PEMBUATAN BEADS SELULOSA XANTAT SEBAGAI MATERIAL PENDUKUNG TiO2 MENGGUNAKAN CROSSLINK CaCl2

SKRIPSI

Oleh : LAILI MUYASSAROH NIM. 16630107

PROGRAM STUDI KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2021

PEMBUATAN BEADS SELULOSA XANTAT SEBAGAI MATERIAL PENDUKUNG TiO2 MENGGUNAKAN CROSSLINK CaCl2

SKRIPSI

Oleh: LAILI MUYASSAROH NIM. 16630107

Diajukan Kepada:
Fakultas Sains dan Teknologi
Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang
Untuk Memenuhi Salah Satu Persyaratan Dalam
Memperoleh Gelar Sarjana Sains (S.Si)

PROGRAM STUDI KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2021

PEMBUATAN BEADS SELULOSA XANTAT SEBAGAI MATERIAL PENDUKUNG TiO₂ MENGGUNAKAN CROSSLINK CaCl₂

SKRIPSI

Oleh: LAILI MUYASSAROH NIM. 16630107

Telah Diperiksa dan Disetujui untuk Diuji Tanggal: 26 April 2021

Pembimbing I

Pembimbing II

Eny Yulianti, M.Si NIP. 19760611 200501 2 006

Lulu'atul Hamidata Ulya, M.Sc NIDT. 19900906 20180201 2 239

Mengesahkan, Ketua Program Studi

Elok Kamhah Hayati, M.Si NIP. 19790620 200604 2 002

PEMBUATAN BEADS SELULOSA XANTAT SEBAGAI MATERIAL PENDUKUNG TiO₂ MENGGUNAKAN CROSSLINK CaCl₂

SKRIPSI

Oleh: LAILI MUYASSAROH NIM. 16630107

Telah Dipertahankan di Depan Dewan Penguji Skripsi Dan Dinyatakan Diterima Sebagai Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Sains (S.Si) Tanggal: 26 April 2021

Penguji Utama

: Dr. Akyunul Jannah, S.Si, M.P

NIP. 19750410 200501 2 009

Ketua Penguji

: Febi Yusniyanti, S.Si., M.Sc

L.B 68004

Sekretaris Penguji

: Eny Yulianti, M.Si

NIP. 19760611 200501 2 006

Anggota Penguji

: Lulu'atul Hamidatu Ulya, M.Sc

NIDT. 19900906 20180201 2 239

Mengesahkan, Ketua Program Studi

Elok Kamilah Hayati, M.Si NIP. 19790620 200604 2 002

PERNYATAAN ORISINALITAS TULISAN

Saya yang bertanda tangan di bawah ini:

Nama

: Laili Muyassaroh

NIM

: 16630107

Program Studi

: Kimia

Fakultas

: Sains dan Teknologi

Judul Penelitian

: "Pembuatan Beads Selulosa Xantat Sebagai Material

Pendukung TiO₂ Menggunakan Crosslink CaCl₂"

Menyatakan dengan sebenarnya bahwa skripsi yang saya tulis ini merupakan hasil karya sendiri, bukan merupakan pengambilan data, tulisan atau pemikiran orang lain yang saya akui sebagai hasil tulisan atau pikiran saya sendiri, kecuali dengan mencantumkan sumber cuplikan pada daftar pustaka. Apabila dikemudian hari terbukti atau dapat dibuktikan skripsi ini hasil jiplakan, maka saya bersedia menerima sanksi atas perbuatan tersebut.

Malang, 26 April 2021 Yang membuat pernyataan

NIM. 16630107

Laili Muyassaroh

MOTTO

إِنَّااْلاً عْمَالُ بِالنِّيَّاتِ

"Sesungguhnya amal perbuatan itu bergantung pada niatnya" So, niatlah dengan baik insyaallah hasilnya juga akan baik

HALAMAN PERSEMBAHAN

Alhamdulillahirabbil'alamin, terima kasih ya Allah atas rahmat dan nikmat-Mu sehingga penulisan skripsi ini telah selesai. Skripsi ini saya persembahkan untuk:

- 1. Diri ini Laili Muyassaroh yang telah berjuang sekuat mungkin.
- 2. Ayah Syamsul Huda dan Ibuk Anik S yang selalu mendoakan, memberi dukungan, berjuang, dan menerima segala keluh kesahku.
- Kakak-kakakku Oktavianti Lestari SA, Moh. Zanuarsah, Wiwin Eko Saputro, dan Siska Oktavia, serta keponakanku Khoridah Nayla Izzah dan Fathinah Tsabita Ufairah yang selalu mendukung dan mendoakan.
- 4. Pengasuh PP. Al-Azkiya' Ust. Dr. KH. A. Khudori Sholeh, M.Ag dan Ibu Hj. Erik Sabti Rahmawati, MA yang turut mendoakan.
- 5. Ibu Eny Yulianti, M.Si selaku pembimbing yang sudah sabar dan selalu memberikan ilmu yang luar biasa.
- 6. Oktet C 2016 yang telah menemani perkuliahan dengan indah selama empat tahun ini.

KATA PENGANTAR

Assalamu'alaikum Wr. Wb.

Puji syukur penulis haturkan atas rahmat Allah Swt. yang telah memberikan anugerah berupa akal dan pikiran serta penalaran, sehingga penulis dapat melaksanakan dan menyusun skripsi ini. Adapun penulisan skripsi dengan judul "Pembuatan Beads Selulosa Xantat Sebagai Material Pendukung TiO2 Menggunakan Crosslink CaCl2" diselesaikan karena adanya dukungan baik moral maupun spiritual dari berbagai pihak. Oleh karena itu penulis menyampaikan terimakasih kepada:

- Ayah, ibu, dan keluarga yang senantiasa memberikan do'a dan restunya kepada penulis dalam menuntut ilmu.
- Ibu Eny Yulianti, M.Si. dan ibu Lulu'atul Hamidatu Ulya, M.Sc selaku dosen pembimbing I dan II yang banyak memberikan bimbingan dan pengarahan dalam penulisan skripsi ini.
- Ibu Dr. Akyunul Jannah, S.Si, M.P dan Ibu Febi Yusniyanti, S.Si., M.Sc selaku dosen penguji I dan II yang banyak memberikan arahan dalam penulisan skripsi ini.
- 4. Seluruh dosen dan laboran prodi kimia fakultas sains dan teknologi UIN Maulana Malik Ibrahim Malang yang telah memberikan ilmu selama belajar di bangku perkuliahan.
- Teman-teman prodi kimia angkatan 2016 khususnya kimia C atas segala dukungan, bantuan, canda tawa, dan perjuangan selama ini.
- 6. Semua pihak yang telah membantu dalam menyelesaikan penulisan skripsi ini

viii

Penulis menyadari bahwa penulisan skripsi ini masih terdapat kekurangan

dan berharap semoga dapat memberikan manfaat kepada para pembaca,

khususnya bagi penulis. Amin Ya Rabbal Alamin.

Wassalamu'alaikum Wr. Wb.

Malang, 26 April 2021

Penulis

DAFTAR ISI

HAL	AMAN JUDUL	i
	AMAN PERSETUJUAN	
	BAR PENGESAHAN	
	IYATAAN ORISINALITAS PENELITIAN	
	ТО	
HAL	AMAN PERSEMBAHAN	vi
	A PENGANTAR	
DAFI	TAR ISI	ix
DAFT	TAR GAMBAR	xi
DAFT	TAR TABEL	xiii
DAFI	TAR LAMPIRAN	xiv
ABST	'RAK	XV
ABST	TRACT	xvi
لملخص	1	xvii
BAB 1	I PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	6
1.3	Tujuan	6
1.4	Batasan Masalah	7
1.5	Manfaat	7
	II TINJAUAN PUSTAKA	
	Limbah Batang Jagung	
2.2	Ekstraksi dan Hidrolisis Selulosa Batang Jagung	
	2.2.1 Proses Delignifikasi	
	2.2.2 Proses Bleaching	
• •	2.2.3 Proses Hidrolisis	
	Pembuatan Selulosa Xantat	
	Sodium Alginat	
	Porogen CaCO ₃	
	Pembuatan Beads TiO ₂ /Alginat Selulosa Xantat	
	Potensi Titanium Dioksida (TiO ₂) sebagai Material Fotokatalis	
	Uji Fotodegradasi	
2.9	Perspektif Islam dalam Pemanfaat Batang Jagung	25
RAR 1	III METODE PENELITIAN	28
	Waktu dan Tempat Penelitian	
	Alat dan Bahan	
<i>ع</i> .د	3.2.1 Alat	
	3.2.2 Bahan	
3 3	Rancangan Penelitian	
	Tahapan Penelitian	
	Pelaksanaan Penelitian	31

3.5.1 Preparasi Sampel	. 31
3.5.2 Ekstraksi Selulosa dari Batang Jagung	
3.5.3 Pembuatan Selulosa Xantat	
3.5.4 Pembuatan <i>Beads</i>	
3.5.5 Karakterisasi	
3.5.5.1 Karakterisasi Gugus Fungsi Selulosa dan Selulosa Xantat.	
3.5.5.2 Karakterisasi dengan Difraksi Sinar-X (XRD)	
3.5.5.3 Karakterisasi Daerah Serapan Sinar dan Energi Celah Pita	
3.5.5.4 Karakterisasi Permukaan	
3.5.5.5 Uji Aktivitas Fotoderadasi Beads dengan Menggunakan	1
Metilen Biru	
3.5.5.5.1 Penentuan Panjang Gelombang Optimun	
Metilen Biru	
3.5.5.5.2 Pembuatan Kurva Standar	
3.5.5.5.3 Uji Aktivitas Fotodegradasi	
3.5.6 Analisis Data	. 34
BAB IV HASIL DAN PEMBAHASAN	
4.1 Ekstraksi Selulosa	
4.2 Pembuatan Selulosa Xantat	
4.3 Analisis Gugus Fungsi Selulosa dan Selulosa Xantat	
4.4 Pembuatan <i>Beads</i>	
4.5 Karakterisasi Beads dengan Diffuse Reflectance Spectroscopy (DRS)	
4.6 Karakterisasi <i>Beads</i> dengan XRD	
4.7 Uji Aktivitas Fotodegradasi <i>Beads</i> Menggunakan Metilen Biru	
4.8 Karakterisasi <i>Beads</i> dengan Mikroskop Optik	
4.9 Karakterisasi <i>Beads</i> dengan SEM – EDX	
4.10Hasil Penelitian dalam Perspektif Islam	58
BAB V PENUTUP	60
5.1 Kesimpulan	
5.2 Saran	
DAFTAR PUSTAKA	. 62
Y ARADYD AN	60
LAMPIRAN	. 68

DAFTAR GAMBAR

Gambar 2.1	Limbah batang jagung	.8
Gambar 2.2	Struktur selulosa	
Gambar 2.3	Reaksi pemutusan lignin dan selulosa oleh NaOH	10
Gambar 2.4	Struktur selulosa xantat	12
Gambar 2.5	Reaksi pembentukan selulosa xantat	13
Gambar 2.6	Spektra FTIR dari RCS dan XMCS	13
Gambar 2.7	Struktur kimia alginat	15
Gambar 2.8	Interaksi ionik antara ion Ca ²⁺ dan gugus karboksil dalam blok polymannuronate, (b) Gabungan model " <i>egg-box</i> " ion Ca ²⁺ dalam blok poliguluronat	18
Gambar 2.9	Spektra FTIR dari (a) Sodium alginat dan (b) <i>Beads</i> alginat dengan crosslink Ca ²⁺	19
Gambar 2.10	Spektra FTIR dari (a) Nanopartikel TiO ₂ , (b) <i>Floating</i> kalsium alginat, dan (c) <i>Floating</i> TiO ₂ /kalsium alginat	19
Gambar 2.11	Pola Difraksi dari (a) Nanopartikel TiO ₂ , (b) Kalsium alginat, dan (c) TiO ₂ /kalsium alginat	20
Gambar 2.12	Hasil karakterisasi SEM (a) <i>Beads</i> alginat/TiO ₂ dan (b) <i>Cross-section beads</i> alginat/TiO ₂	
Gambar 2.13	Spektra permukaan EDX dari beads alginat/TiO2	22
Gambar 2.14	Struktur kristal TiO ₂ fasa (a) <i>Anatase</i> , (b) <i>Rutile</i> , dan (c) <i>Brookite</i>	
Gambar 4.1	(a) Serbuk batang jagung dan (b) Lindi hitam	36
Gambar 4.2	Mekanisme reaksi pemutusan ikatan lignin dengan selulosa	37
Gambar 4.3	(a) Pulp asil delignifikasi, (b) Pulp hasil bleaching, dan	
	(c) Selulosa hasil ekstraksi	38
Gambar 4.4	(a) Alkali selulosa, (b) Selulosa setelah proses <i>aging</i> , dan (c) Selulosa xantat	39
Gambar 4.5	Mekanisme reaksi pembuatan selulosa xantat	39
Gambar 4.6	Spektra IR (a) Batang jagung (b) Selulosa hasil ekstraksi, dan (c) Selulosa xantat	
Gambar 4.7	(a) Pembuatan <i>beads</i> Teknik <i>Dropping</i> , (b) <i>Beads</i> basah, (c) <i>Beads</i> kering, (d) Diameter <i>beads</i> basah, dan (e) Diameter <i>beads</i> kering	43
Gambar 4.8	Hasil UV – Vis <i>Diffuse Reflectance Spectroscopy</i> (DRS) <i>beads</i> antara % reflektansi dengan panjang gelombang	14
Gambar 4.9	Hasil UV – Vis <i>Diffuse Reflectance Spectroscopy</i> (DRS) <i>beads</i> antara faktor Kubelka - Munk dengan panjang gelombang	
Gambar 4.10	Energi celah pita (a) TiO ₂ anatas, (b) <i>Beads</i> 0, (c) <i>Beads</i> 1 (d) <i>Beads</i> 2, dan (e) <i>Beads</i> 3	
Gambar 4.11		

Gambar 4.12	Hasil karakterisasi mikroskop optik perbesaran 1x10 kali pada			
	(a) beads 0, (b) beads 1, (c) beads 2 dan (d) beads 3 sebelum			
	proses fotodegradasi, (e) beads 0, (f) beads 1, (g) beads 2 dan			
	(h) beads 3 pada proses fotodegradasi kondisi gelap, (i) beads 0,			
	(j) beads 1, (k) beads 2 dan (l) beads 3 pada proses			
	fotodegradasi kondisi terang55			
Gambar 4.13 Analisis gambar mengggunakan Image-J pada pada (a) beads 0,				
(b) beads 1, (c) beads 2 dan (d) beads 3 sebelum proses				
	fotodegradasi, (e) beads 0, (f) beads 1, (g) beads 2 dan (h) beads			
	3 pada proses fotodegradasi kondisi gelap, (i) beads 0, (j) beads			
	1, (k) beads 2 dan (l) beads 3 pada proses fotodegradasi kondisi			
	terang56			
Gambar 4.14	Hasil karakterisasi SEM beads 3 (a) Perbesaran 150x,			
	(b) Perbesaran 1000x 57			

DAFTAR TABEL

Tabel 3.1 Penamaan sampel	29
Tabel 3.2 Data karakterisasi FTIR	
Tabel 3.3 Data karakterisasi UV-Vis DRS	30
Tabel 3.4 Data karakterisasi XRD	
Tabel 3.5 Data uji fotodegradasi	
Tabel 4.1 Data bilangan gelombang (cm ⁻¹) spektrum FTIR serbuk batang jagur	
selulosa hasil ekstraksi, dan selulosa xantat	_
Tabel 4.2 Nilai energi celah pita dan serapan sinar panjang gelombang beads	46
Tabel 4.3 Ukuran kristal sampel	
Tabel 4.4 Hasil uji fotodegradasi <i>beads</i> terhadap metilen biru	
Tabel 4.5 Data diameter <i>beads</i>	
Tabel 4.6 Persen berat masing – masing unsur dari <i>beads</i> 3	

DAFTAR LAMPIRAN

Lampiran 1. Rancangan Penelitian	68
Lampiran 2. Skema Kerja	69
Lampiran 3. Preparasi Larutan dan Perhitungan	75
Lampiran 4. Perhitungan	
Lampiran 5. Hasil Analisa FTIR	
Lampiran 6. Hasil Analisa XRD	
Lampiran 7. Hasil Analisa DRS	
Lampiran 8. Hasil Analisa UV-Vis	
Lampiran 9. Hasil Analisa Mikroskop Optik	
Lampiran 10. Hasil Analisa SEM – EDX	

ABSTRAK

Muyassaroh, L. 2021. **Pembuatan** *Beads* **Selulosa Xantat Sebagai Material Pendukung TiO₂ Menggunakan** *Crosslink* **CaCl₂**. Program Studi Kimia, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing I: Eny Yulianti, M.Si. Pembimbing II: Lulu'atul Hamidatu Ulya, M.Sc.

Kata Kunci: beads, alginat, selulosa xantat, TiO2, crosslink CaCl2

Beads merupakan sebuah partikel berbentuk bola yang memiliki diameter dengan skala antara mikro hingga milimeter. Beads dapat dibuat dengan mencampurkan alginat, selulosa xantat, CaCO₃, dan TiO₂. Penambahan TiO₂ dapat menjadikan beads memiliki fungsi sebagai fotodegradator dan adsorben, serta porogen CaCO₃ akan menghasilkan pori beads yang lebih baik sehingga dapat meningkatkan daya serap beads. Kekuatan mekanis beads dapat ditingkatkan dengan merendamnya di dalam agen crosslink CaCl₂. Tujuan penelitian ini adalah untuk mengetahui pengaruh penambahan beads selulosa xantat terhadap TiO₂ berdasarkan serapan sinar, energi celah pita, karakter kristal, fotodegradasi metilen biru, serta karakter permukaan beads selulosa xantat.

Pencetakan *beads* dilakukan dengan metode gelasi ionik dengan agen *crosslink* CaCl₂ 3% karena metode ini dapat meningkatkan kekuatan mekanis dari *beads* melalui proses ikatan silang alginat dengan CaCl₂ dan dilakukan variasi TiO₂ 0 (tanpa TiO₂), 1, 2, dan 3 gram. *Beads* yang dihasilkan dikarakterisasi menggunakan UV-Vis DRS untuk mengetahui energi celah pita, XRD untuk mengetahui karakter kristal, dan SEM-EDX untuk mengetahui karakteristik permukaan *beads*.

Hasil karakterisasi UV-Vis DRS, *beads* 0, 1, 2, dan 3 memiliki panjang gelombang berturut-turut 395; 405; 402; 412 nm dan energi celah pita 3,14; 3,06; 3,08; 3,01 eV. Hal ini mengindikasikan bahwa penambahan TiO₂ pada *beads* mampu menggeser panjang gelombang ke arah yang lebih besar dan mampu menurunkan energi celah pita. Hasil difraktogram pada *beads* 1, 2 dan 3 (setelah penambahan TiO₂) muncul puncak baru yang sesuai dengan standar TiO₂ anatas (JCPDS no. 71-1166) dan memiliki ukuran kristal TiO₂ 48,83; 51,68; dan 42,94 nm untuk *beads* 1, 2, dan 3 dari hasil karakterisasi menggunakan XRD. Hasil uji fotodegradasi dengan bantuan sinar UV menunjukkan bahwa *beads* 3 memiliki aktivitas terbaik dibanding *beads* 0, 1 dan 2 karena mampu mendegradasi zat warna metilen biru sebesar 78,97% selama 240 menit. Adapun karakteristik permukaan pada *beads* 3 yaitu memiliki bentuk permukaan yang kasar.

ABSTRACT

Muyassaroh, L. 2021. Making Cellulose Xanthate As Support TiO₂ Using Crosslink CaCl₂. Chemistry Department, Science and Technology Faculty, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Supervisor I: Eny Yulianti, M.Si., Supervisor II: Lulu'atul Hamidatu Ulya, M.Sc.

Keywords: beads. alginate. cellulose xanthate. TiO₂. crosslink CaCl₂

Beads are ball-shaped particles that have diameters ranging from micro to millimeter. Beads can be made by mixing alginate; cellulose xanthate; CaCO₃ and TiO₂. The addition of TiO₂ cause the beads to have a function as photodegradator and adsorbent. Porogen CaCO₃ will produce better beads pores so it can increase the adsorption of beads. The mechanical strength of beads can be increased by immersing it in the CaCl₂ crosslink agent. The aims of this research are to determine the effect of the addition cellulose xantate beads to TiO₂ based on the wavelength; band gap energy; crystal characters; photodegradation metylene blue and surface characters.

Beads was made by ionic gelation method with crosslink agent CaCl₂ 3% because this method can increase the mechanical strength of beads through the process of cross-linking alginate and CaCl₂ with the variations of TiO₂ was 0; 1; 2 and 3 grams. The beads was characterized using UV-Vis DRS to measure the band gap energy. XRD to analyze crystal characters and SEM-EDX to know surface characters of beads.

The bandgap energy and wavelength calculated from DRS UV-Vis of beads were 3.14; 3.06; 3.08; 3.01 eV and 395; 405; 402; 412 nm for beads 1, beads 2 and beads 3 respectively. The addition of TiO₂ is able to shift the wavelength to a larger direction and it can reduce the band gap energy of beads. The XRD diffractogram of beads 1; 2 and 3 appear new peak are assigned to the TiO₂ anatase (JCPDS no. 71-1166) and the crystallite size of TiO₂ was 48.83; 51.68; and 42.94 nm for beads 1; beads 2 and beads 3 respectively. Beads 3 showed the best photodegradation activity using UV rays compared to beads 1 and beads 2 due to it can degrade 78.9% of methylene blue for 240 minutes. Moreover beads 3 had a rough surface.

الملخص

ميسرة, ل. ٢٠٢١. صناعة خرز سليلوز زانثات كدعم TiO2 استعمال تشابك CaCl2. في قسم الكيمياء, كلية العلوم والتكنولوجيا، جامعة مولانا مالك إبرابيم الإسلامية الحكومية في مالانج. المشرفة الأولى: إيني يوليانتي الماجستير المشرفة الثانية: لؤلؤة الحميدة العليا الماجستير.

الكلمات الرئيسية: الخرزات, سليلوز زانثات, TiO2, تشابك CaCl2

الخرزات عبارة عن جزيئات كروية يبلغ قطرها ما بين ميكرو ومليمترات. يمكن صنع الخرزات إضافة عن طريق خلط الجينات مع زانثات السليلوز. يمكن أن تجعل TiO₂ الحبيبات تعمل كمحلل ضوئيوممتاز. TiO₂ يستخدم كمحفز ضوئي لأنه يحتوي على خصائص عالية النشاط والاستقرار. إضافة البوروجين CaCO₃ في صنع الخرز، ستنتج مسام خرز أفضل بحيث يمكنها زيادة امتصاص لخرز.

يمكن زيادة القوة الميكانيكيةللخرز بغمرها في عامل الارتباط المتشابك CaCl2. تم تنفيذ صب الخرزة باستخدام طريقة التكوّن الأيوني لأن هذه الطريقة يمكن أن تزيد من القوة الميكانيكية للخرز من خلال عملية ربط الجينات مع CaCl2. تقدف هذه الدراسة إلى تحديد تأثير إضافة المتغيرات 1, 2, 3 TiO2. غرام ضد التحلل الضوئي لأزرق الميثيلين، وطاقة فجوة الحزمة ، والطابع البنيوي، والشخصيات المورفولوجية لخرز زانثات السليلوز باستخدام SEM, XRD,UV-Vis DRS البنيوي، والشخصيات المورفولوجية أن حبات الانعراج متوافقة مع المعاير كانت أظهرت النتائج أن حبات الانعراج متوافقة مع المعاير 3,06; 3,08; 3,01 eV وصيف XRD ولديه طاقة فجوة نطاق متسلسلة وطول موجة XRD, ناتحفيز الضوئي مع التهوية الكورة و 1 لأنه يمكن أن يتحلل من الميثيلين UV تظهرأن الخرز 3 لديه أفضل نشاط مقارنة بالخرز 1 و 2 لأنه يمكن أن يتحلل من الميثيلين الأزرق يساوي %78,97 لمدة 240 دقيقة أظهر شكل الخرز 3 شكل سطح أملس .

BAB I

PENDAHULUAN

1.1 Latar Belakang

Jagung memiliki nama ilmiah Zea mays L. merupakan tanaman biji-bijian dari keluarga rerumputan (*Graminaceae*). Bagian dari jagung meliputi akar, daun, batang, kulit, bongkol, dan bunga. Pada saat proses pemanenan jagung, terdapat sekitar 20-30% dari setiap 100 ton yang dihasilkan adalah limbah, salah satunya yaitu batang jagung. Menurut Yulianti *et al.* (2016) saat ini batang jagung hanya dimanfaatkan sebagai kompos, makanan ternak (sapi, kerbau, dan kambing), bahkan sering kali batang jagung dibakar pada suatu tempat dan dibuang begitu saja. Ana (2016) menyebutkan komposisi kimia dalam batang jagung meliputi 30-50% selulosa, 15-35% hemiselulosa, 13-30% lignin, 9-11% air, dan 6% abu. Berdasarkan kandungan tersebut maka batang jagung berpotensi besar sebagai sumber selulosa yang tinggi dan dapat dijadikan sebagai bahan pembuatan *beads*.

Allah Swt. berfirman bahwa dalam penciptaan langit dan bumi, bahkan yang ada di antaranya (makhluk) tidak ada yang sia-sia. Telah disebutkan dalam Al-Qur'an pada QS. Shad (37) ayat 27.

Artinya: "Dan Kami tidak menciptakan langit dan bumi serta apa yang ada antara keduanya tanpa hikmah."

Menurut Quthb (2004) bahwa dalam penciptaan langit dan bumi serta yang ada antara keduanya bukan tanpa hikmah dan juga tidak terjadi dalam kebatilan

(sia-sia), sedangkan menurut Shihab (2000), lafaz *baathilaan* menunjukkan bahwa di dalam penciptaan bumi tidak ada yang sia-sia dan ada manfaatnya dengan tujuan supaya manusia diberi balasan sesuai dengan amal perbuatannya. Berdasarkan ayat tersebut mengidentifikasikan bahwa di bumi ini tidak ada yang batil atau sia-sia melainkan semuanya ada manfaat, maksud serta kegunaan yang benar. Seperti halnya memanfaatkan limbah batang jagung yang diekstraksi untuk diambil selulosanya dan digunakan sebagai bahan pembuatan *beads*.

Menurut Klemm *et al.* (1998) selulosa memiliki karakteristik seperti hidrofilisitas, berpotensial sebagai adsorben, tidak beracun, sifat mekanik yang baik, dan *disposability* yang aman setelah digunakan. Swatloski *et al.* (2002) menyebutkan bahwa selulosa memiliki turunan eter dan ester, diantaranya selulosa xantat, selulosa asetat, CMC (*carboxymethyl cellulose*), etil selulosa, selulosa nitrat dan metil selulosa. Turunan selulosa memiliki banyak kegunaan yang penting diantaranya aplikasi komersial dalam serat, kertas, membran, industri polimer dan cat. Secara umum selulosa memiliki kapasitas adsorpsi yang lemah, sebagaimana berdasarkan penelitian Yulianti *et al.* (2019) yang menyebutkan bahwa kapasitas adsorpsi dari batang jagung meningkat setelah dilakukan modifikasi. Oleh karena itu, perlu dilakukan modifikasi menjadi selulosa xantat.

Selulosa xantat memiliki karakteristik yang tidak mudah terbakar serta tingkat stabilitas termal dan kristalinitas yang tinggi. Adanya stabilitas termal yang tinggi akan membuat hasil yang semakin kristalin (Gericke *et al.*, 2013). Berdasarkan penelitian Puspitasari *et al.* (2017) menunjukkan bahwa dengan adanya kristalinitas yang tinggi maka *beads* akan mudah dibentuk, sehingga pada

penelitian ini prekusor yang digunakan untuk pembuatan *beads* adalah selulosa xantat.

Pembuatan beads dilakukan dengan cara mencampurkan alginat dan selulosa xantat hasil ekstraksi. Ren et al. (2016) menjelaskan bahwa alginat memiliki sifat yang mudah terdegradasi secara termal dan kristalinitas yang rendah, sehingga penggunaanya diperlukan material lain untuk bereaksi. Menurut Agüero et al. (2017) alginat dapat digunakan sebagai pembentuk gel pada pembuatan beads karena memiliki sifat hidrofilik yang tinggi, biodegradabilitas, toksisitas rendah, dapat membentuk gel yang stabil dalam media air, memiliki kemampuan crosslink yang luar biasa, keberadaan dan kelimpahan yang meningkat, serta adanya sisi aktif dari gugus karboksil yang mampu berikatan dengan kation divalen maupun trivalen (Sönmez et al., 2016). Komposisi alginat dan selulosa xantat perlu diperhatikan karena sangat berpengaruh terhadap pembuatan beads. Puspitasari et al. (2017) menyebutkan bahwa komposisi alginat-selulosa xantat yang terbaik adalah 1:3 karena memiliki bentuk beads yang bulat dengan diameter yang lebih besar (4 mm), sehingga pada penelitian ini menggunakan komposisi alginat-selulosa xantat dengan perbandingan komposisi 1:3.

Penambahan TiO₂ pada pembuatan *beads* bertujuan untuk menjadikan *beads* sebagai fotodegradator, sehingga *beads* dapat digunakan berulang kali dan tidak berbahaya terhadap lingkungan. TiO₂ sebagian besar diaplikasikan sebagai zat adsorben, fotokatalis, fotokonduktor, dan material dielektrik. Titanium dioksida (TiO₂) banyak dipergunakan untuk remediasi lingkungan dan untuk aplikasi suatu energi karena aktivitas dan stabilitas yang tinggi, murah, tidak

berbahaya, dan stabil selama iridiasi (Thomas et al., 2016). Menurut Naimah et al. (2014) TiO₂ memiliki kemampuan degradasi yang lemah terhadap senyawa target karena TiO₂ memiliki luas permukaan yang kecil, sehingga kontak TiO₂ dengan senyawa target kurang optimal. Untuk mengoptimalkan kekurangan tersebut, TiO₂ dapat dimodifikasi dengan cara diembankan pada suatu material yang bertujuan untuk memperluas permukaannya, sehingga kemampuan degradasi terhadap senyawa target akan lebih baik. Salah satu material tersebut yaitu campuran alginat dan selulosa xantat. Berdasarkan penelitian Nagaoka et al. (2005) menjelaskan bahwa TiO₂ aktif di daerah sinar ultraviolet. Namun, setelah TiO₂ diembankan ke selulosa xantat, panjang gelombang bergeser ke daerah di sinar tampak dan mengakibatkan aktivitas fotokatalitiknya meningkat. Berdasarkan penelitian Dalponte et al. (2019) TiO₂ yang ditambahkan ke dalam beads alginat memiliki fungsi untuk menghilangkan pewarna yang beracun, serta menunjukkan adanya aktivitas dan kapasitas degradasi yang tinggi. Sarkar et al. (2015) menjelaskan bahwa penampilan fisik dari beads (TiO2 diembankan ke alginat) memiliki bentuk yang bulat dan berwarna putih, serta nilai degradasi yang optimum ditunjukkan pada perbandingan alginat-TiO₂ 2:1, sedangkan menurut Thomas et al. (2016) penambahan TiO₂ pada alginat-selulosa menghasilkan ukuran pori – pori yang lebih besar dibandingkan tanpa penambahan TiO₂.

Pembuatan *beads* dapat dilakukan dengan metode gelasi ionik (Swarbrick, 2007). Menurut Agüero *et al.* (2017) metode gelasi ionik memiliki kelebihan mudah untuk dilakukan, prosesnya cepat, mudah dikontrol dan murah. Patil *et al.* (2010) menjelaskan metode gelasi ionik didasarkan pada kemampuan polielektrolit berikatan saling silang (*cross-linking*) dengan ion multivalen untuk

membentuk hidrogel. Adanya ikatan saling silang (cross-linking) akan menghasilkan partikel beads yang lebih kaku dan kuat. Dalam metode ini dapat disempurnakan lagi dengan menambahkan agen crosslink untuk membuat beads yang lebih stabil (Park dan Yeo, 2007). Salah satu agen crosslink yang dapat digunakan adalah CaCl₂, karena penggunaan agen crosslink CaCl₂ dengan alginat:selulosa menghasilkan komposit yang lebih stabil dengan kekerasan, ukuran, dan karakter porositas yang optimum (Dewangan et al., 2011). Pada penelitian ini menggunakan konsentrasi agen crosslink CaCl₂ sebesar 3% karena menurut Ibrahim et al. (2014) pada konsentrasi 3% memiliki ikatan yang kuat antara CaCl₂ dengan alginat. Teknik yang digunakan dalam pembuatan beads pada penelitian ini adalah teknik dropping. Teknik dropping dipilih karena merupakan teknik yang sederhana, menghasilkan beads dengan diameter yang lebih besar (0,5-3 mm) dan lebih halus (Gericke et al., 2013).

Beads memiliki banyak manfaat, salah satunya digunakan sebagai fotodegradator untuk menurunkan kadar metilen biru. Metilen biru memiliki sifat yang berbahaya apabila terhirup, tertelan, terkena mata, maupun terkena kulit (Liu et al., 2017), sehingga pengelohan limbah yang mengandung metilen biru perlu dilakukan untuk mengurangi kadar metilen biru. Salah satu cara untuk mengurangi kadar metilen biru yaitu dengan cara mendegradasinya menggunakan beads, karena fotodegradasi merupakan teknik yang efektif, mudah dilakukan, dan aman (Kanki et al., 2004). Berdasarkan penelitian Mallakpour et al. (2019) menujukkan bahwa pada metilen biru 10 ppm memiliki nilai uji degradasi terbaik yaitu 40% pada kondisi di bawah sinar UV dan 28% pada kondisi gelap, sehingga pada penelitian ini metilen biru yang digunakan yakni 10 ppm.

Berdasarkan uraian latar belakang tersebut maka pembuatan *beads* dengan variasi konsentrasi TiO₂ perlu dilakukan untuk mengetahui kondisi terbaik dari *beads*. Pada penelitian ini, limbah batang jagung dimodifikasi menjadi *beads* selulosa xantat dengan variasi konsentrasi TiO₂ dengan penambahan *crosslink* CaCl₂ 3%. Agen porogen CaCO₃ ditambahkan sebanyak 2 gram untuk mendapatkan pori pada *beads*. Hasil *beads* selulosa xantat dikarakterisasi menggunakan UV-Vis DRS untuk mengetahui serapan sinar dan energi celah pita, analisis XRD untuk mengetahui karakteristik kristal, serta analisis SEM-EDX untuk mengetahui karakteristik permukaan dan kandungan unsur di dalamanya serta dilakukan uji fotodegradasi terhadap metilen biru.

1.2 Rumusan Masalah

- 1. Bagaimana pengaruh penambahan beads selulosa xantat terhadap TiO₂ berdasarkan serapan sinar, energi celah pita dan karakteristik kristal serta kemampuan fotodegradasi?
- 2. Berapa konsentrasi TiO₂ terbaik dalam pembuatan *bead*s TiO₂/alginat selulosa xantat berdasarkan uji fotodegradasi?
- 3. Bagaimana karakterisasi permukaan berdasarkan analisis SEM-EDX beads TiO₂/alginat selulosa xantat dari konsentrasi TiO₂ terbaik?

1.3 Tujuan

 Mengetahui pengaruh penambahan beads selulosa xantat terhadap TiO₂ berdasarkan serapan sinar, energi celah pita dan karakteristik kristal serta kemampuan fotodegradasi.

- 2. Mengetahui konsentrasi TiO₂ terbaik dalam pembuatan *bead*s TiO₂/alginat selulosa xantat berdasarkan uji fotodegradasi.
- Mengetahui karakterisasi permukaan berdasarkan analisis SEM-EDX beads
 TiO₂/alginat selulosa xantat dari konsentrasi TiO₂ terbaik.

1.4 Batasan Masalah

- Batang jagung yang digunakan untuk pembuatan beads adalah batang jagung dari Kabupaten Sidoarjo.
- 2. Komposisi alginat-selulosa adalah 1:3.
- 3. Variasi konsentrasi TiO₂ yang digunakan adalah 0, 1, 2, dan 3 gram.
- 4. Agen *crosslink* yang digunakan adalah CaCl₂ 3%.

1.5 Manfaat

- 1. Meminimalisir pembuangan limbah batang jagung.
- 2. Membuat beads selulosa xantat dari bahan alami.
- Mengetahui proses pembuatan beads selulosa xantat dari limbah batang jagung.

BAB II

TINJAUAN PUSTAKA

2.1 Limbah Batang Jagung

Batang dari tanaman jagung (*Zea mays L.*) memiliki fungsi sebagai tempat untuk menopang tanaman jagung. Batang jagung memiliki sedikit manfaat, sehingga banyak limbah batang jagung yang belum dimanfaatkan. Limbah batang jagung setelah panen mengandung sekitar 38% selulosa, 20% lignin, 7% abu, dan 32% hemiselulosa. Setelah proses delignifikasi batang jagung mengandung sekitar 69% selulosa, 31% hemiselulosa, dan 0% lignin (Boufi dan Chaker, 2016). Banyaknya kandungan selulosa di dalam batang jagung, maka batang jagung berpotensi digunakan sebagai *beads* alginat/TiO₂ selulosa xantat.

Gambar 2.1 Limbah batang jagung

Selulosa adalah suatu homopolimer yang memiliki rumus $(C_6H_{10}O_5)_n$. Dimana n merupakan jumlah pengulangan dari senyawa tersebut. Selulosa terdiri dari rantai panjang unit D-unhydroglucopyranose (AGU) dengan setiap molekul

selulosa memiliki tiga gugus hidroksil per AGU (Lavanya *et al.*, 2011). Struktur selulosa dapat dilihat pada Gambar 2.2.

Gambar 2.2 Struktur selulosa

Pada struktur lignoselulosa, mikrofibril-mikrofibril selulosa dikelilingi oleh hemiselulosa dan lignin (Lee *et al.*, 2014), sehingga perlu dilakukan ekstraksi untuk mendapatkan selulosa yang murni. Selulosa sering digunakan sebagai bahan baku dikarenakan selulosa memiliki sifat mekanik yang baik (kekuatan yang tinggi), kapasitas mengikat air yang tinggi, kemurnian yang relatif tinggi, serta struktur jaringannya yang baik.

2.2 Ekstraksi dan Hidrolisis Selulosa Batang Jagung

2.2.1 Proses Delignifikasi

Proses delignifikasi adalah suatu proses pemisahan selulosa dari senyawa lain (hemiselulosa, lignin, dsb). Pelarut yang digunakan dalam proses delignifikasi adalah NaOH, KOH, dan NH₄OH. Namun, pelarut yang paling baik digunakan dalam proses delignifikasi adalah NaOH. Menurut Saleh *et al.* (2009) pelarut NaOH dapat menguraikan dan memecah senyawa non selulosa. Selain itu, pelarut NaOH mampu memisahkan sebagian hemiselulosa serta merusak dan menyerang

struktur lignin pada bagian amorf dan kristalin. Penggunaan pelarut NaOH 10% menghasilkan nilai rendemen tertinggi yaitu 39,72% dengan proses pemanasan selama 90 menit pada suhu 80°C.

Rosdiana *et al.* (2013) menjelaskan bahwa lignin dapat dihilangkan melalui perlakuan alkali dengan cara menambahkan NaOH. Di dalam NaOH, lignin akan membentuk garam fenolat yang dapat larut dalam air. Apabila garam fenolat tersebut terbentuk maka ikatan antara lignin dan selulosa akan terputus dan didapatkan selulosa tanpa lignin. Reaksi pemutusan selulosa dan lignin dengan menggunakan pelarut NaOH ditunjukkan pada Gambar 2.3

Gambar 2.3 Reaksi pemutusan lignin dan selulosa oleh NaOH (Rosdiana *et al.*, 2013)

2.2.2 Proses *Bleaching*

Proses *bleaching* bertujuan untuk memutihkan hasil ekstrak, karena pada proses delignifikasi masih didapatkan hasil ekstrak dengan warna kecoklatan (Puspitasari *et al.*, 2017). Menurut Putera, (2012) Zat pemutih yang digunakan untuk memutihkan sera-serat selulosa diantaranya adalah sodium chlorite (NaClO₂), hidrogen peroksida (H₂O₂), kaporit (CaOCl₂), natrium peroksida (Na₂O₂), dan lain-lain. Zat pemutih NaClO₂ lebih efektif dari HCl dan H₂O₂ dan

mampu melarutkan kadar hemiselulosa yang tertinggi yaitu 0,113%, sedangkan HCl melarutkan kadar hemiselulosa sebesar 0,087%, dan H₂O₂ melarutkan kadar hemiselulosa sebesar 0,062%.

Taherzadeh dan Karimi, (2007) menjelaskan bahwa pada kondisi suhu yang tinggi dan dalam keadaan asam lignin akan mengalami perubahaan dan memecah menjadi partikel-partikel yang lebih kecil serta lignin dapat putus dari selulosa. Bhattacharya *et al.* (2008) menyebutkan bahwa pada suhu 70-80°C lignin yang terikat pada selulosa akan mengalami pelarutan. Pelarut yang digunakan sebagai pemberi suasana asam adalah asam asetat. Penambahan asam asetat dilakukan dengan cara meneteskan tetes pertetes sampai pH menjadi 3-5 (Putera, 2012).

2.2.3 Proses Hidrolisis

Proses hidrolisis pada selulosa bertujuan untuk menguraikan senyawa glukosa oleh senyawa air. Proses hidrolisis menggunakan larutan asam diantaranya adalah HCl, H₂SO₄, dan HNO₃. Pada penelitian ini menggunakan larutan encer HCl karena berdasarkan penelitian Suvachittanont dan Pookingdao, (2013) serat selulosa dari tongkol jagung yang dihidrolisis menggunakan HCl 1 mmol/L dengan perbandingan 1:20 menghasilkan indeks kristal yang meningkat dari 71,13% menjadi 86,31% dan ukuran kristal mengalami penurunan dari 0,22 menjadi 0,15.

2.3 Pembuatan Selulosa Xantat

Selulosa xantat merupakan turunan gugus ester dari selulosa (Sumardjo, 2009). Selulosa xantat memiliki karakteristik yang tidak mudah terbakar serta tingkat stabilitas termal dan kristalinitas yang tinggi. Proses pembuatan selulosa xantat lebih cepat jika dibandingkan lainnya karena reaksi tidak mengalami isolasi (Gericke *et al.*, 2013).

Selulosa xantat merupakan suatu hasil atau produk dari reaksi karbon disulfida (CS₂) dengan selulosa yang membentuk suatu garam (natrium selulosa xantat) yang memiliki rumus kimia $ROCS_2^-M^+$ (R = alkil; M^+ = Na $^+$) (Heuser, 1943). Struktur dari selulosa xantat ditunjukkan pada Gambar 2.4

Gambar 2.4 Struktur selulosa xantat (Rodgers dan Waddell, 2005)

Menurut Swatloski *et al.* (2002) menjelaskan bahwa pada pembuatan selulosa xantat, pelarut yang digunakan adalah natrium hidroksida (NaOH). Pelarut NaOH yang terbaik terdapat pada konsentrasi 6% yang menghasilkan nilai viskositas sebesar 2,3 – 2,5 Pa.s (Wang *et al.*, 2013) dan 0,024 Pa.s (Puspitasari *et al.*, 2017), sedangkan menurut Haroen dan Wistara, (2008) nilai viskositas dari hasil ektraksi selulosa dari serbuk kayu yang menggunakan pelarut NaOH dengan

konsentrasi 8% hanya menghasilkan nilai viskositas sebesar 0,006-0,01 Pa.s. Reaksi pembentukan senyawa seluosa xantat ditunjukkan pada Gambar 2.5

OH OH
$$H_{2}C \qquad H_{2}C \qquad H_{2}C \qquad GH-O$$

$$CH-O \qquad CH-O \qquad CH-O \qquad NaOH$$

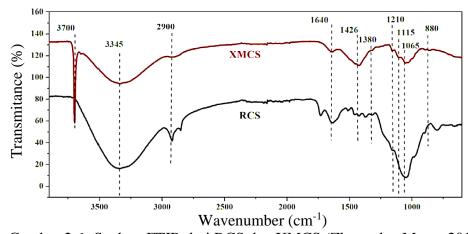
$$CH-CH \qquad CH-CH \qquad CH-CH$$

$$HO \qquad OH \qquad HO \qquad OH$$

$$RO \qquad OR \qquad O-C$$

$$H_{2}C \qquad H_{2}C \qquad S^{*}Na^{+}$$

$$CH-O \qquad CH-O \qquad CH-O$$


$$CH-CH \qquad CH-CH$$

$$RO \qquad OR \qquad RO \qquad OR$$

$$RO \qquad OR \qquad RO$$

Gambar 2.5 Reaksi pembentukan selulosa xantat (McKeen, 2017)

Menurut (Zheng dan Meng, 2016) spektra FTIR dari batang jagung murni (RCS) dan selulosa xantat (XMCS) ditunjukkan pada Gambar 2.6.

Gambar 2.6 Spektra FTIR dari RCS dan XMCS (Zheng dan Meng, 2016)

Berdasarkan spektra pada Gambar 2.6, serapan pada kisaran bilangan gelombang 3345, 2900, 1700, 1640, 1380, 1210, dan 1065 cm⁻¹ mengidentifikasikan selulosa murni. Serapan H *stretching* dari gugus OH pada bilangan gelombang 3345 cm⁻¹, gugus C-H (2900 cm⁻¹), *stretching* asimetris dari

gugus ester (C-O) pada 1700 cm⁻¹, mode *bending* dari penyerapan air (1640 cm⁻¹), gugus C-H (1380 cm⁻¹), asimetri *bridge stretching* C-O pada 1210 cm⁻¹, dan *stretching* C-O-C dari gugus hidroksi primer pada 1065 cm⁻¹. Setelah penambahan CS₂, serapan gugus -O-C(=S)-S- pada kisaran bilangan gelombang 1210, 1115 dan 1065 cm⁻¹. Bilangan gelombang 1115 cm⁻¹ merupakan ciri khas dari gugus -O-C(=S)-S- (Zheng dan Meng, 2016), sedangkan menurut Rehman *et al.* (2013) pembentukan selulosa xantat ditandai dengan hilangnya lignin dan hemiselulosa. Lignin memiliki kisaran bilangan gelombang 1500–1600 cm⁻¹ yang mengidentifikasikan cincin aromatik, 1244 cm⁻¹ menunjukkan gugus C-O-C ikatan eter aromatik. Bilangan gelombang 1730 cm⁻¹ menunjukkan C=O pada hemiselulosa.

2.4 Sodium Alginat

Alginat merupakan polimer anionik yang terjadi secara alami yang diperoleh dari rumput laut coklat, dan telah diselidiki secara luas dan banyak digunakan untuk aplikasi biomedis karena memiliki sifat biokompatibilitas, toksisitas yang rendah, murah, dan gelasi ringan dengan penambahan kation divalen seperti Ca²⁺ (Lee dan Mooney, 2012). Menurut Agüero *et al.* (2017) alginat memiliki sifat biodegradabilitas, toksisitas rendah dan fleksibilitas kimia, dapat membentuk gel yang stabil dalam media air dan kondisi ringan dengan penambahan kation multivalen, memiliki kemampuan *crosslink* yang luar biasa, serta sensitivitas pH. Biomaterial berbasis alginat dapat dikembangkan dalam berbagai bentuk seperti *beads*, busa, serat, spons, partikel mikro dan nano. Struktur kimia alginat ditunjukkan pada Gambar 2.7.

Gambar 2.7 Struktur kimia alginat (Lee dan Mooney, 2012)

Sönmez *et al.* (2016) menjelaksan bahwa alginat memiliki sifat hidrofilik dan kelimpahan keberadaan tempat pengikatan karena fungsi karboksilatnya. Gugus karboksil dari polimer menginduksi kemampuan untuk membentuk gel dengan adanya polivalenkation dan khususnya dengan ion kalsium seperti CaCO₃, CaCl₂, CaCO₃, CaSO₄, CaCO₃, dan garam C₁₂H₁₄CaO₁₂ melalui interaksi ionik. Ion yang biasa digunakan untuk pengikatan silang (*crosslink*) kimia alginat meliputi Ca²⁺, Ba²⁺, Fe³⁺, Cu²⁺, dan Zn²⁺. Braccini dan Pérez, (2001) menjelaskan bahwa matriks alginat dapat dibuat melalui ikatan silang (*crosslink*) fisik dan kimia dari rantai polimer. Ikatan silang ionik menghasilkan jaringan tiga dimensi oleh interaksi gugus karbonil dari gugus guluronat dengan kation multivalen dan menimbulkan model "*egg-box*". Kandungan gugus guluronat yang tinggi mampu meningkatkan porositas dan struktur yang kaku.

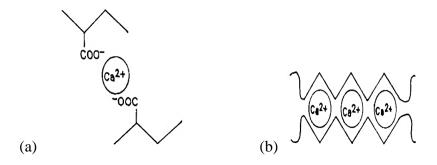
2.5 Porogen CaCO₃

Jenis porogen yang dapat digunakan untuk pembuatan *beads* diantaranya adalah kalsium karbonat (CaCO₃), sodium klorida (NaCl), sodium bikarbonat (NaHCO₃), kalium klorida (KCl), serta jenis garam lainnya (Purnamasari, 2011). Porogen CaCO₃ digunakan sebagai agen pori karena menghasilkan produk yang

lebih halus dan memiliki kekuatan mekanik yang lebih tinggi jika dibanding dengan penambahan porogen NaHCO₃ (Choi *et al.*, 2002). Suvachittanont dan Pookingdao, (2013) juga menjelaskan bahwa apabila semakin banyak porogen CaCO₃ yang ditambahkan maka akan membuat pori *beads* semakin besar dan permukaan *beads* semakin halus dan sebaliknya apabila konsentrasi porogen CaCO₃ yang ditambahkan semakin sedikit maka akan membuat pori *beads* semakin kecil dan permukaanya kasar. Yulianti *et al.* (2016) menyebutkan bahwa penambahan porogen CaCO₃ sebesar 2 gram dapat menjadi kombinasi dalam pengikatan alginat/selulosa komposit *beads* yang baik, serta menghasilkan bentuk permukaan *beads* yang halus dan bulat, rongga-rongga partikelnya memiliki ukuran yang seragam.

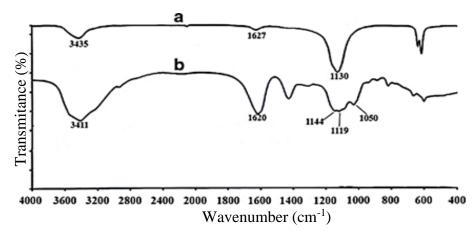
Pembentukan pori oleh porogen CaCO₃ dilakukan dengan cara mereaksikan porogen CaCO₃ dengan asam asetat (CH₃COOH) yang akan membentuk sebuah produk berupa gas CO₂ dalam bentuk gelembung. Reaksi antara CaCO₃ dan CH₃COOH ditunjukkan pada persamaan 2.1 (Choi *et al.*, 2002):

$$CaCO_3 + 2CH_3COOH \rightarrow (CH_3COO)_2Ca + H_2O + CO_2$$
.....(2.1)


2.6 Pembuatan Beads TiO₂/Alginat Selulosa Xantat

Beads adalah sebuah partikel berbentuk bola yang memiliki diameter dengan skala antara mikro hingga milimeter (sekitar $\geq 10~\mu m$). Beads sering disebut dengan mikrosfer, pelet, selulosa gel, atau selulosa mutiara. Pembentukan

selulosa *Beads* dimulai dari proses dissolusi, *shaping*, dan regenerasi selulosa (Gericke *et al.*, 2013).

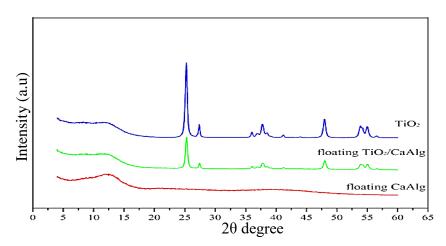

Pembuatan *beads* dapat dilakukan dengan berbagai metode, diantaranya metode pemisahan fase koaservasi, suspensi udara, pengeringan beku dan semprot kering, metode penguapan dan metode gelasi ionik (Swarbrick, 2007). Menurut Agüero *et al.* (2017) metode gelasi ionik memiliki kelebihan mudah untuk dilakukan, prosesnya cepat, mudah dikontrol dan murah. Patil *et al.* (2010) menjelaskan metode gelasi ionik didasarkan pada kemampuan polielektrolit yang berikatan saling silang (*cross-linking*) dengan ion multivalen untuk membentuk hidrogel. Adanya ikatan saling silang (*cross-linking*) akan menghasilkan partikel *beads* yang lebih kaku dan kuat, sehingga pembuatan *beads* ini dilakukan dengan menggunakan metode gelasi ionik dengan teknik *dropping*. Teknik *dropping* merupakan suatu teknik menjatuhkan larutan viskositas ke dalam koagulasi larutan yang dapat menghasilkan *beads* dengan diameter yang lebih besar (0,5-3 mm) dan lebih halus (Gericke *et al.*, 2013).

Dalam metode gelasi ionik dapat disempurnakan lagi dengan menambahkan agen *crosslink* untuk membuat *beads* yang lebih stabil (Park dan Yeo, 2007). Kation divalen (Ca²⁺) dari agen *crosslink* CaCl₂ berikatan silang dengan gugus –COO⁻ dari ion blok asam guluronat pada alginat yang membentuk jaringan tiga dimensi model "*egg-box*". Interaksi tersebut dapat dilihat pada Gambar 2.8 (Bajpai dan Sharma, 2004).



Gambar 2.8 Interaksi ionik antara ion Ca²⁺ dan gugus karboksil dalam blok polymannuronate, (b) Gabungan model "*egg-box*" ion Ca²⁺ dalam blok poliguluronat (Bajpai dan Sharma, 2004)

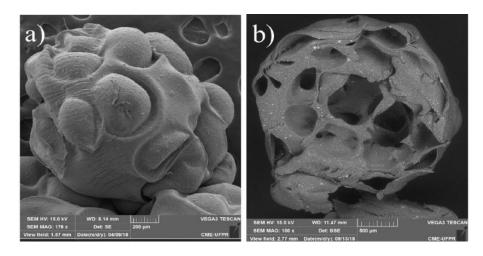
Menurut Kusuktham *et al.* (2014) spektra pada Gambar 2.9 (a) menunjukkan hasil spektra FTIR dari sodium alginat. Pada serapan bilangan gelombang 1627 cm⁻¹ mengidentifikasikan *stretching* gugus –COO⁻ simetri, pada puncak 1130 cm⁻¹ mengidentifikasikan *stretching* C-O pada gugus C-O-C, dan puncak lebar pada bilangan gelombang 3435 cm⁻¹ mengidentifikasikan gugus hidroksi (-OH). Pada Gambar 2.9 (b) menunjukkan spektra FTIR dari *beads* alginat dengan *crosslink* Ca²⁺. Setelah penambahan *crosslink* terjadi pergeseran puncak C=O dari bilangan gelombang 1627 cm⁻¹ ke 1620 cm⁻¹ akibat ikatan antara ion kalsium (Ca²⁺) dengan gugus karboksil (COO⁻) dari sodium alginat. Bahkan puncak pada bilangan gelombang 1130 cm⁻¹ mengalami penurunan intensitas yang disebabkan karena adanya ikatan kovalen parsial antara kalsium dan atom hidrogen.


Gambar 2.9 Spektra FTIR dari (a) Sodium alginat dan (b) *Beads* alginat dengan crosslink Ca²⁺ (Kusuktham *et al.*, 2014)

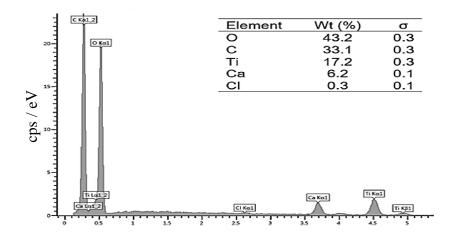
Gambar 2.10 Spektra FTIR dari (a) Nanopartikel TiO₂, (b) *Floating* kalsium alginat, dan (c) *Floating* TiO₂/kalsium alginat (Dalponte *et al.*, 2019)

Berdasarkan Gambar 2.10 puncak pada bilangan gelombang 1615, 1420 dan 1017 cm⁻¹ yang mengidentifikasikan vibrasi stretching asimetri gugus COO, vibrasi stretching simetri gugus COO, dan ikatan glikosidik (COC) dari alginat. Puncak lebar dengan frekuensi yang lemah pada bilangan gelombang dibawah 850 cm⁻¹ mengidentifikasikan vibrasi ikatan Ti-O-C dan Ti-O-Ti. Puncak pada bilangan gelombang 3400 cm⁻¹ dan 1650 cm⁻¹ mengidentifikasikan penyerapan air dan gugus hidroksi (Dalponte *et al.*, 2019).

Berdasarkan spektra XRD pada Gambar 2.11 dari nanopartikel TiO₂, kalsium alginat, dan TiO₂/kalsium alginat menunjukkan adanya puncak amorf pada kalsium alginat. Bentuk dan lokasi puncak TiO₂ pada TiO₂/kalsium alginat tidak berubah. Hal tersebut menunjukkan adanya proses dispersi pada kalsium alginat, sehingga tidak mempengaruhi bentuk kristal dari TiO₂. Puncak difraksi utama muncul pada puncak (101), (110), (103), (004), (112), (200), (105),dan (211), serta pada 20 25,42°; 27,81°; 36,28°; 37,97°; 41,42°; 48,21°; 53,97°; dan 55.35°. Dimana nilai tersebut menunjukkan bentuk anatas dari TiO₂. Difraksi puncak untuk TiO₂/kalsium alginat memiliki intensitas puncak yang rendah yang berasal dari hasil pengenceran natrium alginat dengan kalsium karbonat (Dalponte *et al.*, 2019).



Gambar 2.11 Pola Difraksi dari (a) Nanopartikel TiO₂, (b) Kalsium alginat, dan (c) TiO₂/kalsium alginat (Dalponte *et al.*, 2019)


Berdasarkan penelitian Nagaoka *et al.* (2005) menjelaskan bahwa absorbansi dari TiO₂ berada di daerah ultraviolet, sedangkan *microbeads* (TiO₂ yang diembankan ke dalam selulosa xantat) berada di daerah sinar tampak. Adanya *microbeads* pada sinar tampak disebabkan karena kadar TiO₂ yang

terkandung di dalamnya sangat sedikit, sehingga partikel TiO₂ tidak bisa menutupi sebagian besar permukaan *beads*, serta adanya pengaruh pengemban pada fotokatalis TiO₂ yang dapat menggeser panjang gelombang ke daerah sinar tampak, sehingga dapat meningkatkan aktivitas fotokatalitiknya.

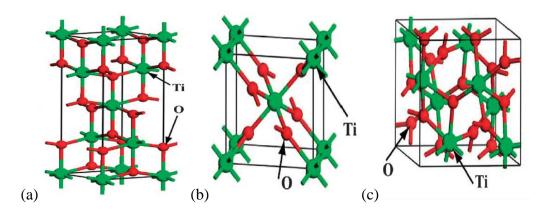
Menurut Dalponte *et al.* (2019) hasil karakterisasi SEM pada Gambar 2.12(a) *beads* alginat/TiO₂ menunjukkan bahwa permukaan pada *beads* tidak teratur dan Gambar 2.12(b) *cross-section beads* Alginat/TiO₂ menunjukkan adanya rongga kosong dalam partikel katalis yang terbentuk, sehingga dapat disimpulkan bahwa fotokatalis TiO₂ yang diembankan ke dalam *beads* telah mengisi pori-pori *beads*.

Gambar 2.12 Hasil karakterisasi SEM (a) *Beads* alginat/TiO₂ dan (b) *Cross-section beads* alginat/TiO₂ (Dalponte *et al.*, 2019)

Gambar 2.13 Spektra permukaan EDX dari *beads* alginat/TiO₂ (Dalponte *et al.*, 2019)

Karakterisasi menggunakan EDX bertujuan untuk mengetahui unsur dalam sampel. Berdasarkan Gambar 2.13 spektra EDX di dalam *beads* alginat/TiO₂ mengandung karbon (C), oksigen (O), kalsium (Ca), dan titanium (Ti) pada permukaan *beads*, keberadaan atom C berasal dari polimer alginat, sedangkan keberadaan atom O disebabkan oleh adanya nanopartikel polimer alginat dan TiO₂, atom Ca disebabkan karena ikatan silang agen *crosslink* dengan natrium dari polimer alginat, dan atom Ti berasal dari fotokatalis TiO₂ (Dalponte *et al.*, 2019).

2.7 Potensi Titanium Dioksida (TiO₂) sebagai Material Fotokatalis


Fotokatalis merupakan suatu bahan yang dapat meningkatkan laju reaksi oksidasi dan reduksi yang diinduksikan oleh cahaya. Penggunaan fotokatalis dianggap sebagai metode yang efisien untuk memisahkan senyawa polutan. Material yang dapat dijadikan sebagai fotokatalis harus memiliki daerah energi kosong atau disebut dengan energi celah pita (semikonduktor). Beberapa jenis

fotokatalis yang digunakan untuk proses fotokatalitik adalah TiO₂, CdS, ZnO, GaP, SiC, WO₃, dan Fe₂O₃ (Widi, 2018).

Semikonduktor merupakan bahan yang memiliki konduktivitas listrik yang berada diantara konduktor dan isolator. Semikonduktor memiliki pita konduksi yang kosong dan pita valensi yang terisi penuh, serta kedua pita tersebut dipisahkan oleh celah yang disebut energi celah pita. Energi celah pita yang dimiliki semikonduktor tidak terlalu besar yaitu 0,5-3,0 eV, nilai tersebut lebih kecil dari energi celah pita isolator (6,0 eV). Hal ini terjadi yang karena pada semikonduktor terjadi perpindahan elektron dari pita valensi ke pita konduksi dengan adanya energi luar yang memenuhi (biasanya energi panas), sedangkan pada isolator tidak terjadi perpindahan (Kittel, 2005)

Titanium dioksida (TiO₂) adalah salah satu semikonduktor yang paling banyak digunakan sebagai bahan untuk remediasi lingkungan dan aplikasi fotokatalis karena aktivitasnya yang tinggi, kestabilan kimia dan termal yang tinggi, murah, non toksik, dan stabil selama iradiasi (Thomas *et al.*, 2016). Menurut Zhang *et al.* (2014) TiO₂ bekerja aktif sebagai fotokatalis dengan menyerap sinar pada panjang gelombang 385-410 nm dan memiliki energi celah pita 3,0 – 3,2 eV (3,0 eV untuk *rutile* dan 3,2 eV untuk *anatase*). TiO₂ memiliki tiga polimorf (struktur kristalin), yaitu *anatase*, *rutile*, dan *brookite*. *Rutile* adalah fasa stabil, sedangkan *anatase* dan *brookite* merupakan fasa metastabil. Aktivitas fotokatalitik TiO₂ sangat tergantung pada struktur fasa, ukuran kristal, luas permukaan, dan struktur pori. Dari ketiga struktur kristal TiO₂, *anatase* memiliki kemampuan aktivitas fotokatalitik yang tinggi dibandingkan dengan yang lain karena *anatase* memiliki struktur pori yang besar, serta memiliki energi celah pita

yang lebih besar (3,2 eV) dibandingkan dengan energi celah pita *rutile* (3,0 eV) (Matthew dan Hennek, 2007). Struktur kristal TiO₂ ditampilkan pada Gambar 2.14.

Gambar 2.14 Struktur kristal TiO₂ fasa (a) *Anatase*, (b) *Rutile*, dan (c) *Brookite* (Zhang *et al.*, 2014)

2.8 Uji Fotodegradasi

Fotodegradasi yaitu proses penguraian senyawa zat organik menjadi senyawa yang lebih aman bagi lingkungan dengan bantuan energi foton. Proses fotodegradasi didasarkan pada prinsip fotokatalitik yang membutuhkan fotokatalis semikonduktor (Wardhani *et al.*, 2016). Fotokatalitik merupakan suatu proses yang melibatkan interaksi antara fotokimia dengan katalis. Sedangkan katalis yang digunakan dalam fotokatalisis disebut dengan fotokatalis. Fotokatalis yang digunakan dalam metode fotodegradasi antara lain: TiO₂, CdS dan Fe₂O₃ serta radiasi sinar ultraviolet (UV) dengan panjang gelombang sesuai dengan energi celah yang dimiliki oleh bahan semikonduktor tersebut (Wardhani *et al.*, 2016).

Berdasarkan penelitian Mallakpour *et al.* (2019) menunjukkan bahwa proses fotodegradasi metilen biru 10 ppm oleh fotokatalis TiO₂ pada kondisi di bawah sinar UV memiliki nilai persentase degradasi 40%, sedangkan pada kondisi

gelap memiliki persentase degradasi lebih kecil daripada kondisi di bawah sinar UV, yaitu 28%. Hal tersebut terjadi karena pada kondisi gelap tidak terjadi aktivitas fotokatalitik.

Berdasarkan penelitian Sarkar *et al.* (2015) bahwa proses fotodegrasi lebih maksimal apabila dilakukan setelah proses adsorbsi. Secara umum, laju setiap reaksi katalitik meningkat dengan konsentrasi katalis yang ditambahkan karena laju tersebut sebanding dengan ketersediaan jumlah situs aktif pada permukaannya, serta efisiensi degradasi fotokatalitik meningkat dengan konsentrasi TiO₂ hingga tingkat tertentu dan setelah itu, situasinya terbalik karena disebaban adanya hamburan iradiasi UV yang terjadi pada permukaan TiO₂. Hasil uji fotokatalitik optimum terjadi pada rasio 2,0 dan pada rasio 4,0 mengalami penurunan laju fotokatalitik. Hal tersebut terjadi karena adanya penurunan jumlah foton atau terjadi peningkatan hamburan UV dari permukaan katalis dengan meningkatnya TiO₂. Selain itu, dapat disebabkan karena adanya penyusutan volume aktif dari situs aktif.

2.9 Perspektif Islam dalam Pemanfaat Batang Jagung

Allah Swt. telah menciptakan macam-macam tumbuhan yang baik serta memiliki banyak manfaat bagi kesejahteraan manusia. Sebagaimana Allah Swt. berfirman dalam QS. Asy-Syu'araa (26) ayat 7.

Artinya: "Dan apakah mereka tidak memperhatikan bumi, betapa banyak Kami tumbuhkan di bumi itu berbagai macam (tumbuh-tumbuhan) yang baik?"

Menurut Quthb (2004) ayat tersebut menjelaskan bahwa tumbuhtumbuhan itu mulia dengan segala kehidupan yang ada di dalamnya yang bersumber dari Allah yang Maha Mulia dan tumbuh-tumbuhan yang baik tersebut diciptakan dengan memiliki banyak manfaat dan kegunaan, serta mengisyaratkan kepada manusia untuk menerima dan merespons ciptaan Allah dengan sikap yang memuliakan, memperhatikan, dan memperhitungkannya, bukan menghinakan, melalaikan, dan meremehkannya, sedangkan Shihab (2000) menjelaskan bahwa lafaz (مِنْ خُلِيّ رَوْحٍ حَرِيْمٍ) memiliki makna bahwa tumbuhan yang baik adalah tumbuhan yang memiliki manfaat.

Salah satu tumbuhan yang baik adalah tanaman jagung. Allah menciptakan tanaman jagung untuk memenuhi kebutuhan manusia. Namun, masih banyak bagian tanaman jagung, seperti batang jagung yang memiliki sedikit manfaat, sehingga menimbulkan banyaknya limbah batang jagung yang dapat mencemari lingkungan apabila terus dibiarkan. Oleh sebab itu, dengan dilengkapi ilmu pengetahuan dan akal pikiran maka manusia berhak mengelola dan merawatnya sebagaimana telah disebutkan dalam Al-Qur'an pada QS. Ali 'Imran (3) ayat 190.

Artinya: "Sesungguhnya dalam penciptaan langit dan bumi, dan pergantian malam dan siang terdapat tanda-tanda (kebesaran Allah) bagi orang yang berakal"

Menurut Abdullah (2004) lafaz (لَأَيَاتٍ لِأُولِى الْأَلْبَابِ) menunjukkan bahwa

manusia mempunyai akal yang sempurna lagi bersih, yang mengetahui hakikat banyak hal secara jelas dan nyata, sedangkan menurut Quthb (2004) *ulul albab* merupakan orang-orang yang memiliki pemkiran dan pemahaman yang benar. Dengan adanya akal pikiran dan ilmu pengetahuan serta sebagai makhluk *ulul albab*, maka kita mampu membuat batang jagung hasil limbah yang awalnya memiliki sedikit manfaat menjadi banyak kegunaannya. Mampu diketahui bahwa kandungan dalam batang jagung masih bisa dimanfaatkan, salah satunya yaitu kandungan selulosanya yang dapat dimodifikasi menjadi selulosa xantat dan dijadikan sebagai *beads* selulosa xantat yang memiliki banyak manfaat, di antaranya sebagai fotodegradator dan adsorben.

BAB III

METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian ini akan dilakukan pada rentang waktu bulan Agustus-September 2020 di Laboratorium Riset Kimia Fisika Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang.

3.2 Alat dan Bahan

3.2.1 Alat

Alat yang digunakan untuk penelitian ini adalah seperangkat alat gelas, seperangkat alat *reflux*, neraca analitik, kertas pH, oven, desikator, cawan porselen, kertas saring, termometer, penjepit kayu, sentrifugasi, *hot plate, aluminium foil, magnetic stirrer, hair dryer, shaker incubator, syringe needle* 18G, fotoreaktor, FTIR, XRD, spektrofotometer UV-Vis DRS, dan SEM-EDX.

3.2.2 Bahan

Bahan yang digunakan untuk penelitian ini adalah limbah batang jagung dari Kabupaten Sidoarjo, natrium hidroksida (NaOH) p.a, asam asetat (CH₃COOH) p.a, HCl 37% p.a, natrium klorit (NaClO₂) p.a, karbon disulfida (CS₂), titanium dioksida (TiO₂) anatas, kalsium karbonat (CaCO₃) p.a, kalsium klorida (CaCl₂) p.a, natrium alginat (C₆H₇O₆Na)n, metilen biru, akuades, dan akuademin.

3.3 Rancangan Penelitian

Jenis penelitian yang dilakukan adalah penelitian yang bersifat laboratorium eksperimental. Limbah batang jagung diekstraksi basah (NaOH) untuk mendapatkan selulosa. Selulosa yang didapat ditambahkan NaOH 6% untuk membentuk selulosa xantat diidentifikasi berdasarkan gugus fungsi. Kemudian dilakukan pembuatan *beads* dengan komposisi alginat - selulosa xantat adalah 1:3, ditambahkan TiO2 dengan variasi konsentrasi TiO2 sebesar 0, 1, 2, dan 3 gram serta ditambahkan porogen CaCO3 2 gram. Selanjutnya diidentifikasi berdasarkan karakteristik struktur, daerah serapan sinar dan energi celah pita, karakteristik permukaan, dan kemampuan fotodegradasinya. Penamaan pada sampel ditampilkan pada Tabel 3.1

Tabel 3.1 Penamaan sampel

	Nama Sampel
Beads dengan komposisi TiO ₂ 0 gram	Beads 0
Beads dengan komposisi TiO ₂ 1 gram	Beads 1
Beads dengan komposisi TiO ₂ 2 gram	Beads 2
Beads dengan komposisi TiO ₂ 3 gram	Beads 3

Data yang dihasilkan adalah sebagai berikut:

Tabel 3.2 Data karakterisasi FTIR

Tahapan	Spektra IR
Serbuk batang jagung	A
Hasil Ekstraksi	В
Pembuatan selulosa xantat	С

Tabel 3.3 Data karakterisasi UV-Vis DRS

Tahapan	Spektra UV-Vis DRS
TiO_2	TiO ₂ anatas
Beads variasi komposisi TiO ₂ 0; 1; 2; 3 gram	Beads 0; Beads 1; Beads 2; Beads 3

Tabel 3.4 Data karakterisasi XRD

Tahapan	Spektra XRD
Beads variasi komposisi TiO2 1; 2; 3 gram	Beads 1; Beads 2; Beads 3

Tabel 3.5 Data uji fotodegradasi

Dengan Lampu	Tanpa Lampu
Beads konsentrasi TiO ₂ 0 gram	Beads konsentrasi TiO ₂ 0 gram
Beads konsentrasi TiO2 1 gram	Beads konsentrasi TiO2 1 gram
Beads konsentrasi TiO2 2 gram	Beads konsentrasi TiO ₂ 2 gram
Beads konsentrasi TiO ₂ 3 gram	Beads konsentrasi TiO ₂ 3 gram

3.4 Tahapan Penelitian

- 1. Preparasi sampel.
- 2. Ekstraksi selulosa dari batang jagung.
- 3. Pembuatan selulosa xantat.
- 4. Pembuatan *beads*
- 5. Karakterisasi.
- 6. Uji fotodegradasi.
- 7. Analisa data.

3.5 Pelaksanaan Penelitian

3.5.1 Preparasi Sampel

Batang jagung yang diperoleh dari limbah pertanian dibersihkan dan dikeringkan di bawah sinar matahari hingga kering maksimal. Selanjutnya digiling dan diayak menggunakan ayakan ukuran 100 mesh. Hasil ayakan dioven pada suhu 90°C selama 24 jam. Hasil yang didapatkan dikarakterisasi menggunakan FTIR (Puspitasari *et al.*, 2017)

3.5.2 Ekstraksi Selulosa dari Batang Jagung

Serbuk batang jagung hasil preparasi ditimbang sebanyak 50 gram dan direndam di dalam 1000 mL NaOH 10% pada suhu 80°C selama 90 menit dan dihasilkan *pulp. Pulp* yang dihasilkan dicuci beberapa kali menggunakan akuades dan diperas. Selanjutnya, ditambahkan 200 mL NaClO₂ 1% dan CH₃COOH 10% hingga pH 5 pada suhu 75°C selama 1 jam. Kemudian dicuci menggunakan akuades hingga pH netral. Selulosa yang dihasilkan dihidrolisis asam dengan ditambahkan HCl 5% dengan perbandingan (1:20) selama 1 jam pada suhu 95°C (Suvachittanont dan Pookingdao, 2013). Hasil yang didapatkan dikarakterisasi menggunakan FTIR.

3.5.3 Pembuatan Selulosa Xantat

Selulosa hasil ekstraksi diambil 5 gram dan direndam selama 3 jam di dalam 40 mL NaOH 20%. Kemudian disaring dan diperas hingga tuntas, sehingga didapatkan microfiber selulosa dan filtrat. Selanjutnya, dilakukan proses *aging* yaitu microfiber selulosa didiamkan pada suhu kamar selama 60 jam dan

didapatkan selulosa alkali. Setelah itu, selulosa alkali ditambahkan dengan CS₂ 98% sebanyak 2,5 mL serta dilarutkan ke dalam NaOH 6% sebanyak 30 mL. Kemudian *dishaker* dengan kecepatan 150 rpm selama 3 jam pada suhu 25°C untuk mendapatkan larutan viskositas (Wang *et al.*, 2013). Larutan viskositas yang dihasilkan dikarakterisasi menggunakan FTIR.

3.5.4 Pembuatan Beads

TiO₂ ditimbang sebanyak 1,2, dan 3 gram dan dilarutkan ke dalam 200 mL aquademin dan diaduk selama 30 menit. Kemudian ditambahkan natrium alginat sebanyak 4 gram dan diaduk hingga homogen (Sarkar *et al.*, 2015). Selanjutnya, larutan ditambahkan dengan 12 mL selulosa xantat dan 2 gram CaCO₃ dan dihomogenkan hingga sempurna. Larutan diteteskan menggunakan *syringe* ke dalam CaCl₂ 3% sebanyak 200 mL. *Beads* yang dihasilkan didiamkan pada suhu ruang selama 24 jam. Kemudian *Beads* yang terbentuk disaring dan dicuci dengan aquademin (Puspitasari *et al.*, 2017).

Beads yang dihasilkan ditambahkan HCl 1 mmol/L dengan perbandingan 1:8. Kemudian dishaker dengan kecepatan 150 rpm hingga tidak muncul gelembung (apabila masih muncul gelembung, maka ditambahkan HCl 1 mmol/L sedikit demi sedikit hingga tidak muncul gelembung). Beads yang dihasilkan disaring dan dicuci dengan aquademin hingga pH netral. Kemudian dikeringkan selama 5 jam pada suhu 37°C (Azizah et al., 2018). Dilakukan dengan tahap yang sama pada variasi TiO₂ 0, 2, dan 3.

3.5.5 Karakterisasi

3.5.5.1 Karakterisasi Gugus Fungsi Selulosa dan Selulosa Xantat

Karakterisasi gugus fungsi dilakukan dengan pengujian FTIR. Preparasi sampel yang dilakukan adalah dengan menggunakan metode pelet KBr. Sebanyak 1 – 100 mg *beads* dihaluskan dan dicampurkan dengan 100 mg KBr. Selanjutnya dicetak menjadi pelet dan dianalisis.

3.5.5.2 Karakterisasi dengan Difraksi Sinar-X (XRD)

Difraksi Sinar-X (XRD) digunakan untuk mengidentifikasi kekristalan dan fase kristal katalis dengan radiasi Cu Kα (λ=1.5406 Å) pada 10 kV dan 30 mA, 2θ 20-50° dan kecepatan scan 0,02°/detik. *Beads* dihaluskan dan ditempatkan pada preparat dan dipress. Selanjutnya ditempatkan pada sampel holder dan disinari dengan sinar-X.

3.5.5.3 Karakterisasi Daerah Serapan Sinar dan Energi Celah Pita

Karakterisasi daerah serapan sinar dan energi celah pita pada *beads* dianalisis menggunakan UV-Vis *Diffuse Reflectance Spectroscopy. Beads* dihaluskan dan ditempatkan pada sample holder, kemudian diukur persentase reflektannya pada rentang panjang gelombang 200-800 nm (Thomas *et al.*, 2016).

3.5.5.4 Karakterisasi Permukaan

Karakterisasi permukaan *beads* dianilisis menggunakan SEM-EDX. *Beads* ditempatkan dan diletakkan diatas SEM *specimen holder*. Pengujian dilakukan menggunakan perbesaran 10.000-50.000 kali.

3.5.5.5 Uji Aktivitas Fotoderadasi *Beads* dengan Menggunakan Metilen Biru 3.5.5.5.1 Penentuan Panjang Gelombang Optimum Metilen Biru

Larutan metilen biru 10 ppm diukur absorbansinya menggunakan spektrofotometer UV-Vis pada panjang gelombang 400-700 nm. Nilai absorbansi terbesar merupakan panjang gelombang optimum.

3.5.5.5.2 Pembuatan Kurva Standar

Larutan baku metilen biru dibuat dengan konsentrasi 1, 2, 4, 6, 8, dan 10 ppm. Dilakukan pengukuran absorbansi larutan menggunakan spektrofotometer UV-Vis pada panjang gelombang optimum yang sudah ditentukan. Kemudian dibuat kurva standar dengan sumbu x sebagai konsentrasi dan sumbu y sebagai absorbansi, sehingga diperoleh persamaan garis y = ax + b.

3.5.5.5.3 Uji Aktivitas Fotodegradasi

Beads ditimbang sebanyak 0,1 gram dan ditambahkan 25 mL metilen biru 10 mg/L, dilakukan penyinaran dengan menggunakan sinar UV serta tanpa sinar UV (kondisi gelap) dalam fotoreaktor. Pengukuran absorbansi metilen biru dilakukan selama 240 menit penyinaran (Mallakpour *et al.*, 2019) dan dilakukan duplo.

3.5.6 Analisis Data

 Hasil gugus fungsi dari spektra IR dibandingkan dengan literatur dan diidentifikasi adanya senyawa yang hilang sesuai mekanisme reaksi, interaksi fisika, dan kimia. Hasil pengujian XRD berupa difraktogram dan puncak sudut 2θ dibandingkan dengan JCPDS (*Joint Committee on Powder Diffraction Standard*) sebagai acuan data difraktogram. Ukuran kristal ditentukan dengan menggunakan persamaan Debye-Scherrer yang ditujukan pada Persamaan 3.1.

$$D = \frac{k\lambda}{\beta\cos\theta} \tag{3.1}$$

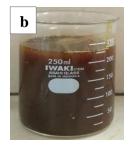
dengan D adalah ukuran partikel (nm), λ adalah panjang gelombang radiasi, K adalah konstanta (0,9), sedangkan β adalah integrasi luas puncak refleksi (FWHM, radian).

 Data yang diperoleh dari hasil karakterisasi dengan UV-Vis DRS akan dianalisa dengan menggunakan persamaan Kubelka-Munk yang ditunjukkan pada Persamaan 3.2.

$$F(R) = \frac{(1-R)^2}{2R} = \frac{k}{s}.$$
 (3.2)

dengan F(R) = faktor Kubelka-Munk, k adalah koefisien absorbsi molar, s adalah koefisien scattering, R adalah nilai reflektan yang diukur terhadap standar. Nilai energi celah pita ditentukan dari membuat plot antara antara $(F(R)*hv)^{1/2}$ (sebagai sumbu y) vs energi foton (hv) (sebagai sumbu x). Energi foton (hv) dihitung dari $hv=hc/\lambda$ dengan c adalah tetapan cahaya dan h adalah tetapan plank. Energi celah pita dihitung secara regresi linier pada nilai x (hv=energi celah pita) ketika y=0.

4. Data yang diperoleh dari hasil karakterisasi menggunakan SEM-EDX adalah mikrograf dan spektra atomik. Dari gambar yang diperoleh selanjutnya akan dianalisis dengan menggunakan software image-J untuk mengetahui ukuran partikelnya.


BAB IV

HASIL DAN PEMBAHASAN

4.1 Ekstraksi Selulosa

Ekstraksi selulosa bertujuan untuk memisahkan selulosa dengan senyawa lainnya yang dilakukan dengan menggunakan beberapa tahap, yaitu delignifikasi, pemutihan (*bleaching*), dan hidrolisis. Tahap pertama yakni delignifikasi dengan penambahan NaOH 10% yang bertujuan untuk melarutkan lignin di dalam serbuk batang jagung ditandai dengan adanya warna hitam (lindi hitam) dari garam fenolat yang ditunjukkan pada Gambar 4.1(b). Mekanisme reaksi yang terjadi selama proses delignifikasi ditampilkan pada Gambar 4.2, dimana penambahan NaOH bertujuan untuk memecah ikatan antara hidrogen dan oksigen. Gugus OH-pada NaOH menyerang atom H yang terikat pada gugus OH fenolik lignin dan dilanjutkan dengan resonansi, sehingga ikatan antara lignin dengan selulosa terputus. Lignin yang terputus bermuatan negatif dan berikatan dengan Na+ pada NaOH membentuk garam fenolat.

Gambar 4.1 (a) Serbuk batang jagung dan (b) Lindi hitam

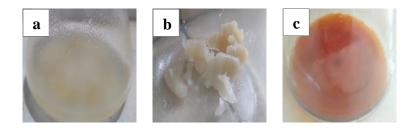
Gambar 4.2 Mekanisme reaksi pemutusan ikatan lignin dengan selulosa (Rosdiana *et al.*, 2013, telah diolah kembali)

Proses delignifikasi menghasilkan *pulp* yang berwarna coklat seperti Gambar 4.3(a). Hal tersebut menunjukkan bahwa setelah proses delignifikasi masih terdapat lignin dan proses delignifikasi ini tidak mampu melarutkan lignin secara keseluruhan. Oleh karena itu, dilanjutkan dengan proses pemutihan (*bleaching*) menggunakan natrium klorit (NaClO₂) sebesar 1% sebagai zat pemutih yang berfungsi untuk mendegradasi sisa lignin yang tersisa pada proses delignifikasi yang ditandai dengan berubahnya warna hasil ekstrak menjadi putih seperti Gambar 4.3(b). Pada saat kondisi asam, natrium klorit (NaClO₂) terdekomposisi dan menghasilkan gas pengoksidasi yang kuat yang dikenal dengan klorin dioksida (ClO₂) yang mampu mengoksidasi struktur lignin sehingga larut dalam air dan reaksinya ditunjukkan pada persamaan reaksi (4.1) (Rahmidar *et al.*, 2018).

$$5ClO_2^- + 4H^+ \rightarrow 4ClO_2 + Cl^- + 2H_2O$$

 $4ClO_2^- + 2H^+ \rightarrow 2ClO_2 + Cl^- + ClO_3^- + H_2O$(4.1)

Tahap terakhir dari ekstraksi selulosa yaitu proses hidrolisis menggunakan larutan HCl 5% yang merupakan kelanjutan dari proses delignifikasi yaitu memisahkan selulosa dari senyawa lignin atau menghilangkan residu lignin dan hemiselulosa yang masih tersisa. Menurut Ahmad *et al.* (2016) hidrolisis juga berpengaruh terhadap kristalinitas dari selulosa yang dihasilkan. Dimana kristalinitas selulosa akan berpengaruh terhadap daya ikat antara selulosa dengan alginat dalam pembentukan *beads*. Proses hidrolisis menghasilkan ekstrak selulosa dengan warna putih kekuningan sebagaimana Gambar 4.3(c).

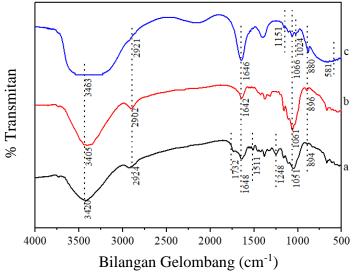

Gambar 4.3 (a) *Pulp* hasil delignifikasi, (b) *Pulp* hasil *bleaching*, dan (c) Selulosa hasil ekstraksi

Dari hasil ekstraksi didapatkan ekstrak selulosa sebanyak 32 gram dari 50 gram serbuk batang jagung, serta nilai rendemennya sebesar 36%. Penurunan berat pada serbuk batang jagung ini menunjukkan bahwa senyawa-senyawa selain selulosa (lignin dan hemiselulosa) telah berhasil dipisahkan. Hasil tersebut hampir sama dengan penelitian yang dilakukan Puspitasari *et al.* (2017) yaitu menghasilkan nilai rendemen sebesar 32,2%.

4.2 Pembuatan Selulosa Xantat

Hasil ekstrak selulosa dari proses ekstraksi direaksikan dengan NaOH 20% guna mendapatkan alkali selulosa yang ditampilkan pada Gambar 4.4(a).

Selanjutnya, alkali selulosa direaksikan dengan CS₂ dan dilarutkan dengan NaOH untuk menghasilkan selulosa xantat yang berwarna oranye dan berupa larutan viskositas yang ditampilkan pada Gambar 4.4(c). Pembuatan selulosa xantat bertujuan untuk meningkatkan stabilitas termal karena menurut Puspitasari *et al.* (2017) menyebutkan bahwa dengan adanya stabilitas termal yang tingi maka kristalinitas akan tinggi pula. Dimana kristalinitas yang tinggi mampu meningkatkan daya ikat antara alginat dengan selulosa sehingga *beads* akan mudah dibentuk.


Gambar 4.4 (a) Alkali selulosa, (b) Selulosa setelah proses *aging*, dan (c) Selulosa xantat

Gambar 4.5 Mekanisme reaksi pembuatan selulosa xantat (Wang et al., 2013)

Berdasarkan mekanisme reaksi pada Gambar 4.5, penambahan NaOH pada ekstrak selulosa bertujuan untuk memecah ikatan antara hidrogen dan oksigen. Gugus OH⁻ pada NaOH menyerang atom H pada OH pada C-2, C-3, dan C-6 selulosa dan berikatan menghasilkan produk samping berupa H₂O. Sehingga atom O pada selulosa bermuatan negatif dan mampu berikatan dengan C dari CS₂ membentuk selulosa xantat.

4.3 Analisis Gugus Fungsi Selulosa dan Selulosa Xantat

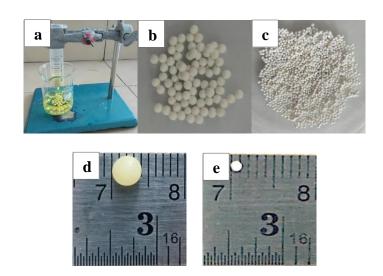
Karakterisasi gugus fungsi pada sampel dilakukan dengan menggunakan spektroskopi FTIR. Sampel yang dikarakterisasi meliputi serbuk batang jagung, selulosa hasil ekstraksi, dan selulosa xantat. Hasil karakterisasi pada sampel ditunjukkan pada Gambar 4.6. Komponen utama jagung adalah selulosa, lignin, dan hemiselulosa.

Gambar 4.6 Spektra FTIR (a) Serbuk batang jagung (b) Selulosa hasil ekstraksi, dan (c) Selulosa xantat

Lignin memiliki ciri pada bilangan gelombang 1500 cm⁻¹ - 1600 cm⁻¹ yang mengidentifikasikan vibrasi cincin aromatik. Berdasarkan Gambar 4.6(a) menunjukkan bahwa pada batang jagung terdapat lignin yang muncul pada bilangan gelombang 1511 cm⁻¹ (C=C *stretching*) dan 1248 cm⁻¹, serta adanya ikatan C=O karakter dari hemiselulosa yang muncul pada bilangan gelombang 1732 cm⁻¹ (Rehman *et al.*, 2013). Spektra pada Gambar 4.6(b) menunjukkan bahwa pada bilangan gelombang 1248 cm⁻¹ mengalami penurunan intensitas yang mengindikasikan bahwa jumlah kandungan lignin pada hasil ekstraksi selulosa telah berkurang, serta puncak pada bilangan gelombang 1732 cm⁻¹ tidak muncul yang mengindikasikan bahwa kandungan hemiselulosa hasil ekstraksi selulosa sudah berkurang.

Tabel 4.1 Data bilangan gelombang (cm⁻¹) spektrum FTIR serbuk batang jagung, selulosa hasil ekstraksi, dan selulosa xantat

Bilangan Gelombang (cm ⁻¹)			
Serbuk Batang Jagung	Ekstraksi Selulosa	Xantat	Jenis Modus Vibrasi
3420	3405	3463	OH stretching
2924	2902	2921	C-H stretching (sp ³)
1732			C=O stretching
1648	1642	1646	OH bending
1511			C=C stretching
1382	1378	1397	C-H bending
1323	1318		CH ₂ simetris bending
		1151	S-C-S
1051	1061	1066	C-O-C stretching
		1024	C=S
894	896	880	β-glikosidik
668	668	690	O-H bending
		581	C-S

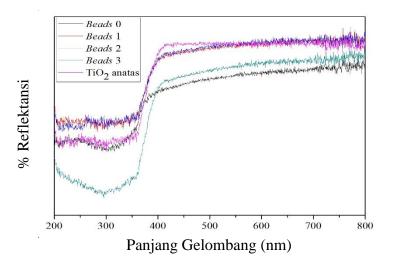

Spektra IR pada Gambar 4.6(c) selulosa xantat muncul puncak baru pada bilangan gelombang 1151 cm⁻¹, 1024 cm⁻¹, dan 581 cm⁻¹ yang mengidentifikasi gugus S-C-S, C=S, dan C-S. Menurut Ai *et al.* (2015) bahwa pada bilangan gelombang 580 cm⁻¹, 1024 cm⁻¹, dan 1152 cm⁻¹ menunjukkan gugus C-S, C=S, dan S-C-S dimana gugus-gugus tersebut merupakan gugus dari xantat.

4.4 Pembuatan Beads

Pembuatan *beads* dilakukan dengan menggunakan teknik *dropping*, yaitu dengan cara meneteskan larutan campuran antara alginat, selulosa xantat, TiO₂, dan CaCO₃ (agen pembentuk pori) ke dalam CaCl₂ yang ditampilkan pada Gambar 4.7(a). Penambahan fotokatalis TiO₂ dengan variasi 1, 2, dan 3 gram bertujuan untuk menjadikan *beads* sebagai fotodegradator yang mampu mendegradasi zat warna (metilen biru). *Crosslink* CaCl₂ berfungsi untuk mengikat silang antara kation diavalen kalsium (Ca²⁺) dari CaCl₂ dengan gugus –COO⁻ dari alginat dan membentuk model *egg-box*, sehingga *beads* yang dihasilkan memiliki bentuk yang bulat dan kaku (Sönmez *et al.*, 2016). Setelah proses *dropping*, *beads* didiamkan selama 24 jam di dalam *crosslink* untuk memaksimalkan ikatan kalsium (Ca) dengan alginat, sehingga menghasilkan *beads* yang kaku. Penambahan CaCO₃ berfungsi untuk membentuk pori pada *beads*. Pori yang terbentuk ditandai dengan adanya gelembung CO₂ dari hasil reaksi CaCO₃ dengan HCl yang ditunjukkan pada persamaan reaksi (4.2)

$$CaCO_3 + 2HCl \rightarrow H_2O + CO_2 + CaCl_2 \qquad (4.2)$$

Beads yang didapatkan dicuci dengan akuademin dan dihasilkan beads basah yang ditunjukkan pada Gambar 4.7(b). Selanjutnya, beads basah dikeringkan pada suhu 37°C selama 5 jam dan menghasilkan beads kering yang ditampilkan pada Gambar 4.7(c). Proses pengeringan ini bertujuan untuk melepaskan sejumlah air yang ada di dalam beads, sehingga dihasilkan beads yang lebih berpori (Choi et al., 2002).

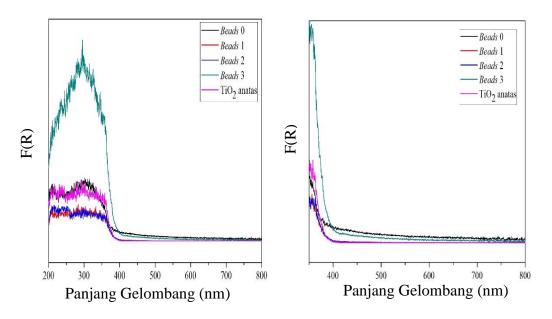


Gambar 4.7 (a) Pembuatan *beads* teknik *dropping*, (b) *Beads* basah, (c) *Beads* kering, (d) Diameter *beads* basah, dan (e) Diameter *beads* kering

Dalam penelitian ini, didapatkan *beads* yang bulat sempurna dan kaku dengan diameter 0,4 mm untuk *beads* basah dan 0,1 mm untuk *beads* kering. *Beads* dengan variasi konsentrasi TiO₂ 0 gram berwarna kecoklatan, sedangkan *beads* dengan penambahan variasi konsentrasi TiO₂ 1, 2, dan 3 gram berwarna putih. Semakin banyak konsentrasi TiO₂ yang ditambahkan, maka warna *beads* yang dihasilkan akan semakin putih.

4.5 Karakterisasi Beads dengan Diffuse Reflectance Spectroscopy (DRS)

Karakterisasi menggunakan DRS digunakan untuk mengetahui serapan sinar dan energi celah pita pada *beads*. Hasil dari karakterisasi DRS yaitu hubungan antara panjang gelombang dengan reflektansi yang ditunjukkan pada Gambar 4.8.



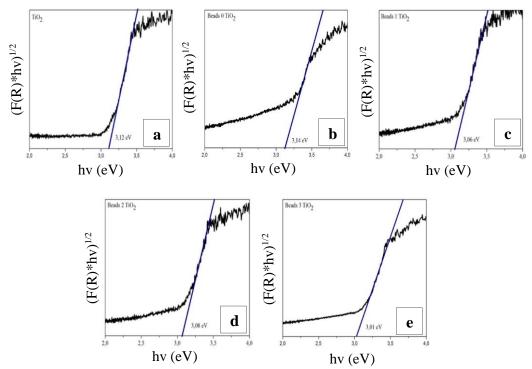
Gambar 4.8 Hasil UV – Vis *Diffuse Reflectance Spectroscopy* (DRS) *beads* antara % reflektansi dengan panjang gelombang

Berdasarkan Gambar 4.8 menunjukkan bahwa pada daerah serapan sinar UV (200 – 400 nm) beads yang ditambahkan ke dalam TiO₂ mengalami kenaikan dan penurunan nilai reflektansi. Akan tetapi, beads 3 memiliki perbedaan nilai reflektansi yang signifikan dibandingkan dengan yang lainnya, serta nilai reflektansi yang tidak berbeda signifikan pada beads 1 dan 2, serta TiO₂ anatas dengan beads 0 yang ditunjukkan dengan adanya tumpang tindih pada grafik. Beads 3 mengalami penurunan nilai reflektansi yang besar dibandingkan dengan yang lainnya. Hal tersebut menunjukkan bahwa beads 3 memiliki kemampuan menyerap cahaya yang besar pada daerah sinar UV. Sehingga, dimungkinkan

beads 3 memiliki nilai aktivitas fotodegradasi yang lebih efektif daripada lainnya. Pada daerah sinar tampak (400-800 nm) beads yang ditambahkan ke dalam TiO₂ hanya mengalami kenaikan nilai reflektansi dan beads 0 yang memiliki nilai reflektansi yang kecil dibandingkan yang lainnya. Hal ini menunjukkan bahwa beads 0 memiliki kemampuan menyerap cahaya yang besar pada daerah sinar tampak.

Sifat serapan pada beads dapat diketahui dengan menggunakan pendekatan pada teori Kubelka – Munk dari persamaan $F(R) = (1-R)^2/2R$. Dimana faktor Kubelka – Munk (F(R)) ini sebanding dengan nilai koefisien absorbansi per scattering (k/s). Hubungan antara faktor Kubelka – Munk dengan panjang gelombang pada beads ditunjukkan pada Gambar 4.9.

Gambar 4.9 Hasil UV – Vis *Diffuse Reflectance Spectroscopy* (DRS) *beads* antara Faktor Kubelka - Munk dengan panjang gelombang


Hasil Gambar 4.9 menunjukkan bahwa nilai faktor Kubelka-Munk (F(R)) pada sumbu y mewakili koefisien absorbsi sampel. Pada daerah sinar UV

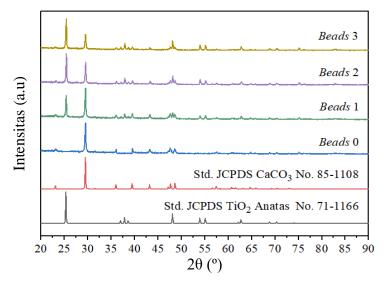
(200-400 nm)) beads yang ditambahkan ke dalam TiO_2 mengalami penurunan dan kenaikan nilai F(R) dan terdapat perbedaan yang signifikan antara beads 3 dengan lainnya, serta sedikit perbedan pada beads 1 dan 2, serta TiO_2 anatas dengan beads 0 yang ditandai dengan adanya tumpang tindih pada grafik. Sehingga, pada daerah sinar UV beads 3 memiliki kemampuan absorbsi yang lebih besar dibandingkan lainnya. Pada daerah sinar tampak (400 – 800 nm) beads yang ditambahkan ke dalam TiO_2 mengalami penurunan nilai F(R) dan tidak terdapat perubahan yang signifikan pada TiO_2 , beads 1 dan 2, sedangkan beads 0 dan 3 mengalami perubahan yang signifikan, serta beads 0 yang memiliki nilai F(R) yang lebih besar. Sehingga, pada daerah sinar tampak beads 0 memiliki kemampuan absorbsi yang lebih besar dibandingkan lainnya.

Nilai energi celah pita pada *beads* didapatkan dari pemotongan grafik antara sumbu y $(F(R)*hv)^{1/2}$ dengan sumbu x hv (eV) yang ditampilkan pada Gambar 4.10 dan nilai energi celah pita *beads* ditunjukkan pada Tabel 4.2.

Tabel 4.2 Nilai energi celah pita dan serapan sinar panjang gelombang beads

Sampel	Energi Celah Pita (eV)	Panjang Gelombang (nm)
TiO ₂	3,12	397
Beads 0	3,14	395
Beads 1	3,06	405
Beads 2	3,08	402
Beads 3	3,01	412

Gambar 4.10 Energi celah pita (a) TiO₂ anatas, (b) *Beads* 0, (c) *Beads* 1 (d) *Beads* 2, dan (e) *Beads* 3


Gambar 4.10 menunjukkan bahwa *beads* yang ditambahkan ke dalam TiO₂ memiliki nilai energi celah pita yang kecil dibandingkan dengan *beads* tanpa TiO₂ karena menurut Berli *et al.* (2017) penurunan energi celah pita dikarenakan adanya pembentukan tingkat energi baru antara pita valensi dan pita konduksi pada *beads* yang diakibatkan oleh adanya TiO₂. Energi celah pita *beads* 1,2, dan 3 lebih kecil dari TiO₂ anatas (3,12 eV) sedangkan *beads* 0 memiliki nilai energi celah pita yang lebih besar dibandingkan TiO₂ anatas, serta yang memiliki energi celah pita terkecil adalah *beads* 3. Energi celah pita yang semakin kecil maka akan mempermudah elektron untuk bereksitasi dari pita valensi ke pita konduksi. Eksitasi elektron menghasilkan *hole* yang bermuatan positif di pita valensi yang memiliki sifat pengoksidasi yang kuat. *Hole* tersebut akan memecah air dan membentuk radikal hidroksil (•OH) yang kemudian bereaksi dengan molekul

organik. Sehingga, *hole* tersebut mampu mengoksidasi dan mendagradasi polutan organik yang beracun menjadi senyawa yang lebih aman.

Berdasarkan nilai energi celah dapat ditentukan pula nilai panjang gelombang dari *beads* yang ditunjukkan pada Tabel 4.2 dan Lampiran 7. Hasil perhitungan yang didapatkan, *beads* 3 memiliki panjang gelombang terbesar yaitu 412 nm (daerah sinar tampak). Sehingga, dari hasil UV – DRS dapat diketahui bahwa fotokatalis TiO₂ yang ditambahkan *beads* mampu menggeser panjang gelombang dari daerah sinar UV ke daerah sinar tampak, meskipun pergeseran yang terjadi sangat sedikit karena fotokatalis TiO₂ tidak mampu menutupi permukaan *beads*. Sehingga, dengan adanya pengemban pada TiO₂ mengakibatkan aktivitas fotodegradasi pada *beads* meningkat (Nagaoka *et al.*, 2005).

4.6 Karakterisasi Beads dengan XRD

Analisis menggunakan XRD digunakan untuk mengetahui kristalinitas dari beads. Karakteristik kristal dapat dilihat dari posisi, lebar, nilai ketinggian puncak, dan ukuran kristal. Pengukuran XRD dilakukan dengan sumber radiasi monokromator Cu K α (λ = 1,54060 Å). Hasil karakterisasi selanjutnya diolah menggunakan rumus Debye Scherrer. Pola dari difraksi sinar X pada beads ditunjukkan pada Gambar 4.11. Data yang diperoleh dibandingkan dengan data standar TiO₂ fasa anatas (JCPDS no. 71-1166).

Gambar 4.11 Pola difraksi beads

Berdasarkan Gambar 4.11 diketahui bahwa masing-masing difraktogram dari *beads* 0, *beads* 1, *beads* 2, dan *beads* 3 yang dihasilkan memiliki puncak khas dengan intensitas tertinggi pada 2θ = 29,5° yang sesuai dengan standar CaCO₃ (JCPDS no. 85-1108) pada 2θ = 29,5°, 48,3° dan 39,4°. CaCO₃ ini berasal dari agen pembentuk pori yang ditambahkan pada saat pembuatan *beads*. Ketika *beads* ditambahkan ke dalam TiO₂ (*beads* 1, *beads* 2, dan *beads* 3) maka muncul puncak baru dengan puncak khas intensitas tertinggi pada 2θ = 25° yang sesuai dengan standar TiO₂ anatas (JCPDS no. 71-1166) yaitu pada 2θ = 25,281°; 36,9469°; 37,801°; 55,061°; dan 70,310°. Puncak-puncak pada *beads* juga bersesuaian dengan hasil penelitian yang dilakukan oleh Dalponte *et al.* (2019) yang menunjukkan bahwa TiO₂ anatas memiliki puncak pada 2θ = 25,42°; 27,81°; 36,28°; 37,97°; 41,42°; 48,21°; 53,97°, dan 55,35°. Sehingga, dari hasil pola difraksi sinar X telah diketahui bahwa TiO₂ yang berada di dalam *beads* memiliki fasa anatas dan dapat dipastikan bahwa fotokatalis TiO₂ sangat stabil dan dapat digunakan sebagai fotokatalis yang efisien (Thomas *et al.*, 2016). Pada Gambar

4.11 juga menunjukkan bahwa semakin banyak TiO₂ yang ditambahkan maka semakin tinggi pula puncak khas TiO₂ yang terbentuk dan terlihat juga bahwa semakin tinggi puncak khas TiO₂ maka semakin rendah puncak khas CaCO₃. Sehingga, dapat diasumsikan bahwa semakin banyak TiO₂ yang ditambahkan maka semakin rendah kandungan CaCO₃ di dalam *beads* yang dikarenakan oleh proses pencucian CaCO₃.

Ketiga *beads* tersebut memiliki puncak yang tajam dengan intensitas yang tinggi dan luas puncak sempit yang mengidentifikasikan bahwa *beads* tersebut adalah kristalin. Akan tetapi, *beads* 3 memiliki puncak dengan intensitas yang lebih tinggi dan sedikit lebih lebar dibandingkan dengan *beads* 1 dan 2, sehingga ini menunjukkan bahwa *beads* 3 lebih kristalin dibandingkan dengan *beads* 1 dan *beads* 2.

Salah satu kinerja fotokatalis TiO₂ dipengaruhi oleh ukuran kristal. Dimana semakin kecil ukuran kristal maka luas permukaan kristal akan semakin besar, sehingga dapat meningkatkan aktivitas fotodegradasi. Ukuran kristal dari semua sampel dapat diperoleh berdasarkan perhitungan menggunakan persamaan Debye Schererr pada Lampiran 5. Hasil perhitungan disajikan dalam Tabel 4.3.

Tabel 4.3 Ukuran kristal sampel

Sampel	2θ (.)	Ukuran Kristal (nm)
TiO ₂ anatas	25,388	53,63
Beads 1	25,358	48,83
Beads 2	25,402	51,68
Beads 3	25,399	42,94

Berdasarkan Tabel 4.3 menunjukkan bahwa ukuran kristal TiO₂ mengalami perubahan ketika TiO₂ ditambahkan dengan *beads* yang ditandai

dengan semakin kecil ukuran kristalnya dari 53,63 nm menjadi 48,83; 51,68; dan 42,94 nm. Ukuran kristal terkecil terdapat pada *beads* 3, yaitu 42,94 nm. Pengurangan ukuran kristal pada TiO₂ diduga karena *beads* yang ditambahkan mampu menghambat pertumbuhan kristal dengan berada pada batas kristal (Andani dan Puryanti, 2015). Perubahan ukuran kristal yang semakin kecil (nano) juga dapat meningkatkan aktivitas fotodegradasi karena Naimah dan Ermawati, (2011) menyebutkan bahwa fotokatalis yang berukuran nano (1-100 nm) akan memberikan aktivitas fotodegradasi yang lebih efektif dan dengan ukuran yang lebih kecil dapat menjadikan penyebaran partikel semakin rata.

TiO₂ memiliki ukuran kristal yang besar ketika sebelum ditambahkan beads. Hal ini diasumsikan bahwa pada TiO₂ terjadi aglomerasi (penggumpalan). Dimana semakin banyak partikel yang mengalami aglomerasi maka ukuran kristal akan semakin besar pula (Rosanti *et al.*, 2020). Dengan adanya aglomerasi tersebut, maka TiO₂ memiliki luas permukaan yang kecil dikarenakan partikel TiO₂ mengalami penggabungan antar partikel satu dengan yang lainnya, sehingga membentuk ukuran partikel yang lebih besar dan ukuran partikel yang besar dapat menyebabkan aktivitas fotodegradasi yang rendah (Supriyanto *et al.*, 2014). Oleh karena itu, diperlukan material pendukung (*beads*) untuk memperluas permukaan TiO₂, setelah TiO₂ ditambahkan dengan *beads*, maka TiO₂ akan lebih tertarik ke permukaan alginat. Sehingga, tidak mengalami aglomerasi dan tersebar rata ke dalam alginat. Dengan demikian, ukuran kristal akan semakin kecil. Seperti penelitian yang dilakukan oleh Dalponte *et al.* (2019) menunjukkan bahwa TiO₂ yang ditambahkan ke *beads* alginat memiliki aktivitas fotodegradasi TiO₂ yang

tinggi ditandai dengan mudahnya TiO₂ mengalami dispersi dan mengisi pori-pori di permukaan *beads* alginat.

4.7 Uji Aktivitas Fotodegradasi *Beads* Menggunakan Metilen Biru

Uji fotodegradasi pada *beads* dalam mendegradasi metilen biru dilakukan dengan menggunakan sinar UV *blacklight* selama 240 menit (60 menit kondisi gelap dan 180 menit pada kondisi terang) dan dilanjutkan dengan analisa menggunakan spektrofotometer UV-Vis pada panjang gelombang 665 nm. Dimana pengukuran panjang gelombang maksimum disajikan pada Lampiran 7.1. Zat warna metilen biru yang digunakan adalah 10 ppm dan pada kondisi pH 7,2. Hasil fotodegradasi *beads* pada metilen biru ditampilkan pada Tabel 4.4. Uji aktivitas fotokatalis dipengaruhi oleh beberapa faktor, diantaranya energi celah pita, ukuran partikel dan kristal, luas permukaan material, serta morfologi (Alvaro *et al.*, 2006).

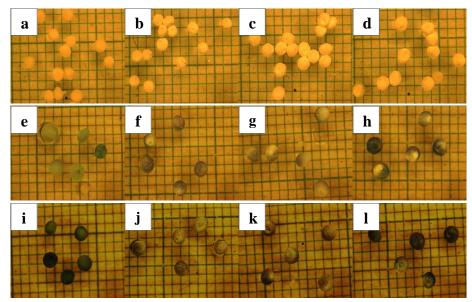
Tabel 4.4 Hasil uji fotodegradasi *beads* terhadap metilen biru

Sampel	Energi Celah Pita (eV)	Waktu Degradasi (Menit)	Kondisi	Penurunan Konsentrasi Metilen Biru (%)
Beads 0	3,14	60	Gelap	53,68
		180	Terang	66,28
Beads 1	3,06	60	Gelap	54,94
	3,00	180	Terang	74,81
Beads 2	3,08	60	Gelap	51,26
	3,08	180	Terang	72,19
Beads 3	3,01	60	Gelap	56,10
	3,01	180	Terang	78,97

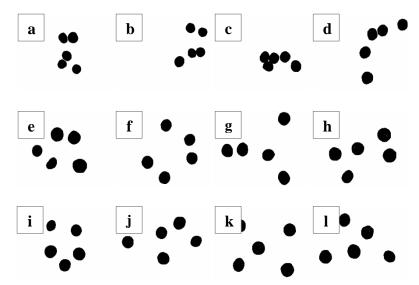
Berdasarkan Tabel 4.4 menunjukkan bahwa ketika *beads* ditambahkan ke dalam TiO₂ maka akan mengalami kenaikan persen degradasi metilen biru yang dipengaruhi oleh adanya penurunan energi celah pita pada *beads*. Menurut Berli *et al.* (2017) adanya penurunan energi celah pita dikarenakan ada pembentukan tingkat energi baru antara pita valensi dan pita konduksi pada *beads* yang diakibatkan oleh adanya TiO₂. Sehingga, jarak antara pita valensi dan pita konduksi semakin kecil serta dapat mempermudah elektron untuk bereksitasi dari pita valensi ke pita konduksi dan persen degradasi mengalami peningkatan.

Tabel 4.4 juga menunjukkan bahwa beads 3 memiliki nilai persentase penurunan konsentrasi metilen biru tertinggi dibandingkan dengan yang lainnya baik dengan penyinaran maupun tanpa penyinaran. Pada kondisi gelap beads memiliki nilai persentase penurunan konsentrasi metilen biru yang lebih kecil dibandingkan dengan kondisi terang, karena pada kondisi gelap tidak ada energi yang berupa foton dari lampu UV yang mengenai beads dan TiO2 di dalam beads tidak memiliki energi untuk mendegradasi metilen biru. Sehingga, dapat diasumsikan bahwa pada kondisi gelap beads memiliki kemampuan untuk menyerap metilen biru, karena menurut penelitian yang dilakukan Qazim (2019) menjelaskan bahwa beads alginat-selulosa mampu bertindak sebagai adsorben untuk menurunkan konsentrasi metilen biru dan memiliki kapasitas adsorpsi tertinggi pada waktu perendaman 408 jam. Sedangkan, pada kondisi terang dengan penyinaran sinar UV beads memiliki nilai persentase penurunan konsentrasi metilen biru yang lebih tinggi. Hal tersebut menunjukkan bahwa terjadi suatu reaksi yang berasal dari fotokatalis TiO₂. Pada saat fotokatalis TiO₂ disinari dengan sinar UV, maka ada energi foton dari sinar UV yang mengenai TiO₂ dan menghasilkan hole dan elektron. Dimana hole akan bereaksi dengan

H₂O dan membentuk radikal hidroksil (•OH) yang memiliki kemampuan untuk mendegradasi zat warna (Wardhani *et al.*, 2016).


Pada penelitian ini, ditampilkan data ukuran kristal dan energi celah pita untuk mendukung penjelasan hasil fotodegradasi *beads*. Berdasarkan data energi celah pita pada Tabel 4.2, *beads* 3 memiliki nilai energi celah pita yang paling kecil (3,01 eV), serta pada Gambar 4.8 menunjukkan bahwa *beads* 3 memiliki nilai reflektansi yang rendah dibandingkan dengan *beads* 1 dan 2 pada daerah sinar UV dan sinar tampak. Nilai reflektansi yang rendah ini menunjukkan besarnya kemampuan absorbsi *beads* untuk mendagradasi metilen biru. Selain itu, *beads* 3 memiliki sifat kristalinitas yang baik dan ukuran kristal yang kecil (42,94 nm) dibandingkan *beads* 1 dan 2. Menurut Nagaveni *et al.* (2004) aktivitas fotokatalis dari suatu material dinyatakan baik apabila memiliki sifat kristalinitas yang baik dan celah pita yang rendah, serta menurut Gupta *et al.* (2017) mendefinisikan bahwa kristalinitas yang tinggi dan ukuran partikel yang kecil dari suatu material memainkan peran aktif untuk mencapai laju degradasi yang lebih baik.

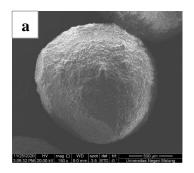
4.8 Karakterisasi *Beads* dengan Mikroskop Optik

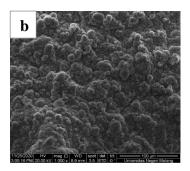

Karakterisasi menggunakan mikroskop optik bertujuan untuk mengetahui diameter pada *beads*. Pengukuran diameter *beads* dilakukan dengan menggunakan *software* ImageJ yang ditampilkan pada Gambar 4.13 dan data diameter *beads* disajikan pada tabel 4.5

Tabel 4.5 Data diameter beads

Sampel	Diameter Beads (mm)			
	Sebelum Uji	Kondisi Uji Fotodegradasi		
	Fotodegradasi	Gelap	Terang	
Beads 0	0,128	0,145	0,138	
Beads 1	0,126	0,137	0,138	
Beads 2	0,129	0,141	0,141	
Beads 3	0,137	0,143	0,145	

Gambar 4.12 Hasil karakterisasi mikroskop optik dengan perbesaran 1x10 kali pada (a) beads 0, (b) beads 1, (c) beads 2 dan (d) beads 3 sebelum proses fotodegradasi, (e) beads 0, (f) beads 1, (g) beads 2 dan (h) beads 3 pada proses fotodegradasi kondisi gelap, (i) beads 0, (j) beads 1, (k) beads 2 dan (l) beads 3 pada proses fotodegradasi kondisi terang




Gambar 4.13 Analisis gambar mengggunakan Image-J pada (a) *beads* 0, (b) *beads* 1, (c) *beads* 2 dan (d) *beads* 3 sebelum proses fotodegradasi, (e) *beads* 0, (f) *beads* 1, (g) *beads* 2 dan (h) *beads* 3 pada proses fotodegradasi kondisi gelap, (i) *beads* 0, (j) *beads* 1, (k) *beads* 2 dan (l) *beads* 3 pada proses fotodegradasi kondisi terang

Berdasarkan Gambar 4.12 diketahui bahwa *beads* mampu menyerap dan mendegradasi metilen biru yang terlihat dari berubahnya warna *beads* dari putih menjadi biru ketika proses fotodegradasi dalam kondisi gelap maupun terang. Berdasarkan data pada Tabel 4.5 juga terlihat bahwa semakin lama proses fotodegradasi maka akan semakin besar pula diameter *beads* yang dikarenakan zat warna metilen biru masuk ke dalam *beads*.

4.9 Karakterisasi Beads dengan SEM – EDX

Karakterisasi menggunakan *scanning electron microscope* SEM bertujuan untuk mengetahui karakteristik permukaan dari *beads*. Gambar hasil SEM ditunjukkan pada Gambar 4.14.

Gambar 4.14 Hasil karakterisasi SEM *beads* 3 (a) Perbesaran 150x dan (b) Perbesaran 1000x

Dari Gambar 4.14 diketahui bahwa *beads* 3 memiliki bentuk bulat dan permukaannya yang kasar. Bentuk bulat pada *beads* ini dihasilkan dari ikatan silang antara alginat dengan kation divalen (Ca²⁺) dari *crosslink* CaCl₂, serta *beads* 3 memiliki range diameter partikel pada permukaan 0,4303-3,3352 µm.

Tabel 4.6 Persen berat masing-masing unsur dari beads 3

Sampel —		Berat Masing – Masing Unsur (%)			
	С	O	Ca	Ti	S
Beads 3	7,09	53,89	21,90	13,43	2,08

Berdasarkan hasil EDX didapatkan unsur Ti pada *beads* 3 yang berasal dari fotokatalis TiO₂, unsur C dari selulosa xantat, alginat, dan CaCO₃, unsur O dari selulosa xantat, alginat, TiO₂, dan CaCO₃, unsur S dari selulosa xantat, dan unsur Ca berasal dari porogen CaCO₃ dan agen *crosslink* CaCl₂. Unsur S yang terkandung di dalam *beads* 3 sangat sedikit, karena pada saat proses pembuatan selulosa xantat penambahan unsur S dari CS₂ hanya sebanyak 2,5 mL dan unsur C yang terkandung dalam *beads* 3 juga sedikit. Hal tersebut dikarenakan pada saat proses pencucian porogen, kemungkinan unsur C lepas dengan membentuk gelembung CO₂.

4.10 Hasil Penelitian dalam Perspektif Islam

Penelitian dengan judul "Pembuatan *Beads* Selulosa Xantat Sebagai Material Pendukung TiO₂ Menggunakan *Crosslink* CaCl₂" merupakan salah satu bentuk upaya untuk memanfaatkan limbah batang jagung sebagai salah satu bahan dalam pembuatan *beads* yang dapat mencemari lingkungan apabila dibiarkan begitu saja. Pencemaran lingkungan dalam bentuk apapun tentunya dapat merugikan manusia dan makhluk hidup lainnya. Sebagaimana Allah Swt. berfirman dalam QS. Ar-Ruum (30) ayat 41.

Artinya: "Telah nampak kerusakan di darat dan di laut disebabkan karena perbuatan tangan manusia, supaya Allah merasakan kepada mereka sebagian dari (akibat) perbuatan mereka, agar mereka kembali (ke jalan yang benar)."

Ayat di atas menyatakan bahwa manusia telah membuat kerusakan yang ada di bumi, baik yang di darat maupun di laut. Menurut Shihab (2000) lafaz (الْفَسَادُ) menjelaskan bahwa kerusakan yang terjadi ini adalah hasil dari perbuatan manusia yang secara sengaja berusaha untuk mengubah ciptaan Allah Swt. pada lingkungan yang telah diciptakan secara sempurna dan seimbang. Salah satu perbuatan manusia yang termasuk dalam kategori *al-fasad* yaitu kurangnya memanfaatkan batang jagung dan membiarkannya menjadi limbah. Oleh karena itu, sebagai manusia yang memiliki akal dan pikiran, maka seyogyanya untuk berpikir dan mencari solusi tentang fenomena alam yang menyimpang dari aturan Al-Qur'an ini (limbah batang jagung). Salah satu solusi untuk meminimalisir

limbah batang jagung yaitu dengan dijadikannya sebagai bahan baku untuk pembuatan *beads* sebagai fotodegradator dengan penambahan TiO₂.

Penambahan variasi konsentrasi TiO₂ pada pembuatan *beads* dibuat bermacam-macam dengan tujuan untuk mendapatkan komposisi yang terbaik agar *beads* yang dihasilkan mampu menjadi fotodegradator yang baik pula. Konsentrasi TiO₂ yang ditambahkan juga akan mempengaruhi hasil yang diperoleh dari segi uji fotodegradasinya. Allah berfirman dalam QS. Al-Furqon (25) ayat 2.

Artinya: "Dan Dia menciptakan segala sesuatu, lalu Dia menetapkan ukuran-ukurannya dengan tepat".

Menurut Abdullah (2004) Allah telah menciptakan segala sesuatu di bawah kekuasaan-Nya yang sesuai dengan aturan, tatanan, dan takdir-Nya dengan serapi-rapinya secara tepat dan sempurna dengan tujuan agar manusia dapat memahami hasil penciptaan-Nya Sedangkan menurut Shihab (2000) Allah menciptakan segala sesuatu di bumi ini dengan memberikan ukuran dan aturan yang cermat, serta dapat menjamin keberlangsungan tugas masing-masing secara teratur dan berjalan menurut hukum dan aturan yang bersifat konstan dan teliti. Begitu juga dalam pembuatan *beads* pada penelitian ini dibutuhkan komposisi (alginat, selulosa xantat, CaCO₃, dan CaCl₂) serta variasi konsentrasi TiO₂ yang tepat dan sesuai dengan ukurannya guna untuk mendapatkan *beads* yang memiliki nilai fotodegradasi terbaik.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian yang dipaparkan pada pembahasan maka dapat disimpulkan sebagai berikut:

- 1. Beads yang ditambahkan ke dalam TiO₂ memiliki energi celah pita yang lebih kecil dan panjang gelombang yang lebih besar dibandingkan tanpa TiO₂. Nilai energi celah pita dan panjang gelombang sebesar 3,14 eV dan 395 nm untuk beads 0, 3,06 eV dan 405 nm untuk beads 1, 3,08 eV dan 402 nm untuk beads 2, 3,01 eV dan 412 nm untuk beads 3. Hasil XRD menunjukkan beads memiliki puncak khas CaCO₃ dan pada beads 1, 2 dan 3 muncul puncak baru dari TiO₂ anatas dan memiliki ukuran kristal TiO₂ berturut-turut 48,83; 51,68; dan 42,94 nm. Kemampuan mendagradasi metilen biru pada beads mengalami kenaikan ketika ditambahkan TiO₂ dengan kemampuan degradasi sebesar 53,68 % untuk beads 0, 54,94 % untuk beads 1, 51,26 % untuk beads 2, dan 56,10 % untuk beads 3 pada kondisi tanpa lampu UV dan pada kondisi dengan lampu UV mendagradi metilen biru sebesar 66,28 % untuk beads 0, 74,81 % untuk beads 1, 72,19 % untuk beads 2, dan 78,97 % untuk beads 3.
- Konsentrasi TiO₂ terbaik dimiliki oleh beads 3 (3 gram TiO₂) yang mampu mendegradasi metilen biru sebesar 56,10 % dalam kondisi tanpa lampu UV dan 78,97 % dalam kondisi dengan lampu UV.
- Karakterisasi beads 3 berdasarkan analisi SEM EDX memiliki bentuk karakteristik permukaan yang kasar.

5.2 Saran

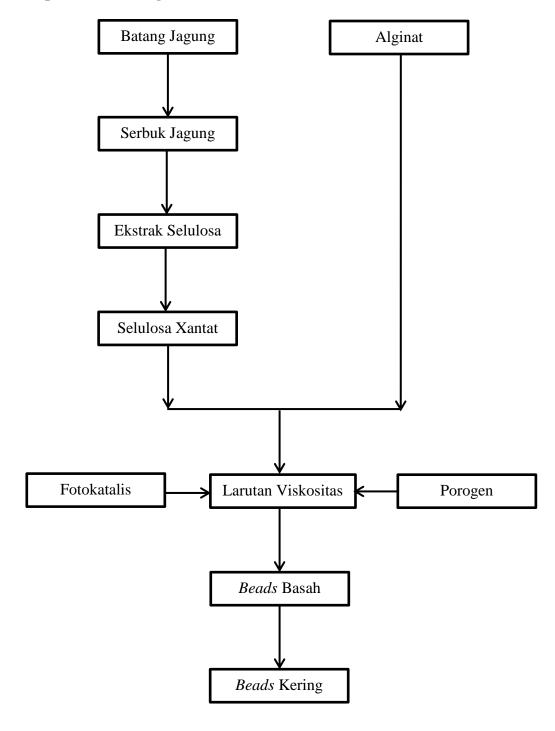
Perlu dilakukan penelitian lebih lanjut untuk metode pencucian porogen dalam proses pembentukan pori *beads* dikarenakan dari hasil XRD masih terdapat puncak khas dari porogen CaCO₃. Proses pencucian porogen dapat dilakukan menggunakan air deionisasi untuk menghilangkan CaCl₂ hasil reaksi CaCO₃ dengan HCl yang tidak terikat di permukaan *beads* dan pada proses perendaman *beads* di dalam CaCl₂ dilakukan dengan sembari diaduk secara perlahan untuk memungkinkan pembentukan gas secara sempurna.

DAFTAR PUSTAKA

- Abdullah, M., 2004. Tafsir Ibnu Katsir, 1 ed. Bogor: Pustaka Imam Asy-Syafi'i.
- Agüero, L., Zaldivar-Silva, D., Peña, L., dan Dias, M.L., 2017. Alginate microparticles as oral colon drug delivery device: *A review. Carbohydrate Polymers.* 168, 32–43.
- Ahmad, Z., Roziaizan, N., Rozyanty, A.R., Mohamad, A., dan Nawawi, W.I., 2016. Isolation and Characterization of Microcrystalline Cellulose (MCC) from Rice Husk (RH). *MATEC Web of Conferences* 47, 05013.
- Ai, T., Jiang, X., Yu, H., Xu, H., Pan, D., Liu, Q., Chen, D., dan Li, J., 2015. Equilibrium, kinetic and mechanism studies on the biosorption of Cu²⁺ and Ni²⁺ by sulfur-modified bamboo powder. *Korean Journal Chemical Engineering*. 32, 342–349.
- Alvaro, M., Aprile, C., Benitez, M., Carbonell, E., dan García, H., 2006. Photocatalytic Activity of Structured Mesoporous TiO₂ Materials. *Journal Physical Chemistry*. B 110, 6661–6665.
- Ana, D., 2016. Pemanfaatan Limbah Hasil Panen Jagung Untuk Pembuatan Energi Alternatif yang Ramah Lingkungan. Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri (Seniati).
- Andani, D., dan Puryanti, D., 2015. Pengaruh PEG-2000 Terhadap Ukuran Partikel Fe₃O₄ Yang Disintesis Dengan Metode Kopresipitasi. *Jurnal Fisika Unand* 4.
- Azizah, N.W., Hidayah, C.N., Latifah, A.F., Yulianti, E., dan Khoiroh, L.M., 2018. Synthesis and Characterization of Alginate-Cellulose Xanthate Beads from Corn Stalk with Porogen Variation. Di dalam: *The 9th International Conference on Green Technology 2018*; Malang 17 Oktober 2018. Malang: Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Bajpai, S.K., dan Sharma, S., 2004. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca²⁺ and Ba²⁺ ions. *React. Functional Polymers*. 59, 129–140.
- Berli, A., Dahlan, D., Ali Umar, A., 2017. Pengaruh Lama Penumbuhan Titanium Dioksida Didoping Copper Terhadap Energi Gap. *JIF (Jurnal Ilmu Fisika)* 8, 60–63.

- Bhattacharya, D., Germinario, L.T., dan Winter, W.T., 2008. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. *Carbohydrate Polymers*. 73, 371–377.
- Boufi, S., dan Chaker, A., 2016. Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. *Industrial Crops and Products*. 93, 39–47.
- Braccini, I., dan Pérez, S., 2001. Molecular Basis of Ca²⁺-Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited. *Biomacromolecules* 2, 1089–1096.
- Choi, B.Y., Park, H.J., Hwang, S.J., dan Park, J.B., 2002. Preparation of alginate beads for floating drug delivery system: effects of CO₂ gas-forming agents. *International Journal of Pharmaceutics*. 239, 81–91.
- Dalponte, I., de Sousa, B.C., Mathias, A.L., dan Jorge, R.M.M., 2019. Formulation and optimization of a novel TiO₂/calcium alginate floating photocatalyst. *International Journal of Biological Macromolecules*. 137, 992–1001.
- Dewangan, T., Tiwari, A., dan Bajpai, A.K., 2011. Removal of Chromium(VI) Ions by Adsorption onto Binary Biopolymeric Beads of Sodium Alginate and Carboxymethyl Cellulose. *Journal of Dispersion Science and Technology*. 32, 1075–1082.
- Gericke, M., Trygg, J., dan Fardim, P., 2013. Functional Cellulose Beads: Preparation, Characterization, and Applications. *Chemical Reviews*. 113, 4812–4836.
- Gupta, V.K., Saravanan, R., Agarwal, S., Gracia, F., Khan, M.M., Qin, J., dan Mangalaraja, R.V., 2017. Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO₂ nanocomposites. *Journal of Molecular Liquids*. 232, 423–430.
- Haroen, W.K., dan Wistara, N., 2008. Rayon Filament Properties From Five Lesser Known Tropical Woods Species. *Jurnal Teknik Industri Pertanian* 18(2),94-98, 5.
- Heuser, E., 1943. The Chemistry of Cellulose. London: John Wiley & Song, Inc.
- Ibrahim, S.M., Abou El Fadl, F.I., dan El-Naggar, A.A., 2014. Preparation and characterization of crosslinked alginate—CMC beads for controlled release of nitrate salt. *Journal of Radioanalytical and Nuclear Chemistry*. 299, 1531–1537.

- Kanki, T., Yoneda, H., Sano, N., Toyoda, A., dan Nagai, C., 2004. Photocatalytic reduction and deposition of metallic ions in aqueous phase. *Chemical Engineering Journal*. 97, 77–81.
- Kittel, C., 2005. Introduction to solid state physics, 8th ed. ed. NJ: Wiley, Hoboken.
- Klemm, D., Philipp, B., Heinze, T., Heinze, U., dan Wagenknecht, W., 1998. Comprehensive Cellulose Chemistry. New York: Wiley-VCH.
- Kusuktham, B., Prasertgul, J., dan Srinun, P., 2014. Morphology and Property of Calcium Silicate Encapsulated with Alginate Beads. *Silicon* 6, 191–197.
- Lavanya, D., Kulkarni, P.K., Dixit, M., Raavi, P.K., dan Krishna, L.N.V., 2011. Sources Of Cellulose and Their Applications *A Review* 2, 21.
- Lee, H.V., Hamid, S.B.A., dan Zain, S.K., 2014. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. *The Scientific World Journal*. 2014, 1–20.
- Lee, K.Y., dan Mooney, D.J., 2012. Alginate: Properties and biomedical applications. *Progress in Polymer Science*. 37, 106–126.
- Liu, L., Zhang, S., Yang, X., dan Ju, M.T., 2017. Cellulose Isolation from Corn Stalk Treated by Alkaline Biochars in Solvent Systems. *BioResources* 13, 691–703.
- Mallakpour, S., Behranvand, V., dan Mallakpour, F., 2019. Synthesis of alginate/carbon nanotube/carbon dot/fluoroapatite/TiO₂ beads for dye photocatalytic degradation under ultraviolet light. *Carbohydrate Polymers*. 224, 115138.
- Matthew, dan Hennek. 2007. Nitrogen-Doped Titanium Dioxide: An Overview of Functional and Introduction to Applications.
- McKeen, L.W., 2017. Environmentally Friendly Polymers, in: Permeability Properties of Plastics and Elastomers. Elsevier, pp. 305–323.
- Munnik, P., de Jongh, P.E., dan de Jong, K.P., 2015. Recent Developments in the Synthesis of Supported Catalysts. *Chemical Reviews*. 115, 6687–6718.
- Nagaoka, S., Arinaga, K., Kubo, H., Hamaoka, S., Sakurai, T., Takafuji, M., dan Ihara, H., 2005. Cellulose/TiO₂ Hybrid Spherical Microbeads Prepared by a Viscose Phase Separation Method: Control of the Distribution of TiO₂ Particles in a Sphering System. *Polymer Journal*. 37, 186–191.


- Nagaveni, K., Hegde, M.S., Ravishankar, N., Subbanna, G.N., dan Madras, G., 2004. Synthesis and Structure of Nanocrystalline TiO₂ with Lower Band Gap Showing High Photocatalytic Activity. *Langmuir*. 20, 2900–2907.
- Naimah, S., dan Ermawati, R., 2011. Efek Fotokatalisi Nano TiO₂ Terhadap Mekanisme Antimikrobia E *Coli* dan *Salmonella*. *Jurnal Riset Industri* V, 113–120.
- Naimah, S., A., S.A., Jati, B.N., Aidha, N.N., dan Cahyaningtyas, A.A., 2014. Degradasi Zat Warna Pada Limbah Cair Industri Tekstil Dengan Metode Fotokatalitik Menggunakan Nanokomposit TiO₂ Zeolit. *Jurnal Kimia Dan Kemasan* 36, 225.
- Park, K., dan Yeo, Y., 2007. Microencapsulation Technology. Encyclopedia of Pharmaceutical Technology.
- Patil, J.S., Kamalapur, M.V., Marapur, S.C., dan Kadam, D.V., 2010. Ionotropic Gelation And Polyelectrolyte Complexation: The Novel Techniques to Design Hydrogel Particulate Sustained, Modulated Drug Delivery System: *A Review*. Digest Journal of Nanomaterials and Biostructures 5, 241–248.
- Purnamasari, D., 2011. Formulasi Beads Mengapung Famotidin Dengan Kalsium Karbonat Sebagai Pembentuk Poros. Depok: Jurusan Kimia FMIPA UI.
- Puspitasari, S., Yulianti, E., dan Khoiroh, L.M., 2017. Preparasi dan Karakterisasi Beads Alginat:Selulosa Xantat dari AmpasTebu melalui Metode Gelasi Ionik dengan CaCO₃ sebagai Porogen. *Alchemy Journal of Chemistry* 9.
- Putera, R.D.H., 2012. Ekstraksi Serat Selulosa dari Tanaman Eceng Gondok (Eichornia Crassipers) dengan Variasi Larutan. *Skripsi*. Depok: Fakultas Teknik Universitas Indonesia.
- Qazim, N., 2019. Sintesis dan Karakterisasi Beads Alginat-Selulosa dari Batang Jagung dengan Variasi Senyawa Porogen, *Skripsi*. Malang: UIN Maulana Malik Ibrahim.
- Quthb, S., 2004. Tafsir Fi Zhilalil Qur'an, 19th ed. Jakarta: Gema Insani.
- Quthb, S., 2004. Tafsir Fi Zhilalil Qur'an, 16th ed. Jakarta: Gema Insani.
- Quthb, S., 2004. Tafsir Fi Zhilalil Qur'an, 4th ed. Jakarta: Gema Insani.
- Rahmidar, L., Nurilah, I., dan Sudiarty, T., 2018. Karakterisasi Metil Selulosa yang Disintesis dari Kulit Jagung (Zea mays). Pendipa Journal of Science Education 2.
- Rehman, N., de Miranda, M.I.G., Rosa, S.M.L., Pimentel, D.M., Nachtigall, S.M.B., dan Bica, C.I.D., 2013. Cellulose and Nanocellulose from Maize

- Straw: An Insight on the Crystal Properties. *Journal Polymers Environmental*.
- Ren, H., Gao, Z., Wu, D., Jiang, J., Sun, Y., dan Luo, C., 2016. Efficient Pb(II) removal using sodium alginate—carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. *Carbohydrate Polymers*. 137, 402–409.
- Rodgers, B., dan Waddell, W., 2005. *Tire Engineering, in: Science and Technology of Rubber*. Elsevier, pp. 619–II.
- Rosanti, A.D., Wardani, A.R.K., dan Latifah, E.U., 2020. Pengaruh Variasi Konsentrasi Urea Terhadap Fotoaktivitas Material Fotokatalis N/TiO₂ Untuk Penjernihan Limbah Batik Tenun Ikat Kediri. *Jurnal Kimia Riset* 5, 55–56.
- Rosdiana, N.S., Sarjono, P.R., dan Mulyani, N.S., 2013. Aktivitas Fusarium oxysporum dalam Menghidrolisis Eceng Gondok (Eichhornia crassipes) dengan Variasi Temperatur. *Chemical Information*. 1. 220–225.
- Saleh, A., Pakpahan, M.M.D., dan Angelina, N., 2009. Pengaruh Konsentrasi Pelarut, Temperatur dan Waktu Pemasakan pada Pembuatan Pulp dari Sabut Kelapa Muda. *Jurnal Teknik Kimia*, 16, 10.
- Sarkar, S., Chakraborty, S., dan Bhattacharjee, C., 2015. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO₂ nanoparticles in packed bed photo reactor (PBPR). *Ecotoxicology and Environmental Safety.* 121, 263–270.
- Shihab, 2000. Tafsir al-Misbah. Ciputat: Lentera Hati.
- Sönmez, M., Ficai, A., Ficai, D., Trusca, R., dan Andronescu, E., 2016. Alginate/Cellulose Composite Beads For Environmental Applications. U.P.B. *Scientific Bulletin* 78, 12.
- Sumardjo, D., 2009. *Pengantar Kimia:Buku Panduan Kuliah Mahasiswa Kedokteran dan Program Strata I Fakultas Bioeksakta*. Jakarta: Penerbit Buku Kedokteran EGC.
- Supriyanto, E., Holikin, A., dan Suwardiyanto, 2014. Pengaruh Thermal Annealing terhadap Struktur Kristal dan Morfologi Bubuk Titanium Dioksida (TiO₂). *Jurnal Ilmu Dasar* 15, 37–41
- Suvachittanont, S., dan Pookingdao, W., 2013. Development of Porous Spherical Cellulose Bead Production from Corn Cob as an Exfoliating Agent for Cosmetic Industries. *Journal of Chemistry and Chemical Engineering*. 7(12): 1156-1163.

- Swarbrick, J., 2007. *Encyclopedia of Pharmaceutical Technology, 3rd ed.* New York: Informa Healthcare.
- Swatloski, R.P., Spear, S.K., Holbrey, J.D., dan Rogers, R.D., 2002. Dissolution of Cellose with Ionic Liquids. *Journal of American Chemical Society*. 124, 4974–4975.
- Taherzadeh, M.J., dan Karimi, K., 2007. Acid-Base Hydrolysis Processes for Ethanol from Lignoselluloseic Materials: *A Review* 28.
- Thomas, M., Naikoo, G.A., Sheikh, M.U.D., Bano, M., dan Khan, F., 2016. Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO₂ nanocomposite hydrogel under direct sunlight irradiation. *Journal of Photochemistry and Photobiology A: Chemistry*. 327, 33–43.
- Wang, T., Li, B., dan Si, H., 2013. Preparation Of Regenerated Cellulose Bead And Its Coating With Cyclodextrins. *Cellulose Chemistry And Technology* 47 (1–2), 37–47, 11.
- Wardhani, S., Bahari, A., dan Misbah Khunur, M., 2016. Aktivitas Fotokatalitik Beads TiO₂-N/Zeolit Kitosan pada Fotodegradasi Metilen Biru (Kajian Pengembanan, Sumber Sinar dan Lama Penyinaran). *Journal of Enviromental Engineering and Sustainable Technology*. 3, 78–84.
- Widi, R.K., 2018. Pemanfaatan Material Anorganik Pengenalan dan Beberapa Inovasi di Bidang Penelitian. Yogyakarta: CV Budi Utama.
- Yulianti, E., Dianti, M.R., dan Mahmudah, R., 2016. Pembuatan Nature Cellulose Beads dari Batang Jagung sebagai Pengemban Senyawa Aktif Antidiabetik Tanaman Kelor Moringa Oleivera. *Laporan DIKTIS*.
- Yulianti, E., Mahmudah, Ri., Ma'rifah, A., dan Azmiyani, U., 2019. Adsorpsi Logam Ni dan Cu pada Limbah Cair Laboratorium Kimia menggunakan Biosorben Batang Jagung Termodifikasi Asam Sitrat. *Alchemy* 7, 13.
- Zhang, J., Zhou, P., Liu, J., dan Yu, J., 2014. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO₂. Journal of *Physical Chemistry and Chemical Physics* 16, 20382–20386.
- Zheng, L., dan Meng, P., 2016. Preparation, characterization of corn stalk xanthates and its feasibility for Cd (II) removal from aqueous solution. *The Journal of Physical Chemistry C.* 58, 391–400.

LAMPIRAN

Lampiran 1. Rancangan Penelitian

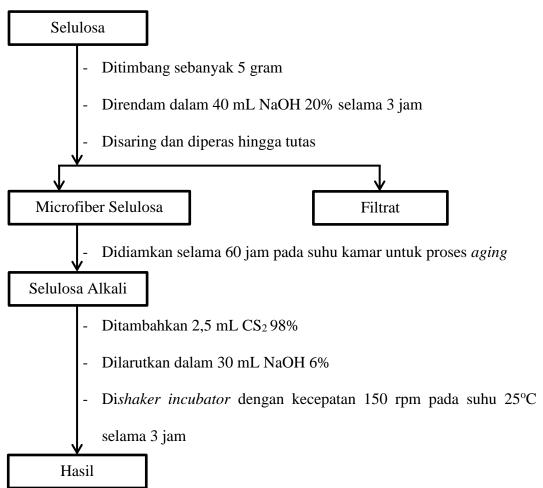
Lampiran 2. Skema Kerja

L.2.1 Preparasi Sampel

Batang Jagung

- Dibersihkan kemudian dikeringkan di bawah sinar matahari
- Dihaluskan sampel kering dengan digiling
- Diayak dengan ayakan 100 mesh
- Dioven selama 24 jam pada suhu 90°C

Hasil

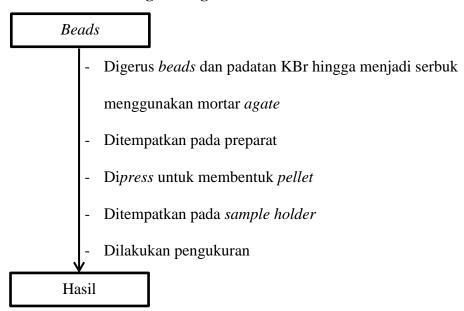

L.2.2 Ekstraksi Selulosa dari Batang Jagung

Serbuk Batang Jagung

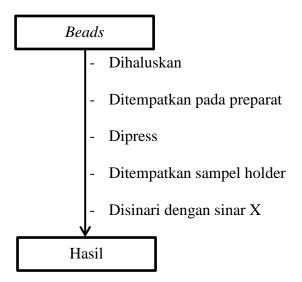
- Ditimbang 50 gram
- Direndam dengan 1000 mL NaOH 10% pada suhu 80°C selama 90 menit
- Dicuci beberapa kali dengan akuades
- Ditambahkan 200 mL NaClO₂ 1%
- Ditambahkan CH₃COOH 10% pada suhu 75°C sampai pH 5 selama
 1 jam
- Dicuci beberapa kali dengan akuades
- Dihidrolisis dengan HCl 5% (1:20) pada suhu 95°C selama 1 jam

Hasil

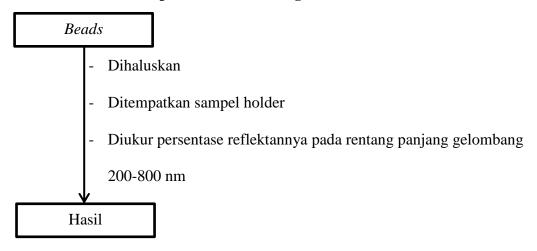
L.2.3 Pembuatan Selulosa Xantat

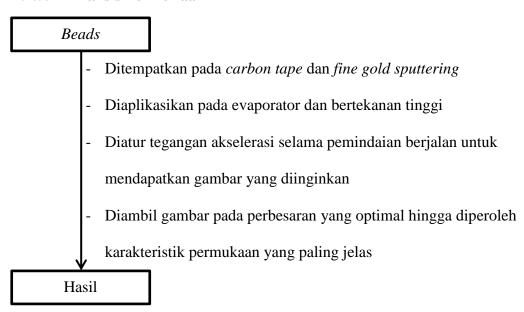

L.2.4 Penentuan Konsentrasi Terbaik TiO2 dalam Pembentukan *Beads*TiO2/Alginate Selulosa Xantat

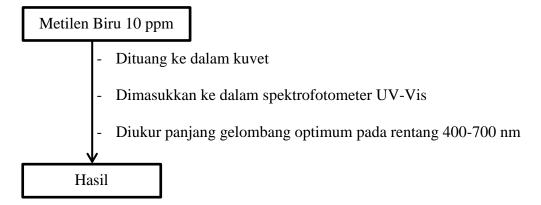
TiO_2 Ditimbang 1 gram Dilarutkan ke dalam 200 mL aquademin Diaduk selama 30 menit Ditambahkan alginat 4 gram Diaduk hingga homogen Ditambahkan 12 mL selulosa xantat Ditambahkan 2 gram CaCO₃ Diaduk hingga homogen Larutan TiO2 Alginat Selulosa Xantat Diteteskan menggunakan syringe ke dalam 200 mL CaCl₂ 3% Didiamkan selama 24 jam Beads Basah Disaring dan dicuci menggunakan aquademin Ditambahkan HCl 1 mmol/L dengan perbandingan 1:8 Dishaker pada kecepatan 150 rpm hingga tidak timbul gelembung Disaring Dicuci dengan aquademin hingga netral Dioven pada suhu 37°C selama 5 jam


Hasil

L.2.5 Karakterisasi


L.2.5.1 Analisis Gugus Fungsi


L.2.5.2 Analisis Karakter Struktur


L.2.5.3 Analisis Serapan Sinar dan Energi Celah Pita

L.2.5.4 Analisis Permukaan

L.2.5.5 Penentuan Panjang Gelombang Optimum Metilen Biru

L.2.5.6 Pembuatan Kurva Standar

Larutan baku metilen biru 50 ppm

- Diambil 0, 1, 2, 4, 6, 8, dan 10 mL (untuk dibuat larutan standar metilen biru 0, 1, 2, 4, 6, 8, dan 10 ppm)
- Dimasukkan ke dalam labu ukur 25 mL
- Ditandabataskan
- Diukur absorbansi masing-masing larutan menggunakan spektrofotometer UV-Vis pada panjang gelombang optimum

Hasil

L.2.5.7 Uji Aktivitas Fotodegradasi

Beads

- Diambil 0,1 gram
- Ditambahkan 25 mL metilen biru 10mg/L
- Dilakukan penyinaran dengan menggunakan sinar UV dan tanpa sinar UV di dalam fotoreaktor
- Diukur absorbansinya pada 240 menit penyinaran

Hasil

Lampiran 3. Preparasi Larutan dan Perhitungan

L.3.1 Ekstraksi Selulosa

a. NaOH 10% dalam 1000 mL

Diketahui: Ditanya: m?

 $v = 1000 \, mL$

$$\% \frac{b}{v} = 10\%$$

Jawab:

$$\% \frac{b}{v} = \frac{m}{v}$$
 (L.3.1(a))

$$10\% = \frac{m}{1000 \ mL}$$

$$m = \frac{10}{100} x 1000 = 100 \ gram$$

Jadi, larutan NaOH 10% dibuat dengan cara mengencerkan 100 gram NaOH ke dalam 1000 mL akuades.

b. NaClO₂ 1% dalam 250 mL

Diketahui: Ditanya: V_1 ?

 $M_1 = 1\%$

 $M_2 = 25\%$

 $V_2 = 100 \; mL$

$$M1 \times V1 = M2 \times V2$$
.....(L.3.1(b))

$$1\% \ x \ 250 \ mL = 25\% \ x \ V2$$

$$V2 = \frac{1\% \ x250 \ mL}{25\%} = 10 \ mL$$

Jadi, larutan NaClO₂ 1% dibuat dari 10 mL NaClO₂ 25% yang diencerkan dalam 250 mL akuades.

c. CH₃COOH 10% dalam 100 mL

Diketahui:

Ditanya: V₂?

$$M_1 = 10\%$$

$$V_1 = 100 \ mL$$

$$M_2 = 99,85\%$$

Jawab:

$$M1 \times V1 = M2 \times V2$$

$$10\% \ x \ 100 \ mL = 99,85\% \ x \ V2$$

$$V2 = \frac{10\% \ x100 \ mL}{99.85\%} = 10,02 \ mL$$

Jadi, larutan CH₃COOH 10% dibuat dari 10,02 mL CH₃COOH 99,85% yang diencerkan dalam 100 mL akuades.

d. HCl 5% dalam 1000 mL

Diketahui:

Ditanya: V₂?

$$M_1 = 5\%$$

$$V_1 = 1000 \; mL$$

$$M_2 = 37\%$$

$$M1 x V1 = M2 x V2$$

$$5\% \ x \ 1000 \ mL = 37\% \ x \ V2$$

$$V2 = \frac{5\% \ x1000 \ mL}{37\%} = 135,1 \ mL$$

Jadi, larutan HCl 5% dibuat dari 135,1 mL HCl 37% yang diencerkan dalam 1000 mL akuades.

L.3.2 Pembuatan Selulosa Xantat

a. NaOH 20% dalam 100 mL

Diketahui:

Ditanya: m?

$$v = 100 mL$$

$$\% \frac{b}{v} = 10\%$$

Jawab:

$$\% \frac{b}{v} = \frac{m}{v}$$

$$20\% = \frac{m}{100 \ mL}$$

$$m = \frac{20}{100}x100 = 20 \ gram$$

Jadi, larutan NaOH 20% dibuat dengan cara mengencerkan 20 gram NaOH ke dalam 100 mL akuades.

b. NaOH 6% dalam 100 mL

Diketahui:

Ditanya: m?

$$v = 100 mL$$

$$\% \frac{b}{v} = 6\%$$

$$\% \frac{b}{v} = \frac{m}{v}$$

$$6\% = \frac{m}{100 \ mL}$$

$$m = \frac{6}{100}x100 = 6 gram$$

Jadi, larutan NaOH 6% dibuat dengan cara mengencerkan 6 gram NaOH ke dalam 100 mL akuades.

L.3.3 Pembuatan Beads

a. HCl 1 mmol/L

Diketahui: Ditanya: V₁?

 $M_1:37\%$

 $M_2: 0,001 \frac{mol}{L}$

 $\rho \; HCl: 1{,}19 \, \frac{\textit{gram}}{\textit{mL}}$

 $Mr: 36,5 \frac{gram}{mol}$

 $V_2:1000\;mL$

$$M = \% \times \rho \times \frac{1000 \frac{mL}{L}}{Mr}....(L.3.1(c))$$

$$M = 37 \% x 1,19 \frac{gram}{mL} x \frac{1000 \frac{mL}{L}}{36,5 \frac{gram}{mol}}$$

$$M = 12,06 \frac{mol}{L}$$

$$M1 \times V1 = M2 \times V2$$

$$12,06 \frac{mol}{L} \times V1 = 0,001 \frac{mol}{L} \times 1000 \text{ mL}$$

$$V1 = \frac{0,001 \frac{mol}{L} \times 1000 \text{ mL}}{12,06 \frac{mol}{L}} = 0,1 \text{ mL}$$

Jadi, larutan HCl 1 mmol/L dibuat dari 0,1 mL HCl 37% yang diencerkan dalam 1000 mL akuades.

b. CaCl₂ 3% dalam 250 mL

Diketahui:

Ditanya: m?

$$v = 250 mL$$

$$\% \frac{b}{v} = 3\%$$

Jawab:

$$\% \frac{b}{v} = \frac{m}{v}$$

$$3\% = \frac{m}{250 \ mL}$$

$$m = \frac{3}{100}x250 = 7.5 gram$$

Jadi, larutan CaCl₂ dibuat dengan cara mengencerkan 7,5 gram CaCl₂ ke dalam 250 mL akuades.

L.3.4 Penentuan Panjang Gelombang Optimum Metilen Biru

a. Larutan stok 50 ppm

Diketahui Ditanya: M₂?

 M_1 metilen biru = 50 mg

$$V_1 = 1000 \text{ mL}$$
 $V_2 = 100 \text{ mL}$

$$ppm = \frac{mg}{L} = \frac{mg}{1000 \, mL}$$

$$M1 \times V1 = M2 \times V2$$

$$50 mg x 100 = M2 x 1000$$

$$M2 = \frac{50 \ mg \ x \ 100 \ mL}{1000 \ mL} = 5 \ mg$$

Jadi, larutan stok metilen biru 50 ppm dibuat dengan melarutakan 5 mg metilen biru ke dalam 100 mL aquades.

b. Larutan metilen biru 5 ppm dalam 100 mL

Diketahui Ditanya: V₁?

 M_1 metilen biru = 50 ppm

$$V_2 = 50 \text{ mL}$$
 $M_2 = 5 \text{ ppm}$

Jawab:

$$M1 \times V1 = M2 \times V2$$

50 ppm x V1 = 2 ppm x 50 mL

$$V1 = \frac{5 ppm \times 50 mL}{50 ppm} = 5 mL$$

Jadi, larutan metilen biru 2 ppm dibuat dengan melarutkan 5 mL larutan stok 50 ppm dalam 50 ml aquades.

L.3.5 Pembuatan Kurva Standar

a. Larutan metilen biru 2 ppm

Diketahui Ditanya: V₁?

 M_1 metilen biru = 50 ppm

$$V_2 = 50 \text{ mL}$$

$$M_2 = 2 ppm$$

Jawab:

$$M1 \times V1 = M2 \times V2$$

50 ppm x V1 = 2 ppm x 50 mL

$$V1 = \frac{2 ppm \times 50 mL}{50 ppm} = 2 mL$$

Jadi, larutan metilen biru 2 ppm dibuat dengan melarutkan 2 mL larutan stok 50 ppm dalam 50 ml aquades.

b. Larutan metilen biru 4 ppm

Diketahui

Ditanya: V₁?

 M_1 metilen biru = 50 ppm

$$V_2 = 50 \text{ mL}$$

$$M_2 = 4 ppm$$

Jawab:

$$M1 \times V1 = M2 \times V2$$

 $50 \ ppm \ x \ V1 = 4 \ ppm \ x \ 50 \ mL$

$$V1 = \frac{4 \ ppm \ x \ 50 \ mL}{50 \ ppm} = 4 \ mL$$

Jadi, larutan metilen biru 4 ppm dibuat dengan melarutkan 4 mL larutan stok 50 ppm dalam 50 ml aquades.

c. Larutan metilen biru 6 ppm

Diketahui

Ditanya: V₁?

 M_1 metilen biru = 50 ppm

$$V_2 = 50 \text{ mL}$$

$$M_2 = 6 ppm$$

Jawab:

$$M1 \times V1 = M2 \times V2$$

50 ppm x V1 = 6 ppm x 50 mL

$$V1 = \frac{6 \ ppm \ x \ 50 \ mL}{50 \ ppm} = 6 \ mL$$

Jadi, larutan metilen biru 6 ppm dibuat dengan melarutkan 6 mL larutan stok 50 ppm dalam 50 ml aquades.

d. Larutan metilen biru 8 ppm

Diketahui

Ditanya: V₁?

 M_1 metilen biru = 50 ppm

$$V_2 = 50 \text{ mL}$$

$$M_2 = 8 ppm$$

Jawab:

$$M1 x V1 = M2 x V2$$

50 ppm x V1 = 8 ppm x 50 mL

$$V1 = \frac{8 ppm \times 50 mL}{50 ppm} = 8 mL$$

Jadi, larutan metilen biru 8 ppm dibuat dengan melarutkan 8 mL larutan stok 50 ppm dalam 50 ml aquades.

e. Larutan metilen biru 10 ppm

Diketahui

Ditanya: V₁?

 M_1 metilen biru = 50 ppm

$$V_2 = 50 \text{ mL}$$

$$M_2 = 10 \text{ ppm}$$

$$M1 \times V1 = M2 \times V2$$

$$50 \ ppm \ x \ V1 = 10 \ ppm \ x \ 50 \ mL$$

$$V1 = \frac{10 \ ppm \ x \ 50 \ mL}{50 \ ppm} = 10 \ mL$$

Jadi, larutan metilen biru 10 ppm dibuat dengan melarutkan 10 mL larutan stok 50 ppm dalam 50 ml aquades.

L.3.6 Uji Aktivitas Fotodegradasi

Diketahui Ditanya: V₁?

 M_1 metilen biru = 50 ppm

$$V_2 = 50 \text{ mL}$$

$$M_2 = 10 \text{ ppm}$$

Jawab:

$$M1 \times V1 = M2 \times V2$$

 $50 \ ppm \ x \ V1 = 10 \ ppm \ x \ 50 \ mL$

$$V1 = \frac{10 \ ppm \ x \ 50 \ mL}{50 \ ppm} = 10 \ mL$$

Jadi, larutan metilen biru 10 ppm dibuat dengan melarutkan 10 mL larutan stok 50 ppm dalam 50 ml aquades.

Lampiran 4. Perhitungan

L.4.1 Rendemen Selulosa

% Rendemen =
$$\frac{massa\ awal - massa\ akhir}{massa\ awal} \times 100\% \dots (L.4.1(a))$$

= $\frac{(50,0-32,0)gram}{50,0\ gram} \times 100\% = 36\%$

L.4.2 Fotodegradasi Metilen Biru

Tabel L.4.1 Hasil Fotodegradasi dalam Kondisi Gelap

Sampel	Abs	Rata – Rata Abs	Konsentrasi Awal (ppm)	Konsentrasi Akhir (ppm)	Degradasi (%)
Kontrol	-	1,3422		-	-
0a	0,5354	0,53915		4,78	53,68
0b	0,5429			4,76	33,00
1a	0,5270	0.52005		1 65	54,94
1b	0,5131	0,52005	10,32	4,65	34,94
2a	0,5784	0.5755		5.02	51.26
2b	0,5726	0,5755		5,03	51,26
3a	0,5036	0,5029		4,53	56,10
3b	0,5022			4,33	30,10

Keterangan:

Kontrol: konsentrasi awal metilen biru

0a: komposisi $TiO_2 \ 0$ gram a

0b : komposisi TiO2 0 gram b

 $1a: komposisi \ TiO_2 \ 1 \ gram \ a$

1b : komposisi TiO₂ 1 gram b

2a : komposisi TiO₂ 2 gram a

2b : komposisi TiO₂ 2 gram b

 $3a: komposisi \ TiO_2 \ 3 \ gram \ a$

3b: komposisi TiO2 3 gram b

a) Konsentrasi

Persamaan linier y = 0.1449x - 0.1537

- Kontrol

Absorbansi: 1,3422

$$y = 0.1449x - 0.1537$$

$$1,3422 = 0,1449x - 0,1537$$

$$x = 0.1537 + 1.3422$$

0,1449

$$x = 10,32 \text{ ppm}$$

- TiO₂ 0 gram

Absorbansi: 0,53915

$$y = 0.1449x - 0.1537$$

$$0, 0,53915 = 0,1449x - 0,1537$$

$$x = 0.1537 + 0.53915$$

0,1449

$$x = 4,78 \text{ ppm}$$

- TiO₂ 1 gram

Absorbansi: 0,52005

$$y = 0.1449x - 0.1537$$

$$0,52005 = 0,1449x - 0,1537$$

$$x = 0.1537 + 0.52005$$

0,1449

$$x = 4,65 \text{ ppm}$$

- TiO₂ 2 gram

Absorbansi: 0,5755

$$y = 0.1449x - 0.1537$$

$$0,5755 = 0,1449x - 0,1537$$

= 54,94 %

Tabel L.4.2 Hasil Fotodegradasi dalam Kondisi Terang

= 56,10 %

Sampel	Abs	Rata – Rata Abs	Konsentrasi Awal (ppm)	Konsentrasi Akhir (ppm)	Degradasi (%)
Kontrol	-	1,3422		-	-
0a	0,3404	0,35025		3,48	66,28
0b	0,3601			3,40	00,28
1a	0,2283	0,2226		2.60	74.01
1b	0,2169		10,32	2,60	74,81
2a	0,2617	0.2626		2.97	72.10
2b	0,2635	0,2626		2,87	72,19
3a	0,1582	0,1612		2,17	78,97
3b	0,1642			∠,1 /	10,91

Keterangan:

Kontrol: konsentrasi awal metilen biru

Oa: komposisi TiO₂ O gram a Ob: komposisi TiO₂ O gram b 1a: komposisi TiO₂ 1 gram a 1b: komposisi TiO₂ 1 gram b 2a: komposisi TiO₂ 2 gram a 2b: komposisi TiO₂ 2 gram b 3a: komposisi TiO₂ 3 gram a 3b: komposisi TiO₂ 3 gram b

c) Konsentrasi

Persamaan linier y = 0.1449x - 0.1537

- Kontrol

Absorbansi: 1,3422

$$y = 0.1449x - 0.1537$$

$$1,3422 = 0,1449x - 0,1537$$

$$x = 0.1537 + 1.3422$$

0,1449

$$x = 10,32 \text{ ppm}$$

- TiO₂ 0 gram

Absorbansi: 0,35025

$$y = 0.1449x - 0.1537$$

$$0,35025 = 0,1449x - 0,1537$$

$$x = 0.1537 + 0.35025$$

0,1449

$$x = 3,48 \text{ ppm}$$

- TiO₂ 1 gram

Absorbansi: 0,2226

$$y = 0.1449x - 0.1537$$

$$0,2226 = 0,1449x - 0,1537$$

$$x = 0.1537 + 0.2226$$

0,1449

$$x = 2,60 \text{ ppm}$$

$$y = 0.1449x - 0.1537$$

$$0,2626 = 0,1449x - 0,1537$$

$$x = 0.1537 + 0.2626$$

0,1449

$$x = 2,87 \text{ ppm}$$

TiO₂ 3 gram

Absorbansi: 0,1612

$$y = 0.1449x - 0.1537$$

$$0,1612 = 0,1449x - 0,1537$$

$$x = 0.1537 + 0.1612$$

0,1449

$$x = 2,17 \text{ ppm}$$

d) % Degradasi

Co

$$Co = 10,32 \text{ ppm}$$

- TiO₂ 0 gram

$$C = 3,48 \text{ ppm}$$

% Degradasi =
$$(10,32 - 3,48)$$
 ppm x 100 %

10,32 ppm

- TiO₂ 1 gram

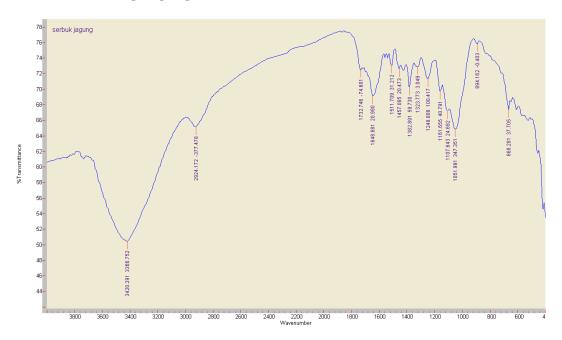
$$C = 2,60 \text{ ppm}$$

% Degradasi =
$$(10,32-2,60)$$
 ppm x 100 % $10,32$ ppm = $74,81$ %

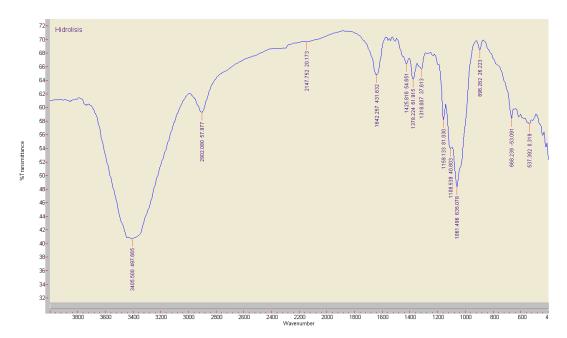
- TiO₂ 2 gram

C = 2,87 ppm

% Degradasi =
$$(10,32 - 2,87)$$
 ppm x 100 % $10,32$ ppm


- TiO₂ 3 gram

$$C = 2,17 \text{ ppm}$$


% Degradasi =
$$(10,32-2,17)$$
 ppm x 100 %
 $10,32$ ppm
= $78,97$ %

Lampiran 5. Hasil Analisa FTIR

a. Serbuk Batang Jagung

b. Hasil Ekstraksi

c. Selulosa Xantat

Lampiran 6. Hasil Analisa XRD

L.6.1 Ukuran Partikel

Persamaan Debye-Scererr

$$D = (K\lambda)/(\beta \cos\theta)$$

Dimana:

D = ukuran partikel (nm) λ = panjang gelombang radiasi (nm)

 θ = sudut difraksi (derajat) β = integrasi luas puncak refleksi (FWHM, radian)

K = konstanta faktor bentuk dari kristal (0,9)

1. TiO₂

Diketahui:

A (
$$K\alpha$$
) = 1,54060Å

$$\beta \text{ (FWHM)} = 0.1506^{\circ}$$

$$= \frac{0.1506}{180} \times 3.14 = 0.00262$$

$$\theta = \frac{25,281}{2} = 12,6939$$

$$\cos \theta = 0.9756$$

Ditanya : D?

$$D = \frac{K\lambda}{\beta \cos \theta} = \frac{0.9 \text{ x } 1.54060}{0.00262 \text{ x } 0.9756} = 536,3086 \text{ Å} = 53,63 \text{ nm}$$

2. Beads 1

Diketahui:

A (
$$K\alpha$$
) = 1,54060Å

$$\beta$$
 (FWHM) = 0,167°

$$= \frac{0,167}{180} \times 3,14 = 0,00291$$

$$2\theta = 25,358^{\circ}$$

$$\theta = \frac{25,358}{2} = 12,679$$

$$\cos \theta = 0.9756$$

Ditanya : D?

$$D = \frac{\kappa\lambda}{\beta\cos\theta} = \frac{0.9 \text{ x } 1.54060}{0.00291 \text{ x } 0.9756} = 488,3909 \text{ Å} = 48,83 \text{ nm}$$

3. Beads 2

Diketahui:

A (
$$K\alpha$$
) = 1,54060Å

$$β$$
 (FWHM) = 0,158°

$$= \frac{0,158}{180} \times 3,14 = 0,00275$$

$$\theta = \frac{25,402}{2} = 12,701$$

$$\cos \theta = 0.9755$$

Ditanya : D?

$$D = \frac{K\lambda}{\beta \cos \theta} = \frac{0.9 \text{ x } 1.54060}{0.00275 \text{ x } 0.9755} = 516,8594 \text{ Å} = 51,68 \text{ nm}$$

4. Beads 3

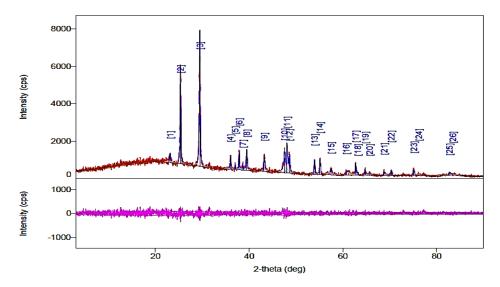
Diketahui:

A (
$$K\alpha$$
) = 1,54060Å

$$\beta$$
 (FWHM) = 0,190

$$=\frac{0.190}{180}$$
 x 3,14 = 0,00331

$$2\theta = 25,399^{\circ}$$

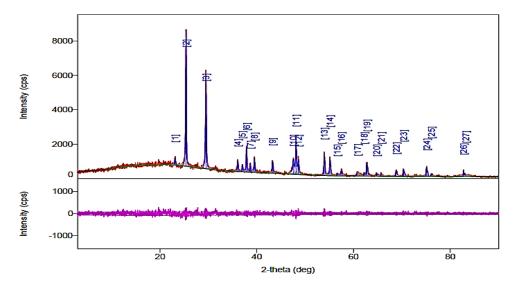

$$\theta = \frac{25,399}{2} = 12,6995$$

 $\cos \theta = 0.9755$

Ditanya : D?

$$D = \frac{\kappa\lambda}{\beta\cos\theta} = \frac{0.9 \text{ x } 1.54060}{0.00331 \text{ x } 0.9755} = 429,4149 \text{ Å} = 42,94 \text{ nm}$$

L.6.2 Difraktogram Beads 1

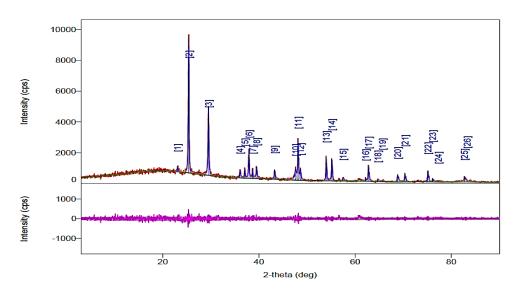


Gambar L.6.1 Difraktogram XRD beads 1

Pea	k list						
No.	2-theta(deg)	d(ang.)	Height(cp s)	FWHM(deg)	Int. I(cps deg)	Int. W(deg)	Asym. factor
1	23.16(2)	3.838(4)	335(53)	0.27(5)	141(14)	0.42(11)	3.2(14)
2	25.358(7)	3.5095(10)	3925(181)	0.167(6)	909(14)	0.232(14)	1.2(2)
3	29.474(7)	3.0281(7)	5327(211)	0.190(7)	1498(16)	0.281(14)	1.6(3)
4	36.029(18)	2.4908(12)	540(67)	0.19(3)	158(9)	0.29(5)	0.8(4)
5	37.01(2)	2.4269(13)	283(49)	0.10(3)	44(7)	0.15(5)	0.6(7)
6	37.855(9)	2.3748(5)	924(88)	0.125(14)	190(7)	0.21(3)	0.8(3)
7	38.684(19)	2.3257(11)	279(48)	0.11(4)	52(7)	0.19(6)	2(3)
8	39.498(5)	2.2796(3)	846(84)	0.20(2)	261(8)	0.31(4)	1.7(7)
9	43.211(6)	2.0920(3)	710(77)	0.21(3)	229(9)	0.32(5)	0.8(4)
10	47.542(14)	1.9110(5)	812(82)	0.32(2)	417(19)	0.51(8)	0.78(15)
11	48.084(5)	1.89072(18)	1272(103)	0.110(9)	227(12)	0.18(2)	0.78(15)
12	48.558(12)	1.8734(4)	794(81)	0.28(3)	360(21)	0.45(7)	0.78(15)
13	53.983(15)	1.6972(4)	619(72)	0.199(17)	156(7)	0.25(4)	2.3(9)
14	55.100(5)	1.66543(13)	709(77)	0.157(13)	151(6)	0.21(3)	0.5(2)
15	57.50(6)	1.6015(14)	217(43)	0.48(11)	192(10)	0.9(2)	1.9(14)
16	60.74(5)	1.5236(12)	171(38)	0.50(8)	150(10)	0.9(3)	0.5(3)
17	62.767(13)	1.4792(3)	589(70)	0.146(16)	133(7)	0.23(4)	2.2(11)
18	63.171(16)	1.4707(3)	119(32)	0.11(4)	21(5)	0.17(9)	2.2(11)
19	64.78(3)	1.4380(6)	201(41)	0.27(3)	72(6)	0.36(10)	2.4(16)

20	65.68(3)	1.4204(5)	115(31)	0.33(8)	50(6)	0.44(17)	0.7(8)
21	68.781(19)	1.3638(3)	205(41)	0.20(3)	70(6)	0.34(10)	0.7(2)
22	70.33(2)	1.3375(4)	267(47)	0.21(3)	67(5)	0.25(6)	1.0(4)
23	75.13(3)	1.2636(4)	269(47)	0.22(3)	71(6)	0.26(7)	2.5(18)
24	76.23(5)	1.2479(7)	65(23)	0.29(9)	22(4)	0.34(19)	2.5(18)
25	82.72(3)	1.1657(3)	145(35)	0.14(4)	28(5)	0.19(8)	2(2)
26	83.4(4)	1.157(5)	30(16)	2.8(4)	90(16)	3(2)	2.3(17)

L.6.3 Difraktogram Beads 2

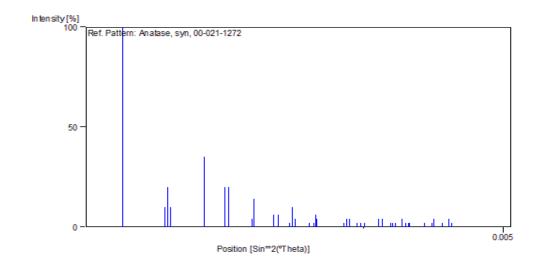


Gambar L.6.2 Difraktogram XRD $beads\ 2$

Pea	k list						
No.	2-theta(deg)	d(ang.)	Height(cp s)	FWHM(deg)	Int. I(cps deg)	Int. W(deg)	Asym. factor
1	23.118(13)	3.844(2)	309(51)	0.19(4)	75(11)	0.24(8)	0.5(7)
2	25.402(6)	3.5036(8)	5917(222)	0.158(4)	1310(14)	0.221(11)	1.5(2)
3	29.516(7)	3.0239(7)	4073(184)	0.174(8)	1065(12)	0.262(15)	1.6(3)
4	36.10(3)	2.486(2)	427(60)	0.22(3)	133(8)	0.31(6)	1.5(10)
5	37.012(8)	2.4269(5)	348(54)	0.16(3)	77(6)	0.22(5)	0.5(4)
6	37.892(12)	2.3725(7)	1173(99)	0.161(13)	262(8)	0.22(3)	1.1(3)
7	38.688(12)	2.3255(7)	356(54)	0.192(18)	73(6)	0.20(5)	1.8(4)
8	39.542(15)	2.2772(8)	668(75)	0.17(2)	180(7)	0.27(4)	1.9(9)
9	43.279(14)	2.0889(6)	592(70)	0.16(2)	162(7)	0.27(4)	1.1(5)
10	47.580(14)	1.9096(5)	608(71)	0.29(3)	280(16)	0.46(8)	1.2(3)
11	48.132(6)	1.8890(2)	1756(121)	0.132(9)	369(14)	0.21(2)	1.2(3)
12	48.607(15)	1.8716(5)	618(72)	0.28(4)	274(21)	0.44(8)	1.2(3)
13	53.980(11)	1.6973(3)	1091(95)	0.163(14)	267(8)	0.24(3)	1.1(4)
14	55.146(12)	1.6641(3)	872(85)	0.182(16)	230(7)	0.26(3)	1.2(3)
15	56.63(3)	1.6240(7)	129(33)	0.19(5)	37(5)	0.29(11)	0.9(5)
16	57.50(4)	1.6016(10)	238(45)	0.28(5)	103(6)	0.43(11)	0.9(5)
17	60.79(5)	1.5223(11)	152(36)	0.43(8)	110(8)	0.7(2)	0.8(4)
18	62.211(15)	1.4910(3)	162(37)	0.14(3)	31(5)	0.19(7)	1.6(6)
19	62.779(13)	1.4789(3)	691(76)	0.197(15)	187(8)	0.27(4)	1.6(6)
20	64.756(14)	1.4385(3)	148(35)	0.19(4)	49(5)	0.33(11)	0.7(5)

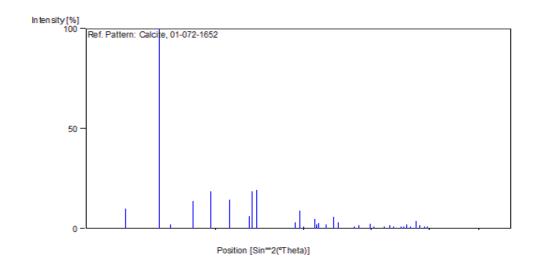
21	65.71(4)	1.4198(9)	109(30)	0.21(6)	28(5)	0.25(11)	0.9(9)
22	68.84(2)	1.3628(4)	284(49)	0.23(3)	95(6)	0.34(8)	1.3(6)
23	70.37(2)	1.3368(3)	346(54)	0.21(2)	91(5)	0.26(6)	2.1(12)
24	75.129(12)	1.26350(18)	477(63)	0.202(13)	112(6)	0.24(4)	1.1(3)
25	76.103(17)	1.2497(2)	124(32)	0.20(4)	35(5)	0.29(11)	1.1(12)
26	82.76(2)	1.1653(2)	234(44)	0.136(18)	36(4)	0.16(5)	1.4(9)
27	83.2(3)	1.160(3)	44(19)	2.3(2)	106(14)	2.4(14)	1.9(9)

L.6.4 Difraktogram Beads 3



Gambar L.6.3 Difraktogram XRD beads 3

Pea	k list						
No.	2-theta(deg)	d(ang.)	Height(cp s)	FWHM(deg)	Int. I(cps deg)	Int. W(deg)	Asym. factor
1	23.05(7)	3.856(12)	163(37)	0.31(6)	55(14)	0.33(16)	0.9(8)
2	25.399(7)	3.5039(9)	6304(229)	0.190(6)	1559(21)	0.247(12)	2.5(5)
3	29.495(9)	3.0260(9)	3254(165)	0.189(9)	895(13)	0.275(18)	1.8(4)
4	36.04(2)	2.4899(16)	426(60)	0.17(4)	120(6)	0.28(5)	0.8(7)
5	37.054(14)	2.4242(9)	433(60)	0.165(18)	93(6)	0.21(4)	2.3(7)
6	37.902(10)	2.3719(6)	1330(105)	0.186(11)	327(8)	0.25(3)	2.2(7)
7	38.66(2)	2.3273(11)	479(63)	0.15(3)	104(7)	0.22(4)	1.2(8)
8	39.511(15)	2.2789(8)	573(69)	0.18(3)	180(8)	0.31(5)	2.1(10)
9	43.224(14)	2.0914(6)	537(67)	0.16(2)	132(6)	0.25(4)	0.9(4)
10	47.594(19)	1.9091(7)	444(61)	0.37(4)	245(18)	0.55(12)	1.6(3)
11	48.116(6)	1.8896(2)	2231(136)	0.141(8)	471(14)	0.211(19)	1.6(3)
12	48.612(13)	1.8714(5)	515(66)	0.25(4)	192(17)	0.37(8)	1.6(3)
13	53.963(7)	1.6978(2)	1348(106)	0.157(8)	296(6)	0.22(2)	1.2(2)
14	55.124(8)	1.6648(2)	1294(104)	0.157(10)	279(8)	0.22(2)	0.9(2)
15	57.49(4)	1.6017(10)	201(41)	0.20(6)	62(7)	0.31(10)	1.2(13)
16	62.176(13)	1.4918(3)	185(39)	0.12(3)	33(4)	0.18(6)	1.5(5)
17	62.763(11)	1.4793(2)	882(86)	0.162(12)	208(7)	0.24(3)	1.5(5)
18	64.71(5)	1.4394(9)	111(30)	0.24(6)	40(6)	0.36(16)	0.8(5)
19	65.68(3)	1.4205(5)	78(26)	0.24(7)	23(5)	0.29(15)	0.5(7)


20	68.811(19)	1.3632(3)	368(55)	0.23(3)	133(6)	0.36(7)	0.9(4)
21	70.349(17)	1.3372(3)	456(62)	0.185(19)	125(6)	0.27(5)	1.4(7)
22	75.119(11)	1.26364(16)	657(74)	0.179(10)	152(6)	0.23(3)	1.3(4)
23	76.08(2)	1.2500(3)	216(42)	0.14(3)	46(4)	0.21(6)	0.9(7)
24	77.27(2)	1.2338(3)	65(23)	0.11(9)	15(4)	0.23(14)	2(5)
25	82.699(9)	1.16597(10)	271(48)	0.16(4)	81(6)	0.30(7)	0.5(3)
26	83.27(15)	1.1594(17)	40(18)	2.7(2)	117(11)	2.9(16)	1.5(3)

L.6.5 Difraktogram TiO₂ Anatas

Gambar L.6.4 Difraktogram XRD TiO_2 Anatas

L.6.6 Difraktogram CaCO₃

Gambar L.6.5 Difraktogram XRD CaCO₃

Lampiran 7. Hasil Analisa DRS

Perhitungan Panjang Gelombang

Diketahui:

Ditanya : λ ?

$$c = 3 \times 10^8 \ m/s$$

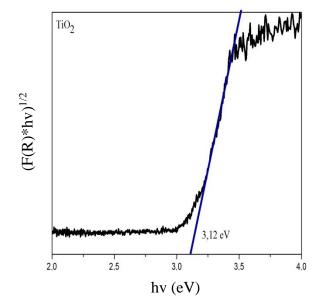
$$h = 6,626 \times 10^{-34} \text{ J.s}$$

konversi J ke eV

$$1 \text{ eV} = 1,602 \text{ x } 10^{-19} \text{ J}$$

$$x \text{ eV} = 6,626 \text{ x } 10^{-34} \text{ J.s}$$

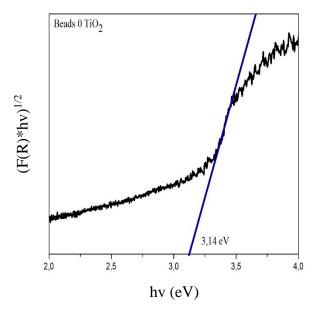
$$x = \frac{6,626 \times 10^{-34} \text{ J.s}}{1,602 \times 10^{-19} \text{ J}} \times 1 \text{ eV}$$


$$x = 4,136 \times 10^{-15} \text{eV. s}$$

Jawab:

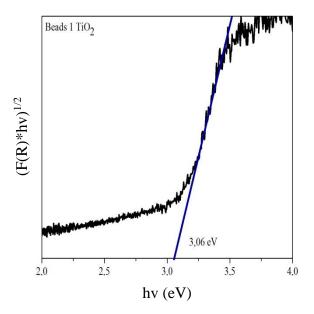
$$E = \frac{h.c}{\lambda}$$

$$\lambda = \frac{h.c}{E}$$


• TiO₂ Anatas

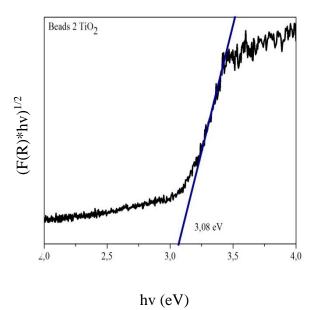
$$\lambda = \frac{4,136 \times 10^{-15} \text{ eV.s. } 3 \times 10^8 \text{ m/s}}{3,12 \text{ eV}}$$

$$\lambda = 3.97 \ x \ 10^{-7} \ m = 397 \ nm$$


• Beads 0

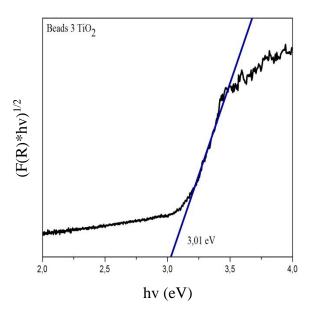
$$\lambda = \frac{4,136 \times 10^{-15} \text{ eV.s. } 3 \times 10^8 \text{ m/s}}{3,16 \text{ eV}}$$

$$\lambda = 3.95 \text{ x } 10^{-7} \text{ m} = 395 \text{ nm}$$


• Beads 1

$$\lambda = \frac{4,136 \times 10^{-15} \text{ eV.s. } 3 \times 10^8 \text{ m/s}}{3,06 \text{ eV}}$$

$$\lambda = 4,05 \text{ x } 10^{-7} \text{ m} = 405 \text{ nm}$$

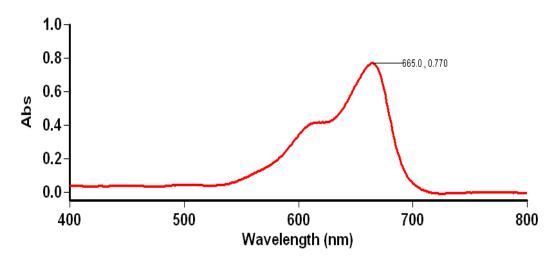

• Beads 2

$$\lambda = \frac{4,136 \ x \ 10^{-15} \ eV.s \ . \ 3 \ x \ 10^8 \ m/s}{3,08 \ eV}$$

$$\lambda = 4.02 \text{ x } 10^{-7} \text{ m} = 402 \text{ nm}$$

• Beads 3

$$\lambda = \frac{4,136 \times 10^{-15} \text{ eV.s. } 3 \times 10^8 \text{ m/s}}{3,01 \text{ eV}}$$


$$\lambda = 4.12 \text{ x } 10^{-7} \text{ m} = 412 \text{ nm}$$

Lampiran 8. Hasil Analisa UV-Vis

L.8.1 Panjang Gelombang Maksimum Metilen Biru

Lamdha Maks Methylene Blue

Tanggal Analisa: 28 Agustus 2020

Scan Analysis Report

Report Time : Fri 28 Aug 03:57:12 PM 2020

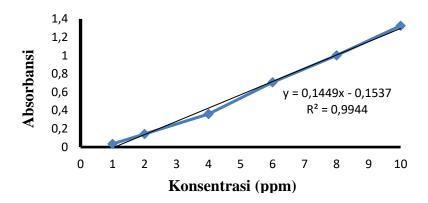
Method:

Batch: D:\Laili Muyassaroh\Lamdha Maks Methylene Blue (28-08-2020).DSW

Software version: 3.00(339)

Operator: Rika

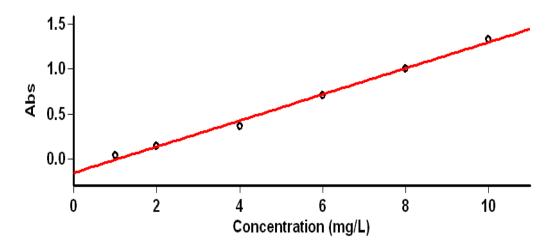
Sample Name: 6 ppm


Collection Time 8/28/2020 3:57:42 PM

Peak Table

Peak Style Peaks
Peak Threshold 0.0100

Range 800.0nm to 400.0nm


L.8.2 Kurva Standar Metilen Biru

Gambar L.8.1 Kurva standar metilen biru

Kurva Standar Methylene Blue

Tanggal Analisa: 28 Agustus 2020

Concentration Analysis Report

Report time 8/28/2020 4:00:29 PM Method

Batch name D:\Laili Muyassaroh\Kurva Standar MB

(28-08-2020).BCN

Application Concentration 3.00(339)

Operator Rika

Instrument Settings

Instrument Cary 50 Instrument version no. 3.00 Wavelength (nm) 665.0 Ordinate Mode Abs 0.1000 Ave Time (sec) Replicates Standard/Sample averaging OFF Weight and volume corrections Fit type Linear Min R² 0.95000 Concentration units mg/L

Comments:

Zero Report

Read	Abs	nm
Zero	(0.1436)	665.0

Calibration

Collection time 8/28/2020 4:00:43 PM Standard Concentration F Mean SD %RSD Readings

	Standard	mg/L	F.	Mean	SD	*RSD	Readings
Std 1							0.0357
							0.0341
		1.0		0.0346	0.0010	2.81	0.0340
Std 2	2						0.1423
							0.1422
		2.0		0.1420	0.0005	0.34	0.1414
Std 3	3						0.3600
		4.0		0.3603	0.0002	0 07	0.3603 0.3605
		4.0		0.3003	0.0002	0.07	0.3003
Std 4	1						0.7081
							0.7059
		6.0		0.7069	0.0011	0.16	0.7067
	_						
Std 5							0.9992
		8.0		1.0015	0.0052	0 51	1.0074 0.9979
		0.0		1.0013	0.0052	0.51	0.5515
Std 6	õ						1.3227
							1.3223
		10.0		1.3249	0.0041	0.31	1.3296

Calibration eqn Abs = 0.14492*Conc -0.15376 Correlation Coefficient 0.99440 Calibration time 8/28/2020 4:02:13 PM Calibration eqn

Results Flags Legend

 $\begin{array}{lll} U = \mbox{Uncalibrated} & \mbox{O} = \mbox{Overrange} \\ \mbox{N} = \mbox{Not used in calibration} & \mbox{R} = \mbox{Repeat reading} \end{array}$

L.8.3 Absorbansi Beads dengan Komposisi 0, 1, 2, dan 3 gram TiO2

Absorbansi Beads

Tanggal Analisa: 30 September 2020

Advanced Reads Report

9/30/2020 2:05:11 PM Report time

Method

Batch name D:\Laili Muyassaroh\Absorbansi Beads

(30-09-2020).BAB

Application Advanced Reads 3.00(339)

Operator

Instrument Settings

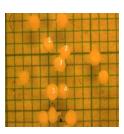
Instrument Cary 50 Instrument version no. 3.00
Wavelength (nm) 665.0
Ordinate Mode Abs
Ave Time (sec) 0.1000
Replicates 3
Sample averaging OFF
Comments:

Zero Report

Read	Abs	nm
Zero	(0.1372)	665.0

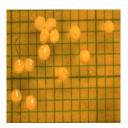
Analysis
Collection time 9/30/2020 2:05:11 PM

	Sample	F	Mean	SD	%RSD	Readings
10 ppm 0 a	ı		1.3422	0.0013	0.10	1.3418 1.3412 1.3437 0.5351 0.5356 0.5355
0 b			0.5429	0.0002	0.03	0.5428 0.5428 0.5431
1 a			0.5270	0.0005	0.09	0.5275 0.5271 0.5265
1 b			0.5131	0.0003	0.06	0.5127 0.5131 0.5134
2 a			0.5784	0.0010	0.18	0.5795 0.5783 0.5775
2 b			0.5726	0.0007	0.13	0.5731 0.5728 0.5717
3 a			0.5036	0.0007	0.13	0.5044 0.5032 0.5033
3 b			0.5022	0.0000	0.01	0.5022 0.5022 0.5023
0 A			0.3404	0.0002	0.05	0.3403 0.3406 0.3405
0 В			0.3601	0.0001	0.02	0.3601 0.3601 0.3602
1 A			0.2283	0.0009	0.40	0.2287 0.2289 0.2272
1 В			0.2169	0.0002	0.08	0.2167 0.2171 0.2170
2 A			0.2617	0.0005	0.20	0.2615 0.2623 0.2613

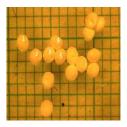

2 B	0.2635	0.0002	0.08	0.2636 0.2632 0.2636
3 A	0.1582	0.0007	0.46	0.1588 0.1584 0.1574
3 В	0.1645	0.0002	0.11	0.1647 0.1644 0.1643

Results Flags Legend R = Repeat reading

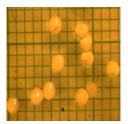
Lampiran 9. Hasil Analisa Mikroskop Optik


L.9.1 Diameter Beads Sebelum Proses Fotodegradasi

a) Beads 0

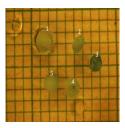

Area	Mean	Min	Max	Angle	Length	Diameter
0,015	79.963	49.000	91.270	1.548	1.481	0,138198
0,014	76.139	60.512	84.186	21.420	1.396	0,133512
0,013	82.297	70.053	92.546	24.444	1.329	0,128655
0,011	85.667	73.287	94.885	35.218	1.040	0,118345
0,012	83.861	69.945	95.321	39.867	1.186	0,123608

b) Beads 1

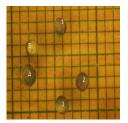

0,012 86.624 58.333 98.867 -1.909 1.177 0,123 0,014 97.385 73.000 104.443 11.470 1.380 0,133	Area	Mean	Min	Max	Angle	Length	Diameter
0,014 97.385 73.000 104.443 11.470 1.380 0,133.	0,012	88.768	73.667	96.774	5.356	1.260	0,123608
.,	0,012	86.624	58.333	98.867	-1.909	1.177	0,123608
0,012 82.461 61.000 95.545 3.633 1.238 0,123	0,014	97.385	73.000	104.443	11.470	1.380	0,133512
	0,012	82.461	61.000	95.545	3.633	1.238	0,123608
0,012 89.161 59.029 102.142 11.659 1.261 0,123	0,012	89.161	59.029	102.142	11.659	1.261	0,123608

c) Beads 2

Area	Mean	Min	Max	Angle	Length	Diameter
0,014	92.212	68.333	103.816	3.158	1.438	0,133512
0,014	91.081	72.333	102.537	15.945	1.442	0,133512
0,014	98.101	67.667	108.123	19.179	1.447	0,133512
0,011	98.541	81.780	112.114	54.806	1.151	0,118345
0,013	92.249	74.242	103.939	2.603	1.308	0,128655


d) Beads 3

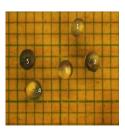
	Area	Mean	Min	Max	Angle	Length	Diameter
-	0,016	88.376	70.980	100.399	8.746	1.563	0,14273
	0,014	92.568	73.903	102.908	-3.342	1.359	0,133512
	0,014	92.373	63.667	103.125	15.832	1.379	0,133512
	0,015	90.287	69.333	101.331	20.468	1.501	0,138198
	0,015	80.798	58.000	91.308	54.246	1.525	0,138198


L.9.2 Diameter Beads Setelah Proses Fotodegradasi Kondisi Gelap

a) Beads 0

Area	Mean	Min	Max	Angle	Length	Diameter
0,014	58.174	42.287	99.262	17.949	1.462	0,133512
0,017	93.021	73.256	106.800	21.448	1.768	0,147123
0,017	88.448	75.643	100.505	26.565	1.752	0,147123
0,016	90.665	62.852	104.000	38.991	1.588	0,14273
0,019	95.478	83.647	108.000	38.387	1.925	0,155536

b) Beads 1


Area	Mean	Min	Max	Angle	Length	Diameter
0,016	77.777	59.248	97.000	33.887	1.581	0,14273
0,015	92.656	59.843	124.725	43.939	1.496	0,138198
0,014	73.331	47.000	107.906	125.181	1.462	0,133512
0,014	115.629	52.316	143.000	39.508	1.447	0,133512
0,015	90.711	58.000	116.177	48.674	1.513	0,138198

c) Beads 2

Area	Mean	Min	Max	Angle	Length	Diameter
0,017	118.287	63.000	148.369	16.798	1.658	0,147123
0,015	94.948	62.988	126.000	26.053	1.500	0,138198
0,015	105.555	80.000	126.376	37.569	1.473	0,138198
0,016	124.508	82.150	149.442	45.000	1.567	0,14273
0,015	82.439	66.137	98.000	46.591	1.525	0,138198

d) Beads 3

Area	Mean	Min	Max	Angle	Length	Diameter
0,014	113.749	84.693	150.987	-12.265	1.398	0,133512
0,018	43.715	28.100	69.933	29.982	1.783	0,151388
0,017	95.130	53.000	147.765	38.501	1.670	0,147123
0,016	106.582	56.680	157.000	36.870	1.634	0,14273
0,016	81.136	32.274	131.256	38.830	1.563	0,14273

L.9.3 Diameter Beads Setelah Proses Fotodegradasi Kondisi Terang

a) Beads 0

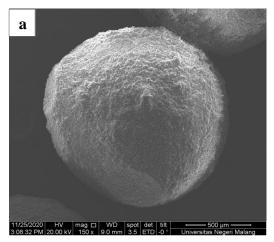
Area	Mean	Min	Max	Angle	Length	Diameter
0,016	115.826	90.317	130.658	34.170	1.622	0,14273
0,014	123.889	79.180	147.278	42.221	1.429	0,133512
0,016	69.768	41.256	110.000	41.576	1.624	0,14273
0,015	91.200	68.023	112.057	43.452	1.538	0,138198
0,014	125.199	93.329	151.178	52.815	1.426	0,133512

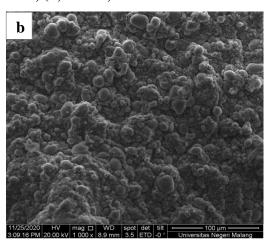
b) Beads 1

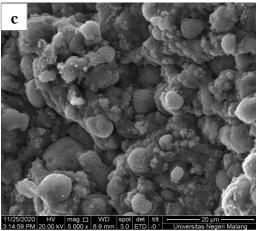
Area	Mean	Min	Max	Angle	Length	Diameter
0,015	163.865	121.085	185.509	33.887	1.567	0,138198
0,014	136.664	107.296	173.422	39.130	1.477	0,133512
0,014	130.323	88.426	168.426	44.465	1.469	0,133512
0,015	167.601	122.772	193.800	41.455	1.554	0,138198
0,017	172.619	133.000	193.971	39.063	1.726	0,147123

c) Beads 2

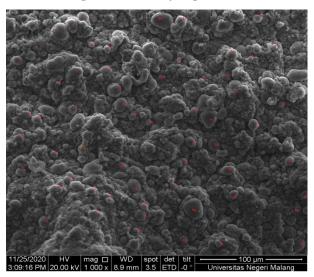
Area	Mean	Min	Max	Angle	Length	Diameter
0,016	140.712	117.080	167.652	43.182	1.695	0,14273
0,015	145.011	97.106	175.874	35.380	1.609	0,138198
0,016	151.376	111.860	182.458	39.971	1.687	0,14273
0,016	128.366	80.155	183.494	33.136	1.635	0,14273
0,015	145.870	98.000	176.311	39.193	1.595	0,138198

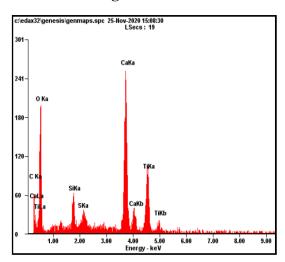

d) Beads 3




Area	Mean	Min	Max	Angle	Length	Diameter
0,016	127.963	68.186	157.240	22.341	1.559	0,14273
0,016	143.984	77.160	176.635	-33.294	1.583	0,14273
0,017	111.140	80.795	168.906	42.672	1.720	0,147123
0,017	102.420	61.512	149.468	32.074	1.749	0,147123
0,017	93.199	62.876	126.982	-36.327	1.667	0,147123

Lampiran 10. Hasil Analisa SEM – EDX


L.10.1 Morfologi Beads Perbesaran (a) 150x, (b) 1000x, dan 5000x


L.10.2 Pengukuran Panjang Pori Beads

Area	Mean	Min	Max	Angle	Length	Diameter
2.873	70.004	46.744	146	-45	9.455	1,829009
4.394	66.461	51.097	101.426	27.072	14.690	2,797307
3.380	73.842	40	121.185	-150.803	11.322	2,151775
1.183	100.405	84.604	134	48.013	3.911	0,753121
3.126	107.832	60	213.306	-35.910	10.408	1,990073
2.535	93.675	44	218	-69.677	8.370	1,613831
2.281	68.726	43.497	159	40.365	7.630	1,45213
2.535	79.849	55.018	124	38.047	8.490	1,613831
2,281	66.674	48	91.047	37.304	7.674	1,45213
2,873	68.471	51	93	28.887	9.628	1,829009
3.971	67.474	44.336	117	24.341	13.400	2,528017
3.295	66.702	51.022	120	-37.476	10.989	2,097662
1.605	62.679	55.333	76	-42.709	5.143	1,021775
1.690	74.481	57	92.668	55.491	5.644	1,075887
2.450	89.566	43.347	181	-68.962	8.098	1,559718
3.718	85.084	54	245	-80.538	12.377	2,366952
3.464	66.765	41.750	109	-82.875	11.718	2,205251
1.690	68.845	50.263	102	-83.991	5.554	1,075887
2.366	71.155	45.481	121	-87.879	7.854	1,506242
4.647	67.170	42.269	124	60.124	15.756	2,958372
2.957	90.224	66.419	145	36.529	9.767	1,882485
1.859	73.179	56.184	85	-27.759	6.241	1,183476
3.380	62.475	43	109	-90	11.627	2,151775
2.619	67.861	24.367	121	-88.091	8.725	1,667307
2.112	66.267	34	98	-80.538	7.073	1,344541
1.690	100.608	49	140	-83.991	5.554	1,075887
1.859	64.942	52	80	39.094	5.993	1,183476
1.436	103.585	87.250	127.691	45	4.522	0,914186
1.690	59.821	39	75	47.121	5.554	1,075887
1.352	69.605	32	83.204	61.699	4.292	0,86071
2.957	54.947	35.722	84	-47.386	9.875	1,882485
2.281	68.232	46.769	105	10.886	7.696	1,45213
3.042	49.373	40.587	66.579	18.435	10.112	1,936597
5.239	56.117	38.414	112.789	20.225	17.658	3,335251
2.281	56.044	28	91	13.496	7.474	1,45213
1.436	61.543	53.250	79	21.801	4.696	0,914186
1.859	54.886	43.531	67.633	45	6.166	1,183476
1.521	61.855	51.661	77	25.017	4.812	0,968299
2.619	48.680	40.360	59	39.560	8.672	1,667307
3.380	49.243	32.385	62.978	55.491	11.288	2,151775
1.183	59.247	46	79	-28.610	3.642	0,753121

	929	57.891	41	71.200	11.310	2.964	0,59142
	2.197	69.539	45	92.595	-63.435	7.150	1,398654
	1.014	81.200	64	94.669	-48.814	3.090	0,645532
	2.957	70.102	47.322	155	-45	9.866	1,882485
_	2.112	71.307	56	88.951	-24.444	7.025	1,344541
_	2.450	88.286	72.194	142	-19.093	7.998	1,559718
_	1.774	76.352	62.400	104	-8.531	5.879	1,129363
_	2.366	62.928	49.049	98	-66.251	7.940	1,506242
_	1.690	83.225	60.449	158	47.121	5.554	1,075887
_	1.183	81.892	58	127	41.987	3.911	0,753121
_	1.943	74.862	48.273	139.438	63.435	6.500	1,236952
_	1.014	76.705	54	90.562	-37.875	3.314	0,645532
	2.957	62.775	36.882	134.971	60.461	10.023	1,882485
_	1.014	80.917	67	120	0	3.488	0,645532
_	1.183	93.038	69	121.941	38.660	3.723	0,753121
	1.183	78.884	67.160	92	48.013	3.911	0,753121
_	1.436	71.123	58.836	101	45	4.522	0,914186
	676	69.375	54	83	0	2.325	0,430355

L.10.3 Kandungan Unsur Beads

Element	Wt%	At%
CK	07,09	12,01
OK	53,89	68,50
SiK	01,62	01,77
SK	02,08	0,91
CaK	21,90	11,11
TiK	13,43	05,70
Matrix	Correction	ZAF