SKRIPSI

Oleh: SYILFIA AINUR ROHMA BASHOFI NIM. 16630077

PROGRAM STUDI KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2023

SKRIPSI

Oleh: SYILFIA AINUR ROHMA BASHOFI NIM. 16630077

Diajukan Kepada: Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang Untuk Memenuhi Salah Satu Persyaratan dalam Memperoleh Gelar Sarjana Sains (S.Si)

PROGRAM STUDI KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2023

SKRIPSI

Oleh: SYILFIA AINUR ROHMA BASHOFI NIM. 16630077

Telah Diperiksa dan Disetujui untuk Diuji Tanggal: 16 Juni 2023

Pembimbing I

Pembimbing II

Dr. Anton Prasetyo, M. Si NIP. 19770925 200604 1 003

Ach, Nashichuddin, M.A NIP: 10730705 200003 1 002

SKRIPSI

Oleh: SYILFIA AINUR ROHMA BASHOFI NIM. 16630077

Telah Dipertahankan di Depan Dewan Penguji Skripsi dan Dinyatakan Diterima Sebagai Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Sains (S.Si) Tanggal: 16 juni 2023

Penguji Utama
Ketua Penguji
Sekertaris Penguji
Anggota Penguji

: Himmatul Baroroh, M.Si NIP. 19750730200312 2 001

: Lu'luatul Hammidatul Ulya, M.Sc NIDT. 19900906 20180201 2 239

i : Dr. Anton Prasetyo, M. Si NIP. 19770925 200604 1 003

: Ach. Nashichuddin, M.A NIP. 10730705 200003 1 002

PERNYATAAN KEASLIAN TULISAN

Saya yang bertandatangan dibawah ini:

Nama	: Syilfia Ainur Rohma Bashofi
NIM	: 16630077
Jurusan	: Kimia
Fakultas	: Sains dan Teknologi
Judul penelitian	: Sintesis dan Uji Aktifitas Material Fotokatalis Bi ₄ Ti ₃ O ₁₂ , SrBi ₄ Ti ₄ O ₁₅ , dan Sr ₂ Bi ₄ Ti ₅ O dalam Mendegradasi Rhodamin B

Menyatakan dengan sebenarnya bahwa skripsi yang saya tulis ini adalah benar-benar hasil karya saya sendiri, bukan merupakan pengambilan data, tulisan atau pikiran orang lain yang saya akui sebagai tulisan atau pikiran saya sendiri, kecuali dengan mencantumkan sumber cuplikan pada daftar pustaka. Apabila dikemudian hari terbukti atau dapat dibuktikan skripsi ini hasil jiplakan maka saya bersedia menerima konsekuensi atas perbuatan tersebut.

> Malang, 7 Juni 2023 Yang membuat pernyataan,

Syilfia Ainur Rohma Bashofi NIM. 16630077

HALAMAN PERSEMBAHAN

Skripsi ini saya persembahkan untuk:

Kedua orang tua tercinta, Bapak Shofi'í dan Ibu Siti Rohma yang senantiasa memberikan kasih sayang, didikan serta do'a yang selalu mengiringi tiap langkah saya. Kepada sahabat-sahabat kimia UIN Malang yang membantu penulis selama masa penulisan skripsi. Semoga suatu saat kebersamaan dan pertemanan yang singkat ini bisa berbuah di kemudian hari.

Bapak ibu dosen serta guru yang telah membimbing serta mengajari saya dengan penuh ketulusan dan kesabaran.

KATA PENGANTAR

Puji Syukur kehadirat Allah Swt. yang telah memberikan rahmat, taufik dan hidayah-Nya. Selawat dan salam semoga tetap tercurahkan kepada junjungan kita Nabi besar Muhammad saw., keluarga, sahabat, serta pengikutnya. Atas *ridho* dan kehendak Allah Swt. penulis dapat menyelesaikan skripsi ini yang berjudul **"Sintesis dan Uji Aktifitas Material Fotokatalisis Bi**₄**Ti**₃**O**₁₂, **SrBi**₄**Ti**₄**O**₁₅ **dan Sr**₂**Bi**₄**Ti**₅**O**₁₈ **dalam Mendegradasi Rhodamin B"** sebagai syarat menyelesaikan tugas akhir kuliah. Penulis mengucapkan terimakasih kepada semua pihak yang telah membantu dalam penyelesaian naskah skripsi ini, khususnya kepada:

- Prof. Dr. M. Zainuddin, MA selaku Rektor Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Dr. Sri Harini, M.Si selaku Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Rachmawati Ningsih, M.Si selaku Ketua Program Studi Kimia Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Dr. Anton Prasetyo, M.Si selaku Dosen Pembimbing I Program Studi Kimia Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Ach. Nashichuddin, M.A selaku Dosen Pembimbing II Program Studi Kimia Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Segenap dosen, laboran, dan pegawai yang telah banyak membantu dan memberikan pelayanan, pengalaman dan wawasan kepada penulis selama penyusunan skripsi ini.
- 7. Kedua orang tua serta kakak-kakak yang memberi doá, dukungan dan bimbingan kepada penulis dalam penulisan skripsi ini.
- 8. Seluruh teman-teman yang telah membantu dalam penyelesaian proposal penulisan skripsi ini.
- 9. Semua pihak yang tidak dapat penulis sebutkan satu persatu, yang telah banyak membantu dalam penyelesaian penulisan skripsi ini.

Penulis menyadari bahwa masih terdapat banyak kekurangan dalam penyusunan naskah skripsi ini dan juga masih jauh dari sempurna. Segala kritik dan

saran yang bersifat membangun dan membantu penulis agar lebih berkembang lagi tentunya sangat diharapkan oleh penulis. Semoga skripsi ini dapat memberikan manfaat bagi penulis dan pembaca pada umumnya.

Malang, 13 Maret 2023

Penulis

DAFTAR ISI

HALAMAN PERSETUJUAN HALAMAN PENGESAHAN PERNYATAAN KEASLIAN TULISAN HALAMAN PERSEMBAHAN KATA PENGANTAR DAFTAR ISI DAFTAR LAMPIRAN DAFTAR GAMBAR DAFTAR TABEL DAFTAR PERSAMAAN ABSTRAK	iii iiii iv iv vi viii xiii xiii xiii xiii
HALAMAN PENGESAHAN PERNYATAAN KEASLIAN TULISAN HALAMAN PERSEMBAHAN KATA PENGANTAR DAFTAR ISI DAFTAR LAMPIRAN DAFTAR GAMBAR DAFTAR TABEL DAFTAR PERSAMAAN ABSTRAK ABSTRACT	iii iv v v vi viii vi viii x xi
PERNYATAAN KEASLIAN TULISAN HALAMAN PERSEMBAHAN KATA PENGANTAR DAFTAR ISI DAFTAR LAMPIRAN DAFTAR GAMBAR DAFTAR TABEL DAFTAR PERSAMAAN ABSTRAK ABSTRACT	iv v vi vi viii x xi
HALAMAN PERSEMBAHAN KATA PENGANTAR DAFTAR ISI DAFTAR LAMPIRAN DAFTAR GAMBAR DAFTAR TABEL DAFTAR PERSAMAAN ABSTRAK	v vi viii xiii xiii xiii
KATA PENGANTAR DAFTAR ISI DAFTAR LAMPIRAN DAFTAR GAMBAR DAFTAR TABEL DAFTAR PERSAMAAN ABSTRAK ABSTRACT	vi viii x xi
DAFTAR ISI DAFTAR LAMPIRAN DAFTAR GAMBAR DAFTAR TABEL DAFTAR PERSAMAAN ABSTRAK ABSTRACT	viii x xi
DAFTAR LAMPIRAN DAFTAR GAMBAR DAFTAR TABEL DAFTAR PERSAMAAN ABSTRAK	X
DAFTAR GAMBAR DAFTAR TABEL DAFTAR PERSAMAAN ABSTRAK ABSTRACT	xi
DAFTAR TABEL DAFTAR TABEL DAFTAR PERSAMAAN ABSTRAK ABSTRACT	····· Al
DAFTAR TABEL DAFTAR PERSAMAAN ABSTRAK ABSTRACT	viii
ABSTRAK	····· XIII
ABSTRACT	XIV
ABSTRACT	····· XV
	XVI
······································	XVII
BAB I PENDAHULUAN	1
1.1 Latar Belakang	
1.2 Rumusan Masalah	5
1.3 Tuiuan	5
1.4 Batasan Masalah	5
1.5 Manfaat	
BAB II TINJAUAN PUSTAKA	6
2.1 Senyawa Aurivillius	
2.2 Sifat Fotokatalis BIT dan SBT4	
2.3 Metode Lelehan Garam	
2.4 Sintesis Senyawa Aurivillius dengan Metode Lelehan Gan	ram 12
2.5 Teknik Difraksi Sinar-X	
2.6 Scanning Electron Microscopy	17
2.7 Spektroskopi UV-Vis	17
2.8 UV-Vis <i>DRS</i>	
2.9 Peran Manusia sebagai Khalifah di Bumi	
C C	
DAD HIMERODELOCIDENELITIAN	22
BAB III METODELOGI PENELITIAN	22
3.1 Waktu dan Tempat penelitian	
3.2 Alat dan Bahant	
3.2.1 Alat	
3.2.2 Bahan	
3.3 Rancangan Penelitian	22
3.4 Tahapan Penelitian	23
3.5 Prosedur Kerja	24
3.5.1 Sintesis BIT, SBT4 dan SBT5 dengan Metode Leleh	nan Garam
	24
3.5.2 Karakterisasi Sampel Produk BIT, SBT4 dan SBT5	24

	3.5.2.1 Karakterisasi dan Analisis Hasil Sntesis dengan	24
	XRD	24
	SEM	24
	3.5.2.3 Karakterisasi dan Analisis Hasil Sntesis dengan	
	Spektroskopi UV-Vis DRS	25
3.6	Uji Fotokatalis Hasil Sintesis dengan Spektroskopi UV-Vis	25
	3.6.1 Pembuatan Larutan Induk Rhodamin B	25
	3.6.2 Pembuatan Kurva Standar Larutan Rhodamin B	25
	3.6.3 Pengujian Kestabilan Larutan Rhodamin B	25
	3.6.4 Pengujian Adsorpsi-Desorpsi Senyawa BIT, SBT4 dan SBT5	0.6
	3.6.5 Pengujian Aktivitas Fotokatalis dalam Degradasi Rhodamin B	26
		26
3.7	Analisis Data	27
	3.7.1 Analisis Data XRD	27
	3.7.2 Analisis Data SEM	27
	3.7.3 Analisis Data UV-Vis DRS	27
	3.7.4 Analisis Data UV-Vis	28
RAR	IV PEMBAHASAN	29
<u>4</u> 1	Sintesis BIT_SBT4 dan SBT5 dengan Metode Lelehan Garam	29
4.2	Karakterisasi BIT SBT4 dan SBT5 Menggunakan XRD	30
4.3	Karakterisasi BIT, SBT4 dan SBT5 Menggunakan SEM	33
4.4	Karakterisasi BIT, SBT4 dan SBT5 Menggunakan UV-Vis DRS	55
		34
4.5	Uji Aktifitas Fotokatalitik BIT, SBT4 dan SBT5 menggunakan	2.5
	Rhodamin-B	36
	4.5.1 Spektra UV-Vis Rhodamin B	36
	4.5.2 Pembuatan Kurva Standar Rhodamin B	31
	4.5.3 Uji Kestabilan Larutan Knodamin-B	31
	4.5.4 Uji Kemampuan Adsorpsi Senyawa BII, SB14 dan SB15	20
	4.5.5 Liii Degradagi Samuqua DIT, SDT4 dan SDT5 Tarkadan	38
	4.5.5 Uji Degradasi Senyawa BII, SB14 dan SB15 Ternadap Dhodomin D	40
16	Riloualilli-D Domanfactor Material Estalatelia dalam Darsnaktif Islam	40
4.0	remainaatan Matemai Fotokatans dalam refspektii Islam	43
BAB	V PENUTUP	45
5.1	Kesimpulan	45
5.2	Saran	45
DAFT	TAR PUSTAKA	47
T A 1/1	DID A N	50
LAN		30

DAFTAR LAMPIRAN

Lampiran 1	Diagram Alir	46
Lampiran 2	Perhitungan	54
Lampiran 3	Data Standart XRD JCPDS	57
Lampiran 4	Data Standart XRD ICSD	65
Lampiran 5	Hasil Karakterisasi Menggunakan XRD	72
Lampiran 6	Hasil Analisis Pengotor Senyawa BIT, SBT4 dan SBT5	
		78
Lampiran 7	Hasil Karakterisasi Menggunakan SEM	81
Lampiran 8	Perhitungan Nilai Energi Celah Pita	84
Lampiran 9	Hasil karakterisasi menggunakan EDS	88
Lampiran 10	Perhitungan konsentrasi, % adsorpsi desorpsi dan %	
	degradasi material	90
Lampiran 11	Dokumentasi	98

DAFTAR GAMBAR

Gambar 2.1	Struktur Aurivillius	7
Gambar 2.2	Struktur Aurivillius Lapis 3 BIT	8
Gambar 2.3	Struktur Aurivillius Lapis 4 SBT4	9
Gambar 2.4	Struktur Aurivillius Lapis Lima SBT5	10
Gambar 2.5	Prosedur persiapan dalam sintesis lelehan garam	12
Gambar 2.6	Pola XRD partikel BIT kalsinasi pada suhu 800°C selama	
	2 jam	13
Gambar 2.7	Morfologi sampel BIT dibuat dengan metode lelehan	
	garam pada 800°C selama 2 jam	14
Gambar 2.8	(a) Pola XRD nanosheet SBT4, (b) Morfologi nanosheet	
	SBT4	14
Gambar 2.9	Pola difraksi sinar-X senyawa SBT5	15
Gambar 2.10	Morfologi nanosheet SBT5	16
Gambar 2.11	Skema teknik difraksi sinar-X	16
Gambar 2.12	Skema scanning electron microscopy	17
Gambar 2.13	Skema Spektroskopi UV-Vis	18
Gambar 2.14	Skema UV-Vis DRS	19
Gambar 4.1	Hasil sintesis berturut-turut BIT, SBT4 dan SBT5	30
Gambar 4.2	Pola difraksi sinar-X senyawa BIT	30
Gambar 4.3	Pola difraksi sinar-X senyawa SBT4	31
Gambar 4.4	Pola difraksi sinar-X senyawa SBT5	32
Gambar 4.5	Hasil SEM dengan perbesaran 15.000 senyawa (a.) BIT,	
	(b.) SBT4, dan (c.) SBT5	33
Gambar 4.6	Spektra reflektansi senyawa BIT, SBT4 dan SBT5	34
Gambar 4.7	Plot Tauc senyawa BIT, SBT4 dan SBT5	35
Gambar 4.8	Spektra Rhodamin B	36
Gambar 4.9	Kurva Standar Rhodamin B	37
Gambar 4.10	Spektra Absorbansi UV-Vis uji kestabilan pada (a)	
	kondisi gelap (b) kondisi terang	38
Gambar 4.11	Spektra Absorbansi uji Adsorpsi (a.) BIT, (b.) SBT4, dan	
	(c.) SBT5	39
Gambar 4.12	Spektra absorbansi uji degradasi BIT dengan tiga kali	
	pengulangan	40
Gambar 4.13	Spektra absorbansi uji degradasi SBT4 dengan tiga kali	
	pengulangan	40
Gambar 4.14	Spektra absorbansi uji degradasi SBT5 dengan tiga kali	
	pengulangan	41
Gambar 1.5.1	Difaktogram BIT	78
Gambar 1.5.2	Difaktogram SBT4	79
Gambar 1.5.3	Difaktogram SBT5	80
Gambar 1.6.1	Mortologi BIT pada pembesaran (a) 2000x, (b) 7000x,	. ·
a 1 i i i	(c) 15.000x dan (d) 20.000x	81
Gambar 1.6.2	Mortologi SBT4 pada pembesaran (a) 2000x, (b) 7000x,	<u> </u>
	(c)15.000x dan (d) 20.000x	82

Gambar 1.6.3	Morfologi SBT5 pada pembesaran (a) 2000x, (b) 7000x,	0.2
Gambar 1.7.1	(c) 15.000x dan (d) 20.000x Spektra DRS hubungan % reflektansi dengan panjang gelombang senyawa (a.) BIT, (b.) SBT4, dan (c.) SBT5	83
Gambar 1.7.2	Sepektra DRS energi celah pita BIT	84 85
Gambar 1.7.3	Sepektra DRS energi celah pita SBT4	86
Gambar 1.7.4	Sepektra DRS energi celah pita SBT5	87
Gambar 1.9.1	Proses penggerusan Sampel	98
Gambar 1.9.2	Hasil penggerusan sampel	98
Gambar 1.9.3	Proses kalsinasi sampel	98
Gambar 1.9.4	Hasil kalsinasi sampel	99
Gambar 1.9.5	Proses pencucian dengan aquades panas	99
Gambar 1.9.6	Proses pengeringan dengan oven	99
Gambar 1.9.7	Hasil sintesis senyawa BIT, SBT4 dan SBT5	100
Gambar 1.9.8	Uji kestabilan larutan rhodamin B	100
Gambar 1.9.9	Uji adsorpsi	100
Gambar 1.9.10	Uji aktifitas fotokatalis BIT	101
Gambar 1.9.11	Uji aktifitas fotokatalis SBT4	101
Gambar 1.9.12	Uji aktiftas fotokatalis SBT5	101
Gambar 1.9.13	Bagian dalam fotokatalis reaktor dengan (a) lampu uv	
	komersial, (b) sampel dan (c) hotplate magnetic stirrer	102
Gambar 1.9.14	Fotokatalis reaktor ukuran 40x40 cm	102
Gambar 1.9.15	Lampu bohlam UV komersial	102

DAFTAR TABEL

Table 3.1	Komposisi prekursor senyawa (a.) BIT, (b.) SBT4, dan (c.)	• •
	SB15	23
Table 4.1	Nilai energi celah pita dan panjang gelombang senyawa	
	(a.) BIT (b.) SBT4 dan (c.) SBT5	35
Table 4.2	Hasil uji adsorpsi-desorpsi (a.) BIT, (b.) SBT4, dan (c.)	
	SBT5	39
Tabel 4.3	Hasil uji degradasi Rhodamin-B dengan katalis (a.) BIT,	
	(b.) SBT4, dan (c.) SBT5	42
Tabel 1.10.1	Hasil uji kestabilan larutan rhodamine-B	86

DAFTAR PERSAMAAN

Persamaan 3.1	Persamaan Kubelka-Munk	27
Persamaan 3.2	Persamaan hubungan faktor Kubelka-Munk dengan	
	energi celah pita	27
Persamaan 3.3	Persamaan persen degradasi	28

ABSTRAK

Bashofi, Syilfia Ainur Rohma. 2023. Uji Aktifitas Material Fotokatalisis Bi4Ti3O12, SrBi4Ti4O15, dan Sr2Bi4Ti5O18 Dalam Mendegradasi Rhodamin B. Skripsi. Jurusan Kimia, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing I: Dr. Anton Prasetyo M. Si; Pembimbing II: Ach. Nashichuddin, M.A.

Kata kunci: Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, Sr₂Bi₄Ti₅O₁₈, aktivitas fotokatalitik, metode lelehan garam, Rhodamin-B.

Senyawa Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, dan Sr₂Bi₄Ti₅O₁₈, merupakan senyawa keluarga Aurivillius yang memiliki potensi sebagai material fotokatalis. Dalam penelitian ini, dilakukan sintesis fotokatalis Bi4Ti3O12, SrBi4Ti4O15, dan Sr₂Bi₄Ti₅O₁₈, dengan metode lelehan garam campuran NaCl-KCl dan dilakukan uji aktivitas fotokatalitiknya dalam mendegradasi rhodamine-B. Pola difraksi sinar-X menunjukkan senyawa target Bi4Ti3O12, SrBi4Ti4O15, dan Sr2Bi4Ti5O18 telah berhasil disintesis, namun masih ditemukan pengotor pada sampel (a) Bi₄Ti₃O₁₂ dengan pengotor TiO₂ rutile (b) SrBi₄Ti₄O₁₅ dengan pengotor Bi₄Ti₃O₁₂ dan TiO₂ brookite dan (c) SBT5 dengan pengotor BIT, Bi₂O₃ dan TiO₂ brookite . Hasil karakterisasi SEM menunjukkan morfologi senyawa Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, dan Sr₂Bi₄Ti₅O₁₈ berbentuk *plate-like*. Hasil perhitungan spektra DRS menggunakan persamaan Kubelka-Munk menunjukkan senyawa Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, dan Sr₂Bi₄Ti₅O₁₈ memiliki energi celah pita secara berurutan adalah 2,98; 2,60; dan 2,65 eV. Hasil uji degradasi larutan rhodamin B menunjukkan senyawa Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, dan Sr₂Bi₄Ti₅O₁₈ memiliki persentase degradasi secara berurutan sebesar 43,46; 41,93 dan 46,08% selama 60 menit.

ABSTRACT

Bashofi, Syilfia Ainur Rohma. 2023. Photocatalytic Activity Test of Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, and Sr₂Bi₄Ti₅O₁₈ in Rhodamine B Degradation. Thesis. Department of Chemistry, Science and Technology Faculty, State Islamic University of Maulana Malik Ibrahim Malang. Supervisor: Dr. Anton Prasetyo M. Si; Supervisor II: Ach. Nashichuddin, M.A.

Keyword: Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, Sr₂Bi₄Ti₅O₁₈, photocatalytic activity, molten salts, Rhodamine-B

Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, and Sr₂Bi₄Ti₅O₁₈ is a compound of the Aurivillius family that has potential as a photocatalyst. In this study, the synthesis of Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, and Sr₂Bi₄Ti₅O₁₈ photocatalysts was carried out using the NaCl-KCl mixed salt melt method and their photocatalytic activity was tested in degrading rhodamine-B. X-ray diffraction patterns show that the target compounds Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, and Sr₂Bi₄Ti₅O₁₈ have been successfully synthesized, but still found impurities in samples (a) Bi₄Ti₃O₁₂ with TiO₂ rutile impurities (b) SrBi₄Ti₄O₁₅ with Bi₄Ti₃O₁₂, Bi₄Ti₃O₁₂ and TiO₂ brookite impurities and (c) Sr₂Bi₄Ti₅O₁₈ with Bi₄Ti₃O₁₂, Bi₂O₃ and TiO₂ brookite impurities. SEM characterization results show the morphology of the Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, and Sr₂Bi₄Ti₅O₁₈ compounds is plate-like. The results of the DRS spectra calculation using the Kubelka-Munk equation show that the Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, and Sr₂Bi₄Ti₅O₁₈ compounds have band gap energies of 2.98; 2.60; and 2.65 eV, respectively. The degradation test results of rhodamine B solution showed that Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅, and 46.08% respectively for 60 minutes.

مستخلص البحث

باشوفي، سيلفيا عينور روهما. 2023. اختبار النشاط لمواد التحفيز الضوئي Bi4Ti₃O₁₂ و SrBi4Ti4O₁₅ و SrBi4Ti4O₁₅ و Sr₂Bi4Ti₅O₁₈. البحث الجامعي. قسم الكيمياء، كلية العلوم والتكنولوجيا، جامعة مولانا مالك إبراهيم الإسلامية الحكومية بمالانج.المشرف الأول : الدكتور انطون براسيتيو الماجستير; المشرف الثاني: احمد نصيح الدين الماجستير.

الكلمات المفتاحية: Bi4Ti₃O₁₂، SrBi4Ti₅O₁₈، SrBi4Ti₄O₁₅، النشاط التحفيزي الضوئي، طريقة ذوبان الملح. رودامين ب.

المركبات Bi4Ti3O12 و SrBi4Ti4O15 و SrBi4Ti4O15 و Sr2Bi4Ti5O18، هي مركبات من عائلة أوريفيليوس التي لها إمكانية كمواد محفزة ضوئية. في هذا البحث، تم إجراء تخليق المحفزات الضوئية Bi4Ti3O12 و Bi4Ti3O12 و و sr₂Bi₄Ti₃O₁₂ باستخدام الملح المختلط بطريقة NaCl-KCl وتم اختبار النشاط التحفيزي الضوئي في تحلل رودامين- ب. أظهر نمط حيود الأشعة السينية أن المركبات المستهدفة Sr2Bi4Ti4O15 و SrBi4Ti4O15 و TiO2 قد تم تصنيعها بنجاح، ولكن لا تزال توجد شوائب في العينات (أ) مع شوائب روتيل SrBi4Ti4O15 (ب) Sr2Bi4Ti5O18 مع Sr2Bi4Ti5O18 و Sr2Bi4Ti5O1 شوائب بروكيت و (ج) SrBi4Ti5O18 مع شوائب (ب) Bi4Ti4O15 مع Sr2Bi4Ti5O18 و Sr2Bi4Ti5 شوائب بروكيت و (ج) Bi4Ti3O12 مع شوائب (ب) Bi4Ti3O12 مع Sr2Bi4Ti5O18 و Sr2Bi4Ti5 شوائب بروكيت و (ج) Bi4Ti3O12 مع شوائب (ب) Bi4Ti3O12 مع Sr2Bi4Ti5O18 و Sr2Bi4Ti5 شوائب بروكيت و (ج) Bi4Ti3O12 مع شوائب (ب) Bi4Ti3O12 مع Sr2Bi4Ti5O18 و Sr2Bi4Ti5 توصيف SEM التشكل الشبيه بالصفائح للمركبات (ب) Bi4Ti3O12 و Bi4Ti3O12 و SrBi4Ti5O18 و Sr2Bi4Ti5O12 و Bi4Ti3O12 و Bi4Ti3O12 و SrBi4Ti5O18 و Sr2Bi4Ti5O12 و Bi4Ti3O12 و SrBi4Ti5O18 و Sr2Bi4Ti5O12 و Sr2Bi4Ti5O13 و Bi4Ti3O12 و SrBi4Ti4O15 و Sr2Bi4Ti5O12 و Bi4Ti3O12 و SrBi4Ti5O12 و SrBi4Ti5O13 و Bi4Ti3O12 و SrBi4Ti5O12 و SrBi4Ti5O13 و Bi4Ti3O12 و SrBi4Ti5O13 و SrBi4Ti5O13 و Bi4Ti3O12 و SrBi4Ti5O13 و SrBi4Ti5O13 و Bi4Ti3O15 و Sr2Bi4Ti5O13 و Bi4Ti3O15 و SrBi4Ti5O13 و SrBi4Ti4O15 و Sr2Bi4Ti5O13 و SrBi4Ti4O15 و SrBi4Ti5O13 و Bi4Ti3O12 و SrBi4Ti5O13 و SrBi4Ti5O13 و Bi4Ti3O12 و SrBi4Ti5O13 و SrBi4Ti5O13 المركبات Sr2Bi4Ti5O12 و SrBi4Ti5O13

BAB I

PENDAHULUAN

1.1 Latar Belakang

Di era sekarang, industri tekstil berkembangan sangat pesat, yang menandakan bertambahnya jumlah limbah tekstil yang dihasilkan, khususnya limbah cair zat warna. Beberapa teknik telah dikembangkan untuk mengatasi masalah ini diantaranya dengan cara kimia antara lain degradasi warna dengan reaksi oksidasi, reaksi anaerob dan reaksi fotokatalisis (Rashed, dkk., 2007). Secara fisika dengan koagulasi, sedimentasi, adsorpsi menggunakan karbon aktif, silika dan biomaterial (Mondal, 2008). Beberapa pihak telah melaporkan potensi teknologi fotokatalisis untuk mendegradasi zat warna dengan berbagai keuntungan di antaranya hasil limbah tidak berbahaya dan lebih hemat dalam pemakaian bahan kimia serta energi. Fotokatalitik juga merupakan metode yang potensial dan efektif dalam mengolah limbah-limbah senyawa organik dan non organik karena mempunyai kemampuan sebagai reduktor dan oksidator (Parent and Blake 1996, Slamet 2004, Naimah., dkk. 2014). Manusia sebagai khalifah dibumi memiliki peran penting dalam menjaga lingkungan salah satunya dengan cara mendegradasi zat warna menggunakan metode fotokatalis sebelum limbah dibuang ke sungai. Allah telah menjelaskan peran manusia sebagai khalifah di bumi dalam al-Quran surat Yunus (10) ayat 14 yang berbunyi:

ثُمَّ جَعَلْنَكُمْ خَلَبِفَ فِي الْأَرْضِ مِنُّ بَعْدِهِمْ لِنَنْظُرَ كَيْفَ تَعْمَلُوْنَ

"Kemudian kami jadikan kamu sebagai pengganti-pengganti (mereka) di bumi setelah mereka, untuk kami lihat bagaimana kamu berbuat." (QS. Yunus (10): 14).

Shihab (2012) dalam Tafsir al-Mishbah menjelaskan bahwa dalam surat Yunus ayat 14 yang dimaksud dengan pengganti-pengganti (mereka) adalah seluruh umat Nabi Muhammad sebagai khalifah di bumi, untuk memeriksa dan memperlihatkan apa yang akan dipilih (ketaatan atau kedurhakaan) setelah mengetahui apa yang terjadi atas orang-orang sebelumnya. Pengolahan limbah zat warna menggunakan proses fotokatalitik merupakan salah satu upaya menjaga kelestarian lingkungan yang membuktikan ketaatan umat Nabi Muhammad sebagai khalifah di bumi yang memiliki tugas dan tanggung jawab untuk melestarikan lingkungan dan menanggulangi pencemaran lingkungan.

Fotokatalis, secara umum didefinisikan sebagai proses reaksi kimia yang dibantu oleh cahaya dan katalis padat (Arutanti, dkk., 2009). Fotokatalis mengubah energi cahaya menjadi energi kimia dan dalam prosesnya akan menghasilkan radikal hidroksil yang akan bereaksi redoks dengan senyawa organik (polutan), sehingga air akan kembali jernih karena terpisahkan dari limbah cair (Sucahya, dkk., 2016; Miyake dkk. 2015; Emin, S. dkk. 2015; Yuan dkk. 2015; Irieb dkk. 2015). Polutan ini diubah menjadi O₂ dan H₂ yang lebih ramah lingkungan (Sucahya, dkk., 2016; Miyake dkk. 2015; Emin, dkk. 2015; Yuan dkk. 2015; Irieb dkk. 2015; Ogi dkk. 2012). Material semikonduktor umumnya digunakan sebagai fotokatalis seperti TiO₂, WO₃, dan SnO₂ (Sucahya, dkk., 2016) selain itu ada ZnO, Fe₂O₃, CdS, dan sebagainya (Sakhtivel, dkk., 2003).

Aurivillius mempunyai rumus umum $Bi_2A_{n-1}B_nO_{3n+3}$ yang terdiri dari lapisan $[Bi_2O_2]^{2+}$ dan lapisan perovskit dengan komposisi $[A_{n-1}B_nO_{3n+3}]^{2-}$. Posisi *A* dapat diisi oleh kation yang berukuran besar seperti Na⁺, K⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺, Bi³⁺ atau Ln³⁺ dimana Ln adalah unsur-unsur tanah jarang dan pada posisi *B* dalam

struktur perovskit dapat diisi oleh kation berukuran kecil seperti Fe³⁺, Mn³⁺, Cr³⁺, Ti^{4+} , Nb⁵⁺ atau W⁶⁺ dan n = 1,2,3 sampai ke-n (Zulhadjri, dkk., 2013). Aurivillius merupakan salah satu jenis oksida logam yang dapat dimanfaatkan sebagai nonvolatile ferroelectric random-access memory (FRAM) dan dynanic random access memory (DRAM) atau sebagai material penyimpan memori, material magnetik bahan konduktor, katalis dan bahan fotoluminensense (Syuhadi dkk. 2014). Beberapa material Aurivillius dilaporkan berpeluang digunakan sebagai material fotokatalis di antaranya adalah Bi₄Ti₃O₁₂, Bi₅Ti₃FeO₁₅, RbLaTa₂O₇, SrBi₄Ti₄O₁₅, dan Sr₂Bi₄Ti₅O_{18.} Aktivitas fotokatalitik dari suatu material dipengaruhi oleh banyak faktor yaitu struktur kristal, defek kristal, kristalinitas, kation A dan B pada senyawa lapis perovskite dan Aurivillius dan morfologi partikel. Senyawa Auriviliius adalah material berlapis-lapis yang tersusun atas lapis oktahedra dan lapis bismuth dengan jumlah lapis 1 sampai 7. Beberapa material yang pernah dilaporkan berhasil disintesis diantaranya Bi₄Ti₃O₁₂ (Wang, dkk., 2013), SrBi₄Ti₄O₁₅ (Cao, dkk., 2015) dan Sr₂Bi₄Ti₅O₁₈ (Zhao, dkk., 2020). Pengaruh jumlah lapis pernah dilaporkan oleh Machida dkk. (2001) dengan melakukan studi komputasi pada RbLaTa₂O₇ (dua lapisan perovskite) dan Machida, dkk. (2005) melaporkan RbCa₂Ta₃O₁₀ (tiga lapisan perovskite) untuk memprediksi perbedaan aktivitas fotokatalitik untuk pemisahan air secara keseluruhan antara dua bahan. Hasil studi menunjukkan bahwa reaktivitas lubang di pita valensi (diisi oleh orbital 2p oksigen) dengan molekul terinterkalasi bervariasi sehubungan dengan jumlah lapisan perovskit, dan bahwa atom oksigen terminal menghadapi galeri interlayer di perovskit tiga lapis memberikan kontribusi yang kuat untuk pembentukan pita valensi maksimum, sedangkan pada perovskite dua lapis tidak memberikan

kontribusi yang kuat. Hasilnya, perovskit tiga lapis memperlihatkan reaktivitas yang lebih tinggi daripada perovskite dua lapis. Sehingga dapat dikatakan bahwa semakin banyak jumlah lapisan maka semakin tinggi reaktivitas pada pembentukan pita valensi. Oleh karena itu, pada kasus ini, aktivitas rendah dari nanosheet HLaNb₂O₇ (dua lapisan perovskit) dikarenakan reaktivitas yang rendah dari lubang fotogenerasi pada pita valensi juga.

Senyawa Bi4Ti₃O₁₂ (BIT), SrBi4Ti₄O₁₅ (SBT4) dan Sr₂Bi₄Ti₅O₁₈ (SBT5)) merupakan senyawa Aurivillius dengan lapis berbeda yaitu tiga, empat dan lima. Rosyidah, dkk., (2008) melaporkan bahwa BIT mempunyai struktur kristal ortorombik dengan space group *B2cb*. Mikrianto, dkk., (2014) melaporkan SBT4 mempunyai struktur kristal ortorombik dengan grup ruang *A2₁am* dan Wei, dkk., (2016) melaporkan bahwa SBT5 mempunyai struktur kristal ortorombik dengan grup ruang *B2cb*. Senyawa BIT dilaporkan mempunyai energi celah pita yang besar yaitu 3,2 eV (Cheng, 2021), sedangkan SBT4 memiliki energi celah pita yang cukup besar yaitu, 3.0 eV (Tu, dkk., 2019) dan pada senyawa SBT5 memiliki energi celah pita yang besar yaitu, 3.34 eV (Elaya, dkk., 2015), karena energi celah pita yang besar mengakibatkan panjang gelombangnya hanya bisa terdeteksi pada sinar UV, sedangkan sinar UV yang masuk ke bumi hanya 4% (Fan, dkk., 2009), sehingga senyawa-senyawa ini kurang efisien untuk fotokatalisis (Wang,2013).

Berdasarkan uraian di atas diatas maka dilakukan kajian terhadap aktivitas pengujian fotokatalitik pada senyawa Aurivillius BIT, SBT4 dan SBT5 .Senyawasenyawa tersebut disintesis dengan menggunakan metode lelehan garam NaCl/KCl. Senyawa yang terbentuk akan dianalisa dengan menggunakan data XRD, sedangkan perubahan morfologi bentuk partikel akan dianalisa dengan menggunakan data pengukuran SEM dan energi celah pita akan diukur dengan UV DRS dan aktivitas fotokatalitik akan diukur dengan UV-Vis dalam kemampuan mendegradasi rhodamin B.

1.2 Rumusan Masalah

Bagaimana karakteristik dan aktifitas fotokatalis senyawa BIT, SBT4 dan SBT5 yang diperoleh dari sintesis dengan metode lelehan garam dalam mendegradasi zat warna rhodamin-B.

1.3 Tujuan

Mengetahui karakteristik dan aktifitas fotokatalis senyawa BIT, SBT4 dan SBT5 yang diperoleh dari sintesis dengan metode lelehan garam dalam mendegradasi zat warna rhodamin-B.

1.4 Batasan Masalah

- Menggunakan campuran garam NaCl/KCl (1:1) dengan perbandian mol produk target terhadap mol fluks 1:7.
- b. Suhu sintesis adalah 675, 775 dan 825 °C
- c. Waktu sintesis adalah 6 jam.

1.5 Manfaat

Memberikan gambaran tentang pengaruh aktifitas fotokatalis senyawa BIT, SBT4 dan SBT5 yang diperoleh dari metode lelehan garam dalam mendegradasi zat warna rhodamin-B.

BAB II

TINJAUAN PUSTAKA

2.1 Senyawa Aurivillius

Aurivillius merupakan salah satu jenis oksida logam yang dapat dimanfaatkan sebagai FRAM dan DRAM atau sebagai material penyimpan memori, material magnetik bahan konduktor, katalis dan bahan fotoluminensense (Syuhadi, dkk., 2014). Aurivillius mempunyai rumus umum $[Bi_2A_{n-1}B_nO_{3n+3}]$ (n =1, 2, 3, 4), yang terdiri dari lapisan $[Bi_2O_2]^{2+}$ dan lapisan perovskit dengan komposisi $[A_{n-1}B_nO_{3n+3}]^2$. Posisi A dapat diisi oleh kation yang berukuran besar seperti Na⁺, K⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺, Bi³⁺ atau Ln³⁺, dimana Ln adalah unsur-unsur tanah jarang. Pada posisi B dalam struktur perovskit dapat diisi oleh kation berukuran kecil seperti Fe^{3+} , Mn^{3+,} Cr^{3+,} Ti^{4+,} Nb⁵⁺ atau W⁶⁺ (Zulhadjri, dkk., 2013). Senyawa Aurivillius yang telah dipelajari memiliki lapisan yang berbeda diantaranya, Bi_2MoO_6 (n = 1), Bi₃NbTiO₉ (n = 2), Bi₄Ti₃O₁₂ (n = 3), CaBi₄Ti₄O₁₅ (n = 4), dan AgBi₅Ti₅O₁₈ (n = 5)dengan bentuk struktur secara umum seperti Gambar 2.1. Machida, dkk., (2005) melaporkan bahwa senyawa Aurivillius yang memiliki lapisan lebih dari 2 akan memiliki reaktivitas lebih tinggi. Sehingga terdapat potensi bahwa senyawa $Bi_4Ti_3O_{12}$ (BIT) (n = 3), $SrBi_4Ti_4O_{15}$ (SBT4) (n = 4), dan $Sr_2Bi_4Ti_5O_{18}$ (SBT5) (n = 15) memiliki reaktivitas lebih tinggi.

Gambar 2.1 Struktur Aurivillius (Fukunaga, dkk., 2016).

BIT adalah senyawa Aurivillius struktur lapis tiga yang tersusun oleh lapis bismut oksida $(Bi_2O_2)^{2+}$ dan lapis titanum dioksida (TiO_6) yang ditampilkan pada Gambar 2.2. Bentuk kristal senyawa BIT dapat berubah menjadi tetratogal pada fasa paraelektrik ketika suhu pemanasan ditingkatkan (Jardiel, dkk., 2008; Petrovic dan Bobic, 2018; Zhang, dkk., 2018). Selain itu, BIT juga memiliki grup ruang yaitu *Fmmm* pada struktur kristal ortorombik (Chen, dkk., 2016). Terdapat TiO₆ dengan struktur oktahedron atau tetrahedron TiO₄ dalam struktur senyawa BIT. Pada suhu ruang, BIT memiliki struktur kristal dengan parameter kisi a = 5,41 Å, b = 5,448Å, dan c = 32,84 Å dengan polarisasi spontan Ps = 50 dan 4 μC / cm² masingmasing sepanjang sumbu a dan c (Jardiel, dkk., 2008; Petrovic dan Bobic, 2018; Zhang, dkk., 2018). Senyawa BIT dilaporkan mempunyai aktivitas fotokatalitik yang baik karena mempunyai polihedron stereo-aktif Bi³⁺ yang memiliki pasangan elektron $6s^2$ (Wang, dkk., 2013).

Gambar 2.2 Struktur Aurivillius Lapis 3 BIT (Ivanov, dkk., 2017).

SBT4 adalah senyawa Aurivillius struktur lapis empat yang tersusun oleh lapis (Bi₂O₂)²⁺ dan (TiO₆) oktahedral yang ditampilkan pada Gambar 2.3. Pada senyawa SBT4, lapisan TiO₆ tersusun membentuk pola zigzag. Senyawa SBT4 memiliki struktur kristal berbentuk sebuah simetris ortorombik. Selain itu, SBT4 juga memiliki grup ruang yaitu $A2_1am$. Pada suhu ruang, SBT4 memiliki struktur kristal dengan parameter kisi $a = 5 \times 4510(5)$ Å, $b = 5 \times 4415(5)$ Å, dan $c = 41 \times 0233(13)$ Å. Senyawa SBT4 dilaporkan berubah menjadi tetratogal pada fasa paraelektrik ketika suhu pemanasan lebih dari 803 K (= 530°C) (Nalini dan Guru, 2002).

Gambar 2.3 Struktur Aurivillius Lapis 4 SBT4 (Nalini dan Guru, 2002).

SBT5 adalah senyawa Aurivillius struktur lapis lima yang berbentuk *pseudo tetragonal* (simetris ortorombik) pada suhu ruang dengan masing-masing suhu *curie* yaitu 310-330, 285 dan 267 °C. Semakin bertambahnya lapisan Aurivillius mengakibatkan suhu transisi menurun yang secara langsung berkaitan dengan tingkat distorsi struktur perovskit. Selain itu, SBT5 juga dilaporkan memiliki grup ruang yaitu *B2cb*. Sejauh ini masih sedikit informasi mengenai Aurivillius lapis lima dibandingkan lapis dibawahnya. Namun, sudah ada beberapa metode yang digunakan untuk mensintesis senyawa ini, diantaranya reaksi *solid-state*, aktivasi *mecano-chemical*,dan sintesis sol-gel (Dubey dan Rajnish, 2015). Gambar SBT5 dapat dilihat pada Gambar 2.4. Selain itu berdasarkan data ICSD (*Inorganoc Crystal Structure Database*) diketahui bahwa BIT, SBT4 dan SBT5 memiliki parameter kristalografi, jumlah puncak, nilai *hkl* dan nilai pergeseran 2theta yang berbeda. Hal ini dapat dilihat pada Lampiran 3. Data standar JCPDS XRD No. 00-035-0795 (BIT), JCPSD No. 00-143-0973 (SBT4) dan JCPSD No. 00-014-0276 (SBT5).

Gambar 2.4 Struktur Aurivillius Lapis Lima SBT₅ (Fukunaga, dkk., 2016).

2.2 Sifat Fotokatalis BIT dan SBT4

Senyawa Aurivillius lapis tiga BIT memiliki potensi dalam penguraian polutan organik secara fotokatalitik. Namun, seperti kebanyakan fotokatalis semikonduktor lainnya, BIT dengan energi celah pita ~3,2 eV memiliki tingkat pemanfaatan radiasi matahari yang rendah. Oleh karena itu, berbagai cara telah diadopsi untuk memodifikasi BIT yang bertujuan untuk meningkatkan penyerapan cahaya tampak dan pemisahan lubang elektron, seperti doping logam mulia, konstruksi heterojungsi, kopling dengan bahan karbon, dan rekayasa permukaan. Cheng, dkk. (2021) melaporkan pemanfaatan BIT terhadap fotodegradasi beberapa zat warna sebagai model polutan. Uji coba tersebut menghasilkan bahwa fotodegradasi *methylen orange* (MO) jauh lebih cepat daripada *rhodamin-B* (RhB) dan *methylen blue* (MB). Hal tersebut disebabkan panjang gelombang spectrum absorbsi sinar ultraviolet terhadap zat warna polutan memiliki absorbsi puncak yang berbeda yaitu MO (463 nm), RhB (554 nm), dan MB (663 nm).

Tu, dkk. (2018) melaporkan SBT4 sebagai fotokatalis yang kuat dan efisien untuk pengurangan CO₂ dengan modifikasi maupun tanpa modifikasi terutama dalam sistem reaksi *gas-solid*. Peningkatan laju fotokatalis SBT4 juga dapat ditingkatkan dengan melakukan *annealing* pada suhu tertentu. Pengukuran absorbsi SBT4 dengan sinar ultraviolet *Diffuse Reflectance Spectra* (DRS) dilaporkan bernilai 420 nm. Selain itu, SBT4 mirip dengan semikonduktor berbasis bismuth lainnya seperti BIT yang memiliki energi celah pita bernilai 3.0 eV.

2.3 Metode Lelehan Garam

Metode lelehan garam merupakan salah satu metode untuk membentuk keramik bubuk yang melibatkan garam cair sebagai media untuk mengatur oksida kompleks dari prekursor (oksida dan karbonat). Metode ini merupakan modifikasi metode metalurgi serbuk, dengan lelehan garam sebagai pelarut untuk mengontrol karakteristik bubuk seperti bentuk dan ukuran (Kimura, dkk., 2006). Keuntungan metode lelehan garam antara lain: metode ini mudah dilakukan, hemat, dan efektif untuk diperoleh kristal murni (Zhou, dkk., 2007).

Metode lelehan garam terbukti efektif menghasilkan morfologi Aurivillius yang khas berbentuk *plate-like*. Mekanisme pembentukan morfologi *plate-like* dengan metode lelehan garam sebagai berikut: (1) reaksi padatan dan nukleasi, (2) pembentukan morfologi *plate-like*, (3) difusi dan nukleasi tepi, dan (4) difusi dan pertumbuhan kristal. Metode lelehan garam dimulai dengan mencampurkan senyawa dengan garam sampai menjadi *product powder* seperti Gambar 2.5. Ada beberapa faktor yang mempengaruhi hasil analisis terhadap partikel *plate-like* dengan metode lelehan garam yaitu; jenis garam, rasio mol garam, laju penurunan suhu sintering (Zhao, dkk., 2014), dan jenis prekursor (Kan, dkk., 2003).

Gambar 2.5 Prosedur persiapan dalam sintesis lelehan garam (Kimura, 2011).

2.4 Sintesis Senyawa Aurivillius dengan Metode Lelehan Garam

Metode lelehan garam merupakan salah satu metode yang sering digunakan untuk mensintesis senyawa aurivillius pada beberapa penelitian. He, dkk. (2014) melaporkan telah mensintesis BIT pada suhu 800 °C selama 2 jam menggunakan metode lelehan garam. Pada Gambar 2.6 menunjukkan pola XRD dari sampel BIT yang diperoleh dengan metode lelehan garam. Semua puncak difraksi dapat diindeks sesuai dengan data standar ortorombik BIT dengan *space group Aba*2 (JCPDS 72-1019). Puncak Bragg yang tajam ditampilkan pada Gambar 2.5 menunjukkan bahwa ortorombik BIT yang terkristal dengan baik diperoleh dengan metode ini. Pada karakterisasi menggunakan SEM pada Gambar 2.7 menampilkan sintesis senyawa BIT berupa morfologi *plate-like*. Selain itu, pada hasil tersebut dilakukan perubahan jumlah garam yang mengakibatkan bentuk sampel *nanosheet* BIT yang awalnya persegi panjang terfragmentasi menjadi semakin seragam.

Lin, dkk., (2020) melaporkan bahwa telah melakukan penelitian pada SBT4 yang disintesis menggunakan metode lelehan garam pada suhu 1000 °C selama 3 jam. Menghasilkan pola XRD seperti pada Gambar 2.8(a). Pada hasil yang diperoleh menunjukkan puncak difraksi sampel konsisten dengan standar SBT4 dan tidak ada fase pengotor yang terdeteksi. sehingga menunjukkan bahwa sampel tersebut murni. Pada Gambar 2.8(b) menampilkan hasil SEM *nanosheet* SBT4 dengan ukuran besar, rasio aspek, dan ukuran yang seragam dengan ketebalan hanya 250 nm.

Gambar 2.6 Pola XRD partikel BIT kalsinasi pada suhu 800 ° C selama 2 jam (He, dkk., 2014).

Gambar 2.7 Morfologi sampel BIT dibuat dengan metode lelehan garam pada 800°C selama 2 jam (He, dkk., 2014

Gambar 2.8 (a) Pola XRD nanosheet SBT4, (b) Morfologi nanosheet SBT4.

Dubey, dkk., (2015) melaporkan sintesis SBT5 menggunakan metode larutan pembakaran. Pola XRD senyawa SBT5 yang didapatkan memperlihatkan puncak yang tajam. Hal tersebut, menyatakan bahwa material telah mencapai kristalinitas sempurna dengan sintering pada suhu 1.050 °C selama 4 jam seperti ditampilkan pada Gambar 2.9. Pelet yang telah disintering pada suhu kurang dari 1.050 °C menjadi rapuh, dikarenakan pembentukan kristal yang tidak sempurna dan menghasilkan densitas yang lebih rendah. Dekomposisi material ini dapat diamati pada suhu sekitar 1.100 °C. Ukuran kristal dari material ditentukan dengan menggunakan persamaan Scherrer. Ukuran kristal yang dilaporkan yaitu 31,5 nm. Morfologi permukaan SBT5 ditampilkan pada Gambar 2.10, di mana arah pertumbuhan kristal terlihat acak. SBT5 memiliki butiran seperti pelat yang memiliki ketebalan 0,25 nm dan panjang 4 nm. Selain itu, pada kristal SBT5 juga tampak terbentuk pori-pori.

Gambar 2.9 Pola XRD senyawa SBT5 (Dubey, dkk., 2015).

Gambar 2.10 Morfologi nanosheet SBT5 (Dubey, dkk., 2015).

2.5 Teknik Difraksi Sinar-X

Gambar 2.11 Skema teknik difraksi sinar-X.

Difraksi Sinar-X (XRD) merupakan analisis yang digunakan dalam mengidentifikasi material kristalit suatu bahan dan mengetahui susunan berbagai jenis atom dalam kristal, kehadiran pengotor (Hakim, 2019). Prinsip kerja XRD apabila sinar-X ditembakkan pada sampel padatan kristal, maka bidang kristal ini akan dibiaskan. Kemudian cahaya yang dibiaskan akan ditangkap oleh detector

yang akan merekam puncak intensitas yang akan cocok dengan orde pembiasan (orde n) yang digunakan, kemudian akan ditampilkan berupa grafik difraktogram yang merupakan grafik hubungan antara intensitas dengan 2θ . (Sania, 2014).

2.6 Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) merupakan metode penggunaan berkas elektron untuk menggambarkan permukaan benda (Abdullah & Khairurrijal, 2009). Prinsip kerja dari SEM didasarkan pada permukaan material yang disinari atau terkena berkas electron akan memantulkan kembali berkas elektron ke segala arah. Tetapi dari semua yang dipantulkan ada satu berkas elektron dengan intensitas tertinggi yang akan terdeteksi oleh detektor.

Gambar 2.12 Skema scanning electron microscopy.

2.7 Spektroskopi UV-Vis

Spektroskopi UV-Vis adalah alat pengukuran panjang gelombang dan intensitas sinar ultraviolet serta cahaya tampak yang diabsorbsikan oleh sampel.
Sinar ultraviolet memiliki rentang panjang gelombang 200-400 nm sedangkan sinar tampak (*visible*) memiliki rentang panjang gelombang 400-800 nm (Dachriyanus. 2004). Spektrofotometri UV-Vis berdasar pada hukum Lambert-Beer. Jika sinar monokromatik melewati suatu senyawa maka sebagian sinar akan diabsorbsi, sebagian dipantulkan dan sebagian lagi akan dipancarkan. Cermin yang berputar pada bagian dalam spektrofotometer akan membagi sinar dari sumber cahaya menjadi dua (Sembiring dkk, 2019; Ahriani, dkk., 2021).

Gambar 2.13 Skema Spektroskopi UV-Vis

2.8 UV-Vis DRS

UV-Vis *DRS* digunakan untuk menentukan besarnya celah energi yang dihasilkan oleh semikonduktor yang disintesis. Metode DRS didasarkan pada pengukuran intensitas UV-Vis yang direfleksikan oleh sampel. Prinsip kerja dari metode ini adalah material disinari dengan gelombang elektromagnetik, sehingga foton diserap oleh elektron dalam material (Abdullah & Khairurrijal, 2009). Ketika cahaya mengenai suatu bahan maka sebagian akan diserap, dipantulkan dan ditransmisikan (Widyandari & Budiman, 2004).

Gambar 2.14 Skema UV-Vis DRS.

2.9 Peran Manusia sebagai Khalifah di Bumi

Manusia telah ditunjuk Allah Swt. sebagai khalifah dibumi yang memiliki tugas dan tanggung jawab untuk menjaga lingkungan dan mengatasi pencemaran lingkungan. Pencemaran air oleh zat warna sintesis sekarang ini menjadi masalah yang banyak terjadi dilingkungan kita. Pembuangan limbah warna secara langsung ke sungai tanpa pengolahan terlebih dahulu dapat mengakibatkan beberapa permasalahan. Allah Swt. berfirman dalam al-Quran surat al-Ahzab ayat 72 yang berbunyi:

"Sesungguhnya Kami telah menawarkan amanat kepada langit, bumi dan gununggunung; tetapi semuanya enggan untuk memikul amanat itu dan mereka khawatir tidak akan melaksanakannya (berat), lalu dipikullah amanat itu oleh manusia. Sungguh, manusia itu sangat zalim dan sangat bodoh".

Shihab (2012) dalam Tafsir al-Mishbah menjelaskan bahwa dalam surat al-Ahzab ayat 72 Allah telah memberikan amanat kepada manusia agar mematuhi perintah-Nya dan menjauhi larangan-Nya. Barang siapa yang tidak taat kepada Allah dan Rasul, maka itu merupakan kerugian yang besar. Salah satu bentuk mematuhi perintah tersebut adalah menjaga kebersihan lingkungan agar tidak rusak dan tercemar. Salah satu caranya adalah dengan mengolah kembali limbah sebelum dibuang sehingga tidak menimbulkan pencemaran lingkungan. Dalam hal ini Rasululah saw. juga sangat menganjurkan manusia untuk selalu menjaga kelestarian lingkungan dan makhluk hidup yang ada didalamnya seperti yang tertulis dalam hadist berikut:

حَدَّثَنَا ابْنُ أَبِي عُمَرَ حَدَّثَنَا سُفْيَانُ عَنْ عَمْرو بْنِ دِينَارٍ عَنْ أَبِي قَابُوسَ عَنْ عَبْدِ اللهِ بْنِ عَمْرٍو قَالَ قَالَ رَسُولُ اللهِ صَلَّى اللهُ عَلَيْهِ وَسَلَّمَ الرَّاحِمُونَ يَرْحَمُهُمْ الرَّحْمَنُ ارْحَمُوا مَنْ فِي الْأَرْضِ يَرْحَمُكُمْ مَنْ فِي السَّمَاء قَالَ أَبُو عِيسَى هَذَا حَدِيثٌ حَسَنٌ صَحِيحٌ.

Telah menceritakan kepada kami Ibnu Abu Umar, telah menceritakan kepada kami Sufyan dari Amr bin Dinar dari Abu Qabus dari Abdullah bin Amr ia berkata; Rasulullah shallallahu 'alaihi wasallam bersabda: "Orang-orang yang mengasihi akan dikasihi oleh Ar Rahman, berkasih sayanglah kepada siapapun yang ada dibumi, niscaya Yang ada di langit akan mengasihi kalian. Berkata Abu 'Isa: Ini merupakan hadits hasan shahih.(HR At-Tirmidzi: 1874).

Nabi Muhammad saw. memberikan amanat kepada umatnya untuk peduli terhadap lingkungan. Allah memberikan dua pahala sekaligus, yang pertama pahala ketika di dunia berupa hidup bahagia dan sejahtera dalam lingkungan yang baik, yang kedua pahala di akhirat berupa surga. Sehingga tindakan mencemari lingkungan tanpa ada upaya untuk memperbaiki lagi merupakan kerugian yang besar (Istianah, 2015). Selain peran manusia untuk menjaga dan memelihara kelestarian lingkungan. Manusia sebagai khalifah dibumi juga memiliki banyak peran lain, yang pertama manusia sebagai penegak agama islam dimana setiap yang ada dalam kehidupan ini didasarkan pada hukum dalam al-Qurán termasuk sunnah Rasul saw. dengan baik dan adil. Kedua, menciptakan keamanan lingkungan dalam menjalankan perintah agama baik diantara sesama muslim ataupun non-muslim. Ketiga, menjalankan hal-hal baik dan menjauhi yang buruk. Keempat, berjihad dijalan Allah (Ilyas, 2016).

BAB III

METODOLOGI

3.1 Waktu dan Tempat Penelitian

Penelitian dilakukan pada bulan Mei-Juli 2022 yang bertempat di Laboratorium Kimia Anorganik Program Studi Kimia, Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pada proses karakterisasi dilakukan di Laboratorium Instrumen Institut Teknologi Surabaya (ITS).

3.2 Alat dan Bahan 3.2.1 Alat

Alat yang digunakan antara lain seperangkat alat gelas, neraca analitik, alumunium foil, krus alumina, tanur, *hotplate*, *mortar agate*, reaktor fotokatalis beserta lampu UV komersial, seperangkat alat XRD, seperangkat alat SEM, seperangkat alat UV-Vis dan seperangkat alat UV-Vis DRS.

3.2.2 Bahan

Bahan-bahan yang digunakan antara lain adalah TiO_2 (Aldrich, 99,9% serbuk), Bi_2O_3 (Aldrich, 99,9% serbuk), $SrCO_3$ (Aldrich, 99,9% serbuk), NaCl (Aldrich, 99,9% serbuk), KCl (Aldrich, 99,9% serbuk), AgNO₃ (Aldrich, larutan 2,5%), aseton, dan akuades.

3.3 Rancangan Penelitian

Penelitian ini dilakukan menggunakan metode lelehan garam. Proses sintesis senyawa Aurivillius BIT, SBT4 dan SBT5 diawali dengan persiapan bahan dan alat, perhitungan dan penimbangan jumlah bahan sesuai stoikiometri rumus formula padatan yang diharapkan. Proses homogenisasi serta proses kalsinasi pada suhu 675°C, 775°C dan 825°C. Kalsinasi pada suhu tersebut dilakukan diatas titik leleh garam campuran NaCl-KCl yaitu adalah 650°C. Titik leleh garam NaCl adalah 801°C dan garam KCl adalah 770 °C. Pendinginan dilakukan sampai suhu ruang dan pencucian dilakukan menggunakan air panas untuk menghilangkan kadar garam.

Produk hasil sintesis dilakukan beberapa uji karakterisasi mencakup (a) karakterisasi dan analisis hasil sintesis menggunakan XRD untuk mengetahui struktur yang terbentuk, (b) karakterisasi dan analisis menggunakan SEM untuk mengetahui morfologi dan ukuran partikel, (c) karakterisasi dan analisis menggunakan UV-Vis DRS untuk mengetahui energi celah pita. Kemudian dilakukan uji aktifitas fotokatalis yang mencakup (a) uji kestabilan larutan rhodamin B untuk mengetahui apakah larutan tersebut stabil pada kondisi gelap tanpa radiasi sinar UV dan pada kondisi terang dengan radiasi sinar UV (b) uji adsorpsi produk sintesis untuk mengetahui kemampuan senyawa hasil sintesis sebagai absorben, (c) uji aktifitas fotokatalis produk sintesis terhadap kemampuan degradasi senyawa rhodamin B menggunakan reaktor fotokatalis.

Target Senyawa	Massa		Massa	Pereaksi	reaksi (gram)		
	(gram)	Bi ₂ O ₃	TiO ₂	SrCO ₃	NaCl	KCl	
BIT	4	3,1817	0,8180	-	1,3967	1,7817	
SBT4	4	2,7510	0,9431	0,4358	1, 2077	1,5405	
SBT5	4	2,4227	1,0381	0,3838	1,0644	1,3576	

Tabel 3.1 Komposisi prekursor senyawa BIT, SBT4 dan SBT5 sesuai stokiometri rumus formula yang diharapkan.

3. 4 Tahapan Penelitian

Tahapan dalam penelitian ini meliputi:

- a. Tahapan sintesis BIT, SBT4 dan SBT5 dengan metode lelehan garam.
- b. Tahapan karakterisasi menggunakan XRD, SEM dan UV-Vis DRS.
- c. Tahapan uji aktifitas fotokatalis menggunakan larutan Rhodamin-B.

3.5 Prosedur Kerja3.5.1 Sintesis BIT, SBT4 dan SBT5 dengan Metode Lelehan Garam

Prekursor yang telah ditimbang sesuai stoikiometri dengan perbandingan 1:7 seperti pada Table 3.1 dimasukkan kedalam *mortar agate*. Kemudian campuran digerus selama 1 jam dengan penambahan aseton selama penggerusan untuk proses penghomogenan. Kemudian dikalsinasi pada suhu 675°C, 775°C dan 825°C selama 6 jam. Hasil produk diletakkan dikertas saring dalam corong gelas untuk dilakukan penyaringan. Sampel dicuci dengan akuades panas sampai garam hilang dan dianalisis dengan larutan AgNO₃ di mana endapan putih menandakan garam larut dalam filtrat. Kemudian produk dikeringkan menggunakan oven pada suhu 100 °C selama 4 jam.

3.5.2 Karakterisasi Sampel Produk BIT, SBT4 dan SBT5 3.5.2.1 Karakterisasi dan Analisis Hasil Sntesis dengan XRD

Karakterisasi menggunakan XRD dilakukan pada suhu kamar menggunakan radiasi Cu- $K\alpha$ pada 40 kV dan 30 mA pada rentang $2\theta = 10-90^{\circ}$. Hasil XRD yang diperoleh dilakukan *refinement*.

3.5.2.2 Karakterisasi dan Analisis Hasil Sntesis dengan SEM

Karakterisasi senyawa hasil sintesis menggunakan SEM dilakukan dengan meletakkan sampel pada sampel *holder* dan diukur pada perbesaran 7000-20.000 kali.

3.5.2.3 Karakterisasi dan Analisis Hasil Sntesis dengan Spektroskopi UV-Vis DRS

Karakrerisasi senyawa produk menggunakan spektroskopi UV-Vis DRS dengan meletakkan sampel pada sampel *holder*. Kemudian sampel diukur pada panjang gelombang 200-800 nm.

3.6 Uji Fotokatalis Hasil Sintesis dengan Spektroskopi UV-Vis 3.6.1 Pembuatan Larutan Induk Rhodamin B

Senyawa rhodamin B sebanyak 0,5 gram dilarutkan dengan akuades dalam labu takar 500 mL. Kemudian dikocok hingga homogen dan didapat larutan induk rhodamin B 1000 ppm.

3.6.2 Pembuatan Kurva Standar Larutan Rhodamin B

Kurva Standar larutan rhodamin B dibuat variasi 0,5-4 ppm sebanyak 100 mL.larutan dibuat dari pengenceran larutan induk 1000 ppm Masing-masing larutan kemudian diukur absorbansinya menggunakan spektrofotometer UV-Vis pada panjang gelombang maksimumnya. Hasil pembuatan kurva standar didapat hubungan antara absorbansi (A) dengan konsentrasi (c). Persamaan regresi linier digunakan untuk menentukan A_0 yang merupakan konsentrasi terukur dari larutan induk.

3.6.3 Uji Kestabilan Larutan Rhodamin B

Larutan rhodamin B 4 ppm sebanyak 100 mL diuji kestabilan larutannya pada kondisi terang dengan radiasi sinar UV dan kondisi gelap tanpa radiasi sinar UV yang diletakkankan pada fotoreaktor selama 60 menit serta diukur absorbansinya dengan spektrofotometer UV-Vis pada panjang gelombang maksimum.

3.6.4 Pengujian Kemampuan Adsorpsi Senyawa BIT, SBT4 dan SBT5

Pengujian dilakukan pada sampel katalis BIT. Larutan rhodamin B 4 ppm sebanyak 100 ml. ditambahkan katalis BIT sebanyak 0.1 gram. Kemudian dimasukkan kedalam fotoreaktor tanpa radiasi sinar UV dan diaduk selama 30 menit untuk memastikan terjadinya adsorpsi. Selanjutnya larutan disaring untuk memisahkan katalis menggunakan kertas saring *wattman*. Kemudian dilakukan uji menggunakan spektrofotometer UV-Vis untuk mengetahui absorbansi larutan rhodamin B. Pada sampel SBT4 dan SBT5 dilakukan perlakuan yang sama.

3.6.5 Pengujian Aktivitas Fotokatalis dalam Degradasi Rhodamin B

Pengujian dilakukan pada sampel katalis BIT. Larutan rhodamin B 4 ppm sebanyak 100 mL dimasukkan dalam gelas kimia 100 mL. Kemudian ditambahkan masing-masing katalis sebanyak 0,1 gram. Selanjutnya diaduk menggunakan stirrer selama 30 menit dalam kondisi gelap untuk mengetahui bahwa kesetimbangan adsorpsi telah tercapai (Wang, dkk., 2017). Setelah itu, campuran dimasukkan dalam reaktor fotokatalis selama 60 menit dengan penyinaran UV *Blacklight*. Kemudian dilakukan penyaringan menggunakan kertas saring *wattman* untuk memisahkan larutan hasil dan katalis. Setelah itu, dilakukan pengukuran larutan

hasil degradasi menggunakan spektrofotometer UV-Vis pada panjang gelombang maksimum untuk mengetahui banyaknya rhodamin B yang terdegradasi. Selanjutnya dilakukan pengecekan pH larutan dengan indikator pH universal untuk memastikan pH larutan pH = 7 yaitu pH optimum penyerapan oleh sinar UV. Pengukuran serapan dilakukan sebanyak 3 kali. Perlakuan yang sama di terapkan pada katali SBT4 dan SBT5.

3.7 Analisis Data3.7.1 Analisis Data XRD

Data yang yang diperoleh berupa pola XRD yang selanjutnya akan dibandingkan dengan standar BIT, SBT4 dan SBT5 yang terdapat pada *database Inorganic Crystal Structure Database* (ICSD). Selain itu dari data XRD juga dapat menunjukkan kristalinitas dan kemurnian hasil sintesis.

3.7.2 Analisis Data SEM

Hasil yang diperoleh berupa morfologi, ukuran partikel, dan komposisi unsurunsur penyusun senyawa BIT, SBT4 dan SBT5. Kemudian diamati morfologi yang terbentuk.

3.7.3 Analisis Data UV-Vis DRS

Hasil yang diperoleh berupa data reflektansi yang dapat dianalisa menggunakan persamaan Kubelka-Munk yang ditunjukkan pada persamaan 3.1.

$$F(R) = \left(\frac{(1-R)^2}{2R} = \frac{K}{s}\right)....(3.1)$$

dengan F(R) adalah faktor *Kubelka-Munk*, *K* adalah koefisien absorbs molar, *S* adalah koefisien *scattering*, dan *R* adalah nilai *reflektan* yang diukur. Hubungan faktor *Kubelka-Munk* dengan energi celah pita ditunjukkan dalam persamaan 3. 2.

$$F(R) = (hv-Eg)^{m/2}$$
(3.2)

Dengan E_g adalah energi celah pita, *m* adalah 1. Energi celah pita dapat ditentukan dengan cara menarik garis linier yang melewati daerah tersebut, kemudian menentukan persamaan linier. Persamaan linier selanjutnya dicari nilai *x* (*hv* = energi celah pita) ketika *y* = 0. Nilai *x* menyatakan besar dari celah pita energi.

3.7.4 Analisis Data UV-Vis

Data yang diperoleh berupa absorbansi larutan. Aktivitas fotodegradasi rhodamin B didapat dengan membandingkan absorbansi sebelum dan sesudah proses degradasi dengan menggunakan persamaan 3.3 sehingga didapat % degradasi. Analisis dilakukan dengan melihat hubungan % degradasi dari proses degradasi menggunakan katalis dengan % degradasi dari larutan kontrol.

% Degradasi =
$$\frac{Co - Ct}{Co}$$
 x 100%(3.3)

Dengan *Co* adalah konsentrasi awal rhodamin B dan *Ct* adalah konsentrasi rhodamin B setelah proses degradasi.

BAB IV

PEMBAHASAN

Dalam penelitian ini telah disintesis senyawa BIT, SBT4 dan SBT5 menggunakan metode lelehan garam campuran NaCl-KCl pada suhu 675°C, 775°C dan 825°C selama 6 jam. Kemudian hasil sintesis dikarakterisasi menggunakan (a) XRD untuk mengetahui struktur kristal yang terbentuk, (b) SEM-EDS untuk mengetahui morfologi, ukuran partikel dan kandungan unsur senyawa, dan (c) UV-Vis DRS untuk mengetahui energi celah pita. Hasil dari sintesis digunakan untuk uji aktifitas fotokatalis pada zat warna rhodamin-B.

4.1 Sintesis BIT, SBT4 dan SBT5 dengan Metode Lelehan Garam

4.2 Karakterisasi BIT, SBT4 dan SBT5 Menggunakan XRD.

Pola difraksi sinar-*X* pada senyawa BIT ditampilkan pada Gambar 4.2 dan jika dibandingkan dengan data standar ICSD BIT nomor 240210 maka ditemukan kecocokan yang mengindikasikan bahwa senyawa target BIT telah terbentuk. Puncak-puncak khas dari senyawa BIT ditemukan pada posisi 2θ (°): 16,34; 21,88; 23,48; 30,26; 33; 38,64; 40,06; 44,46; 47,56; 48,04; 51,72; 57,4. Pada pola difraksi sinar-*X* juga ditemukan puncak tambahan pada 39,06 yang mengindikasikan terdapat pengotor yang berupa TiO₂ *rutile*. Keberadaan TiO₂ *rutile* mengindikasikan adanya prekusor yang tidak bereaksi.

Pola difrakasi sinar-*X* pada senyawa SBT4 ditampilkan pada Gambar 4.3 dan jika dibandingkan dengan data standar SBT4 (ICSD nomor 51864) maka ditemukan kecocokan yang mengindikasikan bahwa senyawa target SBT4 telah terbentuk. Puncak-puncak khas dari senyawa SBT4 ditemukan pada posisi 2θ (°): 23,46; 30,54; 32,58. 33; 46,76; 52,66; 53,3; 57,38; 57,94. Pada pola difraksi sinar-*X* juga ditemukan puncak tambahan pada 2θ (°): (a) 16,2 dan 47,3 yang mengindikasikan terdapat pengotor BIT dan (b) pada posisi 30,84 yang mengindikasikan terdapat pengotor TiO₂ *brookite*. Keberadaan semua pengotor tersebut mengindikasikan adanya prekusor yang tidak bereaksi.

Pola difraksi sinar-*X* pada senyawa SBT5 ditampilkan pada Gambar 4.4 dan jika dibandingkan dengan data standar SBT5 (ICSD nomor 150401) maka ditemukan kecocokan yang mengindikasikan bahwa senyawa target SBT5 telah terbentuk. Puncak-puncak khas dari senyawa SBT5 ditemukan pada posisi 2θ (°): 21,96; 23,44; 32,66; 33,12; 47,42; 48,46; 52,24; 53,3; 57,42; dan 63,32. Pada pola difraksi sinar-*X* juga ditemukan puncak tambahan pada 2θ (°): (a) 16,24 yang

mengindikasikan terdapat pengotor BIT, (b) 36,64 yang mengindikasikan terdapat pengotor Bi₂O₃ dan (c) 39,98 yang mengindikasikan terdapat pengotor TiO₂ *brookite* Keberadaan semua pengotor tersebut mengindikasikan adanya prekusor yang tidak bereaksi.

4.3 Karakterisasi BIT, SBT4 dan SBT5 Menggunakan SEM-EDS

Mikrograf SEM ditampilkan pada Gambar 4.5 dan dapat dilihat bahwa bentuk partikel adalah *plate-like*. Morfologi partikel yang terbentuk (*plate-like*) adalah morfologi khas dari senyawa Aurivillius yang telah dilaporkan oleh banyak peneliti terdahulu (Zhao, dkk., 2014). Morfologi partikel BIT berbentuk *plate-like* dengan ukuran yang relatif seragam dan tidak ditemukan partikel-partikel kecil teraglomerasi. Ukuran partikel SBT4 tidak seragam dan ditemukan partikel-partikel kecil teraglomerasi, dan fenomena yang sama juga ditemukan pada SBT5. Hasil spektra EDS menunjukkan bahwa kandungan unsur senyawa sudah sesuai teori yaitu (a) senyawa BIT adalah Bi, Ti dan O, (b) senyawa SBT4 dan SBT5 adalah Sr, Bi, Ti, dan O.

4.4 Karakterisasi BIT, SBT4, dan SBT5 Menggunakan UV-Vis DRS

Spektra reflektan BIT, SBT4, dan SBT5 ditampilkan pada Gambar 4.6. Hasil perhitungan metode Kubelka -Munk dapat dilihat pada Gambar 4.7 dan energi celah pita serta panjang gelombang dirangkum pada Tabel 4.1. Dari hasil perhitungan energi celah pita diperoleh hasil bahwa energi celah pita sesuai dengan panjang gelombang disekitar 400 nm. Hal ini menandakan bahwa sampel dapat bekerja di bawah sinar tampak. Dan jika dilaporkan dengan hasil penelitian terdahulu yaitu: (a.) Chen, dkk., (2016) melaporkan energi celah pita BIT sebesar 3,31 eV dan (b.)

Tu, dkk., (2019) melaporkan SBT4 memiliki energi celah pita sebesar 3,00 eV. Perbedaan besar energi celah pita ini dimungkinkan karena adanya senyawa pengotor pada produk yang diperoleh dan itu mempengaruhi nilai energi celah pitanya.

Transisi elektronik yang terlibat pada energi celah pita senyawa BIT dilaporkan terjadi perpindahan pita konduksi orbital Ti 3d + Bi 6p menuju pita valensi O 2p + Bi 6s orbital *hybrid* (Chen, dkk., 2016). Sedangkan pada SBT4 terjadi perpindahan electron pita konduksi dari orbital O 2p + Bi 6s menuju pita valensi di orbital Ti 3d (Haikal, dkk., 2021). Hasil perhitungan metode Kubelka - Munk dapat dilihat pada Gambar 4.7 dan energi celah pita serta panjang gelombang dapat lihat pada Tabel 4.1 bahwa terjadi penurunan energi celah pita seiring bertambahnya jumlah lapisan pada senyawa.

4.5 Uji Aktifitas Fotokatalitik Bi4Ti3O12, SrBi4Ti4O15, dan Sr2Bi4Ti5O18 Menggunakan Rhodamin-B 4.5.1 Spektra UV-Vis Rhodamin B

Pengukuran panjang gelombang maksimal larutan standar rhodamin B dilakukan menggunakan Spektroskopi UV-Vis. Pada Gambar 4.8 terlihat bahwa ada dua pita serapan karakteristik utama dari larutan rhodamin B. Satu adalah daerah ultraviolet (260,6 nm), dan satu lagi di wilayah tampak (554,6 nm). Absorbansi pita UV larutan pewarna pada 554,6 nm ($n \rightarrow \pi$ transisi dari grup C=N, C=O) disebabkan oleh warna larutan pewarna, dan digunakan untuk memantau dekolorisasi pewarna. Absorbansi pada 260,6 nm mewakili kandungan aromatik rhodamin B, dan penurunan absorbansi pada pita ini menunjukkan degradasi bagian aromatik dari pewarna.

4.5.2 Pembuatan Kurva Standar Rhodamin B

Panjang gelombang maksimal dari larutan rhodamin B diketahui dari pengukuran konsentrasi larutan kurva standar menggunakan UV-Vis DRS. Kurva standar larutan rhodamin B dibuat dengan variasi konsentrasi antara 0.5 hingga 4 ppm. Data yang diperoleh dibuat hubungan antara konsentrasi dengan absorbansi rhodamin B seperti yang terlihat pada Gambar 4.8 di mana konsentrasi berbanding lurus dengan absorbansi dan diperoleh nilai koefisien koreksi (R) sebesar 0,993. nilai R yang diperoleh memiliki tingkat kelinieran yang tinggi sehingga memenuhi hukum Lambert-Beer.

4.5.3 Uji Kestabilan Larutan Rhodamin B

Uji kestabilan larutan rhodamin B dilakukan pada larutan dengan konsentrasi 4 ppm untuk mengetahui adanya pengaruh lingkungan terhadap larutan. Uji kestabilan dilakukan dengan menempatkan larutan dalam reaktor fotokatalis pada kondisi gelap tanpa radiasi sinar UV dan kondisi terang dengan radiasi sinar UV dalam waktu 60 menit. Hasil sepktra UV-Vis dapat dilihat pada Gambar 4.9 dan dapat dilihat bahwa nilai absorban sedikit turun yang menunjukkan adanya penurunan konsentrasi larutan rhodamin B. Hal ini menunjukkan bahwa larutan rhodamine-B tidak terpengaruh oleh suhu ruang dan adanya sinar-UV walaupun terjadi sedikit penurunan absorbansi.

4.5.4 Uji Kemampuan Adsorpsi Senyawa BIT, SBT4 dan SBT5 terhadap Rhodamin B

Uji kemampuan adsorpsi senyawa BIT, SBT4 dan SBT5 dilakukan menggunakan rhodamin B dengan konsentrasi larutan 4 ppm dan massa katalis sebesar 0,1 gram pada kondisi gelap tanpa radiasi sinar UV selama 30 menit. Spektra absorbansi UV-Vis ditampilkan pada Gambar 4.10 dan hasil uji dirangkum pada Tabel 4.2.

Didapatkan hasil bahwa senyawa BIT, SBT4 dan SBT5 memiliki kemampuan untuk menyerap (adsorpsi) yang cukup tinggi pada larutan rhodamin B. Persentase kemampuan adsorpsi senyawa BIT, SBT4 dan SBT5 secara berturut-turut adalah 16,3665; 21,3582 dan 21,7462%. terjadinya penurunan konsentrasi ini menunjukkan bahwa senyawa BIT, SBT4 dan SBT5 mampu melakukan proses adsorpsi (penyerapan) terhadap larutan rhodamin B. dilaporkan bahwa senyawa perovskite LaNiO₃ memiliki kemampuan sebagai absorben zat warna congo red dengan persentase adsorpsi sebesar 26% selama 40 menit (Santoso, dkk., 2018).

4.5.5 Uji Degradasi Senyawa BIT, SBT4 dan SBT5 Terhadap Rhodamin-B

Uji degradasi larutan rhodamin-B terhadap senyawa BIT, SBT4 dan SBT5 sebagai katalis sebesar 0,1 gram pada kondisi terang selama 60 menit. Uji degradasi larutan rhodamin B dilakukan untuk mengetahui aktifitas fotokatalitik senyawa BIT, SBT4 dan SBT. Spektrum absorbansi UV-Vis uji degradasi secara bertututturut ditampilkan pada Gambar 4.11, 4.12 dan 4.13. serta hasil uji degradasi dirangkum pada Tabel 4.3.

Berdasarkan Tabel 4.3 diketahui bahwa senyawa BIT, SBT4, dan SBT5 memiliki aktivitas fotokatalitik yang cukup baik dalam mendegradasi larutan rhodamin B. BIT memiliki persentase fotodegradasi sebesar yaitu 43,46% karena BIT memiliki morfologi yang seragam dan ukuran partikel yang besar sehingga luas permukaan lebih kecil dibandingkan dengan senyawa lain yang ukurannya tidak seragam dan energi celah pita yang lebih kecil sehingga laju rekombinasi *electron-hole* nya lebih besar. SBT4 memiliki kemampuan fotodegradasi paling rendah sebesar 41,93% karena terjadinya aglomerasi yang mengindikasikan adanya senyawa yang belum terbentuk mengakibatkan energi celah pita kecil dan ukuran partikel yang tidak seragam sehingga memiliki luas permukaan yang kecil di mana situs aktif tidak terlalu banyak. SBT5 memiliki kemampuan fotodegradasi paling tinggi dengan persentase fotodegradasi sebesar 46.08%. Hal ini dimungkinkan karena banyak faktor yang salah satunya adalah energi celah pita lebih rendah dibandingkan dengan BIT. Qi, dkk., (2019) melaporkan senyawa BaBi₄Ti₄O₁₅ (BBT) dalam waktu 3,5 jam dapat mendegradasi rhodamin B sebesar 15% dan ketika BBT ditambahkan Ag pada permukaannya, dalam waktu 3,5 jam kemampuannya menjadi 100%. Niu, dkk (2020) melaporkan senyawa BIT mampu mendegradasi rhodamine B sebesar 50%. Sedangkan He, dkk. (2014) melaporkan BIT dengan perlakuan ratio molar garam M=50 mampu mendegradasi rhodamin B hingga ~93% dalam waktu 60 menit.

Faktor-faktor yang mempengaruhi kinerja fotokatalis diantaranya, (a) nilai dari energi celah pita; (b) kemampuan absorpsi foton dan (c) laju rekombinasi. Terbentuknya pasangan e^+ dan h^+ ditentukan oleh besaran energi celah pita semikonduktor. Selain itu, proses laju rekombinasi yaitu proses kembalinyaa e^+ dari pita konduksi ke pita valensi sehingga pasangan *electron-hole* hilang, mengakibatkan reaksi fotokatalis yang sedang berlangsung terhenti (desario, dkk., 2012). Proses fotokatalis juga dipengaruhi oleh ukuran partikel dan morfologi. Besarnya luas permukaan, tingginya tingkat keseragaman, ketebalan partikel kecil, serta struktur kosong dan berongga dapat meningkatkan aktifitas fotokatalis (He, dkk., 2018). Kemampuan senyawa BIT, SBT4 dan SBT5 dalam mendegradasi larutan rhodamin B lebih besar dibandingkan dengan kemampuan senyawa tersebut dalam mengabsorpsi larutan rhodamin B. hal ini dapat dilihat dari hasil nilai %absorpsi dan %degradasi yang ada pada Tabel 4.2 dan 4.3.

4.6 Pemanfaatan Material Fotokatalis dalam Perspektif Islam.

Allah SAW telah menjelaskan bahwa kerusakan bumi terjadi akibat ulah manusia itu sendiri sebagaimana dalam firmanya surat ar-Rum ayat 41 berikut:

ظَهَرَ ٱلْفَسَادُ فِي ٱلْبَرِّ وَٱلْبَحْرِ بِمَا كَسَبَتْ أَيْدِي ٱلنَّاسِ لِيُذِيقَهُم بَعْضَ ٱلَّذِي عَمِلُواْ لَعَلَّهُمْ يَرْجِعُون

"Telah tampak kerusakan di darat dan di laut disebabkan karena perbuatan tangan manusia; Allah menghendaki agar mereka merasakan sebagian dari (akibat) perbuatan mereka, agar mereka kembali (ke jalan yang benar)" (Q.S. Ar-Rum (30):41).

Ayat tersebut menjelaskan bahwa manusia telah memulai kerusakan baik untuk diri mereka sendiri, masyarakat dan lingkungan alam di bumi dengan tangan mereka sendiri. Kerusakan yang dimaksud adalah keseimbangan ekosistem alam yang dapat mengakibatkan bencana alam seperti banjir, kekeringan, hewan dan tumbuhan mati, terjadinya perubahan cuaca ekstrim dan lain-lain (shihab, 2012). Manusia sebagai *khalifah* dibumi seharusnya menerapkan sifat- sifat yang dimiliki Allah. Sifat yang dapat diterapkan pada pencemaran alam dan lingkuan adalah sifat penjaga dan pemelihara. Pencemaran air oleh zat warna merupakan salah satu contoh dari kerusakan alam tersebut. Salah satu cara menjaga agar tidak terjadi pencemaran dengan memberi sanksi pada pelaku pencemaran lingkungan sehingga merasakan efek jera, sedangkan untuk memelihara agar air tidak tercemar zat warna dapat dilakukan dengan mensistesis senyawa Aurivillius BIT, SBT4, dan SBT5 yang dapat di buang ke alam tanpa mencemari lingkuan sekitarnya.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan maka dapat diketahui bahwa,

- a. Senyawa BIT, SBT4, dan SBT5 berhasil disintesis menggunakan metode lelehan garam NaCl-KCL, akan tetapi ditemukan adanya pengotor pada sampel yaitu (a) BIT dengan pengotor TiO₂ *rutile*. (b) SBT4 dengan pengotor BIT dan TiO₂ *brookite* dan (c) SBT5 dengan pengotor BIT, Bi₂O₃ dan TiO₂ *brookite*.
- b. Morfologi partikel yang terbentuk adalah *plate-like* dan masih ditemukan aglomerasi pada senyawa SBT4, dan SBT5.
- Nilai energi celah pita senyawa BIT, SBT4, dan SBT5 secara berurutan adalah 2,98; 2,60 dan 2,65 eV.
- d. Kemampuan senyawa BIT, SBT4, dan SBT5 dalam mendegradasi senyawa rhodamin B secara berurutan adalah 43,46; 41,93 dan 46,08%.

5.2 Saran

- Perlu dilakukan modifikasi senyawa BIT, SBT4, dan SBT5 sehingga aktifitas fotokatalitik lebih optimum.
- Uji degradasi dapat dilakukan dengan waktu yang lebih lama serta pada penelitian lebih lanjut dapat dilakukan dengan menggunakan sampel asli dari lingkungan.

- c. Perlu di lakukan kontrol pada katalis yang memiliki panjang gelombang pada daerah *visible*.
- d. Perlu dilakukan uji laju rekombinasi.

DAFTAR PUSTAKA

- Abdullah, M. & Khairurrijal, 2009. Karakterisasi Nanomaterial. Jurnal Nanosains dan Nanoteknologi, 2(1), pp. 11-14.
- Ahriani, Sri Zelviani, Hernawati, dan Fitriyanti. 2021. Analisis Nilai Absorbansi Untuk Menentukan Kadar Flavonoid Daun Jarak Merah (Jatropha Gossypifolia L.) Menggunakan Spektrofotometer UV-Vis. Jurnal Fisika dan Terapannya (2021) Vol. 8 (2): 56 – 64.
- Arutanti, Osi, Mikrajuddin Abdullah, Khairurrijal, dan Hernawan Mahfudz. 2009. Penjernihan Air Dari Pencemar Organik dengan Proses Fotokatalis pada Permukaan Titanium Dioksida (TiO₂). *Jurnal Nanosains & Nanoteknologi*.
- Chen, Zhiwu, Hong Jiang, Wuliang Jin, Chunkai Shi. 2015. Enhanced photocatalytic performance over $Bi_4Ti_3O_{12}$ nanosheets with controllable size and exposed {0 0 1} facets for Rhodamine B degradation. *Applied Catalysis B: Environmental*. 180.698–706.
- Cheng, Tingting, Xiaofeng Sun, Tao Xian, Zao Yi, Ruishan Li, Xiangxian Wang, Hua Yang. 2021.Tert-butylamine/oleic acid-assisted morphology tailoring of hierarchical Bi₄Ti₃O₁₂ architectures and their application for photodegradation of simulated dye wastewater.*Optical Materials*. 112.110781.
- Dachriyanus. 2004. Analisis Struktur Senyawa Organik Secara Spektroskopi. Padang: Lembaga Pengembangan Teknologi Informasi dan Komunikasi (LPTIK) Universitas Andalas.
- Desario, P. A., dan Gray, K. A. 2012. 13 Passive Systems to Improve Air Quality and Reduce Heat Retention in the Urban Environment. Metropolitan Sustainability. Frank Zeman, Woodhead Publishing: 292-316.
- Dubey, Shivangi and Rajnish Kurchania. 2015.Study of dielectric and ferroelectric properties of five-layer Aurivillius oxides: A₂Bi₄Ti₅O₁₈ (A = Ba, Pb and Sr) synthesized by solution combustion route.*Bull. Mater. Sci.*, Vol. 38, No. 7, pp. 1881–1889.
- Elaya Perumal, E and M. Malathi.2015. Effect of CuO addition on magnetic and electrical properties of Sr₂Bi₄Ti₅O₁₈. Lead-free ferroelectric ceramics.*Ceramics International*.5830-5841.
- Fan, Y., Li, D., Deng, M., Luo, Y., Meng, Q. 2009. An Overview on Water Splitting Photocatalysts. *Frontiers of Chemistry in China*, 4: 343-351.

- Fukunaga, Masanori, Masaki Takesada, Akira Onodera. 2016.Ferroelectricity in Layered Perovskites as a Model of Ultra-Thin Films. World Journal of Condensed Matter Physics. 6, 224-243.
- Haikal, Fikri dan Anton Prasetya. 2021. Uji Aktivitas Fotokatalis Senyawa Aurivillius Lapis Empat SrBi₄Ti₄O₁₅ dalam Mendegradasi Rhodamine-B. Al-Kimiya, Vol. 8, No. 1 (37-41).
- Hakim, L., Dirgantara, M., dan Nawir, M. 2019. Karakterisasi Struktur Material Pasir Bongkahan Galian Golongan C Dengan Menggunakan X-Ray Difraction (X-Rd) Di Kota Palangkaraya. Jurnal Jejaring Matematika Dan Sains. 1(1). 44–51.
- He, H., Yin, J., Li, Y., Zhang, Y., Qiu, H., Xu, J., Xu, T., Wang, C. 2014. Size Controllable Synthesis of Single-Crystal Ferroelectric Bi₄Ti₃O₁₂ Nanosheet Dominated with {001} Facets Toward Enhanced Visible-Light-Driven Photocatalytic Activities. *Applied Catalysis B: Environmental*, 156–157, 35– 43.
- He, R., Xu, D., Cheng, B., Yu, J., dan Ho, W. 2018. Review on Nanoscale Bi-Based Photocatalysts. Nanoscale Horizons, 3(5): 464-504.
- Ilyas, Rahmat. 2016. Manusia Sebagai Khalifah Dalam Perspektif Islam. Mawaízh, Vol.1, No.7.
- Istianah. 2015. Upaya Pelestarian Lingkungan Hidup Dalam Perspektif Hadis. Riwayah, 1(2): 249-270.
- Ivanov, S., Webster, C. & Berezina, K. 2017. Adoption of robots and service automation by tourism and hospitality companies. *Paper presented at the INVTUR Conference*. 17-19 May 2017, Aveiro, Portugal.
- Kan, Y., Jin, X., Wang, P., Li, Y., Cheng, Y.-B., Yan, D. 2003. Anisotropic Grain Growth of Bi₄Ti₃O₁₂ in Molten Salt Fluxes. *Materials Research Bulletin*, 38: 567–576.
- Kimura, Toshio. 2011. Molten Salt Synthesis of Ceramic Powders. In Advances in Ceramics-Synthesis and Characterization, Processing and Specific Applications. ISBN 978-953-307-505-1.
- Lin, Ying, Yongjing Zhang, Chuang Sun, Shili Zhan, Qibin Yuan, Haibo Yang. 2020.Energy storage performance in polymer dielectrics by introducing 2D SrBi₄Ti₄O₁₅ nanosheets. Ceramics International.
- Machida, Masato., Jun-ichi Yabunaka, Tsuyoshi Kijima, Shigenori Matsushima, Masao Arai. 2001. Electronic structure of layered tantalates photocatalysts, RbLnTa₂O 7 (Ln = La, Pr, Nd, and Sm). *International Journal of Inorganic Materials* 3 545–550.

- Machida, Masato, Tomohiro Mitsuyama, and Keita Ikeue.2005. Photocatalytic Property and Electronic Structure of Triple-Layered Perovskite Tantalates, MCa₂Ta₃O₁₀ (M = Cs, Na, H, and C₆H₁₃NH₃). *American Chemical Society*, 109, 7801-7806.
- Mikrianto, Edi, Rizky Kurniawan, Dwi Rasy Mujiyanti, Utami Irawati.2014. Sintesis Oksida Logam Aurivillius SrBi₄Ti₄O₁₅ Menggunakan Metode Hidrotermal Dan Penentuan Sifat Feroelektriknya. *Sains dan Terapan Kimia*. Vol.8, No. 1, 27–36.
- Mondal, S. 2008. Methods of dye removal from dye house effluent. *Environmental Engineering Science*. 25(3): 383-396.
- Naimah, Siti, Silvie Ardhanie A., Bumiarto Nugroho Jati, Novi Nur Aidha dan Agustina Arianita C. 2014. Degradasi Zat Warna Pada Limbah Industri Cair Tekstil Dengan Metode Fotokatalitik Menggunakan Nanokomposit TiO₂ – Zeolit. *Jurnal Kimia Kemasan*, Vol.36: 225-236.
- Nalini, G. and T. N. Guru Row. 2002.Structure determination at room temperature and phase transition studies above *T*c in *A*Bi₄Ti₄O₁₅ (*A* = Ba, Sr or Pb). *Indian Academy of Sciences*, Vol. 25, No. 4, pp. 275–281.
- Niu, S., Zhang, R., Zhang, X., Xiang, J., dan Guo, C. 2020. Morphology-Dependent Photocatalytic Performance of Bi4Ti3O12. Ceramics International, 46(5): 6782-6786.
- Qi, W., Wang, Y., Wu, J., Hu, Z., Jia, C., Zhang, H. 2019. Relaxor Ferroelectric and Photocatalytic Properties of BaBi4Ti4O15. Advances in Applied Ceramics, 118(7), 418–424.
- Rashed, M. N., dan A. A. El-Amin, 2007, Photocatalytic Degradation of Methyl Orange in Aqueous TiO₂ Under Different Solar Irradiation Source, *Int.j.Phys.Sci.* Vol.2 (3), hal 73-81.
- Rosyidah Afifah, Atiek Rostika Noviyanti. 2008. Synthesis and ferroelectric properties of Bi4Ti₃O₁₂ aurivillius phase. *Proceeding of The International Seminar on Chemistry*_2008 (pp. 487-490).
- Sakthivel, S., Neppolian, B., Shankar, V., Arabindoo, B., Palanichamy, M., & Murugesen, V. 2003. Solar Photocatalytic Degradation of Azo Dye Comparison of Photocatalytic Efficiency of ZnO and TiO2. Elsevier Science, 77, 65-82.
- Sania., 2014, Karakteristik dan Kandungan Mineral Pasir Pantai Lhok Mee Beureunut dan Leungah Kabupaten Aceh Besar, Jurnal Material 3, 263-270.

- Shihab, M. Q. 2012. Tafsir Al-Misbah Pesan, Kesan dan Keserasian Al Quran. Volume 6. Jakarta: Lentera Hati.
- Shihab, M. Q. 2012. Tafsir Al-Misbah Pesan, Kesan dan Keserasian Al Quran. Volume 11. Jakarta: Lentera Hati.
- Sucahya Transmissia Noviska, Novie Permatasari, Asep Bayu Dani Nandiyanto. 2016. Review: Fotokatalis Untuk Pengolahan Limbah Cair. *Jurnal Integrasi Proses* Vol. 6, No. 1, 1 – 15.
- Syuhadi Imam, Afifah Rosyidah. 2014. Sintesis dan Karakterisasi Aurivillius LaBi₂TiNbO₉ dan Bi₃TiTaO₉. *Jurnal Sains Dan Seni Pomits* Vol. 3, No. 2, (2014) 2337-3520 (2301-928X Print)
- Tu, S., Zhang, Y., Reshak, A. H., Auluck, S., Ye, L., Han, X., Ma, T., Huang, H. 2019. Ferroelectric Polarization Promoted Bulk Charge Separation for Highly Efficient CO₂ Photoreduction of SrBi₄Ti₄O₁₅. *Nano Energy*, 56, 840–850.
- Wang, Lingli., Ma, Wanhong., Fang, Yanfen., Zhang, Yu., Jia, Manke., Li, Reiping. Huang, Yingping. 2013. Bi₄Ti₃O₁₂ Synthesized by High Temperature Solid Phase Method and It's Visible Catalytic Activity. *Procedia Environmental Sciences*.18: 547-558.
- Wei, Zhao, Nianqi Liu, Hongxing Wang, Yubo Zhang, Shimeng Zhang, Kexin Gao, Xu Chen, dan Zhiyun Fan. 2016. Hydrothermal Synthesis of Bi₄Ti₃O₁₂/TiO₂ Composite School of Material & Engineering.
- Zhang, Hang, Yujun Liang Yingli Zhu, Shiqi Liu, Kai Li, Jian Yang, Wen Lei.2018. Tuning photoluminescence in layered Pr doped Bi₄Ti₃O₁₂ nanosheets via molten salt process. *Journal of Alloys and Compounds*. 767 1030-1040.
- Zhao, Z., Li, X., Ji, H., Deng, M. 2014. Formation Mechanism of Plate-like Bi₄Ti₃O₁₂ Particles in Molten Salt Fluxes. *Integrated Ferroelectrics*, 154(1), 154–158.
- Zhao, Xuefeng, HuiYing Liu, Xiaoyue Pan, LingXu Wang, Zhe Feng, Zhibiao Ma, Fengqing Zhang, Luyi Zhu, Qingbo Tian, Suhua Fan. 2020. Study On Properties Of BiFe 0.98 Mn 0.02 O₃ / Sr2Bi4Ti₅O₁₈ Double-layer Composite Films. *Journal of Alloys and Compounds*.836. 155433.
- Zhou, H., Mao, Y., & Wong, S. S. (2007). Probing Structure-Parameter Correlation in the Molten Salt Synthesis of BaZrO3 Perovskite Submicrometer-Sized Particles. *Chemistry of Materials*, Vol. 19, No. 22, (October 2007), pp. 5238-5249, ISSN 0897-4756
- Zulhadjri, Sabri Ella Afni, dan Syukri Arief. 2013. Sintesis Senyawa Aurivillius SrBi₄Ti₄O₁₅ yang Didoping Kation La³⁺ dengan Metode Lelehan Garam. *Prosiding Semirata FMIPA Universitas Lampung*.

LAMPIRAN

Lampiran 1. Diagram Alir

1. Sintesis Bi₄Ti₃O₁₂, SrBi₄Ti₄O₁₅ dan Sr₂Bi₄Ti₅O₁₈ a. Sintesis Sampel Bi₄Ti₃O₁₂

Bi₂O₃, TiO₂ dan NaCl-KCl dengan perbandingan 1:7

- Dihomogenkan dengan mortar agate selama satu jam dan ditambahkan aseton selama penghomogenan
- Dikalsinasi pada suhu 675, 775 dan 825 °C selama 6 jam
- Dikeluarkan sampel dari tanur
- Diletakkan diatas kertas saring dalam corong gelas
- Dicuci dengan air panas berulang kali
- Dilakukan pengecekan garam NaCl-KCl dengan diteteskan larutan

AgNO3 kedalam filtrat

- Dikeringkan menggunakan oven pada suhu 100°C selama 4 jam

Hasil

b. Sampel SrBi₄Ti₄O₁₅

Bi₂O₃, TiO₂, SrCO₃ dan NaCl-KCl dengan perbandingan 1:7

- Dihomogenkan dengan mortar agate selama satu jam dan ditambahkan aseton selama penghomogenan
- Dikalsinasi pada suhu 675, 775 dan 825 °C selama 6 jam
- Dikeluarkan sampel dari tanur
- Diletakkan diatas kertas saring dalam corong gelas
- Dicuci dengan air panas berulang kali
- Dilakukan pengecekan garam NaCl-KCl dengan diteteskan larutan
- AgNO3 kedalam filtrat
- Dikeringkan menggunakan oven pada suhu 100°C selama 4 jam

Hasil

Hasil

2. Karakterisasi dan analisis Bi4Ti3O12, SrBi4Ti4O15, dan SrBi4Ti4O18 menggunakan Instrumen XRD

- Diletakkan dalam sample holder
- Dianalisa pada rentang 2θ (°) = 10-90
- Dianalisis spectra menggunakan software origin dibandingkan dengan standar ICSD

Hasil

3. Karakterisasi dan analisis Bi4Ti3O12, SrBi4Ti4O15, dan SrBi4Ti4O18 menggunakan Instrumen SEM

4. Karakterisasi dan analisis Bi4Ti3O12, SrBi4Ti4O15, dan SrBi4Ti4O18 menggunakan UV-Vis DRS

- 5. Uji aktivitas fotokatalitik
 - a. Pembuatan larutan induk Metilen Biru 1000 ppm

0,5 gr Rhodamin B

- Dilarutkan dengan aquades dalam labu ukur 500 ml
- Dikocok hingga homogen
- Disimpan dalam reaktor fotokatalis

Larutan Induk Rhodamin B 1000 ppm

b. Penentuan panjang gelombang maksimum Rhodamin B

c. Pembuatan kurva standar untuk Spektroskopi UV-Vis

10 mL rhodamin B dengan konsentrasi 0.5-4 ppm dengan rentang 0,5 ppm

- Disiapkan 10 mL larutan
- Diukur absorbansinya dengan spektroskopi UV-Vis pada panjang

gelombang maksimum

Hasil

d. Pengujian aktivitas fotokatalis pada Rhodamin B dengan Reaktor Fotokatalitir

100 mL rhodamin B 4 ppm + 0,1-gram serbuk $Bi_4Ti_3O_{12}$

- Dimasukkan gelas kimia 100 mL
- Diaduk dengan stirrer selama 30 menit dalam ruang gelap
- Diradiasi dibawah sinar UV selama 60 menit
- Disaring untuk memisahkan larutan dan katalis
- Diukur absorbansi larutan dengan spektroskopi UV-Vis pada panjang gelombang maksimum
- Dicek pH larutan dengan indikator universal

Hasil

100 mL rhodamin B 4 ppm + 0,1-gram serbuk SrBi₄Ti₄O₁₅

- Dimasukkan gelas kimia 100 mL
- Diaduk dengan stirrer selama 30 menit dalam ruang gelap
- Diradiasi dibawah sinar UV selama 60 menit
- Disaring untuk memisahkan larutan dan katalis
- Diukur absorbansi larutan dengan spektroskopi UV-Vis pada panjang gelombang maksimum
- Dicek pH larutan dengan indikator universal

Hasil

100 mL Rhodamin B 4 ppm + 0,1-gram serbuk $SrBi_4Ti_4O_{18}$

- Dimasukkan gelas kimia 100 mL
- Diaduk dengan stirrer selama 30 menit dalam ruang gelap
- Diradiasi dibawah sinar UV selama 60 menit
- Disaring untuk memisahkan larutan dan katalis
- Diukur absorbansi larutan dengan spektroskopi UV-Vis pada panjang gelombang maksimum
- Dicek pH larutan dengan indikator universal

Hasil

Lampiran 2. Perhitungan

Reaksi keseluruhan adalah :

 $\begin{array}{l} 2 \text{ Bi}_2\text{O}_3 + 3 \text{ TiO}_2 \rightarrow \text{Bi}_4\text{Ti}_3\text{O}_{12} \\ \\ 2 \text{ Bi}_2\text{O}_3 + 4 \text{ TiO}_2 + \text{SrCO}_3 \rightarrow \text{SrBi}_4\text{Ti}_4\text{O}_{15} + \text{CO}_2 \\ \\ 2 \text{ Bi}_2\text{O}_3 + 5 \text{ TiO}_2 + \text{Sr}_2\text{CO}_3 \rightarrow \text{Sr}_2\text{Bi}_4\text{Ti}_5\text{O}_{18} + \text{CO}_2 \end{array}$

Keterangan:

- Massa target 4 gram
- Perbandingan mol garam NaCl:KCl adalah 1:1
- Perbandingan mol Bi₄Ti₃O₁₂: mol garam adalah 1:7
- Perbandingan mol SrBi₄Ti₄O₁₅: mol garam adalah 1:7
- Perbandingan mol Sr₂Bi₄Ti₅O₁₈: mol garam adalah 1:7

1. Senyawa Bi4Ti3O12

$2 \operatorname{Bi}_2 O_3 + 3 \operatorname{Ti}_3$	$O_2 \rightarrow Bi_4 Ti_3 O_{12}$
n Bi ₄ Ti ₃ O ₁₂	$=\frac{Massa}{Mr}$
	$=rac{4 gr}{1171.6128 gr/mol}$
	= 0,003414097217 mol
Massa Bi ₂ O ₃	= Mr x n Bi ₂ O ₃
	= 465,959 gr/mol x 0,006828194434 mol
	= 3, 1816586 gr = 3,1817 gr
Massa TiO ₂	= Mr x n TiO ₂
	=79,8658 gr/mol x 0,0102422917 mol
	= 0,81800882 gr = 0,8180 gr
Massa NaCl	= 7 x n Bi ₄ Ti ₄ O ₁₂ x Mr NaCl
	= 7 x 0,003414097217 mol x 58,4427 gr/mol
	= 1,39670342 gr = 1,3967 gr
Massa KCl	$= 7 x n Bi_4 Ti_4 O_{12} x Mr KCl$
	= 7 x 0,003414097217 mol x 74,5513 gr/mol
	= 1,7816777 gr = 1,7817 gr

2. Senyawa SrBi4Ti4O15

$2 \operatorname{Bi}_2 O_3 + 4 \operatorname{Ti}$	$O_2 + SrCO_3 \rightarrow SrBi_4Ti_4O_{15} + CO_2$
n SrBi ₄ Ti ₄ O ₁₅	$=\frac{Massa}{Mr}$
	$=\frac{4 gr}{1355,0006 gr/mol}$
	= 0,002952 mol
Massa Bi ₂ O ₃	= Mr x n Bi ₂ O ₃
	= 465,959 gr/mol x 0,005904 mol
	= 2,75102 gr = 2,7510 gr
Massa TiO ₂	= Mr x n TiO ₂
	= 79,8658 gr/mol x 0,011808 mol
	= 0,943055366 gr = 0,9431 gr
Massa SrCO ₃	= Mr x n SrCO ₃
	= 147,6289 gr/mol x 0,002952 mol
	= 0,4358 gr
Massa NaCl	= 7 x n SrBi ₄ Ti ₄ O ₁₅ x Mr NaCl
	= 7 x 0,002952 mol x 58,4427 gr/mol
	= 1,20766 gr = 1, 2077 gr

3. Senyawa Sr₂Bi₄Ti₅O₁₈

$2 \operatorname{Bi}_2 O_3 + 5 \operatorname{Ti} O_3$	$D_2 + Sr_2CO_3 \rightarrow Sr_2Bi_4Ti_5O_{18} + CO_2$
n Sr ₂ Bi ₄ Ti ₅ O ₁₈	$=rac{Massa}{Mr}$
	$=\frac{4 gr}{1538,6492 gr/mol}$
	= 0,00259968289 mol
Massa Bi ₂ O ₃	= Mr x n Bi ₂ O ₃
	= 465,959 gr/mol x 0,00519936578 mol
	= 2,42269128 = 2,4227 gr
Massa TiO ₂	= Mr x n TiO ₂

	= 79,8658 gr/mol x 0,0129984144 mol
	= 1,03812876 gr = 1,0381 gr
Massa SrCO ₃	= Mr x n SrCO ₃
	= 147,6289 gr/mol x 0,00259968289 mol
	= 0,383788325 gr = 0,3838 gr
Massa NaCl	= 7 x n SrBi4Ti4O15 x Mr NaCl
	= 7 x 0,00259968289 mol x 58,4898 gr/mol
	= 1,06438453 gr = 1, 0644 gr
Massa KCl	$= 7 \text{ x n SrBi}_{4}\text{Ti}_{4}\text{O}_{15} \text{ x Mr KCl}$
	= 7 x 0,00259968289 mol x 74,602 gr/mol
	= 1,3575908 gr = 1,3576 gr

Lampiran 3. Data Standart XRD JCPDS

a. Data JCPDS No. 00-035-0795 (BIT)

Stick Pattern

Peak list

No.	h	k	1	d[A]	2Theta[deg]	I[%]
1	0	2	0	16.4773	5.359	1
2	0	4	0	8.20569	10.773	4
3	0	6	0	5.46862	16.195	14
4	0	4	1	4.51943	19.627	1
5	0	8	0	4.1013	21.651	8
6	1	1	1	3.8135	23.307	20
7	1	3	1	3.62273	24.553	2
8	1	5	1	3.31137	26.903	5
9	0	10	0	3.2811	27.156	2
10	1	7	1	2.9706	30.058	100
11	0	12	0	2.73433	32.725	14
12	2	0	0	2.72478	32.843	24
13	0	0	2	2.70461	33.095	19
14	1	9	1	2.6447	33.867	1
15	2	4	0	2.5854	34.668	1
16	0	4	2	2.56982	34.885	1

17	2	6	0	2.43832	36.832	4
18	0	6	2	2.42472	37.046	4
19	1	11	1	2.35658	38.158	6
20	0	14	0	2.34358	38.378	13
21	2	8	0	2.26968	39.679	12
22	0	8	2	2.25811	39.891	12
23	1	13	1	2.10896	42.846	4
24	0	16	0	2.05044	44.132	2
25	2	12	0	1.9307	47.028	6
26	2	0	2	1.91928	47.325	17
27	1	15	1	1.90071	47.816	9
28	1	11	2	1.88154	48.334	1
29	2	4	2	1.8684	48.696	1
30	0	18	0	1.82292	49.993	2
31	2	6	2	1.8112	50.339	2
32	2	14	0	1.77708	51.375	12
33	0	14	2	1.77159	51.546	15
34	1	13	2	1.74787	52.298	2
35	2	8	2	1.73861	52.598	4
36	1	17	1	1.72461	53.058	3
37	3	1	1	1.71968	53.222	4
38	1	1	3	1.70936	53.569	2
39	3	3	1	1.70116	53.848	1
40	3	5	1	1.66473	55.125	1
41	1	5	3	1.65643	55.425	1
42	0	8	3	1.65035	55.647	1
43	0	20	0	1.64038	56.015	1
44	3	7	1	1.61609	56.933	14
45	1	7	3	1.60802	57.245	15
46	1	19	1	1.5749	58.564	4
47	2	12	2	1.57087	58.729	4
48	2	18	0	1.51505	61.119	1
49	0	18	2	1.51178	61.265	1
50	3	11	1	1.49137	62.196	2
51	1	11	3	1.48485	62.5	8
52	1	21	1	1.44742	64.307	6
53	3	13	1	1.42281	65.557	1
54	1	13	3	1.41679	65.871	1
55	0	20	2	1.40235	66.637	1
56	2	10	3	1.3671	68.59	1
57	4	0	0	1.36193	68.887	1
58	3	15	1	1.35298	69.408	5

59	1	15	3	1.34838	69.679	4
60	1	23	1	1.33743	70.333	1
61	4	6	0	1.32178	71.292	1
62	0	6	4	1.31255	71.871	1
63	2	22	0	1.30837	72.136	2
64	0	22	2	1.30651	72.255	2
65	4	8	0	1.29289	73.139	1
66	3	17	1	1.28483	73.673	1
67	3	1	3	1.27875	74.082	1
68	0	26	0	1.26193	75.239	1
69	2	20	2	1.24743	76.269	1
70	1	25	1	1.24206	76.658	1
71	3	7	3	1.23471	77.199	3
72	3	19	1	1.2195	78.344	2
73	1	19	3	1.2159	78.621	3
74	2	0	4	1.21154	78.959	2
75	4	6	2	1.18772	80.865	1
76	3	21	0	1.18452	81.129	1
77	2	6	4	1.18282	81.27	1
78	4	14	0	1.17769	81.699	3
79	0	28	0	1.17173	82.204	3
80	2	8	4	1.16184	83.058	1

Keterangan :

U	
h k l	: indeks miller
d[A]	: jarak antar bidang
2Theta[deg]	: sudut terjadinya difraksi
I[%]	: intensitas
b. JCPDS No. 00-143-0973 (SBT4)

Stick Pattern

<u>Peak list</u>

No.	h	k	1	d[A]	2Theta[deg]	I[%]
1	0	0	2	20.5	4.307	4
2	0	0	4	10.2	8.662	5
3	0	0	6	6.82	12.97	7
4	0	0	8	5.12	17.306	15
5	1	0	5	4.53	19.581	1
6	0	0	10	4.09	21.712	13
7	1	1	1	3.82	23.267	21
8	1	1	3	3.7	24.033	3
9	1	1	5	3.48	25.577	3
10	0	0	12	3.41	26.111	1
11	1	1	7	3.21	27.769	8
12	1	1	9	2.935	30.431	100
13	0	0	14	2.92	30.591	2
14	0	2	0	2.72	32.902	39
15	1	1	11	2.675	33.472	1
16	2	0	4	2.627	34.102	1
17	0	0	16	2.56	35.023	4

18	2	0	6	2.524	35.539	3
19	1	1	13	2.437	36.853	3
20	2	1	2	2.415	37.201	1
21	0	2	8	2.399	37.458	5
22	2	1	4	2.365	38.017	1
23	1	2	5	2.329	38.628	1
24	0	0	18	2.275	39.582	4
25	0	2	10	2.265	39.765	25
26	1	1	15	2.225	40.51	3
27	2	0	12	2.125	42.507	1
28	0	0	20	2.048	44.187	3
29	1	1	17	2.041	44.347	3
30	2	0	14	1.991	45.522	3
31	2	2	0	1.921	47.28	27
32	2	2	4	1.888	48.158	1
33	1	1	19	1.88	48.376	8
34	2	0	16	1.862	48.874	7
35	2	2	6	1.85	49.212	1
36	1	2	15	1.816	50.197	1
37	2	2	8	1.799	50.705	3
38	3	0	5	1.767	51.69	1
39	2	0	18	1.744	52.423	15
40	2	2	10	1.74	52.553	3
41	1	3	1	1.717	53.312	6
42	0	0	24	1.705	53.717	1
43	2	2	12	1.675	54.759	1
44	3	1	7	1.648	55.733	3
45	2	0	20	1.635	56.216	1
46	1	1	23	1.615	56.975	1
47	3	1	9	1.606	57.324	28
48	3	1	11	1.56	59.179	1
49	2	2	16	1.535	60.242	3
50	3	2	1	1.505	61.571	4
51	2	2	18	1.467	63.348	8
52	1	0	27	1.46	63.687	1
53	3	1	15	1.454	63.981	1
54	2	0	24	1.444	64.478	1
55	1	1	27	1.41	66.229	4
56	1	3	17	1.399	66.817	3
57	0	4	0	1.36	68.999	6
58	4	0	4	1.346	69.82	3
59	2	3	14	1.339	70.238	1

60	3	0	21	1.326	71.031	1
61	4	1	2	1.314	71.779	1
62	0	4	10	1.29	73.33	3
63	3	3	1	1.28	73.997	1
64	2	1	28	1.252	75.941	1
65	1	3	23	1.236	77.103	1
66	3	3	9	1.233	77.326	6
67	2	4	0	1.215	78.69	5
68	0	0	34	1.205	79.472	1
69	4	1	14	1.2	79.87	1
70	1	3	25	1.186	81.007	2
71	4	2	8	1.182	81.339	1
72	4	0	18	1.165	82.783	5
73	3	1	27	1.137	85.295	4

h k l	: indeks miller
d[A]	: jarak antar bidang
2Theta[deg]	: sudut terjadinya difraksi
I[%]	: intensitas

c. JCPDS No. 00-014-0276 (SBT5).

Stick Pattern

<u>Peak list</u>

No.	h	k	1	d[A]	2Theta[deg]	I[%]
1	0	0	2	23.9	3.694	14
2	0	0	4	12.1	7.3	10
3	0	0	6	8.11	10.901	12
4	0	0	8	6.09	14.533	25
5	0	0	10	4.88	18.164	35
6	0	0	12	4.07	21.82	40
7	1	0	1	3.85	23.083	16
8	1	0	3	3.76	23.643	4
9	0	0	14	3.486	25.532	8
10	1	0	7	3.38	26.347	2
11	1	0	9	3.144	28.364	12
12	0	0	16	3.05	29.258	4
13	1	0	11	2.913	30.667	100
14	1	1	0	2.731	32.766	40
15	1	1	8	2.492	36.011	2
16	0	0	20	2.44	36.806	10
17	1	1	12	2.267	39.728	25
18	0	0	22	2.219	40.625	18
19	1	0	19	2.139	42.215	2

20	1	1	16	2.034	44.508	10
21	2	0	0	1.931	47.02	20
22	0	0	26	1.877	48.459	2
23	1	0	23	1.86	48.93	6
24	1	1	20	1.819	50.108	4

h k l	: indeks miller
d[A]	: jarak antar bidang
2Theta[deg]	: sudut terjadinya difraksi
I[%]	: intensitas

Lampran 4 Data Standart XRD ICSD

a. Data Standart ICSD Bi₄Ti₃O₁₂

Data for	ICSD #240210
Coll Code	240210
Rec Date	10/1/2005
Mod Date	8/1/2007
Chem Name	Tetrabismuth Trititanate
Structured	Bi4 (Ti3 O12)
Sum	Bi4 O12 Ti3
ANX	A3B4X12
D(calc)	8.04
Title	Structure and phase transitions in Aurivillius phase ferroelectrics
Author(s)	Lightfoot, P.;Hervoches, C.H.
	Proceedings of the 10th International Ceramics Congress (2003),
Reference	10, 623-630
Unit Cell	5.44513(11) 5.41014(11) 32.8565(7) 90.0 90.0 90.0
Vol	967.9
Z	4
Space Group	B2cb
SG Number	41
Cryst Sys	orthorhombic
Pearson	oS76
Wyckoff	b9 a
Red Cell	B 5.410 5.445 16.652 99.409 90 89.999 483.952
Trans Red	0.000 1.000 0.000 / -1.000 0.000 0.000 / 0.500 0.000 0.500
Comments	Proceedings of the 10th International Ceramics Congress - Part D, Advances in Science and Technology, 33, P. Vincenzini Editor, Techna, 2003, ISBN: 88-86538-35-9, pages 623-630. x and y coordinates of O(6) have been corrected. Previously reported structures by the same authors (col.code: 87808, 87809,87810) represent a stable, false minimum in the refinement (comment from Dr. P. Lightfoot) Neutron diffraction (powder) The structure has been assigned a PDF number (calculated powder diffraction data): 01-073-4117 Rietveld profile refinement applied Structure type : Bi4Ti3O12 No R value given in the paper. At least one temperature factor is implausible or meaningless but agrees with the value given in the paper.

Atom	#	OX	SITE	X	У	Z	SOF	Η
Bi	1	+3	8b	0	0.9981(4)	0.06691(4)	1	0
Bi	2	+3	8b	0.9992(5)	0.0179(4)	0.21142(4)	1	0
Ti	1	+4	8b	0.0441(8)	0	0.5	1	0
Ti	2	+4	8b	0.0474(6)	1.0015(9)	0.37153(7)	1	0
0	1	-2	8b	0.3222(7)	0.2542(6)	0.00818(9)	1	0
0	2	-2	8b	0.2711(6)	0.2424(5)	0.24984(9)	1	0
0	3	-2	8b	0.0866(5)	1.0607(4)	0.44109(8)	1	0
0	4	-2	8b	1.0558(6)	0.9474(5)	0.31879(6)	1	0
0	5	-2	8b	0.2900(5)	0.2270(5)	0.11220(6)	1	0
0	6	-2	8b	0.3597(5)	0.2952(5)	0.87591(7)	1	0
*end	for	ICSD	#240210					

Atom	: atom yang dideteksi
#	: jumlah atom yang terdeteksi
OX	: muatan atom
хуz	: sumbu bidang kristal

a. Data Standart ICSD SrBi₄Ti₄O₁₅

Data for	ICSD #51864
Coll Code	51864
Rec Date	10/1/2004
Mod Date	8/1/2007
Chem Name	Strontium Tetrabismuth Tetratitanium Oxide – Ht Structured
Structured	Sr Bi4 Ti4 O15
Sum	Bi4 O15 Sr1 Ti4
ANX	A4B5X15
D(calc)	7.25
Title	Structural behavior of the four-layer Aurivillius-phase ferroelectrics Sr Bi4 Ti4 O15 and Bi5 Ti3 Fe O15 Hervoches C H :Spedden A :Biggs B :Kilcovne S H :Manuel
Author(s)	P.;Lightfoot, P.
	Journal of Solid State Chemistry
	(2002), 164, 280-291
	Journal of Solid State Chemistry
	(2002), 166, 449-449
Deference	Golden Book of Phase Transitions, Wroclaw
Reference	(2002), 1, 1-123 2,87460(4) 2,87460(4) 41,2522(5) 00,00,00
Unit Cell	3.87409(4) 3.87409(4) 41.3523(5) 90 90 90
V0I 7	020.83
Space Group	14/mmm 120
SG Number	
Cryst Sys	tetragonal
Pearson	
R value	
	1 3.874 3.874 20.856 95.329 95.329 89.999 310.417
Trans Red	1.000 0.000 0.000 / 0.000 -1.000 0.000 / -0.500 0.500 -0.500
	Stable above 803 K, below A21am (3rd ref., Tomaszewski)
	This publication corrects errors in an earlier one
	Rietveld profile refinement applied
	Temperature in Kelvin: 923
C	Structure type : BaBi41i4O15
comments	x-ray diffraction (powder)

Atom	#	OX	SITE	Х	У	Z	SOF	Η
Bi	1	3	2a	0	0	0	0.667	0
Sr	1	2	2a	0	0	0	0.333	0
Bi	2	3	4e	0	0	0.1037(2)	0.667	0
Sr	2	2	4e	0	0	0.1037(2)	0.333	0
Bi	3	3	4e	0	0	0.2184(2)	1	0
Ti	1	4	4e	0	0	0.4509(3)	1	0
Ti	2	4	4e	0	0	0.3481(2)	1	0
0	1	-2	2b	0	0	0.5	1	0
0	2	-2	8g	0	0.5	0.0491	1	0
0	3	-2	4e	0	0	0.4052(2)	1	0
0	4	-2	8g	0	0.5	0.1444(2)	1	0
0	5	-2	4e	0	0	0.3045(3)	1	0
0	6	-2	4d	0	0.5	0.25	1	0
Lbl	Туре	U11	U22	U33	U12	U13	U23	
Bi1	Bi3+	0.056(4)	0.056(4)	0.066(6)	0	0	0	
Sr1	Sr2+	0.056(4)	0.056(4)	0.066(6)	0	0	0	
Bi2	Bi3+	0.073(3)	0.073(3)	0.133(4)	0	0	0	
Sr2	Sr2+	0.073(3)	0.073(3)	0.133(4)	0	0	0	
Bi3	Bi3+	0.075(3)	0.075(3)	0.072(4)	0	0	0	
Ti1	Ti4+	0.027(4)	0.027(4)	0.044(5)	0	0	0	
Ti2	Ti4+	0.010(3)	0.010(3)	0.035(5)	0	0	0	
01	O2-	0.084(7)	0.084(7)	0.029(7)	0	0	0	
02	O2-	0.057(4)	0.118(6)	0.115(6)	0	0	0	
03	O2-	0.072(4)	0.072(4)	0.043(5)	0	0	0	
04	O2-	0.015(3)	0.058(4)	0.035(3)	0	0	0	
05	O2-	0.066(4)	0.066(4)	0.067(6)	0	0	0	
06	O2-	0.026(3)	0.026(3)	0.087(7)	0	0	0	

*end for ICSD #51864

Atom	: atom yang dideteksi : jumlah atom yang terdeteksi				
#					
OX	: muatan atom				
хуг	: sumbu bidang kristal				

b. Data Standart ICSD Sr₂Bi₄Ti₅O₁₈

Data for	ICSD #150401					
Coll Code	150401					
Rec Date	4/1/2006					
Mod Date	8/1/2007					
Chem Name	Distrontium Tetrabismuth Pentatitanate					
Structured	Sr2 Bi4 (Ti5 O18)					
Sum	Bi4 O18 Sr2 Ti5					
ANX	A2B4C5X18					
D(calc)	7.01					
Title	Structural studies of five layer Aurivillius oxides: A2 Bi4 Ti5 O18 (A = Ca, Sr, Ba and Pb)					
Author(s)	Ismunandar;Kamiyama, T.;Hoshikawa, A.;Zhou, Q.;Kennedy, B.J.;Kubota, Y.;Kato, K.					
Reference	Journal of Solid State Chemistry					
	(2004), 177, 4188-4196					
	Golden Book of Phase Transitions, Wroclaw					
	(2002), 1, 1-123					
Unit Cell	5.4647(2) 5.4625(2) 48.8515(7) 90. 90. 90.					
Vol	1458.26					
Z	4					
Space Group	B 2 c b					
SG Number	41					
Cryst Sys	orthorhombic					
Pearson	oS116					
Wyckoff	b14 a					
R Value	0.0217					
Red Cell	B 5.462 5.464 24.578 96.382 90 89.999 729.131					
Trans Red	0.000 1.000 0.000 / -1.000 0.000 0.000 / 0.500 0.000 0.500					
Comments	Stable up to 558 K, above tetragonal (2nd ref.,					
	Tomaszewski)					
	Neutron diffraction (powder)					
	Rietveld profile refinement applied					
	Structure type : Ca2Bi4Ti5O18					

Atom	#	OX	SITE	Х	У	Z	SOF	Η
Bi	1	3	8b	0	0.000(2)	0.0421(1)	0.5	0
Sr	1	2	8b	0	0.000(2)	0.0421(1)	0.5	0
Bi	2	3	8b	0.003(2)	-0.021(2)	0.2241(1)	1	0
Bi	3	3	8b	0.002(4)	0.004(2)	0.1297(1)	0.5	0
Sr	2	2	8b	0.002(4)	0.004(2)	0.1297(1)	0.5	0
Ti	1	4	8b	0.011(5)	0	0.5	1	0
Ti	2	4	8b	0.013(4)	0.994(4)	0.4168(2)	1	0
Ti	3	4	8b	0.018(3)	0.007(5)	0.3314(2)	1	0
0	1	-2	8b	0.290(3)	0.254(2)	0.0021(3)	1	0
0	2	-2	8b	0.266(3)	0.246(2)	0.2491(2)	1	0
0	3	-2	8b	0.005(3)	0.020(4)	0.2960(1)	1	0
0	4	-2	8b	0.041(4)	0.966(3)	0.3790(1)	1	0
0	5	-2	8b	0.042(3)	0.041(3)	0.4598(2)	1	0
0	6	-2	8b	0.262(3)	0.230(2)	0.0776(2)	1	0
0	7	-2	8b	0.316(2)	0.295(2)	0.9182(2)	1	0
0	8	-2	8b	0.263(3)	0.251(2)	0.8413(2)	1	0
0	9	-2	8b	0.282(2)	0.257(2)	0.1630(2)	1	0

Atom

: atom yang dideteksi : jumlah atom yang terdeteksi : muatan atom : sumbu bidang kristal #

OX

хуz