SINTESIS DAN KARAKTERISASI SENYAWA KOMPLEKS *CERIUM* (III) DENGAN LIGAN 1,3,5-BENZENATRIKARBOKSILAT (H₃BTC) MENGGUNAKAN METODE SONOKIMIA

SKRIPSI

Oleh: RAHMA FATIMATUZZAHRO NIM.19630102

PROGRAM STUDI KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2023

SINTESIS DAN KARAKTERISASI SENYAWA KOMPLEKS CERIUM (III) DENGAN LIGAN 1,3,5- BENZENATRIKARBOKSILAT (H₃BTC) MENGGUNAKAN METODE SONOKIMIA

SKRIPSI

Oleh: RAHMA FATIMATUZZAHRO NIM. 19630102

Diajukan Kepada: Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang Untuk Memenuhi Salah Satu Persyaratan dalam Memperoleh Gelar Sarjana Sains (S.Si)

PROGRAM STUDI KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2023

SINTESIS DAN KARAKTERISASI SENYAWA KOMPLEKS CERIUM (III) DENGAN LIGAN 1,3,5- BENZENATRIKARBOKSILAT (H3BTC) MENGGUNAKAN METODE SONOKIMIA

SKRIPSI

Oleh: RAHMA FATIMATUZZAHRO NIM.19630102

Telah diperiksa dan disetujui untuk Diuji: Tanggal: 14 Desember 2023

Pembimbing I

Pembimbing II

NIP. 19840608 201903 2 009

Dr. Tri Kustono Adi, M.Sc NIP.19710311 200312 1 002

SINTESIS DAN KARAKTERISASI SENYAWA KOMPLEKS CERIUM (III) DENGAN LIGAN 1,3,5- BENZENATRIKARBOKSILAT (H₃BTC) MENGGUNAKAN METODE SONOKIMIA

SKRIPSI

Oleh: RAHMA FATIMATUZZAHRO NIM.19630102

Telah Dipertahankan di Depan Dewan Penguji Skripsi Dan Dinyatakan Diterima sebagai Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Sains (S.Si) Tanggal: 14 Desember 2023

Penguji Utama	:	Himmatul Barroroh, M.Si NIP. 19750730 200312 2 001
Ketua Penguji	:	Lilik Miftahul Khoiroh, M. Si NIP. 19831226 2019203 2 008
Sekretaris Penguji	:	Nur Aini, M.Si NIP. 19840608 201903 2 009
Anggota Penguji	:	Dr. Tri Kustono Adi, M.Sc NIP. 19710311 200312 1 002

(....

PERNYATAAN KEASLIAN TULISAN

Saya yang bertanda tangan dibawah ini:

Nama	: Rahma Fatimatuzzahro
NIM	: 19630102
Program Studi	: Kimia
Fakultas	: Sains dan Teknologi
Judul Penelitian	: Sintesis dan Karakterisasi Senyawa Kompleks Cerium (III) Dengan Ligan 1,3,5-Benzenatrikarboksilat (H ₃ BTC) Menggunakan Metode Sonokimia

Menyatakan dengan sebenarnya bahwa skripsi yang saya tulis ini adalah benarbenar hasil karya saya sendiri, bukan merupakan pengambil alihan data, tulisan atau pikiran orang lain yang saya akui sebagai tulisan atau pikiran saya sendiri, kecuali dengan mencantumkan sumber cuplikan pada daftar pustaka. Apabila dikemudian hari terbukti atau dapat dibuktikan skripsi hasil ini jiplakan maka saya bersedia menerima sanksi perbuatan tersebut.

Malang, 20 Desember 2023 Yang membuat pernyataan

Rahma Fatimatuzzahro NIM. 19630102

HALAMAN PERSEMBAHAN

Alhamdulillahirabbil'alamin, dengan mengucap syukur kepada Allah Swt. berkat kasih sayang dan ridha-Nya mengizinkan saya untuk menyelesaikan tugas akhir yang masih jauh dari kata sempurna ini dengan sebaik mungkin. Tahap ini merupakan hal yang berarti bagi saya dan saya persembahkan karya ini kepada kedua orang tua tercinta, Bapak Ahmad Tamami dan Ibuk Umi Rodyah yang selalu dan tiada henti memanjatkan doa terbaik untuk saya, memberikan dukungan baik berupa material dan non material seperti kasih sayang yang tak terhingga, motivasi, solusi, nasihat kepada saya sehingga saya mampu menyelesaikan karya ini. Terimakasih sudah selalu ada untuk saya dan mendukung saya dalam segala situasi dan kondisi apapun. Semoga senantiasa diberi kesehatan dan umur panjang agar dapat menemani saya hingga sukses.

Saya sampaikan terima kasih kepada Ibu Nur aini, M. Si selaku pembimbing utama yang senantiasa sabar dalam membimbing serta terima kasih untuk ilmu dan pengalaman yang telah diberikan kepada saya. Saya sampaikan terima kasih juga kepada Bapak Dr. Tri Kustono Adi, M. Sc selaku pembimbing agama yang telah berbagi banyak ilmu kehidupan, serta memberikan dukungan kepada saya untuk menyelesaikan karya ini. Ibu Hiimmatul Barroroh, M.Si dan Ibu Lilik Miftahul Khoiroh, M.Si selaku penguji yang telah membimbing dan memberikan arahan serta masukan dalam proses penyelesaian karya ini. Para dosen dan seluruh laboran Program Studi Kimia UIN Malang yang telah memberikan ilmu dan membantu saya dalam menyelesaikan penelitian.

Tidak lupa saya ucapkan terima kasih kepada sahabat saya Three musketeers (Deby, Rista), Bangtan squad (Marsha, Nadia), dan partner kamar saya Navida yang telah mendengarkan keluh kesah dan cerita saya selama skripsi ini dibuat, Terima kasih juga untuk teman-teman saya Sobat Kolis tercinta (Fifi, Acil, Ratna, Lelyta), teman seperbimbingan yang super sabar (Nidya, Sasa, Reza), dan teman-teman Uranium 19 yang selalu memberikan semangat, bantuan, serta motivasi untuk berjuang bersama demi menyelesaikan studi di UIN Malang.

Terakhir, terima kasih kepada diri saya sendiri yang telah berjuang sejauh ini. Saya bangga pada diri saya sendiri yang mampu melewati rintangan skripsi dan mampu bertahan hingga di tahap ini. Saya telah melakukan yang terbaik, terima kasih sudah kuat dan tidak menyerah. Ini baru awal dari perjalanan hidup, jadi mari lebih semangat kedepannya yaaa.

ΜΟΤΤΟ

"Dibalik kesulitan pasti akan ada kemudahan dan Allah SWT tidak akan memberikan cobaan melebihhi kemampuan hambanya"

KATA PENGANTAR

Alhamdulillah, sholawat serta salam kita haturkan kepada baginda kita yakni Nabi Muhammad SAW yang telah memberikan suri tauladan kepada umatnya, sehingga dalam proses penulisan skripsi ini tidak terlepas dari nilai-nilai kehidupan sebagaimana yang telah diajarkan oleh Rosulullah SAW. Semoga kita menjadi umat yang pandai mensyukuri nikmat Allah SWT, dan kelak mendapat syafaat dari Nabi Muhammad SAW.

Skripsi yang berjudul "Sintesis dan Karakterisasi Senyawa Kompleks *Cerium* (III) dengan Ligan 1,3,5- Benzenatrikarboksilat Menggunakan Metode Sonokimia" dapat disusun karena adanya dukungan, motivasi serta bimbingan dari berbagai pihak. Oleh karena itu, izinkanlah penulis mengucapkan banyak terima kasih kepada:

- 1. Bapak Prof. Dr. H. M. Zainuddin, MA., selaku rektor Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang.
- 2. Ibu Prof. Dr. Sri Harini, M.Si., selaku dekan Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Ibrahim Malang.
- 3. Ibu Rachmawati Ningsih, M.Si., selaku ketua prodi Kimia Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang.
- 4. Ibu Nur Aini, M.Si., selaku dosen pembimbing karena atas bimbingan, masukan dan sarannya, laporan skripsi ini menjadi lebih baik dan dapat terselesaikan.
- 5. Bapak Dr. Tri Kustono Adi, M.Sc., selaku dosen pembimbing agama yang senantiasa selalu memberikan arahan serta nasehat pada bagian integritasi sains dan Islam dalam penyelesaian laporan skripsi ini.
- Seluruh Dosen Jurusan Kimia Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang yang telah mengalirkan ilmu, pengalaman, dan wawasan sebagai pedoman bagi penulis.
- 7. Laboran Program Studi Kimia, mbak Is, mbak Susi, mbak Rika, mbak Mei, mas Abi, pak Royyan, dan pak Taufik yang telah membantu penulis selama proses penelitian.

Penulis menyadari bahwa dalam laporan skripsi ini masih banyak kekurangan, maka dari itu penulis sangat terbuka dengan saran dan kritik yang bersifat membangun demi kesempurnaan laporan skripsi ini. Semoga laporan skripsi ini dapat bermanfaat dan menambah khasanah ilmu pengetahuan.

Malang, 20 Desember 2023

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PERSETUJUAN.	iii
HALAMAN PENGESAHAN	v
HALAMAN PERNYATAAN	vii
HALAMAN PERSEMBAHAN	ix
MOTTO	xi
KATA PENGANTAR.	xiii
DAFTAR ISI.	xv
DAFTAR TABEL	xvii
DAFTAR GAMBAR	xix
DAFTAR LAMPIRAN.	xxi
	xxiii
ABSTRACT	XXV
ملخص البحث	XXVII
BAB 1 PENDAHULUAN	1
1.1 Latar Belakarig.	ا۱
1.2 Ruinusan Masalan	ວ ວ
1.0 Tujudii Felielilidii	ວ ຂ
1.4 Datasari Wasalah	
	4
ΒΔΒ ΙΙ ΤΙΝ.ΙΔΙΙΔΝ ΡΙΙΣΤΔΚΔ	5
2.1 Senvawa Kompleks Sebagai Drug Delivery System (DDS)	5
2.2 Sintesis Senvawa Kompleks dengan Logam Cerium (III)	6
2.3 Sintesis Senvawa Kompleks dengan Logam Cerium (III) dengan Ligan 1.3	3.5
Benzenetrikarboksilat.	
2.4 Sintesis Kompleks Ce(III)-BTC dengan Metode Sonokimia.	12
BAB III METODOLOGI PENELITIAN	17
3.1 Waktu dan Tempat Pelaksanaan.	17
3.2 Alat	17
3.3 Bahan	
3.4 Rancangan Penelitian	1/
3.5 Tanapan Penelitian	
3.6 Prosedur Kerja	18
3.0.1 Sintesis Kompleks Ce(III)-BTC vanasi waktu 15, 30, dan 45 menit	18 10
3.7 Karakterisasi uan Analisis Data Kompleks Ce(III)-DTC	10
5.7.1 Karakiensasi Sirukiur Malenar Kompleks Ce(iii)-DTC Menggunakan Y-Pay Diffraction (YPD)	10
2.7.2 Karaktoricasi Morfologi Kristol Kompleke Co(III) BTC Monggupakan	
5.7.2 Karakiensasi Monologi Kinsiai Kompleks Ce(m)-DTC Menggunakan Scanning Electronic Microscony-Energy Dispersive X-Pay	
(SEM_EDY)	10
BAB IV HASIL DAN PEMBAHASAN	21
4.1 Hasil Sintesis Sonokimia Kompleks Ce(III)-BTC	21
4.2 Karakterisasi Produk Hasil Sintesis.	22
4.2.1 Hasil Karakterisasi Kompleks Ce(III)-BTC Menggunakan XRD	22
4.2.2 Hasil karakterisasi Kompleks Ce(III)-BTC Menggunakan Scanning	
Electronic Microscopy-Energy Dispersive X-Ray (SEM-EDX)	26
4.3 Kajian Hasil Penelitian dalam Perspektif Islam	32

BAB V PENUTUP	
5.1 Kesimpulan	
5.2 Saran	
DAFTAR PUSTAKA	
LAMPIRAN.	

DAFTAR TABEL

Tabel 2.1	Sifat-sifat logam cerium (Ce).	7
Tabel 2.2	Data penelitian kompleks cerium (Ce)	8
Tabel 2.3	Kondisi dan hasil sintesis Ce(III)-BTC	12
Tabel 4.1	Massa produk hasil sintesis kompleks Ce(III)-BTC	22
Tabel 4.2	Hasil analisis menggunakan program rietica dengan metode Le Bail	25
Tabel 4.3	Ukuran partikel kompleks Ce(III)-BTC	30
Tabel 4.4	Presentase unsur-unsur senyawa kompleks Ce(III)-BTC hasil EDX	31

xviii

DAFTAR GAMBAR

Gambar 2.1	Struktur Kompleks MOF Ce-BTC	6
Gambar 2.2	Logam <i>Cerlum</i> (Ce)	/
Gambar 2.3	Siruktur 1,3,5-Benzenetrikarboksilat (H ₃ BTC)	9
Gambar 2.4	(a) Ligan bidentat. (b) Ligan unidentate. (c) Ligan iembatan	
	(a) Ligan bluentat, (b) Ligan univertiate, (c) Ligan jembatan (bridging ligand)	Q
Gambar 2.5	Struktur kompleks Ce-BTC	10
Gambar 2.6	Pola powder XRD dan hasil SEM dari kompleks Ce-BTC	10
Gambar 2.7	Pola powder XRD dan hasil SEM dari kompleks Ce-BTC	11
Gambar 2.8	Mekanisme Proses kavitasi	13
Gambar 2.9	Pola Powder-XRD dari kompleks Cu-BTC (a) Cu-BTC variasi waktu	-
	24 jam metode solvotermal, (b) Cu-BTC variasi waktu 30 menit	
	metode sonokimia (c) Cu-BTC variasi waktu 30 menit metode	
	sonokimia	13
Gambar 2.10	Morfologi hasil sintesis Cu-BTC dengan variasi waktu	
	(a) dan (b) Cu-BTC variasi waktu 24 jam metode solvotermal	
	(c) dan (d) Cu-BTC variasi waktu 30 menit	
.	(e) dan (f) Cu-BTC waktu 15 menit metode sonokimia	15
Gambar 4.1	Hasil sintesis kompleks Ce(III)-BTC variasi waktu sonikasi	~ (
0	(a) 15 menit, (b) 30 menit, dan (c) 45 menit	21
Gambar 4.2	Pola difraksi sinar-x nasil sintesis senyawa kompleks Ce(III)-BIC	
	dengan waktu sonikasi 15, 30, dan 45 menit dibandingkan dengan	22
Combor 43	Plot hasil refinament Co(III)-BTC hada kompleke waktu (a) 15 monit	23
Gambal 4.5	(b) 30 menit dan (c) 45 menit	24
Gambar 4 4	Mikrograf SEM variasi waktu sonikasi 15 menit dengan perbesaran	27
Cambal 1.1	(a) $500x$ (b) $1000x$ (c) $5000x$ (d) $10000x$ dan (e) $15000x$	26
Gambar 4 5	Mikrograf SEM variasi waktu sonikasi 30 menit dengan perbesaran	20
Gambal 4.5	(a) $500x$ (b) $1000x$ (c) $5000x$ (d) $10000x$ (ap (a) $15000x$	27
Gambar 16	(a) 500x, (b) 1000x, (c) 5000x, (d) 10.000x, dan (e) 15.000x	21
Gambal 4.0	(a) 500x $(b) 1000x$ $(c) 5000x$ $(d) 10000x$ $(aa (a) 15000x$	28
Combor 47	(a) 500X, (b) 1000X, (c) 5000X, (d) 10.000X, dall (e) 15.000X	20
Gambal 4.7	Lebar kompleks Ce(III)-BTC dengan perbesaran 500x variasi	
	waktu (a) 15 menit (b) 30 menit dan (c) 45 menit	30
Gambar 4 8	Grafik EDX kompleks Ce(III)-BTC variasi waktu (a) 15 menit	00
	(b) 30 menit, dan (c) 45 menit	32

DAFTAR LAMPIRAN

Lampiran 1	Diagram alir	
Lampiran 2	Perhitungan	
Lampiran 3	Hasil karakterisasi XRD	43
Lampiran 4	Data ukuran kristal kompleks Ce(III)-BTC	
Lampiran 5	Perhitungan derajat kristanilitas kompleks Ce(IIII)-BTC	
Lampiran 6	Hasil refinement dengan metode Le Bail	
Lampiran 7	Hasil stacking (menumpuk) kompleks standar Ce(III)-BTC	
	dengan hasil penelitian	53
Lampiran 8	Hasil karakterisasi SEM	
Lampiran 9	Hasil EDX kompleks Ce(III)-BTC	59
Lampiran 10	Analisa SEM menggunakan Software Image J	
Lampiran 11	Analisa distribusi ukuran partikel hasil SEM	
Lampiran 12	Perhitungan rendemen	
Lampiran 13	Perhitungan rasio mol berdasarkan hasil EDX	70
Lampiran 14	Jadwal pelaksanaan penelitian skripsi	72
Lampiran 15	Rencana Anggaran Penelitian Skripsi	73

xxii

ABSTRAK

Fatimatuzzahro, R. 2023. Sintesis dan Karakterisasi Senyawa Kompleks Cerium (III) dengan Ligan 1,3,5- Benzenatrikarboksilat (H₃BTC) Menggunakan Metode Sonokimia. Skripsi. Jurusan Kimia Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang. Dosen Pembimbing: Nur Aini, M.Si

Kata Kunci: Senyawa kompleks, Metal Oraganic Framework (MOF), Sonokimia

Senyawa kompleks merupakan senyawa yang tersusun dari suatu ion logam pusat dengan satu atau lebih ligan yang menyumbangkan pasangan elektron bebasnya kepada ion logam pusat. Senyawa kompleks yang membentuk rantai berulang dapat membentuk polimer yang disebut *Metal Organic Framework* (MOF). Material MOF dapat digunakan sebagai salah satu kadidat pengaplikasian sistem penghantar obat atau *Drug Delivery System* (DDS). Senyawa kompleks Ce (III)-BTC akan disintesis menggunakan metode sonokimia dengan variasi waktu 15 menit, 30 menit, dan 45 menit. Material hasil sintesis kemudian dikarakterisasi menggunakan instrumen *Powder X-Ray Diffraction* (P-XRD) untuk menentukan struktur fasa kristal dan *Scanning Electronic Microscopy-Energy Dispersive X-Ray* (SEM-EDX) untuk mendapatkan morfologi, distribusi ukuran partikel, dan komposisi unsur dalam produk. Data XRD dianalisis dengan ICSD (*Inorganic Crystal Structure Database*) untuk reaktan pada senyawa kompleks. Data SEM-EDX dianalisis menggunakan *Image J* untuk mendapatkan distribusi ukuran partikel berupa panjang dan lebar produk sintesis.

Produk hasil sintesis yang diperoleh pada penelitian ini berupa kompleks Ce(III)-BTC yang berwujud serbuk berwarna putih, dimana massa rata-rata produk cenderung semakin bertambah dengan bertambahnya variasi waktu sintesis. Karakterisasi XRD menunjukkan senyawa hasil sintesis memiliki karakter puncak-puncak yang berbeda dengan reaktan. Berdasarkan jurnal penelitian terdahulu didapatkan puncak khas Ce(III)-BTC pada 20 8,4°, 10,6°, 18,1°. Pada penelitian ini didapatkan puncak khas di daerah 10,9° dan 18,1° dengan variasi waktu 15 menit, puncak khas pada 8,4°, 10,8°, dan 18,1° dengan variasi waktu 30 menit, dan puncak khas pada 8,4°, 10,6°, 18,4° dengan variasi waktu 45 menit. Kompleks Ce(III)-BTC pada penelitian ini teridentifikasi memiliki struktur tetragonal dengan grup ruang P4₃. Hasil karakterisasi SEM menunjukkan morfologi permukaan dan ukuran dari kompleks Ce(III)-BTC adalah *microrod* dengan distribusi ukuran panjang dan lebar partikel variasi 15 menit adalah 10 μ m dan 1,2 μ m, untuk variasi 30 menit adalah 6,1 μ m dan 2,3 μ m, dan untuk variasi 45 menit adalah 5,9 μ m dan 2,4 μ m. Sedangkan distribusi ukuran diameter *octahedral* adalah 9,5 μ m, 8,1 μ m, dan 7,1 μ m. Hasil EDX menunjukkan komposisi unsur dalam kompleks Ce(III)-BTC berupa Ce, C, dan O.

xxiv

ABSTRACT

Fatimatuzzahro, R. 2023. Synthesis and Characterization of Complex Compounds Cerium (III) with 1,3,5-Benzenetricarboxylate (H₃BTC) Ligand Using Sonochemical Method. Bachelor Thesis. Department of Chemistry, Faculty of Science and Technology, UIN Maulana Malik Ibrahim Malang. Consultant Lecturer: Nur Aini, M.Si

Keywords: Complex Compound, Metal Organic Framework (MOF), Sonochemical

Complex compounds are compounds composed of a central metal ion with one or more ligands donating their lone pair of electrons to the central metal ion. Complex compounds that form repeating chains can form polymers called Metal Organic Framework (MOF). MOF material can be used as a candidate for the application of a drug delivery system or Drug Delivery System (DDS). The Ce (III)-BTC complex compound will be synthesized using the sonochemical method with time variations of 15 minutes, 30 minutes and 45 minutes. The synthesized material was then characterized using an Powder X-Ray Diffraction (XRD) instrument to determine the crystalline phase structure and Scanning Electronic Microscopy-Energy Dispersive X-Ray (SEM-EDX) to obtain morphology and particle size distribution. XRD data and SEM-EDX data were analyzed using previous research journals.

The synthetic product obtained in this research is a Ce(III)-BTC complex in the form of a white powder, where the average mass of the product tends to increase with increasing variations in synthesis time. XRD characterization shows that the synthesized compound has peaks that are different from the reactants. Based on previous research journals, typical Ce(III)-BTC peaks were found at 20 8.4°, 10.6°, 18.1°. In this research, typical peaks were found in the area of 10.9° and 18.1° with a time variation of 15 minutes, typical peaks at 8.4°, 10.8°, and 18.1° with a time variation of 30 minutes, and a typical peak at 8.4°, 10.6°, 18.4° with a time variation of 45 minutes. The Ce(III)-BTC complex in this study was identified as having a tetragonal structure with space group P4₃. SEM characterization results show that the surface morphology and size of the Ce(III)-BTC complex are microrods with the particle length and width distribution for the 15 minute variation being 10 μ m and 1.2 μ m, for the 30 minute variation being 6.1 μ m and 2.3 μ m, and for the 45 minute variation it is 5.9 μ m and 2.4 μ m. Meanwhile, the octahedral diameter size distribution is 9.5 μ m, 8.1 μ m, and 7.1 μ m. The EDX results show that the elemental composition in the Ce(III)-BTC complex is Ce, C, and O.

xxvi

ملخص البحث

فاطمة الزهرة، رحمة. 2023. تخليق وتوصيف المركبات المعقدة السيريوم (الثالث) مع 1،3،5- بنزينتريكاربوكسيلات (BTC3H) باستخدام طرق سونوكيميائية. بحث جامعي. قسم الكيمياء، كلية العلوم والتكنولوجيا، جامعة مولانا مالك إبراهيم الإسلامية الحكومية مالانج. المشرفة: نور عيني، الماجستير

الكلمات الرئيسية: المركبات المعقدة، إطار أوراجانيك المعدني (MOF)، سونوكيمياء

المركب المعقد مركب يتكون من أيون فلز مركزي مع واحد أو أكثر من الروابط التي تمنح زوج الإلكترونات الحر لأيون الفلز المركزي. يمكن أن تشكل المركبات المعقدة التي تشكل سلاسل متكررة بوليمر يسمى إطار أوراجانيك المعدني(MOF). يمكن استخدام مواد MOF كمرشح لتطبيق نظام توصيل الدواء أو نظام توصيل الدواء(DDS). سيتم تصنيع مركبC (الثالث) BTC-باستخدام طرق سونوكيميائية مع اختلافات زمنية تبلغ 15 دقيقة و 30 دقيقة و 45 دقيقة. ثم يتم تمييز المادة المركبة باستخدام أداة حيود مسحوق الأشعة السينية (P-XRD) لتحديد بنية الطور البلوري والمسح المجهري الإلكتروني للأشعة السينية المشتنة للطاقة (SEM-EDX) للحصول على التشكل وتوزيع حجم الجسيمات والتركيب الأولي في المنتج. تم تحليل بيانات XRD باستخدام الحصول على التشكل وتوزيع حجم الجسيمات والتركيب الأولي في المنتج. تم تحليل بيانات SEM-EDX باستخدام توزيع حجم الجسيمات في شكل طول وعرض منتجات التوليف.

المنتج المركب الذي تم الحصول عليه في هذه الدراسة هو في شكل مركبC (الثالث) BTC- في شكل مسحوق أبيض، حيث يميل متوسط كتلة المنتج إلى الزيادة مع زيادة الاختلافات في وقت التوليف. يوضح توصيف XRD أن المركبات المخلقة لها صفات ذروة مختلفة عن المتفاعلات. توجد القمم النموذجية في المناطق 10.9 درجة و 18.1 درجة مع اختلافات زمنية تبلغ 15 دقيقة ، والقمم النموذجية عند 8.4 درجة و 8.0 درجة و 18.1 درجة مع اختلافات زمنية تبلغ 15 دقيقة ، والقمم النموذجية عند 8.4 درجة مع اختلافات زمنية تبلغ 15 دقيقة ، والقمم النموذجية عند 8.4 درجة و 8.0 درجة و 18.1 درجة مع اختلافات زمنية تبلغ 10 درجة و 18.1 درجة مع اختلافات زمنية تبلغ 10. درجة و 18.1 درجة مع اختلافات زمنية تبلغ 10 درجة و 18.1 درجة مع اختلافات ونينية تبلغ 30 درجة و 18.1 درجة مع اختلافات زمنية تبلغ 30 درجة و 18.5 درجة مع اختلافات زمنية تبلغ 30 درجة و 18.5 درجة مع اختلافات زمنية تبلغ 30 درجة و 18.5 درجة مع اختلافات زمنية تبلغ 30 درجة و 18.5 درجة مع اختلافات زمنية تبلغ 30 درجة و 18.5 درجة مع اختلافات زمنية تبلغ 30 درجة و 18.5 درجة مع اختلافات زمنية تبلغ 30 درجة و 18.5 درجة مع اختلافات زمنية تبلغ 30 درجة و 18.5 درجة و 18.5 درجة مع اختلافات زمنية تبلغ 30 دقيقة . تم تحديد مجمع 20(الثالث) BTC- في هذه الدراسة على أنه ذو بنية رباعية الأضلاع مع مجموعة فضائية 43.5 منظهر نتائج 13.5 في معني بلغ 30 دقيقة هي 2.5 سي و 2.6 سي ويوزيع عرض يبلغ 15 دقيقة مي 12.5 سي و 2.6 سي ويوزيع عرض يبلغ 31 دقيقة هي 7.5 سي و 18.5 سي وللاختلافات لدة 30 دقيقة هي 6.5 سي و 1.5 سي و 1.5 سي و 1.5 سي و 2.5 سي و 1.5 س

xxviii

BAB I PENDAHULUAN

1.1 Latar Belakang

Allah SWT berfirman dalam Al-Qur'an surah Ali-Imran ayat 191:

الَّذِيْنَ يَذْكُرُوْنَ اللهَ قِيَامًا وَّقْعُوْدًا وَّعَلَى جُنُوْبِهِمْ وَيَتَفَكَّرُوْنَ فِيْ حَلْق السَّملوٰتِ وَالْأَرْضْ رَبَّنَا مَا حَلَقْتَ هٰذَا بَاطِلًا سُبْحْنَكَ

فَقِنَا عَذَابَ النَّارِ

Artinya: (yaitu) orang-orang yang mengingat Allah sambil berdiri, duduk, atau dalam keadaan berbaring, dan memikirkan tentang penciptaan langit dan bumi (seraya berkata), "Ya Tuhan kami, tidaklah Engkau menciptakan semua ini sia-sia. Maha Suci Engkau. Lindungilah kami dari azab neraka. (QS. Ali Imran: 191)

Ayat ini menjelaskan bahwa Allah SWT tidak akan menciptakan segala sesuatu dengan sia-sia, akan tetapi penuh dengan manfaat yang beragam. Hal ini menunjukkan jika Allah SWT menjelaskan pada hamba-Nya mengenai pemanfaatan ciptaan-Nya. Tafsir Al-Maraghi menyebutkan, seorang mukmin yang mau menggunakan akalnya, selalu menaruh pengharapannya hanya kepada Allah SWT melalui doa, pujian dan ibtihal. Mukmin akan tahu bagaimana berbicara dengan Tuhan saat telah mendapatkan hidayah terhadap sesuatu yang berhubungan dengan kebajikan dalam menghadapi ragam makhluk-Nya (Al-Maraghi, 1993). Perkembangan teknologi menuntut kita untuk mengembangkan inovasi dan memanfaatkan beragam kekayaan di bumi yang telah Allah ciptakan. Salah satunya adalah pemanfaatan logam tanah jarang yang dapat digunakan untuk berbagai hal dalam kehidupan sehari-hari, misalnya pada bidang industri, bidang teknologi, dan bidang kesehatan. Pada bidang kesehatan, logam tanah jarang seperti *cerium* yang berikatan dengan ligan membentuk senyawa kompleks dapat digunakan sebagai sistem penghantaran obat atau *Drug Delivery System* (DDS).

Senyawa kompleks menjadi hal yang menarik untuk diteliti karena memiliki aplikasi dalam berbagai bidang, seperti bidang kesehatan, bidang industri, dan bidang lingkungan. Senyawa kompleks terbentuk karena adanya ikatan antara atom pusat atau logam yang berperan sebagai akseptor pasangan elektron dengan ligan yang berperan sebagai donor pasangan elektron (Triyani, dkk, 2013). Ikatan yang terbentuk antara ligan dan atom pusat merupakan ikatan koordinasi (Sembiring, 2017). Senyawa kompleks dapat disintesis menjadi kompleks polimer. Kompleks polimer merupakan salah satu material berpori yang tersusun oleh ion logam sebagai pusat koordinasi dan senyawa organik sebagai ligan. Ion logam akan dihubungkan oleh ligan organik melalui gugus koordinasi seperti imidazol, amina, piridin, karboksilat, sulfat dan fosfat untuk membentuk kerangka (*framework*) (Czaja dkk., 2009). *Metal Organic Framework* (MOF) dapat dibentuk melalui ligan multidentat dan koordinasi ion logam yang dikenal sebagai ligan jembatan (*bridging ligand*). Ligan anion

yang memiliki atom nitrogen, oksigen, dan sulfur dapat digunakan sebagai ligan jembatan (*bridging ligand*) dalam pembentukan *Metal Organic Framework* (MOF) melalui ikatan koordinasi.

Kompleks polimer yang membentuk kerangka (*framework*) memiliki potensi yang baik sebagai sistem penghantaran obat atau *Drug Delivery System* (DDS) karena struktur teratur, luas permukaan besar, porositasnya tinggi dan mudah di modifikasi (Bureekaew, dkk., 2008). *Drug Delivery System* (DDS) merupakan senyawa atau sistem yang mampu memediasi pemberian zat terapeutik ke tubuh untuk meningkatkan efek terapeutik dan meminimalkan efek samping obat (Chrenduty, 2021). Beberapa penelitian sedang mengembangkan bahan yang dapat digunakan sebagai penghantar obat, seperti liposom, polimer misel, dendrimer (Winarti, 2013). Kompleks polimer dapat dipengaruhi oleh beberapa faktor antara lain logam, pelarut, jenis ligan, dan metode sintesisnya,.

Metode sintesis senyawa kompleks yang umum digunakan adalah metode hidrotermal/solvotermal, metode elektrokimia, metode mekanokimia, dan metode sonokimia (Horcajada, 2006). Lee, dkk (2022) telah melakukan sintesis kompleks Cu-BTC menggunakan metode solvotermal dengan suhu 75°C di dalam autoklaf selama 12 jam. Produk sintesis pada metode ini menghasilkan morfologi kristal berbentuk oktahedral dengan ukuran 0,5-5 µm. Menurut penelitian Peng (2019), pada sintesis kompleks Ce-BTC menggunakan metode solvotermal memiliki kekurangan yaitu membutuhkan waktu sintesis yang lama, yaitu pada suhu 130°C selama 24 jam dihasilkan morfologi kristal berbentuk

Berdasarkan kekurangan dari metode solvotermal, maka penelitian ini menggunakan metode sonokimia dalam proses sintesisnya. Metode sonokimia merupakan metode yang menggunakan gelombang ultrasonik dari 20 kHz hingga 2 MHz dalam mensintesis berbagai material anorganik. Kelebihan dari metode sonokimia yaitu meningkatkan kecepatan reaksi, lebih singkat, dan efisisen dalam penggunaan energi (Zou, 2014). Beberapa parameter yang sering digunakan dalam metode sonokimia meliputi variasi pelarut, sumber logam, suhu, dan waktu sintesis. Parameter yang digunakan pada sintesis kompleks dilakukan untuk mendapatkan sifat material yang optimum.

Menurut penelitian Luo, dkk (2018) waktu yang dibutuhkan pada proses sintesis Cu-BTC menggunakan metode sonokimia memerlukan waktu sintesis yang lebih singkat dibandingkan dengan metode solvotermal. Pada variasi waktu 15 menit menggunakan metode sonokimia dihasilkan morfologi kristal berbentuk polihedron kecil dan pada variasi waktu sintesis 30 menit dihasilkan morfologi oktahedral dengan ukuran 3-7 µm. Sedangkan pada variasi waktu 24 jam menggunakan metode solvotermal dihasilkan morfologi kristal berbentuk oktahedral dengan ukuran 10-20 µm. Pada penelitian lainnya, Israr, dkk (2015) telah berhasil mensintesis kompleks polimer Cu-BTC meggunakan metode sonokimia dengan variasi waktu 60 menit dihasilkan morfologi kristal berbentuk oktahedral dengan ukuran sebesar 3-10 µm. Berdasarkan data diatas dapat disimpulkan bahwa semakin lama waktu sintesis, maka ukuran kristal yang dihasilkan semakin besar.

Penelitian mengenai sintesis dengan menggunakan logam Ce (III) dan ligan 1,3,5benzenatrikarboksilat (H₃BTC) menggunakan metode sonokimia masih belum banyak dilakukan. Oleh karena itu, penelitian ini akan mensintesis logam Ce (III) dengan 1,3,5benzenatrikarboksilat (H₃BTC) dengan menggunakan metode sonokimia pada variasi waktu 15 menit, 30 menit dan 45 menit. Cerium (III) merupakan salah satu logam tanah jarang yang berada pada golongan lantanida. Logam ini memiliki bilangan oksidasi +3 dan dapat digunakan sebagai prekusor. Penelitian ini bertujuan untuk mengetahui struktur dan morfologi dari hasil senyawa kompleks yang terbentuk dari ion logam Ce (III) dengan ligan 1,3,5-benzenatikarboksilat (H3BTC) menggunakan metode sonokimia.

1.2 Rumusan Masalah

- Bagaimana Bagaimana hasil pembentukan struktur kompleks Ce (III) dengan ligan 1,3,5-benzenatikarboksilat (H3BTC) menggunakan metode sonokimia variasi waktu dengan karakterisasi P-XRD?
- Bagaimana hasil morfologi partikel kompleks Ce (III) dengan ligan 1,3,5benzenatrikarboksilat (H₃BTC) menggunakan metode sonokimia variasi waktu dengan karakterisasi SEM-EDX?

1.3 Tujuan Penelitian

- Mengatahui Mengetahui hasil pembentukan struktur kompleks Ce (III) dengan ligan 1,3,5- benzenatrikarboksilat (H₃BTC) menggunakan metode sonokimia variasi waktu dengan karakterisasi P-XRD.
- Mengetahui hasil morfologi partikel kompleks Ce (III) dengan ligan 1,3,5benzenatrikarboksilat (H₃BTC) menggunakan metode sonokimia variasi waktu dengan karakterisasi SEM-EDX.

1.4 Batasan Masalah

- 1. Bahan Sintesis senyawa kompleks Ce-BTC menggunakan metode sonokimia dengan variasi waktu 15 menit, 30 menit, dan 45 menit.
- 2. Karakterisasi struktur dan morfologi dari hasil sintesis senyawa kompleks menggunakan *Powder X-Ray Diffraction* (P-XRD) dan *Scanning Electron Microscopy-Energy Dispersive X-Ray* (SEM-EDX).

1.5 Manfaat Penelitian

Adapun manfaat dari penelitian ini diharapkan dapat memberikan pengetahuan dan pemahaman mengenai proses sintesis dan dan karakterisasi *cerium* (III) dengan ligan 1,3,5-benzenatrikarboksilat (H3BTC) menggunakan metode sonokimia. Diharapkan juga penelitian ini dapat memberikan informasi tambahan sebagai upaya mentadabburi ayat 191 pada Surah Al-Imran.

BAB II TINJAUAN PUSTAKA

2.1 Senyawa Komplekas sebagai Drug Delivery System (DDS)

Senyawa kompleks merupakan senyawa yang tersusun dari suatu ion logam pusat dengan satu atau lebih ligan yang menyumbangkan pasangan elektron bebasnya kepada ion logam pusat. Umumnya atom pusat pada senyawa kompleks merupakan ion-ion logam transisi karena ion logam ini memiliki orbital d atau f yang terisi sebagian atau belum terisi penuh dan terbentuk sebagai hasil gabungan antara ion atau atom logam pusat dengan molekul netral atau ion melalui ikatan kovalen koordinasi. Ion kompleks yang bermuatan negatif atau positif yang terdiri dari sebuah atom pusat dan jumlah ligan yang mengelilingi atom pusat. Faktor yang dapat mempengaruhi stabilitas ion kompleks adalah muatan dari ion logam, faktor distribusi muatan, faktor pembentukan khelat, jari-jari atom dan sifat basa (Sulistya Hermawati, 2016). Donasi pasangan elektron ligan ke dalam orbital kosong ion pusat menghasilkan ikatan kovalen koordinasi sehingga senyawa kompleks juga disebut senyawa koordinasi (Male et al., 2013). Senyawa kompleks sangat berhubungan dengan asam dan basa lewis, dimana basa lewis adalah senyawa yang bertindak sebagai penyumbang pasangan elektron sedangkan asam lewis adalah senyawa yang dapat bertindak sebagai penerima pasangan bebas (Latupeirissa & Latupeirissa, 2012). Reaksi asam-basa Lewis ditunjukkan pada Persamaan 2.1.

 $\begin{array}{cccc} A & + & :B & \rightarrow & A : B & (2.1) \\ Asam & basa & senyawa kovalen koordinasi \end{array}$

Kompleks polimer merupakan senyawa kompleks yang membentuk rantai berulang membentuk polimer yang terdiri dari ion logam dan ligan multidentat yang terikat melalui ikatan koordinasi (Noro, dkk., 2013). Kompleks polimer disusun dari ion logam dengan ligan jembatan untuk membentuk kelompok polimer secara berulang yang disebut dengan *Metal Organic Framework* (MOF) seperti yang ditunjukkan pada Gambar 2.1. Kompleks polimer memiliki sifat yang unik, seperti volume pori yang besar, luas permukaan yang besar, kristalinitas yang tinggi dan densitas yang relatif rendah (Nordin, dkk., 2014). Material berpori dengan luas permukaan yang besar dapat digunakan sebagai sistem pembawa atau penghantaran obat. Kompleks polimer memiliki luas permukaan yang lebih besar daripada zeolite sehingga lebih sesuai jika diaplikasikan sebagai sistem penghantaran obat (Sculley, dkk, 2011). Pada penelitian Volkringer, dkk (2008) diperoleh luas permukaan kompleks polimer MIL-68 sebesar 1117 m 2 /g, sedangkan pada penelitian Yanti, dkk (2016) diperoleh luas permukaan zeolit ZSM-5 sebesar 43,759 m 2 /g.

Gambar 2.1 Struktur kompleks MOF Ce-BTC (Almasi, dkk., 2014)

Sistem penghantaran obat atau *Drug Delivery System* (DDS) adalah istilah yang menggambarkan bagaimana suatu obat sampai ke tempat target (Doddy, 2014). Ilmu mengenai penghantaran obat yang efisien, seperti transportasi dalam sistem sirkulasi, pergerakan obat melalui sel dan jaringan, dan pengembangan beberapa jenis baru penghantaran obat telah banyak berkembang. Dalam sistem penghantaran obat di dalam tubuh, salah satu faktor penting adalah bentuk sediaan. Obat harus dilepaskan secara berkala atau perlahan-lahan dalam jumlah konstan tiap waktu pelepasan. Tujuannya adalah untuk menstabilkan dosis yang masuk dalam tubuh secara tepat sehingga obat bekerja maksimal, serta mengurangi frekuensi pengonsumsian obat (Perrie, dkk, 2012).

Contoh senyawa kompleks yang telah berhasil disintesis adalah MIL-100(Fe) yang dibuat dengan bahan dasar asam trimesat dan logam besi. MIL-100(Fe) mampu melepaskan obat dengan sistem pelepasan terkontrol dan memiliki luas permukaan yang besar. Sistem pelepasan obat terkontrol memungkinkan obat melepas isiannya pada kecepatan tertentu secara stabil. Fleksibilitas kompleks polimer yang dapat menyesuaikan ukuran pori dengan dimensi dari obat menyebabkan interaksi antara obat dengan material dapat bekerja secara maksimal (Angeine, 2020).

2.2 Sintesis Senyawa Kompleks dengan Logam Cerium (III)

Cerium merupakan salah satu unsur logam transisi golongan III B dalam deretan unsur lantanida. *Cerium* diambil dari nama asteroid Ceres dan ditemukan pada tahun 1803 oleh Martin Klaproth, Jacob Berzelius, dan Wilhelm Von Hisinger. Kelimpahan *cerium* di alam terdapat pada lapisan bumi dalam bentuk mineral seperti *monazite, banstnasite, cerite,* dan *allnite. Monazite dan banstnasite* merupakan sumber serium yang paling penting. *Cerium* digolongkan dalam unsur logam tanah jarang dan termasuk melimpah diantara logam tanah jarang lainnya. Logam tanah jarang merupakan salah satu dari mineral strategis dan termasuk *"critical mineral"* terdiri dari kumpulan dari unsur-unsur *lanthanum* (La), *neodymium* (Nd), *cerium* (Ce), *scandium* (Sc), *praseodymium* (Pr), *promethium* (Pm), *samarium* (Sm), *europium* (Eu), *thulium* (Tm), *gadolinium* (Gd), *dysprosium* (Dy), *holmium* (Ho), *erbium* (Er), *ytterbium* (Yb), *terbium* (Tb), *lutetium* (Lu) dan *yttrium* (Y) (Suhendar, 2019).

Gambar 2.2 Logam Cerium (Ce) Sumber gambar: Institute Rare Eart Elements.com

Gambar 2.2 menunjukkan bahwa logam *cerium* merupakan jenis logam lunak berwarna abu-abu. *Cerium* termasuk dalam logam yang menyerupai besi karena berkilau. Logam *cerium* memiliki bilangan oksidasi +3 dan +4 (Rena et al., 2018). *Cerium* (III) memiliki dua elektron yang tidak berpasangan sehingga dapat membentuk ikatan kovalen koordinasi yang stabil. *Cerium* (III) bersifat basa kuat, reduktor kuat, dan mudah teroksidasi dalam udara terbuka. Sifat-sifat logam *cerium* dapat ditunjukkan pada Tabel 2.1.

Sifat	Keterangan	
Nama	Cerium	
Lambang	Се	
Nomor atom	58	
Warna	Abu-abu berkilau	
Massa atom	140,12 g/mol	
Konfigurasi elektron	[Xe] $4f^1 5d^1 6s^2$	
Titik didih	3716 K	
Titik lebur	1068 K	
Jari-jari atom	181,8 pm	
Elektronegativitas	1,12	

 Tabel 2.1 Sifat-sifat logam cerium (Ce)

Asam basa Lewis diklasifikasikan menurut sifat keras dan lunaknya atom. Logam dan ligan dikelompokkan menurut sifat keras dan lunaknya berdasarkan pada polarisabilitas unsur yang disebut dengan teori *Hard and Soft Acid Base* (HSAB). Menurut aturan Pearson, asam lunak bereaksi lebih cepat dan membentuk ikatan yang lebih kuat dengan basa lunak, sedangkan asam keras bereaksi lebih cepat dan membentuk ikatan yang lebih kuat dengan basa lunak, sedangkan asam keras bereaksi lebih cepat dan membentuk ikatan yang lebih kuat dengan basa keras. Berdasarkan data lantanida (Ln³⁺), logam *cerium* (III) digolongkan sebagai asam keras, sedangkan asam trimesat digolongkan dalam basa keras karena termasuk salah satu jenis asam karboksilat. Pada kompleks berbasis *cerium* (III) yang diperlihatkan pada Tabel 2.2, logam *cerium* (III) bertindak sebagai asam lewis sedangkan atom O dan N pada ligan bertindak sebagai basa lewis karena mendonorkan pasangan elektron bebas ke logam *cerium* (III). Kompleks yang terbentuk dari logam *cerium* (III) dengan beberapa ligan memiliki bilangan koordinasi 6 dan 8.
Tabel 2.2 Data penelitian kompleks cerium (III)

atom O dan N Bilangan koordinasi : 8

2.3 Sintesis Senyawa Kompleks dengan Logam *Cerium* (III) dengan Ligan 1,3,5-Benzenatrikarboksilat (H₃BTC)

Suatu kompleks akan terbentuk ikatan antara kation atau logam dengan beberapa molekul netral atau ion yang disebut dengan ligan (Sulistya Hermawati,2016). Ligan merupakan basa Lewis yang dapat terkoordinasi pada ion logam membentuk senyawa kompleks. Berdasarkan banyaknya atom donor dimilikinya, ligan-ligan dapat dikelompokkan menjadi ligan monodentat, bidentat, tridentat, dan polidentat. Awalan mono, bi, tri, dan poli menyatakan banyaknya atom donor pada ligan. Ligan polidentat merupakan ligan yang memiliki lebih dari dua atom donor seperti ligan 1,3,5-benzenatrikarboksilat (H₃BTC).

Ligan 1,3,5-benzenatrikarboksilat (H₃BTC) atau asam trimesat (TMA) merupakan induk yang cukup baik pada penambatan kompleks karena asam karboksilat untuk membentuk ikatan hidrogen dengan yang lain dan juga grup lain seperti air. Jaringan yang terbentuk dari

asam trimesat disebut jaringan unary, sedangkan jaringan yang terbentuk dari asam trimesat dan molekul lain disebut jaringan binary (Watts, 1993). Asam trimesat memiliki tiga gugus trikarboksilat dengan struktur $C_9H_6O_6$ dan termasuk dalam golongan senyawa anionik yang dapat bergabung dengan senyawa kationik baik organik maupun anorganik. Asam trimesat dapat larut dalam eter, air, dan mudah larut dalam alkohol serta mudah menguap pada temperatur yang sangat tinggi tanpa melalui proses peleburan dan sublimasi (Herbstein, 2005). Struktur 1,3,5-benzenatrikarboksilat (H₃BTC) ditunjukkan pada Gambar 2.3.

Gambar 2.3 Struktur 1,3,5-benzenatrikarboksilat (H₃BTC) (Herbstein, 2005)

Berdasarkan Gambar 2.4, setiap satu ion BTC³⁻ memiliki atom oksigen yang dapat membentuk ikatan kovalen koordinasi dengan logam. Ligan BTC pada pola a bertindak sebagai ligan bidentat karena dapat mengkhelat dua ion logam. Pola b merupakan pola pengikatan ligan BTC yang bertindak sebagai ligan unidentat karena dapat mengkhelat satu ion logam. Ligan BTC pada pola C bertindak sebagai ligan jembatan (*bridging ligand*) antara dua ion logam (Israr et al., 2016).

Gambar 2.4 Pola pengikatan ligan 1,3,5-benzenatrikarboksilat dengan atom logam a) Ligan bidentat, b) Ligan unidentate, dan c) Ligan jembatan (*bridging ligand*) (Israr, dkk., 2016)

Pada Gambar 2.5 menunjukkan struktur kompleks dari logam Ce (III) dengan ligan 1,3,5-benzenetrikarboksilat. Kompleks Ce (III)-BTC memiliki bilangan koordinasi 8, dimana 1 atom Ce dapat mengikat 8 atom O. Atom O yang berikatan dengan Ce dapat diperoleh dari

ligan maupun air. Pada struktur tersebut terdiri dari satu ion Ce(III), ligan BTC³⁻, dan satu ion air yang terkoordinasi. Berdasarkan penenlitian (Almáši et al., 2015) atom oksigen dari ion BTC³⁻ berkoordinasi dengan enam ion Ce (III) membentuk kisi kristal primitif. Ce (III)-BTC mengkristal dalam bentuk tetragonal *non-centrocymmetric* dengan *space group P4*₃. Jarak ikatan Ce dan O memiliki panjang antara 2.384 dan 2.532Å.

Gambar 2.5 Struktur kompleks Ce-BTC (Almasi, et al., 2015)

Berdasarkan penelitian Peng (2014), Gambar 2.6 poin a menunjukkan puncak difraksi Ce-BTC yang diamati pada sudut 8.4°, 10.6°, dan 18.1° dengan kristalinitas yang baik. Poin b menunjukkan hasil karakterisasi Ce-BTC dengan *scanning electron microscope* (SEM) menghasilkan morfologi dan bentuk struktur dari kompleks Ce-BTC yang berbentuk jarum dengan ukuran 10-20 µm.

Gambar 2.6 a) Pola *Powder*-XRD dari kompleks Ce-BTC, b) Hasil SEM dari kompleks Ce-BTC (Peng, et al., 2019)

Pada penelitian Zhang, et al (2018), Gambar 2.7 poin a menunjukkan hasil karakterisasi *Powder*-XRD kompleks Ce (III)-BTC yang menghasilkan kristanilitas kristal yang baik. Logam Ce (III) yang disintesis dengan ligan H₃BTC menggunakan metode solvotermal pada suhu 130°C selama 24 jam menghasilkan puncak difraksi pada sudut 8,4°, 10,6°, dan 18,1°. Penelitian lainnya yang dilakukan oleh Chevinly, et al (2017) menunjukkan hasil karakterisasi SEM yang terapat pada Gambar 2.7 poin b. Logam Ce (III) disintesis dengan ligan H₃BTC menggunakan metode solvotermal pada suhu 100°C selama 17 jam menghasilkan morfologi kristal dengan ukuran 2-5 µm, berbentuk seperti jarum, dan memiliki diameter antara 40-300 nm. Kondisi sintesis Ce (III)-BTC ditunjukkan pada Tabel 2.3.

Gambar 2.7 a) Pola *Powder*-XRD Ce (III)-BTC (Zhang et al., 2018), b) Hasil SEM dari kompleks Ce (III)-BTC (Chevinly et al., 2017)

Kompleks	Metode
[Sumber Pustaka]	
Ce-BTC	Metode : solvotermal, rasio mol : 1:2
[Almasi, et al., 2015]	Suhu dan waktu: 100°C dan 60 jam
	Bahan : Ce(NO ₃) _{3.6} H ₂ O, 1,3,5-
	benzenatrikarboksilat (BTC)
	Pelarut : DMF
Ce-BTC	Metode : solvotermal, rasio mol : 3:5
[Peng, et al., 2019]	Suhu dan waktu :130°C dan 24 jam
	Bahan : Ce(NO ₃) _{3.6} H ₂ O, 1,3,5-
	benzenatrikarboksilat (BTC)
	Pelarut : DMF
Ce-BTC	Metode : solvotermal
[Chevinly, et al., 2017]	Suhu dan waktu: 100°C dan 17 jam
	Bahan : Ce(NO ₃) _{3.6} H ₂ O, 1,3,5-
	benzenatrikarboksilat (BTC)
	Pelarut : DMF dan air
Ce-BTC	Metode : solvotermal
(Laurikenas et al., 2018)	Suhu dan waktu: 65°C dan 24 jam
	Bahan : Ce(NO ₃) _{3.6} H ₂ O, 1,3,5-
	benzenatrikarboksilat (BTC)
	Pelarut : DMF dan air

Tabel 2.3 Kondisi dan hasil sintesis Ce (III)-BTC

2.4 Sintesis Kompleks Ce(III)-BTC dengan Metode Sonokimia

Metode sonokimia merupakan suatu metode sintesis material berstruktur nano melalui proses kavitasi gelombang ultrasonik dalam media cairan. Metode sonokima menggunakan gelombang suara sebagai sumber energi (Ningsih, 2016). Daerah yang digunakan untuk proses sonokimia adalah pada rentangan 20 kHz sampai 1 MHz. Gelombang ultrasonik merambat ke dalam suatu zat cair dapat menimbulkan efek kavitasi. Tekanan di sekitar permukaan luaran penggerak ultrasonik menurun sampai nilai yang cukup rendah di bawah tekanan uap jenuh zat cair yang menghasilkan gelembung-gelembung kecil (Pirngadi, 2017). Pemberian gelombang ultrasonik pada suatu larutan yang akan menyebabkan molekul-molekul dalam larutan berosilasi terhadap posisi rata-ratanya. Larutan mengalami regangan dan rapatan. Ketika energi gelombang ultrasonik yang diberikan cukup besar, maka regangan gelombang dapat memecah ikatan molekul antar larutan, dan gas-gas terlarut didalam larutan akan terperangkap akibat molekul larutan yang ikatannya terpecah ketika timbul rapatan kembali. Timbul gelembung-gelembung berisi gas yang terperangkap atau biasa disebut dengan efek kavitasi. Mekanisme dari proses kavitasi ditunjukkan pada Gambar 2.7.

Gambar 2.8 Mekanisme proses kavitasi (Vyas et al., 2019)

Prinsip dari metode sonokimia yaitu memanfaatkan gelombang ultrasonik dengan frekuensi sangat tinggi yang diiradiasikan ke dalam larutan. Ketika suatu larutan diiradiasi dengan gelombang ultrasonik, maka dalam larutan tersebut terjadi tumbukan antarpartikel penyusun larutan yang bertekanan tinggi dan menyebabkan pecahnya gelembung. Ketika antarpartikel bertumbukan, maka suhu dapat mencapai 5000 K, tekanan tinggi hingga 20 MPa, dan memiliki laju pendinginan yang sangat tinggi 10¹¹ K/s (Suslick, 1999).

Sonokimia dikembangkan menjadi sintesis kimia dan dapat diaplikasikan dalam bidang perindustrian obat-obatan dan pembersihan alat-alat medis (Rahma, 2010). Metode ini dapat diklasifikasikan sebagai sintesis ekologis atau ramah lingkungan karena menghasilkan produk samping yang minimal dengan kemurnian tinggi. Metode sonokimia digunakan sebagai alternatif penggetaran serta pelarutan suatu materi dengan prinsip pemecahan reaksi intermolekuler dan pemanasan secara konvensional dengan energi yang rendah dan hasil yang efisien (Fauzi, 2017). Menurut Suslick (1999), metode sonokimia memiliki beberapa kelebihan antara lain sebagai berikut:

- 1. Membutuhkan energi yang lebih kecil dengan temperature reaksi rendah
- 2. Waktu reaksi lebih cepat dan hasilnya lebih banyak
- 3. Memungkinkan adanya reaksi intermediet, untuk tahap reaksi berikutnya, misalnya tahap kalsinasi.

Gambar 2.9 Pola *Powder*-XRD dari kompleks Cu-BTC a) Cu-BTC variasi waktu 24 jam metode solvotermal, b) Cu-BTC variasi waktu 30 menit metode sonokimia, dan c) Cu-BTC variasi waktu 30 menit metode sonokimia (Luo et al., 2018)

Pada penelitian Luo, dkk (2018), sintesis dilakukan menggunakan dua metode yaitu metode sonokimia dengan variasi waktu 15 menit dan 30 menit serta metode solvotermal dengan variasi waktu 24 jam. Gambar 2.8 menunjukkan puncak difraksi Cu-BTC yang diamati pada sudut 6.7°, 9.5°, 11.6°, 13.4° dan 17.5°. Pola puncak difraksi yang terbentuk pada sintesis Cu-BTC sesuai dengan puncak difraksi dari struktur kristal oktahedral. Puncak difraksi yang dihasilkan Cu-BTC yaitu (200), (220), (222), (300), dan (333). Hasil rendemen yang dihasilkan pada waktu 15 menit, 30 menit, dan 24 jam secara berturut-turut yaitu 57.9, 77.6%, dan 53.6%. Berdasarkan data tersebut tersebut dapat disimpulkan bahwa pada variasi waktu 30 menit menggunakan metode sonokimia dihasilkan kristanilitas yang paling baik karena dengan gelombang ultrasonik didapatkan produk yang lebih banyak dengan waktu reaksi yang lebih singkat.

Pada penelitian lainnya, Israr, dkk (2016) mensintesis logam Cu (II) dengan ligan 1,3,5benzenatrikarboksilat (H₃BTC) menggunakan metode sonokimia dengan variasi pelarut pyridine, NH₄OH, NaOH, *N'N*-dimetil formamida (DMF), dan etanol. Hasil rendemen yang dihasilkan dari pelarut pyridine, NH₄OH, NaOH, *N'N*-dimetil formamida (DMF) yang ditambahkan etanol, dan *N'N*-dimetil formamida (DMF) secara berturut-turut yaitu 24%, 81%, 33%, 86% dan 73%. Berdasarkan data tersebut, dapat disimpulkan bahwa pelarut *N'N*dimetil formamida (DMF) yang ditambah dengan etanol menghasilkan kristanilitas yang baik dibandingkan dengan pelarut lainnya.

Penelitian dari Luo, dkk (2018) telah mensintesis logam Cu (II) dengan ligan 1,3,5benzenatrikarboksilat (H₃BTC) menggunakan metode sonokimia menghasilkan morfologi dan bentuk kristal yang berbeda-beda. Pada poin a dan b, Cu-BTC disintesis menggunakan metode solvotermal membentuk struktur oktahedral dengan ukuran diameter 10-20 μm. Sedangkan pada poin c dan d, Cu-BTC disintesis menggunakan metode sonokimia membentuk struktur oktahedral terpotong dengan ukuran diameter 3-7 μm. Poin e dan f keduanya membentuk struktur polihedron. Berdasarkan hasil ditunjukkan pada Gambar 2.9, morfologi Cu-BTC a,b dan Cu-BTC c,d,e,f yang disintesis dengan metode sintesis berbeda menunjukkan perbedaan yang signifikan pada morfologi dan ukuran partikel. Perubahan yang terjadi pada morfologi kristal yaitu bentuk oktahedron yang menjadi segi delapan terpotong. Selain itu, berkurangnya ukuran kristal disebabkan oleh adanya efek ultrasonik, reaksi yang cepat dan waktu pengadukan yang cepat, dapat menghindari pertumbuhan kristal yang berlebihan.

Gambar 2.10 Morfologi hasil sintesis Cu-BTC dengan variasi waktu a) dan b) Cu-BTC variasi waktu 24 jam metode solvotermal, c) dan d) Cu-BTC variasi waktu 30 menit, e) dan f) Cu-BTC waktu 15 menit metode sonokimia (Luo, et al., 2018)

BAB III METODOLOGI

3.1 Waktu dan Tempat Pelaksanaan

Penelitian ini dilaksanakn pada bulan Juni 2023 – Agustus 2023 di Laboratorium Kimia Anorganik, Program Studi Kimia, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Adapun karakterisasi XRD dilakukan di Greenlabs Bandung dan karakterisasi SEM-EDX dilakukan di Laboratorium SEM, Departemen Teknik Mesin, Institut Teknologi Sepuluh Nopember.

3.2 Alat

Alat - alat yang digunakan pada penelitian ini antara lain spatula, gelas arloji, pipet ukur, pipet tetes, beaker glass, erlenmeyer, corong gelas, neraca analitik, aluminum foil, spatula, seperangkat alat sonikator probe Q125, kertas saring, oven, *magnetic stirrer*, botol semprot, kertas saring *whatman* 42*Powder X-Ray Diffraction* (P-XRD) *Perqin-Elmer* 2400 II, dan *Scanning Electronic Microscopy- Energy Dispersive X-Ray* (SEM-EDX) *Hitachi Flexsem* 100.

3.3 Bahan

Bahan yang digunakan pada penelitian ini adalah 1,3,5-benzenatrikarboksilat (H₃BTC) Sigma Aldrich kode 100380670, akuades, *cerium* (III) *nitrat hexahydrat* (Ce(NO₃)_{3·6}H₂O), N'N-dimetil formamida (DMF) Merck 103053, dan etanol.

3.4 Rancangan Penelitian

Penelitian yang dilakukan adalah sintesis senyawa kompleks *cerium* (III) dan ligan 1,3,5-benzenatrikarboksilat (H₃BTC) menggunakan metode sonokimia dengan prekusor *cerium* (III) *nitrat hexahidrat* (CeH₁₂N₃O₁₅), N'N-dimetil formamida (DMF), akuades dan etanol sebagai pencuci dengan menggunakan variasi waktu sonikasi 15 menit, 30 menit, dan 45 menit. Produk sintesis kemudian dikarakterisasi menggunakan *Powder X-Ray Diffraction* (P-XRD) untuk mengetahui struktur fasa kristal kompleks Ce (III)-BTC dan *Scanning Electronic Microscopy-Energy Dispersive X-Ray* (SEM-EDX) untuk mengetahui morfologi ukuran dan bentuk partikel kompleks Ce (III)-BTC.

3.4 Tahapan Penelitian

Penelitian ini dilakukan dengan tahapan sebagai berikut:

 Sintesis senyawa kompleks *cerium* (III) dengan ligan 1,3,5-benzenatrikarboksilat (H₃BTC) menggunakan metode sonokimia dengan pelarut N'N-dimetil formamida (DMF) dan akuades menggunakan variasi waktu sonikasi 15 menit, 30 menit dan 45 menit.

- 2. Uji karakterisasi untuk mengetahui struktur fasa kristal kompleks Ce(III)-BTC menggunakan *Powder X-Ray Diffraction* (P-XRD).
- 3. Uji karakterisasi untuk mengetahui morfologi kristal kompleks Ce(III)-BTC menggunakan Scanning Electronic Microscopy-Energy Dispersive X-Ray (SEM-EDX).

3.6 Prosedur Kerja

3.6.1 Sintesis Kompleks Ce (III)-BTC variasi waktu 15 menit, 30 menit, dan 45 menit

Proses sintesis diawali dengan melarutkan *cerium* (III) *nitrat hexahidrat* (0,2171 g, 0,5 mmol) dan 1,3,5-benzenatrikarboksilat (H₃BTC) (0,2101 g, 1 mmol) dengan pelarut *N'N* dimetil formamida (DMF) 15 mL dan akuades 5 mL menggunakan beaker glass 100 mL. Campuran diaduk hingga tercampur dan ditutup aluminium foil. Selanjutnya, beaker glass dipasang pada generator ultrasonik dan dilakukan iradiasi ultrasonik dengan variasi waktu 15 menit, 30 menit, dan 45 menit. Kemudian endapan dan filtrat disaring lalu dipisahkan. Endapan dicuci dengan *N'N* dimetil formamida (DMF) dan etanol. Setelah itu, endapan di oven pada suhu 79°C selama 1 jam. Produk didinginkan pada suhu kamar selama 15 menit dan ditimbang produk hasil sintesis.

3.7 Karakterisasi dan Analisis Data Kompleks Ce (III)-BTC

3.7.1 Karakterisasi Struktur Material Kompleks Ce(III)-BTC Menggunakan *Powder X-Ray Diffraction* (P-XRD)

Powder X-Ray Diffraction (P-XRD) digunakan untuk mengidentifikasi fasa, struktur, derajat kristalisasi sampel dari kompleks hasil sintesis. Pengukuran dilakukan pada suhu ruang menggunakan *X-Ray Difraction* (XRD) dengan radiasi monokromator Cu Kα (λ = 1,5496 A^o), diukur pada rentang 2θ = 5-60° dengan langkah 2θ = 0,0092° dan 1 detik/langkah. Data yang diperoleh dari karakterisasi XRD berupa difraktogram yang akan dianalisis dan dibandingkan dengan data pola difraksi ICSD (*Inorganic Crystal Structure Database*) untuk reaktan pada senyawa kompleks dan kompleks Ce (III)-BTC pada penelitian terdahulu (Peng, et al., 2019 dan Zhang, dkk., 2018). Hasil tersebut akan menunjukkan kristalinitas dan kemurnian senyawa yang disintesis. Ukuran kristal dari sampel Ce-BTC akan dihitung dari difraktogram dengan menggunakan persamaan *Scherrer* yang ditunjukkan pada persamaan 3.2.

 $D = \frac{k\lambda}{B\cos\theta} \dots (3.2)$

Keterangan pada persamaan 3.1 yaitu *D* merupakan ukuran kristal, *k* adalah nilai konstanta bentuk partikel (0,9), λ adalah panjang gelombang radiasi sinar-x, *B* adalah lebar setengah puncak (FWHM, radian), dan θ adalah sudut *Bragg*.

3.7.2 Karakterisasi Morfologi Kristal Kompleks Ce(III)-BTC Menggunakan Scanning Electronic Microscopy-Energy Dispersive X-Ray (SEM-EDX)

Karakterisasi menggunakan *Scanning Electronic Microscopy-Energy Dispersive X-Ray* (SEM-EDX) bertujuan untuk mengetahui morfologi kristal senyawa, ukuran partikel, dan komposisi unsur. Sebelum dilakukan karakterisasi SEM yang pertama dilakukan adalah mengambil salah satu bagian dari patahan sampel, lalu diletakkan pada plat SEM. Selanjutnya sampel tersebut di *coating* selama sepuluh menit menggunakan mesin *coating*. Setalah selesai proses *coating* sampel tersebut dimasukkan ke dalam mesin SEM untuk dikarakterisasi. Dilakukan pengujian dengan perbesaran 500x, 1000x, 5000x, 1000x, dan 15000x. Kemudian hasil karakterisasi dianalisis berdasarkan morfologi, komposisi, dan distribusi ukuran partikel kompleks Ce (III)-BTC menggunakan SEM-EDX. Analisis lebih lanjut dilakukan dengan software *image-J* untuk mendapatkan distribusi ukuran partikel Ce(III)-BTC dan EDX berupa persentase komposisi unsur dari Ce(III)-BTC. Hasil tersebut dibandingkan dengan penelitian terdahulu (Chevinly, et al., 2016 dan Peng, et al.,2019)

BAB IV

HASIL DAN PEMBAHASAN

4.1 Hasil Sintesis Sonokimia Kompleks Cerium (III)-BTC

Pada penelitian ini, sintesis senyawa kompleks Ce(III)-BTC dilakukan dengan mereaksikan logam *cerium (III) nitrat hexahidrat* dan ligan 1,3,5-benzenetrikarboksilat (H₃BTC) dalam pelarut N'N dimetilformamida (DMF) dan akuades. Sintesis dilakukan menggunakan metode sonokimia dengan variasi waktu 15 menit, 30 menit, dan 45 menit. Proses sintesis sonokimia kompleks Ce(III)-BTC menggunakan variasi waktu sonikasi dengan pelarut N'N dimetilformamida (DMF) dan akuades mampu melarutkan secara sempurna logam Ce(NO₃)_{3'6}H₂O dan ligan H₃BTC. Setelah proses sonikasi, dihasilkan produk berupa endapan yang kemudian dilakukan proses filtrasi dan pencucian menggunakan etanol dan DMF. Proses pengeringan produk dilakukan dengan cara dioven menggunakan suhu 79°C selama 1 jam. Hasil sintesis yang dilakukan menghasilkan produk seperti pada Gambar 4.1.

Gambar 4.1 Hasil sintesis kompleks Ce(III)-BTC variasi waktu sonikasi (a) 15 menit, (b) 30 menit, dan (c) 45 menit

Berdasarkan Tabel 4.1, adanya variasi waktu sonikasi yang digunakan menghasilkan produk sintesis dengan bentuk dan warna yang sama yaitu berwujud serbuk berwarna putih. Pada tabel tersebut juga menunjukkan massa dari setiap variasi memiliki rata-rata yang berbeda dan cenderung bertambah seiring bertambahnya waktu sonikasi. Peningkatan waktu sonikasi tersebut berefek pada peningkatan pembentukan gelembung yang menyebabkan kavitasi akustik, sehingga dapat menghasilkan produk yang lebih banyak. Hasil sintesis yang dilakukan dari masing-masing variasi dilakukan sebanyak 10 kali sintesis dengan mendapatkan hasil massa rata-rata produk sebanyak 0,05 gram pada variasi waktu 15 menit, 0,082 gram pada variasi waktu 30 menit, dan 0,122 gram variasi waktu 45 menit. Berdasarkan massa produk sintesis tersebut, dapat disimpulkan bahwa semakin lama waktu sonikasi maka produk sintesis yang dihasilkan akan semakin banyak.

Sampel	Massa	Massa	Wujud Produk	Massa	Rendemen
	Ce(NO ₃) ₃ .0H ₂ O			Produk	
Waktu 15(1)				0,04 g	9,36%
Waktu 15(2)				0,04 g	9,36%
Waktu 15(3)	0,2171 g	0,2101 g	Serbuk berwarna putih	0,05 g	11,70%
Waktu 15(4)				0,06 g	14,04%
Waktu 15(5)				0,06 g	14,04%
			rata-rata massa produk	0,05 g	11,70%
Waktu 30(1)				0,07 g	16,38%
Waktu 30(2)				0,08 g	18,72%
Waktu 30(3)	0,2171 g	0,2101 g	Serbuk berwarna putih	0,08 g	18,72%
Waktu 30(4)	-	_		0,08 g	18,72%
Waktu 30(5)				0,10 g	23,41%
			rata-rata massa produk	0,082 g	19,19%
Waktu 45(1)				0,09 g	21,06%
Waktu 45(2)				0,10 g	23,40%
Waktu 45(3)	0,2171 g	0,2101 g	Serbuk berwarna putih	0,11 g	25,74%
Waktu 45(4)	-	-	-	0,12 g	28,09%
Waktu 45 5)				0,19 g	44,47%
£			rata-rata massa produk	0,122 g	28,55%

Tabel 4.1 Massa produk hasil sintesis kompleks Ce(III)-BTC

4.2 Karakterisasi Produk Hasil Sintesis

Padatan hasil sintesis akan dikarakterisasi secara *X-Ray Difraction Powder* (P-XRD) dan *Scanning Electron Microscope -Energy Dispersive X-Ray* (SEM-EDX).

4.2.1 Hasil karakterisasi Kompleks Ce(III)-BTC Menggunakan XRD

Karakterisasi dengan *Powder X-Ray Diffraction* (P-XRD) digunakan untuk mengidentifikasi struktur, ukuran kristal, dan derajat kristalisasi sampel dari kompleks hasil sintesis. Pola difraksi sinar-x senyawa hasil sintesis ditunjukkan pada Gambar 4.2 dan dibandingkan dengan pola difraksi dari *Cerium Nitrate Hydrate* (ICDD 00-031-0335) dan 1,3,5-Benzenetrikarboksilat (ICDD 00-045-1880).

Gambar 4.2 menunjukkan pola difraksi sinar-X yang berbeda antara produk hasil sintesis semua variasi dengan standar *cerium nitrate hydrate* dan standar H₃BTC. Hal ini menandakan telah terbentuknya senyawa baru pada produk sintesis. Hasil sintesis pada waktu 15 menit menghasilkan pola difraksi yang berbeda dengan produk sintesis variasi 30 dan 45 menit. Menurut Luo (2018), hal tersebut dikarenakan pada variasi waktu 15 menit, kavitasi akustik atau pemecahan gelembung terjadi belum secara optimal sehingga menyebabkan perubahan pada pola difraksi. Pola difraksi pada variasi 30 dan 45 menit memiliki kemiripan dengan hasil penelitian dari Peng, et al (2019) yang ditunjukkan pada Lampiran 7.1. Pada penelitian tersebut didapatkan puncak khas pada sudut 8.4°, 10.6°, dan 18.1° yang ditunjukkan pada Gambar 2.6. Dibandingkan dengan pola difraksi sinar-X pada penelitian ini didapatkan puncak khas di daerah 10,9° dan 18,1° dengan variasi waktu 15 menit, puncak khas pada 8,4°, 10,8°, dan 18,1° dengan variasi waktu 30 menit, dan puncak khas pada 8,4°, 10,6°, 18,4° dengan variasi waktu 45 menit. Masing-masing difraksi berada

pada bidang hkl (011), (001), dan (120) untuk 8.4°, 10.6°, dan 18.1°. Hasil *stacking* dari hasil sintesis Ce(III)-BTC variasi waktu 15, 30, dan 45 menit dengan hasil difraktogram Ce(III)-BTC dari jurnal penelitian Peng, et al (2019) dan Almasi, et al (2015) ditunjukkan pada Lampiran 7.2 dan 7.3.

Gambar 4.2 Pola difraksi sinar-x hasil sintesis senyawa kompleks Ce(III)-BTC dengan waktu sonikasi 15, 30, dan 45 menit dibandingkan dengan standar reaktan

Perbedaan posisi puncak setiap variasi waktu sonikasi menunjukkan adanya perubahan dalam derajat kristanilitas dan struktur kristal senyawa yang terbentuk. Derajat kristanilitas produk sintesis variasi 15, 30, dan 45 menit secara berturut-turut yaitu 94,48%, 93,82%, dan 98,54%. Berdasarkan persamaan *Debye-Scherrer* didapatkan ukuran kristal sebesar 63,48 nm pada waktu 15 menit, 65,39 nm pada waktu 30 menit, dan 61,34 nm pada waktu 45 menit. Ukuran kristal kompleks Ce(III)-BTC meningkat pada waktu 45 menit, kemudian terjadi penurunan pada waktu 30 menit. Hasil perhitungan derajat kristanilitas dan ukuran kristal dapat dilihat pada Lampiran 4 dan 5.

Untuk memperoleh data kristalografi, data XRD kemudian dianalisis menggunakan program *Rietica* dengan metode *Le Bail*. Proses analisa dilakukan dengan mencocokan pola difraksi mengggunakan standar kompleks Ce(III)-BTC dari penelitian Almasi, et al., (2015) karena pola XRD diatas dibandingkan dengan penelitian Peng, et al (2019) dan Almasi, et al., (2015), namun pada penelitian peng, et al., (2019) tidak dicantumkan data kristalografi.

Pada Almasi, et al., (2015) memiliki sistem kristal P4₃, Parameter kisi kristal a = 10,4629 Å, c = 12,1475 Å, α = β = γ =90°, Z = 4. Hasil plot refinement ditunjukkan pada Gambar 4.3.

Gambar 4.3 Plot hasil *refinement* Ce(III)-BTC pada (a) kompleks waktu 15 menit, (b) kompleks waktu 30 menit, (c) kompleks waktu 45 menit

Gambar 4.3 menunjukkan bahwa pada hasil *refinement* tersebut terdapat garis merah, hitam, biru, dan hijau. Garis merah merupakan puncak hasil dari perhitungan *rietica,* sedangkan garis hitam merupakan koordinat yang dapat membentuk puncak dalam difraktogram. Garis merah dan hitam saling tumpeng tindih yang menunjukkan kesesuaian difraktogram hasil karakterisasi dengan perhitungan perangkat lunak. Kesesuaian yang dibentuk oleh garis merah dan hitam akan menghasilkan garis hijau. Garis hijau yang tidak teratur menandakan bahwa disekitar 20 terdapat kesesuaian yang rendah antara perhitungan perangkat lunak dengan hasil karakterisasi, dan garis biru menunjukkan adanya puncak yang seharusnya ada disekitar 20 8.4°, 10.6°, dan 18.1° (Ladd dan Palmer, 2003).

Tabel 4.2 Hasil analisis menggunakan program rietica dengan metode <i>Le Bail</i>								
Parameter	Standar Waktu		Waktu	Waktu				
	kompleks	15 menit	30 menit	45 menit				
	Ce₁C ₉ H₅O ₇							
	(Almasi, et al.,							
	2015)							
Sistem Kristal	P43	P43	P43	P43				
Kisi Kristal	Tetragonal	Tetragonal	Tetragonal	Tetragonal				
Satuan Azimetrik	4	4	4	4				
(Z)								
a (Å)	10.4629	10.5942	10.4067	10.7525				
c (Å)	14.1275	13.9378	14.5081	14.3014				
Volume sel (Å) ³	1546.57	1653.46	1571.25	1564.33				
Rp (%)	-	26.39	20.84	24.18				
Rwp (%)	-	49.77	25.83	22.04				
GOF	1.030	23.39	18.88	21.18				

Parameter sel satuan yang dihasilkan dari proses refinement dirangkum pada Tabel 4.2. Kecocokan sampel dilihat dari nilai residu profil (Rp) dan nilai residu profil tertimbang (Rwp), dimana nilai Rp dan Rwp yang dapat diterima untuk proses refinement secara berturut-turut yaitu <15% dan <20% (Andrieux, et al., 2018). Nilai Rp dan Rwp yang dihasilkan pada waktu 15, 30, dan 45 menit secara berturut-turut vaitu 26,39% dan 49,77%. 20,84% dan 25.83%, 24,18% dan 22,04%. Menurut Raharjo (2011), jika nilai Rp dan Rwp yang dihasilkan semakin rendah atau mendekati nol menunjukkan difraktogram sampel memiliki kecocokan cukup tinggi dengan standar. Berdasarakan hasil analisa, kompleks Ce(III)-BTC memiliki struktur kristal berupa tetragonal dengan kisi kristal P4₃, namun data ini belum sesuai dengan data kompleks standar dari Almasi, dkk (2015) dikarenakan nilai Rp Rwp.yang terlalu tinggi. Nilai Rp dan Rwp yang tinggi disebabkan oleh pola difraksi yang diukur memiliki kecocokan yang rendah dengan pola difraksi dari standar yang digunakan. Ketidakcocokan pola difraksi pada penelitian ini dengan almasi, et al., (2015) terletak pada puncak khas 8.4°, 10.6°, dan 18,1°. Pada waktu 15 menit hanya terdapat kecocokan pada puncak 18,1°, sedangkan pada waktu 30 dan 45 menit terdapat kecocokan secara berturutturut pada puncak 8.4°, 18,1° dan 10.6°, 18,1°. Berdasarkan hasil kecocokan puncak khas

tersebut waktu 30 menit memiliki puncak intesitas yang mendekati puncak intensitas standar Almasi, et al (2015) sehingga nilai Rp dan Rwp yang dihasilkan lebih rendah dibandingkan waktu 15 dan 45 menit.

4.2.2 Hasil karakterisasi Kompleks Ce(III)-BTC Menggunakan SEM-EDX

Karakterisasi SEM *(Scanning Electron Microscopy)* digunakan untuk mengetahui morfologi partikel dan ukuran partikel dari produk hasil sintesis dengan adanya variasi waktu sonikasi. Pengujian SEM ini dilakukan pada kompleks Ce(III)-BTC dengan waktu 15, 30, dan 45 menit menggunakan perbesaran 500x; 1.000x; 5.000x; 10.000x; dan 15.000x. Semakin besar perbesaran yang digunakan maka luas permukaan yang dipindai akan semakin kecil.

Gambar 4.4 Mikrograf SEM variasi waktu sonikasi 15 menit dengan perbesaran (a) 500x, (b) 1000x, (c) 5000x, (d) 10.000x, dan (e) 15.000x

Gambar 4.5 Mikrograf SEM variasi waktu sonikasi 30 menit dengan perbesaran (a) 500x, (b) 1000x, (c) 5000x, (d) 10.000x, dan (e) 15.000x

Gambar 4.6 Mikrograf SEM variasi waktu sonikasi 45 menit dengan perbesaran (a) 500x, (b) 1000x, (c) 5000x, (d) 10.000x, dan (e) 15.000x

Morfologi permukaan kompleks Ce(III)-BTC ditunjukkan pada Gambar 4.3, 4.4, dan 4.5. Pada gambar mikrograf SEM tersebut terlihat kompleks Ce(III)-BTC memiliki morfologi permukaan berbentuk *microrod* dimulai dari perbesaran 500x dan lebih jelas lagi pada perbesaran 15.000x. Hal ini sesuai dengan penelitian (Zhu et al., 2020) yang mensintesis kompleks Ce(III)-BTC menghasilkan morfologi *microrod*. Tetapi pada penelitian ini selain betuk *microrod*, terdapat beberapa bentuk partikel polihedral yang ditunjukkan pada Gambar 4.4 b,c dan 4.5 c. Hal tersebut dikarenakan pada saat proses pengulangan sintesis sebanyak 10 kali terdapat kemungkinan adanya perbedaan bentuk partikel dikarenakan waktu pendiaman sampel yang berbeda-beda setelah prooses sonikasi, sehingga saat

pencampuran produk dalam *mortar agate* menghasilkan morfologi yang berbeda. Morfologi polihedral yang terlihat merupakan fasa kedua yang terbentuk dari produk dikarenakan reaktan *cerium nitrate hexahydrate* memiliki morfologi bola (*sphere-like shaped*) (Phoka, et al., 2012), sedangkan ligan H₃BTC yang berikatan dengan logam memiliki beberapa bentuk seperti *rods* untuk senyawa kompleks Ce-BTC pelarut DMF (Zhu, et al., 2020), *needle shape* untuk senyawa kompleks Ce-BTC pelarut DMF (Peng, et al., 2019), *octahedral* untuk senyawa kompleks Cu-BTC (Luo, et al., 2018), dan *rectangular-plate* untuk senyawa kompleks La-BTC (Laurikenas, et al., 2018).

Pengamatan pada data SEM perbesaran 500x variasi 15 menit memiliki jumlah partikel polihedral paling banyak. Hal ini berkaitan dengan adanya perbedaan beberapa puncak data XRD. Dibandingkan dengan puncak hasil XRD variasi 30 dan 45 menit yang ditunjukkan pada Gambar 4.2, puncak XRD pada 15 menit memiliki perbedaan pada 20 8,4° dan 17,1°. Hasil *refienement* pada Tabel 4.2 menunjukkan nilai Rp atau ketidaksesuaian paling tinggi pada waktu 15 menit. Berdasarkan data SEM tersebut, variasi 15 menit terdapat 2 fasa produk, sehingga memberikan katidaksesuaian yang tinggi pada hasil *refienement*.

Morfologi permukaan dari kompleks Ce(III)-BTC tidak membentuk bulatan sehingga berdasarkan Phoka, et al., 2012, morfologi polihedral tidak berasal dari reaktan *cerium nitrate hexahydrate*. Pada penelitian Peng, et al (2019), hasil morfologi kompleks Ce(III)-BTC menggunakan metode solvotermal memiliki bentuk partikel jarum *(needles shape)*. Adanya perbedaan hasil morfologi partikel dari penelitian ini dengan penelitian terdahulu dikarenakan metode sintesis dan pelarut yang digunakan berbeda. Pada penelitian ini menggunakan metode sonokimia variasi waktu sonikasi dengan pelarut DMF dan air sedangkan penelitian Peng, et al (2019) menggunakan metode solvotermal variasi suhu sintesis dengan pelarut DMF saja.

Pengamatan morfologi menggunakan SEM pada variasi waktu 15 menit terlihat memiliki ukuran kristal yang lebih panjang dibandingkan dengan variasi 30 dan 45 menit. Pada waktu 45 menit partikel terlihat lebih pendek, hal tersebut dikarenakan gelombang suara tinggi yang menciptakan tekanan gelombang dan ketidakstabilan akustik. Tekanan dan ketidakstabilan akustik ini menciptakan kekuatan yang dapat merubah partikel atau struktur molekul dalam larutan. Semakin lama waktu sonikasi, semakin lama partikel dalam cairan tersebut terpapar pada tekanan dan ketidakstabilan akustik ini, sehingga partikel terus-menerus dipotong menjadi bentuk yang lebih kecil (Delmifiana dan Astuti, 2013). Pada waktu 15 menit juga terlihat memiliki lebih banyak morfologi berbentuk *octahedral,* dikarenakan variasi 15 menit lebih banyak melakukan pengulangan sintesis dibandingkan variasi 30 dan 45 menit, sehingga menyebabkan adanya perbedaan kondisi dan fasa saat pencampuran produk.

Tabel 4.3 Ukuran partikel kompleks Ce(III)-BTC

Variasi	Panjang	R-Square	Lebar	R-Square	Lebar	R-
waktu	microrods	(COD)	microrods	(COD)	octahedral	Square
	(µm)		(µm)		(µm)	(COD)
15 menit	10	0,99086	1,2	0,98606	9,5	0,99569
30 menit	6,1	0,9729	2,3	0,96228	8,1	0,97297
45 menit	5,9	0,95839	2,4	0,999968	7,1	0,94207

Gambar 4.7 Mikrograf SEM dengan average area distribusi partikel ukuran lebar kompleks Ce(III)-BTC dengan perbesaran 500x, (a) Ce-BTC 15 menit, (b) CE-BTC 30 menit, (c) Ce-BTC 45 menit

Gambar 4.7 menunjukkan output data yang telah diolah menggunakan software ImageJ, yang bertujuan untuk mendapatkan distribusi partikel ukuran lebar dan panjang dari kompleks masing-masing variasi waktu. Pengolahan data pada ImageJ menggunakan perbesaran 500x untuk setiap variasi waktu sonikasi. Ukuran lebar dan panjang partikel yang diperoleh untuk kompleks Ce(III)-BTC variasi 15, 30, dan 45 menit ditunjukkan pada Tabel 4.4. Nilai *R-square* (COD) yang dihasilkan harus mendekati satu, semakin mendekati satu maka menunjukkan bahwa proses pemindaian partikel untuk menghitung ukuran partikel adalah lebih akurat. Berdasarkan analisis data SEM, dapat disimpulkan bahwa sampel

produk yang dianalisis memenuhi syarat sebagai kandidat *drug delivery system*. Hal ini ditunjukkan pada penelitian (Mahato, 2017) yang menyatakan bahwa mikropartikel dengan ukuran 1-100 µm dapat diaplikasikan pada *drug delivery system*. Kompleks Ce(III)-BTC dengan ukuran mikropartikel memiliki kelebihan yaitu kompleks dalam bentuk *drug delivery system* memiliki waktu tinggal yang lama didalam tubuh, tetapi kompleks yang masuk kedalam tubuh tidak dapat menembus jauh kedalam jaringan tubuh.

Senyawa Kompleks Ce(III)-BTC Variasi Waktu	Kadar Ce (% atomic)	Kadar C (% atomic)	Kadar O (% atomic)	Rasio mol (Ce:C:O)
15 menit	7,03	35,33	57,64	1:5:8
30 menit	10,55	32,72	56,73	1:3:5
45 menit	8,24	38,96	52,80	1:4:6

Tabel 4.4 Presentase unsur-unsur senyawa kompleks Ce(III)-BTC hasil EDX

Karakterisasi EDX digunakan untuk mengetahui kadar unsur dalam material hasil sintesis. Secara umum kompleks Ce(III)-BTC tersusun atas atom C, O, Ce, dan H yang ditunjukkan pada Gambar 4.8. Presentase unsur masing-masing unsur hasil sintesis ditunjukkan pada Tabel 4.4. Semua unsur tersebut merupakan kandungan dari *Cerium Nitrate Hexahydrate* dan 1,3,5-Benzenetrikarboksilat. Kandungan unsur Ce pada semua sampel yaitu sebesar 7,03%, 10,55%, dan 8,24%. Selain unsur Ce terdapat unsur C dan O, dimana karbon memiliki kadar 35,33%, 32,72%, dan 38,96%. Sedangkan oksigen dengan kadar 57,64%, 56,73%, dan 52,80%. Berdasarkan data tersebut diperoleh perbandingan rasio mol untuk Ce:C:O ditunjukkan pada Tabel 4.4 dengan perhitungan pada Lampiran 13.

Berdasarkan hasil XRD yang di *refinement* menggunakan data dari penelitian Almasi, et al (2015) didapatkan tingkat ketidaksesuaian atau nilai %Rp dan %Rwp sebesar 26,39% dan 49,77% pada 15 menit, 20,84% dan 25,83% pada 30 menit, serta 24,18% dan 22,04% pada 45 menit. Pada rumus molekul Ce₁C₉H₅O₇ dari data Almasi, et al (2015) diperoleh perbandingan rasio mol Ce:C:H:O adalah 1:9:5:7. Apabila dibandingkan dengan data Almasi, et al (2015) terdapat beberapa perbedaan pada penelitian ini. Perbedaan tersebut diduga disebabkan oleh tiga hal. Pertama, disebabkan oleh ketidaksesuaian hasil antara data penelitian ini dengan data penelitian Almasi, et al (2015). Hal tersebut ditunjukkan dengan hasil %Rp dan %Rwp lebih dari 15%, sehingga dimungkinkan terdapat perbedaan dari struktur senyawa pada penelitian ini dengan penelitian Almasi, et al (2015). Kedua, disebabkan oleh karakterisasi EDX yang memiliki keterbatasan dalam menganalisis permukaan yang tidak menyeluruh, sehingga rasio yang didapatkan pada saat pengukuran hanya pada satu posisi saja. Ketiga, disebabkan oleh terbentuknya dua fasa pada penelitian ini yang ditunjukkan pada data SEM, sehingga dimungkinkan adanya perbedaan hasil rasio atau senyawa pada penelitian ini dengan penelitian Almasi, et al (2015).

Gambar 4.8 Grafik EDS Kompleks Ce(III)-BTC Variasi Waktu a)15 menit, (b) 30 menit, dan (c) 45 menit

4.3 Kajian Hasil Penelitian dalam Prespektif Islam

Pada penelitian ini telah dilakukan sintesis antara logam *cerium nitrat hexahydrate* dengan ligan H₃BTC menggunakan metode sonokimia dengan variasi waktu sonikasi 15, 30, dan 45 menit. Produk sintesis yang dihasilkan berupa kompleks Ce(III)-BTC yang memiliki ukuran distribusi partikel pada lebar dan panjang untuk kompleks Ce(III)-BTC variasi 15 menit adalah 1,5 µm dan 8,3 µm, untuk variasi 30 menit adalah 2,6 µm dan 6,8 µm, dan untuk variasi 45 menit adalah 2,7 µm dan 6,1 µm. Berdasarkan hasil tersebut, kompleks Ce(III)-BTC dapat diaplikasikan pada *drug delivery system* atau sistem penghantaran obat. Hasil tersebut juga menunjukkan bahwa hal-hal yang bermanfaat dapat dibuat dari sumber daya yang kurang bernilai, misalnya dari logam. Di Indonesia, pengolahan logam tanah jarang (*Rare Earth Element*) masih terbatas dan belum mecapai potensinya. Hal ini disebabkan oleh keterbatasan pengetahuan dan teknologi yang menyebabkan belum banyaknya penelitian tentang pengolahan logam tanah jarang. Berdasarkan data diatas mengingatkan manusia bahwa sumber daya alam yang kurang bernilai salah satunya logam

tanah jarang dapat dimanfaatkan menjadi barang bernilai. Sebagaimana Allah SWT berfirman dalam Q.S Ali-Imran: 191

الَّذِيْنَ يَنْكُرُوْنَ الله قِيَامًا وَّقُعُوْدًا وَعَلَى جُنُوْهِمْ وَيَتَفَكَّرُوْنَ فِيْ حَلْقِ السَّمٰوٰتِ وَالْاَرْضِّ رَبَّنَا مَا حَلَقْتَ هٰذَا بَاطِلًا سُبْحْنَكَ فَقِنَا عَذَابَ النَّارِ

Artinya: (yaitu) orang-orang yang mengingat Allah sambil berdiri, duduk, atau dalam keadaan berbaring, dan memikirkan tentang penciptaan langit dan bumi (seraya berkata), "Ya Tuhan kami, tidaklah Engkau menciptakan semua ini sia-sia. Maha Suci Engkau. Lindungilah kami dari azab neraka. (QS. Surah Ali-Imran: 191)

Ayat ini menjelaskan bahwa Allah SWT tidak akan menciptakan segala sesuatu dengan sia-sia, akan tetapi penuh dengan manfaat yang beragam. Hal ini menunjukkan jika Allah SWT menjelaskan pada hamba-Nya mengenai pemanfaatan ciptaan-Nya. Tafsir Al-Maraghi menyebutkan, seorang mukmin yang mau menggunakan akalnya, selalu menaruh pengharapannya hanya kepada Allah SWT melalui doa, pujian dan ibtihal. Mukmin akan tahu bagaimana berbicara dengan Tuhan saat telah mendapatkan hidayah terhadap sesuatu yang berhubungan dengan kebajikan dalam menghadapi ragam makhluk-Nya (Al-Maraghi, 1993). Perkembangan teknologi menuntut kita untuk mengembangkan inovasi dan memanfaatkan beragam kekayaan di bumi yang telah Allah ciptakan. Salah satunya adalah pemanfaatan logam tanah jarang yang dapat digunakan untuk berbagai hal dalam kehidupan sehari-hari, misalnya pada bidang industri, bidang teknologi, dan bidang kesehatan. Pada bidang kesehatan, logam tanah jarang seperti cerium yang berikatan dengan ligan membentuk senyawa kompleks dapat digunakan sebagai sistem penghantaran obat atau Drug Delivery System (DDS). Allah SWT juga menjelaskan penciptaan langit dan bumi yang penuh dengan manfaat dan manusia harus memanfaatkannya sebaik mungkin dalam surah Al-Bagarah ayat 22. Allah SWT berfirman:

لِلْهِانْدَادًا تَجْعَلُوْا فَلَا ٦ٛ لَّكُمْ رِزْقًا النَّمَرٰتِ مِنَ الَّذِيْ جَعَلَ لَكُمُ الْأَرْضَ فِرَاشًا وَّالسَّمَآءَ بِنَآءً وَإَنْزَلَ مِنَ السَّمَآءِ مَآءً فَاحْرَجَ بِه

Artinya : "(Dialah) yang menjadikan bagimu bumi (sebagai) hamparan dan langit sebagai atap, dan Dialah yang menurunkan air (hujan) dari langit, lalu Dia menghasilkan dengan (hujan) itu buah-buahan sebagai rezeki untuk kamu. Oleh karena itu, janganlah kamu mengadakan tandingan-tandingan bagi Allah, padahal kamu mengetahui." (QS. Al-Baqarah: 22)

Dijelaskan dalam tafsir Al-Misbah bahwa pada surah Al-Baqarah ayat 22 yang berbunyi "Dialah yang menjadikan bumi sebagai hamparan bagi kamu", Allah telah menciptakan bumi yang terhampar dan manusia dapat memanfaatkan bumi secara lahir, batin, material dan spiritual. Bukan hanya itu, Allah telah menyiapkan segala sarana kehidupan di dunia seperti menurunkan sebagian air dari langit, berbuahnya pohon-pohon, dan tanah yang mengeluarkan aneka barang tambang dari dalam bumi. Hal tersebut menunjukkan betapa Allah telah menciptakan alam semesta dengan begitu kompleks

(Shihab, 1997). Segala kenikmatan yang Allah SWT berikan dapat dimanfaatkan menggunakan akal dan ilmu. Perkembangan zaman yang semakin cepat telah membawa sejumlah kemajuan, khususnya dalam industri medis. Salah satu penemuan tersebut adalah penggunaan logam tanah jarang sebagai bahan penyusun utama senyawa kompleks yang kemudian dikembangkan menjadi MOF sebagai sistem penghantaran obat.

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan, maka dapat disimpulkan sebagai berikut:

- Hasil karakterisasi XRD pada senyawa kompleks Ce(III)-BTC variasi waktu 15, 30, dan 45 menit, menghasilkan struktur tetragonal dengan grup ruang P4₃. Ukuran kristal kompleks Ce(III)-BTC yang dihasilkan pada rentang antara 43,74 nm - 49,57 nm.
- 2. Morfologi permukaan kompleks Ce(III)-BTC yang dihasilkan berbentuk *microrod* dan pada setiap variasi terdapat beberapa morfologi berbentuk *octahedral*. Kenaikan waktu sintesis menyebabkan ukuran partikel semakin pendek. Distribusi partikel lebar dan panjang pada morfologi *microrods* adalah variasi 15 menit adalah 1,2 µm dan 10 µm, untuk variasi 30 menit adalah 2,3 µm dan 6,1 µm, dan untuk variasi 45 menit adalah 2,4 µm dan 5,9 µm. Sedangkan untuk distribusi pertikel lebar morfologi *octahedral* pada variasi 15, 30, 45 menit secara berturut-turut adalah 9,5 µm, 8,1 µm, dan 7,1 µm. Unsur yang terdapat pada kompleks Ce(III)-BTC ini adalah Ce, O, dan C.

5.2 Saran

Sebaiknya sintesis dilakukan dengan menambahkan jumlah rasio mol dan ligan agar didapatkan massa produk yang lebih banyak pada satu kali sintesis, sehingga tidak perlu melakukan banyak pengulangan. Kemudian diperlukan pengujian lebih lanjut untuk mengetahui terbentuknya kompleks Ce(III)-BTC menggunakan karakterisasi *Fourier Transform Near Infra Red* (FT-NIR) dan karakterisasi *Single Crystal X-Ray Diffraction* (SC-XRD) untuk mengetahui struktur kristal yang terbentuk serta data kristalografi hasil sintesis. Diperlukan juga pengujian menggunakan karakterisasi *Surface Area Analyzer* (SAA) dan karakterisasi *Braunanear, Emmelt Dan Teller* (BET) untuk mengetahui luas permukaan dan luas pori dari hasil sintesis, sehingga hasil pengujian tersebut dapat memperkuat syarat kompleks untuk diaplikasikan pada *drug delivery system.*

DAFTAR PUSTAKA

- Al-Maraghi, Ahmad Mustafa. 1993. Tafsir al-Maraghi, terj. Bahrun Abu Bakar dkk. Semarang: PT. Karya Toba Putra
- Almáši, M., Zeleňák, V., Opanasenko, M., & Císařová, I. 2015. Ce(III) and Lu(III) metalorganic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation. *Catalysis Today*, 243(C), 184–194. https://doi.org/10.1016/j.cattod.2014.07.028

Az-Zuhaili, W. 2018. Tafsir Al-Munir Jilid 14. Gema Insani, 689.

- Chevinly, A. S., Mobtaker, H. G., Yousefi, T., Shirani, A. S., & Aghayan, H. 2017. {[Ce(BTC)(H2O)]·DMF}nmetal organic framework as a new adsorbent for removal of neodymium ions. *Inorganica Chimica Acta*, 455, 34–40. https://doi.org/10.1016/j.ica.2016.09.046
- Chenduty, F.D., Sriwidodo, Wardhana, Y.W. 2021. Sistem Penghantaran Obat Berbasis Biopolimer KItosan pada Formulasi Film Forming System. *Majalah Farmasetika*, 6(1): 38-55
- Cullity, B. D., dan Stock, S. R. 2001. *Elements of X-Ray Diffraction*. New Jersey: Prentice Hall.
- Delmifiana, B., & Astuti. 2013. Pengaruh Sonikasi Terhadap Struktur Dan Morfologi Nanopartikel Magnetik Yang Disintesis Dengan Metode Kopresipitasi. Jurnal Fisika Unand, 2(3), 4.
- Diblan, Sevgin, dkk,. 2018. FT-IR Spectroscopy Characterization and Chemometric Evaluation of Legumes Extracted With Different Solvents. Food and Health. 4(2): 80-88.
- Gregg, S. J., and Sing, K. S.W., 1986. Adsorpsi, Surface, and Porosity 2 ed. Academic press, London.
- Hanif, Q. A., Nugraha, R.E., Lestari, W.W. 2018. Kajian Metal–Organic Frameworks (MOF) sebagai Material Baru Pengantar Obat. Jurnal Penelitian Kimia. Vol 14, No 1
- He, S., Wu, L., Li, X., Sun, H., Xiong, T., Liu, J., Huang, C., Xu, H., Sun, H., Chen, W., Gref, R., & Zhang, J. 2021. Metal-organic frameworks for advanced drug delivery. *Acta Pharmaceutica Sinica B*, *11*(8), 2362–2395. https://doi.org/10.1016/j.apsb.2021.03.019
- Herbstein, F. H. 2005. *Crystalline Molecular Complexes and Compounds Volume*. New York: Oxford University Press Inc.
- Herlani, R., Muljono., Widiyati, S., Mujari. 2011. Mempelajari Pengaruh Logam Tanah Jarang Serium (Ce) dan Lantanum (La) padaAnalisis Torium Dengan Metode Pendar Sinar X. *Prosiding Seminar Penelitian Dan Pengelolaan Perangkat Nuklir*
- Horcajada, P., Serre, C., Vallet-Regi, M., Sebban, M., Taulelle, F., Ferrey, G. 2006. Metal Orgainic Frameworks as Efficient Material for drug Delivery. *Angewandte Chemie International*. 24: 5974-5978

- Israr, F., Kim, D. K., Kim, Y., Oh, S. J., Ng, K. C., & Chun, W. 2016. Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition. *Ultrasonics Sonochemistry*, 29, 186–193. https://doi.org/10.1016/j.ultsonch.2015.08.023
- Kusumastuti, Ari. 2011. Pengenalan Pola Gelombang Khas dengan Interpolasi. UIN Malang, 2(1)
- Latupeirissa, J., & Latupeirissa, A. N. 2012. Poli (Etil Eugeniloksi Asetat) Sebagai Ekstraktan Ion Logam Cu2+. *MJoCe*, 2(1), 62–67.
- Laurikenas, A., Beganskiene, A., & Kareiva, A. 2018. On the synthesis and characterization of lanthanide metal-organic frameworks. *Ceramics*, *1*(1), 54–64. https://doi.org/10.3390/ceramics1010006
- Li, H., Eddaoudi, M., O'Keeffe, M., dan Yaghi, O. M. 1999. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature. 402: 276-279.
- Luo, Y., Chen, D., Wei, F., & Liang, Z. 2018. Synthesis of Cu-BTC Metal-Organic Framework by Ultrasonic Wave-Assisted Ball Milling with Enhanced Congo Red Removal Property. *ChemistrySelect*, *3*(41), 11435–11440. https://doi.org/10.1002/slct.201802067
- Mahato, R. 2017. Multifunctional Micro- and Nanoparticles. In *Emerging Nanotechnologies* for *Diagnostics, Drug Delivery and Medical Devices*. Elsevier. https://doi.org/10.1016/B978-0-323-42978-8.00002-4
- Mahreni., Ristianingsih, Y., Nur, S. 2020. Sintesis dan Aplikasi Material Baru Kerangka Logam Organik (Metal Organik Framework, MOF). Yogyakarta: Lembaga Penelitian dan Pengabdian Kepada Masyarakat UPN Veteran Yogyakarta
- Male, Y. T., Tehubijuluw, H., & Pelata, P. M. 2013. Synthesis Of Binuclear Complex Compound Of {[Fe(L)(NCS) 2] 2 oks} (L = 1,10-phenantrolin and 2,2'-bypiridine) Sintesis Senyawa Kompleks Berinti Ganda {[Fe(L)(NCS) 2] 2 oks} (L = 1,10-fenantrolin dan 2,2'-bipiridin). J. Chem. Res, 1, 15–22.
- Noor, T. H. 2005. Synthesis and characterization of some lanthanide ion(III) complexes with mixed ligands (nicotinamide and benzimidazole). Diyala University Collage of Basic.
- Nordin, N. A. H. M., Ismail, A. F., Mustafa, A., Goh, P. S., Rana, D., Matsuura, T. 2014. Aqueous Room Temperature Synthesis of Zeolitic Imidazole Framework 8 (ZIF-8) with Various Concentrations of Triethylamine. *The Royal Society of Chemistry*. 4: 33292-33300.
- Noro, S. 2013. Metal-Organic Frameworks in Comprehensive Inorganic Chemistry II (Second Edition). (eds. J. reedijk and K. Poeppelmeier). Elsevier, Amsterdam. 55-71.
- Noval., Malahayati, S. 2021. Teknologi Penghantaran Obat Terkendali. Jawa Tengah: CV.Pena Persada
- Peng, M. M., Ganesh, M., Vinodh, R., Palanichamy, M., & Jang, H. T. 2019. Solvent free oxidation of ethylbenzene over Ce-BTC MOF. *Arabian Journal of Chemistry*, 12(7), 1358–1364. https://doi.org/10.1016/j.arabjc.2014.11.024

- Perrie, Y and T. Rades. 2012. Drug Delivery and Targeting, Second. Philadelphia: FASTtrack Pharmaceutics
- Rena, Zaharah, T. A., & Shofiyani, A. 2018. Pengaruh Ph Terhadap Adsorpsi Cerium (Iv) Dari Tailing Peti Menggunakan Komposit Kitosan-Karbon Beads Terikat Silang Glutaraldehid. *Jurnal Kimia Khatulistiwa*, 7(3), 27–33.

Sastrohamidjojo, Hardjono. 2018. Dasar-dasar Spektroskopi. Yogyakarta: UGM Press

- Sculley, J., Yuan, D., Zhou, H. 2011. The Current of Hydrogen Storage in Metal Organic Frameworks. *Energy Environmental Science*. 4: 2721-2735.
- Sembiring, Z. 2017. Sintesis dan Karakterisasi Struktur Senyawa Kompleks Cu(II) dan Mn(II) dengan Basa Schiff Turunan Aldehida sebagai Indikator. LaporanPenelitian: Fakultas MIPA Univ. Lampung
- Smallman, R. E., dan Bishop, R. J. 2000. *Modern Physical Metallurgy and Materials Engineering*. New York: Hill International Book Company.
- Smith, B. C. 2011. Fundamental of Fourier Transform Infrared Spectroscopy. New York: CRC Press. 4-9.
- Suhendar, Rudy. 2019. Potensi Logam Tanah Jarang di Indonesia. Bandung: Pusat Sumber Daya Mineral, Batubara dan Panas Bumi Badan Geologi Kementerian Energi dan Sumber Daya Mineral
- Suslick, S. Kenneth. 1999. Application of Ultrasound To Materials Chemistry. *Annual Reviews. Mater. Sci.* 29: 295-326.
- Shihab, M. Q. 1997. Tafsir Al-Mishbah Lentera k^AH ati. *Tafsir Al-Misbah Jilid* 13, 555.
- Sulistya Hermawati, E. S. T. 2016. Jurnal Kimia Sains dan Aplikasi 19 (3) (2016): 94-98 Sintesis dan Karakterisasi Senyawa Kompleks Zn(II)-8-Hidroksikuinolin. *Jurnal Kimia Sains Dan Aplikasi*, *19*(3), 94–98.
- Tipler, P. 1991. Fisika Untuk Sains dan Teknik Edisi Ketiga Jilid 1. Jakarta: Erlangga.
- Triyani, N. F., Suhartana. Sriatun. 2013. Sintesis dan Karakterisasi Kompleks Ni(II)-EDTA dan Ni(II)-Sulfanilamid. Chem Info. Vol 1, No 1, Hal 354 361
- Villar, A. M. S., Naveros, B. C., Campmany, A. C. C., Trenchs, M. A., Rocabert, C. B., & Bellowa, L. H. 2012. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS)
- Vyas, N., Manmi, K., Wang, Q., Jadhav, A. J., Barigou, M., Sammons, R. L., Kuehne, S. A., & Walmsley, A. D. 2019. Which Parameters Affect Biofilm Removal with Acoustic Cavitation? A Review. Ultrasound in Medicine and Biology, 45(5), 1044–1055. https://doi.org/10.1016/j.ultrasmedbio.2019.01.002
- Watts, H. and Morley, H. F. 1993. A dictionary of chemistry. London: Longmans, Green and co.
- Winarti, L. 2013. Sistem Penghantaran Obat Tertarget, Macam, Jenis-Jenis Sistem Penghantaran, Dan Aplikasinya. *Stomatognatic-Jurnal Kedokteran Gigi*. 10(2): 75-81.

- Zhang, X., Hou, F., Li, H., Yang, Y., Wang, Y., Liu, N., & Yang, Y. 2018. A strawsheave-like metal organic framework Ce-BTC derivative containing high specific surface area for improving the catalytic activity of CO oxidation reaction. *Microporous and Mesoporous Materials*, 259, 211–219. https://doi.org/10.1016/j.micromeso.2017.10.019
- Zhu, X., He, H., Li, Y., Wu, H., Fu, M., Ye, D., Wu, J., Huang, H., Hu, Y., & Niu, X. 2020. CeO2-supported pt catalysts derived from mofs by two pyrolysis strategies to improve the oxygen activation ability. *Nanomaterials*, 10(5). https://doi.org/10.3390/nano10050983

LAMPIRAN

Lampiran 1. Diagram Alir

L.1.1 Sintesis Kompleks Ce (III)-BTC variasi waktu 15 menit

L.1.2 Karakterisasi Kompleks Ce (III)-BTC Menggunakan Powder-XRD

Sam	pel Hasil Sintesis	
-dihal	uskan hingga menjadi se	rbuk
-dipre	ss dengan alat press	
-dileta	akkan sampel pada holde	r
-disina	ari dengan radiasi cu Kα	pada 40 kV dan 300 mA
-dicoc	cokan data dengan data d	difraksi pada <i>library</i> dan penelitian terdahulu
Hasil]	

L.1.3 Karakterisasi Kompleks Ce(III)-BTC Menggunakan SEM-EDX

Sampel Hasil Sintesis

-ditempatkan sampel pada SEM specimen holder

-diuji dengan perbesaran 500x, 1000x, 5000x, 10000x, dan 15000x

-dianalisis data menggunakan software image-J

Hasil

Lampiran 2. Perhitungan

L.2.1 Perhitungan Massa Senyawa CeH₁₂N₃O₁₅

BM Senyawa Mol Senyawa Massa Senyawa	= 434.22 g/mol = 0.5 mmol = mol x BM = 0.5 mmol x 434.22 g/mol = 217.11 mg = 0.21711 g
	= 0.21711 g

L.2.1 Perhitungan Massa Senyawa1,3,5- Benzenatrikarboksilat (H₃BTC)

BM Senyawa	= 210.14 g/mol
Mol Senyawa	= 1 mmol
Massa Senyawa	= mol x BM
	= 1 mmol x 210.14 g/mol
	= 210,14 mg
	= 0.21014 g

Lampiran 3. Hasil Karakterisasi XRD L.3.1 Hasil Karakterisasi Seyawa Hasil Sintesis Variasi Waktu Sonikasi 15 Menit

	Peak list							
++								
	No.	2-theta(deg)	d(ang.)	Height(cps)	<u>EWHM(</u> deg)	Int. <u>((</u> cps deg)	Int. W(deg)	Asym. factor
	1	10.49(2)	8.426(19)	394(57)	0.47(3)	209(10)	0.53(10)	3.3(9)
	2	10.947(7)	8.076(5)	1493(112)	0.148(7)	249(13)	0.17(2)	3.3(9)
	3	11.791(14)	7.499(9)	111(30)	0.17(4)	22(4)	0.20(9)	3(4)
	4	12.240(16)	7.225(10)	97(28)	0.20(5)	22(5)	0.23(12)	3(4)
	5	13.58(2)	6.516(10)	400(58)	0.25(2)	137(8)	0.34(7)	2.8(12)
	6	17.600(6)	5.0351(16)	3664(175)	0.127(8)	833(20)	0.227(16)	1.6(3)
	7	18.105(5)	4.8958(15)	1525(113)	0.106(12)	290(14)	0.19(2)	1.6(3)
	8	19.36(3)	4.581(6)	435(60)	0.17(2)	85(10)	0.19(5)	1.1(6)
	9	19.43(10)	4.57(2)	98(29)	2.7(3)	280(36)	2.9(12)	0.9(4)
	10	19.734(12)	4.495(3)	203(41)	0.09(4)	21(7)	0.10(6)	0.5(10)
	11	20.079(11)	4.419(2)	321(52)	0.12(2)	44(6)	0.14(4)	1.1(3)
	12	20.74(2)	4.280(4)	727(78)	0.328(18)	280(14)	0.39(6)	1.1(3)
	13	21.51(2)	4.128(4)	296(50)	0.28(4)	96(10)	0.33(9)	1.1(3)
	14	24 114/10)	3 6877(15)	401(58)	0.148(18)	70(5)	0.18(4)	4 3(17)

Peak List
L.3.2 Hasil Karakterisasi Seyawa Hasil Sintesis Variasi Waktu Sonikasi 30 Menit

Реа	k list						
No.	2-theta(deg)	d(ang.)	Height(cps)	EWHM(deg)	Int. <u>((</u> cps deg)	Int. W(deg)	Asym, factor
1	8.459(4)	10.203(5)	8404(265)	0.089(5)	1191(20)	0.142(7)	2.0(5)
2	10.11(4)	8.74(3)	197(41)	0.12(5)	33(7)	0.17(7)	1(2)
3	10.856(4)	8.143(3)	7879(256)	0.122(4)	1482(17)	0.188(8)	3.1(6)
4	12.115(5)	7.300(3)	775(80)	0.26(3)	417(16)	0.54(8)	5(4)
5	13.54(4)	6.53(2)	303(50)	0.40(6)	182(16)	0.60(15)	1.3(7)
6	17.101(5)	5.1808(16)	694(76)	0.180(14)	139(9)	0.20(3)	4.5(13)
7	17.540(4)	5.0522(12)	1011(92)	0.244(13)	274(10)	0.27(3)	4.5(13)
8	18.193(3)	4.8723(9)	1520(113)	0.258(9)	436(15)	0.29(3)	4.5(13)
9	18.714(12)	4.738(3)	258(46)	0.16(3)	47(7)	0.18(6)	4.5(13)
10	19.693(15)	4.504(3)	321(52)	0.17(4)	59(11)	0.18(6)	0.92(16)
11	20.011(11)	4.434(2)	590(70)	0.17(2)	111(11)	0.19(4)	0.92(16)
12	20.67(2)	4.294(4)	1002(91)	0.41(3)	459(19)	0.46(6)	0.92(16)
13	21.377(13)	4.153(3)	1275(103)	0.295(15)	420(23)	0.33(4)	0.92(16)
14	22 18/8)	4 004(14)	227(44)	0.14(8)	34(15)	0.15/9)	2(3)

Peak List

L.3.3 Hasil Karakterisasi Seyawa Hasil Sintesis Variasi Waktu Sonikasi 45 Menit

Peal	k list						
No.	2-theta(deg)	d(ang.)	Height(cps)	EWHM(deg)	Int. <u>I(</u> cps deg)	Int. W(deg)	Asym. factor
1	8.439(9)	10.469(11)	1510(112)	0.113(11)	263(10)	0.174(19)	1.5(5)
2	9.90(6)	8.92(5)	151(35)	0.23(9)	57(15)	0.38(19)	0.8(10)
3	10.638(5)	8.310(4)	5628(217)	0.130(6)	1110(17)	0.197(11)	2.0(4)
4	11.476(14)	7.704(9)	386(57)	0.11(4)	80(7)	0.21(5)	3(3)
5	11.908(13)	7.426(8)	597(71)	0.11(2)	132(7)	0.22(4)	2.4(17)
6	13.28(2)	6.663(11)	359(55)	0.21(4)	137(9)	0.38(8)	1.5(9)
7	16.888(8)	5.246(3)	772(80)	0.220(17)	181(12)	0.23(4)	1.7(2)
8	17.286(8)	5.126(2)	1121(97)	0.253(14)	302(14)	0.27(4)	1.7(2)
9	17.924(12)	4.945(3)	902(87)	0.342(17)	328(14)	0.36(5)	1.7(2)
10	18.491(9)	4.794(2)	477(63)	0.16(2)	83(9)	0.17(4)	1.7(2)
11	19.52(4)	4.544(9)	244(45)	0.82(9)	213(19)	0.9(2)	1.7(2)
12	20.554(12)	4.318(3)	1294(104)	0.407(14)	560(19)	0.43(5)	1.7(2)
13	21.224(10)	4.183(2)	1309(104)	0.321(14)	447(19)	0.34(4)	1.7(2)
14	21.99(3)	4.040(6)	345(54)	0.15(3)	55(9)	0.16(5)	1.4(12)

Peak List

Lampiran 4. Data Ukuran Kristal Kompleks Ce(III)-BTC

Ukuran kristal diukur menggunakan persamaan Debye-Scherrer. Berikut merupakan hasil perhitungan ukuran kristal senyawa hasil sintesis.

L.4.1 Waktu Sintesis 15 Menit

λ (Kα) = 1,5406 β (FWHM) = 0,127 rad → $\frac{0,127}{180}$ x 3,14= 0,00221 2θ = 17,600 → θ = 8,800 cos θ = 0,9882

Sehingga ukuran kristal kompleks Ce(III)-BTC adalah:

 $D = \frac{K\lambda}{\beta \cos \theta} = \frac{0.9 \times 1.5406}{0.00221 \times 0.9882} = 634,885 \text{ Å} = 63,488 \text{ nm}$

L.4.2 Waktu Sintesis 30 Menit

λ (Κα) = 1,5406

 β (FWHM) = 0,122 rad $\rightarrow \frac{0,122}{180}$ x 3,14= 0,00213

$$2\theta = 10,856 \rightarrow \theta = 5,428$$

 $\cos \theta = 0,9955$

Sehingga ukuran kristal kompleks Ce(III)-BTC adalah:

 $D = \frac{K\lambda}{\beta \cos \theta} = \frac{0.9 \text{ x } 1,5406}{0,00213 \text{ x } 0,9955} = 653,901 \text{ \AA} = 65,390 \text{ nm}$

L.4.3 Waktu Sintesis 45 Menit

λ (Κα) = 1,5406

β (FWHM) = 0,130 rad →
$$\frac{0,130}{180}$$
 x 3,14= 0,00227

 $2\theta = 10{,}638 \rightarrow \theta = 5{,}319$

 $\cos \theta = 0,9957$

Sehingga ukuran kristal kompleks Ce(III)-BTC adalah:

 $D = \frac{K\lambda}{\beta \cos \theta} = \frac{0.9 \text{ x } 1,5406}{0,00227 \text{ x } 0,9957} = 613,448 \text{ \AA} = 61,344 \text{ nm}$

Lampiran 5 Perhitungan Derajat Kristanilitas Kompleks Ce(III)-BTC L.5.1 Waktu Sintesis 15 Menit Kristanilitas (%) = $\frac{\text{Fraksi luas kristalin}}{\text{Luas difraktogram}} \times 100\%$

Kristanilitas (%) = $\frac{\text{Fraksi luas kristalin}}{\text{Luas difraktogram}} \times 100\%$ = $\frac{37047,92}{39209,42} \times 100\%$ = 94,49%

L.5.2 Waktu Sintesis 30 Menit

Kristanilitas (%) =
$$\frac{\text{Fraksi luas kristalin}}{\text{Luas difraktogram}} \times 100\%$$

= $\frac{44629,17}{47568,92} \times 100\%$
= 93,82%

L.5.3 Waktu Sintesis 45 Menit

Kristanilitas (%) = $\frac{\text{Fraksi luas kristalin}}{\text{Luas difraktogram}} \times 100\%$ = $\frac{43547,92}{44140,42} \times 100\%$ = 94,66%

Lampiran 6 Hasil *Refinement* dengan Metode *Le Bail* L.6.1 Sampel Waktu Sintesis 15 Menit

ABSORPTION R = 0.00000 0.00000 0.00000 ASYMMETRY PARAMETERS 0.53445 0.00690 0.00467 = 0.00000 0.00000 0.00000 HALFWIDTH PARAMETERS U -7.627163 0.005790 = 0.003040 V 6.059090 -0.004983 = 0.002517 -0.877419 0.000771 W = 0.000319 ANISOTROPIC GAUSSIAN BROADENING = 0.000100 0.000000 0.000000 PEAK SHAPE PARAMETER Gam0 1.881854 0.132162 0.162758 = = 0.000000 0.000000 0.000000 PEAK SHAPE PARAMETER Gam1 PEAK SHAPE PARAMETER Gam2 = 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 EXTINCTION PARAMETER = ----+ | Hist | Rp | Rwp | Rp(-b) | Rwp(-b) | Rexp |Durbin Unwght| Durbin Wght | N-P | _____ +-----____+ 1 | 26.39 | 49.77 | 453.69 | 71.41 | 3.21 |**************** 0.385 | 1738 | ----+ SUMYDIF | SUMYOBS | SUMYCALC | SUMWYOBSSQ | GOF | CONDITION | +---------------+ 0.2284E+06| 0.8653E+06| 0.8625E+06| 0.1683E+07| 0.2399E+02| 0.4263E+20 |

L.6.2 Sampel Waktu Sintesis 30 Menit

L PARAMETERS

50

CELL PARAMETERS = 10.406794 -0.000848 0.003557 10.406794 -0.000848 0.003557 14.508132 -0.000357 0.005731 90.000008 0.000000 0.000000 90.0000080.0000000.00000090.0000080.0000000.000000 RECIPROCAL CELL = 0.096 0.096 0.069 90.000 90.000 90.000 CELL VOLUME = 1571.250366 0.980831 SCALE * VOLUME = 15.712503 0.009808 = 1571.250366 0.980831 = 0.000 = ° = MOLECULAR WEIGHT DENSITY NOTE: CHECK Z VALUE or N's- DENSITY NOT PHYSICAL ABSOLUTE PHASE VALUES: INC = NEUTRONS ON SAMPLE/CM² (in cm^{-2}) MASS = MASS OF PHASE IN BEAM (in g) ls/R = RATIO OF DETECTOR HEIGHT TO SAMPLE-DETECTOR Then: INC*MASS*1s/R = 0.000000 +-----------+ 1 Histogram: 1 +---------+ = 1.0000 0.00000 0.00000 SCALE FACTOR = 0.40657 -0.00053 0.00357 ZEROPOINT BACKGROUND PARAMETER B 0 = 2118.18 -16.1420 BACKGROUND PARAMETER B 1 = -40.6852 0.757784 BACKGROUND PARAMETER B 2 = 0.182222 -0.903573E-02 196.984 6.96293 -0.903573E-02 0.681320E-01 BACKGROUND PARAMETER B 5 -9902.56 = 100.029 1542.51 PREFERRED ORIENTATION ABSORPTION R ASYMMETRY PARAMETERS 0.00000 0.00000 0.00000 HALFWIDTH PARAMETERS U = 0.010000 0.000000 0.000000 -0.005000 = 0.000000 V 0.000000 0.020000 0.00000 = W 0.000000 0.000100 ANISOTROPIC GAUSSIAN BROADENING = 0.00000 0.000000 PEAK SHAPE PARAMETER Gam0 = 0.200000 0.000000 0.000000

 PEAK SHAPE PARAMETER Gam1
 =
 0.000000
 0.000000
 0.000000

 PEAK SHAPE PARAMETER Gam2
 =
 0.000000
 0.000000
 0.000000

 EXTINCTION PARAMETER
 =
 0.000000
 0.000000
 0.000000

 _____+ | Hist | Rp | Rwp | Rp(-b) | Rwp(-b) | Rexp |Durbin Unwght| Durbin Wght | N-P | +---------+ | 1 | 20.84 | 25.83 | 510.43 | 44.17 | 1.88 |********** 0.724 | 1743 | +---------+ 1 SUMYDIF | SUMYOBS | SUMYCALC | SUMWYOBSSQ | GOF | CONDITION | +------+ | 0.2136E+06| 0.1025E+07| 0.1027E+07| 0.4933E+07| 0.1888E+02| 0.1728E+19 |

 PREFERRED ORIENTATION
 =
 1.00000
 0.00000
 0.00000

 ABSORPTION R
 =
 0.00000
 0.00000
 0.00000
 = 0.03023 0.00011 0.00052 ASYMMETRY PARAMETERS 0.00000 0.00000 0.00000 HALFWIDTH PARAMETERS U = -25.638977 -0.007097 0.009533 V = 8.947945 0.003869 0.003849 W = -0.598291 -0.0002870.000271 ANISOTROPIC GAUSSIAN BROADENING = 0.000100 0.000000 0.000000 PEAK SHAPE PARAMETER Gam0 = 2.154749 0.063632 0.025718 PEAK SHAPE PARAMETER Gam1 = 0.000000 0.000000 0.000000 PEAK SHAPE PARAMETER Gam2 = 0.000000 0.000000 0.000000 = 0.000000 0.000000 0.000000 EXTINCTION PARAMETER ----+ | Hist | Rp | Rwp | Rp(-b) | Rwp(-b) | Rexp |Durbin Unwght| Durbin Wght | N-P | +---------+ 1 | 24.18 | 22.04 |****** | 801.52 | 2.25 |********** 0.518 | 1739 | +---------+ | SUMYDIF | SUMYOBS | SUMYCALC | SUMWYOBSSQ | GOF | CONDITION | +-----+ | 0.2349E+06| 0.9711E+06| 0.9812E+06| 0.3445E+07| 0.2118E+02| 0.6956E+19 |

Lampiran 7 Hasil stacking (menumpuk) difraktogram

L.7.1 Gambar hasil *stacking* (menumpuk) secara manual antara difraktogram kompleks Ce(III)-BTC pada jurnal penelitian (Almasi, et al., 2015) dengan difraktogram hasil sintesis variasi 15, 30, dan 45 menit

L.7.2 Gambar hasil *stacking* (menumpuk) secara manual antara difraktogram kompleks Ce(III)-BTC pada jurnal penelitian (Peng, et al., 2019) dengan difraktogram hasil sintesis variasi 15, 30, dan 45 menit

L.7.3 Hasil *stacking* (menumpuk) secara manual antara difraktogram kompleks Ce(III)-BTC pada jurnal penelitian (Almasi, et al., 2015) dengan jurnal penelitian (Peng, et al., 2019)

Gambar L.7.2 (a) Kompleks Ce(III)-BTC penelitian Peng, et al., (2019) (b) Kompleks Ce(III)-BTC penelitian Almasi, et al., (2015)

Lampiran 8 Hasil Karakterisasi SEM L8.1 Mikrograf SEM Kompleks Ce(III)-BTC Variasi Waktu Sonikasi 15 Menit

Gambar L.8.1 Mikrograf SEM Kompleks Ce(III)-BTC Variasi Waktu Sonikasi 15 menit dengan Perbesaran (a) 500x, (b) 1000x, (c) 5000x, (d) 10.000x, (e) 15.000x

n ITS 8.00

Gambar L.8.2 Mikrograf SEM Kompleks Ce(III)-BTC Variasi Waktu Sonikasi 30 menit dengan Perbesaran (a) 500x, (b) 1000x, (c) 5000x, (d) 10.000x, (e) 15.000x

Gambar L.8.3 Mikrograf SEM Kompleks Ce(III)-BTC Variasi Waktu Sonikasi 45 menit dengan Perbesaran (a) 500x, (b) 1000x, (c) 5000x, (d) 10.000x, (e) 15.000x

L.9.1 Variasi waktu 15 menit

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	Α	F
СК	18.20	35.33	163.67	7.15	0.1025	1.1968	0.4705	1.0000
ОК	39.55	57.64	461.90	8.20	0.1476	1.1515	0.3242	1.0000
CeL	42.25	7.03	277.49	3.47	0.3389	0.7344	1.0920	1.0003

L.9.2 Variasi waktu 30 menit

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	А	F
СК	14.15	32.72	121.76	7.47	0.0809	1.2554	0.4553	1.0000
ОК	32.67	56.73	387.97	8.17	0.1315	1.2085	0.3331	1.0000
CeL	53.19	10.55	342.21	3.15	0.4432	0.7749	1.0752	1.0002

L.9.3 Variasi waktu 45 menit

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	Α	F
СК	18.96	38.96	155.00	7.17	0.1090	1.2185	0.4716	1.0000
ОК	34.23	52.80	344.93	8.45	0.1238	1.1728	0.3084	1.0000
CeL	46.81	8.24	277.84	3.46	0.3811	0.7498	1.0854	1.0002

Lampiran 10 Analisa SEM menggunakan Software Image J

- 1. Install aplikasi *Image J* didestkop.
- 2. Setelah terinstall, buka aplikasi Image J dan akan muncul tampilan sebagai berikut:

3. Buka gambar SEM yang akan dianalisis. Klik File \rightarrow Open

	ge 1100033 A			-	
New	,		Dev 8 8	×	≫
Open	Ctrl+O	ct (alt or long click to swite	ch)		
Open Next	Ctrl+Shift+O				
Open Samples	s 🔸				
Open Recent	•				
Import	•				
Show Folder	,				
Close	Ctrl+W				
Close All	Ctrl+Shift+W				
Save	Ctrl+S				
Save As	•				
Revert	Ctrl+Shift+R				
Page Setup					
Print	Ctrl+P				

4. Pilih gambar SEM yanga akan ditampilkan. Klik Open.

#

5. Tampilan akan berubah menjadi dua bagian yakni jendela aktif toolbar dan jendela aktif gambar SEM.

6. Kemudian kalibrasi gambar SEM untuk mengatur ukuran bar yang akan ditampilkan oleh SEM sehingga dapat dideteksi. Klik *straight*→ Buatlah garis yang sama panjangnya dengan bar SEM.

7. Lalu Klik Analyze \rightarrow Set Scale.

8. Setelah itu akan muncul jendela aktif Set Scale. Isi informasi pada kolom "*known distance*" untuk skala bar yang tertera pada gambar SEM dan "*unit of length*" untuk unit satuan yang digunakan (unit mikrometer atau μm). Klik OK.

9. Klik kanan pada gambar, lalu pilih opsi Duplicate untuk menggandakan gambar SEM.

10. Klik Anlayze \rightarrow Set Measurement

11. Pada set measurement pilih kolom area, *standard deviation*, dan *add to overlay* kemudian klik OK.

12. Selanjutnya adalah mengukur ukuran partikel dari gambar SEM. Perbesar gambar dengan klik CTRL→ + secara bersamaan. Buat garis *straight*, pengukuran ditunjukkan oleh garis kuning.

13. Klik *Analyze* → *measure* atau CTRL + M, maka akan muncul jendela aktif sebagai berikut:

14. Untuk mendapatkan data yang lebih banyak atau mempresentasikan distribusi ukuran partikel secara homogen (asumsi), maka ulangi langkah 8 sesuai dengan jumlah data yang diinginkan. Pada penelitian ini saya menggunakan 100 data untuk objek partikelnya.

🛓 ImageJ	- 0	×	<u>4</u> F	esults			
File Edit Image Process Analyze Plugins Window Help			File	Edit	Font Res	sults	
	1	-		Area	StdDev	Angle	Length
	/	-	70	0.267	17.614	20.171	2.594
			71	0.148	31.232	59.744	1.381
e-BTC 15m 500-1(dia labeled).ing	- 0	×	72	0.168	14.731	5.528	1.548
v060 pixels: PCP: 4 7MP	0	~	73	0.287	37.030	-90.000	2.734
Sou pixels, read, 4, rind	STEW-House No.	No. of	74	0.207	25.004	4.399	1.944
THE ALL THE SECOND	A CONTRACT	S-154	75	0.128	19.626	53.616	1.173
	UA AA	3	76	0.138	27.470	8.746	1.307
THE PARTY REPAIRS	11 m	100	77	0.119	13.722	-32.276	1.117
			78	0.119	28.487	42.614	1.126
	B C C		79	0.109	39.674	-56.310	0.956
CARLE CONTRACTOR OF		1 T.I.	80	0.099	25.783	-4.399	0.864
the second of the second second	m dial	100	81	0.178	52.405	-76.759	1.736
ASTRONOM BELSEDUNA	1011/	6. 10	82	0.119	36.616	-48.814	1.057
w l		TAL	83	0.099	23.572	12.529	0.916
NAME AND A STATE OF THE STATE	14.23	15266	84	0.109	19.389	-23.962	0.979
		1-1	85	0.099	36.627	-12.529	0.916
		a a	86	0.119	23.023	3.468	1.095
	a		87	0.109	18.706	75.069	1.029
		100	88	0.128	36.630	-26.565	1.185
	- ALT	PAR BU	89	0.128	23.055	1.637	1.160
	1. 1. 1. N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1	90	0.227	18.459	66.975	2.160
	Les D	2/20/	91	0.099	29.108	-31.504	0.904
		MAL	92	0.089	25.187	-14.470	0.796
		1115	93	0.109	34.635	36.870	0.994
The second of th	ford 1		94	0.198	26.777	-36.254	1.849
A A A A A A A A A A A A A A A A A A A	A Second	1.1.5	95	0.128	25.711	-34.380	1.144
	A Car	1	96	0.158	27.373	-23.199	1.514
ROAR SALENSALENS		AND NO	97	0.148	17.163	-38.991	1.343
	1 10	10.	98	0.099	27.051	-64.799	0.934
			99	0.099	20.976	0.000	0.845
			100	0.158	27.045	0.000	1.491

22°C Berawan

To ompart the roo data tersebut datatin bentuk wis. Exect. This ric \rightarrow date :	
--	--

File Edit Font Results Area StdDev Angle Length 0 0.304 34.019 -93.814 2977 1 0.147 16.413 -24.775 1.418 2 0.265 26.860 -92.203 2.576 3 0.333 45.064 -83.089 3.291 4 0.245 43.926 -90.000 2.376 5 0.157 18.568 -15.945 1.442 0 0.245 1.322 -77.735 2.330 7 0.127 1.9968 0.490 2.131 10 0.425 757 -10.4621 2.353 10 0.225 26.174 -10.3392 2.137 11 0.445 2757 -10.4621 2.353 10 0.225 26.174 -10.3392 2.187 10 0.225 26.174 -10.390 1.424 10 22.673 -15.945 2.	₫ Ri	esults			
IArea StuDev Angle Length 0 0.304 34.019 -93.814 2.977 1 0.47 16.413 -24.775 1.418 2 0.265 26.850 92.203 2.576 3 0.333 45.084 -83.089 3.291 4 0.245 31.926 -90.000 2.376 5 0.157 38.563 -15.945 1.442 6 0.245 31.232 -77.735 2.330 7 0.127 29.968 34.992 1.209 8 0.471 19.685 0.000 2.673 9 0.274 19.685 0.000 2.673 10<0.225	File	Edit	Font Res	sults	
0 0.304 34.019 -9.3814 2.977 1 0.147 16.413 -24.775 1.418 2 0.265 26.850 -9.203 2.576 3 0.333 45.084 -83.089 3.291 4 0.245 43.926 -90.000 2.376 15 0.157 38.563 -15.945 1.442 16 0.245 31.232 -77.735 2.330 7 0.127 29.688 3.992 1.209 70 0.127 29.688 3.992 1.485 90 0.225 147 -10.3392 2.137 10 0.225 26.737 -104.621 2.353 12 0.225 26.737 -104.621 2.353 12 0.225 26.737 -104.621 2.353 12 0.245 24.755 1.16.34 3.437 15 0.206 3.4802 -90.000 1.980 140 0.427 25.55 2.258 1.0382 26.720 -83.991 <		Area	StdDev	Angle	Length
11 0.147 16.413 -24.775 1.418 20 265 26.850 -92.03 2.576 30 33 45.084 -83.089 3.291 40 245 43.926 -90.000 2.376 55 0.157 3563 -15.945 1.442 70 0.227 29.968 34.992 1.209 80 0.571 15.458 5.130 1.485 90 0.274 19.685 0.000 2.673 90 0.275 -104.621 2.353 10 0.225 2.6174 -103.392 2.137 11 0.245 2.797 -104.621 2.353 10 0.225 2.6174 -103.392 2.137 11 0.245 2.797 -104.613 3.437 15 0.206 3.4802 -90.000 1.880 86 0.471 2.667 -70.017 4.636 17<0.225	70	0.304	34.019	-93.814	2.977
2 0.265 26.860 -9.203 2.576 Save As Ctrl+S A 3 0.333 45.064 -83.069 3.291 Rename B 4 0.245 31.926 -90.000 2.376 Rename Duplicate B 7 0.127 29.968 34.992 1.209 Rename Duplicate B 9 0.274 19.685 0.000 2.673 0.000 2.673 Duplicate Duplicate B 9 0.245 2.7957 -104.621 2.353 Duplicate Duplicate Duplicate Duplicate Duplicate 10 0.225 26.731 -15.945 2.162	1	0.147	16.413	-24.775	1.418
3 0.33 45.084 83.089 3.291 40.245 43.292 90.000 2.376 5 0.157 38.563 -15.945 1.442 Duplicate Duplicate B.6 6 0.245 31.232 -77.735 2.330 Rename Duplicate Rename Duplicate 70 0.127 29.686 34.992 1.485 S.130 1.485 S.141 1.0332 2.137 90 0.225 26.174 -103.392 2.137 Duplicate Duplicate Duplicate 10 0.225 26.174 -103.392 2.137 Duplicate Duplicate Duplicate 12 0.225 26.731 -15.945 2.162 B.343 3.4723 1.1634 3.437 15 0.206 34.802 -90.000 1.980 4.806 -90.001 1.800 16 0.471 2.6387 -70.017 4.836 2.039 -3.839 -3.839 -3.839 -3.839 -3.839 -3.839 -3.839 -3.839 -3.839	12	0.265	26.850	-92.203	2.576
44 0.245 43.926 90.000 2.376 76 0.245 31.232 .77.735 2.330 7 0.127 29.968 34.992 1.209 80 0.57 154.86 5.31.594 1.482 90 0.274 19.665 0.000 2.673 90 0.274 19.665 0.000 2.673 10 0.245 2757 -104.621 2.353 10 0.252 26.174 -103.962 2.142 13 0.441 2.475 1.61.699 4.386 14 0.353 4.773 11.63.44 3.437 15 0.206 3.8072 1.463.6 17 0.252 26.731 -15.945 2.162 18 0.433 33733 96.710 3.800 19 0.245 2.720 9.393 15.555 2.288 10 0.225 6.556 2.393 14 0.245 2.983 -65.56 2.393 12 0.216 3.104 4.201 <td>73</td> <td>0.333</td> <td>45.084</td> <td>-83.089</td> <td>3.291</td>	73	0.333	45.084	-83.089	3.291
5 0.157 38.563 -15.945 1.442 6 0.245 3122 -77.735 2.330 7 0.127 29.968 34.992 1.209 8 0.157 18.548 65.130 1.485 90 0.274 19.685 0.000 2.673 90 0.225 26.174 -103.392 2.137 11 0.245 27.957 -104.621 2.353 12 0.225 46.253 -33.690 2.142 13 0.441 2.4475 61.699 4.386 44 0.353 3.4723 11.634 3.437 15 0.206 34.802 -90.000 1.980 16 0.471 2.3687 -70.017 4.636 0.471 2.3687 -70.017 4.636 0.471 2.3687 -70.017 4.636 10 0.255 38.372 15.255 2.258 11 0.382 26.720 -83.991 3.783 12 0.216 31.001 -60.945 2.039 13 0.245 29.983 -65.566 2.393 14 0.265 18.146 -79.114 2.621 15 0.382 40.740 45.000 3.781 16 0.353 47.365 -28.740 3.501 17 0.176 26.116 64.983 1.639 18 0.235 18.259 -17.650 2.286 19 0.176 28.351 57.265 1.648 00 0.199 7.863 -57.955 1.868	74	0.245	43.926	-90.000	2.376
6 0.245 31.232 - 77.735 2.330 7 0.127 29.968 34.992 1.209 8 0.157 18.548 53.130 1.485 9 0.274 19.665 0.000 2.673 0 0.225 26.174 - 103.392 2.137 10 0.252 86.17 - 70.017 4.836 10 0.471 2.475 6.1699 4.386 10 0.471 2.687 - 70.017 4.636 10 0.471 2.687 - 70.017 4.636 10 0.471 2.653 2.249 2.353 10 0.255 38.372 15.255 2.258 11 0.382 26.720 - 83.991 3.783 10 0.255 18.146 - 79.114 2.621 15 0.382 40.704 45.000 13 0.245 29.983 -65.566 2.393 14 0.245 18.146 - 79.114 2.621 15 0.382 40.704 45.000 3.781 16 0.353 47.365 -28.740 3.501 7 0.176 2.6116 64.983 1.639 18 0.235 18.29 -17.650 2.286 19 0.176 28.351 57.265 1.648 10 180 2.57 863 -57.995 1.868	5	0.157	38.563	-15.945	1.442
7 0.127 29.968 34.992 1.209 80 157 15.548 53.130 1.485 99 0.274 19.685 0.000 2.673 10 0.252 26.174 -103.392 2.137 11 0.245 27.957 -104.621 2.353 12 0.225 46.253 -3.3690 2.142 33 0.414 2.4475 61.699 4.386 44 0.353 47.723 11.634 3.437 15 0.206 34.802 -90.000 1.980 66 0.471 2.3673 -1.594 2.162 18 0.343 3.793 -96.710 3.990 19 0.245 2.553 2.249 2.353 10 0.225 3.8372 1.5555 2.256 11 0.362 67.704 45.000 3.781 20 0.16 8.146 -79.114 2.621 15 0.3824 0.740 45.000 3.781 24 2.556 2.286 <td>6</td> <td>0.245</td> <td>31.232</td> <td>-77.735</td> <td>2.330</td>	6	0.245	31.232	-77.735	2.330
8 0.157 18.548 53.130 1.485 9 0.274 19.685 0.000 2.673 0 0.225 26.174 -10.3.392 2.137 1 0.245 27.957 -104.621 2.533 2 0.225 46.253 -33.690 2.142 3 0.441 2.4475 61.699 4.386 4 0.353 34723 11.634 3.437 5 0.206 34.802 -90.000 1.980 6 0.471 2.3687 -70.017 4.636 70 0.225 26.731 1.59.45 2.162 8 0.343 3.379 -96.710 3.390 9 0.245 2.4553 2.249 2.353 00 0.235 38.372 15.255 2.258 11 0.362 26.720 3.891 3.783 20 21.61 51.001 -80.945 2.039 30 0.245 18.259 -17.650 2.8740 50 0.382 47.905 <td>7</td> <td>0.127</td> <td>29.968</td> <td>34.992</td> <td>1.209</td>	7	0.127	29.968	34.992	1.209
9 0.274 19.685 0.000 2.673 10 0.225 26.174 -103.392 2.137 10 0.245 27.957 -104.621 2.853 10 0.252 46.253 -33.690 2.142 13 0.441 24.475 61.699 4.386 14 0.453 34.723 11.634 3.437 15 0.206 34.802 90.000 1.980 16 0.471 23.687 -70.017 4.836 17 0.255 26.731 -15.945 2.162 18 0.343 3.793 -96.710 3.990 19 0.425 25.553 2.249 2.353 10 0.235 38.372 15.255 2.258 11 0.342 2.6720 -83.991 3.783 12 0.216 3.101 60.945 2.039 13 0.245 2.9470 3.501 14 0.255 1.644 3.501 17 0.176 2.8351 5.765 1.648<	8	0.157	18.548	53.130	1.485
00 0.25 26.174 103.392 21.37 11 0.245 27.957 -104.621 2.353 12 0.225 46.253 -33.690 2.142 13 0.441 24.475 61.699 4.386 14 0.353 34.723 11.634 3.437 15 0.206 34.802 -90.000 1.980 16 0.471 23.687 -70.017 4.636 17 0.225 26.731 -15.945 2.162 18 0.343 373 -96.710 3.900 19 0.245 24.553 22.249 2.353 10 0.322 270 -83.991 3.783 10 0.322 270 -83.991 3.783 10 0.322 270.0 3.791 3.781 10 0.245 18.259 -17.650 2.286 10 0.176 28.15 57.265 1.648 10 0.176 28.315 57.265 1.648 10 0.176 7.863	9	0.274	19.685	0.000	2.673
11 0.245 27.957 -104.621 2.53. 12 0.225 46.253 -33.690 2.142 13 0.441 2.4475 61.699 4.386 14 0.353 34.723 11.634 3.437 15 0.206 34.802 -90.000 1.980 16 0.471 2.3687 -70.017 4.636 17 0.225 26.731 -15.945 2.162 18 0.343 3.3793 -96.710 3.390 19 0.245 2553 2.249 2.353 10 0.325 38.372 15.255 2.258 11 0.382 26.720 -83.991 3.783 12 0.216 31.001 -60.945 2.039 13 0.245 29.983 -65.56 2.939 14 0.265 18.146 -79.114 2.621 15 0.382 0.740 45.000 3.781 16 0.353 47.365 -28.740 3.501 170 176 2	30	0.225	26.174	-103.392	2.137
20 225 46 253 33.690 2142 30 0.441 24.475 61.699 4.386 40 0.353 34723 11.634 3.437 50 206 34.802 90.000 1980 60 0.471 23.687 -70.017 4.636 70 0.225 26.731 -15.945 2.162 80 343 33.793 -96.710 3.900 90 0.425 26.53 2.249 2.353 90 0.245 26.720 -83.991 3.783 90 0.245 9.8394 2.052 91 0.245 9.983 -65.556 2.393 92 0.245 18.146 -79.114 2.621 95 0.382 47.704 45.000 3.781 96 0.353 47.365 -2.8740 3.501 77 0.716 26.116 64.983 1.639 90 0.176 <	31	0.245	27.957	-104.621	2.353
33 0.441 24.475 61.699 4.386 44 0.353 34.723 11.634 3.437 5 0.206 34.802 -90.000 1.980 5 0.207 32.687 -70.017 4.836 70 0.225 26.731 -15.945 2.162 80 0.343 373 -96.710 3.90 99 0.245 24.553 22.249 2.353 10 0.322 570 -83.991 3.783 10 0.322 570 -83.991 3.783 10 0.322 56.556 2.039 13 0.424 2.9963 -65.556 2.039 13 0.425 1.001 -60.945 2.039 13 0.425 1.814 -79.114 2.621 15 0.324 40.740 45.000 3.781 16 0.325 1.639 1.639 19 0.176 28.2541 3.631	32	0.225	46.253	-33.690	2.142
4 0.353 34.723 11.634 34.37 5 0.206 34.802 -90.000 1.980 6 0.471 23.687 -70.017 4.636 7 0.225 26.731 -15.945 2.162 8 0.343 33.793 -96.710 3.390 9 0.245 24.553 22.249 2.353 10 0.322 26.720 -83.991 3.783 2 0.216 31.001 -60.945 2.039 3 0.245 29.993 -65.56 2.039 3 0.245 2.993 3.783 0 0.353 47.740 45.000 3.781 6 0.353 47.365 -28.740 3.501 7 0.716 26.116 64.983 1.639 8 0.235 18.25 -7.265 1.248 9 0.176 28.351 57.265 1.648 00 1.986 -57.995	3	0.441	24.475	61.699	4.386
5 0.206 34.802 90.000 1.980 6 0.471 23.687 -70.017 4.636 7 0.225 26.731 -15.945 2.162 8 0.343 33.793 -96.710 3.390 9 0.245 24.553 22.249 2.353 0 0.235 38.372 15.555 2.258 1 0.342 26.720 -83.991 3.783 2 0.2101 -60.945 2.039 3 0.245 9.983 -65.566 2.393 4 0.265 18.146 -79.114 2.621 5 0.382 0.704 45.000 2.286 6 0.353 47.365 -28.740 3.501 7 1.716 26.116 64.983 1.639 9 0.216 82.55 1.648 0.235 1.529 -17.660 2.286 9 0.176 28.351 57.265 1.648	4	0.353	34.723	11.634	3.437
0 0.41 23.687 .70.017 4.636 7 0.225 26.731 .15.945 2.162 8 0.343 33.793 .96.710 3.390 9 0.245 24.553 22.249 2.353 0 0.325 38.772 15.255 2.258 1 0.382 26.70 -83.991 3.783 2 0.216 31.001 -60.945 2.039 3 0.45 19.993 -65.56 2.393 4 0.265 18.146 -79.114 2.621 5 0.382 40.740 45.000 3.781 6 0.353 47.365 2.8740 3.501 7 0.176 26.199 -17.650 2.286 9 0.176 28.51 57.265 1.648 00 0.196 7.833 -57.995 1.868	5	0.206	34.802	-90.000	1.980
7 0.25 26.731 .15.945 2.162 8 0.343 33.793 .96.710 3.390 9 0.245 24.553 22.249 2.353 10 0.235 38.372 15.255 2.558 10 0.82 26.720 .83.991 3.763 2 0.245 31.001 .60.945 2.039 3 0.245 29.983 .65.56 2.039 4 0.265 18.146 .79.114 2.621 5 0.382 0.740 45.000 3.781 6 0.353 47.365 -28.740 3.501 7 0.176 26.116 64.983 1.639 8 0.235 18.259 .16.48 9 0.176 28.351 57.265 1.648 0.196 7.863 .57.995 1.868	6	0.471	23.687	-70.017	4.636
8 0.34 33.793 .96.710 3.390 9 0.245 24.553 22.249 2.353 0 0.235 38.372 15.255 2.258 1 0.362 26.720 .83.991 3.783 2 0.216 31.001 .60.945 2.039 3 0.245 29.963 .65.566 2.393 4 0.265 18.146 .79.114 2.621 5 0.382 0.704 45.000 .3781 6 0.353 47.365 -28.740 .3501 7 0.176 26.116 64.983 1.639 9 0.216 82.351 57.265 1.648 0 0.196 7.863 .57.995 1.868	7	0.225	26.731	-15.945	2.162
99 0.245 24.553 22.249 2.353 00 0.235 38.372 15.255 2.258 10 0.382 270 -8.3991 3.763 12 0.216 31.001 -60.945 2.039 13 0.245 29.983 -65.556 2.939 14 0.265 18.146 -79.114 2.621 15 0.382 40.740 45.000 3.781 16 0.353 47.365 2.8740 3.501 17 0.176 28.129 -17.650 2.286 19 0.176 28.351 57.265 1.648 10 0.196 7.863 -57.995 1.868	88	0.343	33.793	-96.710	3.390
0 0.235 38.372 15.255 2.258 1 0.382 26.720 -83.991 3.763 2 0.216 3.101 -60.945 2.039 3 0.245 29.983 -65.556 2.393 4 0.265 18.146 -79.114 2.621 5 0.382 0.740 45.000 3.781 6 0.353 47.365 -28.740 3.501 70 1.716 26.116 64.983 1.639 19 0.216 25.95 1.7660 2.286 19 0.176 28.351 57.265 1.648 10 0.198 7.863 -5.7985 1.868	39	0.245	24.553	22.249	2.353
11 0.382 26.720 -83.991 3.783 20 21.6 31.001 -60.945 2.039 30 245 29.963 -65.566 2.393 30 0.265 18.146 -79.114 2.621 50 0.382 40.740 45.000 3.781 60 0.353 47.365 -2.8740 3.501 70 176 26.116 64.983 16.39 90 0.176 28.351 57.265 1.648 000 0.196 7.863 -57.995 1.868	90	0.235	38.372	15.255	2.258
12 0.216 31.001 -60.945 2.039 3 0.245 29.993 -65.556 2.393 4 0.265 1.416 -79.114 2.621 15 0.382 40.740 45.000 3.781 16 0.353 47.365 -2.8740 3.501 17 0.176 26.1829 -17.650 2.286 19 0.176 28.351 57.265 1.648 100 0.196 7.863 -57.995 1.868	91	0.382	26.720	-83.991	3.783
33 0.245 29.983 -65.556 2.393 44 0.265 18.146 -79.114 2.621 55 0.382 0.7740 45.000 3.781 66 0.353 47.365 -28.740 3.501 70 0.176 26.116 64.983 1.639 80 0.235 18.259 -17.650 2.286 99 0.176 28.351 57.265 1.648 000 0.196 7.863 -57.995 1.868	92	0.216	31.001	-60.945	2.039
44 0.265 18.146 -79.114 2.621 5 0.382 40.740 45.000 3.781 66 0.353 47.365 -28.740 3.639 17 0.176 26.116 64.983 1.639 18 0.235 18.259 -17.650 2.286 19 0.176 28.351 57.265 1.648 100 0.196 7.863 -57.995 1.868	93	0.245	29.983	-65.556	2.393
55 0.382 40.740 45.000 3.781 60 0.353 47.365 -28.740 3.501 70 0.176 26.116 64.983 1.639 80 0.235 18.259 -17.650 2.286 99 0.176 28.351 57.265 1.648 00 0.196 7.863 -57.995 1.868	94	0.265	18.146	-79.114	2.621
46 0.353 47.365 -28.740 3.501 7 0.176 26.116 64.983 1.639 80 0.235 18.259 -17.650 2.286 99 0.176 28.351 57.265 1.648 00 0.196 7.863 -57.995 1.868	95	0.382	40.740	45.000	3.781
17 0.176 26.116 64.983 1.639 18 0.235 18.259 -17.650 2.286 19 0.176 28.351 57.265 1.648 00 0.196 7.863 -57.995 1.868	96	0.353	47.365	-28.740	3.501
18 0.235 18.259 -17.650 2.286 19 0.176 28.351 57.265 1.648 00 0.196 7.863 -57.995 1.868	97	0.176	26.116	64.983	1.639
9 0.176 28.351 57.265 1.648 00 0.196 7.863 -57.995 1.868	98	0.235	18.259	-17.650	2.286
00 0.196 7.863 -57.995 1.868	99	0.176	28.351	57.265	1.648
	100	0.196	7.863	-57.995	1.868

16. Simpan gambar SEM tersebut dalam bentuk JPEG. Klik File \rightarrow Save As \rightarrow Jpeg.

Model	LogNormal
Equation	y = y0 + A/(sqrt(2*pi)*w*x)*exp(- (ln(x/xc))^2/(2*w^2))
Plot	Counts
у0	1,78059 ± 0,32133
хс	10,0347 ± 0,09106
w	0,17943 ± 0,01095
A	65,96544 ± 2,98872
Reduced Chi-Sqr	0,41356
R-Square (COD)	0,99086
Adj. R-Square	0,98538
Model	LogNormal
Equation	y = y0 + A/(sqrt(2*pi)*w*x)*exp(- (ln(x/xc))^2/(2*w^2))
Plot	Counts
у0	-0,36098 ± 1,716
хс	6,14325 ± 0,22505
w	0,31117 ± 0,05287
A	105,49075 ± 10,734
Reduced Chi-Sqr	4,23525
R-Square (COD)	0,9729
Adj. R-Square	0,9458

∟ampiran 11 Analisa Distribusi Ukuran Partikel Hasil SEM

Model	LogNormal
Equation	y = y0 + A/(sqrt(2*pi)*w*x)*exp(- (ln(x/xc))^2/(2*w^2))
Plot	Counts
у0	0,94441 ± 1,11245
хс	5,93189 ± 0,10395
w	0,14713 ± 0,02081
A	43,50439 ± 4,69994
Reduced Chi-Sqr	4,1387
R-Square (COD)	0,95839
Adj. R-Square	0,92719

Gambar L.11.1 Distribusi Panjang Partikel Hasil SEM Morfologi Microrods Variasi Waktu Sonikasi (a) 15 menit, (b) 30 menit, dan (C) 45 menit

5

L.11.2 Distribusi Lebar Partikel HasilSEM Morfologi Microrods

Gambar L.11.2 Distribusi Lebar Partikel Hasil SEM Morfologi *Microrods* Variasi Waktu Sonikasi (a) 15 menit, (b) 30 menit, dan (C) 45 menit

L.11.3 Distribusi Leba	Partikel Hasil SEM	Morfologi Octahedral
------------------------	--------------------	----------------------

Model	LogNormal
Equation	y = y0 + A/(sqrt(2*pi)*w*x)*exp(- (ln(x/xc))^2/(2*w^2))
Plot	Counts
y0	0,55215 ± 0,25599
хс	9,54147 ± 0,09906
w	0,24271 ± 0,01431
A	42,44879 ± 1,72775
Reduced Chi-Sqr	0,06848
R-Square (COD)	0,99569
Adj. R-Square	0,99139

	LogNormal				
Model	Loginoimai				
F	y = y0 + A/(sqrt(2*pi)*w*x)*exp(-				
Equation	(ln(x/xc))^2/(2*w^2))				
Plot	Counts				
y0	0,25794 ± 0,30658				
хс	8,06974 ± 0,16037				
w	0,22217 ± 0,02476				
A	35,38824 ± 2,80821				
Reduced Chi-Sqr	0,3652				
R-Square (COD)	0,97297				
Adj. R-Square	0,95675				
Model	LogNormal				
	y = y0 + A/(sqrt(2*pi)*w*x)*exp(-				
Equation	(ln(x/xc))^2/(2*w^2))				
Plot	Counts				
уO	0,63669 ± 0,61819				
хс	7,17454 ± 0,35428				
w	0,24072 ± 0,04983				
A	22,38101 ± 4,01424				
Reduced Chi-Sqr	0,62272				
R-Square (COD)	0,94207				
Adj. R-Square	0,85518				

Gambar L.11.2 Distribusi Lebar Partikel Hasil SEM Morofologi *Octahedral* Variasi Waktu Sonikasi (a) 15 menit, (b) 30 menit, dan (C) 45 menit

Lampiran 12. Perhitungan Rendemen

Dumus % Dandaman:	Massa reaktan	X 100%
Rumus % Rendemen.	Massa produk	X 100%

1. Waktu 15 menit

(1) % Rendemen = $\frac{0.4272}{0.04}$ X 100% = 9.36% (2) % Rendemen = $\frac{0.4272}{0.04}$ X 100% = 9.36% (3) % Rendemen = $\frac{0.4272}{0.05}$ X 100% = 11.70% (4) % Rendemen = $\frac{0.4272}{0.06}$ X 100% = 14.04% (5) % Rendemen = $\frac{0.4272}{0.06}$ X 100% = 14.04%

2. Waktu 30 menit

(1) % Rendemen =
$$\frac{0.4272}{0.07}$$
 X 100% = 16.38%

(2) % Rendemen =
$$\frac{0.4272}{0.08}$$
 X 100% = 18.72%

(3) % Rendemen = $\frac{0.4272}{0.06}$ X 100% = 18.72% (4) % Rendemen = $\frac{0.4272}{0.06}$ X 100% = 18.72%

(5) % Rendemen =
$$\frac{0.4272}{0.10}$$
 X 100% = 23.41%

3. Waktu 45 menit

(1) % Rendemen =
$$\frac{0.4272}{0.09}$$
 X 100% =21.06%

(2) % Rendemen = $\frac{0.4272}{0.10}$ X 100% = 23.41%

(3) % Rendemen =
$$\frac{0.4272}{0.11}$$
 X 100% = 25.74%

(4) % Rendemen =
$$\frac{0.4272}{0.12}$$
 X 100% = 28.09%

(5) % Rendemen =
$$\frac{0.4272}{0.19}$$
 X 100% = 44.47%

Lampiran 13. Perhitungan Rasio Mol Berdasarkan Hasil EDX

- 1. Variasi 15 menit
 - a. O = Ar x % atomic = 15,99 g/mol x 57,64 mol = 921,67 g
 - b. C = Ar x % atomic = 12,011 g/mol x 35,33 mol = 424,35 g
 - c. Ce = Ar x % atomic = 140,16 g/mol x 7,03 mol = 985,32 g

Massa total = 921,67 g + 424,35 g + 985,32 g = 2332 g

$$O = \frac{\text{massa 0}}{\text{massa total}} = \frac{921,67 \text{ g}}{2332 \text{ g}} = 0,3952 \times 100\% = 39,55\%$$

$$C = \frac{\text{massa C}}{\text{massa total}} = \frac{424,35 \text{ g}}{2332 \text{ g}} = 0,1820 \times 100\% = 18,20\%$$

$$Ce = \frac{\text{massa Ce}}{\text{massa total}} = \frac{985,32 \text{ g}}{2332 \text{ g}} = 0,4225 \times 100\% = 42,25\%$$

Dari hasil %weight menunjukkan bahwa %atomic merupakan hasil mol dari setiap unsur, sehingga didapatkan perbandingan mol anatar unsur Ce:C:O adalah 1:5:8

- 2. Variasi 30 menit
 - a. O = Ar x % atomic = 15,99 g/mol x 56,73 mol = 907,11 g
 - b. C = Ar x % atomic = 12,011 g/mol x 32,72 mol = 392,99 g
 - c. Ce = Ar x % atomic = 140,16 g/mol x 10,55 mol = 1478,68 g Massa total = 907,11 g + 392,99 g + 1478,68 g = 2779 g $O = \frac{\text{massa 0}}{\text{massa total}} = \frac{907,11 \text{ g}}{2779 \text{ g}} = 0,3264 \text{ x } 100\% = 32,67 \%$ $C = \frac{\text{massa C}}{\text{massa total}} = \frac{392,99 \text{ g}}{2779 \text{ g}} = 0,1414 \text{ x } 100\% = 14,15 \%$ $Ce = \frac{\text{massa Ce}}{\text{massa total}} = \frac{1478,68 \text{ g}}{2779 \text{ g}} = 0,5321 \text{ x } 100\% = 53,19 \%$

Dari hasil %weight menunjukkan bahwa %atomic merupakan hasil mol dari setiap unsur, sehingga didapatkan perbandingan mol anatar unsur Ce:C:O adalah 1:3:5

- 3. Variasi 45 menit
 - a. O = Ar x % atomic = 15,99 g/mol x 52,80 mol = 844,272 g
 - b. C = Ar x % atomic = 12,011 g/mol x 38,96 mol = 467,95 g
 - c. Ce = Ar x % atomic = 140,16 g/mol x 8,24 mol =1154,92 g Massa total = 844,272 g + 467,95 g + 1154,92 g = 2467 g O = $\frac{\text{massa 0}}{\text{massa total}} = \frac{844,272 \text{ g}}{2467 \text{ g}} = 0,3423 \times 100\% = 34,23 \%$ C = $\frac{\text{massa C}}{\text{massa total}} = \frac{467,95 \text{ g}}{2467 \text{ g}} = 0,1896 \times 100\% = 18,96 \%$ Ce = $\frac{\text{massa Ce}}{\text{massa total}} = \frac{1154,92 \text{ g}}{2467 \text{ g}} = 0,4681 \times 100\% = 46,81 \%$

Dari hasil %weight menunjukkan bahwa %atomic merupakan hasil mol dari setiap unsur, sehingga didapatkan perbandingan mol anatar unsur Ce:C:O adalah 1:4:6

Lampiran 14. Jadwal Pelaksanaan Penelititan Skripsi

Nama / NIM	:	Rahma Fatimatuzzahro / 19630102						
Nama Dosen	:	Nur Aini,	Nur Aini, M.Si					
Pembimbing Skripsi								
Judul Skripsi	:	Sintesis	Kompleks	Cerium	(III)	Dengan	Ligan	1,3,5-
		Benzenetrikarboksilat		(H₃BTC)		Menggunakan		Metode
		Sonokimi	а					

JADWAL PELAKSANAAN PENELITIAN SKRIPSI

No	Kegiatan	Tanggal Kegiatan
1	Pelaksanaan seminar proposal skripsi	08 Mei 2023
2	Disetujui oleh pembimbing skripsi untuk perijinan masuk	22 Juni 2023
	di laboratorium	
3	Disetujui oleh ketua laboratorium dan ketua prodi untuk	23 Juni 2023
	perijinan masuk laboratorium	
4	Mulai masuk laboratorium untuk mengumpulkan data	10 Juli 2023
	penelitian skripsi	
5	Mulai proses penulisan pembahasan hasil data penelitian	02 September 2023
	skripsi	
6	Disetujui perijinan bebas tanggungan di laboratorium	
7	Mengikuti ujian komprehensif tulis bidang kimia dan	20 Juli 2023
	status lulus	
8	Mengikuti ujian komprehensif tulis bidang agama dan	14 April 2023
	status lulus	
9	Mendaftar seminar hasil	16 November 2023
10	Pelaksanaan seminar hasil	23 November 2023
11	Mendaftar ujian skripsi	06 November 2023
12	Pelaksanaan ujian skripsi	14 Desember 2023
13	Selesai revisi naskah setelah ujian skripsi	22 Desember 2023

Malang, Mengetahui, Dosen Pembimbing Skripsi

Lampiran 16. Rencana Anggaran Penelitian Skripsi

Nama / NIM	:	Rahma Fatimatuzzahro / 19630102							
Nama Dosen	:	Nur Aini,	Nur Aini, M.Si						
Pembimbing Skripsi									
Judul Skripsi	:	Sintesis	Kompleks	Cerium	(III)	Dengan	Ligan	1,3,5-	
		Benzenetrikarboksilat		(H₃BTC)		Menggunakan		Metode	
		Sonokimia	a						

RENCANA ANGGARAN PENELITIAN SKRIPSI

No	Uraian	Merk	Jumlah	Satuan	Harga	Jumlah	Sumber	Tempat
					Satuan		Dana	Pembelian/
								Analisa
1	Pembelian	Sigma Aldrich	-	-	-	-	Subsidi	-
	Logam							
	Ce(NO ₃) ₃ .6H ₂ O							
2	Pembelian	Sigma Aldrich	-	-	285.000	285.000	Mandiri	Sigma
	Ligan H₃BTC	1003380670						aldrich.com
3	Pembelian	Merck 103053	600	mililiter	1.300	780.000	Mandiri	Shagufta
	DMF							laboratory
4	Pembelian	-	5	liter	1.000	5.000	Mandiri	Panadia
	Akuades							
5	Pembelian	-	1	liter	35.000	35.000	Mandiri	Panadia
	Etanol 96%							
6	Pembelian	Whatman 42	30	biji	7.500	225.000	Mandiri	Nura
	kertas saring							Gemilang
7	Pembelian Tisu	NICE	5	pack	8.000	40.000	Mandiri	Nura
								Gemilang
7	Pembelian	Klin pak	1	pack	8.000	8.000	Mandiri	Nura
	Aluminium foil							Gemilang
8	Pembelian	-	6	biji	1.000	6.000	Mandiri	Nura
	Botol sampel							Gemilang
9	Karakterisasi	-	3	sampel	278.000	834.000	Mandiri	Greenlabs
	XRD							Bandung
10	Karakterisasi	-	3	sampel	450.000	1.350.000	Mandiri	Institut
	SEM EDX							Teknologi
								Sepuluh
								Nopember
								Surabaya