PERBANDINGAN CADANGAN PREMI BULANAN PADA ASURANSI JIWA DWIGUNA MENGGUNAKAN METODE COMMISSIONERS DAN CANADIAN

SKRIPSI

OLEH UNZILA NUR LAILI NIM. 17610092

PROGRAM STUDI MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM
MALANG
2022

PERBANDINGAN CADANGAN PREMI BULANAN PADA ASURANSI JIWA DWIGUNA MENGGUNAKAN METODE COMMISSIONERS DAN CANADIAN

SKRIPSI

Diajukan Kepada Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang Untuk Memenuhi Salah Satu Persyaratan dalam Memperoleh Gelar Sarjana Matematika (S.Mat)

> Oleh Unzila Nur Laili NIM. 17610092

PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2022

PERBANDINGAN CADANGAN PREMI BULANAN PADA ASURANSI JIWA DWIGUNA MENGGUNAKAN METODE COMMISSIONERS DAN CANADIAN

SKRIPSI

Oleh Unzila Nur Laili NIM. 17610092

Telah Diperiksa dan Disetujui Untuk Diuji Malang, 14 Desember 2022

Dosen Pembimbing I

Dosen Pembimbing II

Abdul Aziz, M.Si NIP. 19760318 200604 1 002

Ach. Nashichuddin, M.A. NIP. 19730705 200003 1 002

Mengetahui,

Ketua Program Studi Matematika

Dr. Elly Susanti, M.Sc NIP, 19741129 200012 2 005

PERBANDINGAN CADANGAN PREMI BULANAN PADA ASURANSI JIWA DWIGUNA MENGGUNAKAN METODE COMMISSIONERS DAN CANADIAN

SKRIPSI

Oleh Unzila Nur Laili NIM. 17610092

Telah Dipertahankan di Depan Penguji Skripsi dan Dinyatakan Diterima Sebagai Salah Satu Persyaratan untuk Memperoleh Gelar Sarjana Matematika (S.Mat) Malang, 21 Desember 2022

Ketua Penguji : Dr. Sri Harini, M.Si

Anggota Penguji 1 : Angga Dwi Mulyanto, M.Si

Anggota Penguji 2 : Abdul Aziz, M.Si

Anggota Penguji 3 : Ach. Nashichuddin, M.A

ERIA Mengetahui,

Ketua Program Studi Matematika

Dr. Elly Susanti, M.Sc NIP. 19741129 200012 2 005

PERNYATAAN KEASLIAN TULISAN

Saya yang bertanda tangan di bawah ini :

Nama

: Unzila Nur Laili

NIM

: 17610092

Program Studi

: Matematika

Fakultas

: Sains dan Teknologi

Judul Skripsi

: Perbandingan Cadangan Premi Bulanan Pada Asuransi Jiwa

Dwiguna Menggunakan Metode Commissioners

Canadian

Menyatakan dengan sebenarnya bahwa skripsi yang saya tulis ini benar-benar merupakan hasil karya sendiri, bukan merupakan pengambilan data, tulisan, atau pikiran orang lain yang saya akui sebagai hasil tulisan dan pikiran saya sendiri, kecuali dengan mencantumkan sumber cuplikan pada daftar pustaka. Apabila dikemudian hari terbukti atau dapat dibuktikan skripsi ini hasil jiplakan, maka saya bersedia menerima sanksi atas perilaku tersebut.

Malang, 21 Desember 2022

Yang membuat pernyataan,

Unzila Nur Laili NIM. 17610092

MOTO

"Jangan Mati Sebelum Kematian"

"Urip Iku Urup"

PERSEMBAHAN

Bismillahirahmanirrahim

Puji Syukur kepada Allah SWT atas segala nikmat dan pertolongan yang telah diberikan hingga terselesaikannya skripsi ini. Tak lupa skripsi ini penulis persembahkan kepada kedua orang tua tercinta, Bapak dan Ibu, juga seluruh keluarga besar yang senantiasa memberikan dukungan baik secara fisik, moral dan spiritual. Serta untuk teman-temaan penulis yang senantiasa memberikan dukungan selama masa perkuliahan hingga pengerjaan skripsi ini

KATA PENGANTAR

Assalamu'alaikum Warahmatullahi Wabarakatuh

Puji syukur kehadirat Allah SWT yang telah melimpahkan rahmat dan hidayah-Nya, sehingga penulis dapat menyelesaikan penyusunan proposal skripsi ini dengan baik. Shalawat serta salam senantiasa penulis haturkan kepada Nabi Muhammad SAW, yang telah memberikan inspirasi kepada seluruh umat Islam untuk berkarya dengan penuh semangat berlandaskan keagungan moral dan spiritual.

Proposal ini penulis susun untuk menuntaskan salah satu syarat memperoleh gelar sarjana matematika Program Studi Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang. Dengan ini penulis mengucapkan terima kasih kepada :

- Prof. Dr. H. M. Zainuddin, M.A., selaku rektor Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Dr. Sri Harini, M.Si., selaku dekan Fakultas Sains dan Teknologi,
 Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Dr. Elly Susanti, M.Sc., selaku Ketua Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- 4. Abdul Aziz, M.Si., selaku dosen pembimbing I, yang senantiasa memberikan bimbingan, arahan, pembelajaran, saran dan kritik yang membangun, serta motivasi dalam proses penyelesaian penulisan skripsi ini.
- 5. Achmad Nashichuddin, M.A., selaku dosen pembimbing II, yang juga telah

memberikan bimbingan, arahan, motivasi, serta saran yang membangun

dalam proses penulisan skripsi ini.

6. Dr. Sri Harini, M.Si., selaku ketua penguji pada sidang skripsi

7. Angga Dwi Mulyanto, M.Si., selaku anggota penguji 1 pada sidang skripsi

8. Segenap sivitas akademika Program Studi Matematika, Fakultas Sains dan

Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang.

9. Orang tua, adik, dan keluarga besar yang selalu mendukung dan mendoakan

penulis dalam penyusunannya.

10. Semua pihak yang tidak bisa disebutkan satu persatu, yang telah

memberikan bantuan dan dukungan dalam proses penyelesaian skripsi ini

secara langsung maupun tidak langsung.

Dalam penulisan proposal skripsi ini, penulis menyadari bahwa terdapat

banyak kekurangan. Oleh karena itu, penulis berharap pembaca memaklumi.

Semoga penelitian ini dapat memberikan manfaat seperti yang penulis harapkan.

Terima kasih.

Wassalamu'alaikum Warahmatullahi Wabarakatuh

Malang, 21 Desember 2022

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGAJUAN	ii
HALAMAN PERSETUJUAN	iii
HALAMAN PENGESAHAN	
PERNYATAAN KEASLIAN TULISAN	V
MOTO	
PERSEMBAHAN	vii
KATA PENGANTAR	viii
DAFTAR ISI	X
DAFTAR GAMBAR	xii
DAFTAR SIMBOL	xiii
DAFTAR LAMPIRAN	XV
ABSTRAK	
ABSTRACT	xvii
مستخلص البحث	xvii
BAB I PENDAHULUAN	
1.1 Latar Belakang	1
1.2 Rumusan Masalah	
1.3 Tujuan Penelitian	
1.4 Manfaat Penelitian	
1.5 Batasan Masalah	
BAB II KAJIAN PUSTAKA	
2.1 Teori Pendukung	
2.1.1 Asuransi	
2.1.2 Tabel Mortalita	
2.1.3 Suku Bunga	
2.1.4 Anuitas Hidup	
2.1.5 Premi	
2.1.6 Cadangan Premi	
2.1.7 Cadangan Disesuaikan	
2.1.8 Metode <i>Commissioners</i>	
2.1.9 Metode <i>Canadian</i>	
2.2 Kajian Integrasi Asuransi dengan Al-Quran dan Hadist	
2.2.1 Konsep Asuransi dalam Islam	
2.2.2 Hukum Asuransi dalam Islam	26
2.3 Kajian Topik dengan Teori Pendukung	
BAB III METODE PENELITIAN	
3.1 Pendekatan Penelitian	
3.2 Jenis dan Sumber Data	
3.3 Tahapan Penelitian	
BAB IV HASIL DAN PEMBAHASAN	33
4.1 Penentuan Rumus Bulanan	
4.1.1 Penentuan Anuitas Asuransi Jiwa Dwiguna	
4.1.2 Penentuan Premi Asuransi Jiwa Dwiguna	
4.1.3 Penentuan Cadangan Premi Asuransi Jiwa Dwiguna	
4.1.3 Fehentuan Cadangan Fremi Asuransi Jiwa Dwiguna	
T.2 I CHITCHIZAH CAGANZAH I ICHH ASARAHSI JIWA DWIZAHA	51

4.2.1 Studi Kasus	37
4.2.1 Perhitungan Cadangan Premi Metode Commissioners	40
4.2.2 Perhitungan Cadangan Premi Metode Canadian	41
4.3 Perbandingan Cadangan Premi Metode Commissioners dan Canadian	42
4.4 Kajian Hukum Cadangan Premi dalam Islam	44
BAB V PENUTUPAN	46
5.1 Kesimpulan	46
5.2 Saran	46
DAFTAR PUSTAKA	
LAMPIRAN	
RIWAYAT HIDUP	

DAFTAR GAMBAR

Gambar 4.1 Grafik Nilai Cadangan Premi Metode Commissioners	. 43
Gambar 4.2 Grafik Nilai Cadangan Premi Metode Canadian	. 43

DAFTAR SIMBOL

 p_x : Peluang bertahan hidup seseorang berusia x dalam jangka waktu

satu tahun

 q_x : Peluang meninggal dunia seseorang berusia x dalam jangka waktu

satu tahun

 $_tp_x$: Peluang hidup manusia berusia x tahun dalam jangka waktu t

tahun

 $_tq_x$: Peluang meninggal dunia manusia berusia x tahun dalam jangka

waktu t tahun

 l_x : Jumlah manusia yang hidup berusia x tahun

 l_{x+1} : Jumlah manusia yang hidup berusia tepat x+1 tahun

 l_{x+t} : Jumlah orang yang berusia tepat x+t tahun d_x : Jumlah manusia meninggal berusia x tahun

I : Nilai bungaP₀ : Pokok pinjaman

 P_n : Jumlah investasi tahun ke n

i : Tingkat suku bunga pertahun (dalam persentase)

n : Jangka waktu (tahun)

v : Faktor diskon d : Tingkat diskon

 \ddot{a}_{\neg} : Nilai sekarang anuitas awal pasti dengan jangka waktu n tahun

 $\ddot{a}^{(m)}$: Anuitas hidup berjangka yang dibayarkan sebanyak m kali

pembayaran dalam jangka n tahun

m : Jangka waktu pembayaran (bulan)

 \ddot{a}_{un} : Anuitas hidup awal berjangka n tahun seseorang berusia x tahun

 A_{A} : Premi tunggal untuk asuransi jiwa berjangka n tahun dengan

tertanggung berusia x tahun

 v^{t+1} : Faktor diskon suku bunga untuk t+1 tahun

 q_{x+t} : Peluang seseorang yang berusia x+t tahun akan meninggal satu

tahun kemudian

 \mathbf{V}^n : Faktor diskon suku bunga untuk n tahun

 $A^{(m)}_{x+\overline{n}|}$: Premi tunggal bulanan asuransi jiwa berjangka n tahun untuk

seseorang berusia x tahun

 P_{max} : Premi tahunan asuransi jiwa dwiguna seseorang berusia x, jangka

pertanggungan dan jangka pembayaran premi sama yaitu n tahun

 $P_{x,\overline{n}|}^{(m)}$: Premi bersih bulanan pada asuransi jiwa dwiguna tertanggung

berusia x tahun, jangka pertanggungan n tahun dan pembayran m

kali dalam setahun

 $_{t}V_{x\overline{n}}$: Cadangan *prospektif* akhir tahun ke t saat seseorang berusia x

tahun dalam jangka waktu pertanggungan selama n tahun

 $A_{x+r,\overline{n-t}}$: Santunan yang akan datang pada seseorang berusia x+t tahun

dengan jangka waktu pertanggungan n-t tahun

 $\ddot{a}_{x+t;n-t}$: Anuitas hidup awal berjangka seseorang berusia x+t tahun,

dengan jangka waktu pertanggungan selama n-t tahun

 α : Premi modifikasi pada tahun pertama

β : Premi modifikasi pada tahun kedua dan tahun-tahun selanjutnya

 $a_{x:\overline{n-1}}$: Anuitas awal seseorang berusia x dengan pembayaran (n-1) tahun

 $\alpha^{^{(12)}}$: Premi modifikasi bulanan pada tahun pertama dengan metode commissioners

: Premi modifikasi bulanan pada tahun kedua dan tahun-tahun

selanjutnya dengan metode commissioners

: Cadangan premi bulanan metode *commissioners* seseorang berusia x tahun, dengan jangka waktu pertanggungan selama n tahun

 P_x : Premi bersih datar asuransi seumur hidup

 $\ddot{a}_{x,\bar{y}}$: Anuitas awal seseorang berusia x dengan pembayaran n tahun

 $\alpha^{(12)}$: Premi modifikasi bulanan tahun pertama metode *canadian*

 $\beta^{(12)}$: Premi modofikasi bulanan tahun kedua dan tahun-tahun selanjutnya metode *canadian*

: Cadangan premi bulanan metode *xivanadian* akhir tahun ke t usia

x tahun, asuransi selama n tahun

SE : Standar Error p : Besar presentase

DAFTAR LAMPIRAN

- Lampiran 1. Tabel Mortalitas Indonesia IV Tahun 2019
- Lampiran 2. Perhitungan Nilai Total Anuitas, Premi Tunggal, dan Premi Bersih Bulanan

Lampiran 3. Perhitungan Cadangan Premi Metode Commissioners dan Canadian

ABSTRAK

Laili, Unzila Nur. 2022. **Perbandingan Cadangan Premi Bulanan Pada Asuransi Jiwa Dwiguna Menggunakan Metode** *Commissioners* **Dan** *Canadian*. Skripsi. Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing: (I) Abdul Aziz, M.Si (II) Ach. Nashichuddin, M.A.

Kata Kunci: cadangan premi bulanan, asuransi jiwa dwiguna, metode *commissioners*, metode *canadian*

Dunia perasuransian sudah tak asing lagi bagi masyarakat Indonesia. Jenis asuransi yang paling diminati oleh masyarakat adalah jenis asuransi jiwa. Asuransi jiwa dikelompokkan menjadi tiga yaitu diantaranya asuransi jiwa berjangka, seumur hidup, dan dwiguna. Asuransi jiwa dwiguna memiliki dua nilai manfaat yaitu sebagai perlindungan dan simpanan. Dalam asuransi tak lepas dengan yang namanya cadangan premi. Semakin hari sering ditemui kasus kerugian yang dialami oleh pihak perusahaan asuransi jiwa dikarenakan ketidaktepatan dalam mengatur cadangan preminya. Akan tetapi hal tersebut tidak menjadi masalah jika perusahaan asuransi jiwa memiliki dana cadangan premi yang telah disiapkan dengan perhitungan yang tepat. Penelitian ini bertujuan untuk menentukan metode yang lebih efektif digunakan dalam perhitungan cadangan premi bulanan pada asuransi jiwa dwiguna. Pada penelitian ini diberikan studi kasus. Kemudian langkahlangkahnya adalah menentukan rumus cadangan premi bulanan, termasuk rumus premi tunggal, premi bersih, dan anuitas hidup awal dengan pembayaran secara bulanan. Selanjutnya menghitung nilai cadangan premi dengan metode commissioners dan canadian, diperoleh bahwa nilai cadangan premi bulanan menggunakan metode commissioners menunjukkan nilai yang lebih besar daripada metode canadian. Hal tersebut signifikan dengan nilai standar error yang lebih kecil, sehingga dari hasil analisis perbandingan tersebut diperoleh metode mana yang lebih efektif digunakan dalam perhitungan cadangan premi bulanan pada asuransi jiwa dwiguna.

ABSTRACT

Laili, Unzila Nur. 2022. On the Comparison of Monthly Premium Reserves on Endowment Life Insurance Using the Commissioners and Canadian Methods. Thesis. Department Mathematics, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang. advisors: (I) Abdul Aziz, M.Si (II) Ach. Nashichuddin, M.A.

Keywords: monthly premium reserve, endowment life insurance, *commissioners* method, *canadian* method

The world of insurance is well known to the people of Indonesia. The type of insurance that people are most interested in is life insurance. Life insurance is grouped into three namely term, whole life and endowment life insurance. Endowment life insurance has two benefits, namely protection and savings. Insurance can not be separated from the premium reserves. Increasingly, cases of loss are experienced by life insurance companies due to inaccuracies in managing premium reserves. However, this is not a problem if the life insurance company has a premium reserve fund that has been prepared with the right calculations. This study aims to determine which method is more effective in calculating monthly premium reserves for endowment life insurance. In this study, a case study was given. The steps are to determine the monthly premium reserve formula, including the single premium formula, net premium, and initial life annuity with monthly payments. Furthermore, calculating the value of premium reserves using the commissioners and canadian methods, it is found that the value of monthly premium reserves using the commissioners method shows a greater value than the canadian method. This is significant with a smaller standard error value, so that from the results of the comparative analysis it is obtained which method is more effective in calculating monthly premium reserves for endowment life insurance.

مستخلص البحث

ليلى, أنزل نور. 2022. مقارنة بين الاحتياطيات الشهرية من أقساط التأمين على الهبات للتأمين على الحياة باستخدام طرق Commissioners و Canadian. رسالة الجمعية. قسم الرياضيات ، كلية العلوم والتكنولوجيا ، جامعة مولانامالك إبراهيما الإسلامية مالانج. المستشارون: (I) عبد العزيز الماجستير (II) أحمد ناصيح الدين، الماجستير

الكلمات المفتاحية: احتياطي الأقساط الشهرية ، طريقة Commissioners ، الطريقة Canadian ، تأمين الحياة Dwiguna

عالم التأمين ليس غريباً على شعب إندونيسيا. نوع التأمين الذي يهتم به الناس أكثر هو التأمين على الحياة . يتم تجميع التأمين للبيرة على الحياة في ثلاثة ، وهي التأمين لأجل طويل الأجل والتأمين على الحياة بالكامل والتأمين على الحياة الوقفية. للوقف على الحياة فائدتان ، هما الحماية والادخار. في التأمين لا يمكن فصله عن اسم احتياطي قسط التأمين. على نحو متزايد ، تعاني شركات التأمين على الحياة من حالات الحسارة بسبب عدم الدقة في إدارة احتياطيات الأقساط. ومع ذلك ، فهذه ليست مشكلة إذا كان لدى شركة التأمين على الحياة صندوق احتياطي أقساط تم إعداده بالحسابات الصحيحة. تقدف هذه الدراسة إلى تحديد الطريقة الأكثر فعالية في حساب احتياطي الأقساط الشهرية للتأمين على الحياة الوقفية. في هذه الدراسة ، تم تقديم دراسة حالة. بعد ذلك ، تتمثل الخطوات في تحديد صيغة احتياطي القسط الشهري ، بما في ذلك صيغة القسط المفرد ، وصافي قسط التأمين ، ومعاش الحياة الأولي مع دفعات شهرية. علاوة على ذلك ، عند حساب قيمة احتياطيات الأقساط الشهرية باستخدام طريقة commissioners تظهر قيمة أكبر من الطريقة الأكثر فعالية في حساب احتياطيات الأقساط معيارية أصغر ، لذلك من نتائج التحليل المقارن يتم الحصول على الطريقة الأكثر فعالية في حساب احتياطيات الأقساط الشهرية للتأمين على الحياة الوقفية.

BABI

PENDAHULUAN

1.1 Latar Belakang

Matematika memainkan perananan yang sangat vital di kehidupan seharihari. Hal tersebut dikarenakan ilmu matematika berasal dari pola pikir yang sistematis, sehingga semua permasalahan dapat ditemukan solusinya dengan menggunakan matematika. Perkembangan matematika sering sukses merintis penerapannya pada berbagai bidang ilmu, salah satunya pada bidang ilmu aktuaria. Ilmu aktuaria sendiri merupakan ilmu yang terkait dengan rancangan solusi dari permasalahan dan pengelolaan risiko keuangan dimasa mendatang. Penerapannya biasanya pada dunia perasuransian, investasi, jaminan sosial, dana pensiunan, dan industri terkait lainnya.

Dalam hidup segala sesuatu terjadi seringkali tak kita sangka. Umumnya jika yang terjadi adalah sebuah kebahagiaan maka setiap orang tentu mudah untuk menerimanya. Namun bagaimana jika yang terjadi adalah suatu hal yang membuat kita sedih misalnya sebuah musibah kecelakaan, kematian ataupun musibah lain yang pasti merugikan kita tentu tak mudah bukan untuk kita menerimanya. Oleh karena itu manusia hendaknya berperilaku hemat dalam menggunakan hartanya sesuai kebutuhannya, seperti yang telah dijelaskan pada Al-Qur'an surah Al-Araf ayat 31 yang memiliki arti sebagai berikut:

"Wahai anak cucu Adam! Pakailah pakaianmu yang bagus di setiap (memasuki) masjid, makan dan minumlah, tetapi jangan berlebih-lebihan. Sungguh, Allah tidak menyukai orang yang berlebih-lebihan."

Berdasarkan firman Allah di atas, mengacu pada Tafsir Al-Mishbah (Shihab, 2005) maka "Wahai anak cucu Adam! Pakailah pakaianmu yang bagus" yaitu pakaian yang dapat menutupi aurat kalian atau bahkan yang lebih dari itu ketika kalian beribadah, sehingga kalian bisa melakukan salat dan tawaf dengan nyaman, dan lakukanlah itu pada setiap memasuki dan berada di dalam masjid atau tempat lainnya di muka bumi ini. Dalam rangka beribadah, Kami telah menyediakan makanan dan minuman, maka makan dan minumlah apa saja yang kamu sukai dari makanan dan minuman yang halal, baik dan bergizi, tetapi jangan berlebihan dalam segala hal, baik dalam beribadah dengan menambah cara atau kadarnya, ataupun dalam makan dan minum. Karena sungguh, Allah tidak menyukai, yakni tidak melimpahkan rahmat dan ganjaran-Nya kepada orang yang berlebih-lebihan dalam hal apa pun (Shihab, 2005). Oleh karena itu, sebaiknya manusia menyisihkan sebagian hartanya untuk kepentingan di masa depan salah satunya dengan menabung. Pada zaman modern menabung tidaklah susah karena banyak perusahaan atau instansi-instansi yang menyediakan jasa dalam menyimpan uang salah satunya perusahaan asuransi. Pentingnya keikutsertaan dalam asuransi ialah untuk meminimalisir kerugian akibat musibah dalam hidup di mana itu yang akan menjadi jaminan hidup jika terjadi musibah/kerugian sewaktu-waktu. Salah satu jenis asuransi adalah asuransi jiwa.

Asuransi jiwa adalah suatu upaya perlindungan yang diberikan oleh pihak penanggung kepada tertanggung jika mengalami suatu musibah atau kerugian seperti kematian, kecelakaan, atau hilangnya kemampuan dalam mencari penghasilan (Futami, 1993). Jenis asuransi jiwa ada tiga diantaranya asuransi jiwa berjangka, seumur hidup, dan dwiguna (*endowment*). Asuransi jiwa

dwiguna merupakan perpaduan antara asuransi jiwa berjangka dan asuransi jiwa seumur hidup (Bowers, 1997). Sedangkan menurut Yumna (2021) dijelaskan bahwa asuransi jiwa dwiguna merupakan asuransi yang memberikan dua keuntungan, pertama sebagai perlindungan atas jiwa dan kedua sebagai simpanan. Asistensi akan diberikan sesuai kesepakatan yakni jika peserta asuransi meninggal pada jangka waktu pertanggungan ataupun masih hidup hingga akhir jangka waktu pertanggungan. Asuransi jiwa dwiguna bertujuan untuk mengamankan dana yang pasti sampai periode tertentu tanpa menitikberatkan pada besaran imbal hasil dengan bonus asuransi jiwa.

Dalam asuransi jiwa, tidak lepas dengan yang namanya cadangan premi. Futami (1993) menyatakan cadangan adalah besarnya uang yang ada pada perusahaan dalam jangka waktu penanggungan. Tak jarang ditemui kasus kerugian yang dialami oleh pihak perusahaan asuransi jiwa dikarenakan ketidaktepatan dalam mengatur cadangan preminya. Akan tetapi hal tersebut tidak menjadi masalah jika perusahaan asuransi jiwa memiliki dana cadangan premi yang telah disiapkan dengan perhitungan yang tepat. Perhitungan nilai cadangan sendiri dibagi menjadi dua jenis yaitu *retrospektif* dan *prospektif*. Perhitungan nilai cadangan *retrospektif* adalah perhitungan nilai cadangan berdasarkan waktu yang lalu, sedangkan perhitungan nilai cadangan prospektif adalah perhitungan nilai cadangan berdasarkan nilai pengeluaran di waktu yang akan datang. Untuk perhitungan cadangan *prospektif* dapat menggunakan berbagai macam metode, antara lain: metode *commissioners* dan *canadian*.

Menurut Putri (2020) metode *commissioners* menyatakan hubungan premi bersih dan premi modifikasi yang merupakan selisih antara $^{\beta}$ modifikasi dan $^{\alpha}$

modifikasi pada sebarang polis yang diberikan dan usia pada saat dikeluarkan. Kemudian pada hasil penelitian Yumna (2021) disimpulkan bahwa metode commissioners menghasilkan cadangan premi yang lebih kecil daripada metode canadian dengan perhitungan tahunan sehingga keuntungan yang diperoleh perusahaan juga akan kecil. Sedangkan pada penelitian sebelumnya oleh Nur Hasanah (2015) menyebutkan bahwa metode commissioners merupakan metode modifikasi biaya yang tinggi pada tahun pertama.

Pada penelitian Yumna (2021) disebutkan bahwa metode *canadian* adalah salah satu metode yang perhitungannya menyetarakan premi modifikasi awal dan premi bersih dengan selisih antara premi bersih untuk polis asuransi jiwa seumur hidup dengan premi natural. Kemudian dari hasil penelitian Khoirunnisa (2014) mengenai cadangan premi pada asuransi jiwa berjangka diperoleh kesimpulan bahwa cadangan yang dimodifikasi dengan metode *canadian* ditahun-tahun awal menghasilkan cadangan yang bernilai negatif akibat biaya yang dikeluarkan oleh perusahaan asuransi terlampau besar sehingga perusahaan asuransi harus mencari dana tambahan untuk menutupi pengeluaran besar tersebut agar terhindar dari kerugian. Selain itu pada penelitian yang dilakukan oleh Ekawati (2020) menunjukkan jika metode *canadian* sangat berguna dalam pembuatan tabel cadangan asuransi jiwa bersama. Hal tersebut dikarenakan metode *canadian* dalam perhitungan nilai cadangannya bermanfaat untuk menutupi kekurangan biaya perusahaan pada awal-awal tahun.

Berdasarkan hasil dari penelitian-penelitian sebelumnya, dapat diketahui bahwa perbandingan hasil perhitungan cadangan premi menggunakan metode *commissioners* dan *canadian* yang telah dipaparkan menghasilkan nilai yang

berbeda dan juga belum ada yang meneliti perbandingan kedua metode tersebut dengan perhitungan bulanan pada asuransi jiwa dwiguna. Maka dari itu, penulis memilih judul penelitian "Perbandingan Cadangan Premi Bulanan Pada Asuransi Jiwa Dwiguna Menggunakan Metode *Commissioners* dan *Canadian*". Dari hasil perbandingan dua metode tersebut dapat diketahui metode mana yang lebih efektif untuk perhitungan cadangan premi bulanan asuransi jiwa dwiguna. Jika nilai cadangan premi lebih besar maka itu yang lebih efektif digunakan untuk mengantisipasi klaim tak terduga dan keuntungan yang diperoleh perusahaan juga akan semakin besar.

1.2 Rumusan Masalah

Berdasarkan latar belakang sebelumnya, maka rumusan masalah dalam penelitian ini adalah:

- Bagaimana penentuan rumus cadangan premi bulanan asuransi jiwa dwiguna dengan metode commissioners dan canadian?
- 2. Bagaimana hasil perhitungan cadangan premi bulanan asuransi jiwa dwiguna dengan metode *commissioners* dan *canadian*?
- 3. Bagaimana hasil perbandingan perhitungan cadangan premi bulanan asuransi jiwa dwiguna dengan metode *commissioners* dan *canadian*?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah yang telah dipaparkan tujuan penelitian ini adalah:

 Mengetahui hasil penentuan rumus cadangan premi bulanan asuransi jiwa dwiguna dengan metode commissioners dan canadian

- Mengetahui hasil perhitungan cadangan premi bulanan asuransi jiwa dwiguna dengan metode commissioners dan canadian
- 3. Mengetahui hasil perbandingan perhitungan cadangan premi bulanan asuransi jiwa dwiguna dengan metode *commissioners* dan *canadian*

1.4 Manfaat Penelitian

Berdasarkan tujuan penelitian maka manfaat penelitian ini dikelompokkan berdasarkan kepentingan beberapa pihak, yaitu:

1. Bagi penulis

Penelitian ini merupakan sarana untuk mengaplikasikan dan mengembangkan disiplin keilmuan aktuaria yang selama ini menjadi bidang minat yang dipelajari.

2. Bagi pembaca

Penelitian ini dapat dimanfaatkan sebagai sumber informasi dan tambahan wawasan bagi pembaca terkait perbandingan cadangan premi asuransi jiwa dwiguna menggunakan metode *commissioners* dan *canadian*.

3. Bagi Instansi

- a. Penelitian ini sebagai sumbangan pemikiran keilmuan matematika,
 khususnya dalam bidang aktuaria
- b. Penelitian ini dibuat untuk meningkatkan peran serta fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang dalam pengembangan wawasan keilmuan matematika dan aktuaria.

1.5 Batasan Masalah

Adapun batasan masalah pada penelitian ini adalah sebagai berikut:

1. Cadangan premi dihitung untuk jenis asuransi jiwa dwiguna

- 2. Pembayaran premi dilakukan sebanyak 12 kali dalam satu tahun (perbulan)
- 3. Data yang digunakan berupa Tabel Mortalita Indonesia tahun 2019 khusus perempuan
- 4. Tingkat suku bunga yang digunakan mengacu pada kebijakan Bank Indonesia terkait BI 7-Day Reverse Repo Rate (BI7DRR) yaitu sebesar 3,5%
- 5. Perkiraan umur maksimal nasabah 100 tahun
- 6. Data dianalisis menggunakan metode commissioners dan canadian

BAB II

KAJIAN PUSTAKA

2.1 Teori Pendukung

2.1.1 Asuransi

Asuransi adalah suatu kesepakatan yang dibuat oleh dua pihak yakni antara perusahaan asuransi dengan peserta asuransi (tertanggung) yang mana peserta asuransi sebagai tertanggung diwajibkan membayar iuran/premi kepada perusahaan asuransi sebagai penanggung, agar dikemudian hari jika tertanggung mengalami suatu kerugian atau musibah atas resiko yang tak terduga dapat memperoleh perlindungan berupa ganti rugi sesuai perjanjian yang telah disepakati (Sula, 2014). Menurut Undang-Undang tentang usaha pengansuransian (UU Republik Indonesia No. 2/1992), pengertian asuransi adalah perjanjian antara dua pihak atau lebih yang pihak penanggung mengikatkan diri kepada tertanggung dengan menerima premi asuransi untuk memberikan penggantian kepada tertanggung karena kerugian, kerusakan atau tanggung jawab hukum kepada pihak ketiga yang mungkin akan diderita tertanggung, yang timbul akibat peristiwa yang tidak pasti untuk memberikan suatu pembayaran yang didasarkan atas meninggal atau hidupnya seseorang yang dipertanggungkan.

Menurut Futami (1993), asuransi jika dikelompokkan sesuai fokus dan risikonya ada 5 jenis yaitu asuransi jiwa, asuransi kesehatan, asuransi pendidikan, asurasi dana hari tua, dan asuransi umum. Asuransi jiwa adalah suatu jasa penanggulangan risiko atau kerugian yang diberikan oleh perusahaan asuransi terkait dengan jiwa atau meninggalnya seseorang yang dipertanggungkan (Susilo,

2000). Pada asuransi jiwa terdapat tiga macam jenisnya yakni asuransi jiwa berjangka, asuransi jiwa seumur hidup, dan asuransi jiwa dwiguna (*endowment*).

1. Asuransi Jiwa Berjangka

Asuransi jiwa berjangka adalah jenis asuransi jiwa yang memberikan jaminan perlindungan kepada pemegang polis (tertanggung) selama jangka waktu tertentu. Jika tertanggung mengalami suatu resiko baik kematian maupun kerugian maka nasabah dapat mengajukan klaim kepada perusahaan asuransi selama kontrak asuransi masih berlangsung. Namun, apabila tertanggung tidak mengalami suatu resiko hingga akhir jangka waktu pertanggungan, maka ia tidak akan mendapat uang pertanggungan sedikitpun (Bowers, 1997).

2. Asuransi Jiwa Seumur Hidup

Asuransi jiwa seumur hidup adalah jenis asuransi jiwa yang memberikan jaminan perlindungan seumur hidup kepada tertanggung yang merupakan peserta asuransi. Pada jenis asuransi ini, jumlah nilai premi yang dibayarkan lebih besar daripada nilai premi asuransi jiwa berjangka. Kemudian untuk penentuan premi hanya dilakukan sekali diawal perjanjian dan berlaku seumur hidup sehingga premi yang dibayarkan setiap tahun sama besar. Asuransi seumur hidup menjamin santunan dibayar tanpa mempedulikan kapan waktu kematian tertanggung terjadi (Bowers, 1997).

3. Asuransi Jiwa Dwiguna

Asuransi jiwa dwiguna merupakan perpaduan antara asuransi jiwa berjangka dan asuransi jiwa seumur hidup (Bowers, 1997). Asuransi jiwa dwiguna merupakan jenis asuransi jiwa yang mempunyai dua keuntungan yaitu sebagai perlindungan dan juga sebagai simpanan. Uang pertanggungan akan

diberikan sesuai kesepakatan yakni jika peserta asuransi meninggal pada jangka waktu pertanggungan ataupun masih hidup hingga akhir jangka waktu pertanggungan.

2.1.2 Tabel Mortalita

Dalam ilmu aktuaria dan demografi, tabel mortalita adalah sebuah tabel yang menunjukkan peluang atau probabilitas anggota populasi (manusia) mengalami kematian dalam setiap kelompok umur. Data pada tabel mortalita didapat dari banyaknya manusia yang meninggal pada masa lalu yang tercatat pada catatan sensus penduduk yang kemudian digunakan sebagai pedoman atau rujukan untuk merumuskan kemungkinan banyaknya tertanggung yang akan meninggal pada masa yang akan datang (Prihantoro, 2000). Tabel mortalita memiliki nama lain yakni tabel kematian yang mana tabel ini biasanya digunakan untuk menghitung besarnya premi, jumlah asuransi dan perhitungan lainnya.

Pada tabel mortalita terdapat beberapa kolom. Kolom pertama menunjukkan usia peserta asuransi yang dinotasikan x, kolom kedua terdapat notasi l_x yang menyatak an jumlah orang yang tepat berusia x tahun, pada kolom ketiga jumlah orang yang meninggal dalam setahun dinyatakan dengan notasi d_x , maka (Futami, 1993):

$$d_x = l_x - l_{x+1} (2.1)$$

Kolom keempat yaitu q_x menyatakan peluang seseorang tepat berusia x tahun akan meninggal sebelum mencapai usia x-1 tahun, sehingga:

$$q_{x} = \frac{d_{x}}{l_{x}}$$

$$= \frac{l_{x} - l_{x+1}}{l_{x}}$$
(2.2)

Sedangkan notasi p_x menyatakan peluang seseorang yang berusia x tahun akan bertahan hidup paling tidak 1 tahun, sehingga:

$$p_x = \frac{l_{x+1}}{l_x} \tag{2.2}$$

dan notasi e_x menyatakan harapan hidup dari seseorang yang berusia x tahun. Peluang seseorang berusia x tahun dapat bertahan hidup setidaknya dalam jangka waktu t tahun yang akan datang dirumuskan sebagai berikut:

$$_{t}p_{x} = \frac{l_{x+t}}{l_{x}} = 1 - _{t}q_{x}$$
 (2.3)

Sedangkan peluang seseorang berusia *x* tahun meninggal setidaknya dalam jangka waktu *t* tahun yang akan datang dirumuskan sebagai berikut:

$${}_{t}q_{x} = 1 - \frac{l_{x+t}}{l_{x}} = 1 - {}_{t}p_{x}$$
 (2.4)

di mana :

 p_x : Peluang bertahan hidup seseorang berusia x dalam jangka waktu satu tahun

 q_x : Peluang meninggal dunia seseorang berusia x dalam jangka waktu satu tahun

 d_x : Jumlah manusia yang meninggal dari usia x sampai x + 1 (orang)

 l_x : Jumlah manusia yang hidup berusia x (orang)

 l_{x+t} : Jumlah manusia yang hidup berusia x hingga t tahun kemudian

 $_tp_x$: Peluang hidup manusia berusia x tahun dalam jangka t tahun

 $_tq_x\:$: Peluang meninggal manusia berusia x tahun dalam jangka t tahun

2.1.3 Suku Bunga

Bunga adalah pembayaran yang dilakukan oleh peminjam uang sebagai balas jasa atas pemakaian uang yang dipinjam (Futami, 1993). Sedangkan suku bunga adalah persentase besar imbalan berdasarkan jumlah pinjaman. Biasanya suku bunga terhitung per tahun. Perhitungan bunga dalam matematika keuangan dibagi menjadi dua yaitu bunga tunggal dan bunga majemuk. Bunga tunggal adalah bunga yang perhitungannya berdasarkan jumlah awal pinjaman, sehingga besar bunga tidak ada perubahan dari awal hingga akhir periode pembayaran. Rumus perhitungan bunga tunggal sebagai berikut (Futami, 1993):

$$I = P_0 ni (2.5)$$

Sehingga kemudian dapat diperoleh nilai total pinjaman/investasi (P_n) dengan rumus sebagai berikut:

$$P_{n} = P_{0} + I$$

$$= P_{0} + P_{0}ni$$

$$= P_{0} + (1+ni)$$
(2.7)

Sedangkan bunga majemuk adalah perhitungan bunga berdasarkan modal awal jangka investasi selanjutnya adalah akumulasi besar modal awal sebelumnya dengan jumlah bunga yang diperoleh (Futami, 1993). Oleh karena itu pada pembayaran kredit kendaraan ataupun perumahan sebaiknya tidak menggunakan bunga majemuk karena biaya yang harus dibayarkan dari waktu ke waktu akan bertambah. Rumus perhitungan bunga majemuk sebagai berikut (Futami, 1993):

$$I = P_0 i^n \tag{2.6}$$

Kemudian dapat dihitung nilai totalnya dengan rumus sebagai berikut:

$$P_n = P_0 (1+i)^n (2.7)$$

di mana:

I : Nilai bunga

i : Tingkat suku bunga (3,5 %)

n: Jangka waktu

 P_0 : Pokok pinjaman

 P_n : Jumlah investasi pada tahun ke n

Menurut Futami (1993) rumus faktor diskon sebagai berikut:

$$v = \frac{1}{1+i} \tag{2.10}$$

dan suatu fungsi tingkat diskon d dapat dinotasikan sebagai berikut:

$$d = 1 - v \tag{2.8}$$

2.1.4 Anuitas Hidup

Anuitas adalah suatu pembayaran dalam jumlah tertentu, yang dilakukan setiap selang waktu dan lama tertentu secara berkelanjutan (Futami, 1993). Dalam hal ini anuitas atau cicilan atau angsuran dapat dibayarkan setiap setahun sekali, beberapa kali dalam setahun, tiap bulan, tiap minggu, ataupun tiap hari sesuai dengan kesepakatannya. Meski anuitas disebut juga angsuran atau cicilan namun anuitas tidak hanya berhubungan dengan pembayaran kredit atau semacamnya. Dalam asuransi ketika melakukan pembayaran premi, disitulah anuitas juga digunakan.

Anuitas dibagi menjadi dua, salah satunya yaitu anuitas hidup. Pembayaran anuitas yang dilakukan selama seseorang yang bersangkutan masih hidup disebut anuitas hidup. Jadi dapat dikatakan bahwa anuitas hidup rangkaian pembayarannya mengaitkan urusan hidup atau matinya tertanggung (Sembiring,

1990). Anuitas hidup dibagi menjadi tiga macam diantaranya anuitas berjangka, anuitas ditunda, dan anuitas seumur hidup.

1. Anuitas Hidup Berjangka

Anuitas hidup berjangka merupakan anuitas hidup dimana pembayarannya dilakukan pada suatu jangka waktu tertentu. Anuitas hidup berjangka yang pembayarannya dilakukan diawal periode disebut anuitas awal hidup berjangka, Anuitas hidup berjangka yang dilakukan tiap awal tahun dapat dihitung menggunakan persamaan berikut (Futami, 1993):

$$\ddot{a}_{\overline{x:n}|} = \sum_{k=0}^{n-1} v^k_{k} p_x \tag{2.9}$$

Sedangkan anuitas yang pembayaran dilakukan diakhir periode disebut anuitas akhir hidup berjangka (Futami, 1993). Anuitas akhir hidup berjangka dapat dihitung menggunakan persamaan berikut (Futami, 1993):

$$a_{xn} = vp_x + v_1^1 p_x + \dots + v_n^n p_x$$
 (2.10)

di mana:

 $\ddot{a}_{\overline{x:n}|}$: Nilai tunai anuitas berjangka awal tahun

 $a_{\vec{xn}}$: Nilai tunai anuitas berjangka akhir tahun

k : Jumlah dari pembayaran premi

 v^n : Faktor diskon untuk n tahun

2. Anuitas Hidup Berjangka *m* Kali Pembayaran

Suatu anuitas dalam 1 tahun dilakukan *m* kali pembayaran, dan besarnya tiap kali pembayaran adalah 1/m. Maka anuitas hidup awal dengan m kali pembayaran dapat dirumuskan sebagai berikut (Futami, 1993) :

$$\ddot{a}_{x,\overline{m}}^{(m)} = \frac{1}{m} \sum_{k=0}^{m-1} v^{\frac{k}{m}} p_x$$

$$= \sum_{k=0}^{n-1} \sum_{j=0}^{m-1} \frac{1}{12} v^{k+\frac{j}{12}} p_x$$

$$= \sum_{k=0}^{n-1} v^{k} p_x - \frac{m-1}{2(m)} \sum_{k=0}^{n-1} (v^{k} p_x - v^{k+1} p_x)$$
(2.14)

2.1.5 **Premi**

Premi adalah biaya yang dibayarkan peserta asuransi kepada perusahaan asuransi sesuai kesepakatan dalam akad sebagai kewajiban keikutsertaannya dalam asuransi (Sula, 2004). Besarnya premi biasanya sudah ditentukan diawal kontrak perjanjian tertulis antara pihak penanggung dan pihak tertanggung yang kemudian premi tersebut akan dikelola oleh perusahaan asuransi baik untuk santunan kepada pihak tertanggung yang mengalami musibah/kerugian, operasional perusahaan, maupun untuk cadangan preminya.

Pada asuransi jiwa, premi terbagi menjadi dua yaitu premi bersih (*net premium*) dan premi kotor (*gross premium*). Premi bersih adalah premi yang perhitungannya mengabaikan biaya operasional perusahaan. Perhitungan premi bersih tidak menggunakan tingkat biaya namun menggunakan perkiraan tabel mortalita dan tingkat bunga yang dibayarkan secara berkala hingga pemegang polis terakhir maninggal (Futami, 1993). Sedangkan untuk premi yang menambahkan biaya operasional perusahaan disebut sebagai premi kotor. Kemudian untuk jenis pembayaran premi pada asuransi jiwa diantaranya premi tunggal bersih, premi tahunan dan premi berkala. Premi tahunan terbagi menjadi tiga yaitu premi tahunan asuransi jiwa berjangka, seumur hidup, dan dwiguna.

1. Premi Tunggal

Premi tunggal adalah premi asuransi yang dibayarkan pada waktu persetujuan kontrak asuransi yang mana nantinya tidak ada pembayaran lagi yang harus dilakukan (Bowers, 1997). Pembayaran premi secara tunggal lebih mengutamakan nilai investasi yang mana alokasi investasinya lebih tinggi daripada produk asuransi lainnya. Begitupun besar nilai preminya lebih tinggi daripada premi yang dibayarkan secara berkala. Premi tunggal dikelompokkan menjadi beberapa jenis yaitu premi tunggal berjangka, premi tunggal dwiguna murni, premi tunggal seumur hidup, dan premi dwiguna.

Premi tunggal dari asuransi berjangka untuk usia x, jangka pertanggungan n tahun, uang pertanggungan 1 yang dibayarkan pada akhir tahun polis, dinotasikan dengan $A_{x\overline{n}}^1$ dan dirumuskan (Futami, 1993):

$$A_{x:\bar{l}}^{1} = \sum_{t=0}^{n-1} (v^{t+1})(t_{t} p_{x})(q_{x+t})$$
 (2.11)

Sedangkan untuk kontrak asuransi jiwa dimana pemegang polis, mulai dari saat kontrak dimulai sampai dengan jangka waktu tertentu tetap hidup, maka pemegang polis tersebut menerima sejumlah uang pertanggungan disebut premi tunggal dwiguna murni (Futami, 1993). Tertanggung yang berusia x tahun dengan jangka pertanggungan n tahun dan besar uang pertanggungan adalah 1 pada premi tunggal dwiguna murni, dinotasikan dengan $A_{x\overline{n}}^{-1}$ rumus sebagai berikut:

$$A_{xn}^{1} = v^{n} \frac{l_{x+n}}{l_{x}}$$

$$= v^{n}_{n} p_{x}$$
(2.16)

Berdasarkan pengertian asuransi jiwa dwiguna yang mana merupakan gabungan dari asuransi dwiguna murni dan asuransi berjangka maka untuk premi tunggal tahunan untuk asuransi jiwa dwiguna dinotasikan sebagai berikut (Sembiring, 1986):

$$A_{x,\overline{n}} = A_{x,\overline{n}}^{1} + A_{x,\overline{n}}^{1}$$

$$= \left(\sum_{t=0}^{n-1} (v^{t+1})(t_{t}, p_{x})(q_{x+t})\right) + (v^{n})(t_{n}, p_{x})$$
(2.17)

di mana:

 $A_{x,\overline{n}}^{-1}$: Premi tunggal asuransi jiwa dwiguna murni untuk seseorang berusia x tahun dengan jangka waktu pertanggungan n tahun

 $A_{x:\overline{1}|}^1$: Premi tunggal asuransi jiwa berjangka untuk seseorang berusia x tahun dengan jangka waktu pertanggungan n tahun

 $A_{x,\overline{n}|}$: Premi tunggal asuransi jiwa dwiguna seseorang berusia x tahun dengan jangka waktu pertanggungan n tahun

Kita ketahui bahwa penjumlahan dari anuitas berjangka yang dikalikan dengan tingkat diskon dan premi tunggal tahunan dwiguna sama dengan satu yang dinotasikan sebagai berikut:

$$d\ddot{a}_{xx\bar{n}} + A_{xx\bar{n}} = 1$$

$$A_{xx\bar{n}} = 1 - d\ddot{a}_{xx\bar{n}}$$
(2.18)

2. Premi Tahunan Dwiguna

Menurut Sembiring (1986) untuk kontrak pada usia tertanggung x tahun pada asuransi jiwa dwiguna, jangka pembayaran premi dan waktu pertanggungannya sama yaitu selama n tahun yang mana biaya pertanggungan

dibayarkan pada akhir tahun polis dengan rumus sebagai berikut (Sembiring, 1986):

$$P_{x:\overline{n}} = \frac{A_{x:\overline{n}}}{\ddot{a}_{x:\overline{n}}} \tag{2.12}$$

di mana:

 $A_{x\overline{n}}^{1}$: Premi tunggal asuransi jiwa berjangka untuk seseorang berusia x tahun dengan jangka waktu pertanggungan n tahun

 $A_{x:\overline{1}|}^1$: Premi tunggal asuransi jiwa dwiguna murni untuk seseorang berusia x tahun dengan jangka waktu pertanggungan n tahun

 $A_{x:n}$: Premi tunggal asuransi jiwa dwiguna seseorang berusia x tahun dengan jangka waktu pertanggungan n tahun

3. Premi *m* Kali Pembayaran

Premi asuransi jiwa dwiguna yang dibayarkan m kali pembayaran dalam setahun dirumuskan sebagai berikut (Futami, 1993):

$$P_{x:\overline{n}|}^{(m)} = \frac{A_{x:\overline{n}|}^{(m)}}{\ddot{a}_{x:\overline{n}|}^{(m)}}$$
(2.13)

Perhitungan premi dipengaruhi oleh beberapa faktor diantaranya yaitu tabel mortalita, biaya operasional perusahaan, usia, suku bunga, jenis pekerjaan, kesehatan, dan gaya hidup. Dalam penelitian ini yang menjadi acuan yakni tabel mortalita, usia tertanggung, dan suku bunganya.

2.1.6 Cadangan Premi

Cadangan premi merupakan dana selisih dari nilai santunan dan nilai tunai pembayaran yang dikelola perusahaan asuransi guna mempersiapkan pembayaran jumlah klaim yang tak terduga (Sembiring, 1986). Tertanggung

sebagai pemegang polis asuransi setiap periode/jangka waktunya diwajibkan untuk membayar premi sebagai bentuk keikutsertaannya dalam asuransi. Kemudian, premi yang dibayarkan oleh tertanggung itulah yang akan dikelola oleh perusahaan asuransi untuk menyiapkan dana darurat jika tiba-tiba terdapat klaim yang jumlahnya melebihi prediksi. Perhitungan cadangan premi ini memang harus dilakukan oleh perusahaan asuransi jika tidak ingin mengalami kerugian sewaktu-waktu. Semakin besar nilai cadangan premi maka semakin efektif digunakan perusahaan untuk mengantisipasi klaim tak terduga nantinya.

Berdasarkan perhitungannya, cadangan premi terbagi menjadi dua yaitu perhitungan cadangan *retrospektif* dan *prospektif*. Perhitungan cadangan *retrospektif* didasarkan pada jumlah total pendapatan diwaktu lampau dimana nilai premi yang telah dibayarkan setelah dibungakan dikurangi dengan nilai santunan yang dibungakan (Sembiring, 2014). Sedangkan perhitungan cadangan *prospektif* didasarkan pada nilai sekarang dan berfokus pada pengeluaran di waktu mendatang. Metode yang menggunakan konsep perhitungan cadangan *prospektif* diantaranya metode *commissioners* dan metode *canadian*.

Menurut Futami (1993) mengatakan bahwa cadangan *prospektif* adalah besar cadangan yang berfokus pada pengeluaran di masa mendatang atau dapat diartikan sebagai perhitungan cadangan yang didasarkan pada nilai sekarang dari semua pengeluaran di masa mendatang yang dikurangi dengan nilai sekarang total pendapatan di masa yang akan datang untuk setiap pemegang polis. Maka cadangan *prospektif* asuransi jiwa dwiguna dapat dinyatakan menggunakan rumus sebagai berikut:

$$_{t}V_{x,\overline{n}} = SA_{x+r,\overline{n-t}} - P_{x,\overline{n}}\ddot{a}_{x+r,\overline{n-t}}$$
 (2.14)

di mana:

 $_{t}V_{r,\overline{n}}$: Cadangan *prospektif* akhir tahun ke t asuransi jiwa dwiguna

 $P_{x:\overline{n}|}$: Premi tahunan asuransi jiwa dwiguna untuk seseorang berusia x tahun dengan jangka waktu pertanggungan selama n tahun

 $A_{x+t,\overline{n-t}}$: Bantuan mendatang saat usia tertanggung x + t tahun

 $\ddot{a}_{x+t:\overline{n-t}|}$: Nilai tunai pada usia x+t tahun sisa premi ditahun yang akan datang

2.1.7 Cadangan Disesuaikan

Sumber dana tambahan untuk menutup biaya di awal tahun dapat diperoleh dengan menyesuaikan cadangan premi (cadangan disesuaikan). Dana tersebut selanjutnya dianggap sebagai pinjaman yang akan dibayarkan di kemudian hari dari pembayaran premi kotor di tahun-tahun mendatang. Misalkan P menotasikan premi bersih untuk suatu jenis asuransi. Premi tahun pertama akan diganti dengan α dan diikuti oleh β pada tahun-tahun berikutnya. α dan β adalah premi yang disesuaikan. Pemegang polis (tertanggung) membayar premi kotor yang sama besarnya tiap tahun, yaitu P + biaya. α dan β hanya ada dalam perhitungan aktuaria dan tidak ada sangkut pautnya dengan pemegang polis. Nilai tunai seluruh P = Nilai tunai α + nilai tunai β . Persamaan ini berlaku pada saat polis dikeluarkan. Bila n menyatakan jangka waktu penyesuaian cadangan, maka hubungan pada persamaan tersebut dapat didefinisikan sebagai berikut (Bowers, 1997):

$$\alpha + \beta \alpha_{\overline{x_{n-1}}} = P\ddot{a}_{\overline{x_n}} \tag{2.15}$$

 $\alpha < P$, karena sebagian P dipakai untuk biaya tahun pertama, yaitu sebesar $P-\alpha$. Jadi, dari premi bersih tahun pertama sebesar P, hanya ada α yang disediakan untuk membayar santunan di tahun tersebut, sisanya $P-\alpha$ dipinjam perusahaan dan pinjaman tersebut akan dibayar kelak dari premi tahun-tahun berikutnya. Karena $\beta > P$, jadi $\alpha < P < \beta$ (Sembiring, 1986).

2.1.8 Metode Commissioners

Metode *commissioners* merupakan perluasan dari metode *full preliminary term* yang mana pada metode cadangan ini terdapat dua nilai premi bersih yang telah dimodifikasi yaitu untuk premi bersih tahun pertama disimbolkan dengan $\alpha^{(com)}$ dan untuk premi bersih tahun kedua dan seterusnya disimbolkan dengan $\beta^{(com)}$. Penyebab dari dikembangkannya cadangan *commissioners* ini dikarenakan pada cadangan *full preliminary term* ditahun pertama menghasilkan biaya yang tinggi sehingga premi pada tahun pertama hanya bisa menutupi biaya operasional tahun pertama saja atau dalam kata lain cadangan tahun pertamanya bernilai nol. Premi modifikasi cadangan *commissioners* dirumuskan sebagai berikut:

$$\beta^{(com)} \ddot{a}_{x:\overline{n}} = A_{x:\overline{n}} + [(_{19}P_{x+1}) + (vq_x)]$$

$$\beta^{(com)} = \frac{A_{x:\overline{n}} + [(_{19}P_{x+1}) + (vq_x)]}{\ddot{a}_{x:\overline{n}}}$$

$$= P_{x:\overline{n}} + \frac{[(_{19}P_{x+1}) + (vq_x)]}{\ddot{a}_{x:\overline{n}}}$$
(2.23)

Nilai sekarang dari premi keseluruhan pada permulaan kontrak asuransi dirumuskan sebagai berikut

$$_{m}P_{x\overline{n}}\ddot{a}_{x\overline{m}} = \alpha^{(com)} + \beta^{(com)}(\ddot{a}_{x\overline{m}} - 1)$$
 (2.16)

sehingga diperoleh rumus sebagai berikut:

$$\alpha^{com} = \beta^{com} - [(_{19}P_{x+1}) + (vq_x)]$$
 (2.17)

Pada asuransi jiwa dwiguna yang dimana tertanggung berusia x dengan masa pertanggungan selama n tahun dan jangka waktu pembayaran premi selama m tahun yang dibayarkan di awal tahun, maka persamaannya menjadi sebagai berikut:

$$\beta^{(com)} = {}_{m}P_{x:\overline{n}|} + \frac{[({}_{19}P_{x+1}) + (vq_{x})]}{\ddot{a}_{x:\overline{m}|}}$$
(2.18)

Selanjutnya $\beta^{(com)}$ digunakan untuk perhitungan cadangan menggunakan metode prospektif. Sehingga besarnya cadangan dari tahun ke-t sampai ke n adalah

$$_{t}V_{x:n}^{(com)} = A_{x+t:n-t|} - \beta^{(com)}\ddot{a}_{x+t:n-t|}$$
 (2.19)

2.1.9 Metode Canadian

Metode *canadian* adalah metode perhitungan yang menyetarakan antara premi modifikasi awal metode *canadian* dan premi bersih dengan selisih antara premi bersih untuk polis asuransi jiwa seumur hidup dengan premi natural. Metode *canadian* hanya dapat digunakan jika kondisi polis mempunyai premi bersih datar yang lebih besar dari premi bersih datar asuransi seumur hidup yang mana waktu pertanggungan dan besar santunannya sama (Larson, 1951). Premi modifikasi awal dengan metode cadangan *canadian* menurut Larson & Gaummnitz (1951) dapat didefinisikan sebagai berikut:

$$\alpha^{(can)} = {}_{m}P_{x\overline{n}} - (P_{x} - (vq_{x}))$$
 (2.28)

Nilai tunai bersih di waktu yang akan datang sama dengan nol pada akhir jangka waktu pembayaran premi, maka cadangan premi metode *canadian* sama

dengan cadangan premi bersih datar, sehingga dapat dinotasikan sebagai berikut: (Larson, 1951)

$$_{m}P_{x.\overline{n}}\ddot{a}_{x.\overline{n}} = \alpha^{(can)} + \beta^{(can)}\left(\ddot{a}_{x.\overline{n}} - 1\right)$$
 (2.29)

Selanjutnya berdasarkan persamaan 2.26 dapat diperoleh persamaan rumus premi modifikasi tahun kedua dan selanjutnya metode *canadian* sebagai berikut:

$$\beta^{(can)} = {}_{m} P_{x.\overline{n}} + \frac{P_{x} - \alpha^{(can)}}{\ddot{a}_{x.\overline{n}} - 1}$$
 (2.20)

Setelah memperoleh nilai $\beta^{(can)}$ kemudian cadangan premi dapat dihitung dengan metode *prospektif*. Besarnya cadangan premi dari tahun ke-t sampai ke-n menurut Larson & Gaummnitz (1962) dapat dinotasikan sebagai berikut:

$${}_{t}^{m} \mathbf{V}_{x:\overline{n}|}^{(Can)} = \mathbf{A}_{x+t:\overline{n-t}|} - \boldsymbol{\beta}^{(can)} \ddot{a}_{x:\overline{m}|}$$

$$(2.21)$$

2.2 Kajian Integrasi Asuransi Dengan Al-Qur'an Dan Hadist

2.2.1 Konsep Asuransi dalam Islam

Dalam hidup segala sesuatu terjadi seringkali tak kita sangka. Umumnya jika yang terjadi adalah sebuah kebahagiaan maka setiap orang tentu mudah untuk menerimanya. Namun bagaimana jika yang terjadi adalah suatu hal yang membuat kita sedih misalnya sebuah musibah kecelakaan, kematian ataupun musibah lain yang pasti merugikan kita tentu tak mudah bukan untuk kita menerimanya. Oleh karena itu manusia hendaknya berperilaku hemat dalam menggunakan hartanya sesuai kebutuhannya, seperti yang telah dijelaskan pada Al-Quran surah Al-Araf ayat 31 yang memiliki arti sebagai berikut:

"Wahai anak cucu Adam! Pakailah pakaianmu yang bagus di setiap (memasuki) masjid, makan dan minumlah, tetapi jangan berlebih-lebihan. Sungguh, Allah tidak menyukai orang yang berlebih-lebihan."

Berdasarkan firman Allah di atas, meengacu pada Tafsir Al-Mishbah (Shihab, 2005) sebaiknya manusia menyisihkan sebagian hartanya untuk kepentingan di masa depan salah satunya dengan menabung. Pada zaman modern menabung tidaklah susah karena banyak perusahaan atau instansi-instansi yang menyediakan jasa dalam menyimpan uang salah satunya perusahaan asuransi. Pentingnya keikutsertaan dalam asuransi ialah untuk meminimalisir kerugian akibat musibah dalam hidup di mana itu yang akan menjadi jaminan hidup jika terjadi musibah/kerugian sewaktu-waktu.

Penyebutan asuransi dalam Islam yang mana memuat konsep saling tolong menolong dan saling melindungi disebut *takaful. Takaful* berasal dari akar kata *kafala* yang artinya bermacam-macam yaitu: mendukung, saling membantu, menolong, menjamin, menanggung satu sama lain (Wehr, 1976) . Hal tersebut sesuai dengan firman Allah pada Al-Quran surah Al-Maidah ayat 2 yang memiliki arti sebagai berikut:

"Dan tolong-menolonglah kamu dalam (mengerjakan) kebajikan dan takwa, dan jangan tolong-menolong dalam berbuat dosa dan permusuhan. Bertakwalah kepada Allah, sungguh, Allah sangat berat siksaan-Nya." (Al Maidah: 2)

Maksud ayat di atas berdasarkan Tafsir Al-Mishbah (Shihab, 2005) yakni manusia harus senantiasa mengerjakan kebajikan dalam segala bentuk dan macam hal yang membawa kemaslahatan duniawi dan atau ukhrawi walaupun

dengan orang-orang yang tidak seiman. Bahasan ini juga sesuai dengan hadist Nabi SAW yang mengajarkan mengenai tanggung jawab kita terhadap sesama sebagaimana disebutkan dalam hadist yang memiliki arti sebagai berikut,

"Setiap orang dari kamu adalah pemikul tanggung jawab terhadap orang-orang yang di bawah tanggung jawabmu" (HR. Bukhari dan Muslim)

Jadi, baik perusahaan asuransi maupun seluruh peserta asuransi sudah seperti halnya keluarga yang saling menanggung, menyokong, dan memberikan perlindungan jika salah satu ada yang mendapatkan musibah.

Dari segi istilah, *takaful* sebenarnya memiliki makna yang luas, Ia bukan saja dikenal sebagai perusahaan asuransi syariah atau dipahami sebagai perkara yang hanya berkenaan dengan sedekah dan ihsan yang ditujukan kepada golongan miskin, akan tetapi arti takaful juga meliputi aspek aspek luas seperti pembinaan iman, pembinaan jiwa dan kepribadian dalam kehidupan individu, keluarga dan masyarakat serta tanggungjawab satu sama lain untuk menolong, membantu, bekerjasama, menjamin hak dan kesejahteraan hidup bersama dalam seluruh aspek kehidupan muslimin (Hasan, 2014). Konsep *takaful* tersebut merupakan dasar asuransi syariah yang ditegakkan dengan tiga prinsip yaitu saling melindungi, saling membantu serta bekerja sama, dan saling bertanggung jawab (Sula, 2004).

M. Syakir Sula dalam bukunya (2004) menyebutkan produk-produk asuransi dalam Islam terbagi menjadi dua kelompok yaitu produk individu yang ada unsur tabungan dan produk-produk individu yang tidak ada unsur tabungan. Produk individu yang ada unsur tabungan diantaranya yaitu *takaful* dana investasi, dana siswa, dana jabatan, dan *takaful* hasanah. Sedangkan untuk produk

individu dalam asuransi yang tidak ada unsur tabungannya diantaranya yaitu *takaful* kesehatan, kecelakaan, dan *al khoirot*. Sedangkan *takaful* atau asuransi syariah jika disesuaikan menurut asuransi dalam UU No.2 Tahun 1992 terdapat tiga jenis pula yaitu *takaful* keluarga (asuransi jiwa), *takaful* umum (asuransi kerugian), dan *retakaful* (reasuransi).

2.2.2 Hukum Asuransi dalam Islam

Berbagai macam bentuk muamalah modern pada prinsipnya dapat diterima asalkan tidak menentang prinsip-prinsip dasar dalam Islam (Abdurrauf, 2010). Kaidah fikih juga sudah disusun oleh para ulama sebagai acuan dalam menyikapi problematika dalam bidang muamalah yang tentu akan terus berkembang seiring dengan perkembangan peradaban dan ilmu pengetahuan. Kaidah fikih tersebut ialah "al-ashl fi al-mu'amalah al-ibahah hatta yadullu al-dalil 'ala tahrimih" yang memiliki arti "prinsip dasar dalam persoalan mu'amalah adalah boleh (dilakukan) sampai ada dalil yang menunjukkan keharamannya". Salah satu bentuk muamalah modern yang dikembangkan oleh para ilmuan adalah produk asuransi yang hingga saat ini terkait hukumnya masih menjadi persoalan dan perbedaan pendapat dikalangan para ulama fikih kontemporer (Abdurrauf, 2010). Maka dari itu untuk menentukan hukum asuransi dalam Islam diperlukan peranan akal pikiran ulama ahli fiqh karena hal ini termasuk dalam bidang hukum "ijtihad".

Berdasarkan pandangan dari para ulama ahli fikih dan cendekiawan muslim, Warkum Sumitro (1997) menyatakan mengenai hukum asuransi secara garis besar dapat dikelompokkan menjadi 4 macam sebagai berikut:

1. Haram

Beberapa ulama yang mengharamkan asuransi diantaranya yaitu Sayid Sabiq, Abdullah Alqalqili, Yusuf Al-Qardhawi, dan M. Bakhit Al-Muth'I dengan alasan sebagai berikut:

- a. Terdapat unsur perjudian didalamnya yang mana hal itu dilarang Islam
- b. Asuransi merupakan suatu muamalah yang tidak pasti
- c. Terdapat unsur riba yang dilarang Islam
- d. Terdapat unsur eksploitasi yang bersifat menekan
- e. Tergolong jual-beli mata uang non tunai
- f. Hidup dan mati manusia dijadikan obyek bisnis, yang berarti mendahului takdir Tuhan Yang Maha Kuasa

2. Halal

Beberapa ulama yang menghalalkan/membolehkan asuransi diantaranya yaitu M. Yusuf Musa, Abdur Rachman Isa, Mustafa Ahmad Zarqa, Abd. Wahab Khallaf, dan M. Nejatullah Siddiqi dengan alasan sebagai berikut:

- a. Tidak terdapat larangan dalam Al-Quran dan Hadist
- b. Adanya kesepakatan antara tertanggung dan penanggung mengenai keuntungan maupun peraturan didalamnya
- c. Kebermanfaatan asuransi lebih besar daripada *mudhorot*nya
- d. Termasuk kelompok koperasi yang diperbolehkan dalam Islam
- e. Termasuk akad *mudhorot*nya roboh atas dasar *profit* dan *loss sharing*

3. Halal dengan Catatan

Ada pendapat ulama yang membolehkan asuransi dengan catatan asalkan asuransi tersebut bersifat sosial, namun jika bersifat komersil maka hal itu

dilarang. Pandangan tersebut didukung oleh M. Abu Zahrah.

4. Subhat

Beberapa ulama juga ada yang berpendapat bahwa hukum asuransi adalah subhat dikarenakan di Al-Quran dan Hadits tidak terdapat pembahasan mengenai kehalalan asuransi. Maka dari itu dikhawatirkan asuransi memiliki unsur gharar, maisir, dan riba. Sehingga umat muslim diminta untuk lebih waspada terkait asuransi karena kesamarannya. Namun, dilain sisi asuransi memiliki manfaat dimasa mendatang antara lain:

- a. Memberikan jaminan rasa aman dari resiko kerugian dimasa mendatang.
- b. Menciptakan efisiensi perusahaan.
- c. Sebagai tempat menabung yang aman dari gejolak perekonomian
- d. Sumber pendapatan dalam financing the business.

Selain alasan-alasan di atas, faktor manfaat asuransi juga menjadi alasan mengapa membolehkan asuransi. Manfaat asuransi di antaranya sebagai berikut:

- a. Sebagai sarana kehati-hatian dan tindakan preventif
- b. Adanya rasa ketenangan dan keamanan karena sudah ada jaminan perlindungan
- c. Mampu membantu orang lain yang mendapatkan musibah yang belum tentu dapat ia tanggung sendiri
- d. Sarana kemajuan ekonomi dan pembangunan
- e. Keuntungan antara pemegang polis dan perusahaan asuransi dibagi sesuai akad
- f. Mengandung manfaat dan kepentingan umum

2.3 Kajian Topik Dengan Teori Pendukung

Cadangan premi pada perusahaan asuransi digunakan sebagai jaminan perlindungan peserta asuransi (tertanggung) di masa depan. Premi yang dibayarkan oleh tertanggung itulah yang akan dikelola oleh perusahaan asuransi untuk menyiapkan dana darurat jika tiba-tiba terdapat klaim yang jumlahnya melebihi prediksi. Peraturan Otoritas Jasa Keuangan (OJK) Nomor 71 Tahun 2016 menyatakan perusahaan asuransi perlu melakukan pencadangan dana dari selisih nilai tunai dan nilai santunan pada waktu tertentu. Hal tersebut menunjukkan bahwa perhitungan cadangan premi memang harus dilakukan oleh perusahaan asuransi jika tidak ingin mengalami kerugian sewaktu-waktu. Cadangan premi ditentukan dengan premi bersih yang wajib dibayar oleh pemegang polis (tertanggung), dalam perhitungannya pada beberapa metode cadangan premi dapat juga dihitung dengan cadangan disesuaikan.

Pada penelitian Yumna (2021) diperoleh hasil bahwa cadangan premi tahunan dengan metode *commissioners* menghasilkan cadangan premi yang lebih kecil daripada metode *canadian* sehingga keuntungan yang diperoleh perusahaan juga akan kecil. Sedangkan pada penelitian Nur Hasanah (2015) diperoleh hasil bahwa metode *commissioners* merupakan metode modifikasi yang biaya pengeluarannya tinggi pada tahun pertama. Penelitian Khoirunnisa (2014) mengenai cadangan premi pada asuransi jiwa berjangka diperoleh kesimpulan bahwa cadangan yang dimodifikasi dengan metode *canadian* ditahun-tahun awal menghasilkan cadangan yang bernilai negatif akibat biaya yang dikeluarkan oleh perusahaan asuransi terlampau besar sehingga perusahaan asuransi harus mencari dana tambahan untuk menutupi pengeluaran besar tersebut agar terhindar dari

kerugian. Pada penelitian ini, cadangan premi akan dihitung dengan perhitungan bulanan menggunakan metode *commissioners* dan *canadian* pada jenis asuransi jiwa dwiguna yang kemudian akan dibandingkan dan dianalisis hasil perhitungan dari kedua metode tersebut.

BAB III

METODE PENELITIAN

3.1 Pendekatan Penelitian

Pendekatan yang digunakan dalam penulisan penelitian ini adalah pendekatan kuantitatif, yaitu suatu pendekatan yang banyak menggunakan angka, mulai dari pengumpulan data, perhitungan data, penafsiran terhadap data tersebut, serta penampilan dari hasilnya. Jenis kepenulisannya yaitu studi literatur, yaitu penulisan dengan mempelajari berbagai literatur dan mengkaitkannya dengan hasil perhitungan dalam penelitian. Teori dalam membandingkannya yaitu berdasarkan besar kecilnya nilai cadangan premi. Semakin besar nilai cadangan premi menggunakan suatu metode maka semakin efektif metode tersebut digunakan karena semakin besar biaya cadangan yang dipersiapkan oleh perusahaan untuk mengantisipasi adanya klaim tak terduga.

3.2 Jenis dan Sumber Data

Data yang digunakan dalam penelitian ini merupakan data sekunder yaitu data yang sudah tanpa melalui proses penelitian di lapangan. Data yang akan digunakan ialah Tabel Mortalitas Indonesia (TMI) IV tahun 2019 khusus perempuan yang terlampir pada lampiran 1.

3.3 Tahapan Penelitian

Tahapan yang digunakan dalam penelitian ini dimulai dari hal-hal khusus (induktif) menuju hal-hal yang umum (deduktif). Berikut langkah-langkah yang digunakan dalam penelitian:

1. Menentukan rumus anuitas bulanan asuransi jiwa dwiguna

- 2. Menentukan rumus premi bersih bulanan asuransi jiwa dwiguna
- 3. Menentukan rumus cadangan premi prospektif asuransi jiwa dwiguna
- 4. Menghitung nilai cadangan premi asuransi jiwa dwiguna
 - a. Menentukan usia tertanggung, besar santunan, jangka waktu, tingkat suku bunga, dan tabel mortalita
 - b. Menghitung nilai cadangan premi asuransi jiwa dwiguna metode
 commissioners
 - c. Menghitung nilai cadangan premi asuransi jiwa dwiguna metode canadian
- 5. Membandingkan hasil perhitungan cadangan premi asuransi jiwa dwiguna metode *commissioners* dan *canadian*
- 6. Menjelaskan pandangan Islam terhadap asuransi jiwa

BAB IV

HASIL DAN PEMBAHASAN

4.1 Penentuan Rumus Bulanan

4.1.1 Penentuan Anuitas Asuransi Jiwa Dwiguna

Pada penelitian ini untuk menghitung cadangan premi bulanan maka anuitas yang digunakan juga anuitas bulanan. Pembayaran anuitas bulanan dilakukan setiap awal bulan selama tertanggung masih hidup dan masih dalam jangka waktu pertanggungan. Berdasarkan rumus total anuitas asuransi jiwa dengan k kali pembayaran dalam setahun pada persamaan (2.14) diperoleh rumus total anuitas hidup bulanan asuransi jiwa sebagai berikut:

$$\ddot{a}_{x:\overline{n}|}^{(12)} = \sum_{k=0}^{n-1} v^k_{k} p_x - \frac{11}{24} \sum_{k=0}^{n-1} (v^k_{k} p_x - v^{k+1}_{k+1} p_x)$$
(4.1)

Penelitian ini juga akan menggunakan perhitungan cadangan prospektif yang mana berdasarkan persamaan (4.1) akan diperoleh total anuitas awal bulanan t tahun kemudian saat tertanggung berusia x+t tahun dengan jangka waktu pertanggungan selama n-t tahun untuk asuransi jiwa dwiguna sebagai berikut:

$$\ddot{a}_{x+t:\overline{n-t}|}^{(12)} = \sum_{k=0}^{n-t-1} v^{k-t} p_{x+t} - \frac{11}{24} \sum_{k=0}^{n-t-1} \left(v^{k-t} p_{x+t} - v^{k-t+1} p_{x+t} \right)$$
(4.2)

4.1.2 Penentuan Premi Asuransi Jiwa Dwiguna

1. Premi Tunggal Bulanan

Pada penelitian ini premi yang digunakan ialah premi tunggal bulanan dwiguna yang mana jika tertanggung meninggal dunia maka santunannya akan dibayarkan diakhir bulan kematian. Sehingga berdasarkan rumus premi tunggal dengan k kali pembayaran dalam setahun seperti pada persamaan (2.18) dan

(4.1) diperoleh rumus premi tunggal bulanan asuransi jiwa dwiguna sebagai berikut:

$$A_{x\bar{n}|}^{(12)} = 1 - d\ddot{a}_{x\bar{n}|}^{(12)} \tag{4.3}$$

Berdasarkan persamaan (4.3) dan (4.2) diperoleh premi tunggal bulanan saat tertanggung berusia x+t tahun dengan jangka waktu pertanggungan selama n-t tahun untuk asuransi jiwa dwiguna sebagai berikut:

$$A_{x+t:n-t|}^{(12)} = 1 - d\ddot{a}_{x+t:n-t|}^{(12)}$$
 (4.4)

Kemudian diasumsikan bahwa kematian menggunakan distribusi seragam pada usia x tahun setiap tahunnya, sehingga didapatkan rumus premi tunggal bersih bulanan asuransi jiwa dwiguna dengan menggunakan asumsi distribusi seragam pada jangka n tahun untuk tertanggung usia x tahun adalah sebagai berikut:

$$A_{x:\overline{n}|}^{(12)} = \frac{i}{i^{(12)}} A_{x:\overline{n}|}$$
 (4.5)

dengan

$$i^{(12)} = 12((1+i)^{1/12} - 1)$$

Selanjutnya karena pada penelitian ini akan menggunakan perhitungan cadangan premi prosfektif yaitu perhitungan nilai cadangan premi berdasarkan nilai pengeluaran diwaktu yang akan datang sehingga diperlukan juga premi tunggal bulanan yang akan datang yang dapat diperoleh dengan menggunakan prinsip yang sama seperti rumus premi tunggal bulanan seperti pada persamaan (4.8) sehingga premi tunggal bulanan yang akan datang pada x-t tahun, masa asuransi n-t tahun untuk asuransi jiwa dwiguna sebagai berikut:

$$A_{x+t:n-t|}^{(12)} = \frac{i}{i^{(12)}} A_{x+t:n-t|}$$
 (4.6)

2. Premi Bersih Bulanan

Pada penelitian ini premi yang digunakan ialah premi tunggal bersih bulanan asuransi jiwa dwiguna yang pembayarannya dilakukan setiap awal bulan dalam setahun (m=12) dengan tertanggung berusia x tahun dengan pertanggungan selama n tahun. Berdasarkan rumus premi tunggal dengan k kali pembayaran dalam setahun seperti pada persamaan (2.18), (4.3) dan (4.4) diperoleh rumus premi tunggal bulanan asuransi jiwa dwiguna sebagai berikut:

$$P_{x:\overline{n}|}^{(12)} = \frac{A_{x:\overline{n}|}^{(12)}}{\ddot{a}_{x:\overline{n}|}^{(12)}} \tag{4.7}$$

Kemudian diperoleh premi tunggal bulanan saat tertanggung berusia x+t tahun dengan jangka waktu pertanggungan selama n-t tahun untuk asuransi jiwa dwiguna sebagai berikut:

$$P_{x+t:n-t}^{(12)} = \frac{A_{x+t:n-t}^{(12)}}{\ddot{a}_{x+t:n-t}^{(12)}}$$
(4.8)

4.1.3 Penentuan Cadangan Premi Asuransi Jiwa Dwiguna

1. Cadangan Premi Metode Commissioners

Metode *commissioners* memiliki dua nilai premi bersih yang telah dimodifikasi yaitu untuk premi bersih tahun pertama disimbolkan dengan $\alpha^{(com)}$ dan untuk premi bersih tahun kedua dan seterusnya disimbolkan dengan $\beta^{(com)}$. Perhitungan pada penelitian ini merupakan perhitungan bulanan sehingga rumus premi modifikasi cadangan metode *commissioners* juga menggunakan perhitungan bulanan. Berdasarkan persamaan (2.23) maka premi modifikasi bulan kedua dan seterusnya dapat dirumuskan sebagai berikut:

$$\beta^{(12)}_{(com)} = P_{x.\overline{n}|}^{(12)} + \frac{\left[\left({}_{19}P_{x+1} \right) + (vq_x) \right]}{\ddot{a}_{v.\overline{n}|}^{(12)}}$$
(4.9)

Begitupun dengan nilai sekarang dari premi keseluruhan pada permulaan kontrak asuransi berdasarkan persamaan (2.24) didapat rumus nilai sekarang dengan perhitungan bulanan sebagai berikut:

$${}_{m}P_{x,\overline{n}}^{(12)}\ddot{a}_{x,\overline{n}}^{(12)} = \alpha^{(2n)}_{(com)} + \beta^{(2n)}_{(com)}(\ddot{a}_{x,\overline{m}}^{(12)} - 1)$$
(4.10)

Sehingga diperoleh

$$\alpha^{(12)} = \beta^{(12)}_{(com)} - [(_{19}P_{x+1}) + (vq_x)]$$
(4.11)

Selanjutnya $\beta^{(com)}$ digunakan untuk perhitungan cadangan menggunakan metode prospektif. Sehingga berdasarkan persamaan (2.27) besarnya cadangan dari tahun ke-t sampai ke n adalah sebagai berikut:

$${}_{t}V_{x+t;\overline{n-t}|}^{(2cm)} = R A_{x+t;\overline{n-t}|}^{(12)} - \beta^{(com)} \ddot{a}_{x+t;\overline{n-t}|}^{(12)}$$
(4.12)

2. Cadangan Premi Metode Canadian

Metode *canadian* adalah metode perhitungan yang menyetarakan antara premi modifikasi awal metode *canadian* dan premi bersih dengan selisih antara premi bersih untuk polis asuransi jiwa seumur hidup dengan premi natural. Metode *canadian* hanya dapat digunakan jika kondisi polis mempunyai premi bersih datar yang lebih besar dari premi bersih datar asuransi seumur hidup yang mana waktu pertanggungan dan besar santunannya sama (Larson, 1951). Premi modifikasi bulan pertama dengan metode *canadian* berdasarkan persamaan (2.28) dapat didefinisikan sebagai berikut:

$$\alpha^{(12)} = {}_{m}P_{\neg \neg}^{(12)} - (P_{x} - (vq_{x}))$$
(4.13)

Selanjutnya berdasarkan persamaan (2.30) dapat diperoleh rumus premi modifikasi bulan kedua dan seterusnya sebagai berikut:

$$\beta^{(12)}_{(can)} = {}_{m}P_{xn}^{(12)} + \frac{P_{x} - \alpha^{(12)}_{(can)}}{\ddot{a}_{xn}^{(12)} - 1}$$
(4.14)

Setelah memperoleh nilai $\beta^{(can)}$ kemudian cadangan premi dapat dihitung dengan metode *prospektif*. Besarnya cadangan premi dari bulan ke-t sampai ke-t berdasarkan persamaan (2.31) dapat dinotasikan sebagai berikut:

$${}_{t}V_{x:\overline{n}|}^{(12)} = A_{x+t,\overline{n-t}|}^{(12)} - \beta^{(12)}_{x,\overline{n}|} \ddot{a}_{x,\overline{n}|}^{(12)}$$

$$(4.15)$$

4.2 Perhitungan Cadangan Premi Asuransi Jiwa Dwiguna

4.2.1 Studi Kasus

Sebuah perusahaan asuransi menerbitkan sebuah produk asuransi jiwa dwiguna dengan masa pertanggungan selama 24 tahun. Produk tersebut memberikan uang pertanggungan sebesar Rp200.000.000,00 jika nasabah meninggal dunia saat masih dalam jangka waktu pertanggungan atau tetap hidup hingga jangka waktu pertanggungan berakhir. Nasabah adalah seorang yang berjenis kelamin perempuan berusia 25 tahun.

Berdasarkan ilustrasi kasus di atas dapat diketahui bahwa perkiraan umur maksimal adalah 100 tahun. Jangka waktu pertanggungan 24 tahun, dengan tingkat suku bunga yang digunakan mengacu pada tingkat suku bunga Bank Sentral Indonesia yaitu sebesar 3,5% pertahun dengan besar uang santunan Rp200.000,000 maka perhitungan cadangan premi bulanan menggunakan metode *commissioners* dan *canadian* dapat dilakukan dengan langkah-langkah berikut:

Berdasarkan studi kasus di atas maka langkah awal perhitungan yaitu menghitung faktor diskon dengan menggunakan persamaan (2.10) dengan i=3,5% (pertahun) sehingga diperoleh hasil sebagai berikut:

$$v = \frac{1}{1 + 0,035}$$
$$= 0,966184$$

Sedangkan tingkat diskon berdasarkan persamaan (2.11) diperoleh sebagai berikut:

$$d = 1 - 0,966184$$
$$= 0.033816$$

Langkah kedua yaitu menghitung nilai total anuitas berjangka awal bulanan yang dinotasikan dengan $\ddot{a}_{x:\overline{n}|}^{(12)}$. Sehingga berdasarkan persamaan (4.3) diperoleh nilai total anuitas berjangka bulanan nasabah perempuan berusia 25 tahun dengan jangka waktu pertanggungan 24 tahun sebagai berikut:

$$\ddot{a}_{25+0:\overline{24-0}|}^{(12)} = \sum_{k=0}^{24-1} v^k_{k} p_{25} - \frac{11}{24} \sum_{k=0}^{24-1} (v^k_{k} p_{25} - v^{k+1}_{k+1} p_{25})$$

$$= \sum_{k=0}^{23} v^k_{k} p_{25} - \frac{11}{24} \left(\sum_{k=0}^{23} v^k_{k} p_{25} - \sum_{k=0}^{23} v^{k+1}_{k+1} p_{25} \right)$$

$$= 183,002204 - \left[\frac{11}{24} (183,002204 - 182,33315) \right]$$

$$= 182,695554$$

Dengan perhitungan selengkapnya dilampirkan pada lampiran 2. Jadi, nilai total anuitas untuk usia tertanggung perempuan berusia 25 tahun dengan jangka waktu pertanggungan selama 24 tahun dan nilai manfaat sebesar 1 satuan adalah sebesar 182,695554.

Kemudian menghitung nilai premi tunggal tahunan asuransi jiwa dwiguna yang dinotasikan A_{xx} . Berdasarkan persamaan (2.18) maka diperoleh

nilai premi tunggal tahunan asuransi jiwa dwiguna nasabah perempuan berusia 25 tahun dengan jangka waktu pertanggungan selama 24 tahun sebagai berikut:

$$\begin{split} A_{25:\overline{24}|} &= 1 - d\ddot{a}_{25:\overline{24}|} \\ &= 1 - d\sum_{k=0}^{24-1} v^k_{\ k} \, p_{24} \\ &= 1 - (0,033816)(0,452084) \\ &= 0.969424 \end{split}$$

Selanjunya untuk perhitungan nilai premi tunggal bulanan asuransi jiwa dwiguna menggunakan persamaan (4.6) untuk perempuan berusia 25 tahun dengan pertanggungan 24 tahun dengan uang santunan Rp200.000.000,00 diperoleh hasil sebagai berikut:

$$A_{25+0:\overline{24-0}|}^{(12)} = \frac{i}{12((1+i)^{1/12}-1)} A_{25+0:\overline{24-0}|}$$

$$= \frac{0,035}{12((1+0,035)^{1/12}-1)} 0,969424$$

$$= \frac{0,035}{0,034451} 0,969424$$

$$= 0,984879$$

Dengan perhitungan selengkapnya dilampirkan pada lampiran 2. Jadi, premi bulanan yang harus dibayarkan seorang nasabah perempuan berusia 25 tahun dalam jangka waktu pertanggungan 24 tahun dengan santunan Rp200.000.000,00 yaitu sebesar 0,984879 satu satuan. Kemudian dengan mensubstitusi hasil total anuitas bulanan dan premi bulanan, berdasarkan persamaan (4.7) diperoleh premi bersih bulanan sebagai berikut:

$$\begin{split} P_{25:\overline{24}|}^{(12)} &= (R) \frac{A_{25:\overline{24}|}^{(12)}}{\ddot{a}_{25:\overline{24}|}^{(12)}} \\ &= (200.000.000) \frac{0,984879}{182,695554} \\ &= (200.000.000) (0,005391) \\ &= 1.078.163,98 \end{split}$$

Dengan perhitungan selengkapnya dilampirkan pada lampiran 2. Jadi, besarnya premi bersih bulanan yang harus dibayarkan tiap bulan selama jangka waktu pertanggungan 24 tahun oleh tertanggung perempuan berusia 25 tahun dengan nilai santunan Rp200.000.000,00 adalah sebesar Rp1.078.163,98.

4.2.2 Perhitungan Cadangan Premi Metode Commissioners

Metode *commissioners* memiliki dua nilai premi bersih yang telah dimodifikasi yaitu untuk premi bersih tahun pertama disimbolkan dengan $\alpha^{(com)}$ dan untuk premi bersih tahun kedua dan seterusnya disimbolkan dengan $\beta^{(com)}$. Sehingga untuk mencari nilai cadangan premi, langkah pertama yang harus dilakukan yaitu menghitung nilai premi modifikasi bulan kedua dan seterusnya yang dinotasikan dengan $\beta^{(12)}$ dapat dihitung dengan persamaan (4.9) sebagai berikut:

$$\begin{split} \beta^{\text{\tiny (12)}} &= P_{25:24|}^{\text{\tiny (12)}} + \frac{[(_{19}P_{26}) - (vq_{25})]}{\ddot{a}_{25:24|}^{\text{\tiny (12)}}} \\ &= 0,005391 + \frac{[0,000642 - 0,000367]}{182,695554} \\ &= 0,005392 \end{split}$$

Selanjutnya menghitung premi modifikasi tahun pertama yang dinotasikan dengan $\alpha^{(12)}$ menggunakan persamaan (4.11) sebagai berikut:

$$\alpha^{(12)} = \beta^{(12)}_{(com)} - ((_{19}P_{26}) - (vq_{25}))$$

$$= 0,005392 - (0,000642 - 0,000367)$$

$$= 0,004383$$

Kemudian dapat dihitung cadangan premi bulanan asuransi jiwa dwiguna untuk nasabah perempuan berusia 25 tahun dengan jangka waktu pertanggungan selama 24 tahun dan nilai santunan sebesar Rp200.000.000,00 menggunakan metode *commissioners* berdasarkan rumus pada persamaan (4.12) sebagai berikut:

$$\begin{split} V_{25+0:\overline{24-0|}}^{(12)} &= (R)A_{25+0:\overline{24-0|}}^{(12)} - \beta^{(12)}\ddot{a}_{25+0:\overline{24-0|}}^{(12)} \\ &= (200.000.000)(0,969424) - (0,005392)(15,012817) \\ &= 180.784.969,7 \end{split}$$

Dengan perhitungan selengkapnya dilampirkan pada lampiran 3. Jadi, cadangan premi untuk bulan terakhir kontrak asuransi jiwa dwiguna nasabah perempuan berusia 25 tahun dengan jangka waktu pertanggungan selama 24 tahun dan santunan sebesar Rp200.000.000,00 adalah sebesar Rp180.784.969,7.

4.2.3 Perhitungan Cadangan Premi Metode Canadian

Sebelum menghitung nilai cadangan premi, langkah pertama yang harus dilakukan yaitu menghitung nilai premi modifikasi bulan pertama yang dinotasikan dengan $\alpha^{(12)}_{(com)}$ menggunakan persamaan (4.13) sebagai berikut:

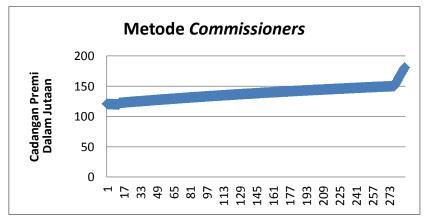
$$\alpha^{(12)} = P_{25:\overline{24}|}^{(12)} - [P_{25} - (v \ q_{25})]$$

$$= 0,005391 - [0,004562 - ((0,966184)(0,00038))]$$

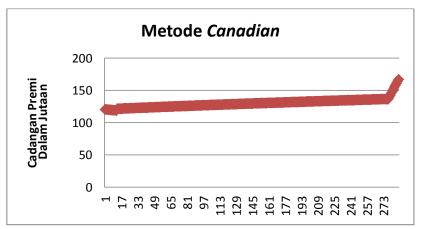
$$= 0,001196$$

Kemudian menghitung premi modifikasi bulan kedua dan seterusnya yang dinotasikan dengan $\beta^{(12)}$ menggunakan persamaan (4.14) sebagai berikut:

$$\begin{split} \beta^{\text{\tiny (12)}} &= P_{25:\overline{24}|} + \left(\frac{P_{25} - (v \ q_{25})}{\ddot{a}_{25:\overline{24}|}^{(12)} - 1}\right) \\ &= 0,005391 + \left(\frac{0,004562 - ((0,966184)(0,00038))}{0,083302 - 1}\right) \\ &= 0,000815 \end{split}$$


Kemudian dapat dihitung cadangan premi bulanan asuransi jiwa dwiguna untuk nasabah perempuan berusia 25 tahun dengan jangka waktu pertanggungan selama 24 tahun dan nilai santunan sebesar Rp200.000.000,00 menggunakan metode *canadian* berdasarkan rumus pada persamaan (4.15) sebagai berikut:

$$\begin{aligned} \mathbf{V}_{25+0:\overline{24-0|}}^{(12)} = & (R)A_{25+0:\overline{24-0|}}^{(12)} - \beta^{(12)}_{(2m)} \ddot{a}_{25+0:\overline{24-0|}}^{(12)} \\ &= (200.000.000)(0,984879) - (0,000815)(182,695554) \\ &= 167.193.888.3 \end{aligned}$$


Dengan perhitungan selengkapnya dilampirkan pada lampiran 3. Jadi, cadangan premi untuk bulan terakhir kontrak asuransi jiwa dwiguna nasabah perempuan berusia 25 tahun dengan jangka waktu pertanggungan selama 24 tahun dan santunan sebesar Rp200.000.000,00 adalah sebesar Rp167.193.888,3.

4.3 Perbandingan Cadangan Premi Asuransi Jiwa Dwiguna Metode *Commissioners* dan Canadian*

Hasil perhitungan cadangan premi menggunakan metode *commissioners* dan *canadian* sesuai ilustrasi kasus pada penelitian ini dapat dibuat grafik nilai cadangan premi seperti pada gambar 4.1 dan 4.2 di bawah ini:

Gambar 4.1 Grafik Perhitungan Cadangan Premi Metode Commissioners

Gambar 4.2 Grafik Perhitungan Cadangan Premi Metode Canadian

Berdasarkan hasil perhitungan cadangan premi yang dapat dilihat pada kedua grafik di atas menunjukkan bahwa nilai cadangan premi bulanan menggunakan metode *commissioners* dan *canadian* menunjukkan nilai cadangan yang berbeda tetapi keduanya sama-sama mendekati nilai santunan. Hasil yang diperoleh menggunakan metode *commissioners* pada akhir masa pertanggungan saat tertanggung berusia 25 tahun dengan jangka waktu pertanggungan selama 24 tahun sebesar Rp180.784.969,7 atau sebesar 90,4% dari nilai santunan dan untuk metode *canadian* sebesar Rp167.193.888,3 atau sebesar 83,6% dari nilai santunan. Hasil tersebut menunjukkan bahwa cadangan premi bulanan pada

asuransi jiwa dwiguna menggunakan metode *commissioners* diperoleh nilai cadangan premi yang lebih besar dan lebih mendekati nilai santunan daripada menggunakan metode *canadian*.

Kemudian standar error pada kasus ini dapat dicari dengan rumus standar error untuk proporsi/presentase yaitu sebagai berikut:

$$SE = \sqrt{\frac{p(100 - p)}{n}}$$

Sehingga standar error dari hasil perhitungan cadangan premi metode commissioners sebagai berikut:

$$SE^{(com)} = \sqrt{\frac{90,4(100-90,4)}{288}}$$
$$= 1,7\%$$

Sedangkan standar error dari hasil perhitungan cadangan premi metode *canadian* sebagai berikut:

$$SE^{(can)} = \sqrt{\frac{83,6(100 - 83,6)}{288}}$$
$$= 2.2\%$$

dan didapatkan nilai standar error yang signifikan dengan hasil perhitungan cadangan premi dimana jika hasil perhitungan cadangan premi bulanan lebih besar dan mendekati nilai santunan maka standar errornya semakin kecil, begitu pula sebaliknya. Sehingga dapat disimpulkan bahwa metode *commissioners* lebih efektif digunakan pada kasus ini.

4.4 Kajian Hukum Cadangan Premi dalam Islam

Pada dasarnya asuransi diadakan sebagai wadah untuk saling tolong menolong dalam memberikan perlindungan antara perusahaan asuransi kepada peserta asuransi sesuai kesepakatan kedua pihak. Pada pelaksanaannya paserta asuransi selaku tertanggung diwajibkan membayar premi/iuran kepada perusaahaan asuransi (penanggung) sebagai bentuk keikutsertaan dalam asuransi. Premi yang dibayarkan kemudian dikelola perusahaan untuk menyiapkan dana santunan dan juga cadangan preminya.

Cadangan premi didapatkan dari premi yang dibayarkan tertanggung kepada penanggung yang nantinya akan digunakan untuk memperkirakan dana cadangan. Dana tersebut kemudian dikelola perusahaan untuk mempersiapkan apabila terjadi klaim yang jumlahnya diluar dugaan saat peserta asuransi mengalami suatu musibah. Hal ini sangat penting dilakukan agar dimasa mendatang perusahaan tidak mengalami kebangkrutan dan santunan bisa dibayarkan sesuai klaim yang diminta oleh peserta yang mengalami suatu musibah. Nilai positif terkait cadangan premi ini dapat terlihat dimana suatu perusahaan asuransi harus mempersiapkan dana yang akan difungsikan untuk menolong peserta asuransi yang sedang mengalami suatu musibah tak terduga. Hal tersebut sesuai dengan firman Allah pada Al-Quran surah Al-Maidah ayat 2 yang memiliki arti sebagai berikut:

"Dan tolong-menolonglah kamu dalam (mengerjakan) kebajikan dan takwa, dan jangan tolong-menolong dalam berbuat dosa dan permusuhan. Bertakwalah kepada Allah, sungguh, Allah sangat berat siksaan-Nya." (Al Maidah: 2)

Maka hal ini termasuk pada hukum diperbolehkannya cadangan premi pada asuransi.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan pembahasan diatas diperoleh kesimpulan sebagai berikut:

1. Rumus modifikasi cadangan premi bulanan asuransi jiwa dwiguna menggunakan metode *commissioners* secara umum adalah sebagai berikut,

$$_{t}V_{xn}^{(12)} = RA_{x+t:n-t|}^{(12)} - \beta^{(com)}\ddot{a}_{x+t:n-t|}^{(12)}$$

Sedangkan rumus modifikasi cadangan premi bulanan asuransi jiwa dwiguna menggunakan metode *canadian* secara umum adalah sebagai berikut,

$$_{t}V_{x:\overline{n}|}^{(Can)} = RA_{x+t:\overline{n-t}|}^{(12)} - \beta^{(Can)}\ddot{a}_{x+t:\overline{n-t}|}^{(12)}$$

- 2. Hasil perhitungan cadangan premi bulanan nasabah perempuan berusia 25 tahun dengan jangka waktu pertanggungan 24 tahun asuransi jiwa dwiguna menggunakan metode *commissioners* dan *canadian* menghasilkan nilai yang berturut-turut sebagai berikut Rp180.784.969,7 dan Rp167.193.888,3.
- 3. Berdasarkan hasil perhitungan cadangan premi bulanan pada asuransi jiwa dwiguna dan didukung dengan perhitungan standar error menunjukkan bahwa metode *commissioners* lebih efektif digunakan daripada metode *canadian*.

5.2 Saran

Pada penelitian ini penulis hanya meneliti cadangan premi bulanan dengan metode *commissioners* dan *canadian*. Oleh karena itu, penulis berharap kepada para pembaca untuk mengembangkan penelitian ini dengan menggunakan metode lain seperti *zillmer* ataupun *commissioners* terhadap penentuan cadangan premi bulanan asuransi jiwa gabungan tiga orang atau lebih.

DAFTAR PUSTAKA

- Al-Qur'an dan Terjemahannya. (2019). Kementrian Agama RI.
- Abdurrauf. 2010. Asuransi Dalam Pandangan Ulama Fikih Kontemporer. Aliqitishad. 2(2), 139-158.
- Bowers, N. L., Geerber, H. U., Hickman, J. C., Jones, D. A., & Nesbitt, C. J. 1997. *Actuarial Mathematics*. Schaumhurg: Society Of Actuaries.
- Ekawati, D. dan Fardinah. 2020. Penentuan Cadangan Premi Asuransi Jiwa Bersama Dwiguna dengan Metode Canadian. Jurnal Matematika Teori dan Aplikasi.
- Futami, T. 1993. *Matematika Asuransi Jiwa Bagian I*. Tokyo: Incorporated Foundation Oriental Life Insurance Cultural Development Center.
- Futami, T. 1994. Matematika Asuransi Jiwa, Bagian II. Terj. dari Seimei Hoken Sugaku, Gekan ("92 Revision), oleh Herliyanto G. Japan: Incorporated Foundation Oriental Life Insurance Cultural Development Center.
- Hadits Riwayat Bukhari dan Muslim.
- Hasan, Nurul Ichsan. 2014. *Pengantar Asuransi Syariah*. Jakarta: Gaung Persada Press Group.
- Hasanah, Nur. 2015. Kajian Metode Commissioners, Illinois Dan Canadian Dalam Menentukan Cadangan Pada Asuransi Jiwa Dwiguna. Jurnal Matematika UNAND. 4(4), 99-106.
- Khoirunnisa, Ika R. 2014. Cadangan Premi Dengan Metode Canadian Pada Asuransi Jiwa Berjangka. JOM FMIPA Universitas Riau Kampus Bina Widya. 1(2), 457-465.
- Larson, R., & E. A. Gaumnitz. 1951. *Life Insurance Mathematics*. New York: John Wiley and Sons Inc.
- Markonah, M., dan Hedwigis Esti Riwayanti. 2009. *Matematika Ekonomi dan Bisnis 1*. Jakarta: PT Gramedia Widiasarana Indonesia.
- Otoritas Jasa Keuangan. 2016. Peraturan Otoritas Jasa Keuangan Nomor 71/POJK.05/2016 tentang Kesehatan Keuangan Perusahaan Asuransi dan Reasuransi.
- Prihantoro, Wahyu. 2000. *Aneka Produk Asuransi dan Karakteristiknya*. Yogyakarta: Kanisius.
- Putri, Rekayanti. 2020. Perhitungan Cadangan Premi Asuransi Jiwa Berjangka Menggunakan Metode Commissioners Dengan Formula Woolhouse. Skripsi. Makassar: Universitas Islam Negeri Alauddin.

- Sembiring, R.K. 1986. *Buku Materi Pokok. Asuransi 1*. Jakarta: Universitas Terbuka.
- Sembiring, R.K. 1990. *Matematika Finansial*. Jakarta: Karunika.
- Sembiring, Sentosa. 2014. Hukum Asuransi. Bandung: Penerbit Nuansa Aulia.
- Shihab, M. Quraish. 2005. Tafsir Al-Mishbah. Jakarta: Lentera Hati.
- Sula, Syakir M. 2004. Asuransi Syariah. Jakarta: Gema Insani Press.
- Sula, Syakir M. 2014. Asuransi Syariah (Lie And General) Konsep Dan System Operasional. Jakarta: Gema Insani Press.
- Sumitro, W. 1997. Asas-Asas Perbankan Islam dan Lembaga Terkait di Indonesia. Jakarta: PT. Raja Grafindo.
- Undang-Undang Nomor 2 Tahun 1992 tentang Usaha Perasuransian.
- Wehr, H. 1976. A Dictionary Of Modern Written Arabic. New York: Spoken Language Service.
- Yumna. (2021). Perbandingan Cadangan Premi pada Asuransi Jiwa Dwiguna Menggunakan Metode Commisioners dan Canadian. Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster). 10(1), 195 202.

LAMPIRAN

Lampiran 1. Tabel Mortalitas Indonesia IV Tahun 2019

_amp	<u>ıran 1. 1a</u>	<u>bel Morta</u>	ntas n	<u>1aonesia 1</u>	v ranun z	<u> 2019</u>		
Usia	q_L	q_P	Usia	q_L	q_P	Usia	q_L	q_P
0	0.00524	0.00266	38	0.00139	0.00100	76	0.02369	0.01879
1	0.00053	0.00041	39	0.00155	0.00108	77	0.02738	0.02030
2	0.00042	0.00031	40	0.00173	0.00118	78	0.03130	0.02326
3	0.00034	0.00024	41	0.00193	0.00128	79	0.03693	0.02880
4	0.00029	0.00021	42	0.00216	0.00141	80	0.04518	0.03569
5	0.00026	0.00020	43	0.00241	0.00154	81	0.05527	0.04208
6	0.00023	0.00022	44	0.00270	0.00169	82	0.06732	0.04907
7	0.00021	0.00023	45	0.00302	0.00187	83	0.08228	0.05520
8	0.00020	0.00022	46	0.00338	0.00209	84	0.09478	0.06086
9	0.00020	0.00021	47	0.00377	0.00230	85	0.10465	0.06715
10	0.00019	0.00019	48	0.00418	0.00253	86	0.11533	0.07318
11	0.00019	0.00018	49	0.00461	0.00277	87	0.12698	0.08155
12	0.00019	0.00020	50	0.00508	0.00305	88	0.13947	0.09045
13	0.00020	0.00022	51	0.00556	0.00335	89	0.15271	0.10001
14	0.00023	0.00023	52	0.00609	0.00368	90	0.16659	0.10913
15	0.00027	0.00023	53	0.00667	0.00403	91	0.17991	0.11521
16	0.00031	0.00024	54	0.00727	0.00442	92	0.19390	0.12499
17	0.00037	0.00024	55	0.00789	0.00483	93	0.20874	0.13826
18	0.00043	0.00025	56	0.00847	0.00524	94	0.22451	0.15451
19	0.00047	0.00026	57	0.00898	0.00563	95	0.24126	0.17429
20	0.00049	0.00027	58	0.00939	0.00601	96	0.25715	0.19155
21	0.00049	0.00028	59	0.00971	0.00636	97	0.27419	0.20596
22	0.00049	0.00030	60	0.00999	0.00671	98	0.29249	0.22227
23	0.00049	0.00032	61	0.01024	0.00707	99	0.31215	0.23736
24	0.00050	0.00034	62	0.01046	0.00746	100	0.33331	0.25810
25	0.00052	0.00038	63	0.01071	0.00788	101	0.35163	0.28068
26	0.00055	0.00042	64	0.01104	0.00833	102	0.37132	0.30562
27	0.00060	0.00046	65	0.01146	0.00883	103	0.39250	0.33315
28	0.00065	0.00049	66	0.01199	0.00940	104	0.41527	0.36369
29	0.00070	0.00052	67	0.01260	0.01005	105	0.43973	0.39318
30	0.00075	0.00056	68	0.01329	0.01076	106	0.46602	0.42883
31	0.00081	0.00060	69	0.01405	0.01150	107	0.49429	0.46604
32	0.00087	0.00064	70	0.01485	0.01229	108	0.52467	0.50427
33	0.00093	0.00069	71	0.01574	0.01314	109	0.55733	0.54477
34	0.00099	0.00074	72	0.01670	0.01406	110	0.59244	0.58702
35	0.00107	0.00080	73	0.01777	0.01508	111	1.00000	1.00000
36	0.00116	0.00086	74	0.01895	0.01620			
37	0.00127	0.00093	75	0.02026	0.01743			

Keterangan

L : Usia laki-laki P : Usia perempuan

 q_L : peluang bahwa laki-laki berusia L meninggal sebelum usia L+1. q_P : peluang bahwa perempuan berusia P meninggal sebelum usia P+1.

Lampiran 2. Perhitungan Nilai Total Anuitas, Premi Tunggal, dan Premi
Bersih Bulanan

			Nilai Total	Premi	Premi
Tahun ke	Usia	Bulan ke	Anuitas	Tunggal	Bersih
		0	0.999446	0.603832	0.604167
		1	1.998512	0.603832	0.302141
		2	2.997198	0.603832	0.201466
		3	3.995505	0.603832	0.151128
		4	4.993433	0.603832	0.120925
		5	5.990981	0.603832	0.100790
		6	6.988151	0.603832	0.086408
		7	7.984941	0.603832	0.075621
		8	8.981353	0.603832	0.067232
		9	9.977386	0.603832	0.060520
		10	10.973040	0.603832	0.055029
0	25	11	11.952876	0.603832	0.050518
		12	12.914074	0.617784	0.047838
		13	13.874868	0.618908	0.044606
		14	14.835259	0.620031	0.041794
		15	15.795246	0.621154	0.039325
		16	16.754830	0.622278	0.037140
		17	17.714012	0.623401	0.035193
		18	18.672790	0.624524	0.033446
		19	19.631165	0.625648	0.031870
		20	20.589139	0.626771	0.030442
		21	21.546709	0.627894	0.029141
		22	22.503878	0.629017	0.027952
1	26	23	23.445802	0.630141	0.026876
		24	24.369772	0.631264	0.025904
		25	25.293316	0.632349	0.025001
		26	26.216437	0.633434	0.024162
		27	27.139132	0.634519	0.023380
		28	28.061403	0.635604	0.022650
		29	28.983250	0.636689	0.021967
		30	29.904673	0.637774	0.021327
		31	30.825671	0.638859	0.020725
		32	31.746247	0.639944	0.020158
		33	32.666398	0.641029	0.019623
2	27	34	33.586127	0.642114	0.019118

		35	34.491175	0.643199	0.018648
		36	35.378945	0.644284	0.018211
		37	36.266281	0.645332	0.017794
		38	37.153181	0.646380	0.017794
		39	38.039647	0.647428	0.017020
		40	38.925679	0.648477	0.016659
		41	39.811276	0.649525	0.016315
		42	40.696440	0.650573	0.015986
		43	41.581169	0.651621	0.015671
		44	42.465466	0.652670	0.015369
		45	43.349329	0.653718	0.015080
		46	44.232758	0.654766	0.014803
3	28	47	45.102062	0.655814	0.014541
		48	45.954743	0.656863	0.014294
		49	46.806982	0.657876	0.014055
		50	47.658777	0.658889	0.013825
		51	48.510129	0.659902	0.013603
		52	49.361039	0.660915	0.013389
		53	50.211506	0.661928	0.013183
		54	51.061531	0.662941	0.012983
		55	51.911114	0.663954	0.012790
		56	52.760255	0.664967	0.012604
		57	53.608954	0.665980	0.012423
		58	54.457213	0.666993	0.012248
4	29	59	55.291878	0.668006	0.012081
		60	56.110551	0.669019	0.011923
		61	56.928766	0.669998	0.011769
		62	57.746523	0.670977	0.011619
		63	58.563821	0.671956	0.011474
		64	59.380662	0.672934	0.011333
		65	60.197046	0.673913	0.011195
		66	61.012972	0.674892	0.011061
		67	61.828441	0.675871	0.010931
		68	62.643454	0.676849	0.010805
		69	63.458011	0.677828	0.010682
		70	64.272111	0.678807	0.010561
5	30	71	65.073134	0.679786	0.010446
		72	65.858777	0.680764	0.010337
		73	66.643950	0.681710	0.010229
		74	67.428651	0.682656	0.010124
6	31	75	68.212881	0.683601	0.010022

		Т	T	T	T
		76	68.996641	0.684547	0.009921
		77	69.779931	0.685492	0.009824
		78	70.562750	0.686438	0.009728
		79	71.345100	0.687384	0.009635
		80	72.126981	0.688329	0.009543
		81	72.908392	0.689275	0.009454
		82	73.689334	0.690221	0.009367
		83	74.457702	0.691166	0.009283
		84	75.211287	0.692112	0.009202
		85	75.964389	0.693026	0.009123
		86	76.717009	0.693940	0.009045
		87	77.469148	0.694853	0.008969
		88	78.220805	0.695767	0.008895
		89	78.971982	0.696681	0.008822
		90	79.722677	0.697595	0.008750
		91	80.472892	0.698509	0.008680
		92	81.222627	0.699423	0.008611
		93	81.971882	0.700337	0.008544
		94	82.720658	0.701250	0.008477
7	32	95	83.457344	0.702164	0.008413
		96	84.179820	0.703078	0.008352
		97	84.901798	0.703961	0.008291
		98	85.623278	0.704844	0.008232
		99	86.344259	0.705727	0.008173
		100	87.064744	0.706610	0.008116
		101	87.784731	0.707493	0.008059
		102	88.504221	0.708376	0.008004
		103	89.223215	0.709259	0.007949
		104	89.941713	0.710142	0.007896
		105	90.659715	0.711025	0.007843
		106	91.377222	0.711907	0.007791
8	33	107	92.083108	0.712790	0.007741
		108	92.775345	0.713673	0.007692
		109	93.467069	0.714527	0.007645
		110	94.158281	0.715380	0.007598
		111	94.848981	0.716233	0.007551
		112	95.539171	0.717086	0.007506
		113	96.228850	0.717940	0.007461
		114	96.918018	0.718793	0.007417
		115	97.606676	0.719646	0.007373
9	34	116	98.294825	0.720499	0.007330

	1	1	1	T	1
		117	98.982465	0.721353	0.007288
		118	99.669596	0.722206	0.007246
		119	100.345562	0.723059	0.007206
		120	101.008416	0.723912	0.007167
		121	101.670740	0.724737	0.007128
		122	102.332534	0.725561	0.007090
		123	102.993799	0.726386	0.007053
		124	103.654534	0.727210	0.007016
		125	104.314741	0.728034	0.006979
		126	104.974420	0.728859	0.006943
		127	105.633571	0.729683	0.006908
		128	106.292195	0.730507	0.006873
		129	106.950292	0.731332	0.006838
		130	107.607862	0.732156	0.006804
10	35	131	108.254710	0.732980	0.006771
		132	108.888972	0.733805	0.006739
		133	109.522689	0.734601	0.006707
		134	110.155860	0.735398	0.006676
		135	110.788487	0.736195	0.006645
		136	111.420570	0.736991	0.006615
		137	112.052110	0.737788	0.006584
		138	112.683106	0.738585	0.006555
		139	113.313560	0.739381	0.006525
		140	113.943471	0.740178	0.006496
		141	114.572841	0.740975	0.006467
		142	115.201669	0.741771	0.006439
11	36	143	115.820204	0.742568	0.006411
		144	116.426661	0.743365	0.006385
		145	117.032555	0.744134	0.006358
		146	117.637884	0.744904	0.006332
		147	118.242651	0.745674	0.006306
		148	118.846855	0.746443	0.006281
		149	119.450498	0.747213	0.006255
		150	120.053579	0.747983	0.006230
		151	120.656099	0.748752	0.006206
		152	121.258059	0.749522	0.006181
		153	121.859459	0.750292	0.006157
		154	122.460300	0.751061	0.006133
12	37	155	123.051264	0.751831	0.006110
		156	123.630648	0.752601	0.006087
		157	124.209452	0.753345	0.006065
		158	124.787678	0.754088	0.006043
13	38	159	125.365326	0.754832	0.006021

		160	125 042206	0.755576	0.005000
			125.942396		0.005999
		161	126.518888	0.756320	0.005978
		162	127.094805	0.757064	0.005957
		163	127.670145	0.757807	0.005936
		164	128.244910	0.758551	0.005915
		165	128.819101	0.759295	0.005894
		166	129.392717	0.760039	0.005874
		167	129.956862	0.760783	0.005854
		168	130.509908	0.761526	0.005835
		169	131.062357	0.762245	0.005816
		170	131.614209	0.762964	0.005797
		171	132.165465	0.763683	0.005778
		172	132.716126	0.764402	0.005760
		173	133.266192	0.765121	0.005741
		174	133.815664	0.765840	0.005723
		175	134.364542	0.766559	0.005705
		176	134.912828	0.767278	0.005687
		177	135.460521	0.767997	0.005670
		178	136.007624	0.768716	0.005652
14	39	179	136.545645	0.769435	0.005635
		180	137.073028	0.770154	0.005619
		181	137.599788	0.770849	0.005602
		182	138.125927	0.771544	0.005586
		183	138.651446	0.772238	0.005570
		184	139.176344	0.772933	0.005554
		185	139.700622	0.773628	0.005538
		186	140.224282	0.774322	0.005522
		187	140.747324	0.775017	0.005506
		188	141.269749	0.775711	0.005491
		189	141.791558	0.776406	0.005476
		190	142.312750	0.777101	0.005461
15	40	191	142.825242	0.777795	0.005446
		192	143.327548	0.778490	0.005432
		193	143.829212	0.779162	0.005417
		194	144.330234	0.779833	0.005403
		195	144.830614	0.780505	0.005389
		196	145.330354	0.781176	0.005375
		197	145.829454	0.781848	0.005375
		198	146.327916	0.782520	0.005348
		199	146.825739	0.783191	0.005346
16	41	202	148.315389	0.785206	0.005307
16	4.1	200	147.322925 147.819475	0.783863 0.784535	0.005321
10	71	202	170.313303	0.703200	0.003434

203 148.802969 0.785878 204 149.280797 0.786550 205 149.757950 0.787198 206 150.234432 0.787847 207 150.710241 0.788496 208 151.185379 0.789145 209 151.659847 0.789794 210 152.133647 0.790443	0.005281 0.005269 0.005256 0.005244 0.005232 0.005220 0.005208 0.005196 0.005184
205 149.757950 0.787198 206 150.234432 0.787847 207 150.710241 0.788496 208 151.185379 0.789145 209 151.659847 0.789794	0.005256 0.005244 0.005232 0.005220 0.005208 0.005196
206 150.234432 0.787847 207 150.710241 0.788496 208 151.185379 0.789145 209 151.659847 0.789794	0.005244 0.005232 0.005220 0.005208 0.005196
207 150.710241 0.788496 208 151.185379 0.789145 209 151.659847 0.789794	0.005232 0.005220 0.005208 0.005196
208 151.185379 0.789145 209 151.659847 0.789794	0.005220 0.005208 0.005196
209 151.659847 0.789794	0.005208 0.005196
	0.005196
210 152.133647 0.790443	
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.005184
211 152.606778 0.791091	
212 153.079242 0.791740	0.005172
213 153.551040 0.792389	0.005160
214 154.022173 0.793038	0.005149
17 42 215 154.485328 0.793687	0.005138
216 154.939160 0.794336	0.005127
217 155.392293 0.794963	0.005116
218 155.844728 0.795590	0.005105
219 156.296467 0.796217	0.005094
220 156.747509 0.796844	0.005084
221 157.197858 0.797472	0.005073
222 157.647512 0.798099	0.005063
223 158.096474 0.798726	0.005052
224 158.544745 0.799353	0.005042
225 158.992325 0.799980	0.005032
226 159.439216 0.800607	0.005021
18 43 227 159.878480 0.801235	0.005012
228 160.308835 0.801862	0.005002
229 160.738464 0.802468	0.004992
230 161.167366 0.803075	0.004983
231 161.595544 0.803681	0.004973
232 162.022997 0.804287	0.004964
233 162.449729 0.804894	0.004955
234 162.875739 0.805500	0.004945
235 163.301030 0.806107	0.004936
236 163.725601 0.806713	0.004927
237 164.149455 0.807319	0.004918
238 164.572593 0.807926	0.004909
19 44 239 164.988441 0.808532	0.004901
240 165.395782 0.809138	0.004892
241 165.802361 0.809725	0.004884
242 166.208180 0.810311	0.004875
243 166.613240 0.810898	0.004867
244 167.017543 0.811484	0.004859
20 45 245 167.421089 0.812071	0.004850

		T 2.4.5	4 03 :	0.045.55	0.00.10.15
		246	167.823881	0.812657	0.004842
		247	168.225920	0.813244	0.004834
		248	168.627207	0.813830	0.004826
		249	169.027743	0.814417	0.004818
		250	169.427531	0.815003	0.004810
		251	169.820353	0.815589	0.004803
		252	170.205054	0.816176	0.004795
		253	170.588951	0.816742	0.004788
		254	170.972046	0.817309	0.004780
		255	171.354340	0.817875	0.004773
		256	171.735835	0.818441	0.004766
		257	172.116533	0.819008	0.004758
		258	172.496435	0.819574	0.004751
	1	259	172.875543	0.820140	0.004744
	1	260	173.253859	0.820707	0.004737
	1	261	173.631384	0.821273	0.004730
	1	262	174.008120	0.821839	0.004723
21	46	263	174.378214	0.822406	0.004716
	1	264	174.740579	0.822972	0.004710
	1	265	175.102111	0.823519	0.004703
		266	175.462811	0.824067	0.004697
		267	175.822681	0.824614	0.004690
		268	176.181724	0.825161	0.004684
		269	176.539941	0.825709	0.004677
		270	176.897334	0.826256	0.004671
		271	177.253906	0.826804	0.004665
		272	177.609657	0.827351	0.004658
		273	177.964589	0.827898	0.004652
	1	274	178.318706	0.828446	0.004646
22	47	275	178.666503	0.828993	0.004640
		276	179.006958	0.829540	0.004634
		277	179.346552	0.829544	0.004625
		278	179.685286	0.845078	0.004703
		279	180.023164	0.860611	0.004781
		280	180.360186	0.876145	0.004858
		281	180.696356	0.891678	0.004935
		282	181.031676	0.907211	0.005011
		283	181.366147	0.922745	0.005088
		284	181.699772	0.938278	0.005164
		285	182.032553	0.953812	0.005104
		286	182.364492	0.969345	0.005240
23	48	287	182.695554	0.909343	0.005313
	1 10	1 201	102.073337	J./UTU//	0.000071

Lampiran 3. Perhitungan Cadangan Premi Bulanan Metode *Commissioners* dan *Canadian*

			Metode	Metode
Tahun ke	Usia	Bulan ke	Commissioners	Canadian
		0	120676633.9	120603548.4
		1	120587087.2	120440687
		2	120497830.7	120277887.4
		3	120408863.6	120115149.7
		4	120320184.9	119952473.8
		5	120231793.7	119789859.8
		6	120143688.9	119627307.5
		7	120055869.8	119464817
		8	119968335.4	119302388.3
		9	119881084.7	119140021.3
		10	119794116.8	118977715.9
0	25	11	119707430.9	118817989.3
		12	122411431.1	121451702.6
		13	122549974.2	121519741
		14	122688799.9	121587845.2
		15	122827907.2	121656015.2
		16	122967295.3	121724250.9
		17	123106963.2	121792552.3
		18	123246910.1	121860919.3
		19	123387134.8	121929352
		20	123527636.7	121997850.3
		21	123668414.8	122066414.3
		22	123809468.1	122135043.7
1	26	23	123950795.7	122206158.3
		24	124092400.2	122280199.6
		25	124226612.6	122346642.3
		26	124361099.9	122413154.2
		27	124495861.3	122479735.4
		28	124630895.8	122546385.7
		29	124766202.6	122613105.3
		30	124901780.6	122679893.9
		31	125037629.1	122746751.6
		32	125173747	122813678.4
		33	125310133.6	122880674.3
		34	125446787.9	122947739.1
2	27	35	125583709	123017197
3	28	36	125720898.5	123089471.4

		1		<u> </u>
		37	125851011.2	123154472.6
		38	125981390.5	123219544.6
		39	126112035.4	123284687.4
		40	126242945	123349901.1
		41	126374118.6	123415185.5
		42	126505555.1	123480540.7
		43	126637253.8	123545966.6
		44	126769213.7	123611463.1
		45	126901433.9	123677030.3
		46	127033913.6	123742668.1
		47	127166652	123810608.7
		48	127299650.4	123881258.9
		49	127425870.1	123944943.5
		50	127552348.2	124008700.3
		51	127679083.7	124072529.4
		52	127806075.7	124136430.6
		53	127933323.4	124200404
		54	128060825.9	124264449.4
		55	128188582.4	124328566.9
		56	128316592	124392756.4
		57	128444853.8	124457017.9
		58	128573367	124521351.4
4	29	59	128702130.8	124587900.6
		60	128831147.2	124657056.8
		61	128953555.9	124719428.3
		62	129076215.6	124781874.5
		63	129199125.3	124844395.4
		64	129322284.2	124906990.9
		65	129445691.5	124969660.9
		66	129569346.2	125032405.5
		67	129693247.7	125095224.5
		68	129817394.9	125158118
		69	129941787	125221085.9
		70	130066423.4	125284128.2
5	30	71	130191302.9	125349302.2
		72	130316427.8	125416983.3
		73	130435170	125478114
		74	130554155.7	125539321.5
		75	130673384.2	125600605.7
		76	130792854.5	125661966.7
6	31	77	130912566	125723404.3

	1	-	1	
		78	131032517.7	125784918.6
		79	131152708.8	125846509.4
		80	131273138.4	125908176.7
		81	131393805.9	125969920.5
		82	131514710.2	126031740.7
		83	131635850.7	126095610.8
		84	131757229.1	126161890.8
		85	131872494.1	126221898.7
		86	131987995.4	126281985.1
		87	132103732.3	126342150.1
		88	132219703.8	126402393.6
		89	132335909.2	126462715.5
		90	132452347.6	126523115.7
		91	132569018.3	126583594.3
		92	132685920.3	126644151.1
		93	132803053	126704786.2
		94	132920415.5	126765499.4
7	32	95	133038007	126828183.5
		96	133155829.9	126893183.8
		97	133267693.9	126952075.9
		98	133379787.6	127011049.2
		99	133492110.4	127070103.6
		100	133604661.3	127129239.1
		101	133717439.6	127188455.7
		102	133830444.5	127247753.2
		103	133943675.1	127307131.7
		104	134057130.6	127366591
		105	134170810.3	127426131.2
		106	134284713.4	127485752.1
8	33	107	134398839	127547267.2
		108	134513189.5	127611007.6
		109	134621832.8	127668900.1
		110	134730699.4	127726876.1
		111	134839788.5	127784935.5
		112	134949099.2	127843078.3
		113	135058630.8	127901304.2
		114	135168382.4	127959613.4
		115	135278353.4	128018005.7
		116	135388542.8	128076481.1
		117	135498949.9	128135039.5
9	34	118	135609574	128193680.8

Т				
		119	135720414.2	128254142.1
		120	135831473.3	128316740.9
		121	135936969.8	128373645.3
		122	136042683.6	128430636.1
		123	136148614	128487713.2
		124	136254760.2	128544876.6
		125	136361121.2	128602126.1
		126	136467696.5	128659461.7
		127	136574485.2	128716883.3
		128	136681486.4	128774390.9
		129	136788699.5	128831984.4
		130	136896123.7	128889663.8
10	35	131	137003758.1	128949091
		132	137111605.5	129010569.9
		133	137214125.6	129066598.3
		134	137316857	129122715.5
		135	137419798.9	129178921.4
		136	137522950.7	129235216.1
		137	137626311.5	129291599.3
		138	137729880.5	129348071.1
		139	137833656.9	129404631.4
		140	137937640.1	129461280
		141	138041829.1	129518017
		142	138146223.3	129574842.1
11	36	143	138250821.9	129633345.3
		144	138355627.9	129693817.3
		145	138455241.7	129748982.4
		146	138555061.5	129804239.4
		147	138655086.3	129859588.1
		148	138755315.4	129915028.5
		149	138855748.1	129970560.6
		150	138956383.5	130026184.1
		151	139057221	130081899.1
		152	139158259.7	130137705.4
		153	139259498.8	130193602.9
		154	139360937.7	130249591.7
12	37	155	139462575.5	130307190.4
		156	139564415.2	130366676.9
		157	139661282.5	130421084.4
		158	139758350.1	130475586.2
		159	139855617.3	130530182.3
		160	139953083.1	130584872.5
13	38	161	140050747	130639656.9

163 140246665.7 13074 164 140344919 13080 165 140443367.2 13085 166 140542009.6 13091 167 140640845.4 13097 168 140739878 13103 169 140834146.4 13108 170 140928610 13113 171 141023268 13119 172 141118119.5 13124	4986.3 1783.4 0389.9 4133.7 7974.8 1913.1
164 140344919 13080 165 140443367.2 13085 166 140542009.6 13091 167 140640845.4 13097 168 140739878 13103 169 140834146.4 13108 170 140928610 13113 171 141023268 13119 172 141118119.5 13124	4573.3 9733 4986.3 1783.4 0389.9 4133.7 7974.8 1913.1
165 140443367.2 130859 166 140542009.6 130914 167 140640845.4 13097 168 140739878 131039 169 140834146.4 13108 170 140928610 13113 171 141023268 13119 172 141118119.5 13124	9733 4986.3 1783.4 0389.9 4133.7 7974.8 1913.1
166 140542009.6 130914 167 140640845.4 13097 168 140739878 131034 169 140834146.4 131084 170 140928610 131134 171 141023268 13119 172 141118119.5 131244	4986.3 1783.4 0389.9 4133.7 7974.8 1913.1
167 140640845.4 13097 168 140739878 131036 169 140834146.4 131086 170 140928610 131136 171 141023268 13119 172 141118119.5 131246	1783.4 0389.9 4133.7 7974.8 1913.1
168 140739878 131030 169 140834146.4 13108 170 140928610 13113 171 141023268 13119 172 141118119.5 13124	0389.9 4133.7 7974.8 1913.1
169 140834146.4 13108. 170 140928610 13113. 171 141023268 13119. 172 141118119.5 13124.	4133.7 7974.8 1913.1
170 140928610 13113 171 141023268 13119 172 141118119.5 13124	7974.8 1913.1
171 141023268 13119 172 141118119.5 13124.	1913.1
172 141118119.5 13124	
	5040.4
173 141213163 9 13130	J948.4
173 171213103.7 13130	0080.6
174 141308400.4 13135	4309.7
175 141403828.1 13140	8635.5
176 141499446.5 13146	3058
177 141595254.7 13151	7577
178 141691251.9 13157	2192.4
14 39 179 141787437.5 13162	8288.1
180 141883815.4 13168	6118
181 141975508.2 13173	9172.7
182 142067391.7 13179	2328.7
183 142159465.3 13184.	5585.9
184 142251728.1 13189	8944.1
185 142344179.3 13195	2403.4
186 142436818.3 13200	5963.5
187 142529644.3 13205	9624.3
188 142622656.4 13211	3385.8
189 142715854.1 13216	7247.7
190 142809236.4 13222	1210
15 40 191 142902802.6 13227	6590.8
	3631.7
	6181.1
	8835.1
	1593.6
	4456.6
	7423.8
	0495.2
	3670.6
	6949.8
	0332.8
	3819.4
	8664.7
	5099.6

		1		
		205	144167797	133027085.1
		206	144254960	133079180.3
		207	144342305	133131385
		208	144429831	133183699
		209	144517537.3	133236122.3
		210	144605423.1	133288654.6
		211	144693487.8	133341295.8
		212	144781730.5	133394045.7
		213	144870150.4	133446904.3
		214	144958746.8	133499871.3
		215	145047519	133554138.8
		216	145136471.4	133609926.1
		217	145221270.4	133661494.2
		218	145306248	133713176.1
		219	145391403.6	133764971.6
		220	145476736.4	133816880.5
		221	145562245.5	133868902.6
		222	145647930.2	133921037.8
		223	145733789.8	133973285.8
		224	145819823.5	134025646.6
		225	145906030.4	134078119.9
		226	145992409.9	134130705.5
18	43	227	146078961.1	134184534.7
		228	146165689.2	134239815.8
		229	146248437	134291059.2
		230	146331360.1	134342421
		231	146414457.5	134393900.9
		232	146497728.7	134445498.8
		233	146581172.7	134497214.5
		234	146664788.7	134549047.7
		235	146748576	134600998.3
		236	146832533.9	134653066
		237	146916661.4	134705250.7
		238	147000958	134757552.2
19	44	239	147085422.7	134811042.1
		240	147170061.4	134865918.6
		241	147250884.6	134916930.6
		242	147331880.2	134968066.5
		243	147413047.3	135019326.1
		244	147494385.2	135070709.2
		245	147575893.1	135122215.6
1		246	147657570.1	135173844.9
		246	147037370.1	133173077.7

	1		1	1
		248	147821428.4	135277471.7
		249	147903608.1	135329468.8
		250	147985953.8	135381587.9
		251	148068464.7	135434842.4
		252	148151147.6	135489420.8
		253	148229978.3	135540106.9
		254	148308979.4	135590923.7
		255	148388149.9	135641871.1
		256	148467489.1	135692948.8
		257	148546996.2	135744156.4
		258	148626670.2	135795493.7
		259	148706510.5	135846960.5
		260	148786516	135898556.4
		261	148866686.1	135950281.2
		262	148947020	136002134.6
21	46	263	149027516.7	136055070.9
		264	149108182.4	136109267
		265	149185225.3	136159808
		266	149262435.5	136210484.7
		267	149339812	136261296.5
		268	149417354	136312243.3
		269	149495060.6	136363324.7
		270	149572931.1	136414540.5
		271	149650964.6	136465890.2
		272	149729160.1	136517373.6
		273	149807516.9	136568990.4
		274	149886034.2	136620740.2
22	47	275	149964711.1	136673520.3
		276	150043553.9	136727497.1
		277	150013833.5	136672886.2
		278	153090223.1	139724361.4
		279	156166776	142775976.3
		280	159243491.2	145827730.5
		281	162320367.8	148879623.7
		282	165397405.1	151931655.6
		283	168474602	154983825.8
		284	171551957.8	158036133.9
		285	174629471.5	161088579.6
		286	177707142.5	164141162.5
23	48	287	180784969.7	167193888.3
		•	•	

RIWAYAT HIDUP

Unzila Nur Laili, lahir di Jombang pada 9 Juli 1999, tinggal di Desa Mojotengah, Kecamatan Bareng, Kabupaten Jombang, Jawa Timur. Anak pertama dari dua bersaudara, putri pasangan Bapak Adib Mahmudi dan Ibu Kesi Widiyati. Pendidikan Taman Kanak-Kanak ditempuh di RA Perwanida Mojoanyar. Kemudian melanjutkan pendidikan dasar di MI Islamiyah Al-Wathaniyah, lulus pada tahun 2011. Selanjutnya

melanjutkan pendidikan di SMP Negeri 1 Bareng, lulus tahun 2014. Kemudian melanjutkan pendidikan di SMA Negeri Ngoro dan lulus pada tahun 2017. Selanjutnya penulis melanjutkan pendidikan perguruan tinggi pada tahun 2017 di Universitas Islam Negeri Maulana Malik Ibrahim Malang mengambil program studi Matematika di Fakultas Sains dan Teknologi. Selama menempuh pendidikan di perguruan tinggi, penulis mengikuti beberapa kegiatan seperti menjadi relawan Kelas Inspirasi Jombang tahun 2018 - sekarang dan relawan dari salah satu yayasan kemanusiaan di Jombang tahun 2021. Selain itu, penulis memiliki kegiatan di luar kampus yaitu menjadi tentor baca tulis dari salah satu lembaga bimbingan belajar. Penulis dapat dihubungi melalui email: unzila9unl@gmail.com.

KEMENTERIAN AGAMA RI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG FAKULTAS SAINS DAN TEKNOLOGI

Jl. Gajayana No.50 Dinoyo Malang Telp. / Fax. (0341)558933

BUKTI KONSULTASI SKRIPSI

Nama : Unzila Nur Laili

NIM : 17610092

Fakultas / Jurusan : Sains dan Teknologi / Matematika

Judul Skripsi : Perbandingan Cadangan Premi Bulanan Pada Asuransi Jiwa

Dwiguna Menggunakan Metode Commissioners Dan

Canadian

Pembimbing I : Abdul Aziz, M.Si

Pembimbing II : Ach. Nashichuddin, M.A

No	Tanggal	Hal	Tanda Tangan
1.	30 Agustus 2022	Konsultasi BAB 1	1.
2.	8 September 2022	Konsultasi BAB 1	2.
3.	13 September 2022	Konsultasi BAB 2	3.
4.	16 September 2022	Konsultasi Kajian Agama	14.69
5.	19 September 2022	Konsultasi BAB 2	5.
6.	22 September 2022	Konsultasi BAB 2	16.
7.	28 September 2022	Konsultasi BAB 2	7.
8.	30 September 2022	Konsultasi Kajian Agama	8. /9
9.	6 Oktober 2022	ACC BAB 1, 2, 3	9.60
10.	12 Oktober 2022	Konsultasi BAB 4	10.
11.	18 Oktober 2022	Konsultasi BAB 4	11.
12.	21 Oktober 2022	Konsultasi BAB 4	12.
13.	25 Oktober 2022	Konsultasi BAB 4	13.
14.	28 Oktober 2022	Konsultasi BAB 4	14.
15.	9 November 2022	Konsultasi Integrasi Agama	15.
16.	23 November 2022	Konsultasi BAB 4	16.
17.	1 Desember 2022	Konsultasi BAB 4, 5	17.
18.	9 Desember 2022	ACC BAB 4 dan Integrasi Agama	18.
19.	21 Desember 2022	ACC Keseluruhan Skripsi	19.

Malang, 21 Desember 2022

Mengetahui,

Ketua Program Studi Matematika

Dr.Elly Susanti, M.Sc

NIP, 197411292000122005