SINTESIS ZEOLIT X DARI KAOLIN DENGAN METODE SONIKASI SEBAGAI KATALIS REAKSI TRANSESTERIFIKASI MINYAK JARAK (Ricinus communis) DENGAN VARIASI WAKTU

SKRIPSI

Oleh : AMBARI GUSTI SALSHABILLA NIM .18630032

PROGRAM STUDI KIMIA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM
MALANG
2023

SINTESIS ZEOLIT X DARI KAOLIN DENGAN METODE SONIKASI SEBAGAI KATALIS REAKSI TRANSESTERIFIKASI MINYAK JARAK (Ricinus communis) DENGAN VARIASI WAKTU

SKRIPSI

Oleh : AMBARI GUSTI SALSHABILLA NIM .18630032

Diajukan Kepada :
Fakultas Sains dan Teknologi
Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang
Untuk Memenuhi Salah Satu Persyaratan dalam
Memperoleh Gelar Sarjana Sains (S.Si.)

PROGRAM STUDI KIMIA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM
MALANG
2023

SINTESIS ZEOLIT X DARI KAOLIN DENGAN METODE SONIKASI SEBAGAI KATALIS REAKSI TRANSESTERIFIKASI MINYAK JARAK (Ricinus communis) **DENGAN VARIASI WAKTU**

SKRIPSI

Oleh: **AMBARI GUSTI SALSHABILLA** NIM.18630032

Telah diperiksa dan disetujui: Tanggal: 15 Desember 2023

Pembimbing I

Pembimbing II

<u>Susi Nurul Khalifah, M.Si.</u> NIP.19851020 201903 2 012

Mubasyiroh, S.S, M.Pd.I

NIDT. 19790502201802021 2 208

Mengetahui, Ketua Program Studi

iii

Rachmawati Ningsih, M\Si. NIP.198108112008012010

SINTESIS ZEOLIT X DARI KAOLIN DENGAN METODE SONIKASI SEBAGAI KATALIS REAKSI TRANSESTERIFIKASI MINYAK JARAK (Ricinus communis) DENGAN VARIASI WAKTU

SKRIPSI

Oleh : AMBARI GUSTI SALSHABILLA NIM.18630032

Telah Dipertahankan di Depan Dewan Penguji Skripsi Dan Dinyatakan Diterima Sebagai Salah satu Persyaratan Untuk Memperoleh Gelar Sarjana Sains (S.Si.) Tanggal: 15 Desember 2023

1. Penguji Utama

: Dr. Suci Amalia M.Sc. NIP. 19821104 200901 2 007

2. Ketua Penguji

: Lilik Miftahul Khoiroh, M.Si. NIP. 19831226 2019203 2 008

3. Sekretaris Penguji

: Susi Nurul Khalifah, M.Si. NIP. 19851020 201903 2 012

4. Anggota Penguji

: Mubasyiroh, S.S, M.Pd.I

NIDT. 19790502201802021 2 208

Drusy

Mengesahkan,

Ketua Program Studi

Raotimawali Mingsih, M.Si. NIP. 1981081 1200801 1 010

PERNYATAAN KEASLIAN TULISAN

Saya yang bertanda tangan di bawah ini :

Nama

: Ambari Gusti Salshabilla

NIM

: 18630032

Jurusan

: Kimia

Fakultas

: Sains dan Teknologi

Judul Penelitian

: Sintesis Zeolit X dari Kaolin dengan Metode Sonikasi sebagai Katalis

Reaksi Transesterifikasi Minyak Jarak (Ricinus communis) dengan

Variasi Waktu.

Malang, 15 Desember 2023

Yang membuat pernyataan

Ambari Gusti Salshabilla Nim.18630032

HALAMAN PERSEMBAHAN

Bismillah, atas berkat dan rahmat Allah SWT serta dengan penuh rasa syukur saya ucapkan Alhamdulillah karena akhirnya saya dapat menyelesaikan tugas akhir. tanpa kehendak-Nya dan dukungan dari orang-orang sekitar, tentunya saya tidak dapat menyelesaikan skripsi ini dengan baik. Oleh karena itu, saya ingin mempersembahkan karya sederhana ini di persembahkan untuk:

Kedua orang tua saya, Bapak **Budi Setioaji** dan Ibu saya **Tri Handayani** yang selama ini telah memerikan segala bentuk dukungan baik berupa materi hingga doa dan kasih sayang beliau yang sampai saat ini masih saya rasakan hingga saya dapat memperoleh gelar sarjana ini. Untuk adik saya **Ahmad Dairobby**, terima kasih sudah selalu memberikan dukungan dan menemani saya selama pengerjaan skripsi ini, dan untuk kakek saya Bapak **Sarmin** terima kasih sudah memberikan dukungan dan doa. Terima kasih untuk segala yang telah diberikan dan didedikasikan untuk saya, mungkin kiranya tulisan ini hanya sebagian kecil hal yang bisa saya persembahkan untuk kalian berdua, karena semua kebaikan kalian berdua tak akan bisa terbalas dengan apa pun. Semoga kalian berdua senantiasa dalam lindungan dan kasih sayang Allah SWT, senantiasa diberikan kesehatan, umur panjang, dan kebaikan kebaikan di dunia sampai akhirat.

Untuk **Ibu Susi Nurul Khalifah, M.Si., Ibu Mubasyiroh, S.S, M.Pd.I,** serta Bapak dan Ibu dosen lainnya. Terima kasih karena telah mendidik dan membimbing saya selama ini. Baik dalam ilmu kimia maupun ilmu sebagai bekal kehidupan saya. Semoga segala pemberian bapak dan ibu dosen serta mbak dan mas dibalas kebaikan, keberkahan, dan kebahagiaan oleh Allah SWT, Aamiin.

Dan untuk orang-orang baik yang Allah Swt. hadirkan dalam hidup penulis, Mokhammad Ridho Maulana, Siti Musyarofah, Diyah Umul Sholekhah, Agie Pratama Setiawan dan Umi Nur Khabibah terima kasih atas dukungan, semangat, canda tawa dan segala bantuan selama perkuliahan hingga penulis berada di titik ini. Dan terima kasih untuk kakak-kakak tingkat yang sudah banyak membantu saya dalam pengerjaan skripsi ini. Terima kasih banyak sudah menjadi bagian terindah selama perkuliahan ini sehingga penulis banyak pengalaman, kenangan, dan pelajaran. Semoga Allah balas kebaikan kalian.

Untuk **Dokter Winarni Dian Dwiastuti Wisnu Putri, Sp.KJ** yang sudah memberikan saya banyak sekali dukungan, dan motivasi. ibu dibalas kebaikan, keberkahan, dan kebahagiaan oleh Allah SWT, Aamiin. Dan terakhir terima kasih untuk diri saya sendiri karena sudah tidak menyerah sampai di titik ini.

MOTTO

مِنِيْ وَاشْتَعَلَ الرَّأْسُ شَيْبًا وَّلَمْ الكُنْ بِدُعَآبِكَ رَبِّ شَقِيًّا

"Jangan merasa tertinggal, setiap orang punya proses dan rezekinya masing-masing" [Qs. Maryam: 4]

Orang lain tidak akan paham dan tidak akan mau tahu struggle dan masa sulit yang kamu hadapi, tapi yang mereka tahu hanya success stories. Berjuanglah sendiri walaupun tanpa ada yang bertepuk tangan. Kelak kita yang di masa depan akan sangat bangga dengan apa yang kita perjuangkan sekarang.

Prosesmu memang tidak semudah orang lain, akan selalu ada harga di setiap perjuanganmu, lebarkan selalu sabarmu, nikmati masa lelahmu, nikmati prosesmu, investasikan semua itu untuk kamu yang lebih baik di masa depan, dan selalu percaya bahwa Allah menakdirkan sesuatu di hidupmu agar kamu belajar dan selalu bersyukur.

KATA PENGANTAR

Puji syukur alhamdulillah, atas kehendak Allah S.W.T yang telah mengizinkan penulis untuk menyelesaikan penulisan proposal penelitian ini dapat diselesaikan. Proposal penelitian ini berjudul " Sintesis Zeolit X Dari Kaolin Dengan Metode Sonikasi Sebagai Katalis Reaksi Transesterifikasi Minyak Jarak (*Ricinus communis*) Dengan Variasi Waktu".

Selama pelaksanaan penelitian dan penyelesaian penulisan proposal penelitian ini penulis mendapat bantuan dari berbagai pihak, sehingga dalam kesempatan ini penulis mengucapkan terima kasih kepada para personalia di bawah ini:

- 1. Kedua Orang tua yang telah memberikan perhatian, nasihat dan doa, serta dukungan moril dan materil sehingga penyusunan proposal penelitian ini dapat terselesaikan.
- 2. Rektor Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang Bapak Prof. Dr. H. Zainuddin, MA.
- 3. Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang Ibu Sri Harini, M.Si.
- 4. Ketua program studi Kimia Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang Ibu Rachmawati Ningsih, M.Si.
- 5. Dosen Konsultan Ibu Susi Nurul Khalifah, M.Si. dan Ibu Mubasyiroh, S.S, M.Pd.I karena atas masukan dan sarannya, proposal penelitian ini menjadi lebih baik.

Semoga proposal ini dapat bermanfaat dan menambah Khasanah ilmu pengetahuan.

Malang, 12 November 2023

Penulis

DAFTAR ISI

LEMBAR PERSETUJUAN	
LEMBAR PENGESAHAN	
PERNYATAAN KEASLIAN TULISAN	
HALAMAN PERSEMBAHAN	
MOTTO	x
KATA PENGANTAR	
DAFTAR ISI	
DAFTAR GAMBAR	
DAFTAR TABEL	
DAFTAR LAMPIRAN	
ABSTRAKABSTRACT	
مستخلص البحث	
— - · · · · · · · · · · · · · · · · · ·	
BAB I PENDAHULUAN	
1.1 Latar Belakang	
1.2 Rumusan Masalah	
1.3 Tujuan	
1.4 Batasan Masalah 1.5 Manfaat	
1.0 Mailiaat	2
BAB II TINJAUAN PUSTAKA	5
2.1 Kaolin Sebagai Material Sintesis Zeolit X	
2.2 Sintesis Kaolin Menjadi Metakaolin Dengan Metode	
2.3 Karakter Zeolit X	
2.5 Reaksi Transesterifikasi Minyak Jarak	
2.6 Karakterisasi Metil Ester Menggunakan GC-MS (Gas C Spectroscopy)	
Spectroscopy)	12
BAB III METODOLOGI	
3.1 Waktu dan Tempat Penelitian	
3.2 Alat dan Bahan	
3.2.1 Alat	
3.2.2 Bahan	
3.3 Rancangan Penelitian	
3.5 Prosedur Penelitian	
3.5.1 Preparasi Sampel Kaolin	
3.5.2 Pengubahan Kaolin menjadi Metakaolin melalui prose	
3.5.2 Ekstraksi SiO₂ dari kaolin	
3.5.4 Sintesis Zeolit X dengan metode sonikasi	17
3.6 Proses Reaksi Transesterifikasi dengan Katalis Zeolit X	C dari minyak jarak 17
3.7 Karakterisasi Material Sintesis	
3.7.1 Karakterisasi Kaolin dengan menggunakan XRF	17
3.7.2 Karakterisasi menggunakan XRD	17
3.7.3 Karakterisasi Zeolit X menggunakan adsorpsi N ₂	
3.7.5 Karakterisasi Metil Ester Hasil Reaksi Transesterif	
Spektrofotometer GC-MS	16 1 <u>.</u>
	1.5

(XRF)(XRF)	19
3.8.2 Analisis Data Hasil Karakterisasi Kaolin, Metakaolin, dan Zeolit X Menggunak X-Ray Diffraction (XRD)	an
3.8.3 Analisis Data Hasil Karakterisasi Zeolit X menggunakan Adsorpsi N₂	
Minyak Jarak Menggunakan GC-MS	. 21
BAB IV PEMBAHASAN	. 23
4.1 Kandungan Unsur dan Struktur Kaolin Alam	
4.3 Perubahan struktur kaolin alam dengan pretreatmen alkali fusi	
4.3 Sintesis Zeolit X metode sonikasi variasi waktu	
4.4 Analisis Luas Permukaan Zeolit Hasil Sintesis Menggunakan Adsorpsi Nitrogen	. 30
4.5 Analisis Produk Reaksi Transesterifikasi Minyak Jarak Dengan Katalis Zeolit Hasil Sintesis Dengan GCMS	
4.6 Hasil Penelitian Dalam Perspektif Islam	. 36
BAB V PENUTUP	. 39
5.1 Kesimpulan	
5.2 Saran	
DAFTAR PUSTAKA	41
I AMPIRAN	45

DAFTAR GAMBAR

Gambar 2 1 Gambar struktur mineral kaolin	5
Gambar 2 2 Difaktogram Kaolin Alam Blitar	6
Gambar 2 3 Difraktogram kaolin menjadi metakaolin metode konvensional, kaolin (A),	
kaolin terpurifikasi (B), dan metakaolin (C)	7
Gambar 2.4 Konversi kaolin menjadi metakaolin menggunakan metode alkali fusi (a)	
standar kuarsa, (b) standar sodium silikat, (c) standar kaolin, (d) kaolin alam,	,
(e) metakaolin	7
Gambar 2.5 Struktur kimia zeolit	8
Gambar 2 6 Tahapan transformasi fasa Na-zeolit dengan meningkatnya suhu dan waktu	
sintesis	9
Gambar 2.7 Pola difraktogram XRD zeolit X standar	. 10
Gambar 2.8 Reaksi transesterifikasi	. 11
Gambar 2.9 Kromatografi FAME dari minyak jarak (<i>Ricinus communis</i>)	. 14
Gambar 2.10 Spektra massa metil ester risinoleat	
Gambar 2.11 Pola fragmentasi metil ester risinoleat	. 14
Gambar 4. 1 (a) Difraktogram standar kaolin (00-014-0164), (b) standar kuarsa (01-074-	
1811), (c) standar kuarsa (01-086-1565) (d) kaolin alam Blitar sebelum	
dicuci, (e) kaolin alam Blitar sesudah dicuci (K: kaolin, Q; kuarsa)	. 24
Gambar 4.2 Difraktogram standar sodium ortosilicate (01-078-1432) (a), (b) standar	
stishovite (96-154-4732), (c) standar stishovite (96-900-7155) (d) standar	
tridimit (96-810-4537), (e) metakaolin kalsinasi 2 jam, (f) metakaolin	
kalsinasi 3 jam (St: stishovite, ss: sodium ortosilicate, T:trydimite)	
Gambar 4. 3 Difraktogram SiO₂ dari kaolin alam Blitar	. 27
Gambar 4. 4 Difraktogram sintesis zeolit metode sonikasi (70°C), (a) standar zeolit p (01-	
071-0962), (b) standar zeolit X (01-072-2422), zeolit variasi waktu	
(c) sonikasi 2 jam stirer 2 hari, (d) sonikasi 2 jam stirer 8 hari, (e) sonikasi	
4 jam stirer 9 hari	
Gambar 4. 5 Difratogram GC biodisel dengan waktu reaksi 5 jam	
Gambar 4. 6 Hasil spektra dari massa puncak dengan waktu retensi 17.035	
Gambar 4. 7 Perkiraan pola fragmentasi metil oleat	
Gambar 4. 8 Hasil spektra dari masa puncak dengan retensi waktu 19.615	
Gambar 4. 9 Perkiraan pola fragmentasi metil risinoleat	
Gambar 4. 10 Kromatogram GC biodisel dengan waktu reaksi 7 jam	
Gambar 4. 11 Hasil spektra dari masa puncak dengan retensi waktu 17.080	
Gambar 4. 12 Perkiraan pola fragmentasi metil oleat	
Gambar 4. 13 Hasil spektra dari masa puncak dengan retensi waktu 20.065	
Gambar 4. 14 Perkiraan pola fragmentasi metil risinoleat	. 33

DAFTAR TABEL

Tabel 2. 1 Kadar unsur dalam kaolin Blitar	5
Tabel 2. 2 Metil ester hasil analisis GC-MS	
Tabel 2. 3 Komposisi FAMEs minyak jarak ditentukan dengan GC-MS	13
Tabel 3. 1 Variasi waktu yang digunakan pada reaksi transesterifikasi	17
Tabel 3. 2 Kurva Plot BET	20
Tabel 4.1 Kandungan Mineral Kaolin	23
Tabel 4. 2 Hasil ekstraksi SiO ₂ dari kaolin alam Blitar dengan instrumen XRF	27
Tabel 4. 3 Luas permukaan sintesis zeolit X dengan variasi sonikasi dan stirer	30
Tabel 4. 4 komposisi metil ester hasil reaksi transesterifikasi 5 dan 7 jam	35

DAFTAR LAMPIRAN

Lampiran 1 Diagram Alir	45
Lampiran 2 Perhitungan	
Lampiran 3 Data Karakterisasi XRF	
Lampiran 4 Data Karakterisasi XRD	
Lampiran 5 Hasil SAA	
Lampiran 6 Hasil GCMS	
Lampiran 7 Dokumentasi kegiatan	

ABSTRAK

Salsabila, A. G. 2023. Sintesis Zeolit X dari Kaolin Dengan Metode Sonikasi Sebagai Katalis Reaksi Transesterifikasi Minyak Jarak (*Ricinus Communis*) Dengan Variasi Waktu. Skripsi. Program Studi Kimia Fakultas Sains Dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing I: Susi Nurul Khalifah M.Si.; Pembimbing II: Mubasyiroh, S.S, M.Pd.I.

Kata Kunci: Zeolit X, Sonikasi, Reaksi Transesterifikasi.

Sintesis zeolit X faujasit menggunakan sumber silika kaolin alam Blitar telah dilakukan. Kaolin dilakukan dengan proses alkali fusi untuk mengubah dari material yang tidak reaktif menjadi material yang lebih reaktif. Silika dari kaolin didapatkan yang lebih murni dan lebih reaktif dengan cara proses ekstraksi silika. Hasil ekstraksi silika digunakan sebagai raw material untuk sintesis zeolit X. Zeolit hasil sintesis digunakan sebagai katalis reaksi transesterifikasi minyak jarak.

Metode ekstraksi kaolin menggunakan asam, basa dan metode sintesis zeolit X menggunakan sonikasi. Hasil sintesis zeolit X dianalisis menggunakan XRD, dan luas permukaan. Uji katalis zeolit hasil sintesis pada reaksi transesterifikasi minyak jarak dilakukan selama 5 jam dan 7 jam.

Hasil XRD menunjukkan bahwa sintesis zeolit X didapatkan dengan pengotor zeolit P pada berbagai variasi sintesis. Analisis luas permukaan dari *Surface Area Analizer* (SAA) didapatkan 81,942 m²/g – 88,309 m²/g. Hasil uji katalis zeolit pada reaksi transesterifikasi minyak jarak selama 5 jam dan 7 jam didapatkan metil risinoleat 92,70%-54,81%.

ABSTRACT

Salsabila, A. G. 2023. Synthesis of Zeolite X from Kaolin By Sonication Method as a Catalyst for Castor Oil Transesterification Reaction (Richinus communis) With Time Variation. Thesis. Chemistry Study Program, Faculty of Science and Technology, Maulana Malik Ibrahim State Islamic University Malang. Supervisor I: Susi Nurul Khalifah M.Si.; Supervisor II: Mubasyiroh, S.S, M.Pd.I.

Keywords: Zeolite X, Sonication, Transesterification Reaction.

extraction results are used as raw material for zeolite synthesis. The kaolin extraction method uses acid bases, and the zeolite X synthesis method uses sonication. The results of the Synthesis of zeolite X were analyzed using XRD, and the Synthesis of zeolite Kaolin was made using an alkali fusion process to change the material from an unreactive material to a more reactive material. Silica from Kaolin is obtained to be purer and more reactive using a silica extraction process. The silica extraction results are used as raw material for the zeolite synthesis.

alkali fusion process to change the material from an unreactive material to a more reactive material. Silica from Kaolin is obtained to be purer and more reactive utilizing a silica extraction process. The silica The kaolin extraction method uses acid bases, and the zeolite X synthesis method uses sonication. The results of the synthesis of zeolite X were analyzed using XRD and surface area. The test of the synthesized zeolite catalyst in the castor oil transesterification reaction was carried out for 5 and 7 hours.

Synthesis of zeolite Kaolin is made using a The XRD results show that the synthesis of zeolite X was obtained with zeolite P impurities in various variations of synthesis. Surface area analysis from the Surface Area Analyzer (SAA) was $81,942 \text{ m}^2/\text{g} - 88,309 \text{ m}^2/\text{g}$. The results of the zeolite catalyst test in the castor oil transesterification reaction for 5 hours and 7 hours showed that methyl ricinoleate was 92.70% -54.81%.

مستخلص البحث

سلسبيلا، أمباري غوستي. ٢٠٠٣. توليف زيوليت إكس من الكاولين بطريقة الصوت كوكاش حفاز لتفاعل التحويل الإستراتي لزيت الخروع (ريسينوس كومونيس) بتغيير في الزمن. بحث جامعي. قسم كيمياء كلية العلوم والتكنولوجيا بجامعة مولانا مالك إبراهيم الإسلامية الحكومية مالانج. المشرفة الأولى: سوسي نور الخليفة، الماجستير، المشرفة الثانية: مباشرة، الماجستير.

الكلمات الرئيسية: الزيوليت X ، السونيكشن ، تفاعل الأسترة العابرة

تم إجراء توليف زيوليت إكس فوجاسيت باستخدام مصدر السيليكا من الكاولين الطبيعي في بليتار. تمت معالجة الكاولين بشكل بواسطة عملية الانصهار القلوي لتحويله من مادة غير متفاعلة إلى مادة أكثر تفاعلًا. تم الحصول على سيليكا من الكاولين بشكل أكثر نقاء وتفاعلًا من خلال عملية استخراج السيليكا. تم استخدام نتائج استخراج السيليكا كمواد خام لتو إليف زيوليت إكس. تم استخدام الزيوليت الناتج عن التوليف كحفاز في تفاعل ترانستريستيريفيكاسي لزيت الخروع.

طريقة استخراج الكاولين باستخدام الحمض والقاعدة، وطريقة توليف زيوليت إكس باستخدام التحسين بالصوت. تم تحليل نتائج توليف زيوليت إكس باستخدام تقنيات XRD وقياس المساحة السطحية. تم إجراء اختبار كفاءة الزيوليت الناتج من التوليف في تفاعل ترانستريستيريفيكاسي لزيت الخروع لمدة ٥ ساعات و ٧ ساعات.

أظهرت نتائج تحليل الأشعة السينية (XRD) أن توليف زيوليت إكس تم بنجاح باستخدام ملوثات من زيوليت في مختلف تجارب التوليف. تمثل تحليل مساحة السطح باستخدام جهاز فاحص مساحة السطح (SAA) نتائج تتراوح بين ٨١٠٩٤٢ متر مربع/جم و ٨٨٠٣٠٩ متر مربع/جم. أظهرت نتائج اختبار كفاءة الزيوليت في تفاعل ترانستريستيريفيكاسي لزيت الخروع لمدة ٥ ساعات تكوين ميثيل ريسينوليات بنسب تتراوح بين ٩٢٠٧٠% و ٥٤٠٨١

BABI

PENDAHULUAN

1.1 Latar Belakang

Zeolit adalah mineral aluminosilikat terhidrasi, kristal berpori. Memiliki struktur rangka tiga dimensi yang terdiri dari tetrahedral [SiO₄]⁴⁻ dan [AlO₄]⁵ (Cheetham & day, 1992). Zeolit X adalah zeolit yang memiliki kandungan silika yang rendah dengan rasio molar Si/Al 1-1,5. Zeolit X merupakan salah satu zeolit faujasit yang memiliki Rumus kimia Na₈₆(AlO₂₎₈₆(SiO₂)₁₀₆.264H₂O dan memiliki besar pori 0,74nm. Zeolit X memiliki banyak kegunaan, sebagai penyaring molekul, penukar ion dan katalis pada proses *fluid catalytic cracking* (FCC), katalis pemurnian dan pemisahan gas maupun komponen organik (Chandrasekhar & Pramada, 2004; Masoudian *et al.*, 2003; Zhao *et al.*, 1996).

Kaolin dapat di gunakan sebagai raw material untuk sintesis zeolit, karena memiliki kandungan silika dan alumina yang tinggi. Kaolin merupakan bahan alam yang terbentuk melalui proses bertahap secara sempurna sebagaimana yang telah diciptakan Allah SWT. Salah satu tanda-tanda kebesaran Allah SWT. yaitu kekayaan alam yang dapat berupa tumbuhan, gunung, hutan, batuan dan sebagainya. Merujuk pada tanda kekuasaan Allah SWT. dapat dirasakan oleh mereka yang beriman kepada Allah SWT, sebagaimana dijelaskan dalam kitab suci Al-Qur'an tentang manusia *ulul albab* surat Al-Imran ayat 190 - 191 sebagaimana berikut:

إِنَّ فِي خَلْقِ السَّمَاوَاتِ وَالْأَرْضِ وَاخْتِلَافِ اللَّيْلِ وَالنَّهَارِ لَآيَاتٍ لِأُولِي[٩٠] الَّذِيْنَ يَنْكُرُوْنَ اللهَ قِيَامًا وَّقُعُوْدًا وَعَلَى فَقِنَاعَذَابَ النَّارِ جُنُوْهِمْ وَيَتَفَكَّرُوْنَ فِيْ خَلْقِ السَّمَاوَتِ وَالْأَرْضَّ رَبَّنَا مَا خَلَقْتَ لهٰذَا بَاطِلًا سُبْحٰنَكَ[٩١]

Artinya: "Sesungguhnya dalam penciptaan langit dan bumi, dan pergantian malam dan siang terdapat tanda-tanda (kebesaran Allah) bagi orang yang berakal, (yaitu) orang-orang yang mengingat Allah sambil berdiri, duduk, atau dalam keadaan berbaring, dan mereka memikirkan tentang penciptaan langit dan bumi (seraya berkata), "Ya Tuhan kami, tidaklah Engkau menciptakan semua ini sia-sia; Maha Suci Engkau, lindungilah kami dari azab neraka." Ali Imran 190-191.

Dalam tafsir Al-Misbah, surat Al-Imran ayat 190-191 menjelaskan terkait kehidupan manusia di bumi tidak terlepas dari penggunaan akal. Menggunakan akal berarti menjadi manusia yang menggunakan kemampuannya untuk memahami semua fenomena kehidupan, baik yang berupa fenomena fisik maupun mental. Sebagai manusia menggunakan akal untuk memahami ilmu yang telah di berikan Allah kepada mereka terkandung dan dikontekstualisasikan dalam Al-Qur'an dan Hadist. Berlatih dan mengadopsi kebijakan yang tepat untuk memanfaatkan masing-masing anugerah dari Tuhan untuk selalu berusaha berkontribusi sesuai dengan tugasnya sebagai khalifah di muka bumi. Jika akal manusia membaca, mengetahui, berpikir, menyelidiki, mempelajari fenomena akan muncul penemuan

ilmu. Ilmu teknologi dan ilmu pengetahuan yang akan membawa orang-orang cerdas untuk bersyukur dan percaya bahwa semua ciptaan Allah SWT. Sangat bermanfaat dan tidak ada yang membentuk kesombongan.

Pada ayat di atas menjelaskan bahwa tidak ada yang Allah SWT ciptakan dengan siasia. Berdasarkan ayat diatas juga sangat relevan jika dikaitkan dengan sintesis zeolit dari batuan kaolin, karena zeolit memiliki beberapa kelebihan dibandingkan dengan kaolin, kelebihan dari zeolit yaitu memiliki luas permukaan yang lebih tinggi, memiliki stabilitas termal dan keasaman yang lebih tinggi. Sehingga, dengan beberapa kelebihan yang dimiliki zeolit tersebut, aplikasinya bisa menjadi lebih luas (Barquist & Larsen, 2010).

Proses konversi kaolin menjadi metakaolin menggunakan metode konvensional (pemanasan) atau alkali fusi (penambahan NaOH dengan pemanasan). Pada metode konvensional yang sudah dilakukan oleh Yifei Wang (2014) kaolin murni dipanaskan dengan suhu 700°C – 900°C akan melepaskan air dan membentuk material amorf. konversi kaolin alam menjadi metakaolin yang menggunakan metode konvensional dengan suhu 600-650°C selama 1jam sampai 2 jam yang menghasilkan metakaolin dengan pengotor kuarsa (Kim,2010; carlos,2012),. Sementara itu Pada penelitian yang dilakukan oleh Cahyawati (2017), konversi kaolin alam Blitar menjadi metakaolin menggunakan suhu 630-800°C dalam 3-24 jam yang dimana menghasilkan metakaolin dengan zat pengotor yang berupa kuarsa tinggi dan masih terdapat puncak kaolin. Pada penelitian yang dilakukan oleh Yan (2014) Konversi kaolin murni menjadi metakaolin dengan menggunakan variasi waktu 4 jam dengan suhu 200°C menghasilkan metakaolin dengan fasa amorf.

Untuk mendapatkan SiO₂ yang lebih murni dan reaktif, dapat dilakukan metode ekstraksi SiO₂ dari kaolin alam. Penelitian yang dilakukan oleh Ulfindrayani, *et al* (2019) melakukan ekstraksi SiO₂ dari lumpur lapindo dengan pelarut NaOH dan agen presipitasi berupa HCl diperoleh kemurnian silika meningkat dari 50% menjadi 78,6%. Penelitian yang dilakukan oleh Ulfatafia (2016) mengekstraksi SiO₂dari abu sekam padi menggunakan pelarut NaOH 7M pada suhu 80°C selama 5 jam dengan agen presipitasi HCl 3 M dengan diperoleh persentase silikanya sebesar 94,7%. Penelitian yang dilakukan oleh Khalifah, *et al* (2022) mengekstraksi SiO₂ dari lumpur lapindo dengan menggunakan pelarut alkali NaOH 7M dengan menggunakan suhu 80°C selama 4 jam dan agen presipitasi 1M pada suhu 40°C diperoleh persentase SiO₂ sebanyak 96,8%. Silika hasil ekstraksi selanjutnya akan digunakan sebagai material sintesis zeolit X.

Konversi kaolin menjadi metakaolin dengan metode alkali fusi dapat diaplikasikan pada kaolin alam yang banyak mengandung pengotor. Pengotor yang biasanya ada pada kaolin alam adalah kuarsa. Dengan penambahan NaOH, maka kuarsa akan berubah menjadi sodium silikat yang lebih relatif, sehingga dengan metode alkali fusi kaolin alam dapat terkonversi menjadi metakaolin dan sodium silikat yang dapat digunakan sebagai raw material untuk sintesis zeolit (Wang & Lin, 2009).

Metode sintesis zeolit pada umumnya menggunakan metode hidrotermal, namun pada metode ini memiliki kelemahan yaitu membutuhkan waktu untuk kristalisasi yang lama. Maka banyak dari peneliti menggunakan metode baru untuk mendapatkan kristalitas yang baik dan waktu yang relatif singkat dengan menggunakan metode sonikasi. Pada penelitian Azizi (2010), menggunakan metode sonikasi dengan variasi waktu 1 jam pada proses pembuatan zeolit menghasilkan zeolit NaX yang murni. Sedangkan pada penelitian yang dilakukan oleh Tran (2021) menggunakan metode sonikasi dengan pengaruh waktu reaksi terhadap sintesis zeolit X dengan waktu 2 jam, mendapatkan hasil puncak karakteristik zeolit X dengan intensitas rendah akan tetapi tetap mendapatkan zeolit X murni. Sementara pada penelitian yang dilakukan oleh Arifah (2018) sintesis zeolit x menggunakan mPetode sonikasi (70°C) 2 jam menghasilkan ukuran kristal 36,5 nm dan pada 4 jam menghasilkan ukuran kristal 47 nm dan zeolit x yang murni. Selanjutnya zeolit hasil sintesis menggunakan metode sonikasi digunakan sebagai katalis pada transesterifikasi menggunakan minyak nabati yaitu minyak jarak.

Reaksi transesterifikasi yang dilakukan dengan menggunakan katalis basa karena rendahnya nilai asam dari minyak jarak yang murni. Katalis homogen pada NaOH, KOH, CH₃O, CH₃ memiliki aktivitas katalitik yang tinggi untuk reaksi transesterifikasi, pada penggunaan katalis homogen memiliki beberapa kelemahan karena memerlukan proses yang lebih kompleks pada proses pencucian dan pemurnian produk, akan menghasilkan air limbah dalam jumlah besar. Selain itu pada katalis homogen dapat menyebabkan korosi pada peralatan yang digunakan, dan saponifikasi pada bahan baku. Penggunaan katalis heterogen dapat mengurangi masalah yang berhubungan dengan katalis homogen karena pada katalis heterogen dapat dengan mudah dipisahkan dari produk cair (Du et al., 2018).

Faktor-faktor yang mempengaruhi kecepatan reaksi transesterifikasi yaitu suhu, jumlah katalis, perbandingan rasio molar minyak: metanol, dan waktu reaksi. Penelitian yang sudah dilakukan oleh Noiroj (2009) menggunakan variasi waktu 1, 2, 3, 4, 5, dan 6 jam, didapatkan waktu optimum 6 jam menggunakan katalis KOH/Al₂O₃ dengan konversi metil ester sebesar 87,5%. Sedangkan pada pada penelitian yang dilakukan oleh Rakmae (2016), reaksi transesterifikasi minyak kelapa sawit menggunakan katalis zeolit Na-Y dengan menggunakan metode ultrasonik selama 10 menit dengan metode konvensional atau perendaman. diperoleh hasil % yeild biodiesel sebesar 55%. Selanjutnya pada penelitian yang dilakukan oleh Setyadji (2005) dengan variasi waktu 1; 1,5; 2; 2,5; 3; dan 3,5 jam untuk mengonversi minyak menjadi biodiesel dengan katalis natrium hidroksida diperolah hasil optimum pada waktu 2 jam sebesar 88,39% dari hasil yang diperoleh menunjukkan bahwa variasi waktu dengan katalis berpengaruh terhadap kuantitas biodiesel. Penelitian yang dilakukan oleh Kusuma (2013) hasil konversi metil ester yang didapatkan sebesar 95,09% dengan transesterifikasi selama 2 jam minyak kelapa sawit menggunakan katalis KOH/zeolit alam. Sementara itu penelitian yang sudah dilakukan Intrapong (2013) hasil dari konversi metil ester yang tinggi hingga 96,7%

melalui proses reaksi transesterifikasi minyak kelapa sawit menggunakan katalis KOH/mordenit selama 3 jam.

Berdasarkan uraian diatas, penelitian ini akan dilakukan dengan cara mengonversi kaolin alam Blitar menjadi metakaolin dengan menggunakan metode alkali fusi. Sintesis zeolit X dilakukan dengan menggunakan metode sonikasi dalam keadaan basa, sehingga katalis yang dihasilkan bersifat basa. Katalis yang bersifat basa tersebut akan digunakan untuk reaksi transestrifikasi minyak jarak (Ricinus communis) dengan menggunakan variasi waktu 5 dan 7 jam untuk menemukan waktu yang optimum katalis KOH/zeolit alam. Perbandingan minyak dan metanol 1:15 dan katalis sebanyak 5-10% berat. Pembuatan biodiesel dilakukan pada suhu optimum yang didasarkan pada penelitian sebelumnya yaitu 60°C. Kaolin akan di karakterisasi menggunakan XRF (X-Ray Fluorescence), hasil sintesis zeolit akan di karakterisasi kembali menggunakan XRD (X-Ray Diffraction), dan adsorpsi N₂. Selanjutnya hasil transesterifikasi minyak jarak (Ricinus communis) di karakterisasi dengan menggunakan GC-MS (Gas Chromatography Mass Spectrometry).

1.2 Rumusan Masalah

Dari latar belakang di atas rumusan masalah yang dapat di susun dalam penelitian ini adalah

- 1. Bagaimana karakter zeolit X hasil sintesis menggunakan metode sonikasi?
- 2. Bagaimana hasil reaksi transesterifikasi minyak jarak menggunakan katalis zeolit x selama 5 jam dan 7 jam ?

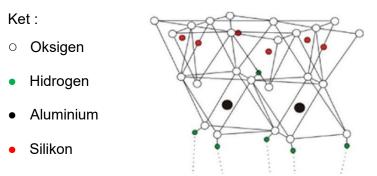
1.3 Tujuan

Berdasarkan latar belakang yang sudah disusun tujuan dari penelitian ini yaitu

- 1. Untuk mengetahui hasil dari karakterisasi zeolit X dengan hasil sintesis menggunakan metode sonikasi.
- 2. Untuk mengetahui hasil reaksi transesterifikasi minyak jarak menggunakan katalis zeolit x selama 5 jam dan 7 jam.

1.4 Batasan Masalah

- 1. Kaolin yang digunakan berasal dari Blitar.
- 2. Menggunakan metode sonikasi dengan waktu 2jam dan 4 jam.
- 3. Bahan alam yang digunakan untuk sintesis yaitu kaolin.
- 4. Menggunakan reaksi transesterifikasi.

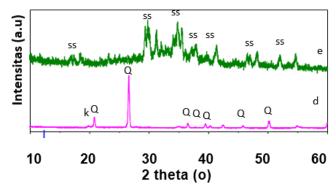

1.5 Manfaat

Manfaat dari penelitian ini adalah, dapat mengetahui hubungan ilmu kimia secara teoritis dan praktis khususnya sintesis zeolit dari bahan alam kaolin yang efektif dengan menggunakan metode sonikasi sebagai katalis reaksi transestrifikasi minyak jarak, sehingga kaolin alam dapat lebih dimanfaatkan oleh masyarakat.

BAB II TINJAUAN PUSTAKA

2.1 Kaolin Sebagai Material Sintesis Zeolit X

Kaolin merupakan jenis mineral lempung dengan rumus kimia Al₂O₃.2H₂O dan memiliki struktur lembaran SiO₄ tetrahedral dan lembaran AlO₅ oktahedral dengan rasio perbandingan 1 :1 (Murray, 2000). Kristal kaolin terdiri dari tumpukan aluminium dan lembar silika. Silika tetrahedral dan lembaran aluminium oktahedral di hubungkan dengan atom oksigen di satu sisi dan hidrogen dari gugus hidroksil disisi lainnya. Selanjutnya membentuk tumpukan dengan ikatan hidrogen yang kuat (Kim et al., 1991). Susunan atom pada mineral kaolin dapat di lihat pada Gambar 2.1 :


Gambar 2 1 Gambar struktur mineral kaolin

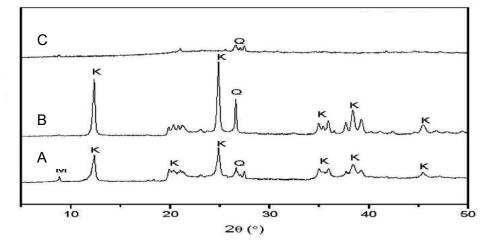
Kaolin merupakan satu jenis pengisi yang penting diterapkan pada banyak *sector industry*, termasuk lukisan, fiberglass, perekat, enamel, farmasi, krayon, dan *industry* kertas. Karena kaolin memiliki kandungan silika dan aluminanya yang *relatif* tinggi memungkinkan kaolin digunakan sebagai material dalam pembuatan sintesis zeolit. Dan kaolin dari Blitar digunakan sebagai starting material (Naijian et al., 2019). dari penelitian yang dilakukan oleh Aminatus pada tahun 2018 didapatkan hasil kandungan Al sebesar 14% dan silika 65,7% serta sedikit kandungan logam. Hasil tersebut ditunjukkan oleh Analisa dengan XRF pada Tabel 2.1 (Aminatus, 2018).

Tabel 2. 1 Kadar unsur dalam kaolin Blitar (Amanatus, 2018)

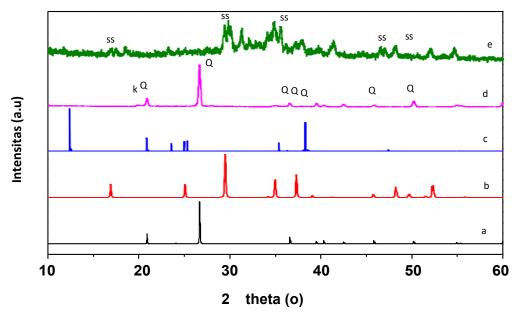
Unsur	Αl	Si	K	Ca	Cr	Ti	V	Mn	Fe	Ni	Cu	Yb
Kadar	12	65,4	6,18	5,41	0,14	3,01	0,11	0,19	2,23	0,087	0,071	0,07
_%												

Permasalahan yang muncul dalam proses sintesis zeolit Na-X dari kaolin yaitu adanya zat pengotor pada kaolin seperti kuarsa, muskovit, felspar, dan mineral lainnya. Dan hasil dari analisa kaolin Blitar menggunakan XRD pada gambar 2.2 mengunjukkan kaolin Blitar memiliki pengotor berupa kuarsa yang tinggi.

Gambar 2 2 Difaktogram Kaolin Alam Blitar (Aminatus, 2018)


Pada proses sintesis zeolit dari kaolin jika dilakukan secara langsung akan menghasilkan zat pengotor berupa sodalit dan kankrinit yang akan mengarah pada konsentrasi Si/Al kaolin Blitar yang tinggi. Selain itu juga akan menghasilkan kristalinitas yang rendah (Ríos et al., 2009). Pada beberapa peneliti yang sudah melaporkan hasil dari sintesis kaolin yang memiliki kristalinitas dan kemurnian yang tinggi dengan mengubah kaolin menjadi metakaolin (Ayle et al., 2016; Chasandrasekhar & Pramada, 2004; Halim et al., 2013; Hartati et al., 2017; Kovo et al., 2009; Salahudeen & Ahmed, 2017).

2.2 Sintesis Kaolin Menjadi Metakaolin Dengan Metode Alkali Fusi


Kaolin merupakan mineral yang stabil pada saat suhu tinggi sehingga tidak dapat digunakan sebagai material dalam sintesis zeolit secara langsung (Kovo *et al.*, 2009). Sebelum di sintesis menjadi zeolit X kaolin harus diubah menjadi metakaolin. Metakaolin (Al2Si2O7) merupakan material yang amorf didapatkan dari material alam seperti kaolin (dehidrokdilasi) dan sangat relatif. Kaolin memiliki aktivitas termal antara 600-900oC dapat menyebabkan dehidroksilasi sehingga dapat merusak sebagian dari struktur kaolin dalam membentuk sebuah fase metastabil dengan aktivitas yang tergolong tinggi (Ono & Baak, 2014).

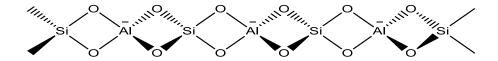
Metode yang digunakan untuk konversi kaolin menjadi metakaolin dibagi menjadi dua yaitu metode konvensional dan metode alkali fusi. Metode konvensional dilakukan dengan metode pemanasan (Chasandrasekhar & Pramada, 2004). Dan metode alkali fusi dengan metode pemanasan dan penambahan NaOH (Hartati *et al.*, 2017). Beberapa peneliti yang menggunakan metode konvensional telah dilaporkan menghasilkan metakaolin dan pengotor (Cahyawati & Melinda, 2017; De Materiales *et.al.*, 2012; W. Kim *et.al.*, 2010; Ma, Yan, Alshameri, Qiu, Zhou, & Li, 2014; Wang *et.al.*, 2014. Sintesis dengan menggunakan metode konvensional dengan menggunakan suhu 600°C selama 3 jam yang dilakukan oleh Ayele, dkk (2016) menghasilkan metakaolin dengan pengotor berupa kuarsa. Pada hasil XRD metakaolin menunjukkan bahwa puncak kuarsa tetap muncul, kuarsa merupakan material yang memiliki kestabilan termal tinggi sehingga sulit

dihilangkan meskipun terdapat dalam jumlah yang kecil pada kaolin. Hasil XRD bisa dilihat pada Gambar 2.3:

Gambar 2 3 Difraktogram kaolin menjadi metakaolin metode konvensional, kaolin (A), kaolin terpurifikasi (B), dan metakaolin (C)(Ayele et al., 2016)

Gambar 2.4 Konversi kaolin menjadi metakaolin menggunakan metode alkali fusi (a) standar kuarsa, (b) standar sodium silikat, ((c) standar kaolin, (d) kaolin alam, (e) metakaolin (600°C, 1 jam, Q= kuarsa, K= kaolin, ss= sodium silikat) (Arifah,2018)

Hasil XRD di atas merupakan penelitian yang dilakukan oleh Arifa (2018) merupakan konversi kaolin menjadi metakaolin menggunakan metode alkali fusi metode pemanasan dengan penambahan NaOH. Dengan rasio kaolin/NaOH yaitu 1:2 pada suhu 600°C selama 1 jam yang didapatkan kaolin alam memiliki pengotor berupa kuarsa yang tinggi, setelah proses alkali fusi dengan penambahan NAOH struktur kaolin dan kuarsa tidak bertransformasi menjadi metakaolin melainkan menjadi sodium silikat. Reaksi konversi kaolin menjadi metakaolin yang terbentuk menggunakan metode alkali fusi pada persamaan 2.1 dan persamaan 2.2 (Ma et.al,. 2014).

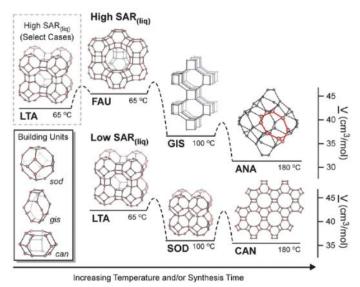

$$Al_2Si_2O_5(OH)_{4(S)} + 6NaOH_{(S)} + H_2O_{(I)} \longrightarrow 2Al(OH)_{4^-(aq)} + 2H_2SiO_4^{2^-(aq)} + 6Na^+_{(aq)}$$
 (2.1)

$$2AI(OH)_{4^{-}(aq)} + 2H_{2}SiO_{4}^{2^{-}(aq)} + 6Na^{+}_{(aq)} \qquad \Delta \longrightarrow AI_{2}Si_{2}O_{7(S)} + 3Na_{2}O_{(S)} + 6H_{2}O_{(q)}$$
 (2.2)

Dari hasil persamaan reaksi tersebut penambahan basa pada pemanasan kaolin menyebabkan adanya disolusi kaolin dengan melepaskan Si dan Al. reaksi di ikuti dengan pemanasan akan terbentuk campuran metakaolin dan natrium oksida.

2.3 Karakter Zeolit X

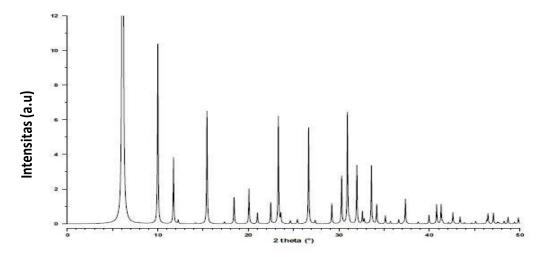
Zeolit merupakan mineral kristal alumina silikat berpori terhidrat yang memiliki struktur kerangka tiga dimensi terbentuk dari tetrahedral [SiO₄]⁴⁻ dan [AiO₄]⁵⁻. Kedua tetrahedral dihubungkan oleh atom-atom oksigen, menghasilkan struktur tiga dimensi terbuka dan berongga didalam-Nya diisi atom-atom logam alkali atau alkali tanah dan molekul air yang dapat bergerak bebas (Beck, 1993). Pada umumnya struktur zeolit merupakan polimer anorganik berbentuk tetrahedral TO₄, T merupakan Si⁴⁺ atau Al³⁺ dengan atom O berada diantara dua atom T, seperti Gambar 2.5:



Gambar 2.5 Struktur kimia zeolit

Struktur zeolit faujasite terdiri dari muatan negatif, kerangka tiga dimensi tetrahedral SiO₄ dan AlO₄ yang bergabung membentuk oktahedral terpancung (sodalite). Prisma hexagonal terhubung dengan 6 sodalite membentuk tumpukan tetrahedral. Membentuk lubang besar (supercages) dan berdiameter 13Å. Lubang-lubang (supercages) terbentuk oleh 4 kristal tetrahedral yang terbesar. Masing-masingnya memiliki 12 cincin oksigen dan memiliki diameter 7,4Å. Jika lubang-lubang bergabung menjadi 1 akan membentuk sistem pori-pori yang besar dari zeolit. Atom aluminium dikoordinat tetrahedral dalam kerangka membawa muatan negatif (Suslick, 1989).

Zeolit X merupakan tipe zeolit sintetik yang termasuk dalam kelompok faujasit (FAU) banyak diketahui karena aktivitas katalitik dan struktur porinya (aslahudeen *et al.*, 2017). Zeolit X termasuk zeolit yang memiliki banyak kegunaan, sebagai kation exchange, absorben, molekular sieve, katalis, dapat diaplikasikan pada pemurnian dan pemisahan gas maupun komponen organik (Wajima *et al.*, 2008). Difaktogram standart analisa zeolit Na-X menggunakan XRD ditunjukkan pada Gambar 2.6 puncak spesifik pada difaktogram zeolit Na-X ditunjukkan pada daerah 2θ dari 15° sampai 35°. Difaktogram tersebut dapat dijadikan acuan penentu zeolit dan kemurnian zeolit yang sudah disintesis dengan membandingkan


difaktogram hasil dari sintesis dengan difaktogram standar dari zeolit. zeolit FAU memiliki rentang suhu optimum yang dimana jika suhu pada saat sintesis berlangsung terlalu tinggi maka dapat menyebabkan bergesernya struktur dari zeolit FAU menjadi GIS. zeolit FAU memiliki suhu optimum yaitu 65°C dan zeolit GIS memiliki suhu optimum yaitu 100°C (Maldonado et al., 2013).

Gambar 2 6 Tahapan transformasi fasa Na-zeolit dengan meningkatnya suhu dan waktu sintesis

2.4 Sintesis Zeolit X Metode Sonikasi

Metode sonikasi merupakan metode sintesis yang memanfaatkan radiasi ultrasonik sehingga menyebabkan munculnya kavitasi dalam larutan. Interaksi antara radiasi dengan larutan menyebabkan adanya ekspansi dan kompresi gelombang ultrasonik dengan larutan menyebabkan adanya ekspansi dan kompresi gelombang ultrasonik sehingga menimbulkan kavitasi atau gelembung-gelembung. Gelembung tersebut akan bergetar oleh adanya radiasi ultrasonik dan saling bertumbukan satu sama lain sehingga terjadi perlepasan energi dan menyebabkan tekanan suhu pada sistem meningkat. Peningkatan suhu pada sistem dapat mempercepat reaksi kimia spesies reaktan (Bang *et al.*, 2010). Pada metode ini tergolong lebih efektif dan efisien dalam sintesis zeolit karena memerlukan waktu yang relatif lebih singkat dan tidak banyak bahan kimia yang terbuang. Jika di lihat dari segi keamanan, metode ini aman karena menggunakan frekuensi yang tidak tinggi. Selain itu, reaksi dengan bahan padatan gelombang ultrasonik dapat memecah padatan dari energi yang ditimbulkan dan berakibat pecahnya kavitasi. Menimbulkan efek pada komponen reaktan padat luas permukaannya lebih besar untuk meningkatkan laju reaksi (Suslick, 1989).

Gambar 2.7 Pola difraktogram XRD zeolit X standar (Treacy et al., 2001).

Hasil sintesis dapat digunakan untuk melihat Kemurnian zeolit X dengan membandingkan nilai sudut 2θ dan intensitasnya dengan zeolit X *standar Collection of Simulated XRD Power Petterns for Zeolites* (Treacy *et al.*, 2001). Struktur kristal yang sama akan menghasilkan difraktogram yang identik. Difraktogram zeolit X standar pada Gambar 2.7 berdasarkan difraktogram zeolit X standar tersebut, puncak-puncak tertinggi zelot X terdapat pada sudut $2\theta = 6.1^\circ$; 10.7° ; 16° ; 27° dan 34.08° (Georgiev et al., 2013). Jika pada puncak-puncak hasil difraktogram zeolit X tidak muncul pada 2θ maka zeolit X kurang berhasil. Sintesis zeolit NaX menggunakan metode sonikasi masih tergolong sedikit (Belviso *et a.,.* 2013).

2.5 Reaksi Transesterifikasi Minyak Jarak

Minyak jarak (Ricinus communis) merupakan minyak nabati yang didapatkan dari biji tanaman jarak dengan proses pengolahan yaitu pengepresan atau ekstraksi pelarut. Minyak jarak merupakan bahan alam yang telah diciptakan oleh Allah SWT. Salah satu tanda-tanda kebesaran Allah SWT. yaitu kekayaan alam yang dapat berupa tumbuhan, gunung, hutan, batuan dan sebagainya. Merujuk pada tanda kekuasaan Allah SWT. dapat dirasakan oleh mereka yang beriman kepada Allah SWT, sebagaimana dijelaskan dalam kitab suci Al-Qur'an tentang manusia *ulul albab* surat An-Nahl ayat 11:

Artinya :"Dia menumbuhkan bagi kamu dengan air hujan itu tanam-tanaman; zaitun, korma, anggur dan segala macam buah-buahan. Sesungguhnya pada yang demikian itu benar-benar ada tanda (kekuasaan Allah) bagi kaum yang memikirkan".

Kandungan ayat tersebut dari tafsir Syaikh Abu Bakar al-Jazairi, Mudarris tafsir di Masjid Nabawi yaitu "dengan itu Allah menumbuhkan untuk kamu" dengan air yang Allah turunkan dari langit. "tanaman-tanaman seperti tanaman jarak, zaitun, kurma, anggur dan segala jenis buah-buahan dengan segala jenisnya, karena semuanya tergantung kepada air.

firman-Nya "sungguh, pada yang demikian" dari yang telah disebutkan berupa turunnya air dari langit dan diperoleh berbagai manfaatnya. "benar-benar terdapat tanda" tanya jelas akan keberadaan Allah, kekuasaan, ilmu, hikmah, dan kasih sayang-Nya untuk beribadah kepada-Nya dan meninggalkan beribadah kepada selain Allah. Dapat diambil pelajaran bahwa orangorang yang mirip dengan hewan ternak yaitu orang-orang yang tidak berpikir, dan mereka tidak akan mendapatkan suatu tanda apa pun yang ada di alam ini padahal mereka hidup didalam-Nya. Dari ayat diatas menjelaskan bahwa Allah telah menciptakan tumbuhan dengan bermacam-macam jenis. Keanekaragaman tumbuhan merupakan fenomena alam yang harus dikaji dan dipelajari untuk dapat dimanfaatkan oleh manusia. Dan salah satunya yaitu minyak jarak. Minyak jarak termasuk dalam golongan tanaman tropis dari keluarga Euphorbianceae. Minyak jarak mengandung asam risinoleat 89% dan adanya gugus fungsi karboksil dan hidroksil, gugus karboksil berperan untuk memperbesar batas esterifikasi-transesterifikasi dan diatur dengan proses hidrogenasi atau epoksidasi.

Reaksi transesterifikasi merupakan suatu reaksi pada senyawa ester yang diubah menjadi senyawa ester lain yang lebih sederhana. Pada pembuatan biodiesel, reaksi transestrifikasi terjadi pada trigliserida (ester) dengan alkohol rantai pendek yang menghasilkan ester. Faktor-faktor yang mempengaruhi proses transesterifikasi adalah suhu, katalis, rasio alkohol terhadap minyak, kemurnian reaktan, dan waktu reaksi. Faktor-faktor yang dapat mempengaruhi reaksi transestrifikasi yaitu pengadukan, suhu, katalis, perbandingan pereaksi, dan waktu reaksi. Reaksi transestrifikasi memiliki sifat yang reversibel, agar konversi maksimal kesetimbangannya harus bergeser ke produk. Cara untuk mencapai kondisi ini yaitu melalui penambahan reaktan metanol secara berlebih (Ralph et al., 1992). Reaksi transesterifikasi ditunjukkan pada Gambar 2.8

Gambar 2.8 Reaksi transesterifikasi (Ralph et al., 1992).

Mekanisme pada reaksi transestrifikasi dengan menggunakan katalis heterogen basa biasanya diawali dengan terjadinya reaksi antara situs aktif katalis heterogen basa (K2O) dengan menggunakan metanol dan membentuk senyawa ion metoksida yang bertindak sebagai nukleofil kuat (Kusuma et al., 2013).

Pada sintesis biodiesel yang di lakukan oleh Amalia (2008) melaporkan bahwa komponen utamanya yaitu metil risinoleat, merupakan campuran dari metil ester hasil dari reaksi transesterifikasi minyak jarak kepyar, dilakukan analisis menggunakan GC menghasilkan metil risinoleat dengan kadar 86,19% pada retensi waktu 8,3 menit. Sedangkan pada penelitian yang dilakukan oleh Ola et al., (2013) melaporkan hasil dari analisis GC-MS metil ester dari reaksi transesterifikasi minyak jarak kepyar (Riccinus communis) dapat dilihat pada Tabel 2.2

Tabel 2. 2 Metil ester hasil analisis GC-MS

tR (menit)	Senyawa	Kadar %
6,677	Methyl ester of elaidic acid	2,20
6,842	Methyl ester of stearic acid	0,9
20,05	Methyl ester of pentadecanoic acid	0,8
20,83	Methyl ester of linoleic acid	2,83
27,143	Methyl ester of ricinoleic acid	93,46

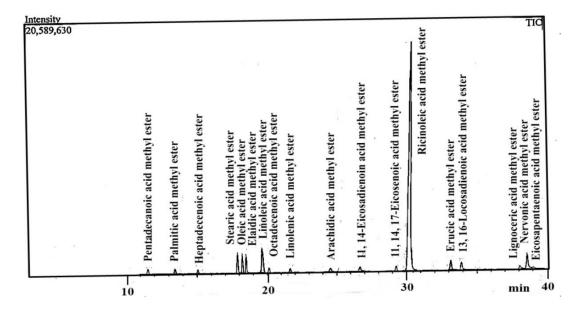
Sumber : (Ola et al., 2013).

Pada komponen yang sudah terpisah dari kromatografi gas masuk ke dalam instrumen spektrofotometer massa, komponen cuplikan di tembak dengan berkas elektron sehingga didapatkan ion yang bermuatan positif dengan energi yang tinggi karena adanya elektron yang terlepas dari molekul menjadi ion yang lebih kecil (sastromanidjojo.H, 2001). (Supratman, 2010).

2.6 Karakterisasi Metil Ester Menggunakan GC-MS (Gas Chromatography-Mass Spectroscopy).

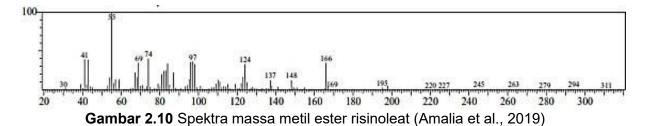
GC-MS (Gas Chromatography-Mass Spectrometry) adalah gabungan dari kromatografi gas dan spektrofotometer massa. Kromatografi gas memiliki fungsi yaitu untuk memisahkan komponen senyawa dalam sampel. Kromatografi massa berfungsi sebagai detektor untuk analisis komponen yang berhasil dipisahkan pada kromatografi gas menggunakan fase gerak berupa gas yang inert, fase diamnya berupa zat padat atau cair. Pemisahan kromatografi gas didasarkan pada titik didih senyawa dan interaksi yang terjadi antara senyawa dengan fase diam (Rohman dan Gandjar, 2007). Pada senyawa yang terdistribusi dahulu pada fase gerak akan keluar lebih dahulu dari kolom.

Hasil analisis dari GC-MS yaitu berupa metil ester. Metil ester merupakan monoalkil ester asam-basa lemak yang memiliki rantai panjang terkandung dalam minyak nabati atau hewani digunakan sebagai pengganti bahan bakar mesin disel (Ma dan Hanna, 1999). Biodiesel diperoleh dari proses transestrifikasi trigliserida menjadi metil ester dengan produk samping gliserol. Ada beberapa faktor yang berpengaruh pada Proses transesterifikasi yaitu: rasio molar minyak dan alkohol, suhu, waktu lama reaksi, tingkat kemurnian minyak, terdapat air di dalamnya, berat katalis terhadap minyak, dan FFA. Biodiesel merupakan bahan bakar


alternatif yang terbuat dari sumber daya alam dan dapat diperbarui, meliputi minyak tumbuhan dan hewan (Sibarani *et.al.*, 2007). dari faktor yang dapat mempengaruhi, proses transestrifikasi agar mendapat hasil yang maksimal, harus menggunakan minyak bebas dari air dan kandungan asam lemak bebas dan minyak harus kurang dari 2% (Grepen *et.al.*, 2004). Metil eter dikarakterisi secara kuantitatif menggunakan GC-MS. Hasil analisis metil ester dari transesterifikasi minyak jarak di tunjukkan pada Tabel 2.2

Tabel 2. 3 Komposisi FAMEs minyak jarak ditentukan dengan GC-MS

Jenis FAME	Rumus FAME	Waktu retensi	Konsentrasi %
Pentadecanoic acid methyl ester	C15:0	11.267	01.08
Palamitic acid methyl ester	C16:0	13.424	01.39
Hepradecenoic acid methyl ester	C17:1	15.943	0.27
Stearic acid methyl ester	C18:0	17.897	04.08
Oleic acid methyl ester	C18: 1c	18.375	03.49
Elaidic acid methyl ester	C18 : 1n9t	18.506	02.20
Linoleic acid methyl ester	C18 : 2c	19.659	05.21
Octadecenoic acid methyl ester	C18: 2t	20.817	1.25
Linolenic acid methyl ester	C18: 3n3	21.743	0.91
Arachidic acid methyl ester	C20:0	24.661	0.81
11,14-Ecosadienoic acid methyl ester	C20:2	26.948	0.39
11, 14, 17-Eisosenoic acid methyl ester	C20 : 1n9	29.259	0.90
Ricinoleic acid methyl ester	C18: 1-OH	30.189	67.35
Erucic acid methyl ester	C22: 1n9	33.91	02.41
13, 16-Docosadoenoic acid methyl ester	C22 : 2c	35.03	01.19
Lignoceric acid methyl ester	C24:0	38.08	0.82
Nervonic acid methyl ester	C24:1	38.611	4.97
Eicosapentaenoic acid methyl ester	C20 :5n3	39.28	0.46


Sumber: Ahmad Jan, et al. (2022).

Diperoleh 18 puncak berbagai jenis FEME minyak jarah (Ricinus Communis). Berdasarkan puncak komponen terbesar yaitu metil ester risinoleat sebesar (67,35), metil ester linoleat (05,21), metil seter saraf (4,97), dan metil ester stereat (04,08) (Ahmad Jan *et al.*, 2022). Dari spektrum masa yang diperoleh menujjukkan perbandingan masa fragmen (m/Z) dengan kelimpahan relatih berdasarkan tingkat kestabilannya. Semakin stabil fragmen, kelimpahannya relatif dan hasil yang diperoleh semakin tinggi (supratman, 2010). Hasil kromatogram FAME dari minyak jarak dapat dilihat pada Gambar 2.9

Gambar 2.9 Kromatografi FAME dari minyak jarak (Ricinus communis) (Ahmad jan, et al., 2022).

Spektra metil ester risinolat terdapat puncak basa yang mirip dengan metil risinoleat standar pada m/z 55 dengan waktu retensi 35,7-36,7 yang terdapat dalam biodisel. Ciri dari fragmentasi dari metil risinoleat yaitu, terdapat puncak dengan intensitas yang tinggi pada m/z 166 dan 55, dan puncak yang muncul pada m/z 74 disebabkan adanya pengaruh Mc Laffetry's kembali (Amalia *et al.*, 2019) Spektra perbandingan massa fragmen (m/z) dari metil ester risinoleat ditunjukkan pada Gambar 2.9

Pola fragmen dari senyawa ini ditunjukkan pada Gambar 2.11

Gambar 2.11 Pola fragmentasi metil ester risinoleat (Amalia et al., 2019)

BAB III

METODOLOGI

3.1 Waktu dan Tempat Penelitian

Penelitian ini dilakukan pada bulan Maret tahun 2023 di Laboratorium Kimia Anorganik Universitas Islam Negeri Maulana Malik Ibrahim Malang. Sedangkan Karakterisasi menggunakan XRD akan dilakukan di Institut Teknologi Sepuluh November Surabaya, adsorpsi N₂ di Universitas Islam Indonesia Yogyakarta dan menggunakan spektrofotometer GC-MS di Universitas Airlangga Surabaya.

3.2 Alat dan Bahan

3.2.1 Alat

Alat-alat yang digunakan dalam penelitian ini adalah sebagai berikut *hotplate*, *magnetic stirer*, *beaker glass*, corong pisah 250 ml, cawan, *erlenmeyer* 250ml, pipet tetes , tanur, pipet volume, pH universal, neraca analitik, oven, alu dan mortar, botol semprot, instrumen XRF, instrumen XRD, Adsorpsi nitrogen, spektrofotometer GC-MS.

3.2.2 Bahan

Adapun bahan yang digunakan dalam penelitian ini adalah sebagai berikut kaolin alam, NaOH, Kertas Saring, dan Akuades, HCl 1M, minyak jarak (*Ricinus communis*), aseton, metanol.

3.3 Rancangan Penelitian

Penelitian dilakukan dengan mengaktifkan kaolin menjadi metakaolin melalui metode alkali fusi, peningkatan persentase dan reaktivitas SiO₂ dilakukan dengan ekstraksi SiO₂ dengan metode asam dan basa. Sintesis Zeolit X dengan menggunakan metode sonikasi, dan hasil sintesis dilakukan karakterisasi menggunakan XRF dan luas area. Selanjutnya katalis zeolit diaplikasikan dalam pembuatan metil ester pada transesterifikasi minyak jarak (*Ricinus communis*) dengan menggunakan variasi waktu 5, 6, dan 7 jam. Dengan menggunakan suhu 70°C dengan katalis 3-6% dengan berat zeolit sebanyak 1,6 gram untuk proses transesterifikasi. Perbandingan rasio mol metanol: minyak jarak (*Ricinus communis*) 1:15 hasil dari reaksi transesterifikasi dibantu oleh katalis di karakterisasi menggunakan GC-MS untuk menentukan struktur kimia dari metil ester berdasarkan perhitungan massa dari molekul tersebut dan pola fragmentasinya.

3.4 Tahapan Penelitian

Tahapan penelitian dilakukan sebagai berikut :

- 1) Preparasi kaolin
- 2) Karakterisasi XRD dan XRF]
- 3) Konversi kaolin menjadi metakaolin melalui proses alkali fusi.
- 4) Karakterisasi kaolin hasil alkali fusi dengan XRD dan XRF.
- 5) Ekstraksi SiO₂ dari kaolin alam.
- 6) Karakterisasi hasil sintesis zeolit dengan XRD dan XRF.
- 7) Sintesis zeolit dengan menggunakan metode sonikasi.
- 8) Karakterisasi zeolit dengan menggunakan XRD dan SAA.
- 9) Uji katalis zeolit hasil sintesis pada reaksi transesterifikasi.
- 10) Analisis GC-MS hasil reaksi.

3.5 Prosedur Penelitian

3.5.1 Preparasi Sampel Kaolin (Arifah,2018)

Sampel kaolin dicuci dengan menggunakan akuades untuk menghilangkan tanah yang menutupi permukaan kaolin lalu dikeringkan. Setelah kering kaolin dihaluskan dan diayak dengan ayakan 200-230 mess (Ismail, 2013). Sampel yang yang tidak lolos pada 230 mess dicuci dengan 20 ml HCL dengan jumlah kaolin 10 gram dan diaduk menggunakan stirer selama 1 jam, selanjutnya sampel dicuci dan disaring dengan akuades hingga pH filtrat 7 dan di keringkan dengan temperatur 100°C selama 1 jam, lalu kaolin di karakterisasi dengan XRF, XRD.

3.5.2 Pengubahan Kaolin menjadi Metakaolin melalui proses Alkali Fusi

Pengubahan kaolin menjadi metakaolin dilakukan dengan penambahan NaOH dan pemanasan. Campuran kaolin dan NaOH dengan rasio 1 : 2 yakni 6,44 g kaolin dan 12,88 g NaOH digerus selama 30 menit dan dipanaskan pada suhu 600°C selama 1 jam. Selanjutnya, digerus kembali hingga menjadi serbuk, selanjutnya di karakterisasi dengan XRD dan XRF.

3.5.2 Ekstraksi SiO₂ dari kaolin

Kaolin yang sudah dicuci dengan HCl 1 M ditambahkan dengan NaOH 7 M dengan perbandingan 1:2 (b/v) dan distirer selama 4 jam pada suhu 80° C. Endapan dipisahkan melalui penyaringan. Filtrat dipanaskan pada suhu 40° C kemudian di titrasi dengan HCl 3 M sambil distirer pada suhu 40° C hingga pH mendekati 7 dan terbentuk endapan putih silika. Endapan putih silika yang dihasilkan kemudian disaring dan dicuci menggunakan akuades untuk menghilangkan pengotor yang berupa garam NaCl dari endapan SiO₂. Endapan lalu dikeringkan selama 1 jam pada suhu 100° C.

3.5.4 Sintesis Zeolit X dengan metode sonikasi (Kim et al., .2010)

Sintesis zeolit NaX dilakukan dengan menggunakan rasio molar:

4 SiO₂: 1 Al₂O₃: 5 Na₂O: 180 H₂O

6,04 gram SiO₂, ditambah 2,55 gram Al₂O₃ dicampur dengan 81,24 mL H₂O, ditambah 10 gram NaOH. Campuran kemudian didiamkan pada suhu ruang selama 10 hari kemudian dimasukkan dalam vial HDPE. Sonikasi dilakukan dengan frekuensi gelombang 42 KHz dan daya 100 W selama 2 jam dan 4 jam. Setelah disonikasi kemudian material hasil sintesis disaring dan dicuci dengan akuades sampai pH 9 atau 10. Zeolit NaX kemudian dikeringkan pada suhu 100°C selama 1 hari dan di karakterisasi menggunakan, XRD, adsorpsi N₂.

3.6 Proses Reaksi Transesterifikasi dengan Katalis Zeolit X dari minyak jarak (Ricinus Communis) (Bachtiar, 2020)

Pada reaksi transesterifikasi dilakukan dengan cara mengonversi trigliserida pada minyak jarak (Ricinus Communis) untuk memperoleh metil ester. Katalis Zeolit X di tambahkan sebanyak 3 gram dengan menggunakan rasio mol metanol : minyak jarak 15 : 1. Campuran dimasukkan ke dalam labu ukur bersama dengan pemasangan kondensor, termometer dan pengaduk stirer. selanjutnya dipanaskan dengan suhu 60°C dengan variasi waktu 5 dan 7 jam dengan menggunakan kecepatan 600 rpm. Variasi waktu yang digunakan pada reaksi transesterifikasi ditunjukkan pada Tabel 3.1

Tabel 3. 1 Variasi waktu yang digunakan pada reaksi transesterifikasi

Volume Metanol	Volume Minyak jarak	Suhu	Waktu Kontak
6,2722 mL	9 mL	60°C	5 jam
6,2722 mL	9 mL	60°C	7 jam

3.7 Karakterisasi Material Sintesis

3.7.1 Karakterisasi Kaolin dengan menggunakan XRF

Karakterisasi XRF yang dilakukan pada sampel kaolin alam, kaolin setelah proses alkali fusi dan hasil ekstraksi SiO₂ dari kaolin, memiliki tujuan untuk mengetahui kandungan unsur-unsur yang terdapat didalam-Nya. Sampel dihaluskan menjadi ukuran 200 mess kemudian diletakkan dalam *sampel holder*, XRF diatur dengan menggunakan radiasi foton 20 kV, arus 128 uA selama 60 detik.

3.7.2 Karakterisasi menggunakan XRD (Arifah,2018).

Karakterisasi menggunakan XRD dilakukan pada sampel kaolin, XRD dilakukan pada sampel kaolin alam, kaolin setelah proses alkali fusi dan hasil ekstraksi SiO₂ dari kaolin, dan zeolit X yang telah disintesis. Masing-masing sampel dihaluskan menjadi bubuk kemudian ditempatkan pada *sampel holder*. XRD diatur menggunakan radiasi sinar-X Cu Kα sebesar 1,541 Å dengan sudut 2θ rentang 5-60° dan kecepatan Scan 3°/menit.

3.7.3 Karakterisasi Zeolit X menggunakan adsorpsi N₂

Karakterisasi Zeolit X dengan isoterm adsorpsi nitrogen diamati dengan menggunakan $Quantachrome\ Corporation\ (Nova-1200)$. Hal yang perlu dilakukan sebelum analisis ini adalah sampel sebanyak 0,2 gram divakum selama 3 jam pada 300°C. Kemudian dialiri gas Nitrogen pada 77 K. Luas permukaan spesifik (SBET) dihitung dengan persamaan BET ($Brunauer\ Emmet-Teller$), sedangkan distribusi ukuran pori (pore size distribution / PSD) dianalisis menggunakan BJH ($Barret\ Joiner\ Halenda$). Berat gas Nitrogen dapat membentuk lapisan monolayer (W_m) dengan menggunakan persamaan BET sebagai berikut: $W_m = 1\delta - i$ Selanjutnya luas permukaan spesifik dapat dihitung menggunakan persamaan rumus sebagai berikut:

St = WmM. N. Acs

Keterangan:

Wm = Berat gas nitrogen yang membentuk lapisan monolayer (g)

i = Intersep

N = Bilangan Avogadro (6,0225 x 10²³ molekul/mol)

Acs = Molecular cross section area dari N_2 (16,2 x 10⁻²⁰ m²)

St = Luas permukaan

3.7.5 Karakterisasi Metil Ester Hasil Reaksi Transesterifikasi dengan Menggunakan Spektrofotometer GC-MS. (Umam, 2018)

Karakterisasi metil ester hasil transesterifikasi di karakterisasi dengan menggunakan GC-MS, dengan menginjeksikan sebanyak 2 μL metil ester pada instrumen GC-MS (Gas Cromatography-Mass Spectroscopy) yang dikondisikan pada:

Jenis Kolom : RastekRXi0-5MS

Panjang Kolom : 30 meter

IDE : 0,25 mm

Gas Pembawa : Helium

Sistem ionisasi : Electron impact

Energi Ionisasi : 70 eV

Suhu Kolom : 80°C

Suhu injektor : 250°C

Mode injeksi : Split

Tekanan gas pembawa : 12 kPa

Kecepatan aliran gas :0,46 mL/menit

Suhu detektor : 250°C

Memiliki prinsip teknik pemisahan berdasarkan kecepatan migrasi dari komponen penyusun senyawa instrumen. Sampel cair yang diinjeksikan pada injektor dan diuapkan. Uap

sampel akan bergerak menuju kolom untuk proses pemisahan. Komponen akan melewati ruang mengionisasikan dan akan dibombardir oleh elektron sehingga terjadi proses ionisasi, dan fragmen ion akan tertangkap oleh detektor.

3.8 Analisis Data.

3.8.1 Analisis Data Hasil Karakterisasi Kaolin Menggunakan X-Ray Flourescence (XRF).

Hasil dari karakterisasi kaolin dengan menggunakan XRF disajikan dalam bentuk tabel. Persentase kandungan Si/Al dihitung, jika rasio Si/Al kurang dari 5 atau biasa jadi lebih maka diperlukan penambahan silika atau alumina agar rasio Si/Al sesuai dengan rasio zeolit X.

3.8.2 Analisis Data Hasil Karakterisasi Kaolin, Metakaolin, dan Zeolit X Menggunakan X-Ray Diffraction (XRD).

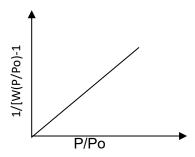
Hasil dari karakterisasi dengan menggunakan XRD dapat diperoleh berupa difraktogram. Data XRD kaolin digunakan untuk menentukan puncak spesifik kaolin dan juga pengotornya. Data difraktogram metakaolin digunakan untuk menunjukkan keberhasilan sintesis metakaolin yang merupakan material amorf. Peda pembentukan struktur zeolit X ditentukan oleh kemunculan puncak didaerah 2θ pada difraktogram. Selanjutnya pola puncak-puncak yang terbentuk pada difraktogram dibandingkan dengan referensi untuk mengetahui terbentuknya kristal zeolit X. Semakin tinggi intensitas puncak menandakan bahwa kristal zeolit X semakin banyak yang terbentuk.

3.8.3 Analisis Data Hasil Karakterisasi Zeolit X menggunakan Adsorpsi N₂.

Pengukuran luas permukaan dan distribusi ukuran pori suatu material di lakukan dengan instrumen *surface Area Analyzer*. Pengukuran ini isotermal adsorpsi N_2 menggunakan nitrogen. Data yang diperoleh dari analisis menggunakan adsorpsi N_2 berupa relatif (P/Po). Volume gas N_2 yang diadsorpsi dan didesorpsi per gram sampel (V), dan $(1/[W((P/P_o)-1)])$. Selanjutnya dibuat grafik penentuan luas permukaan dari sampel yang menghubungkan tekanan (P/Po) sumbu x dengan $(1/[W((P/P_o)-1)])$ sumbu y. Kemudian hasil grafik dibandingkan dengan tipe grafik isotermal adsorpsi-desorpsi yang telah di tetapkan oleh *Internasional Union of Pure and Applied Chemistry* (IUPAC), dapat diketahui tipe isoterm suatu material. Kemudian akan diperoleh grafik dan didapatkan sebuah persamaan y = ax + b. Selanjutnya dapat menerapkan teori BET (*Brauneur-Emmet-Teller*) dalam menentukan luas permukaan padatan. Persamaan BET ditampilkan sebagai berikut :

$$\frac{1}{W(Po/P)-1} = \frac{1}{WmC} + \frac{C-1}{WmC} (P/Po)$$

Keterangan:


W : Berat gas yang teradsorpsi

P₀/p : Tekanan Relatif

P_o: tekanan uap saturasi

Wm : Berat gas nitrogen yang membentuk lapisan Monolayer (g)

C : konstanta BET

Tabel 3. 2 Kurva Plot BET (Anggoro, 2017)

Selanjutnya diperoleh persamaan nilai *slope* (s) dan *intersep* (i). Berat gas nitrogen yang dapat membentuk lapisan monolayer *(Wm)* didapatkan dengan menggunakan persamaan (3.1) (Anggoro, 2017).

Slope (s) dan intersep (i)

$$s = \frac{C - 1}{WmC} \qquad \qquad i = \frac{1}{WmC}$$

Wm (Berat gas nitrogen yang membentuk lapisan monolayer)

$$Vm = \frac{1}{s+i}$$
....(3.1)

Selanjutnya dihitung luas permukaan (St) menggunakan persamaan (3.2)

$$St = \frac{Wm \times Nx \text{ Acs}}{M}...(3.2)$$

Keterangan:

Wm = berat gas nitrogen yang membentuk lapisan monolayer (g)

I = intersep

N = bilangan Avogadro (6,0225 x 10²³ molekul/mol)

Acs = Molecular cross section area dari N_2 (16,2 x 10⁻²⁰ m²)

St = luas permukaan.

3.8.4 Analisis Data Hasil Karakterisasi Metil Ester dari Reaksi Transesterifikasi Minyak Jarak Menggunakan GC-MS

Data yang di dapatkan dari hasil karakterisasi metil ester dari transesterifikasi minyak jarak dengan menggunakan GC-MS didapatkan dalam bentuk kromatogram. Puncak yang muncul dalam kromatogram disesuaikan dengan standar referensi untuk mengetahui terbentuknya metil ester dari transestrifikasi minyak jarak (*Ricinus communis*) dengan menggunakan katalis zeolit. Banyaknya komponen yang terkandung dalam metil ester dapat diketahui dengan banyaknya puncak dan luas area pada kromatogram. Hasil dari konversi minyak jarak (*Ricinus communis*) menjadi metil ester dapat dihitung dengan rumus sebagai berikut :

Persen metil ester:

%metil ester =
$$\frac{luas \ area}{total \ luas \ area}$$
 X 100%.

BAB IV PEMBAHASAN

4.1 Kandungan Unsur dan Struktur Kaolin Alam

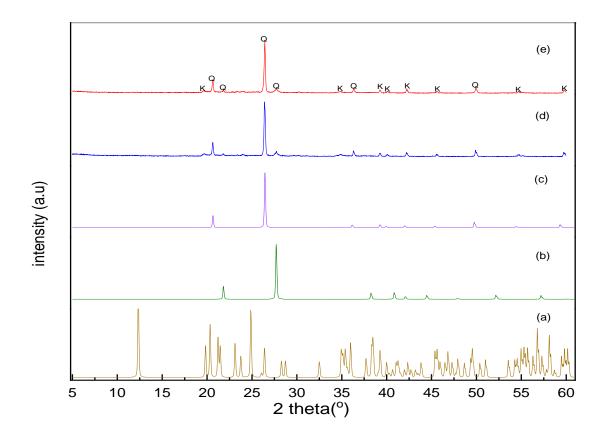
Pada penelitian ini proses sintesis zeolit X menggunakan sumber silika dan alumina dari kaolin alam Blitar. Pada umumnya kaolin alam banyak mengandung mineral, senyawa dan logam-logam lain. Kaolin alam perlu dilakukan proses pencucian dengan akuades untuk menghilangkan kandungan logam-logam lain dapat dikurangi dengan menggunakan HCl 1M. Proses pelarutan logam dengan menggunakan HCl dapat dilihat dari reaksi yang di tampilkan pada Persamaan 4.1 atau 4.2. Perubahan kandungan logam dalam kaolin sebelum dan sesudah dianalisa dengan menggunakan XRF dapat dilihat pada Tabel 4.1.

$$M_2O_{3(s)} + 6HCI_{(aq)} \longrightarrow 2MCI_{3(aq)} + 3H_2O_{(I)}$$

$$MO_{(s)} + 2HCI_{(aq)} \longrightarrow MCI_{2(aq)} + H_2O_{(I)}$$

$$M = Methal$$

$$(4.1)$$


Tabel 4.1 Kandungan Mineral Kaolin

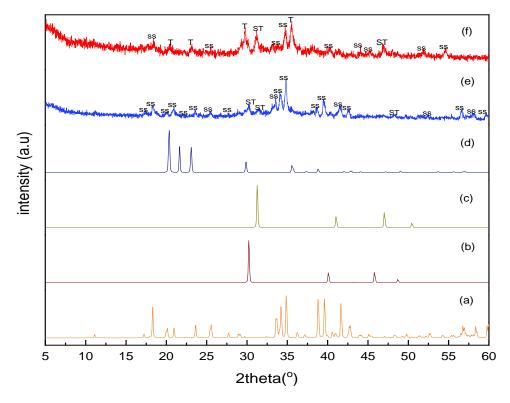
Logam	Persentase logam (%) sebelum dicuci HCl 1M	Persentase logam (%) setelah dicuci HCL 1M
Al	13	11
Si	62,5	65
K	5,25	4,99
Ca	2,22	1,1
Ti	1,74	1,67
V	0,02	0,03
Cr	0,047	0,047
Mn	0,12	0,13
Fe	14,6	15,3
Cu	0,096	0,10
Zn	0,008	0,04
Re	0,2	0,1

Berdasarkan Tabel 4.1 hasil dari karakterisasi dengan menggunakan XRF, menunjukkan bahwa logam Si, V, Ni, Mn, Fe, dan Zn mengalami peningkatan persentase, sementara pada logam Al, K, Ca, Ti, Cu, dan Re mengalami penurunan persentase. Unsur logam K dan Ca mengalami penurunan persentase karena unsur K dan Ca mudah larut dalam asam. Unsur logam V mengalami peningkatan persentase karena pada unsur logam V yang memilik sifat sukar larut dalam asam klorida maupun asam sulfat encer. Logam Mn juga tidak mengalami pengurangan persentase, karena pada logam Mn akan tereduksi dalam asam membentuk logam Mn²+. Logam besi pada umumnya mudah larut dalam asam klorida encer maupun pekat. Akan tetapi, pada hasil data XRF logam Fe tidak mengalami pengurangan persentase dengan pencucian HCL 1M. Hal ini disebabkan oleh kemungkinan, yaitu Fe pada mineral kaolin alam berupa Fe₂O₃ yang sangat stabil hanya mengalami reduksi dari besi (III)

menjadi besi (II) jika bereaksi dengan zat pereduksi berupa asam encer dan reaksi tanpa pemanasan (Vogel, 1990). Unsur logam Zn yang terkandung merupakan unsur logam murni dan tergolong lambat larut dalam asam. Unsur logam Ti mengalami penurunan persentase karena memiliki sifat yang larut dalam asam sulfat. Unsur logam Cu mengalami penurunan persentase karena unsur logam Cu mudah larut dalam asam sulfat (Vogel, 1990). Persentase silika mengalami peningkat karena SiO₂ yang relatif tidak reaktif terhadap asam-asam pada suhu ruang atau pada suhu yang lebih tinggi (Cotton dan Wilkison, 1989).

Berdasarkan hasil Analisa yang sudah didapatkan pada proses pencucian dengan menggunakan asam (HCl 1M) tidak mengalami penurunan yang signifikan, akan tetapi dapat menurunkan konsentrasi dari beberapa logam yang memiliki sifat larut dalam asam, pada logam aluminium mengalami penurunan setelah proses pencucian disebabkan karena memiliki sifat yang amfoter sehingga dapat larut dalam asam maupun basa. Logam-logam tertentu tidak mengalami penurunan karena kaolin alam memiliki struktur yang rigid sehingga menyebabkan kation penyeimbang yang berupa logam tidak dapat dihilangkan meskipun dengan pencucian asam.

Gambar 4. 1 (a) Difraktogram standar kaolin (00-014-0164), (b) standar kuarsa (01-074-1811), (c) standar kuarsa (01-086-1565) (d) kaolin alam Blitar sebelum dicuci, (e) kaolin alam Blitar sesudah dicuci (K: kaolin, Q; kuarsa).


Selain kandungan unsur dalam kaolin alam, struktur kaolin alam juga perlu diketahui dengan menggunakan analisa XRD. Hasil analisa kaolin dengan menggunakan XRD

ditampilkan pada Gambar 4.1 pada gambar tersebut menunjukkan bahwa kaolin yang sudah dicuci dengan menggunakan HCl tidak mengalami perubahan struktur. Mineral kaolin juga banyak mengandung mineral kuarsa. Pengotor mineral lain di dalam kaolin menunjukkan bahwa kaolin Blitar termasuk dalam golongan *low-grade* prekursor.

Hasil difraktogram berdasarkan Gambar 4.1 menggunakan dua standar kuarsa. Dari kedua standar tersebut memiliki perbedaan yaitu pada strukturnya. Pada gambar tersebut ponit (d) merupakan standar kuarsa alpha dan (c) standar kuarsa low. Pada kuarsa alpha memiliki bentuk kristal yang paling stabil dari kuarsa dengan kondisi normal suhu dan tekanan, strukturnya tersusun dari silika (SiO₂) dengan pola yang beraturan. Sedangkan pada bentuk struktur kuarsa low berbeda dengan kuarsa alpha, kuarsa low memiliki variasi struktur dalam bentuk polimorf, termasuk tridimit dan stishovite. Bentuk struktur ini terbentuk dalam suhu dan tekanan yang berbeda dari kuarsa alpha. Pada kuarsa low memiliki sifat yang berbeda dalam transparansi, kekerasan, dan sifat termal dibandingkan kuarsa alpha (Ralph Khller, 1979).

4.3 Perubahan Struktur Kaolin Alam dengan Pretreatmen Alkali Fusi

Proses perubahan struktur kaolin dengan metode alkali fusi menghasilkan sodium silikat, stishovite, dan tridimit. Pretreatmen alkali fusi pada kaolin bertujuan untuk mengubah kaolin menjadi material yang lebih reaktif, sehingga dapat digunakan sebagai raw material untuk sintesis zeolit.

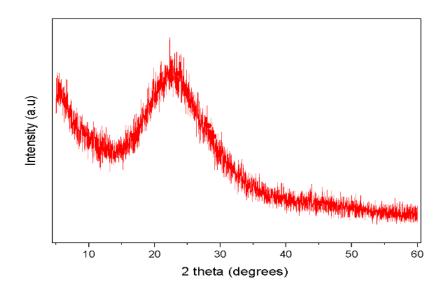
Gambar 4.2 Difraktogram standar sodium ortosilicate (01-078-1432) (a), (b) standar stishovite (96-154-4732), (c) standar stishovite (96-900-7155) (d) standar tridimit (96-810-4537), (e) metakaolin kalsinasi 2 jam, (f) metakaolin kalsinasi 3 jam (St: stishovite, ss: sodium ortosilicate, T:trydimite).

Pada Gambar 4.2 menunjukkan hasil dari pretreatmen alkali fusi yang menghasilkan metakaolin, sodium silikat, tridimit, dan stishovite. Hal ini disebabkan oleh sumber kaolin alam yang juga mengandung mineral kuarsa yang tidak reaktif. Kaolin dapat berubah menjadi metakaolin, kemudian pada kuarsa yang bereaksi dengan NaOH (sodium hidroksida) berubah menjadi sodium silikat. Sedangkan stishovite dan tridimit merupakan struktur polimorf dari kuarsa. Faktor penyebab terbentuknya kuarsa berupa tridimit dan stishovite yaitu karena pengaruh suhu tinggi (Anthony, 2011). Karena pada hasil difaktogram metakaolin masih terdapat kandungan kuarsa, kuarsa merupakan mineral yang memiliki kriltalinitas yang tinggi sehingga tidak dapat digunakan sebagai raw material dalam sintesis zeolit X. maka dilakukan proses pretreatmen ekstraksi SiO₂. Untuk mendapatkan SiO₂ yang murni yang akan di gunakan sebagai raw material sintesis.

Proses ekstraksi SiO₂ dilakukan dengan cara merendam kaolin dengan HCl 1M, direaksikan dengan NaOH 7M. Reaksi silika dan alumina dengan menggunakan pelarut NaOH ditunjukkan pada persamaan 4.1 dan 4.2 (Zaemi et al., 2013).

Pemanasan pada larutan natrium silikat dilakukan penambahan HCl 3M sampai pH 7. SiO₂ akan terbentuk dan mengendap. Proses penambahan larutan asam bertujuan untuk memisahkan senyawa SiO₂ dengan senyawa lain. Proses ini akan terjadi endapan koloid putih yang diperkirakan SiO₂ dan terbentuk pada pH 9 dan penambahan HCl dilakukan sampai pH 7. Beberapa faktor yang dapat mempengaruhi ekstraksi antara lain suhu dan konsentrasi larutan. Setelah silika terbentuk dilakukan pencucian dengan akuades sampai netral. Reaksi yang terjadi ditunjukkan pada persamaan 4.3 (Ahmad et al., 2013):

$$Na_2SiO_{3(aq)} + 2HCI_{(aq)} \longrightarrow SiO_{2(gel)} + 2NaCI_{(s)} + H_2O_{(l)}4.3$$


Pencucian pada SiO₂ dengan menggunakan akuades bertujuan untuk memisahkan dan menetralkan SiO₂ dari ion pengotor yaitu Cl- yang diperoleh ketika penambahan larutan asam klorida ke dalam larutan panas natrium silikat. Larutan AgNO₃ 10% digunakan untuk mendeteksi adanya senyawa Cl- yang ditandai dengan munculnya endapan putih dalam filtrat ketika penambahan AgNO₃. Data hasil ekstraksi dapat diamati dari hasil *X-Ray Flourosence* yang tertera pada Tabel 4.2.

Pada Tabel 4.2 diketahui bahwa terjadi peningkatan dari senyawa SiO₂ terjadi karena proses ekstraksi dengan menggunakan pengikat larutan basa, sehingga menyebabkan beberapa senyawa ikut larut didalamnya. Untuk mengetahui fasa kristalinitasnya maka dilakukan analisis menggunakan instrumen *X-Ray Diffraction*, yang dimana hasilnya akan

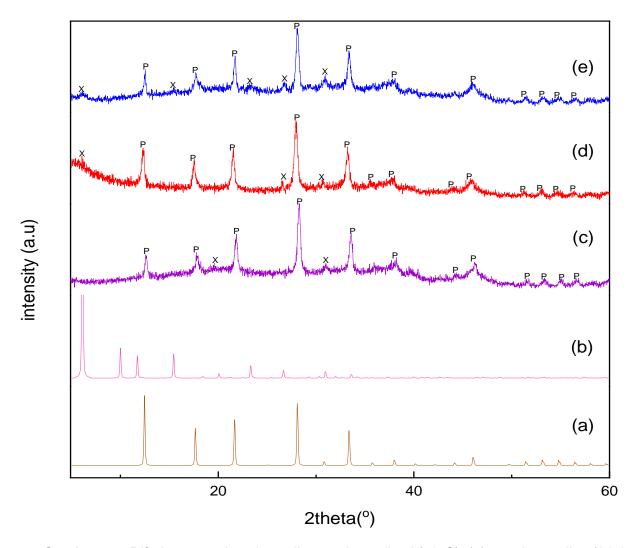
berupa puncak intensitas. Silika yang digunakan harus memiliki sifat yang amorf, jika silika memiliki sifat yang kristalin maka pada proses sintesis kurang maksimal. Pada proses ekstraksi kaolin dengan berat 400 gram menghasilkan rendemen SiO₂ sebanyak 8 gram. proses ekstraksi ke dua dilakukan dengan berat yang sama dan menghasilkan jumlah randemen lebih banyak yaitu 13 gram. untuk mendapatkan hasil randemen yang banyak maka kita harus lebih memperhatikan tingkat keasaman pada saat proses ekstraksi jika terlampau asam maka randemen yang dihasilkan akan sedikit. Hasil dari analisis dengan menggunakan X-Ray Diffraction dapat dilihat pada Gambar 4.2

Tabel 4. 2 Hasil ekstraksi SiO₂ dari kaolin alam Blitar dengan instrumen XRF

Tabel 4. 2 Hasii ekstraksi SiO2 dari kadiiri ala	III biltar derigan instrumen Arti
Komponen Kimia	Konsentrasi Unsur (%)
SiO ₂	99,2
CaO	0,32
TiO ₂	0,04
MnO	0,037
Fe_2O_3	0,11
NiO	0,014
CuO	0,034
ZnO	0,12
Ga_2O_3	0,038
BaO	0,05
Eu_2O_3	0,03
Re_2O_7	0,06

Gambar 4. 3 Difraktogram SiO₂ dari kaolin alam Blitar.

4.3 Sintesis Zeolit X Metode Sonikasi Variasi Waktu


 SiO_2 yang sudah dihasilkan dalam proses ekstraksi akan digunakan sebagai bahan utama pada proses sintesis Zeolit X. Rasio molar Si/Al 2 dan rasio molar Na $_2$ O/SiO $_2$ 1,25. Dengan ditambah NaOH sehingga terbentuk larutan natrium silikat dan natrium aluminat. Adapun reaksi yang terjadi pada sintesis zeolit ditampilkan pada Persamaan 4.4 – 4.13

Proses *aging* dilakukan pengadukan menggunakan stirer dengan variasi 2 hari, 8 hari dan 9 hari dan proses *aging* dilakukan selama 10 hari. Proses pembentukan kristal pada zeolit dimulai saat waktu *aging* atau pemeraman. pada proses ini bertujuan untuk meningkatkan kristalinitas produk juga berfungsi untuk menghomogenkan reaktan sehingga reaksi akan berjalan dengan maksimal. Waktu *aging* dilakukan selama 10 hari. semakin lama waktu *aging* maka akan menghasilkan produk yang beragam disebabkan karena jumlah silikat yang masuk ke dalam polimer alumina silikat yang semakin banyak sehingga menyebabkan jumlah inti yang terbentuk lebih beragam (Johnson & Arshad, 2014).

Setelah proses *aging* dilakukan Proses sintesis zeolit X menggunakan metode sonikasi dengan variasi waktu 2 jam dan 4 jam proses ini bertujuan agar pertumbuhan kristal zeolit terbentuk dengan sempurna. Proses sintesis dengan metode sonikasi campuran alumina silikat mengalami pemetaan ulang sehingga strukturnya menjadi lebih teratur dan membentuk kristal. Hasil difraktogram dari sintesis zeolit X dapat dilihat pada Gambar 4.4.

Difraktogram pada Gambar 4.4 dapat diamati pada variasi waktu stirer 9 hari dengan metode sonikasi 4 jam menunjukkan bahwa sintesis zeolit X yang dihasilkan mengandung pengotor jenis zeolit lain yaitu zeolit P. Zeolit p lebih dominan terbentuk dari pada zeolit x, hal ini dapat terjadi disebabkan oleh beberapa kemungkinan diantara-Nya, zeolit X dengan struktur FAU yang merupakan fasa metastabil. Sehingga dengan penggunaan metode sonikasi yang memiliki energi lebih tinggi dapat mendorong pembentukan struktur yang lebih stabil yaitu struktur GIS (zeolit P). Selain itu, struktur FAU memiliki SBU (Secondary Building Unit) yang sama dengan GIS yaitu sama – sama memiliki SBU 4. Hal itu diperkuat dengan hasil penelitian Maldonado (2013) menyatakan bahwa zeolit FAU dapat berubah menjadi zeolit

GIS di pengaruhi oleh suhu, semakin tinggi suhu pada saat proses sintesis terjadi maka dapat menyebabkan perubahan struktur dari zeolit FAU menjadi zeolit GIS. Hal itu dapat dilihat pada Gambar 2.6.

Gambar 4. 4 Difraktogram sintesis zeolit metode sonikasi (70°C), (a) standar zeolit p (01-071-0962), (b) standar zeolit X (01-072-2422), zeolit variasi waktu (c) sonikasi 2 jam stirer 2 hari, (d) sonikasi 2 jam stirer 8 hari, (e) sonikasi 4 jam stirer 9 hari.

Puncak zeolit X yang lebih banyak muncul pada variasi stirer 9 hari dengan sonikasi 4 jam. Hal itu dikarenakan pada proses sintesis variasi stirer 9 hari dengan sonikasi 4 jam tidak mengalami pengurangan jumlah pelarut. Sedangkan proses sintesis dengan stirer 8 hari dengan sonikasi 2 jam terjadi pengurangan jumlah pelarut dan dilakukan penambahan pelarut kembali. Pada proses sintesis stirer 2 hari dengan sonikasi 2 jam juga mengalami pengurangan jumlah pelarut, akan tetapi tidak dilakukan penambahan pelarut kembali. Hal ini membuktikan bahwa pentingnya pelarut dalam proses disintesis zeolit X. Semakin terjaga jumlah pelarut maka semakin banyak terbentuk zeolit X. Selain itu terjadinya persegesaran dari zeolit X FAU ke zeolit P GIS dapat di sebabkan karena suhu tinggi pada saat proses sonikasi. Hal ini juga di buktikan pada penelitian yang di lakukan oleh Maldonado (2013) beliau

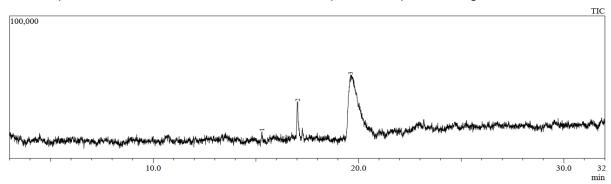
menjelaskan bahwa zeolit FAU memiliki rentang suhu optimum yang dimana jika suhu pada saat sintesis berlangsung terlalu tinggi maka dapat menyebabkan bergesernya struktur dari zeolit FAU menjadi GIS. zeolit FAU memiliki suhu optimum yaitu 65°C dan zeolit GIS memiliki suhu optimum yaitu 100°C. Dan dapat dilihat pada gambar 2.6.

4.4 Analisis Luas Permukaan Zeolit Hasil Sintesis Menggunakan Adsorpsi Nitrogen

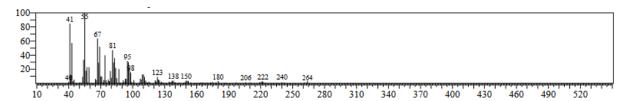
Adsorpsi nitrogen adalah adsorpsi fisik yang banyak digunakan dalam metode BET untuk menentukan luas permukaan dan struktur pori padatan (Haber et al., 1995). Analisis Adsorpsi gas N_2 bertujuan untuk mengetahui luas permukaan dan karakteristik pori dari zeolit X.

Tabel 4. 3 Luas permukaan sintesis zeolit X dengan variasi sonikasi dan stirer

Variasi sonikasi dan stirer	Luas permukaan (m²/g)
Sonikasi 2 jam stirer 2 hari	81,943
Sonikasi 4 jam stirer 9 hari	88,309


Hasil dari analisis luas permukaan zeolit dengan menggunakan instrumen *Surface Area Analyzer* (AAS) pada Tabel 4.3. Menunjukkan bahwa luas permukaan pada variasi sonikasi 4 jam dengan stirer 9 hari, semakin lama waktu stirer dan waktu sonikasi maka semakin besar luas permukaan. Luas permukaan variasi sonikasi 4 jam dengan stirer 9 hari menunjukkan luas permukaannya lebih besar daripada variasi sonikasi 2 jam dengan stirer 2 hari. Hal ini terjadi karena pada variasi sonikasi 4 jam didapatkan zeolit X yang lebih banyak (puncak zeolit X dari hasil XRD), dimana zeolit X memiliki diameter pori 7,5 Å lebih besar dari pada zeolit P memiliki diameter pori 4,8 Å. Sehingga semakin banyak zeolit X yang dihasilkan, menyebabkan semakin luas permukaannya.

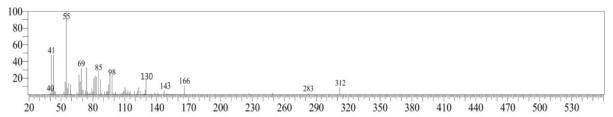
4.5 Analisis Produk Reaksi Transesterifikasi Minyak Jarak Dengan Katalis Zeolit Hasil Sintesis Dengan GCMS


Analisis minyak jarak (*Ricinus communis*) dengan katalis zeolit metode sonikasi menggunakan GC-MS menunjukkan adanya senyawa yang terkandung dalam reaksi transesterifikasi dapat diketahui melalui analisis dengan menggunakan kromatografi gas dan spektroskopi massa. Tujuan dari spektroskopi massa yaitu untuk mempermudah dugaan jenis senyawa yang dihasilkan dari nilai m/z hasil fragmentasi. Pola fragmentasi yang dibandingkan dengan standar WILLEY7.LIB. Hasil GC metil ester dengan menggunakan variasi waktu 5 jam ditampilkan pada Gambar 4.5

erdasarkan kromatogram GC (Gambar 4.5) terdapat tiga puncak yang muncul menandakan adanya tiga komponen yang berhasil dipisahkan pada produk hasil reaksi transesterifikasi. Masing-masing puncak memiliki waktu retensi yang menunjukkan waktu muncuknya komponen dan luas area yang yang menunjukkan kadar tiap komponenya. Hasil

spektra massa dari setiap puncak memiliki pola fragmentasi yang berbeda yang merupakan ciri khas metil esternya. berdasarkan standar WILLEY7.LIB pada puncak pertama muncul pada waktu retensi 15.295 menit memiliki kemiripan hasil spektra massa fragmentasi metil margarate. Pada puncak ke dua muncul pada waktu retensi 17.035 menit memiliki kemiripan hasil spektra dengan metil oleat (9-Octadecenoic acid, methyl ester). Dan pada puncak ke tiga muncul pada waktu retensi 19.615 memiliki kemiripan hasil spektra dengan metil risinoleat..

Gambar 4. 5 Difratogram GC biodisel dengan waktu reaksi 5 jam



Gambar 4. 6 Hasil spektra dari massa puncak dengan waktu retensi 17.035

$$H_{3}C$$
 $M/z: 312$
 $M/z: 3$

Gambar 4. 7 perkiraan pola fragmentasi metil oleat

Pola spektra massa (Gambar 4.6) puncak kedua yang muncul pada tR 17.035 dan luas area sebesar 90905 count, dan memilik pola spektra yang muncul pada m/z: 41, 55, 67, 81, 95, 123, 138, 150, 180, 206, 222, 240, dan 264. Perbandingan spektra dengan standar WLEY7.LIB library memiliki kesesuaian dengan standar metil oleat (WILEY7.LIB entry207865). Berdasarkan (Gambar 4.8) puncak M⁺ dengan m/z = 296 tidak teridentifikasi melainkan munculnya ion molekular [M⁺] pada puncak m/z 264, hal itu dapat terjadi karena metil oleat yang tidak stabil. Puncak dasar yang muncul (base peak) muncul pada m/z 55 yang berasal dari C₄H₇⁺ akibat terlepasnya gugus CH₂. Kemudian puncak m/z 264 berasal dari C₁₈H₃₅O⁺ akibat terlepasnya gugus CH₃OH pada ion molekularnya. Pada puncak m/z 41 berasal dari terlepasnya gugus CH₂ melalui penataan ulang Mc Lefferty sehingga membentuk $C_4H_7O_2$. Seangkan pada puncak puncak 240, 222, 180, 150, 138, 123, 95, 81, dan 67 merupakan puncak yang berasal dari pemutusan C-C.

Gambar 4. 8 Hasil spektra dari masa puncak dengan retensi waktu 19.615

Gambar 4. 8 Hasil spektra dari masa puncak dengan retensi waktu 19.615

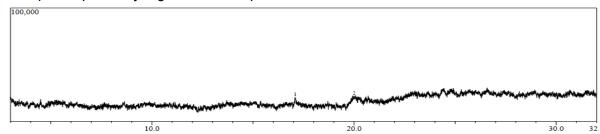
$$H_3C$$
 m/z 296

 H_3C
 m/z 296

 H_3C
 m/z 296

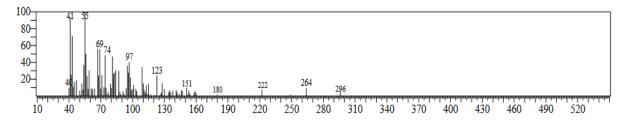
 m/z 296

 m/z 240


 m/z 240

 m/z 264

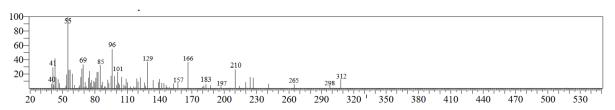
 m


Gambar 4. 9 perkiraan pola fragmentasi metil risinoleat

Pola spektra massa (Gambar 4.8) puncak kedua yang muncul pada tR 17.035 dan luas area sebesar 90905 count, dan memilik pola spektra yang muncul pada m/z: 41, 55, 69, 85, 98, 127, 130, 143, 166, 283, dan 312. Perbandingan spektra dengan standar WLEY7.LIB library memiliki kesesuaian dengan standar metil oleat (WILEY7.LIB *entry*223327). Berdasarkan (Gambar 4.9) puncak M^+ dengan m/z = 312 teridentifikasi sehingga kandungan metil risinoleat tergolong stabil. Puncak dasar yang muncul *(base peak)* muncul pada m/z 55 yang berasal dari $C_4H_7^+$ akibat terlepasnya gugus CH_2 . Kemudian puncak m/z 264 berasal dari $C_{18}H_{35}O^+$ akibat terlepasnya gugus CH_3OH pada ion molekularnya. Pada puncak m/z 41 berasal dari terlepasnya gugus CH_2 melalui penataan ulang Mc Lefferty sehingga membentuk $C_4H_7O_2$. Seangkan pada puncak puncak 240, 222, 180, 150, 138, 123, 95, 81, dan 67 merupakan puncak yang berasal dari pemutusan C-C.

Gambar 4. 5 Kromatogram GC biodisel dengan waktu reaksi 7 jam

Berdasarkan kromatogram GC (Gambar 4.10) terdapat dua puncak yang muncul menandakan adanya dua komponen yang berhasil dipisahkan pada produk hasil reaksi transesterifikasi. Masing-masing puncak memiliki waktu retensi yang menunjukkan waktu muncuknya komponen dan luas area yang yang menunjukkan kadar tiap komponenya. Hasil spektra massa dari setiap puncak memiliki pola fragmentasi yang berbeda yang merupakan ciri khas metil esternya. berdasarkan standar WILLEY7.LIB pada puncak pertama muncul pada waktu retensi 17.079 menit memiliki kemiripan hasil spektra massa fragmentasi metil. oleat (9-Octadecenoic acid, methyl ester). Dan pada puncak ke duamuncul pada waktu retensi 20.065 memiliki kemiripan hasil spektra dengan metil risinoleat.



Gambar 4. 6 Hasil spektra dari masa puncak dengan retensi waktu 17.080

Pola spektra massa (Gambar 4.11) puncak kedua yang muncul pada tR 17.035 dan luas area sebesar 90905 count, dan memilik pola spektra yang muncul pada m/z: 41, 55, 67, 74, 97, 123, 151, 180, 222, 264, dan 296. Perbandingan spektra dengan standar WLEY7.LIB library memiliki kesesuaian dengan standar metil oleat (WILEY7.LIB *entry*207865). Berdasarkan (Gambar 4.13) puncak M⁺ dengan m/z = 296 teridentifikasi sehingga kandungan

metil risinoleat tergolong stabil. Puncak dasar yang muncul (base peak) muncul pada m/z 55 yang berasal dari $C_4H_7^+$ akibat terlepasnya gugus CH_2 . Kemudian puncak m/z 264 berasal dari $C_{18}H_{35}O^+$ akibat terlepasnya gugus CH_3OH pada ion molekularnya. Pada puncak m/z 41 berasal dari terlepasnya gugus CH_2 melalui penataan ulang Mc Lefferty sehingga membentuk $C_4H_7O_2$. Seangkan pada puncak puncak 222, 180, 151, 123, 97, 74, 67, 55 dan 41 merupakan puncak yang berasal dari pemutusan C-C.

Gambar 4. 7 perkiraan pola fragmentasi metil oleat

Gambar 4. 8 Hasil spektra dari masa puncak dengan retensi waktu 20.065

Pola spektra massa (Gambar 4.13) puncak kedua yang muncul pada tR 17.035 dan luas area sebesar 90905 count, dan memilik pola spektra yang muncul pada m/z: 41, 55, 69, 85, 98, 127, 130, 143, 166, 283, dan 312. Perbandingan spektra dengan standar WLEY7.LIB library memiliki kesesuaian dengan standar metil oleat (WILEY7.LIB *entry*223327). Berdasarkan (Gambar 4.9) puncak M $^+$ dengan m/z = 312 teridentifikasi sehingga kandungan metil risinoleat tergolong stabil. Puncak dasar yang muncul (*base peak*) muncul pada m/z 55 yang berasal dari $C_4H_7^+$ akibat terlepasnya gugus CH_2 . Kemudian puncak m/z 264 berasal dari $C_{18}H_{35}O^+$ akibat terlepasnya gugus CH_3OH pada ion molekularnya. Pada puncak m/z 41

berasal dari terlepasnya gugus CH_2 melalui penataan ulang Mc Lefferty sehingga membentuk $C_4H_7O_2$. Seangkan pada puncak puncak 240, 222, 180, 150, 138, 123, 95, 81, dan 67 merupakan puncak yang berasal dari pemutusan C-C.

Berdasarkan hasil kromatogram pada waktu reaksi transesterifikasi 5 dan 7 jam. Pada

Gambar 4. 9 perkiraan pola fragmentasi metil risinoleat

waktu reaksi transesterifikasi dengan variasi waktu 5 jam terdapat 3 puncak yang terintensitas tinggi pada kromatogram. Hal tersebut menunjukkan bahwa terdapat 3 senyawa yang terkandung dalam sampel, dan puncak tertinggi yaitu puncak ke 3. Kemudian reaksi transesterifikasi pada variasi 7 jam terdapat 2 puncak yang terintensitas tinggi pada kromatogram.

Tabe	I 4. 4	l kom	posisi	metil	ester	hasıl	reaksı	transes	teriti	kası :	b dan i	/ jam
------	--------	-------	--------	-------	-------	-------	--------	---------	--------	--------	---------	-------

Waktu reaksi	Waktu retensi (menit)	Metil ester	Area Relatif %
5 jam	17.036 19.617	Metil Oleat Metil Risinoleat	6.50 92.70
7 jam	17.079 20.065	Metil Oleat Metil Risinoleat	45.18 54.81

Pada Tabel 4.4 menunjukkan bahwa pada variasi 5 dan 7 jam Menunjukkan bahwa waktu 5 jam memiliki persen metil risinoleat lebih tinggi dari pada waktu 7 jam. pada variasi 5 jam menghasilkan metil risinoleat sebesar 92.70%, menghasilkan metil Oleat sebesar 6.50% dan menghasilkan metil tridecanoic sebesar 0.80%. Sedangkan pada variasi 7 jam menghasilkan metil risinoleat sebesar 54.81% dan metil Oleat sebesar 45.18%. pada waktu

reaksi 5 jam, produk metil risinoleat yang tinggi dikarenakan pada umumnya, minyak jarak banyak mengandung asam lemak berupa asam risinoleat yang akan berubah menjadi metil risinoleat setelah direaksikan dengan metanol dengan bantuan katalis.

Sedangkan pada waktu reaksi 7 jam, produk metil risinoleat mengalami penurunan dan metil oleat semakin banyak terbentuk. Hal ini disebabkan asam risinoleat pada minyak jarak dengan adanya katalis dapat juga mengalami hidroksil menjadi karbonil sehingga berubah menjadi asam oleat. Hal ini juga dijelaskan pada penelitian yang dilakukan oleh Ba (2016), yang juga menggunakan minyak jarak untuk reaksi transesterifikasi dengan menghasilkan metil oleat dan metil risinoleat.

4.6 Hasil Penelitian Dalam Perspektif Islam

Berdasarkan hasil penelitian yang sudah dilakukan didapatkan hasil bahwa reaksi berpengaruh terhadap produk yang sudah dilakukan dalam proses transesterifikasi. Didapatkan nilai rendemennya pada waktu 5 jam sebesar 92.70% dan pada variasi waktu 7 jam didapatkan rendemennya sebesar 54.81%. dari hasil yang sudah didapatkan menunjukkan waktu yang sudah dimiliki sangat berpengaruh terhadap kesuksesan yang sudah mereka usahakan. Dan kerugian yang dialami manusia disebabkan karena sudah menyia-siakan waktu mereka.

Waktu merupakan anugerah dan merupakan nikmat yang agung dari Allah SWT kepada manusia. Sebagai rasa syukur manusia terhadapnya, sudah menjadi keharusan untuk memanfaatkannya secara baik untuk amal kebaikan. Perintah bagi umat manusia dalam memanfaatkan waktu dijelaskan dalam firman Allah SWT surat Al-ashr ayat 1-3:

Artinya : Demi masa (1) sesungguhnya manusia itu benar-besar dalam kerugian (2) kecuali orang-orang yang beriman dan mengerjakan amal saleh dan nasehat. Menasihati supaya menaati kebenaran dan nasehat menasihati supaya menetapi kebenaran . (QS. Al 'Ashr. ;1-3).

Ayat tersebut membuktikan sumpah Allah SWT terhadap waktu. dari hal itu menjelaskan bawa sangat penting waktu sehingga Allah bersumpah dengannya. Selain itu ayat tersebut juga menjelaskan bahwa banyak manusia yang dalam keadaan merugi, tetapi manusia tidak sadar akan hal tersebut. Kerugian tersebut adalah sikap manusia yang tidak bisa memanfaatkan waktu dengan baik. Dari ayat terakhir menjelaskan bahwa manusia tidak tergolong akan merugi apabila beriman kepada Allah, dengan mengerjakan amal Sholeh dan saling menasihati dalam kebenaran dan kesabaran(M. Quraisy Syihab, 2000).

وَسَحَّرَ لَكُمْ مَّا فِي السَّمُوتِ وَمَا فِي الْأَرْضِ جَمِيْعًا مِّنْهُ إِنَّ فِيْ ذَٰلِكَ لَا يُتِ لِّقَوْمٍ يَّتَفَكَّرُوْنَ (١٣)

Artinya: "Dan Dia telah menundukkan untukmu apa yang di langit dan apa yang di bumi semuanya, (sebagai rahmat) daripada-Nya. Sesungguhnya pada yang demikian itu benar-benar terdapat tanda-tanda (kekuasaan Allah) bagi kaum yang berpikir." (QS. Al Jaatsiyah ayat 13).

Al Qarni (2007) menyampaikan bahwa Allah SWT menundukkan segala sesuatu yang ada dilangit, seperti matahari, bulan, bintang, galaksi dan awan bagi hamba hambanya. Allah juga menundukkan semua yang ada di bumi, seperti hewan, tumbuhan dan benda-benda mati agar semua dimanfaatkan oleh hamba-hamba-Nya. Semua nikmat yang diberikan kepada manusia agar mereka bersyukur dan mengikhlaskan ibadah hanya kepada Allah. Semua yang Allah tundukkan dengan mengandung bukti-bukti kekuasaannya, ke-Esaanya, dan keagungannya Allah SWT nyata bagi orang yang mau memikirkan, merenungi dan mengambil manfaat darinya.

Dari ayat tersebut menunjukkan bahwa pada penelitian ini bahan-bahan alam seperti kaolin dan minyak biji jarak yang sudah disediakan oleh Allah SWT untuk memenuhi kebutuhan hidup hambanya. Allah menjadikan minyak biji jarak sebagai salah satu sumber daya alam yang mampu menggantikan bahan bakar mesin disel. Berdasarkan firman Allah SWT "Dia telah menundukkan untukmu apa yang ada di langit dan di bumi semuanya". Dengan menunjukkan nilai dan manfaat dari minyak biji jarak yang sebelumnya dikenal sebagai minyak yang beracun untuk dikonsumsi. Kelebihan manusia dari makhluk lainnya adalah dengan diberikan akal dan pikiran, sehingga manusia agar berpikir tentang apa yang telah Allah SWT ciptakan di muka bumi ini. Hal ini sesuai dengan firman Allah SWT yang artinya "Sesungguhnya pada yang demikian itu benar-benar terdapat tanda-tanda (kekuasaan Allah) bagi kaum yang berpikir", dari firman tersebut manusia telah mengetahui tanda-tanda kebesaran Allah SWT melalui kemanfaatan minyak biji jarak sebagai bahan biodiesel.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian tentang sintesis zeolit x dari kaolin dengan metode sonikasi sebagai katalis transesterifikasi minyak jarak (Ricinus Communis) dengan variasi waktu dapat disimpulkan bahwa:

- 1. Sintesis dengan menggunakan metode sonikasi lama waktu 2 jam dengan lama stirer 2 hari pada saat proses aging menghasilkan zeolit X dengan pengotor zeolit P tergolong banyak, sedangkan sintesis dengan metode sonikasi lama waktu 2 jam dengan waktu stirer 8 hari pada saat waktu aging menghasilkan zeolit p dengan pengotor zeolit P yang tergolong banyak. Kemudian sintesis dengan metode sonikasi lama waktu 4 jam lama stirer 9 hari pada saat proses aging menghasilkan zeolit X dengan pengotor zeolit P yang lebih sedikit.
- 2. Pengaruh variasi waktu pada pada reaksi transesterifikasi 5 jam dan 7 jam. Didapatkan nilai rendemennya pada waktu 5 jam sebesar 92.70% dan pada variasi waktu 7 jam didapatkan rendemennya sebesar 54.81%.

5.2 Saran

Berdasarkan penelitian yang sudah dilakukan disarankan untuk melakukan beberapa langkah penelitian lanjutan yaitu :

- 1. Mencari waktu stabilitas *stirer* saat *aging* dan waktu stabilitas sonikasi saat sintesis.
- 2. Dilakukan pengecekan suhu pada saat proses sintesis, secara berkala agar suhu pada saat sintesis tetap stabil.
- 3. Uji karakteristik metil ester sebagai biodiesel yaitu uji titik nyala, uji densitas, uji viskositas, bilangan setana, titik kabut dan stabilitas oksidatif metil ester hasil.

DAFTAR PUSTAKA

- Abid, R., Delahay, G., & Tounsi, H. (2020). Selective catalytic reduction of NO by NH₃ on cerium modified faujasite zeolite prepared from aluminum scraps and industrial metasilicate. Journal of Rare Earths, 38(3), 250–256
- Ahmad Fauzan 'Adziimaa, Doty Dewi Risanti, & Lizda Johar Mawarn. (2013). 3533-13881-1-PB. JURNAL TEKNIK POMITS, 2.
- Amalia, s., Khalifah, S. N., Baroroh, H., Muiz, A., Rahmatullah, A., Aini, N., Hs, M. R. A., Umam, M. N., Isnaini, I. A., & Suryana, R. 2019. Biodisel production from castor oil using heterogeneous catalyst KOH/zeolite of natural zeolite Bandung Indonesia. AIP Conference Proceedings, 2021(July), 3-10
- Aminatus Arifah. (2018). Sintesis Zeolit NaX Dari Kaolin Blitar dengan alkali fusi menggunakan metode hidrotermal dan sonikasi variasi waktu kristalisasi.
- Ayele, L., Pérez-Pariente, J., Chebude, Y., & Díaz, I. (2016). Conventional versus alkali fusion synthesis of zeolite A from low grade kaolin. Applied Clay Science, 132–133, 485–490.
- Bachtiar, 2020. Sintesis dan Karakterisasi KOH/Zeolit alam Menggunakan Metode Sonikasi Sebagai Katalis Pada Transesterifikasi Minyak Kelapa Sawit Dengan Variasi Waktu Reaksi. Skripsi. UIN Maulana Malik Ibrahim Malang.
- Bang, J. H., & Suslick, K. S. (2010). Applications of Ultrasound to the Synthesis of Nanostructured Materials. Advanced Materials, 22(10), 1039–1059.
- Barquist, K., & Larsen, S. C. (2010). Chromate adsorption on bifunctional, magnetic zeolite composites. Microporous and Mesoporous Materials, 130(1–3), 197–202
- Beck, J. (1993). Solid State Chemistry. An Introduction. Von L. Smart und E. Moore. Chapman & Eamp; Hall, London, 1992. XII, 292 S., Broschur 15.95 £. -ISBN 0-412-40040-5. Angewandte Chemie, 105(10), 1562–1562.
- Cahyawati, & Melinda. (2017). Sintesis dan Karakterisasi Zeolit Nay dari Kaolin dengan Variasi Suhu Kristalisasi Menggunakan Metode Hidrotermal . UIN Malang.
- Chandrasekha, S., & Pramada, P. (2004). Kaolin-based zeolite Y, a precursor for cordierite ceramics. Applied Clay Science, 27(3–4), 187–198.
- de Materiales, I., Ríos, C. A., Williams, C. D., & Castellanos, O. M. (2012). Crystallization of low silica Na-A and Na-X zeolites from transformation of kaolin and obsidian by alkaline fusion Cristalizacion de zeolitas Na-A y Na-X bajas en sílice a partir de la transformación de caolín y obsidiana por fusión alcalina (Vol. 14, Issue 2).
- Du, L., Ding, S., Li, Z., Lv, E., Lu, J., & Ding, J. (2018). Transesterification of castor oil to biodiesel using NaY zeolite-supported La2O3 catalysts. Energy Conversion and Management, 173, 728–734.
- Georgiev, D., Bogdanov, B., Markovska, I., & Hristov, Y. (2013). A Study on the Synthesis and Structure of Zeolite NaX. Journal Chemical Technology and Mettalogy, 48, 168-173.
- Haber, J., Block, J. H., & Delmon, B. (1995). *Manual of methods and procedures for catalyst characterization (Technical Report)*. *Pure and Applied Chemistry*, 67(8–9), 1257–1306.
- Halim, A., Karim, A., Ibtehal, M., Shakir, K., Khalifa Esgair, K., & Mohammed, A. K. (2013).

 The use of Prepared Zeolite Y from Iraqi kaolin for Fluid Catalytic Cracking of Vacuum

 Gas Oil. الكازولين انتاج، المائع الحفازي التكسير الكلمات: الرئيسية الفراغي الغاززيت تكسير، The use of Prepared

- Zeolite Y from Iraqi kaolin for Ibtehal Kareem Shakir Fluid Catalytic Cracking of Vacuum Gas (Vol. 10)Journal of EngineeringOil. In.
- Hartati, H., Widati, A. A., Dewi, T. K., & Prasetyoko, D. (2017). *Direct synthesis of highly crystalline ZSM-5 from Indonesian kaolin. Bulletin of Chemical Reaction Engineering & Amp; Catalysis*, 12(2), 251–255
- Johnson, E. B. G., & Arshad, S. E. (2014). Hydrothermally synthesized zeolites based on kaolinite: A review. Applied Clay Science, 97–98, 215–221.
- K. Cheetham, & P. Day. (1992). Solid State Chemistry: Compounds Edited by A. . Clarendon Press.
- Khalifah, S. N., Tyas, U., Fiddaroini, S., & Amalia, S. (2022). Pengaruh Pemeraman dan Suhu Pada Sintesis Zeolit Y dari Lumpur. ALCHEMY: Journal of Chemistry, 10(1), 27–32.
- Kim, H. T., Didiek Hajar Gunadi, Rajagukguk, & Bostang. (1991). Dasar-dasar kimia tanah . Gadjah Mada Universitay Press.
- Kim, W., Choi, D., & Kim, S. (2010). Sonochemical synthesis of zeolite a from metakaolinite in NaOH solution. Materials Transactions, 51(9), 1694–1698.
- Kovo, A. S., Hernandez, O., & Holmes, S. M. (2009). Synthesis and characterization of zeolite y and ZSM-5 from Nigerian Ahoko Kaolin using a novel, lower temperature, metakaolinization technique. Journal of Materials Chemistry, 19(34), 6207–6212.
- Kusuma, R. I., Hadinoto, J. P., Ayucitra, A., Soetaredjo, F. E., & Ismadji, S. (2013). *Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil. Applied Clay Science*, 74, 121–126.
- M. Quraish Shihab. (2000). Wawasan al-Qur'an; Tafsir Maudlu'i atas perbagai persoalan Umat. Mizan.
- Ma, Y., Yan, C., Alshameri, A., Qiu, X., Zhou, C., & Ii, D. (2014). Synthesis and characterization of 13X zeolite from low-grade natural kaolin. Advanced Powder Technology, 25(2), 495–499.
- Maldonano, M.; Oleksiak, MD; Chinta, S.; Rimer, JD Mengontrol polimorfisme kristal dalam sintesis Na-zeolit bebas organik.JACS2013,135, 2641–2652.
- Murray, H. H. (2000). *Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. In Applied Clay Science (Vol. 17).* www.elsevier.nlrlocaterclay
- Naijian, F., Rudi, H., Resalati, H., & Torshizi, H. J. (2019). Application of bio-based modified kaolin clay engineered as papermaking additive for improving the properties of filled recycled papers. Applied Clay Science, 182.
- Ola, P. D., Karim, R. A., & Suherdin, M. F. (2013). The Optimum Condition for Synthesis of Biodiesel from Castor (Ricinus communis) Oil through Transesterification Reaction. In Journal of Applied Chemical Science (Vol. 2).
- Ono, M., & Baak, S. (2014). Revisiting the J-Curve for Japan. Modern Economy, salahudee05(01), 32–47
- Ralph J. Fessenden, & Joan S. Fessenden. (1992). Kimia organik (tiga). Erlangga.
- Ralph K. Iler. (1979). The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (eighth printing, Vol. 1). Wiley-Interscience.

- Ríos, C. A., Williams, C. D., & Fullen, M. A. (2009). *Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Applied Clay Science*, 42(3–4), 446–454.
- Salahudeen, N., & Ahmed, A. S. (2017). Synthesis of hexagonal zeolite Y from Kankara kaolin using a split technique. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 87(1–2), 149–156
- Sai Ba., Hao Zhang., Yiqin Jasmine Lee., Chee Wee Ng & Tianhu Li. (2016). Chemical Modifications of Ricinolein in Castor Oil and Methyl Ricinoleic For Rduction of Facilitate Tehir Use As Biodisel. European Journal of Lipid Science and Technology. 118(4) 651-657
- Sastromanidjojo.H. (2001). Dasar-dasar spektroskopi . Liberty.
- Supratman, U. (2010). Elusidasi Struktur Molekul Organik. UNY Press.
- Suslick, K. S. . (1989). The Chemical Effects of Ultrasound. Scientific American, : Vol. 260 (2).
- Treacy, & M.MJ dan Higgins J.B. (2001). Collection of Simulated XRD Powder Patterns for Zeolites. Structure Commission of the International Zeolite Association.
- Vogel, Setiono., L. dan P. (1990). Buku Teks Analisis Anorganik Kualitatif Makro dan Semimikro (L. Setiono. & Pudhaatmaka, Eds.; lima). Kalman Media Pustaka.
- Wajima, T., & Ikegami, Y. (2008). Zeolite synthesis from paper sludge ash via acid leaching. Chemical Engineering Communications, 195(3), 305–315.
- Wang, J. Q., Huang, Y. X., Pan, Y., & Mi, J. X. (2014). Hydrothermal synthesis of high purity zeolite A from natural kaolin without calcination. Microporous and Mesoporous Materials, 199, 50–56.
- Zaemi, H., & Triandi Tjahjanto, R. (n.d.). Sintesis Aerogel Silika dari Lumpur Lapindo dengan Penambahan Trimetilklorosilan (TMCS). In Universitas Brawijaya (Vol. 1, Issue 2).

LAMPIRAN

Lampiran 1 Diagram Alir

1.1 Preparasi Sampel

Kaolin

dicuci sampel kaolin dengan akuades untuk menghilangkan tanah yang menutupi kaolin

- dihaluskan dan diayak menggunakan ayakan 200 mess
- di cuci menggunakan asam klorida (HCL) 1 M dengan perbandingan kaolin/HCL 1:4 (b/v)
- diaduk menggunakan stirer selama 1 jam
- di cuci dan disaring dengan akuades hingga pH filtrat 7
- dikeringkan pada temperatur 100°C selama 1 jam
- dikarakterisi dengan XRD dan XRF

Hasil

1.2 Sintesis Metakaolin

Kaolin

- diambil 10,7361 g kaolin
- ditambah 21,4772 g NaOH
- dicampur dan digerus selama 30 menit
- dipanaskan pada suhu 600oC selama 1 jam
- didinginkan pada suhu ruang
- digerus sampai halus
- di karakterisasi menggunakan XRD

1.2 Sintesis Metakaolin

Kaolin

diambil 10,7361 g kaolin

- ditambah 21,4772 g NaOH
- dicampur dan digerus selama 30 menit
- dipanaskan pada suhu 600oC selama 1 jam
- didinginkan pada suhu ruang
- digerus sampai halus
- di karakterisasi menggunakan XRD

Hasil

1.3 Ekstraksi SiO₂

Kaolin

- dicuci kaolin yang sudah netral dengan HCL 1M
- ditambah NaOH 7M dengan perbandingan 1:2
- distirer selama 4 jam dengan suhu 80°C
- dipisahkan endapan dan filtrat dengan kertas saring
- dipanaskan filtrat dengan suhu 40°C
- di titrasi dengan HCL 3M sambil di stirer hingga pH 7 dan terbentuk endapan putih berupa silika
- di disaring endapan putih silika
- dicuci dengan akuades
- dikeringkan endapan putih silika dengan suhu 100°C selama 1 jam

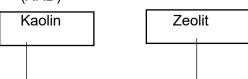
1.4 Sintesis Zeolit X metode sonikasi

Kaolin

- diambil 6,04 gram SiO₂
- ditambah 2,55 g Al₂O₃
- ditambah 81,24 mL H₂O
- ditambah 10 gram NaOH
- distirer
- didiamkan pada suhu ruang selama 10 hari
- dimasukkan pada vial HDPE
- disonikasi dengan frekuensi gelombang 42 KHz dan daya 100 W dengan suhu 70°C selama 2 jam dan 4 jam
- disaring dan di cuci dengan akuades sampai pH 9 atau 10
- dikeringkan pada suhu 100°C

Hasil

1.5 Karakterisasi Kaolin Menggunakan *X-Ray Flourescence* (XRF)


Kaolin

dihaluskan sampel kaolin menjadi ukuran 200 mess

- diletakkan dalam sampel holder
- diatur XRF menggunakan radiasi foton 20 kV, arus 128 vA selama 60 detik

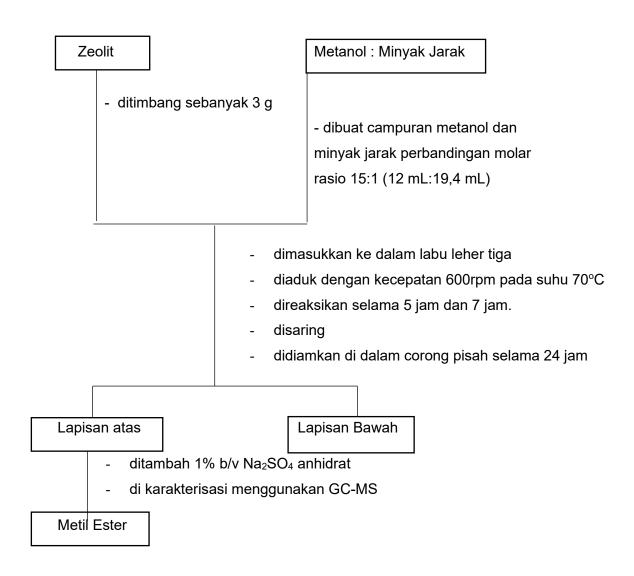
Hasil

1.6 Karakterisasi Kaolin, Metakaolin, dan Zeolit X menggunakan Teknik Difraksi sinar-X(XRD)

- dihaluskan masing-masing sampel menjadi bubuk
- ditempatkan pada sampel holder
- diatur alat XRD menggunakan radiasi sinar-X Cu K α sebesar 1,5421 Å dengan sudut 2θ rentang 5-50° dan kecepatan Scan 3°/menit

1.7 Karakterisasi Zeolit X menggunakan adsorpsi nitrogen (N₂)

Zeolit X


- diambil sebanyak 0,1 g

- diberi perlakuan dengan gas nitrogen dengan laju aliran P30 cm³/ menit pada suhu 300°C selama 1 jam

- didinginkan untuk adsorpsi nitrogen suhu 77°C

Hasil

1.8 Reaksi Transesterifikasi Minyak Jarak (Ricinus communis)

1.9 Karakterisasi Metil Ester Dari Transesterifikasi Minyak Jarak Menggunakan GC-MS

(Gas Chromatography-Ass Spectroscopy)

Metil Ester

- diatur *running* pada GC-MS
- diinjeksikan 2 μL
- Runn

Lampiran .2 Perhitungan

3.1 Rasio Molar Si/Al Kaolin Blitar

Hasil XRF Kaolin:

Si = 99.2%

Sintesis Zeolit

 SiO_2 = 0,1 mol

Ar SiO_2 = 28,082 g/mol

 $Mr SiO_2 = 60,082 g/mol$

Massa SiO_2 = Mol x Mr SiO_2

 $SiO_2 + Al_2O_3 + 5Na_2O + 180H_2O$

0,1 0,0025 0,125 4,5

Berat SiO₂ = $60,082 \times 0,1$

= 6,0082 gram

 $\frac{100\%}{99,2\%}$ X 6,0082 = 6,04 gram

Mol Al_2O_3 = 0,025 mol

 $Mr Al_2O_3 = 102 gram/mol$

Massa Al_2O_3 = 0,025 mol X 102 gram/mol

= 2,55 gram

2NaOH ---> Na₂O + H₂O

0,25 0,125

Mol NaOH = 0,25 mol

Mr NaOH = 40 gram/mol

Massa NaOH = Mol X Mr

= 0,25mol X 40 gram/mol

= 10 gram

Mol H₂O = 4,5 mol

 $Mr H_2O = 18 gram/mol$

 ρ = 0,9970 gram/mL

Massa H_2O = Mol X Mr

= 4,5mol X 18 gram/mol

= 81 gram

Volume H₂O $= \frac{81 \ gram}{0.9970 \ gram/mL}$

=81,24 mL

Sintesis zeolit X

- 1. SiO₂ 6,04 gram
- 2. Al₂O₃ 2,55 gram
- 3. NaOH 81 gram
- 4. H₂O 81,24 mL

3.2 Pembuatan Larutan HCL

Larutan HCL 1 M (BM = 35,5 g/mol) dibuat dengan cara mengencerkan larutan HCL pekat 37% dalam labu ukur 100,L. Perhitungan pengenceran sebagai berikut :

Konsentrasi HCL dalam molar

HCL 37%
$$(\frac{b}{b}) = \frac{37 g \, HCL}{100 \, g \, larutan}$$

$$\rho = 1.19 \frac{g}{mL}$$

$$\frac{100 \ g}{1,19 \ g} = \frac{X}{1mL}$$

$$100 g = 1,19 g/L x X$$

$$X = \frac{100 g}{1,19 g} = 84,03 \text{ mL} = 0,08403 \text{ L}$$

$$M = \frac{n}{v}$$

$$N = \frac{g}{Mr} = \frac{37 g}{36,6 g/mol} = 1,01 \text{ mol}$$

$$M = \frac{1,01 \, mol}{0,08403 \, L} = 12,063 \, M$$

Pengenceran HCL : M1 x V1

$$12,063M \times V1 = 1M \times 100 \text{ mL}$$

$$V1 = 8.289 \text{ mL}$$

Untuk pembuatan larutan HCl 1M sebanyak 100 mL maka diambil 8,3 mL larutan HCL pekat 37% dan dimasukkan dalam beaker glass dengan akuades dimasukkan terlebih dahulu. Setelah HCL ditambahkan, selanjutnya dipindahkan ke dalam labu ukur 100 mL dan ditambahkan lagi akuades hingga 100 mL.

Larutan HCL 3 M (BM = 35,5 g/mol) dibuat dengan cara mengencerkan larutan HCL pekat 37% dalam labu ukur 100,L. Perhitungan pengenceran sebagai berikut :

Konsentrasi HCL dalam molar

HCL 37%
$$(\frac{b}{b}) = \frac{37 g \, HCL}{100 \, g \, larutan}$$

$$\rho = 1,19 \frac{g}{mL}$$

$$\frac{100 \ g}{1,19 \ g} = \frac{X}{1mL}$$

$$100 g = 1,19 g/L x X$$

$$X = \frac{100 g}{1,19 g} = 84,03 \text{ mL} = 0,08403 \text{ L}$$

$$M = \frac{n}{v}$$

$$N = \frac{g}{Mr} = \frac{37 g}{36,6 g/mol} = 1,01 \text{ mol}$$

$$M = \frac{1,01 \, mol}{0,08403 \, L} = 12,063 \, M$$

Pengenceran HCL : M1 x V1

 $12,063M \times V1 = 3M \times 100 \text{ mL}$

V1 = 124.3 mL

Untuk pembuatan larutan HCl 1M sebanyak 100 mL maka diambil 124,3 mL larutan HCL pekat 37% dan dimasukkan dalam beaker glass dengan akuades dimasukkan terlebih dahulu. Setelah HCL ditambahkan, selanjutnya dipindahkan ke dalam labu ukur 100 mL dan ditambahkan lagi akuades hingga 100 mL.

3.3 Pembuatan Larutan NaOH

Berat molekul NaOH = 39,99 gram/mol

Mol NaOH = 7 M

NaOH dalam 100 ml akuades

 $M = BM \times M \times V$

= 39,99 gram/ mol X 7M X 1

= 280 gram

Untuk pembuatan larutan NaOH 7M sebanyak 100 mL maka diambil 280 gram NaOH. Lalu ditambah dengan akuades diaduk hingga NaOH larut dalam akuades selanjutnya dimasukkan dalam labu ukur 100mL dan ditanda batas kan, selanjutnya dihomogenkan.

3.4 Penentuan Jumlah Metanol : Minyak Jarak

perbandingan molar rasio metanol dan minyak jarak yang digunakan yakni 15:1

Minyak jarak (10mL)

 ρ Trigliserida = 0,9 gram/mL

Berat molekul Minyak jarak = 871 gram / mol

Massa Minyak jarak =
$$V X \rho$$

= 10 mL X 0,9 gram/mL
= 9 gram

Mol minyak jarak
$$= \frac{massa \ minyak \ jarak}{berat \ molekul}$$
$$= \frac{9 \ gram}{871 \ gram \ / mol}$$
$$= 0,0103 \ mol$$

Minyak jarak : Metanol = 1 : 15

Berat molekul metanol = 32,0422 gram/mol

 ρ Methanol = 0,7918 gram/ mL

Mol Metanol = perbandingan metanol X

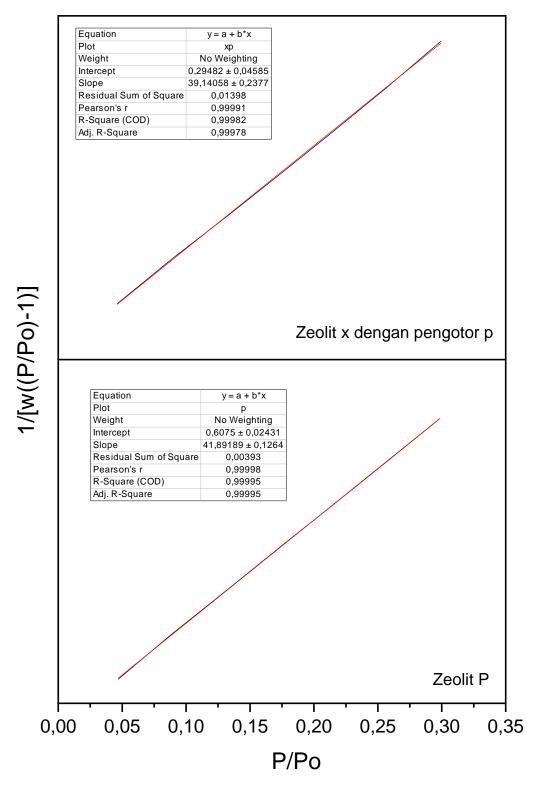
= 15 X 0,0103 = 0,1549 mol

Massa Metanol = mol metanol : Berat molekul metanol

= 0,1549 mol X 32,0422 gram/mol

= 4,966 gram

Volume Metanol = $\frac{massa\ methanol}{\rho\ Methanol}$


 $=\frac{4,966~gram}{0,7918~gram/mL}$

= 6,2722 mL

Katalis zeolit:

 $5\% = \frac{5\%}{100\%} = 0.81 \text{ gram}$

3.5 Luas Permukaan Zeolit Hasil Sintesis

3.5.1 Zeolit X dengan pengotor P

N = $6,0225 \times 10^{23}$ molekul/mol Acs = $16,2 \times 10^{-20}$ m² W = 28,013 g/mol

s = 39.1409 i = 0.294761

$$W_m = \frac{1}{s+i}$$

$$W_m = \frac{1}{39.1409 + 0.294761} = 0.32030$$

$$S_t = \frac{Wm}{M} \cdot N \cdot Acs$$

$$S_t = \frac{0.32030}{28,013} \cdot 6,0225 \times 10^{23} \cdot 16,2 \times 10^{-20}$$

$$S_t = 88,30 \text{ m}^2/\text{q}$$

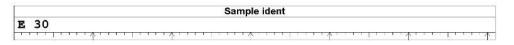
3.5.2 **Zeolit P**

N = 6,0225 x
$$10^{23}$$
 molekul/mol
Acs = 16,2 x 10^{-20} m²
W = 28,013 g/mol
s = 41.8919 i = 0.607497
W_m = $\frac{1}{s+i}$
W_m = $\frac{1}{41.8919+0.607497}$ = 0.63136
S_t = $\frac{Wm}{M}$. N. Acs
S_t = $\frac{0.63136}{28,013}$. 6,0225 x 10^{23} . 16,2 x 10^{-20}
S_t = 81,94 m²/g

3.6 Penentuan Persen Metil Ester yang Berhasil Dikonversi

% Metil Ester =
$$\frac{Luas Area}{Total Luas Area} X 100\%$$

3.6.1 Persen metil ester menggunakan zeolit x dengan pengotor p 5 jam


% Metil miristat =
$$\frac{11220}{1399003}$$
 X 100 % = 0,80 %
% Metil oleat = $\frac{90905}{1399003}$ X 100 % = 6,50 %
% Metil risinoleat = $\frac{1296878}{1399003}$ X 100 % = 92,70 %

3.6.2 Persen metil ester menggunakan zeolit x dengan pengotor p 7 jam

% Metil oleat =
$$\frac{14892}{51454}$$
 X 100 % = 28,94 %
% metil risinoleat = $\frac{18063}{51454}$ X 100 % = 35,11 %

Lampiran 3. Data Karakterisasi XRF

1. Hasil Karakterisasi XRF kaolin alam Blitar sebelum dicuci HCI 1M

Application	<standardless></standardless>
Sequence	1 of 1
Measurement time	01-feb-2023 09:10:27
Position	4

Compound	Al	Si	K	Ca	Ti	V	Cr	Mn	Fe	Cu	Zn	Re
Conc	13	62,6	5,25	2,22	1,74	0,02	0,047	0,12	14,6	0,096	0,008	0,2
Unit	%	%	%	%	%	%	%	%	%	%	%	%

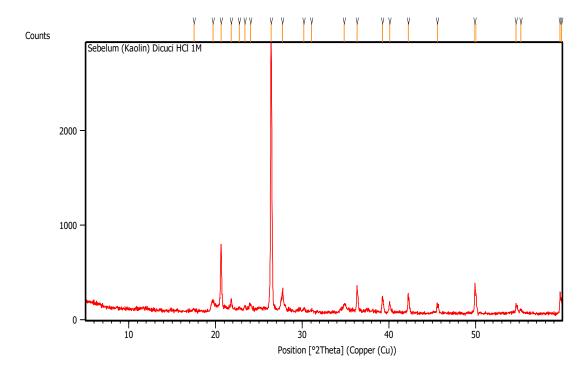
2. Hasil Karakterisasi XRF kaolin alam Blitar setelah pencucian dengan HCl 1M 01-feb-2023 09:36:03 Sample results Page 1

Application	<standardless></standardless>
Sequence	1 of 1
Measurement time	01-feb-2023 09:12:25
Position	

Compound	Al	Si	K	Ca	Ti	V	Cr	Mn	Fe	Cu	Zn	Re
Conc	11	65,0	4,99	1,1	1,67	0,03	0,047	0,13	15,3	0,10	0,04	0,1
Unit	%	%	%	%	%	%	%	%	%	%	%	%

3. Hasil Karakterisasi XRF ekstraksi SiO₂ dari kaolin alam Blitar 14-mrt-2023 12:57:06 Sample results

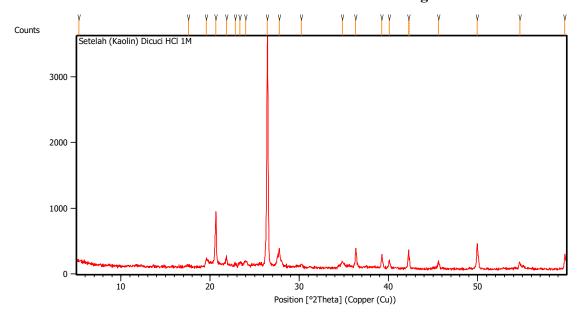
Page 1


	Sample ident	
E 141		

	<standardless></standardless>
Sequence	1 of 1
Measurement time	14-mrt-2023 11:18:29
Position	

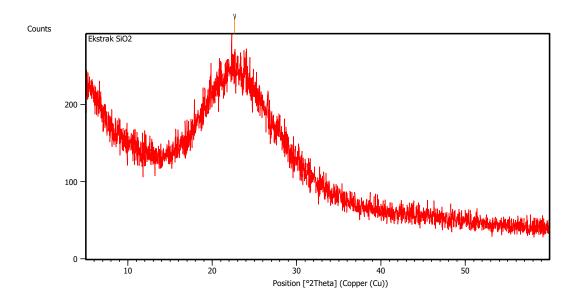
Compound	SiO2	CaO	TiO2	MnO	Fe2O3	NiO	CuO	ZnO	Ga203	BaO	Eu203	Re207
Conc	99,2	0,32	0,04	0,037	0,11	0,014	0,034	0,12	0,038	0,05	0,03	0,06
Unit	%	%	%	%	%	%	%	%	%	%	%	%

Lampiran 4 Data Karakterisasi XRD


1. Hasil Karakterisasi XRD Kaolin Alam Blitar Sebelum dicuci dengan HCl 1M

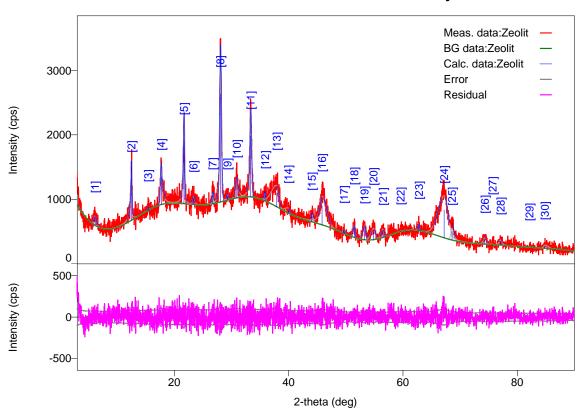
Peak List: (Bookmark 3)

eak List. (Do	okiliai k <i>3)</i>			
Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
17.5157	18.20	0.4015	5.06332	0.65
19.6854	120.98	0.3011	4.50989	4.35
20.6170	716.64	0.0836	4.30816	25.75
21.8012	137.53	0.0669	4.07675	4.94
22.7090	48.24	0.2676	3.91579	1.73
23.3719	57.29	0.2007	3.80621	2.06
24.0228	77.69	0.2676	3.70453	2.79
26.3870	2782.96	0.1506	3.37774	100.00
27.7081	211.79	0.0836	3.21963	7.61
30.1816	35.29	0.2007	2.96116	1.27
31.0651	24.00	0.4015	2.87893	0.86
34.8375	87.19	0.2342	2.57534	3.13
36.2974	273.54	0.0669	2.47504	9.83
39.2258	158.79	0.0836	2.29676	5.71
40.0613	104.36	0.1673	2.25076	3.75
42.2002	207.03	0.0669	2.14150	7.44
45.5558	109.14	0.0612	1.98961	3.92
49.8950	328.41	0.1020	1.82627	11.80
50.0383	202.70	0.0612	1.82590	7.28
54.6400	94.69	0.0816	1.67836	3.40
55.1889	34.04	0.2448	1.66296	1.22
59.7112	229.06	0.0816	1.54736	8.23
59.8734	173.08	0.0816	1.54355	6.22


2. Hasil Karakterisasi XRD Kaolin Setelah Pencucian dengan HCl 1M

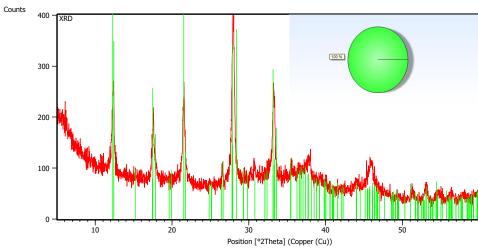
Peak List:

Peak List.				
Pos. [°2Th.]	Height [cts]	FWHM Left	d-spacing	Rel. Int. [%]
		[°2Th.]	[Å]	
5.2919	56.89	0.8029	16.69998	1.64
17.5501	25.75	0.5353	5.05348	0.74
19.5798	129.83	0.1004	4.53398	3.74
20.6367	844.17	0.1171	4.30410	24.34
21.8336	154.92	0.1338	4.07078	4.47
22.8213	55.19	0.2007	3.89678	1.59
23.3325	71.04	0.2676	3.81254	2.05
24.0063	89.02	0.2676	3.70705	2.57
26.4196	3468.27	0.1338	3.37364	100.00
27.7581	294.43	0.0669	3.21394	8.49
30.2363	54.59	0.2676	2.95593	1.57
34.8159	97.83	0.1338	2.57689	2.82
36.3233	295.40	0.1004	2.47334	8.52
39.2474	214.48	0.0836	2.29554	6.18
40.0937	130.75	0.0836	2.24902	3.77
42.2430	242.70	0.0612	2.13766	7.00
42.3626	138.09	0.0612	2.13720	3.98
45.6009	133.84	0.0816	1.98775	3.86
49.9434	388.08	0.1020	1.82462	11.19
54.7077	86.16	0.1632	1.67644	2.48
59.7592	229.28	0.1224	1.54623	6.61

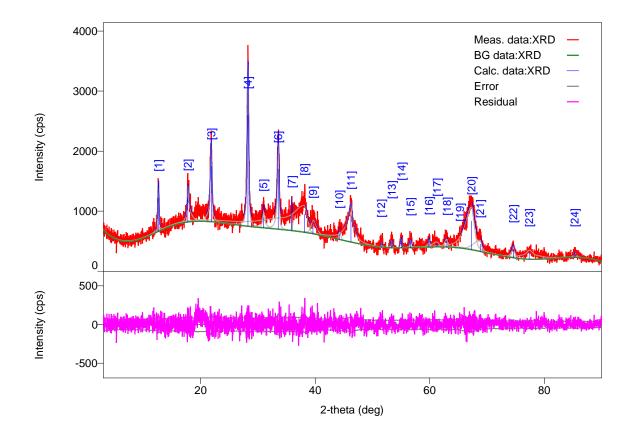

3. Hasil XRD Ekstraksi SiO2 dari Kaolin Alam Blitar

Peak List:

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
22.6563	54.49	0.0900	3.92154	100.00


4. Hasil XRD Sintesis zeolit X variasi stirrer 9 hari sonikasi 4 jam

Peak list


No.	2- theta(deg)	d(an.)	Height(cps)	FWHM(deg)	Int. I(cps deg)	Int. W(deg)	Asym. factor
1	6.12(12)	14.4(3)	97(28)	0.58(11)	59(16)	0.6(3)	0.7(6)
2	12.530(6)	7.059(3)	645(73)	0.21(3)	253(11)	0.39(6)	2.7(13)
3	15.42(6)	5.74(2)	38(18)	0.17(17)	7(9)	0.2(3)	1(3)
4	17.73(2)	4.999(6)	434(60)	0.37(3)	250(17)	0.58(12)	1.2(2)
5	21.71(2)	4.090(4)	974(90)	0.23(2)	347(13)	0.36(5)	1.8(10)
6	23.34(5)	3.808(8)	87(27)	0.53(14)	49(18)	0.6(4)	0.8(11)
7	26.73(10)	3.333(12)	121(32)	0.30(8)	39(14)	0.3(2)	1.3(16)
8	28.074(10)	3.1759(11)	1679(118)	0.345(8)	694(15)	0.41(4)	0.93(11)
9	29.34(6)	3.042(6)	61(23)	0.32(11)	21(7)	0.4(2)	2.0(15)
10	30.95(7)	2.887(7)	212(42)	0.53(9)	152(18)	0.7(2)	1.6(13)
11	33.33(2)	2.6859(19)	951(89)	0.33(3)	417(18)	0.44(6)	0.7(3)
12	35.88(4)	2.501(3)	87(27)	0.26(10)	24(7)	0.27(17)	2.9(10)
13	37.92(9)	2.371(5)	221(43)	1.47(9)	345(32)	1.6(5)	2.9(10)
14	39.93(11)	2.256(6)	52(21)	0.9(4)	49(17)	0.9(7)	2.9(10)

5. Hasil XRD Sintesis zeolit X variasi stirrer 8 hari sonikasi 2 jam

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
12.3590	159.34	0.2007	7.16194	51.76
17.5390	140.91	0.1004	5.05666	45.78
21.5993	153.59	0.1171	4.11440	49.89
26.5993	32.83	0.1338	3.35126	10.66
28.0118	307.83	0.3346	3.18541	100.00
30.7197	27.56	0.2007	2.91051	8.95
33.2190	179.19	0.2342	2.69702	58.21
37.9638	37.64	0.4015	2.37015	12.23
43.9874	13.72	0.4015	2.05855	4.46
46.0118	55.34	0.4015	1.97258	17.98
51.2891	17.02	0.2676	1.78133	5.53
52.9841	25.55	0.4015	1.72827	8.30
54.6514	15.47	0.6691	1.67943	5.03
56.3685	12.20	0.6691	1.63227	3.96
57.9131	8.77	0.6691	1.59236	2.85

6. Hasil XRD Sintesis zeolit X variasi stirrer 2 hari sonikasi 2

Peak list

Реак	IIST						
No.	2- theta(deg)	d(ang.)	Height(cps)	FWHM(deg)	Int. I(cps deg)	Int. W(deg)	Asym. factor
1	12.62(2)	7.009(13)	562(68)	0.27(2)	213(12)	0.38(7)	1.0(4)
2	17.777(12)	4.985(3)	413(59)	0.40(6)	310(17)	0.75(15	0.5(2)
3	21.87(2)	4.061(4)	923(88)	0.33(3)	508(16)	0.55(7)	2.0(8)
4	28.264(13)	3.1549(14)	1853(124)	0.326(11)	834(20)	0.45(4)	1.3(2)
5	30.95(3)	2.887(3)	173(38)	0.34(15)	119(23)	0.7(3)	0.5(6)
6	33.56(2)	2.6683(17)	1003(91)	0.34(2)	485(21)	0.48(7)	1.4(4)
7	35.917(10)	2.4983(6)	277(48)	0.04(3)	18(6)	0.07(3)	1(3)
8	38.10(3)	2.360(2)	299(50)	3.6(2)	2115(83)	7.1(15)	5.0(12
9	39.60(4)	2.274(2)	152(36)	1.09(10)	195(15)	1.3(4)	0.6(6)
10	44.19(4)	2.0479(18)	82(26)	0.42(11)	36(12)	0.4(3)	0.5(9)
11	46.26(2)	1.9608(10)	441(61)	1.05(5)	878(27)	2.0(3)	2.05(1
12	51.5(2)	1.772(6)	59(22)	0.27(16)	17(10)	0.3(3)	0.6(5)
13	53.37(3)	1.7152(10)	86(27)	0.42(11)	39(13)	0.4(3)	2(3)
14	55.086(19)	1.6658(5)	123(32)	0.28(5)	36(6)	0.29(12	5(7)
15	56.65(3)	1.6234(9)	94(28)	0.43(10)	43(12)	0.5(3)	1.5(19
16	59.89(4)	1.5432(8)	99(29)	0.30(16)	43(12)	0.4(2)	2(4)
17	61.28(8)	1.5114(18)	55(21)	1.3(3)	76(20)	1.4(9)	3(5)
18	63.02(5)	1.4739(10)	92(28)	0.58(15)	65(18)	0.7(4)	5(9)
19	65.3(16)	1.43(3)	11(9)	4(4)	66(67)	6(12)	1(3)
20	67.30(2)	1.3902(4)	479(63)	1.89(10)	1211(82)	2.5(5)	2.7(18
21	68.83(4)	1.3630(7)	124(32)	1.63(17)	242(25)	2.0(7)	5(5)
22	74.60(5)	1.2712(7)	145(35)	0.51(9)	115(22)	0.8(3)	2.9(14
23	77.37(13)	1.2325(17)	105(30)	1.7(3)	379(33)	3.6(13)	0.9(4)
24	85.33(7)	1.1366(7)	75(25)	0.31(14)	41(8)	0.5(3)	1.3(11

Lampiran 5 Hasil SAA

1. Hasil SAA Zeolit X dengan pengotor P

UNIVERSITAS ISLAM INDONESIA

Report date: Filename:		Aug 14 2023 0823_1.gcuPhysIso	Operator:	Yusuf	
		- ' '	sis Information =		
Sample		Analy	sis Information —		
	0967_1	Walaht	0.0716		
	Zeolit XP 2jam sonil		0.07104		
Analysis	Zeolit AF Zjam sonii	(45)			
	M1251-50-00-0-451	21-bd2f-9805564704ca)			
Operator			2023.08.14	Duration	24.5
		4LX [s/n:170170510001]	2023.08.14	Firmware	
	description of same			Firmware	1.07
Ambient Temp.		Void Volume Mode	MOVA	Cell ID	23
	9mm w/o rod	Thermal Delay			Continuous
Adsorbate	9mm w/o roa	Inermal Delay	300 sac	PO MODE	Continuous
	Missana	Malagulas Weight	20.012	Cross Section Area	16.2 (19)
	Nitrogen 6.580000e-051/sav	Molecular Weight Bath Temperature		Cross Section Area	10.25°/Mai
Non-ideality Degas information		eath lemperature	77.338		
	3.0 hours	Temp	300.000000∙c		
		Deta Bee	luction Parameter		
Thermal Tree		Data Rec	luction Parameter	-	۸.
	nspiration yes	Data Rec	oction Parameter	Eff. Molec. Diamet	ter Os
Eff. Cell	Diameter Own	Data Rec	oction Parameter	-	ter 0a
	Diameter 0mm			Eff. Molec. Diame	
Eff. Cell Adsorbate Mode	Diameter Own I Name Nitrog	en Molecular V	Veight 28.0134	Eff. Molec. Diame	
Eff. Cell Adsorbate Mode	Diameter 0mm	en Molecular V		Eff. Molec. Diame	
Eff. Cell Adsorbate Mode	Diameter Own I Name Nitrog	en Molecular V		Eff. Molec. Diamet	
Eff. Cell Adsorbate Mode	Diameter Own I Name Nitrog	en Molecular V	Veight 28.0134	Eff. Molec. Diamet	
Eff. Cell Adsorbate Mode	Diameter Own I Name Nitrog	en Molecular V	Veight 28.0134 i-point BET results therm Branch	Eff. Molec. Diamet	
Eff. Cell Adsorbate Mode	Diameter Own I Name Nitrog	en Molecular V	Veight 28.0134 i-point BET results therm Branch	Eff. Molec. Diametra Cross Section Are Adsorption 39.1409	
Eff. Cell Adsorbate Mode	Diameter Own I Name Nitrog	en Molecular V BET Mult Iso	Veight 28.0134 i-point BET results therm Branch Slope	Eff. Molec. Diamet Cross Section Ar Adsorption 39.1409 0.294761	
Eff. Cell Adsorbate Mode	Diameter Own I Name Nitrog	en Molecular V BET Mult Iso	Veight 28.0134 i-point BET results therm Branch Slope Intercept	Eff. Molec. Diamet Cross Section Ar Adsorption 39.1409 0.294761 0.999908	
Eff. Cell Adsorbate Mode	Diameter Own I Name Nitrog	en Molecular V BET Mult Iso	Veight 28.0134 i-point BET results therm Branch Slope Intercept ation coeff., r	Eff. Molec. Diamet Cross Section Ar Adsorption 39.1409 0.294761 0.999908 133.788	
Eff. Cell Adsorbate Mode	Diameter Own I Name Nitrog	en Molecular V BET Mult Iso Correl	Veight 28.0134 i-point BET results therm Branch Slope Intercept ation coeff., r C constant Surface area	Eff. Molec. Diamet Cross Section Ar Adsorption 39.1409 0.294761 0.999908 133.788 88.309 m²/g	
Eff. Cell Adsorbate Mode Bath Ter	Diameter Own Name Nitrog Name 77.35x	en Molecular V BET Mult Iso Correl Table - BI	Veight 28.0134 i-point BET results therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BET	Eff. Molec. Diamet Cross Section And Sec	rea 16.2s*/molec
Eff. Cell Adsorbate Mode Bath Ter	Diameter Own I Name Nitrog	en Molecular V BET Mult Iso Correl Table - BI Volume	Veight 28.0134 i-point BET results therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BET	Eff. Molec. Diamet Cross Section And Sec	
Eff. Cell Adsorbate Mode Bath Ter	Diameter Own Name Nitrog Name 77.35x	en Molecular V BET Mult Iso Correl Table - BI Volume	Veight 28.0134 i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BET Adsorbed	Eff. Molec. Diamet Cross Section And Sec	rea 16.2s*/molec
Eff. Cell Adsorbate Mode Bath Ter	Diameter 0 mm 1 m	en Molecular V BET Mult Iso Correl Table - BI Volume	Veight 28.0134 i-point BET results therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BET Adsorbed DSTP cc/g	Eff. Molec. Diames Cross Section And Adsorption 39.1409 0.294761 0.999908 133.788 88.309 m²/g	rea 16.25*/molec
Eff. Cell Adsorbate Mode Bath Ter	Diameter 0 mm III Name Nitrog mperature 77.35x	en Molecular V BET Mult Iso Correl Table - BI Volume	Veight 28.0134 i-point BET results therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BET Adsorbed DETP EC/g 8.2109	Eff. Molec. Diamet Cross Section And Sec	/Po) - 1)]
Eff. Cell Adsorbate Mode Bath Ter	Name Nitrog Name Nitrog Pressure 0.0459018 0.0898602	en Molecular V BET Mult Iso Correl Table - BI Volume	Veight 28.0134 i-point BET results therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BET adsorbed 0 STP 0.4859	Eff. Molec. Diamet Cross Section And Adsorption 39.1409 0.294761 0.999908 133.788 88.309 m²/g	/Po) - 1)]
Eff. Cell Adsorbate Mode Bath Ter	Name Nitrog mperature 77.35x ve Pressure 0.0459018 0.0898602 0.133252	en Molecular V BET Mult Iso Correl Table - BI Volume	Veight 28.0134 i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BET t Adsorbed STP cc/g 18.2109 10.4859 12.4183	Eff. Molec. Diamet Cross Section And Adsorption 39.1409 0.294761 0.999908 133.788 88.309 m²/g 1 / [W ((P	/Po) - 1)] 1138 .8562 .4869
Eff. Cell Adsorbate Mode Bath Ter	Ve Pressure 0.0459018 0.0898602 0.133252 0.174505	en Molecular V BET Mult Iso Correl Table - BI Volume	Veight 28.0134 i-point BET results therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BET Adsorbed 0 STP cc/g 8.2109 10.4859 12.4183 13.8938	Eff. Molec. Diamet Adsorption 39.1409 0.294761 0.999908 133.788 88.309 m²/g 1 / [W((P	/Po) - 1)] .1138 .8562 .4869 .0788
Eff. Cell Adsorbate Mode Bath Ter	Name Nitrog Name Nitrog Name Nitrog 77.35x ve Pressure 0.0459018 0.0898602 0.133252 0.174505 0.214801	en Molecular V BET Mult Iso Correl Table - BI Volume	Veight 28.0134 i-point BET results therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BET e Adsorbed 05TP 05C/g 18.2109 10.4899 12.4183 15.3015	Eff. Molec. Diamet Cross Section Ar Adsorption 39.1409 0.294761 0.999908 133.788 88.309 m²/g 1 / [W ((P	/Po) - 1)] .1138 .8562 .4869 .0788
Eff. Cell Adsorbate Mode Bath Ter	Ve Pressure 0.0459018 0.0898602 0.133252 0.174505	en Molecular V BET Mult Iso Correl Table - BI Volume	Veight 28.0134 i-point BET results therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BET Adsorbed 0 STP cc/g 8.2109 10.4859 12.4183 13.8938	Eff. Molec. Diamet Adsorption 39.1409 0.294761 0.999908 133.788 88.309 m²/g 1 / [W ((P	/Po) - 1)] .1138 .8562 .4869 .0788

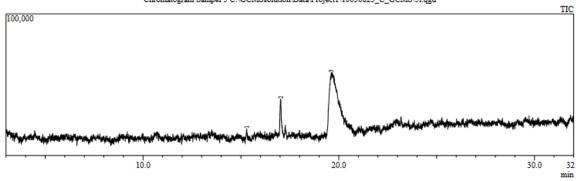
2. Hasil SAA Zeolit X dengan pengotor P

UNIVERSITAS ISLAM INDONESIA

Jl. Kaliurang Km 14.5, Sleman Yogyakarta LABORATORIUM TERPADU Quantachrome TouchWin v1.22

Report date: Filename:		l 18 2023 723_3.qcuPhysiso	Operator:	Yusuf	
		Analy:	sis Information =		
Sample					
	0844_3	Weight	0.0797		
	Zeolit P sonikasi				
Analysis					
	(439d48a3-500f-405c				
Operator			2023.07.18	Duration	
		4LX [s/n:170170510001]		Firmware	1.07
	description of samp				
Ambient Temp.		Void Volume Mode		Cell ID	
	9mm w/o rod	Thermal Delay	300 000	Po Mode	Continuous
Adsorbate					
	Nitrogen	Molecular Weight		Cross Section Area	16.24 ² /mol
	6.580000e-051/tow	Bath Temperature	77.35x		
Degas informatio	3.0 house	7	300.000000∙c		
IIMe	S.URBUE	iemp	300.000000*2		
		Data Red	luction Parameter	s ————	
Thermal Tran	nspiration yes			Eff. Molec. Diamet	ter Oa
	nspiration yes Diameter 0mm			Eff. Molec. Diamet	ter Os
Eff. Cell	Diameter 0 _{mm}			Eff. Molec. Diamer	ter Os
Eff. Cell Adsorbate Mode	Diameter 0 _{mm}	n Molecular V	Veight 28.0134		
Eff. Cell Adsorbate Mode	Diameter 0 mm I Name Nitroge			i _a Cross Section Ar	
Eff. Cell Adsorbate Mode	Diameter 0 mm I Name Nitroge	BET Mult	i-point BET result:	ia Cross Section Ar	
Eff. Cell Adsorbate Mode	Diameter 0 mm I Name Nitroge	BET Mult	i-point BET result: therm Branch	Cross Section Ar Adsorption	
Eff. Cell Adsorbate Mode	Diameter 0 mm I Name Nitroge	BET Mult	i-point BET result therm Branch Slope	Cross Section Ar Cross Section Ar Adsorption 41.8919	
Eff. Cell Adsorbate Mode	Diameter 0 mm I Name Nitroge	BET Mult Iso	i-point BET result therm Branch Slope Intercept	Cross Section Ar Adsorption 41.8919 0.607497	
Eff. Cell Adsorbate Mode	Diameter 0 mm I Name Nitroge	BET Mult Iso	i-point BET result otherm Branch Slope Intercept ation coeff., r	Adsorption 41.8919 0.607497 0.999977	
Eff. Cell Adsorbate Mode	Diameter 0 mm I Name Nitroge	BET Mult Iso	i-point BET results therm Branch Slope Intercept ation coeff., r C constant	Adsorption 41.8919 0.607497 0.999977 69.9582	
Eff. Cell Adsorbate Mode	Diameter 0 mm I Name Nitroge	BET Mult Iso Correl:	i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area	Adsorption 41.8919 0.607497 0.999977 69.9582 81.943 m²/g	
Eff. Cell Adsorbate Mode Bath Ter	Diameter Own I Name Nitroge Mperature 77.35k	BET Multi Iso Correl:	i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area	Adsorption 41.8919 0.607497 0.999977 69.9582 81.943 m²/g	ea 16.2±/males
Eff. Cell Adsorbate Mode Bath Ter	Diameter 0 mm I Name Nitroge	BET Multi Iso Correl: Table - Bi	i-point BET result therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BE	Adsorption 41.8919 0.607497 0.999977 69.9582 81.943 m²/g	
Eff. Cell Adsorbate Mode Bath Ter	Diameter Own I Name Nitroge Mare 77.35k	BET Multi Iso Correl: Table - Bi	i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area	Adsorption 41.8919 0.607497 0.999977 69.9582 81.943 m²/g	ea 16.2±/males
Eff. Cell Adsorbate Mode Bath Ter	Diameter Omn Name Nitroge mperature 77.35x	BET Mult Iso Correl: Table - Bi Volume	i-point BET result therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BE' t Adsorbed STP	Adsorption 41.8919 0.607497 0.999977 69.9582 81.943 m²/g	rea 16.2±/malos /Po) - 1)]
Eff. Cell Adsorbate Mode Bath Ter	Diameter Omn Name Nitrogs mperature 77.35x ve Pressure 0.0469169	BET Multi Iso Correl: Table - Bi Volume	i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BE Adsorbed STP cc/g 15.5741	Adsorption 41,8919 0.607497 0.999977 69.9582 81.943 m²/g	/Po) - 1)]
Eff. Cell Adsorbate Mode Bath Ter	Diameter Own Name Nitroge Name 77.35x Ve Pressure 0.0469169 0.0885632	BET Multi Iso Correl: Table - Bi Volume	i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BE' Adsorbed 95.741 17.8621	Adsorption 41.8919 0.607497 0.999977 69.9582 81.943 m²/g	/Po) - 1)]
Eff. Cell Adsorbate Mode Bath Ter	Diameter 0 mm 1 Name Nitroge mperature 77.35 x	BET Multi Iso Correl: Table - 88 Volume	i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BE1 Adsorbed 0 STP cc/g 15.5741 17.8631 19.8013	Adsorption 41.8919 0.607497 0.999977 69.9582 81.943 m²/g	/Po) - 1)]
Eff. Cell Adsorbate Mode Bath Ter	Diameter 0 mm 1 Name Nitroge 77.35 x Ve Pressure 0.0469169 0.0885632 0.132637 0.173115	BET Multi Iso Correl: Table - Bi Volume	i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BE1 Adsorbed 9 STP cc/g 15.5741 17.8631 19.8013 11.2625	Adsorption 41.8919 0.607497 0.999977 69.9582 81.943 m²/g	/Po) - 1)] .5290 .3523 .1790 .8782
Eff. Cell Adsorbate Mode Bath Ter	Diameter 0 mm 1 Name Nitroge mperature 77.35 x ve Pressure 0.0469169 0.0885632 0.132637 0.173115 0.215104	BET Multiso Correl: Table - Bi Volume 6 1 1 1 2 2	i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BE Adsorbed STP cc/g 5.5741 17.8631 19.8013 11.2625 12.8129	Adsorption 41.8919 0.607497 0.999977 69.9582 81.943 m²/g 1 / [W ((P	/Po) - 1)] 5290 3523 1790 8782 6118
Eff. Cell Adsorbate Mode Bath Ter	Diameter 0 mm 1 Name Nitroge 77.35 x Ve Pressure 0.0469169 0.0885632 0.132637 0.173115	BET Multiso Correl: Table - Bi Volume 1 1 2 2 2	i-point BET result: therm Branch Slope Intercept ation coeff., r C constant Surface area ET Multi-point BE1 Adsorbed 9 STP cc/g 15.5741 17.8631 19.8013 11.2625	Adsorption 41.8919 0.607497 0.999977 69.9582 81.943 m²/g 1 / [W ((P	/Po) - 1)] .5290 .3523 .1790 .8782

Lampiran 6 Hasil GCMS


Hasil GCMS 5 jam

Sample Information

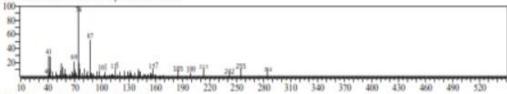
Analyzed by Analyzed Sample Name Sample ID Vial # Injection Volum Tuning File

: Admin : 30/08/2023 17.56.52 : Sampel 5 : 5 : 4 : 2.00 : C:\GCMSsolution\System\Tune1\11_07_2023.qgt

Chromatogram Sampel 5 C:\GCMSsolution\Data\Project1\10650823_C_GCMS\5i.qgd

					Peak Report TIC
Peak#	R.Time	I.Time	F.Time	Area	Area%
1	15.295	15.250	15.315	11220	0.80
2	17.036	16.935	17.130	90905	6.50
3	19.617	19.390	20.440	1296878	92.70
				1399003	100.00

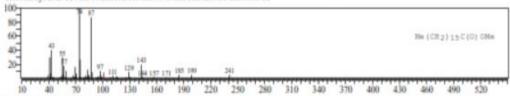
C: GCMSsolution Data Project1\10650823_C_GCMS-5i.agd


Similarity Search Result

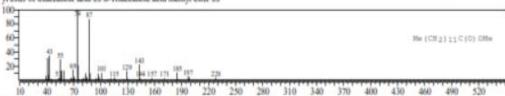
<< Target :</p>

Line#:1 R.Time:15.295(Scan#:3060) MassPeaks:314

RawMode:Averaged 15:290-15:300(3059-3061) BasePeak:74.00(481)

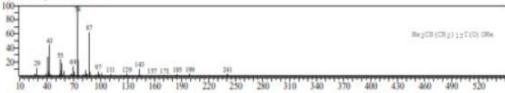

BG Mode:Cale, from Peak Group 1 - Event 1 Scan

Hint:1 Entry:195588 Library:WILEY7.LIB


SE:68 Formula:C18 H36 O2 CAS:1731-92-6 MolWeight:284 RetIndex:0

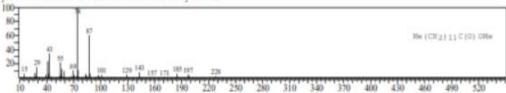
CompName-Heptadecanoic acid, methyl ester (CAS) Methyl heptadecanoace SS Methyl margarate SS Margaric acid methyl ester SS n-Heptadecanoic acid methyl ester SS HEPTADECANCARBONSAEUREMETHYLESTER SS

Hitt:2 Entry:131461 Library:WILEY7.LIB


SE67 Formula:C14 H28 O2 CAS:1731-88-0 MolWeigh:228 RetIndex:0
CompName:Tridecanoic acid, methyl ester (CAS) Methyl tridecanoate \$\$ METHYL N-TRIDECANOATE \$\$ Tridecanoic acid methyl ester \$\$ Methyl ester of tridecanoic acid \$\$ n-Tridecanoic acid methyl ester \$\$

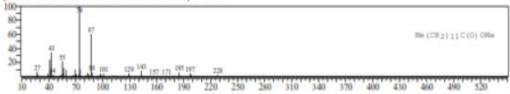
Hits:3 Entry:195602 Library:WILEY7.LIB

SE:67 Formula:C18 H36 O2 CAS:6929-04-0 MolWeight:284 RetIndex:0


CompName:Hexadecanoic acid, 15-methyl-, methyl ester (CAS) METHYL-15-METHYL HEXADECANOATE \$\$ Methyl isoheptadecanoute \$\$ Me thyl 15-methylhexadecanoute \$\$

Hit#:4 Entry:131462 Library:WILEY7.LIB

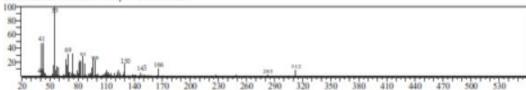
SE:67 Formula:C14 H28 O2 CAS:1731-88-0 MolWeight:228 RetIndex:0


CompName Tridecanoic acid, methyl ester (CAS) Methyl tridecanoate \$\$ METHYL N-TRIDECANOATE \$\$ Tridecanoic acid methyl ester \$\$ Meth yl ester of tridecanoic acid \$\$ n-Tridecanoic acid methyl ester \$\$

Hit#:5 Entry:131463 Library:WILEY7.LIB

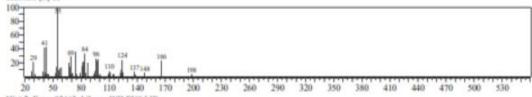
SE:67 Formula:C14 H28 O2 CAS:1731-88-0 MolWeight:228 RetIndex:0

CompName: Tridecanoic acid, methyl ester (CAS) Methyl tridecanoate \$\$ METHYL N-TRIDECANOATE \$\$ Tridecanoic acid methyl ester \$\$ Meth yl ester of tridecannic acid \$\$ n-Tridecanoic acid methyl ester \$\$

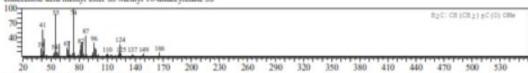



```
---- Target ---
Line#2 R.Time:17.035(Scan#:3408) MassPeaks:274
RawMode:Averaged 17.030-17.040(3407-3409) BassPeak:35.00(2163)
BG Mode:Calc. from Peak Group 1 - Event 1 Scan
 100-
   80-
   60-
    40
   20-
                                                                                             125 150
                                                                                                                         150
                                                                                                                                         206 222 240
                                                                                                                           190
                                                                                                                                                220
                                                                                                                                                                    250
                                                                                                                                                                                       280
                                                                                                                                                                                                                                340
                                                                                                                                                                                                                                                                        400
                                                                                                           160
                                                                                                                                                                                                            310
                                                                                                                                                                                                                                                                                            430
          10
                                                                                       130
Hit#:1 Entry:207865 Library:WILEY7.LIB
Si:91 Formula:C19 H36 O2 CAS:112-62-9 MolWeight:296 Refindex:0

CompName:9-Octadecenoic acid (Z)-, methyl exter (CAS) Methyl oleate $$ Methyl cis-9-octadecenoate $$ Oleic acid methyl exter $$ Oleic acid, methyl exter $$ Emery oleic acid exter 2301 $$ OLEIC ACID-METHYL ESTER $$ (Z)-9-OCTADECENOIC ACID, METHYL ESTER $$ (Z)-9-Octadecenoate $$ Emery $$ Emery, oleic acid exter 250 Methyl-o-octadecenoate $$ cis-9-Octyldecenoic acid, methyl exter $$ Emery, oleic acid exter $$ Methyl-o-octadecenoate $$ Oleic acid, methyl exter $$ Emery, oleic 
 100-
                                                                                                                                                                                                                                                                                                           Sect (0) (CS<sub>2</sub>) yCS (CS (CS<sub>2</sub>) ySe
    70
  40]
          10
                                                                   100
                                                                                       130
                                                                                                           160
                                                                                                                                                  220
                                                                                                                                                                                                             310
                                                                                                                                                                                                                                 340
Hit#2 Entry:209385 Library:WILEY7.LIB
SI:91 Formula:C18 H31 CL O CAS:7459-33-8 MolWeight:298 RetIndex:0
 CompName: 9, 12-Octadecadiencyl chloride, (Z,Z)- $$ Linolecyl chloride $$ Lineolecyl chloride $$ Linolec acid chloride $$
 100
   80-
   60-
    40-
   20-
                                                                                                           160
                                                                                                                                                                                                             310
                                                                                                                                                                                                                                                                         400
                                                                                        130
                                                                                                                               190
                                                                    100
Hit#:3 Entry:177667 Library:WILEY7.LIB
SI:90 Formula:C17 H32 O2 CAS:56875-67-3 MolWeight:268 Refindex:0 CompName:7-Hexadecenoic acid, methyl ester, (Z)- $$
 100
   80-
   60-
                                                                                                                                                                                                                                                                                                                00(0) (CE<sub>2</sub>) 2CE CE (CE<sub>2</sub>) 7
    40-
   20-
                                                                                                                               190
                                                                                                                                                                     250
                                                                                                                                                                                         280
                                                                                                                                                                                                            310
                                                                                                                                                                                                                                 340
                                                                                                                                                                                                                                                    370
                                                                                                                                                                                                                                                                        400
                                                                                                                                                                                                                                                                                            430
Hit#:4 Entry:178117 Library:WILEY7.LIB
SI:90 Formula: C17 H32 O2 CAS:1120-23-8 MolWeight:268 RetIndex:0
CompName:9-Hexadecenoic acid, methyl ester, (Z)- (CAS) Methyl palmitolezte $$ Methyl palmitoleinate $$ Palmitoleic acid, methyl ester $$
 100-
   80-
  60-
                                                                                                                                                                                                                                                                                                          Sta (CS 2) 2CS CS (CS 2) 7C (C) CSta
   40-
   20-
                                                                                                                                                  220
                                                                                                                                                                                         280
                                                                                                                                                                                                            310
                                                                                                                                                                                                                                 340
                                                                                                                                                                                                                                                                        400
                                                                                                                                                                                                                                                                                            430
                                                                                                                                                                                                                                                                                                                460
                                                                                       130
                                                                                                                                                                                                                                                                                                                                   490
                                                                    100
          10
His#5 Entry:207847 Library:WILEY7.LIB
SI:90 Formula:C19 H36 O2 CAS:2777-58-4 MolWeight:296 RetIndex:0
 CompName: 6-Octadecenoic acid, methyl ester, (Z)- (CAS) Methyl petroselinate $$ Methyl cis-6-octadecenoate $$
 100
   80-
    60-
                                                                                                                                                                                                                                                                                                          M-00 (0) (CR2) 40R CR (CR2) 10M
    40
                                                                                                                               190
                                                                                                                                                                                                            310
                                                                                                                                                                                                                                 340
                                                                                                                                                                                                                                                    370
                                                                                                                                                                                                                                                                        400
                                                                                                                                                                                                                                                                                            430
```

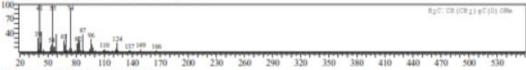

RawMode: Averaged 19.610-19.620(3923-3925) BasePeak: 55.00(5080)

BG Mode:Calc. from Peak. Group 1 - Event 1 Scan


Hin: 1 Entry:223327 Library:WILEY7.LIB SI:94 Formula:C19 H36 O3 CAS:141-24-2 MolWeight:312 RetIndex:0

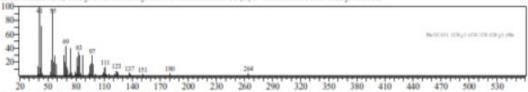
CompName:METHYL ESTER OF RICINOLEIC ACID \$\$ Methyl 12-hydroxy-9-octadecenoute \$\$ methyl ricinoleate \$\$ methyl 12-hydroxy-9-octad ecenoate (Z) \$\$

Hit#:2 Entry:93463 Library:WILEY7.LIB

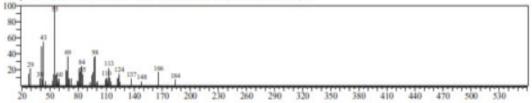

SE89 Formala:C12 H22 O2 CAS:111-81-9 MolWeight:198 RetIndex:0
CompName:10-Undecenoic acid, methyl ester (CAS) Methyl 10-undecenoate \$\$ METHYL UNDEC-10-ENOATE \$\$ Methyl undecenate \$\$ Methyl undecenoate \$\$ Methyl 10-undecenate \$\$ Undecenoic acid, methyl ester \$\$ Undecylenic acid, methyl ester \$\$ 10-Hendecenoic acid, methyl ester \$\$ Undecylenic acid methyl ester \$\$ METHYL UNDECYLENATE \$\$ Methyl ester of 10-Undecenoic acid \$\$ METHYL-10-UNDECENOATE \$\$ 10-H endecenoic acid methyl ester \$\$ Methyl 10-undecylenate \$\$

Hit#:3 Entry:93465 Library:WILEY7.LIB

SI:88 Formula:C12 H22 O2 CAS:111-81-9 MolWeight:198 RetIndex:0


CompName:10-Undecenoic acid, methyl ester (CAS) Methyl 10-undecenoite SS METHYL UNDEC-10-ENOATE \$\$ Methyl undecenoite \$\$ Methyl undecenoite \$\$ Methyl 10-undecenoite \$\$ Methyl 10-undecenoic acid, methyl ester \$\$ Undecylenic acid, methyl ester \$\$ 10-Hendecenoic acid, methyl ester \$\$ Undecylenic acid methyl ester \$\$ METHYL UNDECYLENATE \$\$ Methyl ester of 10-Undecenoic acid \$\$ METHYL-10-UNDECENOATE \$\$ 10-H endecenoic acid methyl ester \$\$ Methyl 10-undecylenate \$\$

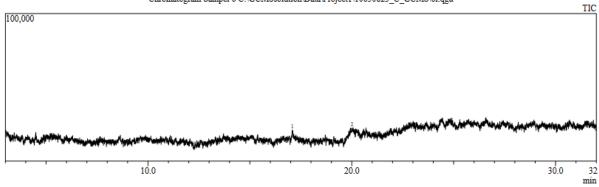
Hitt:4 Entry:207873 Library:WILEY7.LIB


SI:88 Formula:C19 H36 O2 CAS:1937-62-8 MolWeight:296 RetIndex:0

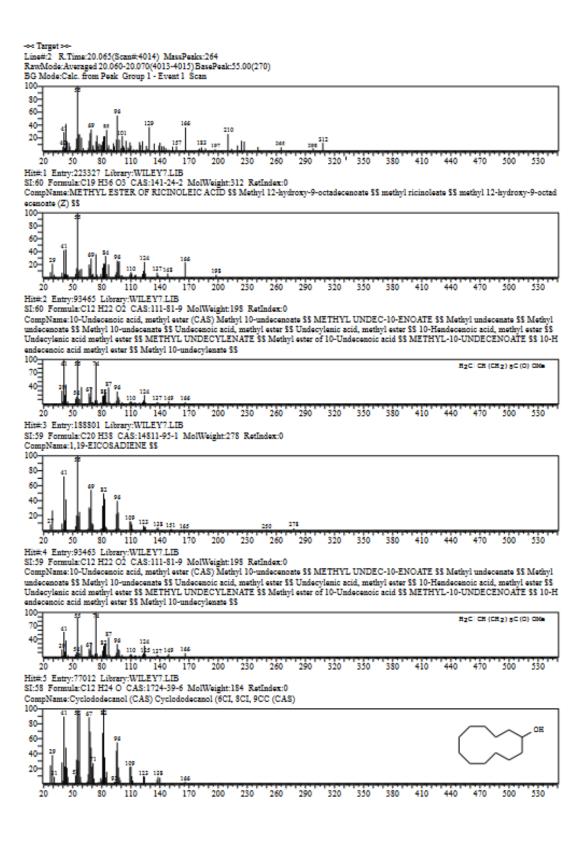
CompName 9-Octadecenoic acid, methyl ester, (E)- (CAS) Methyl elaidate \$\$ METHYL-TRANS 9-OCTADECENOATE \$\$ Elaidic acid methyl est or \$\$ Elaidic acid, methyl ester \$\$ Methyl trans-9-octadecenoute \$\$ (E)-9-Octadecenoic acid methyl ester \$\$

Hin: 5 Entry-209403 Library: WILEY7.LIB SI:87 Formula:C18 H34 O3 CAS:141-22-0 MolWeight: 298 RetIndex:0

CompName 9-OCTADECENSAEURE, 12-HYDROXY-, C1S- (RICINOLSAEURE) \$\$


Hasil GCMS 7 jam

Sample Information


: Admin : 30/08/2023 18.34.35 : Sampel 6 : 6 : 5 : 2.00 : C:\GCMSsolution\System\Tune1\11_07_2023.qgt

Analyzed by Analyzed Sample Name Sample ID Vial # Injection Volume Tuning File

Chromatogram Sampel 6 C:\GCMSsolution\Data\Project1\10650823_C_GCMS\6i.qgd

Peak#	R.Time	I.Time	F.Time	Area	Area%	port IIC
1	17.079	17.030	17.130	14892	45.18	
5	20.065	19.705	20.150	18063	54.81	
2	20.005	15.705	20.150	32955	100.00	

Lampiran 7 Dokumentasi kegiatan

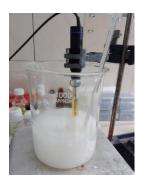
Penggerusan Kaolin

Pengayakan kaolin

Proses Pencucian kaolin

Proses penyaringan

Hasil kaolin


Metakaolin kalsinasi 2 jam

Metakaolin kalsinasi 3 jam

Penambahan NaOH

Penambahan HCl

Proses penyaringan SiO₂

Proses pengovenan SiO₂

Proses pencucian SiO₂

Hasil ekstraksi SiO₂

Proses refluks

Proses aging dan stirrer

Proses pencucian aquades panas

Hasil sintesis

Hasil metil ester