson Regression (GPR) 

Model Generalized Poisson Regression (GPR) adalah salah satu 

pendekatan yang digunakan untuk mengatasi masalah over/under dispersion 

dalam data. Model ini dioptimalkan sebagai solusi atas masalah asumsi 
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distribusi Poisson, pendekatan ini sangat berguna ketika nilai rata-rata berbeda 

dari varians. Parameter model Regresi Poisson Tergeneralisasi diestimasi 

dengan metode MLE. Model (GPR) dengan parameter tambahan 𝜃, yang 

berfungsi sebagai parameter dispersi. Adapun berikut persamaan umum dari 

distribusi Generalized Poisson (Famoy dkk., 2004): 

 
 𝑓(𝑦𝑖

; 𝜇𝑖, 𝜃) = (
𝜇𝑖

1 + 𝜃𝜇𝑖

)

𝑦𝑖 (1 + 𝜃𝜇𝑖)
(𝑦𝑖−1)

𝑦
𝑖
!

𝑒𝑥 𝑝(
−𝜇𝑖(1 + 𝜃𝑦

𝑖

1 + 𝜃𝜇𝑖

) , 

 𝑦
𝑖
= 0,1,2,…  

(2.17) 

di mana nilai 𝜇 > 0 dan −∞ < 𝜃 < ∞. Berikut nilai mean dan varians. 

 𝐸(𝑦𝑖) = 𝜇𝑖, 𝑉𝑎𝑟 (𝑦𝑖) = 𝜇𝑖(1 + 𝜃𝜇𝑖)
2 (2.18) 

Model GPR sebagai berikut: 

 𝜇𝑖(𝒙𝒊,) = 𝑒𝑥𝑝(𝒙𝒊
𝑻𝜷)  ↔ 𝑙𝑛 𝜇𝑖 = 𝒙𝒊

𝑻𝜷 (2.19) 

1. Penaksir Parameter model GPR 

Ekspresi umum untuk fungsi likelihood model regresi Generalized Poisson 

(GPR) sebagai berikut (Prastika dkk., 2021): 

𝐿(𝜇𝑖 , 𝜃) = ∏[(
𝜇𝑖

1 + 𝜃𝜇𝑖
)

𝑦𝑖 (1 + 𝜃𝑦𝑖)
(𝑦𝑖−1)

𝑦𝑖!
𝑒𝑥𝑝 (

−𝜇𝑖(1 + 𝜃𝑦𝑖

1 + 𝜃𝜇𝑖
)]

𝑛

𝑖=1

  

= ∏(
𝜇𝑖

1 + 𝜃𝜇𝑖

)

𝑛

𝑖=1

𝑦𝑖

∑
(1 +  𝜃𝑦𝑖)

(𝑦𝑖−1)

𝑦𝑖!

𝑛

𝑖=1

 𝑒𝑥𝑝 (
−𝜇𝑖(1 + 𝜃𝑦𝑖

1 + 𝜃𝜇𝑖
) 

𝑙𝑛 𝐿(𝜇𝑖 , 𝜃) = 𝑙𝑛 {∏[(
𝜇𝑖

1 + 𝜃𝜇𝑖
)

𝑦𝑖 (1 + 𝜃𝑦𝑖)
(𝑦𝑖−1)

𝑦𝑖!
𝑒𝑥𝑝 (

−𝜇𝑖(1 + 𝜃𝑦𝑖

1 + 𝜃𝜇𝑖
)]

𝑛

𝑖=1

} 

= ∑𝑦𝑖𝑙𝑛(

𝑛

𝑖=1

𝜇𝑖) − 𝑦𝑖 𝑙𝑛(1 + 𝜃𝜇𝑖) + (𝑦𝑖 − 1) 𝑙𝑛(1 + 𝜃𝑦𝑖) − 𝑙𝑛(𝑦𝑖!)

− (
−𝜇𝑖(1 + 𝜃𝑦𝑖

1 + 𝜃𝜇𝑖
) 
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=  ∑[𝑦𝑖𝑙𝑛 (𝑒𝑥𝑝(𝒙𝒊
𝑻𝜷)) − 𝑦𝑖𝑙𝑛 (1 + 𝜃 𝑒𝑥𝑝(𝒙𝒊

𝑻𝜷))

𝑛

𝑖=1

    + (𝑦𝑖 − 1)𝑙𝑛 (1 + 𝜃𝑦𝑖)

− 𝑙𝑛 (𝑦𝑖!) −
𝑒𝑥𝑝(𝒙𝒊

𝑻𝜷)(1 + 𝜃𝑦𝑖)

1 + 𝜃 𝑒𝑥𝑝(𝒙𝒊
𝑻𝜷)

] 

=  ∑[𝑦𝑖(𝒙𝒊
𝑻𝜷) − 𝑦𝑖𝑙𝑛 (1 + 𝜃 𝑒𝑥𝑝(𝒙𝒊

𝑻𝜷))

𝑛

𝑖=1

    + (𝑦𝑖 − 1)𝑙𝑛 (1 + 𝜃𝑦𝑖)

− 𝑙𝑛 (𝑦𝑖!) −
𝑒𝑥𝑝(𝒙𝒊

𝑻𝜷)(1 + 𝜃𝑦𝑖)

1 + 𝜃 𝑒𝑥𝑝(𝒙𝒊
𝑻𝜷)

] 

(2.20) 

Kemudian persamaan (2.20) diturunkan terhadap 𝜷𝑻, kemudian disama 

dengankan nol. Hal tersebut dilakukan untuk mendapatkan nilai 𝜷̂. 

𝜕𝑙𝑛 𝐿(𝜷, 𝜃)

𝜕𝜷𝑻
=  ∑{𝑦𝑖𝒙𝒊 −

𝜃𝑦𝑖𝒙𝑖  𝑒𝑥𝑝  (𝒙𝒊
𝑻𝜷) 

1 + 𝜃  𝑒𝑥𝑝  (𝒙𝒊
𝑻𝜷) 

𝑛

𝑖=1

− (1 + 𝜃𝑦𝑖) [(
𝒙𝒊 𝑒𝑥𝑝 (𝒙𝒊

𝑻𝜷)

1 + 𝜃𝑒𝑥𝑝 (𝒙𝒊
𝑻𝜷)

)

− (
𝜃𝒙𝒊 (𝑒𝑥𝑝 (𝒙𝒊

𝑻𝜷))
2

(1 + 𝜃𝑒𝑥𝑝 (𝒙𝒊
𝑻𝜷))

2)]  } 

Selanjutnya persamaan (2.20) diturunkan terhadap 𝜃, kemudian 

disamadengankan nol. Hal ini digunakan agar mendapat nilai 𝜃. 

𝜕𝑙𝑛 𝐿(𝜷, 𝜃)

𝜕𝜃
= ∑{−𝑦𝑖 exp(𝒙𝒊

𝑻𝜷) (1 + 𝜃𝑒𝑥𝑝 (𝒙𝒊
𝑻𝜷))

−1
𝑛

𝑖=1

+ 𝑦𝑖(𝑦𝑖 − 1)(1 + 𝜃𝑦𝑖)
−1 − 𝑒𝑥𝑝 (𝒙𝒊

𝑻𝜷)[𝑦
𝑖
(1 + 𝜃 exp(𝒙𝒊

𝑻𝜷))−1

− (1 + 𝜃𝑦
𝑖
)𝑒𝑥𝑝 (𝒙𝒊

𝑻𝜷)(1 + 𝜃𝑒𝑥𝑝 (𝒙𝒊
𝑻𝜷))

−2
]  }   

Turunan dari fungsi log-likelihood terhadap 𝜷𝑻dan 𝜃 menghasilkan sistem 

persamaan yang bersifat implisit. Oleh karena itu, pendekatan alternatif yang 
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digunakan untuk memperoleh solusinya adalah metode iteratif Newton-

Raphson, sebagaimana ditunjukkan pada Persamaan (2.11). 

2. Pengujian Kesesuaian Model Generalized Poisson Regression  

Parameter dalam model regresi Generalized Poisson diuji dengan Maximum 

Likelihood Ratio Test (MLRT), baik secara simultan ataupun parsial. Berikut  

adalah hipotesis pengujian simultan terhadap parameter 𝛽. 

𝐻0: 𝛽1 = 𝛽1 = ⋯ = 𝛽𝑘 = 0  

𝐻1 : paling sedikit ada satu 𝛼ℎ ≠ 0, h = 1,… . ,M  

Berikut statistik uji pengujian parameter MLRT secara simultan 

(Fathurahman, 2023). 

𝐷(𝜷̂) = −2ln Λ = −2ln (
𝐿(𝜔̂)

𝐿(Ω̂)
) = 2(ln 𝐿(Ω̂) − ln 𝐿(𝜔̂)) (2.21) 

Tolak 𝐻0 jika 𝐷(𝜷̂) > 𝜒𝛼,𝑑𝑓
2  . jika didapat keputusan 𝐻0, maka dilanjutkan 

ke uji parsial, berikut hipotesis pengujinya. 

𝐻0: 𝛽𝑗 = 0 (variabel ke-𝑗 tidak berpengaruh pada model) 

𝐻1: 𝛽𝑗 ≠ 0, j = 1,2, … , 𝑘 (variabel ke-𝑗 berpengaruh pada model) 

Statistik uji pengujian parameter MARS secara parsial adalah sebagai 

berikut: 

𝑍 = 
𝛽̂𝑗

𝑠𝑒(𝛽̂𝑗)
 (2.22) 

dengan: 

𝑠𝑒(𝛽̂𝑗) = √𝑣𝑎𝑟̂(𝛽̂𝑗)   , 𝑣𝑎𝑟̂(𝛽̂𝑗) adalah elemen diagonal ke (𝑗 + 1) dari 

𝑣𝑎𝑟(𝜷̂), di mana 𝑣𝑎𝑟̂(𝜷̂) = −𝑯−1(𝜷̂).  Tolak 𝐻0jika |𝑍ℎ𝑖𝑡𝑢𝑛𝑔| > 𝑍𝑎

2
. 
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2.1.8 Multivariate Adaptive Regression Splines (MARS) 

MARS yakni teknik regresi non-parametrik yang diperkenalkan oleh 

Jerome Friedman pada tahun 1991. MARS digunakan untuk memodelkan 

hubungan kompleks dan nonlinier antara satu variabel dependen (respon) dan 

satu atau lebih variabel independen (prediktor). Teknik ini menggabungkan 

fleksibilitas regresi spline dengan kemampuan untuk menangani banyak variabel 

prediktor dan interaksi antar variabel. Menurut Friedman (1991), model MARS 

(Multivariate Adaptive Regression Splines) dirancang untuk mengatasi 

tantangan yang terkait dengan data berdimensi tinggi dan menghasilkan prediksi 

variabel respons yang akurat. Model ini membangun model kontinu sepotong-

sepotong pada lokasi simpul dengan meminimalkan kriteria Generalized Cross 

Validation (GCV). Data berdimensi tinggi, dalam konteks ini, mengacu pada 

kumpulan data yang jumlah variabel prediktornya (𝑥) berkisar antara 3 ≤ 𝑥 ≤

20, dan ukuran 𝑛 sampel. 

Beberapa aspek penting yang perlu diperhatikan pada penggunaan model 

MARS, yakni (Friedman, 1991): 

1. Knot adalah nilai spesifik dari variabel prediktor di mana kemiringan 

fungsi regresi berubah, yang menunjukkan transisi antara segmen linier 

yang berbeda dalam model. Setiap knot menandai akhir dari satu segmen dan 

awal dari segmen berikutnya, sehingga penempatannya sangat menentukan 

bagaimana model menyesuaikan diri terhadap pola dalam data. Salah satu faktor 

yang memengaruhi penempatan knot adalah Observasi minimum (MO), yaitu 

jarak minimum antar knot yang berdekatan. Nilai MO ini berperan dalam 

mengendalikan kompleksitas model. MO yang terlalu besar dapat membuat 

model kehilangan fleksibilitas. Oleh karena itu, pemilihan nilai MO yang tepat 
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menjadi kunci dalam membentuk model yang akurat dan seimbang. Selain itu, 

jumlah (MO) antara simpul dapat ditetapkan sebagai 0, 1, 2, atau 3. 

2. Fungsi Basis (Basis functions ) adalah fungsi untuk menjelaskan hubungan 

variabel dependen dan independen. Pada umumnya Basis functions  yang 

dipilih berbentuk polinomial dengan turunan kontinu pada setiap titik knot. 

Jumlah maksimum fungsi basis biasanya sekitar dua hingga empat kali 

jumlah total variabel independen (Friedman, 1991).  

3. Interaksi mengacu pada perkalian silang variabel prediktor yang 

berkorelasi, yang menangkap efek gabungannya pada variabel respons. 

Jumlah yang diizinkan (MI) biasanya ditetapkan pada 1, 2, atau 3. 

Menetapkan MI di atas 3 dapat menghasilkan model yang terlalu rumit dan 

sulit ditafsirkan. (Friedman, 1991) 

Fungsi model MARS sebagai berikut (Prastika dkk., 2021): 

𝑦𝑖 = 𝑓(𝒙𝒊) + 𝜀𝑖 

= 𝛼0 + ∑ 𝛼𝑚𝐵𝑚(𝒙𝒊) + 𝜀𝑖

𝑀

𝑚=1

 (2.23) 

dengan koefisien 𝛼0 menyatakan konstanta, sedangkan 𝛼𝑚 mewakili koefisien 

untuk basis functions  ke-𝑚, serta 𝐵𝑚(𝒙𝒊) =  ∏ [𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚)𝑖
−

𝐾𝑚
𝑘=1

𝑡𝑘𝑚)]. Bentuk notasi matriks persamaan model MARS sebagai berikut: 

 𝒚 = 𝑩𝜶 + 𝜺  (2.24) 

dengan: 

𝒚𝑛×1          = (𝑦1, 𝑦2, … , 𝑦𝑛)′  

𝜶(𝑀+1)×1  = (𝛼0, 𝛼1, … , 𝛼𝑀)′ 

𝜺𝑛×1           = (𝜀1, 𝜀2, … , 𝜀𝑛)′ 
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𝐁𝑛×(𝑀+1)

=

(

 
 

1 ∏𝑘=1
𝐾1  [𝑠𝑘1(𝑥𝑣(𝑘,1)1 − 𝑡𝑘1)] ⋯ ∏𝑘=1

𝐾𝑀  [𝑠𝑘𝑀(𝑥𝑣(𝑘,𝑀)1 − 𝑡𝑘𝑀)]

1 ∏𝑘=1
𝐾1  [𝑠𝑘1(𝑥𝑣(𝑘,1)2 − 𝑡𝑘1)] ⋯ ∏𝑘=1

𝐾𝑀  [𝑠𝑘𝑀(𝑥𝑣(𝑘,𝑀)2 − 𝑡𝑘𝑀)]

⋮ ⋮ ⋱ ⋮

1 ∏𝑘=1
𝐾1  [𝑠𝑘1(𝑥𝑣(𝑘,1)𝑛 − 𝑡𝑘1)] ⋯ ∏𝑘=1

𝐾𝐾  [𝑠𝑘𝑀(𝑥𝑣(𝑘,𝑀)𝑛 − 𝑡𝑘𝑀)])

 
 

 

dengan: 

𝒚 : Vektor variabel respon  (𝑛 × 1) 

𝑩 : Matriks fungsi basis yang (𝑛 × (𝑚 + 1) 

𝜶 : Vektor koefisien regresi ((𝑚 + 1) × 1) 

𝜺 : Vektor galat (𝑛 × 1) 

𝑀 : Banyaknya basis functions  nonconstant 

𝑘𝑚 : Banyaknya interaksi pada fungsi basis ke-𝑚  

𝑠𝑘𝑚 : Tanda/sign fungsi basis, bernilai ±1 , bernilai +1 jika knot terletak 

  disebelah kanan atau -1 jika knot terletak disebelah kiri sub wilayah, 

  yaitu fungsi basis interaksi ke-k dan fungsi  basis ke-m. 

𝑥𝑣(𝑘,𝑚)𝑖  : Variabel prediktor ke-𝑣, merupakan fungsi basis interaksi ke-𝑘 dan   

    fungsi basis ke-𝑚 

𝑡𝑘𝑚       : Nilai knot dari interaksi ke-𝑘dan fungsi basis ke-𝑚 

𝐵𝑚𝑖(𝒙𝒊) : Fungsi basis ke-𝑚 

1. Penaksiran Parameter Model MARS 

Estimator MARS menurut (Friedman, 1991) dinyatakan sebagai berikut. 

𝑓(𝑥𝑖) = 𝛼̂0 + ∑ 𝛼̂𝑚 ∏[𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚)𝑖 − 𝑡𝑘𝑚)]
+

𝐾𝑚

𝑘=1

  

𝑀

𝑚=1

 

    = 𝛼̂0 + ∑ 𝛼̂𝑚𝐵𝑚(𝑥𝑖)

𝑀

𝑚=1

  (2.25) 
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dengan 𝐵𝑚𝑖(𝒙𝒊) =  ∏ [𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚)𝑖 − 𝑡𝑘𝑚)]
𝐾𝑚
𝑘=1  ; 

𝑥𝑣(𝑘,𝑚)𝑖  {𝑥𝑗}𝑗=1

𝑝
 𝑑𝑎𝑛 𝑡𝑘𝑚 ∈ {𝑥𝑣(𝑘,𝑚)𝑖}𝑖=1

𝑛
 

Apabila 𝑠𝑘𝑚 = +1, maka  

(𝑥𝑣(𝑘,𝑚)𝑖 − 𝑡𝑘𝑚)
+

= {
𝑥𝑣(𝑘,𝑚)𝑖 − 𝑡𝑘𝑚, 𝑗𝑖𝑘𝑎 𝑥𝑣(𝑘,𝑚)𝑖 > 𝑡𝑘𝑚,  𝑑𝑎𝑛

0,  𝑙𝑎𝑖𝑛𝑛𝑦𝑎
     

Apabila 𝑠𝑘𝑚 = −1, maka 

(𝑥𝑣(𝑘,𝑚)𝑖 − 𝑡𝑘𝑚)
+

= {
𝑡𝑘𝑚 − 𝑥𝑣(𝑘,𝑚)𝑖,𝑗𝑖𝑘𝑎 𝑡𝑘𝑚 > 𝑥𝑣(𝑘,𝑚)𝑖, 𝑑𝑎𝑛 0

0,  𝑙𝑎𝑖𝑛𝑛𝑦𝑎
      

Persamaan 𝐵𝑚𝑖(𝒙𝒊) jika dinyatakan menjadi satu kesatuan. 

𝐵𝑚𝑖(𝒙𝒊) = [𝑚𝑎𝑥(𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚)𝑖 − 𝑡𝑘𝑚), 0)]
+

 (2.26) 

keterangan:  

𝛼̂0 : Parameter dugaan basis functions  konstan 

𝛼̂𝑚 : Parameter dugaan basis fungsi nonconstant ke-𝑚  

2. Pengujian Parameter Model MARS 

Pengujian simultan parameter MARS dengan hipotesisnya sebagai 

berikut. 

𝐻0: 𝛼1 = ⋯ = 𝛼𝑀 = 0  

𝐻1 : Paling sedikit ada satu 𝛼𝑀 ≠ 0, h = 1,… . ,M 

Berikut statistik uji pengujian parameter MARS secara simultan 

(Agresti, 2002). 

𝐺̂2 = −2lnΛ = −2 ln (
𝐿(𝜔̂)

𝐿(Ω̂)
) =2(ln 𝐿(Ω̂) − ln 𝐿(𝜔̂)) (2.27) 

Tolak 𝐻0 jika 𝐺̂2 > 𝜒𝛼,𝑣
2  di mana 𝑣 = 𝑛(Ω) − 𝑛(𝜔). Pengujian 

parameter secara parsial hipotesisnya adalah sebagai berikut. 

𝐻0: 𝛼ℎ = 0  
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𝐻1: 𝛼ℎ ≠ 0, h = 1,…ℎ  

Berikut pengujian secara parsial (Draper dan Smith, 1998). 

𝑡 =
𝛼̂ℎ

𝑠𝑒(𝛼̂ℎ)
 (2.28) 

di mana,  𝑠𝑒(𝛼̂ℎ) = √(
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

𝑛−𝑘−1
)𝐶ℎℎ 

dengan: 

𝐶ℎℎ : elemen-elemen pada diagonal utama matriks (𝑩𝑇𝑩)−1    

Tolak 𝐻0 jika |𝑡| > 𝑡𝛼

2
, atau p-value < 𝛼. 

 

2.1.9 Generalized Cross Validation (GCV) 

MARS dimulai dengan menetukan knot, atau titik perubahan perilaku. 

Penentuan knot dilakukan dengan algoritma forward stepwise dan backward 

stepwise dan mempertimbangkan nilai terkecil dari Generalized Cross 

Validation (GCV) (Friedman, 1991). Persamaan GCV adalah sebagai berikut: 

𝐺𝐶𝑉(𝑀) =
𝑀𝑆𝐸

[1 −
𝐶(𝑀̃)

𝑛 ]

2 =

1
𝑛

∑ [𝑦𝑖 − 𝑓𝑀(𝑥𝑖)]
2𝑛

𝑖=1

[1 −
𝐶(𝑀̃)

𝑛 ]

2  
(2.29) 

dengan, 

𝐶(𝑀̃) = 𝐶(𝑀) + 𝑑.𝑀, 𝑓𝑀(𝑥𝑖) = 𝑎̂0 + ∑  

𝑀

𝑚=1

𝛼̂𝑚 ∏[𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚)𝑖 − 𝑡𝑘𝑚)]
+

𝐾𝑚

𝑘=1

   

 

di mana 

𝑛  :  Jumlah data 

𝑀   :  Jumlah fungsi basis pada MARS 
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𝐶(𝑀̃) :  𝐶(𝑀) + 𝑑.𝑀 

𝐶(𝑀) :  Trace [𝑩(𝑩𝑇𝑩)−𝟏𝑩𝑇] + 1 merupakan banyaknya parameter yang   

diestimasi 

𝑑 :  Derajat interaksi. Friedman (1991) menyarankan 𝑑 = 2 untuk model 

aditif dan 𝑑 = 3 untuk model interaksi 

𝑦𝑖 :  Nilai variabel respon ke-𝑖 

𝑓𝑀(𝒙𝒊) :  Nilai taksiran variabel respon pada basis M. 

 Model terbaik MARS adalah dengan nilai GCV terkecil. Setelah mendapat 

model MARS, langkah selanjutnya yaitu menghitung koefisien determinasi 

(𝑅2). Nilai R² mengukur seberapa baik model dapat menjelaskan variabilitas 

dalam data. Model dengan nilai R² yang tinggi menunjukkan bahwa proporsi 

besar dari variasi data dapat dijelaskan oleh model, menandakan kecocokan 

yang baik antara model dan data (Prastika dkk., 2021).  

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑ [𝑦𝑖 − 𝑦̂𝑖]
2𝑛

𝑖=1

∑ [𝑦𝑖 − 𝑦̅𝑖]2
𝑛
𝑖=1

 (2.30) 

Analisis kepentingan variabel diperlukan untuk mengoptimalkan sistem seleksi. 

Analisis ini dapat digunakan apabila terdapat lebih dari satu variabel prediktor. 

Nilai kepentingan variabel prediktor pada package R earth mengacu pada tiga 

kriteria, yaitu nsubset, GCV, dan RSS. Nsubset menunjukkan bahwa variabel 

yang memberikan kontribusi besar pada suatu himpunan dianggap lebih penting. 

Berdasarkan GCV dan RSS, variabel yang paling penting adalah variabel yang 

paling banyak menyebabkan penurunan nilai GCV dan RSS. 
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2.1.10 Multivariate Adaptive Generalized Poisson Regression Spline 

(MAGPRS) 

Model MAGPRS menggabungkan Multivariate Adaptive Regression Spline 

(MARS) dengan Generalized Poisson Regression (GPR)(Hidayati dkk., 2019). 

Perhatikan kembali model MARS pada persamaan (2.23). Fungsi regresi 𝑓(𝐱𝐢) 

tersebut dapat dibangun dari penjumlahan beberapa basis functions  𝐵𝑚(𝒙𝒊).  

𝑓(𝐱𝐢) = 𝛼0 + ∑  

𝑀

𝑚=1

 𝛼𝑚[𝑠1𝑚(𝐱 − 𝑡1𝑚)]

+ ∑  

𝑀

𝑚=1

 𝛼𝑚[𝑠1𝑚(𝐱v(1,𝑚) − 𝑡1𝑚)] 

                [𝑠2𝑚(𝐱v(2,𝑚) − 𝑡2𝑚)] + ∑  

𝑀

𝑚=1

 𝛼𝑚[𝑠1𝑚(𝐱v(1,𝑚) − 𝑡1𝑚)] 

                [𝑠2𝑚(𝐱v(2,𝑚) − 𝑡2𝑚)][𝑠3𝑚(𝐱v(3,𝑚) − 𝑡3𝑚)] + ⋯ 

(2.31) 

Kemudian dibuat persamaan umumnya sebagai berikut: 

𝑓(𝐱𝐢) = 𝛼0 + ∑  

𝐾𝑚=1

 𝑓𝑖(𝐱𝑖) + ∑  

𝐾𝑚=2

 𝑓𝑖𝑗(𝐱𝑖, 𝐱𝑗)

 + ∑  

𝐾𝑚=3

 𝑓𝑖𝑗𝑘(𝐱𝑖, 𝐱𝑗 , 𝐱𝑘) + ⋯+ ∑  

𝐾𝑚=𝑃

 𝑓123..𝑃(𝐱1𝑖, 𝐱2𝑖, … , 𝐱𝑃𝑖)
 (2.32) 

 

dengan indeks 𝑖, 𝑗, 𝑘 pada persamaan (2.32) adalah variabel. Penjumlahan 

pertama pada persamaan (2.32) mempunyai fungsi univariat seperti persamaan 

(2.33). 

𝑓𝑖(𝐱𝑖) = ∑  
𝐾𝑚=1
𝑖∈𝑉(𝑚)

𝛼𝑚𝐵𝑚𝑖(𝐱𝑖) = ∑  

𝑀

𝑚=1

𝛼𝑚[𝑠1𝑚(𝐱𝑣(1,𝑚)𝑖 − 𝑡1𝑚)] (2.33) 
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dengan 𝑓𝑖(𝐱𝑖) merupakan penjumlahan dari semua basis functions  hanya untuk 

variabel 𝐱𝑖. Penjumlahan kedua yaitu pada persamaan (2.34) merupakan basis 

functions  untuk interaksi dua variabel sebagai berikut.  

𝑓𝑖𝑗(𝐱𝑖, 𝐱𝑗) = ∑  
𝐾𝑚=2

(𝑖,𝑗)∈𝑉(𝑚)

 𝛼𝑚𝐵𝑚𝑖(𝐱𝑖, 𝐱𝑗) 

= ∑  

𝑀

𝑚=1

 𝛼𝑚[𝑠1𝑚(𝑥v(1,𝑚) − 𝑡1𝑚)][𝑠2𝑚(𝑥v(2,𝑚)

− 𝑡2𝑚)] 

(2.34) 

𝑓𝑖𝑗(𝐱𝑖, 𝐱𝑗) merupakan penjumlahan semua basis functions  untuk interaksi dua 

variabel.  

𝑓𝑖𝑗
∗(𝐱𝑖, 𝐱𝑗) = 𝑓𝑖(𝐱𝑖) + 𝑓𝑗(𝐱𝑗) + 𝑓𝑖𝑗(𝐱𝑖, 𝐱𝑗) (2.35) 

Persamaan trivariat pada persamaan (2.35) dan penjumlahan ketiga dalam 

persamaan (2.32) dapat dituliskan sebagai berikut. 

𝑓𝑖𝑗𝑘(𝐱𝑖, 𝐱𝑗 , 𝐱𝑘) = ∑  
𝐾𝑚=3

(𝑖,𝑗,𝑘)∈𝑉(𝑚)

 𝛼𝑚𝐵𝑚(𝐱𝑖, 𝐱𝑗, 𝐱𝑘) 

= ∑  

𝑀

𝑚=1

 𝛼𝑚[𝑠1𝑚(𝑥v(1,𝑚) − 𝑡1𝑚)][𝑠2𝑚(𝑥v(2,𝑚)

− 𝑡2𝑚)][𝑠3𝑚(𝑥v(3,𝑚)i − 𝑡3𝑚)] 

(2.36) 

𝑓𝑖𝑗𝑘(𝐱𝑖, 𝐱𝑗 , 𝐱𝑘) merupakan interaksi tiga variabel 𝐱𝑖 , 𝐱𝑗 , 𝐱𝑘 yang didapat dari 

penjumlahan semua fungsi basis. Penambahan ketiga fungsi dituliskan sebagai 

berikut. 

𝑓𝑖𝑗𝑘
∗ (𝐱𝑖, 𝐱𝑗 , 𝐱𝑘) = 𝑓𝑖(𝐱𝑖) + 𝑓𝑗(𝐱𝑗) + 𝑓𝑘(𝐱𝑘) + 𝑓𝑖𝑗(𝐱𝑖, 𝐱𝑗) +

𝑓𝑖𝑘(𝐱𝑖, 𝐱𝑘) + 𝑓𝑗𝑘(𝐱𝑗 , 𝐱𝑘) + 𝑓𝑖𝑗𝑘(𝐱𝑖, 𝐱𝑗, 𝐱𝑘) 

(2.37) 
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Persamaan (2.37) adalah gambaran dari kontribusi trivariat secara bersama. 

Variabel prediktor 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 yang saling berinteraksi. 

Fungsi regresi 𝑓(𝐱𝐢) merepresentasikan hubungan antara variabel 𝐱 dan 

variabel respon y, dimana bentuk fungsinya tidak diketahui dan diasumsikan 

mengikuti model regresi nonparametrik. Pada model regresi nonparametrik 

diasumsikan adanya korelasi antar variabel respon. Apabila model MARS 

digunakan untuk mengakomodasi korelasi tersebut, diasumsikan bahwa variabel 

respon berdistribusi generalized Poisson (Hidayati dkk., 2019). Perhatikan 

kembali bahwa model MAGPRS terbentuk dengan menggabungkan model GPR 

pada persamaan (2.17) dan model MARS yang ditunjukkan pada persamaan 

(2.23). Sehingga model MAGPRS dapat dituliskan sebagai berikut. 

𝑦𝑖 ∼ 𝐺𝑃(𝜇𝑖, 𝜃),     𝑖 = 1,2,3… . 𝑛 

ln(𝜇𝑖) = 𝑓(𝐱𝐢) = 𝛼0 + ∏[𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚)𝑖 − 𝑡𝑘𝑚)]
+

𝐾𝑚

𝑘=1

 

𝜇 = 𝑒𝑥𝑝(𝛼0 + ∑  

𝑀

𝑚=1

 𝛼𝑚𝐵𝑚𝑖(𝐱𝐢)) 

ln(𝜇𝑖) = 𝐁𝜶 (2.38) 

di mana  𝐁𝐢 = (1, B1𝑖, B2𝑖 , … B𝑀i) dan 𝜶 = (𝛼0, 𝛼1, 𝛼2, … 𝛼𝑀) adalah vektor 

kolom berukuran (𝑀 + 1) × 1. 𝑀 adalah banyaknya fungsi basis, yaitu 

sebanyak dua sampai empat kali variabel prediktor. Nilai 𝑥𝑣(𝑘,𝑚)𝑖 adalah 

variabel prediktor ke-𝑣, 𝑣 = 1,2,3. . , 𝑘) pada observasi ke−𝑖. 𝑡𝑘𝑚merupakan 

nilai knot dari variabel prediktor 𝑥𝑣(𝑘,𝑚)𝑖. Nilai 𝐵𝑚𝑖(𝐱𝐢) adalah fungsi basis ke-

𝑚 untuk observasi ke-𝑖. 

 



33 
 

 

 

Persamaan (2.38) dapat dijabarkan sebagai berikut. 

𝑦 = [

𝑓(𝐱1)

𝑓(𝐱2)
⋮

𝑓(𝐱𝑛)

] =

[
 
 
 
 
ln (𝜇

1
)

ln (𝜇
2
)

⋮

ln (𝜇
𝑛
)]
 
 
 
 

 

=

(

  
 

1 ∏𝑘=1
𝐾1  [𝑠𝑘1(𝑥𝑣(𝑘,1)1 − 𝑡𝑘1)]+

⋯ ∏𝑘=1
𝐾𝑀  [𝑠𝑘𝑀(𝑥𝑣(𝑘,M)1 − 𝑡𝑘𝑀)]

+

1 ∏𝑘=1
𝐾1  [𝑠𝑘1(𝑥𝑣(𝑘,1)2 − 𝑡𝑘1)]+

⋯ ∏𝑘=1
𝐾𝑀  [𝑠𝑘𝑀(𝑥𝑣(𝑘,M)2 − 𝑡𝑘𝑀)]

+

⋮ ⋮

1 ∏𝑘=1
𝐾1  [𝑠𝑘1(𝑥𝑣(𝑘,1)n − 𝑡𝑘1)]+

⋯ ∏𝑘=1
𝐾𝑀  [𝑠𝑘𝑀(𝑥𝑣(𝑘,M)n − 𝑡𝑘𝑀)]

+)

  
 

[

𝛼0

𝛼1

⋮
𝛼𝑚

] 

1. Estimasi parameter MAGPRS 

Pada bab ini menjabarkan penaksiran parameter MAGPRS berdasarkan 

penelitian oleh Hidayati dkk. (2019). Estimasi parameter MAGPRS 

memakai Weighted Least Square (WLS) Estimasi parameter MAGPRS 

menggunakan WLS, 𝐸[𝑌] = 𝜇 = 𝑒𝑥𝑝 (𝐁𝜶) jadi 𝑌̂ = 𝜇̂ dengan errornya 

yakni 𝜀 = 𝑌 − 𝐸(𝑌) = 𝑌 − 𝜇 = 𝑌 − 𝑒𝑥𝑝 (𝐁𝜶) = ln (𝑌) − (𝐁𝜶) dengan 

asumsi pembobot varians dari 𝑌 berupa matriks 𝐖(Prastika dkk., 2021). 

Matriks 𝑾 adalah matriks diagonal pembobot berukuran 𝑛 × 𝑛 dengan 

elemen diagonalnya 1/𝑤𝑖, di mana 1/𝑤𝑖 = 1/𝜇𝑖(1 + 𝜃𝜇𝑖)
2 , 𝑛 merupakan 

banyaknya observasi.  

𝐖 =

[
 
 
 
 
 
 
 
1

𝑤1

0 0 0

0
1

𝑤2

0 0

0 0 ⋱ 0

0 0 0
1

𝑤𝑛]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

1

𝜇1(1 + 𝜃𝜇1)
2

0 0 0

0
1

𝜇2(1 + 𝜃𝜇2)
2

0 0

0 0 ⋱ 0

0 0 0
1

𝜇𝑛(1 + 𝜃𝜇𝑛)2]
 
 
 
 
 
 
 

 

Matriks pada persamaan tersebut merupakan matriks berbobot (weighted 

matrix) yang berguna untuk mengakomodasi korelasi antar variabel respon 

dalam proses estimasi kurva regresi nonparametrik Jadi estimasi parameter 
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MARS didapat dengan meminimalkan jumlah derajat error, berikut derajat 

errornya. 

𝜓 = 𝜺𝑇𝐖𝜺 = (𝐲 − 𝐁𝜶)𝑇𝐖(𝐲 − 𝐁𝜶) (2.39) 

di mana fungsi  𝜓 adalah jumlah kuadrat error. Persamaan (2.39) dapat 

dibentuk sebagai berikut. 

𝜓 = (𝐲T − 𝐁T𝜶𝑇) 𝐖(𝐲 − 𝐁𝜶) 

= 𝐲𝑇𝐖𝐲 − 𝐲𝑇𝐖𝐁𝜶 − 𝜶𝑇𝐁𝑇𝐖𝐲 + 𝜶𝑇𝐁𝑇𝐖𝐁𝜶 

Derajat kesalahan diperoleh dengan mengambil turunan parsial pertama 

terhadap 𝑎̂ dan menjadikannya sama dengan nol, sehingga menghasilkan 

estimasi berikut: 

𝜕𝜓

𝜕𝛂
=

(𝒚𝑇𝑾𝒛 − 𝒚𝑇𝑾𝐁𝜶 − 𝜶𝑇𝐁𝑇𝑾𝒚 + 𝜶𝑇𝐁𝑇𝑾𝐁𝛂)

𝜕𝜶
= 0

       = −2𝒚𝑇𝑾𝐁 + 2𝛂𝑇𝐁𝑇𝑾𝐁 = 0

 
(2.40) 

Persamaan (2.40) dapat ditulis sebagai berikut 

𝐁𝑇𝐖𝐁𝛂 = 𝐁𝑇𝐖𝒚 (2.41) 

dengan mengalikan kedua ruas pada persamaan (2.41) dengan (𝐁𝑡𝑾𝐁)−1 

diperoleh 

(𝐁𝑡𝑾𝐁)−1𝐁𝑡𝑾𝐁𝛂 = (𝐁𝑡𝑾𝐁)−1𝐁𝑡𝑾𝒚 

Karena (𝐁𝑡𝑊𝐁)−1𝐁𝑡𝑾𝐁 = 𝐼, maka dapat ditulis sebagai berikut 

(𝐁𝑡𝑾𝐁)−1𝐁𝑡𝑾𝐁𝜶 = (𝐁𝑡𝑊𝐁)−1𝐁𝑡𝑾𝒚 

𝐼𝛂 = (𝐁𝑡𝑾𝐁)−1𝐁𝑡𝑾𝒚 

Berdasarkan perhitungan di atas, pendugaan parameter sebagai berikut. 

𝒂̂𝑊𝐿𝑆 = (𝐁𝑇𝐖𝐁)−1𝐖𝐁𝒚 (2.42) 
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Selanjutnya, estimasi parameter model MAGPRS dapat diperoleh dengan 

mensubstitusikan persamaan (2.42), sehingga estimasi model fungsi regresi 

MAGPRS sebagai berikut(Hidayati dkk., 2019). 

𝑓(𝐱) = ln (𝜇̂) = 𝐁𝜶̂ = 𝐁(𝐁𝑇𝐖𝐁)−1𝐖𝐁𝒚 (2.43) 

2. Pengujian Parameter model MAGPRS 

Pengujian simultan MAGPRS memanfaatkan metode Maximum 

Likelihood Ratio Test (MLRT), pengujian parameter secara simultan 

hipotesisnya adalah sebagai berikut (Hidayati dkk., 2019). 

𝐻0: 𝛼1 = ⋯ = 𝛼𝐻 = 0  

𝐻1 : Paling sedikit ada satu 𝛼ℎ ≠ 0, ℎ = 1,… . , 𝐻 

Tahapan yang dilakukan yaitu menentukan himpunan parameter dibawah 

populasi Ω = {𝜃, 𝛼1, … . . , 𝛼ℎ} dan himpunan parameter dibawah 𝐻0 yaitu 

𝜔 = {𝜃}. Fungsi likelihood himpunan parameter dibawah populasi sebagai 

berikut (Hidayati dkk., 2019): 

𝑓(𝑦𝑖 ∣ Ω) = (
𝜇𝑖

1 + 𝜃𝜇𝑖
)

𝑦𝑖 (1 + 𝜃𝑦𝑖)
𝑦𝑖−1

𝑦𝑖!
𝑒𝑥𝑝 (

−𝜇𝑖(1 + 𝜃𝑦𝑖)

1 + 𝜃𝜇𝑖
) 

𝑦𝑖 = 0,1,2, … 

𝐿(Ω) = ∏ 

𝑛

𝑖=1

 𝑓(𝑦𝑖 ∣ Ω) 

= ∏ 

𝑛

𝑖=1

  (
𝜇𝑖

1 + 𝜃𝜇𝑖
)

𝑦𝑖

∏ 

𝑛

𝑖=1

 
(1 + 𝜃𝑦𝑖)

𝑦𝑖−1

𝑦𝑖!
𝑒𝑥𝑝 (∑  

𝑛

𝑖=1

 
−𝜇𝑖(1 + 𝜃𝑦𝑖)

1 + 𝜃𝜇𝑖
) 

= ∏ 

𝑛

𝑖=1

 (
𝑒𝑥𝑝(𝐁𝜶)

1 + 𝜃 𝑒𝑥𝑝(𝐁𝜶)
)

𝑦𝑖

∏ 

𝑛

𝑖=1

 
(1 + 𝜃𝑦𝑖)

𝑦𝑖−1

𝑦𝑖!
  

𝑒𝑥𝑝 (∑  

𝑛

𝑖=1

 
(𝑒𝑥𝑝 (𝐁𝜶))(1 + 𝜃𝑦𝑖)

1 + 𝜃(𝑒𝑥𝑝(𝐁𝜶))
) 
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dengan 𝜇𝑖 = 𝑒𝑥𝑝(𝛼0 + ∑  𝐻
ℎ=1  𝛼ℎ𝐵ℎ𝑖(𝐱𝑖)) = 𝑒𝑥𝑝(𝐁𝜶). Selanjutnya,  

maksimumkan logaritma natural fungsi likelihood di bawah populasi, 𝐿(Ω̂) 

sebagai berikut. 

l𝑛 𝐿(Ω) = ∑  𝑛
𝑖=1   ln [(

𝑒𝑥𝑝(𝐁𝜶)

1+𝜃𝑒𝑥𝑝(𝐁𝜶)
)

𝑦𝑖 (1+𝜃𝑦𝑖)
𝑦𝑖−1

𝑦𝑖!
 Exp (∑  𝑛

𝑖=1  
(𝑒𝑥𝑝(𝐁𝜶))(1+𝜃𝑦𝑖)

1+𝜃 𝑒𝑥𝑝(𝐁𝜶)
)] 

             = ∑  

𝑛

𝑖=1

  {𝑦𝑖(𝐁𝜶) − 𝑦𝑖ln (1 + 𝜃𝑒𝑥𝑝(𝐁𝜶))

+ (𝑦𝑖 − 1)ln (1 + 𝜃𝑦𝑖)− ln(𝑦𝑖!)

− 𝑒𝑥𝑝(𝐁𝜶)(1 + 𝜃𝑦𝑖)(1 + 𝜃𝑒𝑥𝑝(𝐁𝜶))−1} 

(2.44) 

Estimasi parameter didapatkan dengan menurunan persamaan (2.39) 

terhadap (𝜶, 𝜃). Turunan persamaan (2.39) terhadap 𝜶 sebagai berikut, 

𝜕ln L(Ω)

𝜕𝜶
= ∑  

𝑛

𝑖=1

  [(𝑦𝑖𝐁 − (𝜃𝑦𝑖𝐁𝑒𝑥𝑝(𝐁𝜶)/1 + 𝜃 𝑒𝑥𝑝(𝐁𝜶)))

 −(1 + 𝜃𝑦𝑖){[(𝐁 𝑒𝑥𝑝(𝐁𝜶))/(1 + 𝜃 𝑒𝑥𝑝(𝐁𝜶))]

−[𝜃𝐁( 𝑒𝑥𝑝(𝐁𝜶))2/(1 + 𝜃exp (𝐁𝜶))2]}]

 

Turunan pertama persamaan (2.39) terhadap (𝜃) sebagai berikut. 

𝜕ln 𝐿(Ω)

𝜕𝜃
= ∑  

𝑛

𝑖=1

  {𝑦𝑖exp (𝐁𝛼)(1 + 𝜃 𝑒𝑥𝑝(𝐁𝛼))−1 

+𝑦𝑖(𝑦𝑖 − 1)(1 + 𝜃𝑦𝑖)
−1 − exp(𝐁𝛼) 

[𝑦𝑖(1 + 𝜃 𝑒𝑥𝑝(𝐁𝛼))−1−(1 + 𝜃𝑦𝑖) exp(𝐁𝛼) (1

+ 𝜃 𝑒𝑥𝑝(𝐁𝛼))−2]} 

Fungsi likelihood di bawah 𝐻0 adalah 𝐿(𝜔̂) sebagai berikut, dimana 𝜇𝑖 =

𝑒𝑥𝑝(𝛼0) 

𝑓(𝑦𝑖 ∣ 𝜔) = (
𝜇𝑖

1 + 𝜃𝜇𝑖
)

𝑦𝑖 (1 + 𝜃𝑦𝑖)
𝑦𝑖−1

𝑦𝑖!
𝑒𝑥𝑝 (

−𝜇𝑖(1 + 𝜃𝑦𝑖)

1 + 𝜃𝜇𝑖
) ; 

𝑦𝑖 = 0,1,2, … . 
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𝐿(𝜔) = ∏ 

𝑛

𝑖=1

 𝑓(𝑦𝑖 ∣ 𝜔) 

= ∏ 

𝑛

𝑖=1

 (
𝑒𝑥𝑝(𝛼0)

1 + 𝜃 𝑒𝑥𝑝(𝛼0)
)

𝑦𝑖

∏ 

𝑛

𝑖=1

 
(1 + 𝜃𝑦𝑖)

𝑦𝑖−1

𝑦𝑖!
 

 𝑒𝑥𝑝 (∑  

𝑛

𝑖=1

 
(𝑒𝑥𝑝(𝛼0))(1 + 𝜃𝑦𝑖)

1 + 𝜃 𝑒𝑥𝑝(𝛼0)
)  

Selanjutnya, memaksimumkan logaritma natural fungsi likelihood di bawah 

𝐻0, 𝐿(𝜔̂) sebagai berikut. 

𝑙𝑛 𝐿(𝜔) = ∑  

𝑛

𝑖=1

  ln [(
exp(𝛼0)

1 + 𝜃𝑒𝑥𝑝(𝛼0)
)

𝑦𝑖 (1 + 𝜃𝑦𝑖)
𝑦𝑖−1

𝑦𝑖!
 

𝑒𝑥𝑝(∑  

𝑛

𝑖=1

 
(𝑒𝑥𝑝(𝛼0))(1 + 𝜃𝑦𝑖)

1 + 𝜃 𝑒𝑥𝑝(𝛼0)
)] 

               = ∑  

𝑛

𝑖=1

  {𝑦𝑖ln (𝛼̂0) − 𝑦𝑖ln (1 + 𝜃 𝑒𝑥𝑝(𝛼̂0))

+ (𝑦𝑖 − 1)ln (1 + 𝜃𝑦𝑖) −ln (𝑦𝑖!)

− 𝑒𝑥𝑝(𝛼̂0)(1 + 𝜃𝑦𝑖)(1 + 𝜃 𝑒𝑥𝑝(𝛼̂0))
−1

} 

(2.45) 

Estimasi parameter dilakukan dengan menurunkan persamaan (2.45) 

terhadap 𝜃. Sehingga didapat hasil sebagai berikut. 

𝜕ln L(𝜔)

𝜕𝜃
= ∑  

𝑛

𝑖=1

  {𝑦𝑖𝑒𝑥𝑝(𝛼̂0)(1 + 𝜃 𝑒𝑥𝑝(𝛼̂0))
−1

+ 𝑦𝑖(𝑦𝑖 − 1)(1 + 𝜃𝑦𝑖)
−1 −𝑒𝑥𝑝𝛼̂0 [𝑦𝑖(1 + 𝜃 𝑒𝑥𝑝(𝛼̂0))

−1

− (1 + 𝜃𝑦𝑖) 𝑒𝑥𝑝(𝛼̂0)(1 + 𝜃 𝑒𝑥𝑝(𝛼̂0))
−2

]} 

Hasil penurunan pertama fungsi ln likelihood menunjukkan bahwa masih 

megandung parameter, sehingga fungsi tidak close form, sehingga 
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diperlukan proses untuk mendapatkan nilai parameter yang digunakan 

opsimasi numerik. Optimasi numerik pada penelitian ini menggunakan 

algoritma Berndt Hall Hall Hausman (BHHH). 

BHHH untuk himpunan parameter di bawah populasi dan di bawah 𝐻0, 

artinya algoritma dipakai ketika menghitung parameter penuh maupun 

parameter terbatas (pada saat uji hipotesis dengan likelihood ratio). Berikut 

merupakan algoritma iterasi BHHH untuk himpunan parameter di bawah 𝐻0 

(Hidayati dkk., 2019). 

1. Menentukan nilai awal 𝛾𝑜 dan ℓ = 0 dengan nilai 𝜀 > 0 untuk batas 

toleransi konvergensi. 𝛾𝑜 = [𝜃̂0]
𝑇
 di mana nilai 𝜃̂0 > 0 sesuai dengan  

fungsi generalized poisson. 

2.  Membentuk vektor gradien, sebagai berikut. 

𝐠(𝛾̂ℓ) = [
𝜕𝐿(∙)

𝜕𝜃
]
𝑇

 

3. Mencari turunan pertama fungsi ln densitas terhadap parameter 

𝐤𝑖(𝛾̂ℓ) = [
𝜕ln 𝑓(𝑦𝑖)

𝜕𝜃
]

𝑇

 

4. Membuat matrik Hessian, sebagai berikut 

𝐇(𝛾̂ℓ) = −∑  

𝑛

𝑖=1

𝐤𝑖(𝛾̂ℓ)𝐤𝑖(𝛾̂ℓ)
𝑇 

5. Mensubtitusikan nilai 𝛾̂ℓ pada elemen 𝐠(𝛾̂ℓ) dan matriks Hessian 𝐇(𝛾̂ℓ) 

6. Melakukan iterasi mulai ℓ = 0 dengan persamaan 𝛾ℓ+1 = 𝛾ℓ −

𝐇−1(𝛾̂ℓ)𝑔(𝛾̂ℓ), iterasi berhenti jika ‖𝛾̂ℓ+1 − 𝛾̂ℓ‖ ≤ 𝜀 di mana 𝜀 adalah 

bilangan positif yang sangat kecil mendekati nilai 0,001 . 

7. Mengulangi step (2) dan seterusnya dengan ℓ = ℓ + 1 
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Nilai estimasi parameter dibawah populasi dan dibawah 𝐻0 sudah 

didapatkan, selanjutnya menghitung statistik uji dengan menggunakan 

rumus sebagai berikut (Agresti, 2002). 

𝐺2 = −2ln Λ = −2ln {
𝐿(𝜔̂)

𝐿(Ω̂)
} = −2ln (𝐿(𝜔̂) − 𝐿(Ω̂)) 

= 2(ln 𝐿(Ω̂) − ln 𝐿(𝜔̂)) 

di mana 

   𝐿(Ω̂) = maxΩ  𝐿(Ω) 

   𝑙 𝑛 𝐿(Ω̂) = ∑𝑖=1
𝑛  {𝑦𝑖(𝐁𝜶̂) − 𝑦𝑖ln (1 + 𝜃̂exp (𝐁𝜶̂))

+ (𝑦𝑖 − 1)ln (1 + 𝜃̂𝑦𝑖)−ln (𝑦𝑖!) − exp (𝐁𝜶̂)(1 + 𝜃̂𝑦𝑖)(1

+ 𝜃̂exp (𝐁𝜶̂))−1} 

                     𝐿(𝜔̂) = max𝜔  𝐿(𝜔) 

𝑙 𝑛 𝐿(𝜔̂) = ∑𝑖=1
𝑛   {𝑦𝑖ln (𝛼̂0) − 𝑦𝑖ln (1 + 𝜃̂exp (𝛼̂0))

+ (𝑦𝑖 − 1)ln (1 + 𝜃̂𝑦𝑖)−ln (𝑦𝑖!)

− exp (𝛼̂0)(1 + 𝜃̂𝑦𝑖) (1 + 𝜃̂exp (𝛼̂0))
−1

} 

Sehingga didapat statistik uji pengujian parameter MAGPRS secara 

simultan sebagai berikut (Hidayati dkk., 2019). 

𝐺̂2 = −2lnΛ = 2(ln 𝐿(Ω̂) − ln 𝐿(𝜔̂)) 

=2 [∑𝑖=1
𝑛  𝑦𝑖(𝐁𝜶̂) − ∑𝑖=1

𝑛  𝑦𝑖ln (𝛼̂0) + ∑𝑖=1
𝑛  𝑦𝑖

ln (1+𝜃̂exp (𝛼̂0))

ln (1+𝜃̂exp (𝐁𝛼̂))

 −∑𝑖=1
𝑛  exp (𝐁𝛼̂)(1 + 𝜃̂𝑦𝑖)(1 + 𝜃̂exp (𝐁𝜶̂))−1

+∑𝑖=1
𝑛  exp (𝛼̂0)(1 + 𝜃̂𝑦𝑖) (1 + 𝜃̂exp (𝛼̂0))

−1

]

  
(2.46) 
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 dengan 𝐺̂2 > 𝜒𝛼,𝑣
2  dan 𝑣 = 𝑛(Ω) − 𝑛(𝜔). Tolak 𝐻0 jika 𝐺̂2 > 𝜒𝛼,𝑣

2 . 

Pengujian parameter secara parsial hipotesisnya adalah sebagai berikut. 

𝐻0: 𝛼ℎ = 0  

𝐻1: 𝛼ℎ ≠ 0, h = 1,…ℎ  

Berikut pengujian parameter secara parsial menggunakan uji T. 

𝑇 =
𝑎̂ℎ

𝑠𝑒(𝑎̂ℎ)
 (2.47) 

di mana,  𝑠𝑒(𝑎̂ℎ) = √(
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

𝑛−𝑘−1
) 𝐶ℎℎ 

dengan: 

𝐶ℎℎ : elemen-elemen pada diagonal utama matriks (𝑩𝑇𝑩)−1    

Tolak 𝐻0jika |𝑇| > 𝑇𝑎

2
,atau p-value < 𝑎, berarti bahwa semua fungsi basis 

yang dipilih pada model MAGPRS berpengaruh terhadap variabel respon. 

 

2.1.11 Penyakit Polio 

Polio atau poliomielitis adalah penyakit menular yang disebabkan oleh 

virus polio yang menyerang sistem saraf dan dapat menyebabkan kelumpuhan 

permanen. Virus ini menyebar terutama melalui jalur fekal-oral, yaitu melalui 

makanan atau air yang terkontaminasi. Polio umumnya menyerang anak-anak di 

bawah usia lima tahun, namun dapat juga terjadi pada usia lainnya. Polio 

termasuk dalam kategori penyakit yang dapat dicegah dengan imunisasi (PD3I), 

namun cakupan imunisasi di beberapa daerah di Jawa Timur masih belum 

merata. Penelitian ini menganalisis beberapa variabel, yaitu: 
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1. Rumah Tangga dengan Fasilitas Tempat Buang Air Besar Sendiri  

Fasilitas buang air sendiri berarti setiap rumah tangga meiliki jamban yang 

tidak digunkana bersama dengan rumah lain. Kepemilikan fasilitas ini 

menunjukkan kemandirian dalam menjaga kebersihan dan sanitasi 

lingkungan, serta mengurangi risiko penularan penyakit akibat buang air 

besar sembarangan. 

2. Keluarga dengan Akses Air Minum Layak  

Air minum yang layak yakni air dengan asal sumber yang terlindungi, 

seperti air ledeng, keran umum, hidran, terminal air, penampungan air hujan 

(PAH), mata air terlindung, serta sumur bor atau sumur pompa. Sumber air 

ini harus berada setidaknya 10 meter dari fasilitas pembuangan limbah, 

tempat penampungan sampah, maupun saluran pembuangan kotoran, guna 

mencegah risiko kontaminasi (Utami & Ubaidillah, 2022). 

3. Imunisasi Polio 4 

Upaya pencegahan penyakit poliomielitis (kelumpuhan infantil) dilakukan 

melalui pemberian imunisasi dalam bentuk tetesan oral. Vaksin polio 

pertama (Polio I) diberikan saat anak berusia 3 hingga 4 bulan, kemudian 

dilanjutkan dengan dosis Polio II, Polio III, dan Polio IV dengan selang 

waktu antar pemberian sekitar 6 minggu (Hulu dkk., 2020). 

4. Balita Memiliki Buku Kesehatan Ibu dan Anak (KIA) 

Buku (KIA) adalah catatan penting yang mencakup informasi tumbuh 

kembang anak, status imunisasi, dan riwayat kesehatan ibu selama 

kehamilan. Kepemilikan dan pemanfaatan Buku KIA oleh orang tua 
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mencerminkan tingkat kesadaran terhadap pemantauan kesehatan balita 

secara rutin dan menyeluruh. 

5. Kunjungan Neonatal 1 Kali  

Kunjungan neonatal sangat penting untuk deteksi dini risiko infeksi, edukasi 

imunisasi, dan pencegahan penyakit menular seperti polio. Minimnya 

kunjungan neonatal dapat menyebabkan keterlambatan dalam pemberian 

imunisasi atau pengenalan gejala awal penyakit. Menurut Peraturan Menteri 

Kesehatan Republik Indonesia Nomor 6 Tahun 2024 (Indonesia, 2024), 

standar kuantitas kunjungan minimal tiga kali selama periode neonatal,  

dengan ketentuan: Kunjungan Neonatal (KN 1) 16-48 jam setelah lahir, 

Kunjungan Neonatal 2 (KN2) 3-7 hari, dan Kunjungan Neonatal (KN 3) 8-

28 hari. 

6. Kunjungan Neonatal 3 Kali (KN Lengkap)  

Kunjungan neonatal lengkap (3 kali) memberi peluang optimal bagi tenaga 

kesehatan untuk melakukan pemantauan tumbuh kembang, memberikan 

edukasi penting kepada orang tua, dan memastikan bayi mendapatkan 

imunisasi dasar tepat waktu, termasuk vaksin polio. Dengan demikian, 

diharapkan dapat menurunkan risiko kejadian kasus polio pada anak. 

7. Pemberian ASI Eksklusif  

ASI eksklusif adalah pemberian Air Susu Ibu saja kepada bayi sejak lahir 

hingga usia 6 bulan, tanpa tambahan makanan atau minuman lain, termasuk 

air putih, kecuali obat-obatan atau vitamin yang diresepkan oleh tenaga 

kesehatan. Pemberian ASI ini bertujuan meningkatkan sistem imun bayi dan 

mencegah penyakit menular seperti polio. 
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8. Cakupan Desa Universal Child Immunization (UCI) 

Desa Universal Child Immunization (UCI) adalah desa/kelurahan di mana 

sekurang-kurangnya 80% bayi yang ada di wilayah tersebut telah 

mendapatkan imunisasi dasar lengkap sebelum usia satu tahun, sesuai 

standar program imunisasi nasional.  

9. Pemberian Vitamin A  

Vitamin A adalah nutrisi penting yang berfungsi dalam menjaga kesehatan 

mata, meningkatkan daya tahan tubuh terhadap infeksi, dan mendukung 

pertumbuhan serta perkembangan anak.  

 

2.2 Kajian Integrasi MAGPRS dengan Al-Qur’an/ Hadits 

Al-Qur’an tidak secara eksplisit menjelaskan tentang Multivariate Adaptive 

Generalized Poisson Regression Spline (MAGPRS), namun terdapat ayat-ayat 

yang menjelaskan mengenai tujuan metode MAGPRS. Penelitian ini menerapkan 

metode MAGPRS pada kasus polio. Poliomielitis atau polio yakni penyakit 

kelumpuhan akut yang diakibatkan oleh infeksi virus polio. Anak-anak dengan 

umur dibawah 5 tahun rentan terjangkit penyakit polio. Kelompok yang menolak 

imunisasi, lingkungan dengan sanitasi kotor, dan anak-anak dengan kekebalan 

tubuh rendah juga memiliki risiko tinggi terjangkit polio. Berikut kajian teoritis 

implementasi metode MAGPRS pada kasus polio. Sebagaimana firman-Nya 

dalam surah Al-Qiyamah ayat 17 yang berbunyi (Kemenag, 2025c): 

نَا جََْعَه وَقُ رْاٰنهَ  ا ۝١٧ نَّ عَلَي ْ  

Artinya: 

“Sesungguhnya tugas Kamilah untuk mengumpulkan (dalam hatimu) dan 

membacakannya.”(QS. Al-Qiyamah [75]:17). 
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Menurut Az-Zuhaili (2013), maksud qur’aanahu dalam ayat ini yaitu 

qiraa’atahu (pembacaannya) dan sudah diketahui bahwa Al-Qur’an diturunkan 

secara bertahap sedikit demi sedikit, dan setelah sebagiannya dikumpulkan 

dengan sebagian lainnya, ia dinamakan Al-Qur’an. Dia dinamakan al-kitab, yang 

berasal dari kata al-katb yang berarti pengumpulan kerena dia mengumpulkan 

(berisi) berbagai macam kisah, ayat, hukum, dan berita dalam metode yang khas. 

Secara konteks implisit hal ini menjelaskan bahwa sebelum menerapkan sebuah 

metode dibutuhkan pengumpulan informasi mengenai variabel-variabel yang 

diduga mempengaruhi banyaknya kasus polio. Pada penerapan metode MAGPRS 

ini akan dilakukan pemeriksaan terhadap variabel-variabel yang diduga 

mempengaruhi banyaknya kasus polio. Pada QS. Al-Jasiyah ayat 3-4 (Kemenag, 

2025d) berikut: 

۝٤ وَفيْ خَلْقِكُمْ وَمَا يَ بُثُّ مِنْ دَاۤبَّةٍ اٰيٰتٌ ل قَِوْمٍ ي ُّوْقِنُ وْنََۙ  ۝٣ اِنَّ فِِ السَّمٰوٰتِ وَالْاَرْضِ لَاٰيٰتٍ ل لِْمُؤْمِنِيْنَۗ    

Artinya:  

“Sungguh, pada langit dan bumi benar-benar terdapat tanda-tanda (kebesaran 

Allah SWT) bagi orang-orang mukmin. Dan pada penciptaan dirimu dan pada 

makhluk bergerak yang bernyawa yang bertebaran (di bumi) terdapat tanda-

tanda (kebesaran Allah SWT) untuk kaum yang meyakini.”(QS. Al-Jasiyah [45]:3-

4). 

 

Menurut Az-Zuhaili (2013) ketika manusia meperhatikan langit dan bumi, 

keduanya pasti ada Penciptanya, ia beriman. Lalu ketika mencermati penciptaan 

dirinya dan yang lainnya, keimanannya semakin bertambah, ia pun menjadi yakin. 

Lalu ketika ia mencermati berbagai fenomena lainnya, akalnya sempurna dan 

ilmunya benar-benar kukuh. Dalam konteks modern ayat ini sejalan dengan 

penerapan motode MAGPRS untuk meneliti lebih lanjut mengenai variabel yang 

sangat berpengaruh pada banyaknya kasus polio. Pertama melakukan pemeriksaan 

pada data polio apakah berdistribusi poisson. Kemudian dilakukan pemeriksaan 
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Equidispersi untuk mengetahui apakah terjadi under/over. Kemudian dilakukan 

pemodelan matematikanya. Dalam mendapatkan model terbaik perlu melakukan 

trial and error untuk penentuan basis functions  (BF), Interaction Maximum (MI), 

dan Minimum Observation (MO)(Kartini & Laelatul, 2022). Hal ini menunjukkan 

bahwa perlunya mencermati sumber refrensi yang sesuai untuk mengetahui 

tahapan-tahapan penerapan pemodelan matematika. Salah satu hadist juga 

menyebutkan pentingnya verifikasi informasi sebelum disampaikan. 

ُ عَلَيْهِ وَسَلَّمَ: »كَفَى بِالْمَرْ  ُ عَنْهُ قاَلَ: قاَلَ رَسُولُ اللََِّّ صَلَّى اللََّّ ءِ كَذِبًا أَنْ وَعَنْ أَبِ هُرَيْ رةََ رَضِيَ اللََّّ
ثَ     (رَوَاهُ مُسلم) بِكُلِ  مَا سَع«. يَُُدِ   

Artinya: 

“Abu Hurairah radhiyAllahu ‘anhu meriwayatkan: Rasulullah  صلى الله عليه وسلم 

bersabda,“Cukuplah seseorang itu dikatakan berdusta apabila ia menceritakan 

semua yang ia dengar.”(HR. Muslim). 

 

Hadits Nabi Muhammad صلى الله عليه وسلم mengajarkan pentingnya verifikasi informasi 

sebelum disampaikan. Hadits ini menegaskan bahwa menyebarkan informasi 

tanpa memastikan kebenarannya dapat berujung pada kebohongan, meskipun 

seseorang tidak berniat untuk berdusta. Dalam Islam, prinsip tabayyun (klarifikasi 

dan validasi berita) merupakan nilai moral yang esensial untuk menjaga 

kebenaran dan mencegah fitnah. Nilai ini memiliki relevansi dengan pendekatan 

ilmiah dalam analisis data, khususnya dalam konteks pemodelan MAGPRS. 

Model ini dirancang untuk menganalisis data count multivariat yang kompleks, di 

mana hubungan antar variabel tidak selalu linear. Oleh karena itu, sebelum 

menghasilkan prediksi atau menarik kesimpulan, MAGPRS menekankan 

pentingnya pengujian, penyesuaian, dan validasi data secara menyeluruh.  
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Penggunaan MAGPRS tidak hanya menunjukkan ketelitian secara 

metodologis, tetapi juga mencerminkan nilai-nilai etika Islam dalam menyikapi 

informasi yaitu kehati-hatian, keakuratan, dan tanggung jawab dalam 

menyampaikan kebenaran. Meskipun MAGPRS adalah teknik modern, prinsip 

dasarnya seperti analisis deskriptif, pengujian data, membuat pemodelan dan 

sistemasi pengerjaan yang harus sesuai aturan dengan meneliti setiap tahapannya 

telah tercermin dalam Al-Qur’an dan hadits. Ayat-ayat ini menekankan 

pentingnya ketelitian, adaptabilitas, dan keadilan dalam pengolahan informasi, 

yang menjadi inti dari pemodelan statistik. 

 

2.3 Kajian Metode MAGPRS  dengan Kasus Polio  

Tahap pertama Penelitian ini diawali dengan menjelaskan tentang 

karakteristik data. Analisis deskriptif dilakukan untuk mengetahui mean, varians, 

nilai maksimal dan nilai minimal. Kemudian membuat Scatterplot dilakukan 

untuk mengetahui pola hubungan antara banyaknya kasus polio dengan variabel 

yang diduga mempengarui polio seperti yang tertera pada tabel 3.1. Hubungan 

antara banyaknya kasus polio dan prediktornya juga dapat dikonfirmasi secara 

numerik menggunakan rumus koefisien korelasi Spearman. Rumus korelasi 

Spearman menggunakan persamaan (2.1). Dilanjutkan dengan melakukan 

pengujian terhadap distribusi Poisson pada variabel respon (y) untuk memeriksa 

apakah data tersebut mengikuti pola distribusi Poisson. Uji statisik yang 

digunakan untuk memeriksa apakah data mengikuti distribusi Poisson yaitu uji 

Kolmogorov-Smirnov. Rumus uji Kolmogorov-Smirnov ditunjukkan pada 

persamaan (2.4). 
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Langkah ini penting guna menilai kesesuaian asumsi distribusi sebelum 

menerapkan model yang sesuai. Tahap selanjutnya yaitu pemeriksaan equidispersi 

untuk memeriksa apakah terjadi over/underdispersi. Pemeriksaan equidispersi 

menentukan metode yang sesuai pada penelitian ini. Jika terjadi equidispersi 

maka akan menggunakan metode Multivariate Adaptive Poisson Regression 

Spline (MAPRS). Jika terjadi terjadi over/underdispersi akan menggunakan 

metode Multivariate Adaptive Generalized Poisson Regression Spline 

(MAGPRS). Namun dalam penelitian ini akan mencoba menerapkan metode 

MAGPRS, sehingga ketika terjadi equisipersi akan dilakukan input data ulang. 

Penelitian equidispersi ini menggunakan persamaan (2.15) dan bantuan Rstudio. 

Kemudian pembentukan model Multivariate Adaptive Generalized Poisson 

Regression Spline (MAGPRS) terpilih dengan mempertimbangkan tiga 

komponen, yakni basis functions  (BF), maksimum interaksi (MI), dan observasi 

minimum (MO). Variabel prediktor yang dijelaskan pada tabel (3.1) berjumlah 9 

sehingga kombinasi BF, yaitu 18, 27, dan 36. MI yang digunakan yaitu 1, 2, dan 

3. Sedangkan MO yang digunakan yaitu 0, 1, 2, dan 3. Tahap selanjutnya yaitu 

menghitung GCV dan 𝑅2. Pemilihan Model terpilih juga memperhatikan nilai 

GCV terkecil dari kombinasi BF, MI, MO. Nilai 𝑅2 digunakan untuk mengukur 

seberapa baik model dalam menjelaskan variabilitas dalam data. Setelah 

memperoleh model dilakukan pemeriksaan outlier terhadap model MAGPRS. 

Kemudian pengujian simultan model MAGPRS menggunakan Maximum 

Likelihood Ratio Test (𝐺²̂) dan uji parsial MAGPRS menggunakan uji statistik 𝑇. 

Menginterpretasikan hasil model MAGPRS yang diperoleh dan melihat variabel 

prediktor yang paling berpengaruh terhadap model secara berurutan. 
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BAB III  

METODE PENELITIAN 

3.1 Jenis Penelitian 

Penelitian ini menggunakan pendekatan deskriptif kuantitatif. Penelitian 

deskriptif kuantitatif yaitu metode untuk menggambarkan dan menganalisis data  

menggunakan angka atau numerik. Metode MAGPRS digunakan untuk 

menganalisis data di penelitian ini. 

 

3.2 Data dan Sumber Data 

Data pada penelitian ini menggunakan data sekunder yang diperoleh dari 

data yang sudah tersedia sebelumnya dan tidak dikumpulkan secara langsung oleh 

peneliti. Sumber data diakses melalui website resmi Dinas Kesehatan Provinsi 

Jawa Timur. Data terdiri dari seluruh wilayah administratif di Provinsi Jawa 

Timur, yaitu 38 kabupaten/kota.  

Tabel 3.1 Variabel Penelitian 

Variabel Keterangan 

𝑦 Banyaknya Kasus Polio 

𝑥1 
Persentase Rumah Tangga dengan Fasilitas Tempat Buang 

Air Besar Sendiri 

𝑥2 Persentase Keluarga dengan Akses Air Minum Layak 

𝑥3 Persentase Imunisasi Polio 4 

𝑥4 Persentase Balita Memiliki Buku KIA 

𝑥5 Persentase Kunjungan Neonatal 1 Kali 

𝑥6 Persentase Kunjungan Neonatal 3 Kali (KN Lengkap) 

𝑥7 Persentase Pemberian ASI Eksklusif 

𝑥8 Persentase Desa UCI 

𝑥9 Persentase Pemberian Vitamin A 



49 
 

 

 

3.3 Variabel Penelitian 

Variabel pada penelitian ini yakni banyaknya kasus polio di Jawa timur 

sebagai variabel respon. Struktur data dalam penelitian ini terdiri atas 38 

observasi dan 9 variabel prediktor. Unit observasi yang digunakan adalah 38 

kabupaten/kota, di mana setiap kabupaten/kota merepresentasikan satu observasi 

dalam analisis yang disajikan pada lampiran 1. 

 

3.4 Teknik Analisis Data 

Tahapan pada penelitian ini yaitu: 

1. Penelitian ini diawali dengan analisis data. 

a) Penyajian data dalam bentuk diagram batang untuk memahami pola 

distribusi maupun perbandingan antar variabel 

b) Analisis deskriptif dilakukan untuk mengetahui niali mean, varians, nilai 

maksimal dan nilai minimal. 

c) Scatterplot dilakukan untuk mengetahui pola hubungan antara 

banyaknya kasus polio dengan variabel yang diduga mempengaruhi 

banyaknya polio seperti yang tertera pada (3.1). Hubungan antara 

banyaknya kasus polio dan prediktornya juga dilihat dengan nilai 

korelasi menggunakan rumus korelasi Spearman yang ditunjukkan pada 

persamaan (2.1). 

2. Pengujian distribusi Poisson dilakukan terhadap variabel banyaknya kasus 

polio (y) untuk memeriksa apakah data mengikuti karakteristik distribusi 

Poisson. Kemudian mengevaluasi apakah data benar-benar mengikuti 

distribusi tersebut, digunakan uji statistik Kolmogorov-Smirnov 
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sebagaimana dinyatakan dalam persamaan (2.4). Langkah ini dilakukan 

untuk memastikan bahwa asumsi mengenai bentuk distribusi Poisson. Jika 

tidak berdistribusi Poisson akan dianalisis dengan pemodelan regresi 

poisson menggunakan Generalized Poisson. 

3. Pembentukan Model MAGPRS 

a) Pengujian equidispersi dilakukan menggunakan persamaan (2.15) untuk 

menilai apakah varians data sebanding dengan nilai rata-ratanya, sesuai 

dengan asumsi distribusi Poisson. Tahapan ini krusial untuk 

mengidentifikasi kemungkinan terjadinya over/underdispersi yang dapat 

memengaruhi ketepatan model yang dibangun. Apabila hasil pengujian 

menunjukkan adanya over/under dispersi, maka pemodelan dilakukan 

dengan pendekatan Multivariate Adaptive Generalized Poisson 

Regression Spline (MAGPRS). Jika tidak terjadi over/underdispersi 

akan kembali pada langkah pencarian data baru (input data). 

b) Pembentukan Model Multivariate Adaptive Generalized Poisson 

Regression Spline (MAGPRS). Penyusunan model MAGPRS 

mempertimbangkan tiga kriteria, yaitu basis functions  (BF), Maximum 

Interaction (MI), dan jumlah Minimum Observation dalam simpul 

(MO). Sembilan variabel prediktor yang digunakan sebagaimana 

tercantum pada Tabel (3.1), jumlah kombinasi nilai BF yang digunakan 

adalah 18, 27, dan 36. Sementara itu, nilai MI yang digunakan yaitu 1, 

2, dan 3, serta MO yang digunakan meliputi nilai 0, 1, 2, dan 3. 

c) Nilai GCV dihitung berdasarkan rumus (2.29). Model optimal dipilih 

dari hasil kombinasi BF, MI, dan MO yang menghasilkan nilai GCV 
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paling kecil. Kombinasi tersebut menunjukkan model dengan 

keseimbangan terbaik antara kompleksitas dan kemampuan prediksi. 

Lalu dibentuk model umum MAGPRS, selanjutnya melakukan 

pengujian Outlier terhadap model MAGPRS yang didapat. 

d) Proses pendeteksian Outlier ini bertujuan untuk menentukan kombinasi 

BF, MI, dan MO yang optimal. Selain itu, keberadaan outlier juga dapat 

memengaruhi penentuan Observasi minimum (MO) maupun Maksimum 

Interaksi (MI) dalam pembangunan model, karena nilai ekstrem 

berpotensi menyulitkan algoritma dalam menemukan titik potong (knot) 

serta interaksi yang benar-benar mencerminkan data. Jika ada outlier 

pada model yang dibentuk maka akan dilakukan penghapusan data 

outlier. Lalu selanjutnya akan kembali pada tahap 3a. 

4. Melakukan pengujian parameter model MAGPRS 

a) Pengujian secara simultan terhadap model MAGPRS dilakukan 

menggunakan Maksimum Likelihood Ratio Test (𝐺²̂) yang dihitung 

berdasarkan persamaan (2.46).  

b) Pengujian secara parsial terhadap model MAGPRS dilakukan dengan 

menggunakan uji statistik T, yang dilakukan berdasarkan persamaan 

(2.47). 

5. Menginterpretasikan hasil model MAGPRS yang diperoleh dan 

menganalisis kepentingan variabel prediktor.  

6. Mengambil kesimpulan berdasarkan analisis yang telah dilakukan. 
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3.5 Diagram Alir Penelitian 

 
Gambar 3.1 Diagram Alir Penelitian 
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BAB IV 

HASIL DAN PEMBAHASAN 

4.1 Analisis Deskriptif Data 

4.1.1 Karakteristik Banyaknya kasus Polio 

Pada subbab ini menjelaskan tentang karakteristik data banyaknya kasus 

polio di Jawa Timur. Selain itu, turut disajikan variabel-variabel prediktor yang 

digunakan dalam penelitian. Penyajian data dilakukan dalam bentuk diagram 

batang sehingga memudahkan dalam memahami pola distribusi maupun 

perbandingan antarvariabel. 

 
Gambar 4.1 Banyaknya Kasus Polio Setiap Kabupaten/ Kota 



54 
 

 

 

Berdasarkan Gambar 4.1 terlihat bahwa distribusi banyaknya kasus polio 

di setiap kabupaten/kota di Jawa Timur pada tahun 2023 tidak merata. Kota 

Surabaya menunjukkan banyaknya kasus yang relatif tinggi dibandingkan 

daerah lainnya, diikuti oleh Kabupaten Sumenep pada posisi kedua. Sementara 

itu, banyaknya kasus polio paling sedikit tercatat di Kota Madiun, Kabupaten 

Ponorogo, dan Kabupaten Pacitan, yaitu masing-masing sebanyak dua kasus. 

 

4.1.2 Analisis Deskripsi 

Tahap analisis deskriptif bertujuan memberikan gambaran umum 

mengenai karakteristik data banyaknya kasus polio. Analisis ini dilakukan untuk 

mengetahui nilai rata-rata (mean), varians, nilai minimum, serta nilai maksimum 

yang disajikan pada Tabel 4.1. 

Tabel 4.1 Analisis Deskriptif Variabel Penelitian 

Variabel Mean Varians Min Maks 

𝑦 11,55 142,68 2,00 73,00 

𝑥1 85,55 89,88 53,24 95,66 

𝑥2 90,46 181,57 48,78 100,00 

𝑥3 90,82 47,05 69,50 107,70 

𝑥4 98,44 195,34 74,77 127,11 

𝑥5 96,59 39,55 82,30 106,00 

𝑥6 94,75 38,71 81,20 104,80 

𝑥7 72,47 327,30 34,70 137,20 

𝑥8 83,92 239,90 34,20 100,00 

𝑥9 87,85 91,94 56,00 102,80 

 

Tabel 4.1 menginformasikan bahwa variabel respon (𝑦), yaitu banyaknya 

kasus polio di Jawa Timur pada tahun 2023, memiliki nilai rata-rata sebesar 

11,55 dengan varians 142,68. Nilai varians tersebut menunjukkan bahwa 
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banyaknya kasus polio cukup beragam antarwilayah. Kasus polio terendah 

tercatat sebanyak 2 kasus Polio yang terdapat di Kota Madiun, Kabupaten 

Trenggalek, dan Kabupaten Pacitan, sedangkan kasus tertinggi mencapai 73 

kasus Polio yang terdapat di Kota Surabaya.  

Persentase rumah tangga dengan fasilitas tempat buang air besar sendiri 

(𝑥1) memiliki rata-rata 85,55%, artinya sebagian besar rumah tangga telah 

memiliki fasilitas sanitasi sendiri. Nilai variansnya 89,88%, sehingga dapat 

dikatakan bahwa setiap kabupaten/kota cukup berbeda dalam hal kepemilikan 

fasilitas tempat buang air besar sendiri. Persentase rumah tangga dengan fasilitas 

tempat buang air besar sendiri paling kecil 53,24% terjadi di Kabupaten 

Bondowoso. Sedangkan paling besar terjadi di Kabupaten Gresik, yaitu sebesar 

95,66% 

Persentase keluarga dengan akses air minum layak (𝑥2) memiliki rata-rata 

90,46%, artinya hampir semua keluarga memiliki akses air minum layak.  Nilai 

variansnya sebesar 181,57%, sehingga dapat dikatakan bahwa setiap 

kabupaten/kota di Jawa Timur masih terdapat disparitas antarwilayah dalam 

pemenuhan akses air minum. Persentase keluarga dengan akses air minum layak 

paling kecil yaitu 48,78% terjadi di Kabupaten Sidoarjo. Persentase paling 

tinggi sebesar 100% terjadi di Kabupaten Tulungagung, Kabupaten 

Banyuwangi, Kabupaten Mojokerto, Kabupaten Magetan, Kabupaten Ngawi, 

Kabupaten Tuban, Kabupaten Lamongan, Kabupaten Gresik, Kota Kediri, Kota 

Blitar, Kota Malang, Kota Probolinggo, Kota Pasuruan, Kota Mojokerto, Kota 

Madiun, Kota Surabaya, dan Kota Batu. 
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Rata-rata persentase imunisasi polio 4 (𝑥3) di Jawa Timur yaitu 90,82%, 

menunjukkan bahwa cakupan imunisasi polio 4 sudah tergolong tinggi dan 

hampir merata di seluruh kabupaten/kota. Nilai varians sebesar 47,05% 

mengindikasikan adanya perbedaan antarwilayah, meskipun relatif kecil, 

sehingga dapat dikatakan bahwa sebagian besar daerah telah mencapai capaian 

imunisasi polio 4 yang baik. Persentase imunisasi polio 4 paling rendah sebesar 

69,50% terjadi di Kabupaten Bangkalan, sedangkan Persentasi paling tinggi 

terjadi di Kabupaten Bondowoso, yaitu 107,70%, maka dapat dikatakan bahwa 

jumlah penduduk yang mendapatkan imunisasi polio 4 di Kabupaten 

Bondowoso lebih banyak dari pada jumlah penduduk yang terdata dikabupaten 

Bondowoso, sehingga persentase lebih dari 100%. 

Rata-rata persentase balita yang memiliki buku KIA (𝑥₄) di Jawa Timur 

adalah sebesar 98,44%, yang berarti mayoritas balita telah memiliki buku KIA. 

Nilai varians sebesar 195,34% mengindikasikan adanya keragaman yang cukup 

besar antar kabupaten/kota dalam hal kepemilikan buku KIA. Persentase balita 

yang memiliki buku KIA paling rendah tercatat di Kabupaten Nganjuk, yaitu 

sebesar 74,77%. Sementara itu, persentase tertinggi terdapat di Kabupaten 

Sumenep, yakni sebesar 127,11%. Nilai yang melebihi 100% terjadi karena 

jumlah balita penerima buku KIA yang tercatat lebih besar dibandingkan jumlah 

balita yang terdata di wilayah Kabupaten Sumenep. 

Persentase kunjungan neonatal 1 kali (𝑥5) sebesar 96,59%, yang 

menunjukkan bahwa mayoritas bayi telah mendapatkan pelayanan neonatal 

awal. Nilai varians sebesar 39,55% mengindikasikan adanya keragaman yang 

relatif kecil antar kabupaten/kota. Persentase terendah tercatat di Kabupaten 
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Blitar dan Kabupaten Kediri, yaitu sebesar 82,30%, sedangkan persentase 

tertinggi terdapat di Kabupaten Sampang, yaitu sebesar 106,00%. Nilai yang 

melebihi 100% menunjukkan adanya kelebihan cakupan pelayanan 

dibandingkan jumlah sasaran bayi yang terdata, yang dapat terjadi karena faktor 

perbedaan pencatatan jumlah sasaran maupun adanya bayi dari luar wilayah 

yang mendapatkan pelayanan di Kabupaten Sampang. 

Persentase kunjungan neonatal 3 kali/KN lengkap (𝑥6) memiliki rata-rata 

94,75%, artinya hampir semua bayi telah memperoleh kunjungan neonatal 

lengkap. Nilai varians sebesar 38,71% mengindikasikan adanya keragaman 

yang relatif kecil antar kabupaten/kota. Persentase terendah tercatat di 

Kabupaten Kediri, yaitu sebesar 81,20%. Persentase tertinggi terdapat di Kota 

Surabaya, yaitu sebesar 104,80%, maka dapat dikatakan bahwa terjadi 

kelebihan cakupan pelayanan dibandingkan jumlah sasaran yang terdata, yang 

dapat disebabkan oleh perbedaan pencatatan sasaran maupun adanya bayi dari 

luar wilayah yang tercatat sebagai penerima pelayanan di Kota Surabaya, 

sehingga persentase lebih dari 100%. 

Persentase pemberian ASI eksklusif (𝑥₇) di Jawa Timur memiliki rata-rata 

sebesar 72,47%, yang menunjukkan bahwa belum semua balita memperoleh 

ASI eksklusif sesuai anjuran. Nilai varians sebesar 327,30% merupakan yang 

tertinggi di antara seluruh variabel, sehingga mengindikasikan adanya perbedaan 

yang sangat besar antar kabupaten/kota. Persentase terendah tercatat di Kota 

Probolinggo sebesar 34,700%, sedangkan persentase tertinggi terdapat di 

Kabupaten Situbondo sebesar 137,20%. 
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Persentase desa UCI (𝑥8) memiliki rata-rata 83,92%, yang menunjukkan 

bahwa sebagian besar desa telah mencapai status UCI. Nilai varians sebesar 

239,90% mengindikasikan adanya perbedaan yang cukup besar antar 

kabupaten/kota. Persentase terendah tercatat di Kabupaten Bangkalan sebesar 

34,20%, sedangkan persentase tertinggi mencapai 100% yang terdapat di 

Kabupaten Blitar, Kabupaten Sidoarjo, Kabupaten Ngawi, Kota Kediri, Kota 

Blitar, Kota Pasuruan, Kota Mojokerto, Kota Madiun, dan Kota Surabaya.  

Rata-rata persentase pemberian vitamin A (𝑥9) di Jawa Timur memiliki 

rata-rata sebesar 87,85%, yang menunjukkan bahwa hampir semua balita telah 

memperoleh vitamin A. Nilai varians sebesar 91,94% mengindikasikan adanya 

perbedaan antar kabupaten/kota. Persentase terendah tercatat di Kabupaten 

Bangkalan sebesar 56%, sedangkan persentase tertinggi terdapat di Kabupaten 

Bondowoso sebesar 102,80%, maka dapat dikatakan bahwa jumlah balita yang 

mendapatkan vitamin A di Kabupaten Bondowoso lebih banyak dari pada 

jumlah yang terdata dikabupaten Bondowoso, sehingga persentase lebih dari 

100%. 

 

4.1.3 Analisis Korelasi Variabel 

Pada subbab ini disajikan pola hubungan antara banyaknya kasus polio di 

Jawa Timur dengan variabel-variabel prediktor yang diduga berpengaruh 

melalui scatterplot. Scatterplot digunakan untuk menggambarkan hubungan dua 

variabel dalam bentuk titik-titik yang memudahkan dalam mengidentifikasi arah, 

kekuatan, dan bentuk hubungan yang mungkin terjadi. 
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Gambar 4.2 Scatterplot Banyaknya kasus polio terhadap Variabel-Variabel yang Diduga 

Berpengaruh 

 

Berdasarkan gambar 4.2 dapat dilihat bahwa pola hubungan antara 

banyaknya kasus polio di Jawa Timur dengan variabel-variabel prediktor (𝑥₁ −

𝑥₉) yang diduga berpengaruh tidak menunjukkan pola tertentu yang jelas. Hal 

tersebut berarti apabila banyaknya kasus Polio di Jawa Timur tinggi maka 

kesembilan variabel terduga tersebut belum tentu tinggi atau rendah, dan 

sebaliknya apabila banyaknya kasus Polio di Jawa Timur rendah maka 

kesembilan variabel terduga belum tentu rendah atau tinggi, sehingga seluruh 

variabel yang terduga berpengaruh terhadap banyaknya kasus Polio merupakan 

komponen nonparametrik. Dengan kata lain, hubungan antara banyaknya kasus 

polio dengan faktor-faktor prediktor tidak bersifat linier sederhana, sehingga 

diperlukan pemodelan nonparametrik spline. Hubungan antara variabel respon 

dan prediktor juga dapat diketahui dengan melihat nilai korelasi menggunakan 

rumus persamaan (2.1). Berikut nilai korelasi spearman antara banyaknya kasus 

polio dengan variabel-variabel yang diduga berpengaruh ditampilkan di tabel 

(4.2).  
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Tabel 4.2 Nilai Korelasi Spearman dan P-value Variabel Prediktor terhadap Variabel 

Respon 

Variabel Nilai Korelasi P-value 

𝑥1 -0,16 0,31 

𝑥2 -0,07 0,64 

𝑥3 0,08 0,63 

𝑥4 -0,03 0,81 

𝑥5 0,36 0,02 

𝑥6 0,28 0,07 

𝑥7 0,19 0,22 

𝑥8 -0,03 0,85 

𝑥9 0,22 0,17 

 

Berdasarkan nilai p-value dapat dilihat bahwa variabel 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6, 

𝑥7,𝑥8, dan 𝑥9 memiliki nilai p-value lebih besar dari 𝛼(0,05) sehingga dapat 

dikatakan bahwa variabel-variabel tersebut tidak memiliki hubungan/korelasi 

yang signifikan  dengan variabel respon. Sedangkan variabel 𝑥5 memiliki nilai 

P-value kurang dari 𝛼(0,05), maka dapat dikatakan variabel ini memiliki 

hubungan linier dengan variabel respon. Sebagian besar variabel prediktor tidak 

memiliki hubungan yang linier terhadap variabel respon, sehingga dapat 

dilakukan analisis dengan pendekatan nonparametrik. 

 

4.2 Uji Distribusi Poisson 

Pengujian distribusi Poisson dilakukan untuk mengetahui apakah data 

banyaknya kasus Polio di Jawa Timur mengikuti pola distribusi Poisson. Proses 

pengujian dilakukan menggunakan uji Kolmogorov–Smirnov sesuai dengan 

persamaaan (2.4), yang bertujuan untuk membandingkan distribusi teoritis 

Poisson dengan distribusi empiris data yang diperoleh. Melalui uji ini, dapat 

diketahui apakah data banyaknya kasus polio berdistribusi sesuai dengan 

distribusi Poisson atau tidak berdasarkan hipotesis berikut. 
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𝐻0 : Variabel respon berdistribusi Poisson 

𝐻1 : Variabel respon tidak berdistribusi Poisson 

Kriteria pengujian yaitu tolak 𝐻0 apabila nilai 𝐷 > 𝐷𝑡𝑎𝑏𝑒𝑙 dan p-value < 𝛼. 

Berikut adalah hasil uji Kolmogorov-Smirnov berdasarkan rumus pada persamaan 

(2.4). 

Tabel 4.3 Hasil Uji Kolmogorov-Smirnov 

𝒏 𝑫 𝑫𝒕𝒂𝒃𝒆𝒍 𝑷𝒗𝒂𝒍𝒖𝒆 Keputusan 

38 0,289 0,219 0,004 Tolak 𝐻0 

 

Berdasarkan tabel 4.3 menunjukkan bahwa data banyaknya kasus polio di 

Jawa Timur tahun 2023 menghasilkan nilai 𝐷 sebesar 0,289 di mana nilai tersebut 

lebih besar dari nilai 𝐷𝑡𝑎𝑏𝑒𝑙 yaitu 0,219. Dapat dilihat juga bahwa nilai p-value 

0,004 yang mana nilai tersebut lebih kecil dari nilai 𝛼 (0,05). Sehingga 

diperoleh keputusan tolak 𝐻0 yang artinya variabel respon tidak berdistribusi 

Poisson. Namun hal ini tidak serta-merta meniadakan penggunaan pendekatan 

Poisson dalam pemodelan. Pada data hitung (count), penyimpangan dari Poisson 

berupa over/underdispersi dapat menjadi dasar bagi penggunaan model yang lebih 

fleksibel, salah satunya Generalized Poisson. Oleh karena itu, dilakukan 

pengujian equidispersi untuk memastikan adanya over/underdispersi sebagai 

prasyarat penerapan MAGPRS.  

Hasil tahap eksplorasi khususnya uji korelasi dan scatterplot juga 

menunjukkan banyak hubungan nonlinier antara 𝑦 dan variabel-variabel prediktor, 

sehingga diperlukan pendekatan yang adaptif terhadap bentuk hubungan tersebut. 

Namun, MARS murni kurang sesuai karena lebih diperuntukkan bagi respon 

kontinu, bukan count. Oleh sebab itu, dilakukan uji equidispersi pada regresi 
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Poisson untuk menilai apakah varian ≈ rata-rata (equidispersi). Jika terpenuhi, 

pemodelan dapat dilanjutkan dengan Multivariate Adaptive Poisson Regression 

Spline sebaliknya, bila terdeteksi over/underdispersi, digunakan Multivariate 

Adaptive Generalized Poisson Regression Splines (MAGPRS) yang dapat 

mengatasi penyimpangan dispersi tersebut. 

  

4.3 Uji Equidispersi Data Lengkap 

Pada bab ini membahas mengenai pengujian equidispersi. Uji equidispersi 

membutuhkan nilai estimasi Parameter model Regresi Poisson. Proses estimasi 

dimulai dengan mencari turunan parsial dari fungsi kemungkinannya terhadap 

parameter yang akan ditaksir yaitu 𝛽0,𝛽1,𝛽2, … . 𝛽𝑝. Model Regresi Poisson yang 

digunakan berdasarkan persamaan (2.8) dalam penelitian dapat ditulis sebagai 

berikut. 

𝜇𝑖 = exp (𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝛽4𝑥4𝑖 + 𝛽5𝑥5𝑖 + 𝛽6𝑥6𝑖 + 𝛽7𝑥7𝑖 +

            𝛽8𝑥8𝑖 + 𝛽9𝑥9𝑖) 

Parameter pada model regresi poisson diestimasi dengan menggunakan 

Maximum Likelihood Estimation (MLE) kemudian untuk penyelesaiannya 

dilanjutkan dengan menggunakan iterasi Newton Rapshon berdasarkan persamaan 

(2.11). Estimasi parameter 𝛽 menggunakan sofware Rstudio ditampilkan pada 

tabel 4.4 berikut. 

 

 

 

Tabel 4.4 Nilai 𝜷 (38 data) 

Parameter Estimasi 
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𝛽0 -4,9646 

𝛽1 -0,0028 

𝛽2 0,0042 

𝛽3 0,0116 

𝛽4 0,0125 

𝛽5 0,0132 

𝛽6 0,0220 

𝛽7 0,0057 

𝛽8 -0,0084 

𝛽9 0,0204 

 

Setelah memperoleh nilai estimasi parameter 𝛽 kemudian mencari nilai  𝜇̂𝑖 

berdasarkan persamaan (2.8) sebagai berikut dan ditunjukkan pada lampiran 2. 

𝜇̂1 =  exp (−4,9646 + (−0.0028 × 92,39) +(0,004200 × 95,71) +

          (0,0116 × 92,1) + (0.0125 × 92,55) + (0,0132 × 86,9) + 

           (0,0220 × 85,9) + (0,0057 × 56,5) + (−0,0084 × 74,4) +

           (0.0204 × 81,9)) 

      = 6,25 

𝜇̂2 =  𝑒𝑥𝑝 (−4,9646 + (−0.0028 × 89,64) +(0,004200 × 98,76) +

           (0,0116 ×  85,3) + (0.0125 × 100) + (0,0132 × 89,5) +(0,0220 ×

           88,3) + (0,0057 × 84,2) + (−0,0084 × 70,7) + (0.0204 × 68,9)) 

      = 6,55 

⋮ 

𝜇̂38 =  exp (−4,9646 + (−0.0028 × 93,72) +(0,004200 × 100) +

             (0,0116 × 88,6) + (0.0125 × 101,87) + (0,0132 × 91,3) + 

             (0,0220 × 90,3) + (0,0057 × 73,3) + (−0,0084 × 58,3) +

            (0.0204 × 83,1)) 

      = 10,34 

Kemudian estimasi koefisien 𝛾 melalui persamaan (2.15) 

𝑉1 =
(2 − 6,25)2 − 2

6,25
= 2,57 
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𝑉2 =
(3 − 6,25)2 − 3

6,25
= 1,47 

 ⋮ 

𝑉38 =
(5 − 10,34)2 − 5

10,34
= 2,27 

Kemudian menaksir konstanta 𝛾 didapat nilai 𝛾 yaitu 5,32. Nilai 𝛾 tersebut 

lebih dari 0 sehingga tidak terjadi equidispersi, namun data mengalami indikasi 

overdispersi. Pengujian equidispersi dengan bantuan software R diperoleh output 

nilai dispersi sebesar 6,327 dan 𝑝𝑣𝑎𝑙𝑢𝑒 sebesar 0,01198. 𝑝𝑣𝑎𝑙𝑢𝑒 kurang dari 

𝛼(0,05), sehingga memperoleh hasil tolak 𝐻0 yang berarti varians tidak sama 

dengan rata-rata atau data tersebut mengalami overdispersi. Pada penelitian ini 

dapat diterapkan metode generalized poisson. Pola data penelitian ini hampir 

semua variabel tidak linier, data overdispersi, dan data memiliki variabel prediktor 

lebih dari 3, sehingga metode Multivariate Adaptive Generalized Poisson 

Regression Splines (MAGPRS) dapat diterapkan. 

 

4.4 Pembentukan Model MAGPRS  

4.4.1 Model Terpilih Berdasarkan Nilai GCV Terkecil 

Pembentukan model MAGPRS memperhatikan tiga komponen, yaitu 

basis functions (BF), Maximum number of interacraction (MI), dan Minimum 

Observation (MO). Pada penelitian ini variabel prediktor yang diduga 

berpengaruh berjumlah 9 variabel dan 38 observasi per variabel. Kombinasi 

BF yang digunakan dalam pemodelan sebesar dua sampai empat kali jumlah 

variabel prediktor, yaitu 18, 27, dan 36. MI yang digunakan dalam penelitian 

ini adalah 1, 2, dan 3. MO yang digunakan yaitu 0,1,2, dan 3. GCV dan 𝑅2 dari 
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kombinasi BF, MI, MO sesuai dengan rumus pada persamaan (2.29) dan 

(2.30). Pada software R ditunjukkan pada lampiran 15 pada syntax 

data.frame().  

Percobaan pembentukan model MAGPRS yang didapat melalui 

kombinasi BF, MI, dan MO terbentuk 36 model percobaan. Model terbaik 

dipilih berdasarkan nilai GCV terkecil. Output Rstudio untuk pemodelan 

MAGPRS disajikan pada lampiran 8 dan dirangkum dalam tabel 4.5. 

Tabel 4.5 Hasil Percobaan Pembentukan Model MAGPRS (38 Data) 

No 

Model 

Kombinasi 
GCV 𝑹𝟐 

BF MI MO 

1 18 1 0 0,000284 0,684379 

2 18 1 1 0,000205 0,772043 

3 18 1 2 0,000212 0,764969 

4 18 1 3 0,000322 0,642884 

5 18 2 0 0,000385 0,573347 

6 18 2 1 0,000289 0,679069 

7 18 2 2 0,000155 0,827877 

8 18 2 3 0,000169 0,812568 

9 18 3 0 0,000384 0,573711 

10 18 3 1 0,000302 0,664604 

11 18 3 2 0,000147 0,836383 

12 18 3 3 0,000229 0,746023 

13 27 1 0 0,000144 0,840025 

14 27 1 1 0,000102 0,885982 

15 27 1 2 0,000132 0,852651 

16 27 1 3 0,000138 0,846695 

17 27 2 0 0,000149 0,834650 

18 27 2 1 0,000142 0,841972 

19 27 2 2 0,000033 0,962822 

20 27 2 3 0,000097 0,892220 

21 27 3 0 0,000184 0,795655 

22 27 3 1 0,000030 0,966290 

23 27 3 2 0,000063 0,929859 

24 27 3 3 0,000048 0,946788 

25 36 1 0 0,000083 0,907420 

26 36 1 1 0,000049 0,944722 

27 36 1 2 0,000064 0,928432 
Tabel 4.5 Lanjutan Hasil Percobaan Pembentukan Model MAGPRS (38 Data) 
28 36 1 3 0,000068 0,924303 

29 36 2 0 0,000106 0,881707 

30 36 2 1 0,000058 0,934926 
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𝟑𝟏 𝟑𝟔 𝟐 𝟐 0,000004 0,995060 

32 36 2 3 0,000005 0,993626 

33 36 3 0 0,000082 0,908617 

34 36 3 1 0,000012 0,986185 

35 36 3 2 0,000027 0,969650 

36 36 3 3 0,000012 0,986428 

 

Berdasarkan tabel 4.5, kombinasi BF, MI, MO terbaik yaitu kombinasi 

nomor 31. Model dengan kombinasi 𝐵𝐹 = 36,𝑀𝐼 = 2,𝑀𝑂 = 2 yaitu memiliki 

nilai GCV paling kecil sebesar 0,000004 dan nilai 𝑅2 sebesar 0,995060. 

Model umum MAGPRS sesuai dengan persamaan (2.38) dapat dituliskan 

sebagai berikut. 

𝜇̂ = 𝑒𝑥𝑝(−10,3495592 − 0,09042𝐵1 − 0,0951𝐵2 + 0,3278𝐵3 + 0,0671𝐵4

− 0,0129𝐵5 − 0,1374𝐵6 + 1,1161𝐵7 − 0,00537𝐵8 + 0,0050𝐵9

+ 0,4391𝐵10 + 0,1222𝐵11 − 0,4173𝐵12 + 0,0136𝐵13 + 0,0146𝐵14

+ 0,0203𝐵15 + 0,0362𝐵16 + 0,0011𝐵17 + 0,0050𝐵18 − 0,0179𝐵19

− 0,0057𝐵20 − 0,0029𝐵21 − 0,0024𝐵22 − 0,0004𝐵23 + 0,0717𝐵24

− 0,0010𝐵25 − 0,0473𝐵26 + 0,0060𝐵27 + 0,0048𝐵28 + 0,0027𝐵29

+ 0,0094𝐵30) 

dengan, 

𝐵1 =  𝑚𝑎𝑥(0,   92,39−𝑋1);  𝐵11 =  𝑚𝑎𝑥(0,   81,5−𝑋8);   𝐵21 =  𝑚𝑎𝑥(0,   86,37−𝑋4)𝐵10; 

𝐵2 =  𝑚𝑎𝑥(0,   𝑋1 −92,39);  𝐵12 =  𝑚𝑎𝑥(0,   𝑋8 −81,5);  𝐵22 =  𝑚𝑎𝑥(0,   𝑋4 −86,37)𝐵10; 

𝐵3 =  𝑚𝑎𝑥(0,   𝑋3 −94,1);  𝐵13 =  𝑚𝑎𝑥(0,   𝑋5 −95)𝐵1; 𝐵23 =  𝑚𝑎𝑥(0,   95,7−𝑋5)𝐵6; 

𝐵4 =  𝑚𝑎𝑥(0,   𝑋4 −85,4); 𝐵14 =  𝑚𝑎𝑥(0,   95−𝑋5)𝐵1; 𝐵24 =  𝑚𝑎𝑥(0,   𝑋5 −95,7)𝐵6; 

𝐵5 =  𝑚𝑎𝑥(0,   𝑋5 −92,9);  𝐵15 =  𝑚𝑎𝑥(0,   86,28−𝑋1)𝐵11; 𝐵25 =  𝑚𝑎𝑥(0,   99,7−𝑋6)𝐵12; 

𝐵6 =  𝑚𝑎𝑥(0,   101,3−𝑋6);  𝐵16 =  𝑚𝑎𝑥(0,   𝑋1 −86,28)𝐵11;  𝐵26 =  𝑚𝑎𝑥(0,   𝑋6 −99,7)𝐵12; 

𝐵7 =  𝑚𝑎𝑥(0,   𝑋6 −101,3); 𝐵17 =  𝑚𝑎𝑥(0,   85,94−𝑋2)𝐵12;  𝐵27 =  𝑚𝑎𝑥(0,   100 − 𝑋6) 𝐵10; 

𝐵8 =  𝑚𝑎𝑥(0,   81,9−𝑋7);  𝐵18 =  𝑚𝑎𝑥(0,   𝑋2 −85,94)𝐵12; 𝐵28 =  𝑚𝑎𝑥(0,   𝑋6 −100)𝐵10; 

𝐵9 =  𝑚𝑎𝑥(0,   𝑋7 −81,9);  𝐵19 =  𝑚𝑎𝑥(0,   88,7−𝑋3)𝐵12; 𝐵29 =  𝑚𝑎𝑥(0,   65,9−𝑋7)𝐵11; 

𝐵10 =  𝑚𝑎𝑥(0,   𝑋8 −54,3);  𝐵20 =  𝑚𝑎𝑥(0,   𝑋3 −88,7)𝐵12;  𝐵30 =  𝑚𝑎𝑥(0,   𝑋7 −65,9) 𝐵11; 
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4.4.2 Uji Outlier 

Kemudian dilakukan pemeriksaan outlier setelah memperoleh model 

MAGPRS. Selanjutnya mencari error (residual) model yaitu selisih antara data 

aktual dengan prediksi model. Hasil residual model ditunjukkan pada lampiran 

7.  Kemudian dilakukan pemeriksaan outlier menggunakan residual model 

MAGPRS. Outlier sering kali mempengaruhi nilai koefisien 𝜷 (meskipun 

MAGPRS lebih robust daripada regresi linier biasa). Pemeriksaan outlier, 

untuk mengetahui apakah estimasi 𝜷 stabil atau ada pengaruh berlebihan dari 

beberapa data ekstrem. 

Pengecekan dan pendeteksian outlier dalam penelitian ini dilakukan 

menggunakan boxplot dengan bantuan Rstudio. Dengan visualisasi ini, data 

yang berada jauh di luar rentang dapat terdeteksi secara jelas sehingga 

memudahkan proses analisis. 

 
Gambar 4.3 Deteksi Outlier Model MAGPRS (38 Data) 

 

Gambar 4.3 menunjukkan bahwa sebagian besar data berada pada rentang 

nilai 1,166 hingga 15,396 dengan median 7,668, yang ditunjukkan oleh garis 

tebal di dalam kotak. Berdasarkan hasil boxplot, terdeteksi adanya dua nilai 

yang berada jauh di luar pola sebaran data, yaitu 28,41873 dan 69,75487. 
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Kedua nilai ini teridentifikasi sebagai outlier karena melampaui batas atas dari 

distribusi data yang dihitung menggunakan rentang antar kuartil.  

Kedua nilai ini berpotensi memengaruhi hasil pemodelan MAGPRS, 

karena nilai ekstrem dapat memengaruhi pemilihan Observasi minimum (MO) 

dan interaksi maksimum (MI) dalam pembentukan model, sebab nilai ekstrem 

akan membuat algoritma lebih sulit menemukan titik potong (knot) dan 

interaksi yang benar-benar representatif. Oleh karena itu, penghapusan kedua 

nilai outlier dipandang perlu agar model MAGPRS yang diperoleh lebih stabil, 

tidak terdistorsi oleh data ekstrem, dan lebih sesuai dengan pola distribusi 

mayoritas data. Selanjutnya dilakukan proses pemilihan model kembali dengan 

menghapus data outlier yaitu Kabupaten Sumenep dan Kota Surabaya.  

 

4.5 Uji Equidispersi Setelah Penghapusan Outlier 

Setelah data outlier dihapus, perlu dilakukan kembali pengujian equidispersi 

untuk memastikan apakah pada data masih terjadi over/underdispersi untuk 

melakukan pemodelan menggunakan MAGPRS. Uji equidispersi membutuhkan 

nilai estimasi Parameter model Regresi Poisson. Proses estimasi dimulai dengan 

mencari turunan parsial dari fungsi kemungkinannya terhadap parameter yang 

akan ditaksir yaitu 𝛽0,𝛽1,𝛽2, … . 𝛽𝑝. Model Regresi Poisson yang digunakan 

berdasarkan persamaan (2.8) dalam penelitian dapat ditulis sebagai berikut. 

𝜇𝑖 = exp (𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝛽4𝑥4𝑖 + 𝛽5𝑥5𝑖 + 𝛽6𝑥6𝑖 + 𝛽7𝑥7𝑖 +

            𝛽8𝑥8𝑖 + 𝛽9𝑥9𝑖) 

Parameter pada model regresi poisson diestimasi dengan menggunakan 

Maximum Likelihood Estimation (MLE) kemudian untuk penyelesaiannya 
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dilanjutkan dengan menggunakan iterasi Newton Rapshon berdasarkan persamaan 

(2.11). Estimasi parameter 𝛽 menggunakan sofware Rstudio ditampilkan pada 

tabel 4.6 berikut. 

Tabel 4.6 Nilai 𝜷 (36 data) 

𝛽0 0,0801 

𝛽1 0,0059 

𝛽2 -0,0022 

𝛽3 -0,0022 

𝛽4 -0,0083 

𝛽5 0,0723 

𝛽6 -0,0516 

𝛽7 0,0055 

𝛽8 -0,0047 

𝛽9 0,0083 

 

Setelah memperoleh nilai estimasi parameter 𝛽 kemudian mencari nilai  𝜇̂𝑖 

berdasarkan persamaan (2.8) dan ditunjukkan pada lampiran 3. 

𝜇̂1 =  0,0801 + (0,0059 × 92,39) +(−0,0022 × 95,71) + (−0,0022 ×

            92,1) + (−0,0083 × 92,55) + (0,0723 × 86,9) +(−0,0516 ×

            85,9) + (0,0055 × 56,5) + (−0,0047 × 74,4) + (0,0083 × 81,9) 

      = 6,88 

𝜇̂2 =  0,0801 + (0,0059 × 89,64) +(−0,0022 × 98,76) + (−0,0022 ×

            85,3) + (−0,0083 × 100) + (0,0723 × 89,5) +(−0,0516 ×

            88,3) + (0,0055 × 84,2) + (−0,0047 × 70,7) + (0,0083 × 68,9) 

      = 7,28 

⋮ 

𝜇̂38 =  0,0801 + (0,0059 × 93,72) +(−0,0022 × 100) + (−0,0022 ×

             88,6) + (−0,0083 × 101,87) + (0,0723 × 91,3) +(−0,0516 ×

             90,3) + (0,0055 × 73,3) + (−0,0047 × 58,3) + (0,0083 × 83,1) 

      = 8,40 
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Kemudian estimasi koefisien 𝛾 melalui persamaan (2.15) 

𝑉1 =
(2 − 6,88)2 − 2

6,88
= 3,17 

𝑉2 =
(3 − 7,28)2 − 3

7,28
= 2,10 

 ⋮ 

𝑉38 =
(5 − 8,40)2 − 5

8,40
= 0,78 

Kemudian menaksir konstanta 𝛾 pada persamaan (2.16) didapat nilai 𝛾 yaitu 

1,268. Nilai 𝛾 tersebut lebih dari 0 sehingga tidak terjadi equidispersi, namun data 

mengalami overdispersi. Pengujian equidispersi dengan bantuan software R 

diperoleh output nilai dispersi sebesar 2,268616 dan 𝑝𝑣𝑎𝑙𝑢𝑒 sebesar 0,001334. 

𝑝𝑣𝑎𝑙𝑢𝑒 kurang dari 𝛼(0,05), sehingga memperoleh hasil tolak 𝐻0 yang berarti 

varians tidak sama dengan rata-rata atau data tersebut mengalami overdispersi. 

Karena data tetap mengalami overdispersi maka pemodelan menggunakan metode 

MAGPRS dapat dilakukan. 

 

4.5.1 Model Terpilih (Setelah penghapusan Outlier) 

Percobaan pembentukan model MAGPRS dilakukan melalui kombinasi 

BF, MI, dan MO, sehingga diperoleh 36 model kombinasi. Setelah dilakukan 

penghapusan outlier, jumlah observasi yang digunakan dalam analisis menjadi 

36 observasi. Output Rstudio untuk pemodelan MAGPRS terlampir pada 

lampiran 10 serta tercantum pada tabel 4.7 sebagai berikut. 
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Tabel 4.7 Hasil Percobaan Pembentukan Model MAGPRS (36 Data) 

No 

model 

Kombinasi 
GCV 𝑹𝟐 

BF MO MI 

1 18 1 0 0,001477 0,811080 

2 18 1 1 0,001839 0,764893 

3 18 1 2 0,001711 0,781214 

4 18 1 3 0,001286 0,835613 

5 18 2 0 0,002392 0,694198 

6 18 2 1 0,002769 0,646006 

7 18 2 2 0,001288 0,835339 

8 18 2 3 0,000824 0,894624 

9 18 3 0 0,002888 0,630734 

10 18 3 1 0,001447 0,815024 

11 18 3 2 0,0013924 0,822010   

12 18 3 3 0,0007947 0,898416 

13 27 1 0 0,0008803 0,887465 

14 27 1 1 0,0010005 0,872103 

15 27 1 2 0,0004999 0,936092 

16 27 1 3 0,0006125 0,921703 

17 27 2 0 0,0004369 0,944150 

18 27 2 1 0,001651 0,788943 

19 27 2 2 0,000707 0,909588 

20 27 2 3 0,000161 0,979330 

21 27 3 0 0,000747 0,904492 

22 27 3 1 0,000756 0,903325 

23 27 3 2 0,000504 0,935531 

24 27 3 3 0,000194 0,975105 

25 36 1 0 0,000568 0,927289 

26 36 1 1 0,000583 0,925366 

27 36 1 2 0,000141 0,981958 

28 36 1 3 0,000285 0,963565 

29 36 2 0 0,000153 0,980412 

30 36 2 1 0,000719 0,908056 

31 36 2 2 0,000182 0,976724 

𝟑𝟐 𝟑𝟔 𝟐 𝟑 0,000038 0,995130 

33 36 3 0 0,000203 0,974000 

34 36 3 1 0,000511 0,934648 

35 36 3 2 0,000160 0,979497 

36 36 3 3 0,000121 0,984488 
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Berdasarkan tabel 4.7, model dengan GCV paling kecil dan 𝑅2 

mendekati nilai 1 adalah model nomor 31, 32, dan 33. Berikut perbandingan 

singkat dari ketiga model. 

Tabel 4.8 Perbandingan Model 

No 

Model 
BF 

Parameter 

Intercept 
BF Signifikan GCV 

31 36 24,444 10 0,000182 

32 36 4,305 18  0,000038 

33 36 -0,6308 12 0,000203 

 

Berdasarkan tabel 4.8 nilai parameter intercept yang singnifikan adalah 

model 32 dengan BF signifikan sebanyak 18 didukung dengan nilai GCV 

terkecil diantara model yang lain yaitu 0,000038. Sehingga kombinasi BF, MI, 

MO terbaik yaitu kombinasi nomor 32 dengan nilai GCV paling kecil dan nilai 

𝑅2 sebesar 0,995130. Model terbaik dengan kombinasi 𝐵𝐹 = 36,𝑀𝐼 =

2,𝑀𝑂 = 3. Kemudian dilakukan pembentukan model umum MAGPRS. Model 

umum MAGPRS dapat dituliskan sebagai berikut. 

𝜇̂ = 𝑒𝑥𝑝(4,3057 − 0,1376068𝐵1 − 0,0996𝐵2 + 0,5130𝐵3 + 0,3339𝐵4 − 1,9281𝐵5

− 0,1845𝐵6 − 0,7320𝐵7 + 1,0194𝐵8 + 0,6334𝐵9 + 0,1963𝐵10

+ 0,1808𝐵11 − 26,4202𝐵12 − 0,0524𝐵13 − 0,1337𝐵14

+ 0,2251𝐵15 − 0,3226𝐵16 + 0,0707𝐵17 + 0,1167𝐵18 + 0,0576𝐵19

+ 0,0555𝐵21 − 0,0824𝐵22 − 0,0884𝐵23 − 0,0037𝐵24 − 0,0181𝐵25

− 0,2786𝐵26 − 0,3340𝐵27 + 0,0137𝐵28 + 0,2586𝐵29) 

dengan, 

𝐵1 =  𝑚𝑎𝑥(0,   92,39−𝑋1);        𝐵11 =  𝑚𝑎𝑥(0, 97,1 − 𝑋9); 𝐵21 =  𝑚𝑎𝑥(0,   𝑋3 −88.2)𝐵20; 

𝐵2 =  𝑚𝑎𝑥(0,   𝑋1 −92,39); 𝐵12 =  𝑚𝑎𝑥(0,  𝑋9 − 97,1); 𝐵22 =  𝑚𝑎𝑥(0,   90,8−𝑋3)𝐵8; 

𝐵3 =  𝑚𝑎𝑥(0,   90,09−𝑋2); 𝐵13 =  𝑚𝑎𝑥(0,  𝑋2 − 83,72) 𝐵1; 𝐵23 =  𝑚𝑎𝑥(0,   𝑋3 − 90,8)𝐵8; 

𝐵4 =  𝑚𝑎𝑥(0,   𝑋2 −90,09); 𝐵14 =  𝑚𝑎𝑥(0,   83,72−𝑋2)𝐵1; 𝐵24 =  𝑚𝑎𝑥(0,   93,45−𝑋4)𝐵10; 

𝐵5 =  𝑚𝑎𝑥(0,   86,11−𝑋4); 𝐵15 =  𝑚𝑎𝑥(0,   𝑋3 −91,3)𝐵1; 𝐵25 =  𝑚𝑎𝑥(0,   𝑋4 − 93,4)𝐵10; 

𝐵6 =  𝑚𝑎𝑥(0,   𝑋4 −86,11); 𝐵16 =  𝑚𝑎𝑥(0,   91,3 − 𝑋3)𝐵1; 𝐵26 =  𝑚𝑎𝑥(0,  94,7 − 𝑋5)𝐵20; 

𝐵7 =  𝑚𝑎𝑥(0,   𝑋5 − 95,2); 𝐵17 =  𝑚𝑎𝑥(0,   𝑋7 − 65,9)𝐵1; 𝐵27 =  𝑚𝑎𝑥(0,   𝑋5 − 94,7)𝐵20; 

𝐵8 =  𝑚𝑎𝑥(0,   𝑋8 − 83,5); 𝐵18 =  𝑚𝑎𝑥(0,   65,9−𝑋7)𝐵1; 𝐵28 =  𝑚𝑎𝑥(0,   95,7 − 𝑋5)𝐵9; 

𝐵9 =  𝑚𝑎𝑥(0,   89,7 − 𝑋8); 𝐵19 =  𝑚𝑎𝑥(0,   88,2 − 𝑋3)𝐵20; 𝐵29 =  𝑚𝑎𝑥(0,   75 − 95,7)𝐵9; 
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𝐵10 =  𝑚𝑎𝑥(0,  𝑋8 − 89,7); 𝐵20 =  𝑚𝑎𝑥(0,   83,5−𝑋8);  

 

4.5.2 Uji Outlier Model Terpilih 

Selanjutnya dilakukan deteksi outlier  

 
Gambar 4.4 Deteksi Outlier Model MAGPRS (36 Data) 

 

Berdasarkan hasil boxplot pada gambar 4.4, dapat diketahui bahwa nilai 

median data berada pada 7,24, yang menunjukkan titik tengah distribusi data. 

Nilai kuartil bawah (Q1) berada pada 3,36 dan kuartil atas (Q3) sebesar 11,26, 

sehingga hampir semua data terletak dalam rentang tersebut. Whisker bawah 

menunjukkan nilai terendah sekitar 1,291, sedangkan whisker atas berada pada 

nilai tertinggi sekitar 14,7. Dari hasil visualisasi ini tidak ditemukan adanya 

data yang berada di luar batas whisker, sehingga dapat disimpulkan bahwa 

tidak terdapat outlier pada data yang dianalisis. Maka Model terbaik MAGPRS 

yang didapat dengan kombinasi 𝐵𝐹 = 36,𝑀𝐼 = 2, dan 𝑀𝑂 = 3.  

 

4.6 Uji Signifikasi 

4.6.1 Pengujian Simultan Model MAGPRS 

Pengujian simultan dilakukan untuk mengetahui pengaruh variabel 

prediktor secara Simultan terhadap variabel respon. Hasil uji simultan dengan 

bantuan software R yang sesuai dengan persamaan (2.46). 
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Tabel 4.9 Hasil Uji Simultan Model MAGPRS Terbaik 

𝑮𝟐 𝝌𝟎,𝟎𝟓;𝟐𝟗
𝟐  Keputusan 

8505,84 42,556 Tolak 𝐻0 

 

Berdasarkan tabel 4.9 diperoleh nilai statistik uji 𝐺2 sebesar 8505,84. 

Nilai tersebut lebih besar dari nilai 𝜒2 tabel yaitu 42,556, sehingga 

menghasilkan keputusan tolak 𝐻0. Kesimpulan dari pengujian simultan adalah 

paling sedikit terdapat satu fungsi basis yang memuat variabel prediktor yang 

berpengaruh signifikan terhadap variabel respon. Setelah uji simultan 

dilakukan, langkah berikutnya melaksanakan uji parsial untuk mengetahui 

variabel mana saja yang berpengaruh secara signifikan. 

 

4.6.2 Pengujian Parsial Model MAGPRS 

Uji Parsial dilakukan untuk mengetahui basis functions yang berpengaruh 

secara signifikan terhadap model menggunakan persamaan (2.47). Output uji 

parsial akan ditampilkan pada tabel 4.10. 

Tabel 4.10 Hasil Uji Parsial Model MAGPRS Terbaik 

Parameter 
Nilai 

Taksiran 
SE 𝑻 p-value Keputusan 

(Intercept) 4,306 2,977 2,446 0,000 tolak 𝐻0 

h(X1-92,39) -0,099 0,599 -0,166 0,000 tolak 𝐻0 

h(92,39-X1) -0,138 0,183 -0,752 0,476 Gagal tolak 𝐻0 

h(92,39-X1)*h(X2-83,72) -0,052 0,020 -2,607 0,035  tolak 𝐻0 

h(92,39-X1)*h(83,72-X2) -0,133 0,030 -4,503 0,003  tolak 𝐻0 

h(92,39-X1)*h(X3-91,3) 0,225 0,047 4,777 0,002  tolak 𝐻0 

h(92,39-X1)*h(91,3-X3) -0,322 0,074 -4,373 0,003  tolak 𝐻0 

h(X9-97,1) -26,420 3,922 -6,736 0,000  tolak 𝐻0 

h(97,1-X9) 0,181 0,059 3,085 0,018 tolak 𝐻0 

h(X8-89,7) 0,196 0,620 0,317 0,761 Gagal tolak 𝐻0 
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Tabel 4.10 Lanjutan Hasil Uji Parsial Model MAGPRS Terbaik 

h(89,7-X8) 0,633 0,141 4,487 0,003 tolak 𝐻0 

h(X4-86,11) -0,185 0,102 -1,812 0,113 Gagal tolak 𝐻0 

h(86,11-X4) -1,928 0,273 -7,050 0,000  tolak 𝐻0 

h(X5-95,7)*h(89,7-X8) 0,259 0,070 3,669 0,008 tolak 𝐻0 

h(95,7-X5)*h(89,7-X8) 0,014 0,109 0,127 0,903 Gagal tolak 𝐻0 

h(X8-83,5) 1,019 0,458 2,227 0,061 Gagal tolak 𝐻0 

h(X5-94,7)*h(83,5-X8) -0,334 0,082 -4,081 0,005 tolak 𝐻0 

h(94,7-X5)*h(83,5-X8) -0,279 0,178 -1,562 0,162 Gagal tolak 𝐻0 

h(X3-90,8)*h(X8-83,5) -0,088 0,025 -3,598 0,009 tolak 𝐻0 

h(90,8-X3)*h(X8-83,5) -0,082 0,064 -1,282 0,241 Gagal tolak 𝐻0 

h(X5-95,2) -0,732 0,213 -3,431 0,011 tolak 𝐻0 

h(92,39-X1)*h(X7-65,9) 0,071 0,009 7,834 0,000 tolak 𝐻0 

h(92,39-X1)*h(65,9-X7) 0,117 0,023 5,160 0,001 tolak 𝐻0 

h(X2-90,09) 0,334 0,159 2,094 0,074 Gagal tolak 𝐻0 

h(90,09-X2) 0,513 0,106 4,831 0,002 tolak 𝐻0 

h(X3-88,2)*h(83,5-X8) 0,056 0,040 1,396 0,205 Gagal tolak 𝐻0 

h(88,2-X3)*h(83,5-X8) 0,058 0,019 3,027 0,019 tolak 𝐻0 

h(X4-93,45)*h(X8-89,7) -0,018 0,010 -1,791 0,116 Gagal tolak 𝐻0 

h(93,45-X4)*h(X8-89,7) -0,004 0,072 -0,052 0,960 Gagal tolak 𝐻0G 

 

Berdasarkan tabel 4.10 jumlah fungsi basis signifikan ada 18 dan jumlah 

fungsi basis tidak signifikan ada 11. Berdasarkan hasil uji parsial dengan taraf 

signifikansi 5%, diperoleh bahwa sebagian fungsi basis memiliki nilai ∣ 𝑇 ∣>

1,961 atau p-value < 0,05 sehingga 𝐻0 ditolak. Hal ini menunjukkan bahwa tidak 

seluruh fungsi basis berpengaruh signifikan secara parsial, namun keberadaan 

fungsi basis yang signifikan menegaskan adanya hubungan nonlinier dan interaksi 

antarvariabel dalam model MAGPRS. 
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4.7 Interpretasi Model MAGPRS Terbaik 

Pada subbab ini akan dibahas mengenai interpretasi model MAGPRS yang 

diperoleh dari hasil estimasi. Model terbaik dipilih berdasarkan kriteria nilai GCV 

paling kecil dan nilai 𝑅2 terbesar. Model terbaik dengan kombinasi 𝐵𝐹 =

36,𝑀𝐼 = 2,𝑀𝑂 = 3. Melalui model ini, dapat dilihat bagaimana variabel-

variabel independen berpengaruh terhadap variabel dependen sesuai dengan 

tujuan penelitian. Dengan demikian, model umum MAGPRS sesuai dengan 

persamaan (2.38) dapat dituliskan sebagai berikut. 

𝜇̂ = 𝑒𝑥𝑝(4,3057 − 0,0996𝐵2 + 0,5130𝐵3 − 1,9281𝐵5 − 0,7320𝐵7

+ 1,0194𝐵8 + 0,1808𝐵11 − 26,4202𝐵12 − 0,0524𝐵13

− 0,1337𝐵14 + 0,2251𝐵15 − 0,3226𝐵16 + 0,0707𝐵17

+ 0,0576𝐵19 − 0,0884𝐵23 − 0,0181𝐵25 − 0,3340𝐵27

+ 0,2586𝐵29) 

dengan, 

𝐵1 =  𝑚𝑎𝑥(0,   92,39−𝑋1);        𝐵11 =  𝑚𝑎𝑥(0, 97,1 − 𝑋9); 𝐵21 =  𝑚𝑎𝑥(0,   𝑋3 −88.2)𝐵20; 

𝐵2 =  𝑚𝑎𝑥(0,   𝑋1 −92,39); 𝐵12 =  𝑚𝑎𝑥(0,  𝑋9 − 97,1); 𝐵22 =  𝑚𝑎𝑥(0,   90,8−𝑋3)𝐵8; 

𝐵3 =  𝑚𝑎𝑥(0,   90,09−𝑋2); 𝐵13 =  𝑚𝑎𝑥(0,  𝑋2 − 83,72) 𝐵1; 𝐵23 =  𝑚𝑎𝑥(0,   𝑋3 − 90,8)𝐵8; 

𝐵4 =  𝑚𝑎𝑥(0,   𝑋2 −90,09); 𝐵14 =  𝑚𝑎𝑥(0,   83,72−𝑋2)𝐵1; 𝐵24 =  𝑚𝑎𝑥(0,   93,45−𝑋4)𝐵10; 

𝐵5 =  𝑚𝑎𝑥(0,   86,11−𝑋4); 𝐵15 =  𝑚𝑎𝑥(0,   𝑋3 −91,3)𝐵1; 𝐵25 =  𝑚𝑎𝑥(0,   𝑋4 − 93,4)𝐵10; 

𝐵6 =  𝑚𝑎𝑥(0,   𝑋4 −86,11); 𝐵16 =  𝑚𝑎𝑥(0,   91,3 − 𝑋3)𝐵1; 𝐵26 =  𝑚𝑎𝑥(0,  94,7 − 𝑋5)𝐵20; 

𝐵7 =  𝑚𝑎𝑥(0,   𝑋5 − 95,2); 𝐵17 =  𝑚𝑎𝑥(0,   𝑋7 − 65,9)𝐵1; 𝐵27 =  𝑚𝑎𝑥(0,   𝑋5 − 94,7)𝐵20; 

𝐵8 =  𝑚𝑎𝑥(0,   𝑋8 − 83,5); 𝐵18 =  𝑚𝑎𝑥(0,   65,9−𝑋7)𝐵1; 𝐵28 =  𝑚𝑎𝑥(0,   95,7 − 𝑋5)𝐵9; 

𝐵9 =  𝑚𝑎𝑥(0,   89,7 − 𝑋8); 𝐵19 =  𝑚𝑎𝑥(0,   88,2 − 𝑋3)𝐵20; 𝐵29 =  𝑚𝑎𝑥(0,   75 − 95,7)𝐵9; 

𝐵10 =  𝑚𝑎𝑥(0,  𝑋8 − 89,7); 𝐵20 =  𝑚𝑎𝑥(0,   83,5−𝑋8);  

Berikut adalah beberapa interpretasi dari basis functions  tersebut. 

−0,0996𝐵2 = 0,0996 𝑚𝑎𝑥(0,   𝑋1 − 92.39) 

 Artinya, untuk kabupaten/kota yang memiliki persentase fasilitas tempat 

buang air besar sendiri lebih dari 92,39%, apabila fasilitas tempat buang air besar 
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sendiri bertambah 1% maka banyaknya kasus polio akan menurun sebesar 

𝑒𝑥𝑝(0,0996), jika basis functions yang lain konstan. 

0,5130𝐵3 = 0,5130𝑚𝑎𝑥(0,   90,09−𝑋2); 

 Artinya, untuk kabupaten/kota yang memiliki persentase keluarga dengan 

akses air minum yang layak kurang dari 90,09%, apabila persentase keluarga 

dengan akses air minum yang layak bertambah 1% maka banyaknya kasus polio 

akan meningkat sebesar 𝑒𝑥𝑝(0,5130 ), jika basis functions yang lain konstan. 

0,0576𝐵19 =  0,0576 𝑚𝑎𝑥(0,   88,2 − 𝑋3)𝑚𝑎𝑥(0,   83,5−𝑋8) 

Artinya, untuk kabupaten/kota yang memiliki persentase imunisasi polio 4 

kurang dari 88,2% dan persentase Desa UCI kurang  dari 74,79%, apabila 

fasilitas imunisasi polio 4 dan Desa UCI bertambah 1% maka banyaknya kasus 

polio akan meningkat sebesar 𝑒𝑥𝑝(0,0576), jika basis functions  yang lain 

konstan. 

Tidak semua variabel prediktor memberikan pengaruh signifikan terhadap 

model. Pada pembahasan ini, pengaruh variabel-variabel penyebab banyaknya 

kasus polio berdasarkan model MAGPRS dievaluasi melalui seberapa sering 

suatu variabel muncul dalam struktur model, yang ditunjukkan oleh nilai nsubsets. 

Semakin besar nilai nsubsets, semakin sering variabel tersebut digunakan dalam 

pembentukan basis functions , sehingga semakin besar kontribusinya terhadap 

model. Selain itu, penilaian pentingnya variabel juga didasarkan pada nilai GCV 

(Generalized Cross Validation) dan RSS (Residual Sum of Squares). GCV 

digunakan untuk menilai kontribusi variabel dalam meningkatkan kemampuan 

generalisasi model dengan mempertimbangkan kompleksitas model, sedangkan 



78 
 

 

 

RSS menggambarkan seberapa besar variabel tersebut berpengaruh dalam 

menurunkan kesalahan pemodelan.  

Tabel 4. 11 Tingkat Kepentingan Variabel Prediktor 
Variabel nsubsets GCV RSS 

X1 20 60,48 60,48 

X2 15 44,78 44,78 

X3 21 63,47 63,47 

X4 25 90,55 90,55 

X5 26 100 100 

X6 0 0 0 

X7 16 42,47 42,47 

X8 26 100 100 

X9 21 65,84 65,84 

 

Berdasarkan tabel 4.10, hasil analisis kepentingan variabel menggunakan 

kriteria nsubsets, Generalized Cross Validation (GCV), dan Residual Sum of 

Squares (RSS), diperoleh bahwa kontribusi masing-masing variabel prediktor 

dalam pembentukan model MAGPRS berbeda-beda. Variabel X5 dan X8 

merupakan variabel yang paling dominan, karena memiliki nilai nsubsets tertinggi 

serta nilai GCV dan RSS maksimum, yang menunjukkan bahwa kedua variabel 

tersebut paling sering terlibat dalam pembentukan fungsi basis dan memberikan 

penurunan galat model terbesar. 

Variabel X4, X3, dan X9 juga menunjukkan peran yang cukup penting, 

ditandai dengan nilai nsubsets dan kontribusi GCV serta RSS yang relatif tinggi. 

Sementara itu, variabel X1, X2, dan X7 memiliki tingkat kepentingan sedang, 

karena keterlibatannya dalam fungsi basis tidak sebanyak variabel dominan 

namun tetap berkontribusi dalam menjelaskan variasi data. 

Sebaliknya, variabel X6 tidak memberikan kontribusi terhadap model 

MAGPRS, yang ditunjukkan oleh nilai nsubsets, GCV, dan RSS sebesar nol. Hal 
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ini mengindikasikan bahwa variabel tersebut tidak terpilih dalam pembentukan 

fungsi basis dan tidak berpengaruh terhadap kinerja model. 

 

4.6 Pandangan Islam Tentang Hasil Penelitian 

Pada proses implementasi metode Multivariate Adaptive Generalized 

Poisson Regression Splines (MAGPRS), tahap pengujian model menjadi bagian 

yang sangat penting. Pada regresi Poisson terdapat asumsi dasar yang harus 

dipenuhi, yaitu nilai mean dan variansi dari variabel dependen harus sama, kondisi 

ini dikenal dengan istilah equidispersi. Namun, dalam praktiknya sering dijumpai 

ketidaksesuaian berupa overdispersi (variansi lebih besar dari mean) maupun 

underdispersi (variansi lebih kecil dari mean). Apabila data yang mengalami 

overdispersi atau underdispersi tetap dianalisis menggunakan regresi Poisson. 

Selanjutnya metode alternatif yang dapat menangani kasus ketidaksesuaian 

dispersi pada data adalah  Multivariate Adaptive Generalized Poisson Regression 

Splines (MAGPRS). Allah SWT berfirman dalam Al-Qur’an Surah Al Insyirah 

ayat 5-6 yang berbuyi (Kemenag, 2025e).  

  ٦ اِنَّ مَعَ الْعُسْرِ يُسْراًۗ  ٥ فاَِنَّ مَعَ الْعُسْرِ يُسْراًَۙ 
Artinya: 

“Maka, sesungguhnya beserta kesulitan ada kemudahan. Sesungguhnya beserta 

kesulitan ada kemudahan.” (QS. Al-Insyirah [94]: 5-6). 

 

Ayat tersebut menjelaskan mengenai janji Allah SWT terhadap umatnya 

bahwa setiap masalah terdapat jalan keluar, setiap kesempitan ada kelapangan, 

dan setiap kesulitan ada kemudahan. Seperti halnya apabila terdapat masalah 

overdispersi saat menggunakan metode regresi Poisson, maka terdapat metode 

lain yang dapat mengatasi masalah tersebut, seperti metode MAGPRS. 
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Berdasarkan hasil penelitian menggunakan metode Multivariate Adaptive 

Generalized Poisson Regression Splines (MAGPRS) variabel yang berpengaruh 

secara singnifikan terhadap model yaitu persentase rumah tangga dengan fasilitas 

tempat buang air besar sendiri, persentase keluarga dengan akses air minum layak, 

serta persentase imunisasi Polio 4. Hal ini sejalan dengan definisi sehat menurut 

World Health Organization (WHO) yang menyatakan bahwa kesehatan adalah “a 

state of complete physical, mental and social wellbeing, not merely the absence of 

disease or infirmity” atau diartikan sebagai suatu kondisi yang sempurna baik 

secara fisik, mental, dan sosial, bukan hanya bebas dari penyakit maupun 

kelemahan. Dengan demikian, kesehatan tidak hanya bermakna tidak sakit, tetapi 

juga mencakup kesejahteraan hidup secara menyeluruh.  

Sanitasi lingkungan merupakan unsur mendasar dalam menjaga kesehatan. 

Sanitasi lingkungan yang dimaksud adalah menciptakan lingkungan sehat bebas 

dari penyakit, seperti kebersihan tempat tinggal, tempat umum, tempat ibadah, 

dan lain-lain (Elkarimah, 2016). Dalam al-Qur’an juga dikisahkan bagaimana 

Nabi Ayyub diberi petunjuk oleh Allah SWT untuk memperoleh kesembuhan 

dengan menggunakan air yang bersih (Kemenag, 2025f).  

 هٰذَا مُغْتَسَلٌٌۢ بَاردٌِ وَّشَراَبٌ 
   ٤٢ ارُكُْضْ بِرجِْلِكَ 

Artinya: 

(Allah SWT berfirman,) “Entakkanlah kakimu (ke bumi)! Inilah air yang sejuk 

untuk mandi dan minum. (QS. Sad [38]: 42). 

 

Ayat ini menunjukkan bahwa ikhtiar untuk sembuh atau mencegah penyakit 

dalah perintah Allah SWT. Nabi Ayyub tidak hanya berdoa, tetapi juga 

melakukan tindakan nyata sesuai petunjuk Allah SWT, yaitu menggunakan air 

bersih untuk mandi dan minum sebagai jalan kesembuhan. Dengan demikian, 



81 
 

 

 

ikhtiar dalam menjaga kesehatan bisa dilakukan dengan berbagai cara, baik 

tradisional maupun modern. Dalam konteks saat ini, imunisasi polio adalah salah 

satu bentuk ikhtiar modern untuk mencegah penyakit, sebagaimana mandi dan 

minum air sejuk menjadi jalan kesembuhan bagi Nabi Ayyub.  

Islam tidak menolak pengobatan atau pencegahan, bahkan mendorong 

umatnya untuk berusaha. Ayat ini juga menunjukkan bahwa air memiliki peran 

penting dalam menjaga kesehatan, baik untuk kebersihan fisik maupun sebagai 

sarana penyembuhan. Maka, menjaga kualitas air dan lingkungan merupakan 

bagian dari ikhtiar manusia untuk tetap sehat, sekaligus melaksanakan perintah 

Allah SWT. Rasulullah صلى الله عليه وسلم juga menegaskan pentingnya keseimbangan hidup 

dalam sabdanya: 

ُ عَلَيْهِ وَسَلَّمَ : يَا عَبْدَ اللََِّّ ، ألََْ أَخْبََْ أنََّكَ تَصُومُ الن َّهَارَ  ، وَتَ قُومُ اللَّيْلَ ،   قاَلَ لِ رَسُولُ اللََِّّ صَلَّى اللََّّ
ا ، وَإِنَّ قُ لْتُ : بَ لَى يَا رَسُولَ اللََِّّ ، قاَلَ : فَلا تَ فْعَلْ صُمْ وَأفَْطِرْ ، وَقُمْ وَنََْ ، فإَِنَّ لَِِسَدِكَ عَلَيْكَ حَق  

 لعَِيْنِكَ عَلَيْكَ حَق ا ، وَإِنَّ لزَِوْجِكَ عَلَيْكَ حَق ا 
Artinya: 

“Dari ‘Abdullah bin ‘Amr bin al-‘Ash dia berkata bahwa Rasulullah saw. Telah 

bertanya kepadaku,“Benarkah kamu selalu berpuasa di siang hari dan dan selalu 

berjaga di malam hari?” Aku pun menjawab,“Ya (benar), ya, Rasulullah.” 

Rasulullah saw. Pun lalu bersabda,“Jangan kau lakukan semua itu. Berpuasalah 

dan berbukalah, berjagalah dan tidurlah! Sesungguhnya badanmu mempunyai 

hak atas dirimu, matamu mempunyai hak atas dirimu, dan isterimu pun 

mempunyai hak atas dirimu.” (HR. Al-Bukhari dari ‘Abdullah bin ‘Amr bin al-

‘Ash) 

 

Hadits ini mengajarkan bahwa menjaga kesehatan tubuh adalah bagian 

dari ibadah. Sama seperti menjaga sanitasi, air bersih, dan melakukan imunisasi 

polio semua itu adalah bentuk nyata menjaga amanah tubuh. Artinya, Islam 

mendorong umatnya bukan hanya beribadah ritual, tetapi juga menjaga kesehatan 

agar bisa beribadah dengan lebih baik dan menunaikan tanggung jawab sosial. 
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BAB V  

PENUTUP 

5.1 Kesimpulan 

Berdasarkan analisis yang telah dilakukan, diperoleh kesimpulan sebagai 

berikut. 

1. Metode Multivariate Adaptive Generalized Poisson Regression Splines 

(MAGPRS) yang diterapkan pada kasus banyaknya Polio di Provinsi Jawa 

Timur membentuk sebuah model terbaik dengan kombinasi 𝐵𝐹 = 36,𝑀𝐼 =

2,𝑀𝑂 = 3. Dengan demikian, model umum MAGPRS sesuai dengan dapat 

dituliskan sebagai berikut. 

𝜇̂ = 𝑒𝑥𝑝(4,3057 − 0,0996𝐵2 + 0,5130𝐵3 − 1,9281𝐵5 − 0,7320𝐵7

+ 1,0194𝐵8 + 0,1808𝐵11 − 26,4202𝐵12 − 0,0524𝐵13

− 0,1337𝐵14 + 0,2251𝐵15 − 0,3226𝐵16 + 0,0707𝐵17

+ 0,0576𝐵19 − 0,0884𝐵23 − 0,0181𝐵25 − 0,3340𝐵27

+ 0,2586𝐵29) 

2. Model terbaik yang digunakan untuk memodelkan banyaknya kasus polio di 

Jawa Timur tahun 2023 ialah model MAGPRS dengan kombinasi 𝐵𝐹 =

36,𝑀𝐼 = 2,𝑀𝑂 = 3. Setelah dilakukan backward stepwise, fungsi basis 

model tersebut menjadi 29, di mana hanya 18 fungsi basis yang signifikan 

terhadap model sesuai hasil uji parsial. Variabel prediktor yang paling 

berpengaruh terhadap model secara berurutan adalah persentase kunjungan 

Neonatal 1 kali, persentase Desa UCI, persentase balita memiliki buku KIA, 

persentase imunisasi Polio 4, persentase pemberian vitamin A, persentase 

rumah tangga dengan fasilitas tempat buang air besar sendiri, persentase 

akses air minum layak, serta persentase pemberian ASI ekslusif. 
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5.2 Saran 

Saran yang dapat direkomendasikan untuk penelitian selanjutnya adalah 

menambahkan atau mengkaji variabel-variabel lain yang berpotensi memengaruhi 

banyaknya kasus polio sehingga diperoleh model yang lebih baik. Berdasarkan 

hasil penelitian ini, variabel prediktor yang paling berpengaruh terhadap model 

secara berurutan adalah persentase rumah tangga dengan fasilitas tempat buang air 

besar sendiri, persentase keluarga dengan akses air minum layak, serta persentase 

imunisasi Polio 4. Oleh karena itu, penelitian berikutnya dapat memperdalam 

analisis terhadap variabel-variabel tersebut sekaligus mempertimbangkan faktor 

lain yang relevan.  
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LAMPIRAN 

Lampiran 1. Data 

No Kabupaten/ Kota Y X1 X2 X3 X4 X5 X6 X7 X8 X9 

1 KAB. PACITAN 2 92.39 95.71 92.1 92.55 86.9 85.9 56.5 74.4 81.9 

2 KAB. PONOROGO 3 89.64 98.78 85.3 100 89.5 88.3 84.2 70.7 68.9 

3 KAB. TRENGGALEK 2 84.5 67.71 89.7 99.78 95 93.1 60.9 81.5 91.8 

4 KAB. TULUNGAGUNG 11 91.3 100 93.3 86.12 97.8 97.4 62 86.7 94.8 

5 KAB. BLITAR 10 89.13 85.94 83.3 86.11 82.3 81.8 57.3 100 92 

6 KAB. KEDIRI 16 90.84 71.43 88.8 83.41 82.3 81.2 71.4 90.7 88.5 

7 KAB. MALANG 8 92.89 87.69 90.8 97.97 98 97.4 68.6 89.7 93 

8 KAB. LUMAJANG 11 85.34 92.52 91.3 93.45 98.4 95.5 59.1 84.4 92.7 

9 KAB. JEMBER 9 70.3 78.26 91.4 82.34 95.7 94.7 67 48 83.6 

10 KAB. BANYUWANGI 16 86.08 100 96.2 90.59 93.5 91 82 89.4 95.5 

11 KAB. BONDOWOSO 8 53.24 95.96 107.7 96.99 95.2 94.5 82.6 98.6 102.8 

12 KAB. SITUBONDO 15 57.47 74.79 82.6 88.56 101 97.4 137.2 84.6 98.4 

13 KAB. PROBOLINGGO 11 72.97 79.59 92.7 97.23 101.7 98.5 65.9 77.6 93.9 

14 KAB. PASURUAN 14 89.77 60.3 94.1 90.14 104.9 102.2 77.8 79.5 97.5 

15 KAB. SIDOARJO 17 95.45 48.78 101.3 99.75 104.7 103.6 77 100 95.4 

16 KAB. MOJOKERTO 11 85.99 100 88.7 86.37 92.6 91.9 81.8 89.1 84.1 

17 KAB. JOMBANG 18 90.53 98.92 82.9 95.38 94.9 93.9 98.3 73.2 89.2 

18 KAB. NGANJUK 4 87.91 74.17 88.8 74.77 87.9 86.7 41.1 92.6 86 

19 KAB. MADIUN 5 87.66 90.09 88.2 93.84 91.6 91.5 73.4 83.5 83.3 
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20 KAB. MAGETAN 3 90.32 100 84.4 83.43 92.9 91.9 57.2 81.3 97.1 

21 KAB. NGAWI 14 85.09 100 89.1 99.93 92 91.2 59.6 100 86.5 

22 KAB. BOJONEGORO 8 91.16 68.63 93.2 93.67 95.4 92.7 95.5 94.7 97.7 

23 KAB. TUBAN 3 87.4 100 93.4 78.89 97.6 96.8 82.3 80.8 95.7 

24 KAB. LAMONGAN 10 93.28 100 91.6 94.11 101.6 100.3 75.9 90.9 95.7 

25 KAB. GRESIK 14 95.66 100 98.3 85.13 93.1 91.5 78.9 78.9 90.5 

26 KAB. BANGKALAN 15 82.48 89.52 69.5 85.4 100 89.7 49.4 34.2 56 

27 KAB. SAMPANG 17 80.34 100 88.6 115.66 106 103.4 40.5 54.3 84 

28 KAB. PAMEKASAN 8 80.08 83.72 88.8 116.13 104.1 101.2 73.2 77.2 84.7 

29 KAB. SUMENEP 32 69.22 95.12 100.7 109.97 102.2 101.6 80.8 87.7 92 

30 KOTA KEDIRI 5 86.28 100 89.6 127.11 94.7 92.7 65.4 100 81.1 

31 KOTA BLITAR 10 88.15 100 95.1 117.64 103.2 99.7 84.7 100 91.3 

32 KOTA MALANG 15 92.8 100 87.7 113.03 102.7 100.7 81.3 73.7 70.7 

33 KOTA PROBOLINGGO 5 86.21 100 79.1 97.78 89.3 83.1 34.7 82.8 76.4 

34 KOTA PASURUAN 6 89.01 100 87.8 111.89 100.7 100 73.1 100 87.2 

35 KOTA MOJOKERTO 3 92.49 100 98.4 123.61 101.1 101.1 90 100 70.4 

36 KOTA MADIUN 2 89.66 100 97.9 125.24 103.8 101.3 72.1 100 90.2 

37 KOTA SURABAYA 73 84.21 100 100.5 125.19 105.1 104.8 81.9 100 95 

38 KOTA BATU 5 93.72 100 88.6 101.87 91.3 90.3 73.3 58.3 83.1 
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Lampiran 2. 38 Data (Uji Equdispersi)  

No 𝝁̂𝒊 𝑽𝒊 No 𝝁̂𝒊 𝑽𝒊 

1 6.251 2.571 20 8.338 3.057 

2 6.559 1.474 21 7.469 3.836 

3 9.349 5.563 22 10.914 0.045 

4 10.776 -1.016 23 11.804 6.312 

5 4.313 5.180 24 13.875 0.361 

6 4.486 25.981 25 9.911 0.274 

7 11.242 0.224 26 4.510 21.077 

8 10.566 -1.023 27 18.072 -0.877 

9 10.128 -0.763 28 15.990 3.493 

10 10.932 0.886 29 20.114 5.433 

11 17.459 4.666 30 10.456 2.369 

12 17.182 -0.596 31 17.711 2.792 

13 13.931 -0.173 32 12.330 -0.639 

14 14.616 -0.932 33 4.234 -1.042 

15 13.880 -0.524 34 12.637 3.011 

16 7.594 0.079 35 13.218 7.672 

17 11.746 1.797 36 19.030 15.135 

18 3.917 -1.019 37 25.558 85.211 

19 7.608 0.237 38 10.340 2.274 

 

Lampiran 3. 36 Data (Uji Equdispersi)  

No 𝝁̂𝒊 𝑽𝒊 No 𝝁̂𝒊 𝑽𝒊 

1 6,883 3,173 19 7,566 0,209 

2 7,280 2,104 20 9,237 3,887 

3 8,811 5,038 21 6,358 6,984 

4 9,374 -0,891 22 11,989 0,660 

5 6,365 0,505 23 11,465 5,989 

6 7,591 7,209 24 10,766 -0,874 

7 9,052 -0,762 25 10,179 0,059 

8 9,789 -0,974 26 14,609 -1,016 

9 10,002 -0,799 27 8,719 5,915 

10 9,837 2,235 28 9,477 -0,614 

11 7,258 -1,026 29 5,661 -0,806 

12 16,172 -0,843 30 9,550 -1,026 

13 10,644 -1,022 31 8,899 2,497 

14 14,743 -0,912 32 7,244 0,005 

15 11,548 1,101 33 7,625 -0,441 

16 8,424 -0,518 34 6,391 1,330 

17 10,716 3,272 35 7,985 4,235 

18 7,379 1,006 36 8,404 0,784 
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Lampiran 4. Output Uji Distribusi Poisson 

 
 

Lampiran 5. Output R Uji Equidispersi (38 Data) 

 
 

Lampiran 6. Output R Uji Equidispersi (36 Data) 

 
 

Lampiran 7. Output Matriks Bobot WLS (38 Data)  
              [,1] 
 [1,] 9.881850e-04 
 [2,] 4.778766e-04 
 [3,] 3.393065e-04 
 [4,] 1.595667e-05 
 [5,] 2.718026e-05 
 [6,] 5.914047e-06 
 [7,] 4.729080e-05 
 [8,] 1.882384e-05 
 [9,] 4.550981e-05 
 [10,] 8.413041e-06 
 [11,] 5.145946e-05 
 [12,] 6.787076e-06 
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[13,] 3.140206e-05 
[14,] 1.203193e-05 
[15,] 5.111297e-06 
[16,] 2.261310e-05 
[17,] 4.387987e-06 
[18,] 3.678980e-04 
[19,] 2.678242e-04 
[20,] 7.525011e-04 
[21,] 5.896283e-06 
[22,] 3.934500e-05 
[23,] 8.244620e-04 
[24,] 2.623538e-05 
[25,] 6.614628e-06 
[26,] 7.285577e-06 
[27,] 5.059344e-06 
[28,] 2.804200e-05 
[29,] 6.228566e-07 
[30,] 2.739522e-04 
[31,] 6.771035e-05 
[32,] 9.543704e-06 
[33,] 3.645612e-04 
[34,] 1.302241e-04 
[35,] 3.068994e-04 
[36,] 5.388546e-04 
[37,] 6.388492e-08 
[38,] 1.936681e-04 

 

Lampiran 8. Output Parameter MAGPRS (38 Data) 

nilai_nk_magprs nilai_degree_magprs nilai_minspan_magprs nilai_gcv_magprs 

nilai_rsq_magprs 

1               18                   1                    0     2.848615e-04        0.6843791 

2               18                   1                    1     2.057403e-04        0.7720438 

3               18                   1                    2     2.121251e-04        0.7649696 

4               18                   1                    3     3.223124e-04        0.6428842 

5               18                   2                    0     3.850720e-04        0.5733478 

6               18                   2                    1     2.896535e-04        0.6790696 

7               18                   2                    2     1.553479e-04        0.8278776 

8               18                   2                    3     1.691648e-04        0.8125688 

9               18                   3                    0     3.847442e-04        0.5737110 

10              18                   3                    1     3.027089e-04        0.6646045 

11              18                   3                    2     1.476708e-04        0.8363837 

12              18                   3                    3     2.292247e-04        0.7460235 

13              27                   1                    0     1.443840e-04        0.8400254 

14              27                   1                    1     1.029057e-04        0.8859826 

15              27                   1                    2     1.329885e-04        0.8526514 

16              27                   1                    3     1.383641e-04        0.8466953 

17              27                   2                    0     1.492353e-04        0.8346502 

18              27                   2                    1     1.426262e-04        0.8419729 

19              27                   2                    2     3.355439e-05        0.9628224 

20              27                   2                    3     9.727565e-05        0.8922205 

21              27                   3                    0     1.844294e-04        0.7956559 
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22              27                   3                    1     3.042463e-05        0.9662901 

23              27                   3                    2     6.330531e-05        0.9298590 

24              27                   3                    3     4.802596e-05        0.9467882 

25              36                   1                    0     8.355676e-05        0.9074208 

26              36                   1                    1     4.989039e-05        0.9447224 

27              36                   1                    2     6.459273e-05        0.9284325 

28              36                   1                    3     6.831908e-05        0.9243038 

29              36                   2                    0     1.067638e-04        0.8817078 

30              36                   2                    1     5.873196e-05        0.9349261 

31              36                   2                    2     4.458039e-06        0.9950606 

32              36                   2                    3     5.752043e-06        0.9936268 

33              36                   3                    0     8.247668e-05        0.9086175 

34              36                   3                    1     1.246863e-05        0.9861850 

35              36                   3                    2     2.739141e-05        0.9696509 

36              36                   3                    3     1.224879e-05        0.9864286 

 

Lampiran 9. Error (Residual) MAGPRS (38 Data) 

𝒊 𝒚𝒊 𝒚𝒊̂ 𝒆𝒊 

1 2 0.6878 1.3122 

2 3 1.1154 1.8846 

3 2 0.8336 1.1664 

4 11 2.2884 8.7116 

5 10 2.3168 7.6832 

6 16 2.8216 13.1784 

7 8 2.0567 5.9433 

8 11 2.3682 8.6318 

9 9 2.1967 6.8033 

10 16 2.6492 13.3508 

11 8 2.0476 5.9524 

12 15 2.7118 12.2882 

13 11 2.4520 8.5480 

14 14 2.7392 11.2608 

15 17 2.7917 14.2083 

16 11 2.3598 8.6402 

17 18 2.6039 15.3961 

18 4 1.3883 2.6117 

19 5 1.5901 3.4099 

20 3 1.0986 1.9014 

21 14 3.1589 10.8411 

22 8 2.0987 5.9013 

23 3 1.0938 1.9062 

24 10 2.0497 7.9503 

25 14 2.8432 11.1568 



94 
 

 

 

26 15 2.7086 12.2914 

27 17 2.8443 14.1557 

28 8 1.8850 6.1150 

29 32 3.5813 28.4187 

30 5 1.5657 3.4343 

31 10 2.3479 7.6521 

32 15 2.8123 12.1877 

33 5 1.5916 3.4084 

34 6 1.7942 4.2058 

35 3 1.1106 1.8894 

36 2 0.7101 1.2899 

37 73 3.2451 69.7549 

38 5 1.6025 3.3975 
 

Lampiran 10. Output Estimasi Parameter MAGPRS (38 Data) 
                               Y 
(Intercept)              -10.3495592 
h(92.39-X1)               -0.0904288 
h(X1-92.39)               -0.0951342 
h(X3-94.1)                 0.3278479 
h(X4-85.4)                 0.0671756 
h(X5-92.9)                -0.0129894 
h(101.3-X6)               -0.1374093 
h(X6-101.3)                1.1161375 
h(81.9-X7)                -0.0053744 
h(X7-81.9)                 0.0050076 
h(X8-54.3)                 0.4391471 
h(81.5-X8)                 0.1222880 
h(X8-81.5)                -0.4173011 
h(92.39-X1) * h(X5-95)     0.0136625 
h(92.39-X1) * h(95-X5)     0.0146524 
h(86.28-X1) * h(81.5-X8)   0.0203847 
h(X1-86.28) * h(81.5-X8)   0.0362490 
h(85.94-X2) * h(X8-81.5)   0.0011963 
h(X2-85.94) * h(X8-81.5)   0.0050510 
h(88.7-X3) * h(X8-81.5)   -0.0179245 
h(X3-88.7) * h(X8-81.5)   -0.0057687 
h(86.37-X4) * h(X8-54.3)  -0.0029967 
h(X4-86.37) * h(X8-54.3)  -0.0024298 
h(95.7-X5) * h(101.3-X6)  -0.0004472 
h(X5-95.7) * h(101.3-X6)   0.0717507 
h(99.7-X6) * h(X8-81.5)   -0.0010466 
h(X6-99.7) * h(X8-81.5)   -0.0473860 
h(100-X6) * h(X8-54.3)     0.0060827 
h(X6-100) * h(X8-54.3)     0.0048528 
h(65.9-X7) * h(81.5-X8)    0.0027050 
h(X7-65.9) * h(81.5-X8)    0.0094110 
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Lampiran 11. Output Matriks Bobot WLS (36 Data) 
              [,1] 
 [1,] 1.054814e-02 
 [2,] 3.512475e-03 
 [3,] 1.301992e-02 
 [4,] 1.664442e-04 
 [5,] 1.844205e-04 
 [6,] 4.397960e-05 
 [7,] 4.544484e-04 
 [8,] 1.078998e-04 
 [9,] 4.739656e-04 
[10,] 4.195756e-05 
[11,] 3.524652e-04 
[12,] 4.062225e-05 
[13,] 1.600843e-04 
[14,] 6.753544e-05 
[15,] 3.787788e-05 
[16,] 2.010738e-04 
[17,] 2.704595e-05 
[18,] 1.861340e-03 
[19,] 1.666102e-03 
[20,] 3.117291e-03 
[21,] 7.126442e-05 
[22,] 3.262619e-04 
[23,] 3.026454e-03 
[24,] 1.885029e-04 
[25,] 6.583907e-05 
[26,] 5.435196e-05 
[27,] 3.702196e-05 
[28,] 3.334548e-04 
[29,] 1.368212e-03 
[30,] 1.935518e-04 
[31,] 5.612455e-05 
[32,] 1.502412e-03 
[33,] 6.587639e-04 
[34,] 3.731679e-03 
[35,] 2.209026e-02 
[36,] 1.567832e-03 

 

Lampiran 12. Output Parameter MAGPRS (36 Data) 

nilai_nk_magprs nilai_degree_magprs nilai_minspan_magprs nilai_gcv_magprs 

nilai_rsq_magprs 

1               18                   1                    0     1.477957e-03        0.8110809 

2               18                   1                    1     1.839289e-03        0.7648939 

3               18                   1                    2     1.711607e-03        0.7812148 

4               18                   1                    3     1.286031e-03        0.8356138 

5               18                   2                    0     2.392355e-03        0.6941986 

6               18                   2                    1     2.769376e-03        0.6460061 

7               18                   2                    2     1.288176e-03        0.8353396 

8               18                   2                    3     8.243805e-04        0.8946240 

9               18                   3                    0     2.888846e-03        0.6307349 
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10              18                   3                    1     1.447107e-03        0.8150243 

11              18                   3                    2     1.392457e-03        0.8220100 

12              18                   3                    3     7.947148e-04        0.8984160 

13              27                   1                    0     8.803799e-04        0.8874659 

14              27                   1                    1     1.000565e-03        0.8721033 

15              27                   1                    2     4.999666e-04        0.9360920 

16              27                   1                    3     6.125297e-04        0.9217037 

17              27                   2                    0     4.369219e-04        0.9441507 

18              27                   2                    1     1.651140e-03        0.7889439 

19              27                   2                    2     7.073112e-04        0.9095883 

20              27                   2                    3     1.617056e-04        0.9793301 

21              27                   3                    0     7.471775e-04        0.9044925 

22              27                   3                    1     7.563041e-04        0.9033259 

23              27                   3                    2     5.043525e-04        0.9355314 

24              27                   3                    3     1.947566e-04        0.9751053 

25              36                   1                    0     5.688308e-04        0.9272895 

26              36                   1                    1     5.838772e-04        0.9253662 

27              36                   1                    2     1.411465e-04        0.9819580 

28              36                   1                    3     2.850330e-04        0.9635658 

29              36                   2                    0     1.532352e-04        0.9804128 

30              36                   2                    1     7.192994e-04        0.9080560 

31              36                   2                    2     1.820902e-04        0.9767244 

32              36                   2                    3     3.809484e-05        0.9951305 

33              36                   3                    0     2.033975e-04        0.9740008 

34              36                   3                    1     5.112605e-04        0.9346484 

35              36                   3                    2     1.603946e-04        0.9794977 

36              36                   3                    3     1.213503e-04        0.9844885 

 

Lampiran  13. Error (Residual) MAGPRS (36 Data) 

𝒊 𝒚𝒊 𝒚𝒊̂ 𝒆𝒊 

1 2 0,7087335 1,291267 

2 3 1,0915613 1,908439 

3 2 0,6930515 1,306949 

4 11 2,1522601 8,847740 

5 10 2,0769416 7,923058 

6 16 2,098443 13,901557 

7 8 2,0838035 5,916197 

8 11 1,6531301 9,346870 

9 9 2,1388814 6,861119 

10 16 2,6348294 13,365171 

11 8 2,0778696 5,922130 

12 15 2,6534171 12,346583 

13 11 2,5783149 8,421685 

14 14 2,7803272 11,219673 

15 17 2,7299362 14,270064 



97 
 

 

 

16 11 2,3521018 8,647898 

17 18 3,3002349 14,699765 

18 4 1,4096102 2,590390 

19 5 1,6861606 3,313839 

20 3 1,0661287 1,933871 

21 14 3,0128886 10,987111 

22 8 2,1180466 5,881953 

23 3 1,1124661 1,887534 

24 10 2,3811384 7,618862 

25 14 2,6480988 11,351901 

26 15 2,7192861 12,280714 

27 17 2,7318918 14,268108 

28 8 2,0824775 5,917523 

29 5 1,5623828 3,437617 

30 10 2,1753972 7,824603 

31 15 2,2166654 12,783335 

32 5 1,6359381 3,364062 

33 6 1,8402661 4,159734 

34 3 1,082852 1,917148 

35 2 0,7029609 1,297039 

36 5 1,6258405 3,374160 
 

Lampiran  14. Output BHHH Parameter Dispersi 
=======================================  
Estimasi Omega Kecil  
=======================================  
 estimate std.error z_value  
teta  4.729505   0.0008284182   5709.079  
=======================================  

 

Lampiran  15. Output Hasil Uji Simultan 
========================================================  
 Uji Serentak MAGPRS  
========================================================  
G kuadrat Daerah_Kritis Kesimpulan  
8505.84   42.55697   Tolak H0 dengan alfa 5%  
========================================================  
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Lampiran  16. Output Estimasi Parameter dan Hasil Uji Parsial 
Call: 
glm(formula = Yexp ~ bx_magprs[, -1]) 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.04438  -0.30912   0.01545   0.29001   1.57343   
 
Coefficients: 
                                         Estimate Std. Error t value Pr(>|t|)     
(Intercept)                              4.305739   2.977050   2.446 0.000256***     
bx_magprs[, -1]h(X1-92.39)              -0.099651   0.599119  -0.166 0.000001***     
bx_magprs[, -1]h(92.39-X1)              -0.137607   0.182881  -0.752 0.476323     
bx_magprs[, -1]h(92.39-X1)*h(X2-83.72)  -0.052408   0.020103  -2.607 0.035069 *   
bx_magprs[, -1]h(92.39-X1)*h(83.72-X2)  -0.133780   0.029708  -4.503 0.002788 **  
bx_magprs[, -1]h(92.39-X1)*h(X3-91.3)    0.225152   0.047137   4.777 0.002020 **  
bx_magprs[, -1]h(92.39-X1)*h(91.3-X3)   -0.322660   0.073779  -4.373 0.003261 **  
bx_magprs[, -1]h(X9-97.1)              -26.420197   3.922475  -6.736 0.000269 *** 
bx_magprs[, -1]h(97.1-X9)                0.180849   0.058616   3.085 0.017683 *   
bx_magprs[, -1]h(X8-89.7)                0.196354   0.620164   0.317 0.760768     
bx_magprs[, -1]h(89.7-X8)                0.633438   0.141167   4.487 0.002842 **  
bx_magprs[, -1]h(X4-86.11)              -0.184506   0.101814  -1.812 0.112855   
bx_magprs[, -1]h(86.11-X4)              -1.928126   0.273485  -7.050 0.000202 *** 
bx_magprs[, -1]h(X5-95.7)*h(89.7-X8)     0.258648   0.070498   3.669 0.007976 **  
bx_magprs[, -1]h(95.7-X5)*h(89.7-X8)     0.013775   0.108579   0.127 0.902611     
bx_magprs[, -1]h(X8-83.5)                1.019489   0.457812   2.227 0.061253 .   
bx_magprs[, -1]h(X5-94.7)*h(83.5-X8)    -0.334050   0.081864  -4.081 0.004686 **  
bx_magprs[, -1]h(94.7-X5)*h(83.5-X8)    -0.278637   0.178329  -1.562 0.162146     
bx_magprs[, -1]h(X3-90.8)*h(X8-83.5)    -0.088441   0.024579  -3.598 0.008761 **  
bx_magprs[, -1]h(90.8-X3)*h(X8-83.5)    -0.082436   0.064307  -1.282 0.240695     
bx_magprs[, -1]h(X5-95.2)               -0.732064   0.213354  -3.431 0.010967 *   
bx_magprs[, -1]h(92.39-X1)*h(X7-65.9)    0.070716   0.009027   7.834 0.000104 *** 
bx_magprs[, -1]h(92.39-X1)*h(65.9-X7)    0.116795   0.022635   5.160 0.001310 **  
bx_magprs[, -1]h(X2-90.09)               0.333949   0.159441   2.094 0.074474 .   
bx_magprs[, -1]h(90.09-X2)               0.513050   0.106200   4.831 0.001897 **  
bx_magprs[, -1]h(X3-88.2)*h(83.5-X8)     0.055586   0.039806   1.396 0.205276     
bx_magprs[, -1]h(88.2-X3)*h(83.5-X8)     0.057645   0.019046   3.027 0.019207 *   
bx_magprs[, -1]h(X4-93.45)*h(X8-89.7)   -0.018144   0.010131  -1.791 0.116428     

bx_magprs[, -1]h(93.45-X4)*h(X8-89.7)   -0.003764   0.071715  -0.052 0.959607     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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GLM (family poisson, link log): 
   nulldev df         dev df   devratio     AIC iters converged 
 0.0654107 35 0.000254841  7      0.996    58.2     3         1 
 
Earth selected 29 of 29 terms, and 8 of 9 predictors 
Termination condition: RSq changed by less than 0.001 at 29 terms 
Importance: X5, X8, X4, X9, X3, X1, X7, X2, X6-unused 
Weights: 0.01054814, 0.003512475, 0.01301992, 0.0001664442, 0.0001844205, 4.39796e-0... 
Number of terms at each degree of interaction: 1 12 16 
Earth GCV 3.809484e-05    RSS 0.001371414    GRSq 0.9951305    RSq 0.9951305 
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Lampiran 17. Syntax Estimasi Parameter MAGPRS 
library(readxl) 

library (car) 

library (lmtest) 

library (zoo) 

install.packages("AER") 

library (AER) 

data <- read_excel("Olahdata36.xlsx") 

View(data) 

data_dis <- glm(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,data = data, family =poisson) 

data_dis 

#Syntax uji equidispersi 

dispersiontest(data_dis) 

#Program MAGPRS 

install.packages("TeachingDemos") 

library(earth) 

#MARS 

PsMars18.1.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=18, 

minspan=0,endspan=0, degree=1, penalty=-1,glm=list(family=poisson)) 

PsMars18.1.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=18,minspan=1,endspan=1, degree=1, penalty=-1,glm=list(family=poisson)) 

PsMars18.1.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=18,minspan=2,endspan=2, degree=1, penalty=-1,glm=list(family=poisson)) 

PsMars18.1.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=18,minspan=3,endspan=3, degree=1, penalty=-1,glm=list(family=poisson)) 

 

PsMars18.2.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=18,minspan=0,endspan=0, degree=2, penalty=-1,glm=list(family=poisson)) 

PsMars18.2.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=18,minspan=1,endspan=1, degree=2, penalty=-1,glm=list(family=poisson)) 

PsMars18.2.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=18,minspan=2,endspan=2, degree=2, penalty=-1,glm=list(family=poisson)) 

PsMars18.2.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=18,minspan=3,endspan=3, degree=2, penalty=-1,glm=list(family=poisson)) 

 

PsMars18.3.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=18,minspan=0,endspan=0, degree=3, penalty=-1,glm=list(family=poisson)) 

PsMars18.3.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=18,minspan=1,endspan=1, degree=3, penalty=-1,glm=list(family=poisson)) 

PsMars18.3.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=18, 

minspan=2,endspan=2, degree=3, penalty=-1,glm=list(family=poisson)) 

PsMars18.3.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=18,minspan=3,endspan=3, degree=3, penalty=-1,glm=list(family=poisson)) 

 

PsMars27.1.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=0,endspan=0, degree=1, penalty=-1,glm=list(family=poisson)) 

PsMars27.1.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=1,endspan=1, degree=1, penalty=-1,glm=list(family=poisson)) 

PsMars27.1.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=2,endspan=2, degree=1, penalty=-1,glm=list(family=poisson)) 

PsMars27.1.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=3,endspan=3, degree=1, penalty=-1,glm=list(family=poisson)) 

 

PsMars27.2.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=0,endspan=0, degree=2, penalty=-1,glm=list(family=poisson)) 

PsMars27.2.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=1,endspan=1, degree=2, penalty=-1,glm=list(family=poisson)) 

PsMars27.2.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=2,endspan=2, degree=2, penalty=-1,glm=list(family=poisson)) 

PsMars27.2.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=3,endspan=3, degree=2, penalty=-1,glm=list(family=poisson)) 

 

PsMars27.3.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=0,endspan=0, degree=3, penalty=-1,glm=list(family=poisson)) 
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PsMars27.3.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=1,endspan=1, degree=3, penalty=-1,glm=list(family=poisson)) 

PsMars27.3.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=2,endspan=2, degree=3, penalty=-1,glm=list(family=poisson)) 

PsMars27.3.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27,minspan=3,endspan=3, degree=3, penalty=-1,glm=list(family=poisson)) 

 

PsMars36.1.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=0,endspan=0, degree=1, penalty=-1,glm=list(family=poisson)) 

PsMars36.1.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=1,endspan=1, degree=1, penalty=-1,glm=list(family=poisson)) 

PsMars36.1.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=2,endspan=2, degree=1, penalty=-1,glm=list(family=poisson)) 

PsMars36.1.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=3,endspan=3, degree=1, penalty=-1,glm=list(family=poisson)) 

 

PsMars36.2.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=0,endspan=0, degree=2, penalty=-1,glm=list(family=poisson)) 

PsMars36.2.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=1,endspan=1, degree=2, penalty=-1,glm=list(family=poisson)) 

PsMars36.2.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=2,endspan=2, degree=2, penalty=-1,glm=list(family=poisson)) 

PsMars36.2.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=3,endspan=3, degree=2, penalty=-1,glm=list(family=poisson)) 

 

PsMars36.3.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=0,endspan=0, degree=3, penalty=-1,glm=list(family=poisson)) 

PsMars36.3.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=1,endspan=1, degree=3, penalty=-1,glm=list(family=poisson)) 

PsMars36.3.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=2,endspan=2, degree=3, penalty=-1,glm=list(family=poisson)) 

PsMars36.3.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=36, minspan=3,endspan=3, degree=3, penalty=-1,glm=list(family=poisson)) 

 

#Nilai nk MARS 

nilai_nk = c(PsMars18.1.0$nk, PsMars18.1.1$nk, PsMars18.1.2$nk, 

            PsMars18.1.3$nk, 

            PsMars18.2.0$nk, PsMars18.2.1$nk, PsMars18.2.2$nk, 

            PsMars18.2.3$nk, 

            PsMars18.3.0$nk, PsMars18.3.1$nk, PsMars18.3.2$nk, 

            PsMars18.3.3$nk, 

            PsMars27.1.0$nk, PsMars27.1.1$nk, PsMars27.1.2$nk, 

            PsMars27.1.3$nk, 

            PsMars27.2.0$nk, PsMars27.2.1$nk, PsMars27.2.2$nk, 

            PsMars27.2.3$nk, 

            PsMars27.3.0$nk, PsMars27.3.1$nk, PsMars27.3.2$nk, 

            PsMars27.3.3$nk, 

            PsMars36.1.0$nk, PsMars36.1.1$nk, PsMars36.1.2$nk, 

            PsMars36.1.3$nk, 

            PsMars36.2.0$nk, PsMars36.2.1$nk, PsMars36.2.2$nk, 

            PsMars36.2.3$nk, 

            PsMars36.3.0$nk, PsMars36.3.1$nk, PsMars36.3.2$nk, 

            PsMars36.3.3$nk) 

 

#Nilai degree MARS 

nilai_degree = c(1,1,1,1,2,2,2,2,3,3,3,3,1,1,1,1,2,2,2,2,3,3,3,3,1,1,1,1,2,2,2,2,3,3,3,3) 

#Nilai minspan MARS 

nilai_minspan = c(0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3) 

#Nilai GCV MARS 

nilai_gcv = c(PsMars18.1.0$gcv, PsMars18.1.1$gcv, PsMars18.1.2$gcv, 

              PsMars18.1.3$gcv, 

              PsMars18.2.0$gcv, PsMars18.2.1$gcv, PsMars18.2.2$gcv, 

              PsMars18.2.3$gcv, 

              PsMars18.3.0$gcv, PsMars18.3.1$gcv, PsMars18.3.2$gcv 
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minspan=2,endspan=2, degree=2, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs18.2.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=18, 

minspan=3,endspan=3, degree=2, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

 

PsMagprs18.3.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=18, 

minspan=0,endspan=0, degree=3, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs18.3.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=18, 

minspan=1,endspan=1, degree=3, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs18.3.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=18, 

minspan=2,endspan=2, degree=3, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs18.3.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=18, 

minspan=3,endspan=3, degree=3, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

 

PsMagprs27.1.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=27, 

minspan=0,endspan=0, degree=1, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs27.1.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=27, 

minspan=1,endspan=1, degree=1, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs27.1.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=27, 

minspan=2,endspan=2, degree=1, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs27.1.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, 

nk=27, minspan=3,endspan=3, degree=1, penalty=-1,glm=list(family=poisson), nk=36, 

minspan=2,endspan=2, degree=2, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs36.2.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=3,endspan=3, degree=2, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

 

PsMagprs36.3.0 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=0,endspan=0, degree=3, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs36.3.1 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=1,endspan=1, degree=3, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs36.3.2 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=2,endspan=2, degree=3, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

PsMagprs36.3.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=3,endspan=3, degree=3, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) 

 

#Nilai nk MAGPRS 

nilai_nk_magprs = c(PsMagprs18.1.0$nk, PsMagprs18.1.1$nk, 

                    PsMagprs18.1.2$nk, PsMagprs18.1.3$nk, 

                    PsMagprs18.2.0$nk, PsMagprs18.2.1$nk, 

                    PsMagprs18.2.2$nk, PsMagprs18.2.3$nk, 

                    PsMagprs18.3.0$nk, PsMagprs18.3.1$nk, 

                    PsMagprs18.3.2$nk, PsMagprs18.3.3$nk, 

                    PsMagprs27.1.0$nk, PsMagprs27.1.1$nk, 

                    PsMagprs27.1.2$nk, PsMagprs27.1.3$nk, 

                    PsMagprs27.2.0$nk, PsMagprs27.2.1$nk, 

                    PsMagprs27.2.2$nk, PsMagprs27.2.3$nk, 

                    PsMagprs27.3.0$nk, PsMagprs27.3.1$nk, 

                    PsMagprs27.3.2$nk, PsMagprs27.3.3$nk, 

                    PsMagprs36.1.0$nk, PsMagprs36.1.1$nk, 

                    PsMagprs36.1.2$nk, PsMagprs36.1.3$nk, 
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                    PsMagprs36.2.0$nk, PsMagprs36.2.1$nk, 

                    PsMagprs36.2.2$nk, PsMagprs36.2.3$nk, 

                    PsMagprs36.3.0$nk, PsMagprs36.3.1$nk, 

                    PsMagprs36.3.2$nk, PsMagprs36.3.3$nk) 

#Nilai degree MAGPRS 

nilai_degree_magprs = 

  c(1,1,1,1,2,2,2,2,3,3,3,3,1,1,1,1,2,2,2,2,3,3,3,3,1,1,1,1,2,2,2,2,3, 

    3,3,3) 

#Nilai Minspan MAGRPS 

nilai_minspan_magprs = 

  c(0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0, 

    1,2,3) 

#Nilai GCV MAGPRS 

nilai_gcv_magprs = c(PsMagprs18.1.0$gcv, PsMagprs18.1.1$gcv, 

  PsMagprs18.1.2$gcv, PsMagprs18.1.3$gcv, 

                     PsMagprs18.2.0$gcv, PsMagprs18.2.1$gcv, 

                     PsMagprs18.2.2$gcv, PsMagprs18.2.3$gcv, 

                     PsMagprs18.3.0$gcv, PsMagprs18.3.1$gcv, 

                     PsMagprs18.3.2$gcv, PsMagprs18.3.3$gcv, 

                     PsMagprs27.1.0$gcv, PsMagprs27.1.1$gcv, 

                     PsMagprs27.1.2$gcv, PsMagprs27.1.3$gcv, 

                     PsMagprs27.2.0$gcv, PsMagprs27.2.1$gcv, 

                     PsMagprs27.2.2$gcv, PsMagprs27.2.3$gcv, 

                     PsMagprs27.3.0$gcv, PsMagprs27.3.1$gcv, 

                     PsMagprs27.3.2$gcv, PsMagprs27.3.3$gcv, 

                     PsMagprs36.1.0$gcv, PsMagprs36.1.1$gcv, 

                     PsMagprs36.1.2$gcv, PsMagprs36.1.3$gcv, 

                     PsMagprs36.2.0$gcv, PsMagprs36.2.1$gcv, 

                     PsMagprs36.2.2$gcv, PsMagprs36.2.3$gcv, 

                     PsMagprs36.3.0$gcv, PsMagprs36.3.1$gcv, 

                     PsMagprs36.3.2$gcv, PsMagprs36.3.3$gcv) 

 

#Nilai RS MAGPRS 

nilai_rsq_magprs = c(PsMagprs18.1.0$rsq, PsMagprs18.1.1$rsq, 

                     PsMagprs18.1.2$rsq, PsMagprs18.1.3$rsq, 

                     PsMagprs18.2.0$rsq, PsMagprs18.2.1$rsq, 

                     PsMagprs18.2.2$rsq, PsMagprs18.2.3$rsq, 

                     PsMagprs18.3.0$rsq, PsMagprs18.3.1$rsq, 

                     PsMagprs18.3.2$rsq, PsMagprs18.3.3$rsq, 

                     PsMagprs27.1.0$rsq, PsMagprs27.1.1$rsq, 

                     PsMagprs27.1.2$rsq, PsMagprs27.1.3$rsq, 

                     PsMagprs27.2.0$rsq, PsMagprs27.2.1$rsq, 

                     PsMagprs27.2.2$rsq, PsMagprs27.2.3$rsq, 

                     PsMagprs27.3.0$rsq, PsMagprs27.3.1$rsq, 

                     PsMagprs27.3.2$rsq, PsMagprs27.3.3$rsq, 

                     PsMagprs36.1.0$rsq, PsMagprs36.1.1$rsq, 

                     PsMagprs36.1.2$rsq, PsMagprs36.1.3$rsq, 

                     PsMagprs36.2.0$rsq, PsMagprs36.2.1$rsq, 

                     PsMagprs36.2.2$rsq, PsMagprs36.2.3$rsq, 

                     PsMagprs36.3.0$rsq, PsMagprs36.3.1$rsq, 

                     PsMagprs36.3.2$rsq, PsMagprs36.3.3$rsq) 

data.frame(nilai_nk_magprs, nilai_degree_magprs,nilai_minspan_magprs, nilai_gcv_magprs, 

nilai_rsq_magprs) 

optimumGCVMagprs=cbind(nilai_nk_magprs, nilai_degree_magprs, 

nilai_minspan_magprs, nilai_gcv_magprs) 

 

#Mengurutkan nilai GCV MAGPRS minimum 

GCVmin_1magprs=optimumGCVMagprs[order(optimumGCVMagprs[,ncol(optimumGCVMagprs)]),] 

GCVmin_1magprs[1,] 

 

#Model terbaik GCV minimum dan RSq maksimum 

PsMagprs36.2.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=3,endspan=3, degree=2, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) #model optimum 
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Ypred_magprs 

lm.mod_magprs <- lm(Ypred_magprs ~ bx_magprs[,-1]) # -1 to drop 

 

#intercept 

summary(lm.mod_magprs) 

summary(PsMagprs36.2.3) 

 

cat(format(lm.mod_magprs, style="bf")) 

cat(format(PsMagprs36.2.3, style="bf")) 

data$Y 

# Residual (error) per observasi 

error36 = data$Y - Ypred_magprs 

error36 

 

# Gabungkan jadi tabel 

result <- data.frame( 

  Y_actual = data$Y, 

  Y_pred   = Ypred_magprs, 

  residual = error36 

) 

result 

 

# ---- 1. Boxplot untuk deteksi outlier ---- 

par(mfrow = c(1,1), mar = c(4,4,3,2))  # atur margin biar gak error 

boxplot(error36, main = "Deteksi Outlier", col = "skyblue") 

summary(error36) 

outliers36 <- boxplot.stats(error36)$out 

outliers36 

 

#estimasi variabel penting 

PsMagprs36.2.3 = earth(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data = data, nk=36, 

minspan=2,endspan=2, degree=2, penalty=-1,glm=list(family=poisson), 

                       weights = weighted, wp = NULL) #model optimum 

evimp(PsMagprs36.2.3, trim = FALSE) 

 

#uji serentak 

A=as.matrix(lm.mod_magprs$coefficients) 

T=bx_magprs%*%A 

Y=as.matrix(data[,3]) 

teta= 2.268616 

R=(Y*(bx_magprs%*%A))-(Y*log(1+teta*exp(bx_magprs%*%A)))+((Y-1)*log(1+teta*Y))-

(log(factorial(Y)))- 

(((exp(bx_magprs%*%A))*(1+teta*Y))/(1+teta*exp(bx_magprs%*%A))) 

R 

ln_Omega=sum(R) 

ln_Omega 

 

#estimasi menggunakan BHHH 

omegakecilawal=c(2.268616) #input nilai awal paramter dispersi 

eps=100 

iterasi=1 

alpha0=4.427075 

N=36 

while(eps>00.1){ 

  omegakecilawal[1] 

  a=rep(NA, N) 

  b=rep(NA, N) 

  for (i in 1:N) 

  { 

    a[i]=(Y[i]*alpha0)-((Y[i]*teta*exp(alpha0))/(1+teta*exp(alpha0)))- 

      (1+teta*Y[i])*((exp(alpha0))/(1+teta*exp(alpha0)))- 

      ((teta*(exp(alpha0))^2)/(1+teta*exp(alpha0))^2) 

    b[i]=((Y[i]*exp(alpha0))/(1+teta*exp(alpha0)))+((Y[i]*(Y[i]- 

                                                             1))/(1+teta*Y[i]))-(exp(alpha0))*(Y[i]/(1+teta*exp(alpha0)))- 
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      (((1+teta*Y[i])*exp(alpha0))/((1+teta*exp(alpha0))^2))} 

  aa=sum(a) 

  bb=sum(b) 

  g1=as.matrix(cbind(a,b)) 

  g=cbind(aa,bb) 

  H=(((t(g1)%*%(g1)))) 

  library(MASS) 

  Hinv=ginv(H) 

  omegakecilakhir=omegakecilawal+(Hinv%*%(t(g))) 

  teta=omegakecilakhir[1] 

  omegakecilakhir=c(teta) 

  error=abs(omegakecilakhir-omegakecilawal) 

eps=sqrt(sum(error^2)) 

  omegakecilawal=c(teta) 

  iterasi=iterasi+1 

} 

omegakecilakhir=omegakecilawal 

teta=omegakecilawal[1] 

diag(Hinv) 

SE=sqrt(diag(Hinv)) 

z_value=omegakecilawal/SE 

alpha0 

teta 

para=(teta) 

{ 

  cat("=======================================","\n") 

  cat("Estimasi Omega Kecil","\n") 

  cat("=======================================","\n") 

  cat(" estimate std.error z_value","\n") 

  cat("teta ",para[1]," ",SE[1]," ",z_value[1],"\n") 

  cat("=======================================","\n") 

} 

 

alpha0=4.427075 

teta=2.268616 

D=(Y*log(alpha0))-(Y*log(1+teta*exp(alpha0)))+((Y-1)*log(1+teta*Y))- 

  (log(factorial(Y)))- 

  (((exp(alpha0))*(1+teta*Y))/(1+teta*exp(alpha0))) 

lnomegakecil=sum(D) 

Gkuadrat=(2*(ln_Omega)-(lnomegakecil)) 

ChisqTabel=qchisq(0.95,30) 

{ 

  cat("===============================================","\n") 

  cat(" Uji Serentak MAGPRS","\n") 

  cat("===============================================","\n") 

  cat("G kuadrat Daerah_Kritis Kesimpulan","\n") 

  cat( Gkuadrat," ", ChisqTabel," ",if(Gkuadrat> ChisqTabel){ 

    ("Tolak H0 dengan alfa 5%") 

  } else{("Gagal Tolak H0 dengan alfa 5%") 

  },"\n") 

  cat("==============================================","\n") 

} 
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