ANALISIS PENGARUH VARIASI SUDUT DATANG DAN SUDUT TANGKAP CAHAYA PADA PERSEBARAN CITRA SPEKEL BERAS DENGAN METODE *LASER SPECKLE CONTRAST IMAGING* (LSCI) BERBASIS *GRAPHICAL USER INTERFACE* (GUI) MATLAB

SKRIPSI

Oleh: <u>MAHARDHIKA MEGA UTAMA</u> NIM. 16640053

JURUSAN FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2020

ANALISIS PENGARUH VARIASI SUDUT DATANG DAN SUDUT TANGKAP CAHAYA PADA PERSEBARAN CITRA SPEKEL BERAS DENGAN METODE *LASER SPECKLE CONTRAST IMAGING* (LSCI) BERBASIS *GRAPHICAL USER INTERFACE* (GUI) MATLAB

SKRIPSI

Diajukan kepada:

Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang Untuk Memenuhi Salah Satu Persyaratan Dalam Memperoleh Gelar Sarjana Sains (S.Si)

> Oleh: <u>MAHARDHIKA MEGA UTAMA</u> NIM. 16640053

JURUSAN FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2020

HALAMAN PERSETUJUAN

ANALISIS PENGARUH VARIASI SUDUT DATANG DAN SUDUT TANGKAP CAHAYA PADÂ PERSEBARAN CITRA SPEKEL BERAS DENGAN METODE *LASER SPECKLE CONTRAST IMAGING* (LSCI) BERBASIS *GRAPHICAL USER INTERFACE* (GUI) MATLAB

SKRIPSI

Oleh: <u>Mahardhika Mega Utama</u> NIM. 16640053

Telah diperiksa dan disetujui untuk diuji Pada tanggal: 30 April 2020

Pembimbing I

Pembimbing II

<u>Farid Samsu Hananto, M.T</u> NIP. 19740513 200312 1 001

Wiwis Sasmitahinghidayah, M.Si NIDT. 19870215 20180201 2 233

HALAMAN PENGESAHAN

ANALISIS PENGARUH VARIASI SUDUT DATANG DAN SUDUT TANGKAP CAHAYA PADA[®] PERSEBARAN CITRA SPEKEL BERAS DENGAN METODE *LASER SPECKLE CONTRAST IMAGING* (LSCI) BERBASIS *GRAPHICAL USER INTERFACE* (GUI) MATLAB

SKRIPSI

Oleh: <u>Mahardhika Mega Utama</u> NIM. 16640053

Telah Dipertahankan di Depan Dewan Penguji Skripsi dan Dinyatakan Diterima Sebagai Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Sains (S.Si) Tanggal : 05 Juni 2020

)
Penguji Utama	:	Dr. H. M. Tirono, M.Si NIP. 19641211 199111 1 001		real	2
Ketua Penguji	:	Drs. Abdul Basid, M.Si NIP. 19650504 199003 1 003	\bigcirc	X	
Sekretaris Penguji	:	Farid Samsu Hananto, M.T NIP. 19740513 200312 1 001		An	
Anggota Penguji	:	Wiwis Sasmitaninghidayah, M.Si NIDT. 19870215 20180201 2 233		When -	

HALAMAN KEASLIAN TULISAN

Saya yang bertanda tangan di bawah ini:

Nama	:	Mahardhika Mega Utama
NIM	:	16640053
Jurusan	:	Fisika
Fakultas	:	Sains Dan Teknologi
Judul Penelitian	:	Analisis Pengaruh Variasi Sudut Datang dan
		Sudut Tangkap Cahaya Pada Persebaran Citra
		Spekel Beras dengan Metode Laser Speckle
		Contrast Imaging (LSCI) Berbasis Graphical
		User Interface (GUI) MATLAB

Menyatakan dengan sebenar-benarnya bahwa hasil penelitian saya ini tidak terdapat unsur-unsur penjiplakan karya penelitian atau karya ilmiah yang pernah dilakukan atau dibuat oleh orang lain, kecuali yang tertulis dikutip dalam naskah ini dan disebutkan dalam sumber kutip dan daftar pustaka.

Apabila ternyata hasil penelitian ini terbukti terdapat unsur-unsur jiplakan maka saya bersedia untuk mempertanggung jawabkan, serta diproses sesuai peraturan yang berlaku.

Malang, 01 Mei 2020 fembuat Pernyataan RAI PEL AFF269253720 X 🛯 hika Mega Utama NIM. 16640053

ΜΟΤΤΟ

Hidup memerlukan perjuangan...

Perjuangan memerlukan pengorbanan...

Pengorbanan memerlukan ketabahan...

Ketabahan memerlukan keyakinan...

Patience is needed when you want to achieve a success Where There's a will, There's a way

HALAMAN PERSEMBAHAN

Dengan mengucap rasa syukur Alhamdulillah

Skripsi ini ku persembahkan untuk :

- Bapak Saleh Utomo dan Ibu Harnani, untuk kasih sayang dan motivasi, serta doa yang tiada henti. Sehingga saya dapat menjalani dan melewati segala rintangan dalam kehidupan.
- Kakakku, untuk motivasi dan arahannya mengenai kepenulisan skripsi, serta doanya untukku.
- Para dosen dan pembimbing, yang telah membantu dalam membuka cakralawa dunia melalui keluasan ilmu pengetahuan. Semoga dapat bermanfaat di Dunia dan di Akhirat.
- Teman-teman seperjuanganku di program studi S1 Fisika UIN Maulana Malik Ibrahim Malang angkatan 2016 yang selalu membantu hingga terselesaikannya skripsi ini.
- 5. Agamaku, Tanah Airku, dan Almamaterku !!!

Terima kasih atas motivasi yang telah diberikan selama ini, semoga Allah SWT membalas budi baik kalian semua, Amiin...

KATA PENGANTAR

Alhamdulillahi Rabbil'alamin, segala puji dan syukur kepada Allah SWT yang telah memberikan segala rahmat dan nikmatnya berupa kesehatan, kesempatan, kekuatan, serta kesabaran, sehingga penulis dapat menyelesaikan skripsi ini dengan baik. Skripsi yang telah penulis susun ini berjudul "Analisis Pengaruh Variasi Sudut Datang dan Sudut Tangkap Laser Pada Persebaran Citra Spekel Beras dengan Metode Laser Speckel Contrast Imaging (LSCI) Berbasis Graphical User Interface (GUI) MATLAB". Sholawat serta salam penulis panjatkan kepada baginda Rasulullah Muhammad SAW, yang telah menuntun manusia dari zaman jahiliyah menuju zaman yang cerah dan penuh dengan ilmu pengetahuan yang luar biasa saat ini.

Penulis menyadari bahwa skripsi ini tidak akan tersusun dengan baik tanpa adanya bantuan dari pihak-pihak yang terkait. Oleh karena itu, pada kesempatan ini penulis mengucapkan banyak terima kasih kepada semua pihak yang telah membantu penulis dalam menyelesaikan penulisan skripsi ini dengan baik. Khususnya penulis ucapkan terimakasih kepada:

- Prof. Dr. Abdul Haris, M.Ag selaku Rektor Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Dr. Sri Harini, M.Si selaku Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Drs. Abdul Basid, M.Si selaku Ketua Jurusan Fisika Universitas Islam Negeri Maulana Malik Ibrahim Malang yang memberikan arahan untuk penulis sehingga mampu menyelesaikan proposal ini dengan baik.
- Farid Samsu Hananto, M.T selaku Dosen Jurusan Fisika Universitas Islam Negeri Maulana Malik Ibrahim Malang sekaligus pembimbing skripsi yang telah membimbing dan mengarahkan penulis dengan sabar dalam penulisan skripsi.
- 5. Wiwis Sasmitaninghidayah, M.Si selaku Dosen Jurusan Fisika Universitas Islam Negeri Maulana Malik Ibrahim Malang sekaligus dosen pembimbing lapangan dan integrasi yang telah membimbing, serta mengarahkan penulis dengan sabar dalam penulisan skripsi.

- 6. Bapak, Ibu, Kakak dan keluarga yang selalu mendoakan serta memberi dukungan yang berharga.
- 7. Niswatul Kariimah, S.Si sebagai tutor yang memberi arahan penulis sehingga mampu menyelesaikan skripsi ini dengan baik.
- Sahabat-sahabat Fisika 2016 yang tiada henti memberikan semangat dalam menyusun skripsi ini.
- 9. Serta terimakasih semua pihak yang telah membantu penyusunan skripsi ini yang tidak dapat saya sebutkan satu persatu.

Semoga Allah SWT membalas semua kebaikan mereka dengan nikmat yang berlipat ganda baik di dunia maupun di akhirat kelak, Amin. Penulis berharap semoga skripsi ini memberikan manfaat bagi penulis dan semua pihak yang membaca, dalam menambah wawasan ilmiah dan memberikan kontribusi bagi perkembangan ilmu pengetahuan, oleh karena itu kritik dan saran yang bersifat konstruktif sangat penulis harapkan demi kebaikan bersama.

Malang, 08 April 2020

Penyusun

DAFTAR ISI

HALAMAN HIDH	i
HALAMAN JODOL	ii
	;;;
	in
	IV
HALAWAN KEASLIAN TULISAN	v
	VI
DAETAD ISI	VIII
DAFTAD CAMBAD	A vii
	viv
DAFTAR I AMPIRAN	
ARTRAK LANII IKAN	лv vvi
BAB I PENDAHIJI JIAN	Λ V Ι
1.1 Latar Relakang	1
1.7 Rumusan Masalah	5
1.2 Tujuan Penelitian	5
1.4 Batasan Masalah	5
1.5 Manfaat Penelitian	6
BAB II KA IIAN PUSTAKA	0
2.1 Standar Kualitas Mutu Beras	8
2.2 Cahaya	9
2.2.1 Pemantulan Cahaya Baur/Difus	9
2.2.2 Interferensi Cahaya	11
2.2.3 Laser Helium Neon (He-Ne)	14
2.3 Metode Laser Speckle Imaging (LSI)	16
2.3.1 Laser Speckle Contrast Imaging (LSCI)	18
2.4 Software MATLAB	23
2.4.1 Algoritma Pengolahan Citra Spekel dari Kamera CCD	
pada MATLAB.	25
2.4.2 Algoritma Pengolahan Citra Spekel dari Kamera VGA	
pada MATLAB	27
2.5 Citra Digital	29
2.6 Pengolahan Citra Digital	30
2.7 Kamera VGA (Action Camera VGA 30 fps)	32
BAB III METODE PENELITIAN	
3.1 Waktu dan Tempat Penelitian	34
3.2 Jenis Penelitian	34
3.3 Studi Literatur	34
3.4 Alat dan Bahan	35
3.4.1 Alat Penelitian	35
3.4.2 Bahan Penelitian	36
3.5 Diagram Alir Penelitian	36
3.6 Prosedur Perancangan Alat dan Aplikasi	38
3.6.1 Prosedur Penyusunan Alat Pengambilan Data	38

3.6.2 Prosedur Pembuatan Aplikasi Pengolahan Citra Spekel	39
3.7 Metode Pengambilan Data	40
3.7.1 Skema Pengambilan Data	41
3.8 Pengolahan Data	42
3.8.1 Diagram Alir Pengolahan Data pada Aplikasi	43
3.8.2 Penentuan Nilai Kontras Citra Spekel	44
3.9 Metode Analisis Data	44
3.10 Layout Interface Aplikasi Pengolahan Citra Spekel	
Berbasis GUI MATLAB	45
BAB IV HASIL DAN PEMBAHASAN	
4.1 Hasil Penelitian	46
4.1.1 Pembuatan dan Pengoperasian Aplikasi Pengolahan	
Citra Spekel Berbasis GUI MATLAB	47
4.1.2 Pemrograman Aplikasi	56
4.1.3 Data Hasil Pengolahan Citra Spekel Beras	59
4.1.4 Data Tingkat Akurasi Pengukuran Aplikasi	79
4.2 Pembahasan	82
4.2.1 Pengaruh Variasi Sudut Datang dan Sudut Tangkap Cahaya	
pada Citra Spekel Beras vang Dihasilkan	82
4.2.2 Sudut Datang dan Sudut Tangkap Cahaya yang Tepat	
untuk Menghasilkan Pola Spekel Optimum	86
4.2.3 Tingkat Akurasi Pengukuran Aplikasi Analisis Kontras	
Citra Spekel	88
4.3 Integrasi Penelitian dengan Al-Our'an	90
BAB V PENUTUP	10
5.1 Kesimpulan	95
5.2 Saran	96
DAFTAR PUSTAKA	20
LAMPIRAN	

DAFTAR GAMBAR

Gambar 2.1	Pemantulan Cahaya Baur/Difus	10
Gambar 2.2	Hasil Gelombang Interferensi Konstruktif	12
Gambar 2.3	Hasil Gelombang Interferensi Destruktif	13
Gambar 2.4	Skema Percobaan Interferensi Thomas Young	14
Gambar 2.5	Bagian-Bagian Laser He-Ne	15
Gambar 2.6	Pola Spekel Laser Sintetis dengan Resolusi 320 x 240 Piksel	
	dan Ukuran Spot 8 Piksel Per Spekel	16
Gambar 2.7	Action Camera VGA 30 fps Resolusi 640 x 480 Piksel	32
Gambar 3.1	Diagram Alir Penelitian	37
Gambar 3.2	Skema Posisi Pengambilan Data	41
Gambar 3.3	Skema Penentuan Sudut Datang dan Sudut Tangkap	41
Gambar 3.4	Diagram Alir Pengolahan Data pada Aplikasi	43
Gambar 3.5	Layout Aplikasi Pengolahan Citra Spekel Berbasis	
	GUI MATLAB	45
Gambar 4.1	(a)Letak Menu GUI Baru	
	(b)Pemilihan GUI Kosong untuk Pembuatan Aplikasi	47
Gambar 4.2	Desain Template GUI dari Aplikasi Analisis Kontras	
	Citra Spekel	48
Gambar 4.3	Pengaturan Tombol Template GUI pada Aplikasi	
	Analisis Kontras Citra Spekel	50
Gambar 4.4	Pemanggilan Editor MATLAB untuk Pengisian Coding	51
Gambar 4.5	Pengisian Coding Aplikasi	51
Gambar 4.6	Pemanggilan Fitur deploytool	52
Gambar 4.7	(a)Pemanggilan Fitur Application Compiler	
	(b)Memasukkan File Utama Aplikasi dan Ekstraksi	
	Aplikasi	52
Gambar 4.8	Pengisian Informasi dan File Penunjang Aplikasi	53
Gambar 4.9	Pengujian untuk Menjalankan Aplikasi	53
Gambar 4.10	Tampilan Aplikasi	53
Gambar 4.11	File Gambar Ditampilkan pada Listbox	54
Gambar 4.12	Tampilan Aplikasi Ketika Dijalankan	54
Gambar 4.13	Tampilan Aplikasi Ketika Proses Export Data	55
Gambar 4.14	Lokasi File Hasil Export Data pada Aplikasi	55
Gambar 4.15	Grafik Hubungan Variasi Sudut Datang Terhadap	
	Nilai Kontras Citra Spekel Beras di Sumbu X	61
Gambar 4.16	Grafik Hubungan Variasi Sudut Tangkap Terhadap	
	Nilai Kontras Citra Spekel Beras di Sumbu X	62
Gambar 4.17	Grafik Hubungan Variasi Sudut Datang Terhadap	
	Nilai Kontras Citra Spekel Beras di Sumbu Y	64
Gambar 4.18	Grafik Hubungan Variasi Sudut Tangkap Terhadap	
	Nilai Kontras Citra Spekel Beras di Sumbu Y	65
Gambar 4.19	Grafik Hubungan Variasi Sudut Datang Terhadap	
	Nilai Kontras Citra Spekel Beras di Kuadran 1	67
Gambar 4.20	Grafik Hubungan Variasi Sudut Tangkap Terhadap	
	Nilai Kontras Citra Spekel Beras di Kuadran 1	68

()
$\mathbf{\Sigma}$
Ζ
4
5
LL.
5
U
-
ш
\leq
7
U
2
S
LLI.
4
ິ
\geq
T.
~
2
m
X
5
4
4
4
2
11
\bigcirc
R Z
ARY (
BARY
RARY
BRARY (
IBRARY (
LIBRARY (
- LIBRARY (
NL LIBRARY (
AL LIBRARY (
RAL LIBRARY (
TRAL LIBRARY (
NTRAL LIBRARY (
NTRAL LIBRARY (
ENTRAL LIBRARY (

Gambar 4.21	Grafik Hubungan Variasi Sudut Datang Terhadap
	Nilai Kontras Citra Spekel Beras di Kuadran 2
Gambar 4.22	Grafik Hubungan Variasi Sudut Tangkap Terhadap
	Nilai Kontras Citra Spekel Beras di Kuadran 2
Gambar 4.23	Grafik Hubungan Variasi Sudut Datang Terhadap
	Nilai Kontras Citra Spekel Beras di Kuadran 3
Gambar 4.24	Grafik Hubungan Variasi Sudut Tangkap Terhadap
	Nilai Kontras Citra Spekel Beras di Kuadran 3
Gambar 4.25	Grafik Hubungan Variasi Sudut Datang Terhadap
	Nilai Kontras Citra Spekel Beras di Kuadran 4
Gambar 4.26	Grafik Hubungan Variasi Sudut Tangkap Terhadap
	Nilai Kontras Citra Spekel Beras di Kuadran 4
Gambar 4.27	Citra Spekel Beras pada Variasi Sudut Tangkap
	(Rentang Sudut 10° hingga 80°)
Gambar 4.28	Citra Spekel Beras pada Variasi Sudut Datang
	(Rentang Sudut 0° hingga 80°)
Gambar 4.29	(a)Citra Spekel Beras Pada Sudut Datang 0° dengan
	Nilai Kontras Optimum
	(b)Citra Spekel Beras Pada Sudut Tangkap 20° dengan
	Nilai Kontras Optimum

DAFTAR TABEL

Tabel 3.1	Format Tabel Pengambilan Data Penelitian	. 42
Tabel 4.1	Fitur yang Digunakan untuk Membuat Aplikasi	48
Tabel 4.2	Data Penentuan Jarak Antar Perangkat Pengambilan Data	. 59
Tabel 4.3	Data Hasil Pengolahan Citra Spekel pada Variasi	
	Sudut Datang di Sumbu X	60
Tabel 4 4	Data Hasil Pengolahan Citra Snekel nada Variasi	. 00
	Sudut Tangkan di Sumbu X	61
Tabel 4.5	Data Hasil Pengolahan Citra Spekel pada Variasi	
	Sudut Datang di Sumbu Y	63
Tabel 4.6	Data Hasil Pengolahan Citra Spekel pada Variasi	. 00
rucer no	Sudut Tangkan di Sumbu Y	64
Tabel 4.7	Data Hasil Pengolahan Citra Spekel pada Variasi	
	Sudut Datang di Kuadran 1	. 66
Tabel 4.8	Data Hasil Pengolahan Citra Spekel pada Variasi	
	Sudut Tangkap di Kuadran 1	. 67
Tabel 4.9	Data Hasil Pengolahan Citra Spekel pada Variasi	
	Sudut Datang di Kuadran 2	. 69
Tabel 4.10	Data Hasil Pengolahan Citra Spekel pada Variasi	
	Sudut Tangkap di Kuadran 2	. 71
Tabel 4.11	Data Hasil Pengolahan Citra Spekel pada Variasi	
	Sudut Datang di Kuadran 3	. 72
Tabel 4.12	Data Hasil Pengolahan Citra Spekel pada Variasi	
	Sudut Tangkap di Kuadran 3	. 74
Tabel 4.13	Data Hasil Pengolahan Citra Spekel pada Variasi	
	Sudut Datang di Kuadran 4	. 76
Tabel 4.14	Data Hasil Pengolahan Citra Spekel pada Variasi	
	Sudut Tangkap di Kuadran 4	. 77
Tabel 4.15	Data Hasil Pengujian Tingkat Akurasi Pengukuran Aplikasi	. 79
Tabel 4.16	Nilai Kontras Citra Spekel yang Optimum pada	
	Variasi Posisi Pengambilan Data	. 87
Tabel 4.17	Hasil Akhir Pengujian Tingkat Akurasi Pengukuran Aplikasi	. 89

DAFTAR LAMPIRAN

Lampiran 1 Dokumentasi Pengambilan Data
Lampiran 2 Citra Spekel Beras Hasil Variasi Sudut Datang
Lampiran 3 Citra Spekel Beras Hasil Variasi Sudut Tangkap
Lampiran 4 Coding Aplikasi
Lampiran 5 Data Hasil Pengolahan Citra Spekel
Lampiran 6 Grafik *Plotting* Data Hasil

ABSTRAK

Utama, Mahardhika Mega. 2020. Analisis Pengaruh Variasi Sudut Datang dan Sudut Tangkap Cahaya Pada Persebaran Citra Spekel Beras dengan Metode Laser Speckle Contrast Imaging (LSCI) Berbasis Graphical User Interface (GUI) MATLAB. Skripsi : Jurusan Fisika Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing : (I) Farid Samsu Hananto, M.T, (II) Wiwis Sasmitaninghidayah, M.Si

Kata Kunci : Laser Speckel Contrast Imaging (LSCI), Citra Spekel, GUI MATLAB, Nilai Kontras, Sudut Datang, Sudut Tangkap

Beras menjadi makanan makanan pokok sebagian besar masyarakat Indonesia karena memiliki kandungan karbohidrat yang tinggi dan berbagai kandungan gizi lainnya. Beras merupakan hasil pengolahan pasca panen padi, sehingga perlu dilakukan pengecekan untuk menjaga kualitas beras sebelum didistribusikan. LSCI (Laser Speckle Contrast Imaging) merupakan metode yang dapat diterapkan untuk melakukan pengecekan kualitas beras dengan memanfaatkan citra spekel. Citra spekel dapat dianalisis dengan melihat perubahan nilai kontras menggunakan software ImageJ maupun MATLAB. Dilakukan pengambilan data penelitian dengan variasi sudut datang laser pada rentang 0° - 80° dan variasi sudut tangkap cahaya laser (sudut kamera) pada rentang 10° - 90°. Nilai sudut datang dan sudut tangkap cahaya laser yang tepat agar menghasilkan citra spekel dengan nilai kontras optimum berada di sudut datang 0° dan sudut tangkap 20° pada semua posisi pengambilan data. Diperoleh rata-rata nilai kontras paling optimum pada variasi sudut datang yaitu sebesar 1,27070 a.u dan pada variasi sudut tangkap cahaya yaitu sebesar 1,51173 a.u. Serta diperoleh hasil tingkat akurasi pengukuran aplikasi berkisar antara 99,95 % hingga 100,00 %. Hasil tersebut mengindikasikan bahwa aplikasi yang dibuat bekerja sesuai dengan program dan dapat digunakan untuk mecari nilai mean, standar deviasi, serta nilai kontras dari citra spekel.

ABSTRACT

Utama, Mahardhika Mega. 2020. Analysis Effect of Variation of Arrival Angle and Capture Angle of Light on the Spread of Rice Speckle Image using Laser Speckle Contrast Imaging (LSCI) Method Based on Graphical User Interface (GUI) MATLAB. Undergraduate Thesis. Physics Department. Science and Technology Faculty. Maulana Malik Ibrahim Islamic State University. Supervisor: (I) Farid Samsu Hananto, M.T, (II) Wiwis Sasmitaninghidayah, M.Si

Keywords: Laser Speckel Contrast Imaging (LSCI), Speckle Image, GUI MATLAB, Arrival Angle, Capture Angle, Contrast Value.

Rice is the staple food of most Indonesian people because it has a high carbohydrate content and various other nutritional content. Rice is the result of post-harvest rice processing, so it is necessary to check to maintain the quality of rice before it is distributed. LSCI (*Laser Speckle Contrast Imaging*) is a method that can be applied to check the quality of rice by utilizing speckle imagery. Speckle images can be analyzed by looking at changes in contrast values using ImageJ or MATLAB software. Research data was taken with variations of the arrival angle of laser light in the range 0° - 80° and variations of the capture angle (camera angle) in the range of 10° - 80° . The arrival angle and the capture angle of the laser light in order to produce a speckle image with the optimum contrast value is at the 0° of arrival angle and 20° of the capture angle at all data retrieval positions. Obtained the most optimum contrast value in the variation of the arrival angle that is equal to 1,27070 a.u and the variation of the capture angle of light that is equal to 1,51173 a.u. As well as the results obtained the accuracy level of application measurements ranged from 99,95% to 100,00%. These results indicate that the application made works in accordance with the program and can be used to find the mean value, standard deviation, and the contrast value of the speckle image.

مستلخص البحث

أوتاما، ماهرديكا ميكا. 2020. تحليل آثار اختلاف الزاوية القادمة والزاوية مسك الضوء على توزيع صورة رقطة الارز باستخدام طريقة التصوير بالليزر متباين (LSCI) على أساس واجهة المستخدم الرسومية (GUI) MATLAB . بحث الجامعي. قسم الفيزياء. كلية العلوم والتكنولوجيا. جامعة مولانا مالك إبراهيم الإسلامية الحكومية مالانج. المشرف:(الأول) فاريد شمس هانانتو الماجستير (ال ثاني) ويويس ساسميتانينج هداية الماجستير.

الكلمة الإشارية: التصوير بالليزر متباين، صورة رقطة، GUI MATLAB ، قيمة التباين عن الزاوية القادمة، زاوية المسك.

الأرز تكون الأطعمة الرئيسية على معظم المجتمع بإندونيسيا لامتلاك تكوين الكربوهيدرات وأنواع تكوين الغذائية الأخرى. الأرز تكون حصول التحويل بعد حصاد الأرز. ولذالك لازم عقد التفتيش لحفظ جودة الأرز قبل التوزيع. الطريقة المستخدمة تعني طريقة التصوير بالليزر متباين لتعرف جودة الأرز باستفادة صورة رقطة. تحللت صورة رقطة بنظر قيمة الاختلاف باستخدام برنامج ImageJ أو MATLAB. تم أخذ بيانات البحث مع اختلافات في زاوية قادمة الليزر في النطاق 0° - 80° والاختلافات في زاوية مسك ضوء الليزر (زاوية الكاميرا) في نطاق 10° - 80° والاختلافات في زاوية مسك ضوء الليزر (زاوية مع اختلافات في زاوية قادمة الليزر في النطاق 0° - 80° والاختلافات في زاوية مسك ضوء الليزر (زاوية الكاميرا) في نطاق 10° - 80° والاختلافات في زاوية مسك ضوء الليزر (زاوية الكاميرا) في نطاق 10° - 80° والاوية مسك الضوء الليزر المناسبة تحصل صورة الرقطة بقيمة الكاميرا) في نطاق 10° - 80° والوية مسك الضوء الليزر الماسبة تحصل صورة الرقطة بقيمة الكاميرا) في نطاق 10° - 80° والوية مسك الضوء الليزر الماسبة تحصل صورة الرقطة بقيمة الكاميرا) في نطاق 10° - 80° والوية مسك الضوء اليزر الماسبة تحصل صورة الرقطة بقيمة الكاميرا) في نطاق 10° - 80° الزاوية القادمة والزاوية مسك الضوء اليزر الماسبة تحصل صورة الرقطة بقيمة التباين المثلى يجده في الزاوية القادمة 0° وزاوية المسك 20° في كل موقف أخذ البيانات. فحصلت إجمال قيمة التباين المثلى يعني 102070 معال الزاوية مسك الضوء يعني 103713 معال ويما تحسول معمول التباين المثلى يعني مالارية من 200% وإلى 100%100%. يشير هذا الحصول أن البرنامج المصوعة يعمل حسول مستوى دقة قياس التطبيق يدوم بين 99،99% إلى 00%100%. يشير هذا الحصول أن البرنامج المصوعة يعمل حسول التباين المثلوم وقدرة استخدامها في بحث قيمة المعني ومعيار الانحراف وقيمة الاختراف من ورة الرفيقا.

BAB I PENDAHULUAN

1.1 Latar Belakang

Tumbuhan termasuk dalam salah satu jenis makhluk hidup yang telah diciptakan oleh Allah SWT dengan memiliki aneka ragam bentuk dan fungsinya. Banyak bagian tumbuhan yang bisa dimanfaatkan oleh manusia untuk menunjang kehidupannya, salah satunya yaitu biji. Terdapat berbagai macam jenis tumbuhan berbiji yang dapat dikonsumsi manusia. Tumbuhan biji-bijian yang tidak asing bagi masyarakat Indonesia adalah padi (*Oryza sativa*). Padi menjadi sumber makanan pokok sebagian besar masyarakat Indonesia karena memiliki kandungan karbohidrat yang tinggi dan berbagai kandungan gizi lainnya.

Firman Allah SWT :

إِنَّ اللَّهَ فَالِقُ الْحَبِّ وَالنَّوَىٰ *الْحَيَّ مِنَ الْمَيَّتِ وَمُخْرِجُ* الْمَيَّتِ مِنَ الْحَيِّ ، ذَٰلِكُمُ اللَّهُ مَا اللَّهُ مَعْزَبُ الْمَيَّتِ مِنَ الْحَيِّ ، ذَٰلِكُمُ اللَّهُ مَا اللَّهُ مَعْزَبُ اللَّهُ مَعْزَبُ الْمَيَّتِ مِنَ الْحَيِّ مَنَ الْحُيَّ مَا اللَّهُ مَعْزَبُ الْمَيَّتِ مَن الْحَيِّ مَن الْحَيِّ اللَّهُ مَا اللَّهُ مَا اللَّهُ مَا اللَّهُ مَا اللَّهُ مَا اللَّهُ مَا اللَّهُ مَنْ الْحُيَّةُ مَنْ اللَّهُ مَا اللَّهُ مُ اللَّهُ مَا اللَّهُ مُوالِقُ المُولِقُولُولُهُ الْحُدَيْقُ الْحُولُ اللَّهُ مَا إِنَّهُ مَا اللَّهُ مَا اللَّهُ مَا اللَّهُ مَا اللَّهُ مُ

Artinya :

Sesungguhnya Allah menumbuhkan butir tumbuh-tumbuhan dan biji buahbuahan. Dia mengeluarkan yang hidup dari yang mati dan mengeluarkan yang mati dari yang hidup. (Yang memiliki sifat-sifat) demikian ialah Allah, maka mengapa kamu masih berpaling ? (Q.S Al-An'am: 95)

Padi yang memiliki nama latin *Oryza sativa* tergolong dalam tumbuhan bijibijian yang dijelaskan secara tersirat dalam Al-Qur'an pada Surat Al-An'am ayat 95 ini yaitu "Allah SWT yang menumbuhkan butir tumbuh-tumbuhan". Sehingga kita sebagai seorang muslim yang bertaqwa harus memanfaatkan butir tumbuhtumbuhan (padi) yang diberikan Allah SWT untuk menunjang kehidupan kita. Akan tetapi sebelum dikonsumsi, padi terlebih dahulu harus diolah yang nantinya akan menghasilkan beras. Beras diperoleh dari hasil pasca panen padi, sehingga biasanya beras disimpan terlebih dahulu sebelum didistribusikan kepada masyarakat. Oleh sebab itu, maka perlu ditetapkan standar minimum dalam pengecekan kualitas mutu beras sebelum disalurkan kepada konsumen maupun pedagang di pasaran. Bulog menjadi perusahaan BUMN yang bergerak dalam penyediaan dan pendistribusian beras pasca panen di Indonesia. Pengujian mutu beras oleh Bulog dilakukan melalui pengujian secara eksperimental pada laboratorium dan pengujian secara visual.

Pengujian kualitas mutu beras yang dilakukan sebagian besar masih menggunakan cara manual yang rawan dalam mengakibatkan terjadinya kesalahan karena keterbatasan penglihatan manusia dan subjektivitas penguji. Sehingga pengujian mutu beras dengan memanfaatkan pengolahan citra digital dapat menjadi salah satu solusi yang memiliki efektivitas dan subjektivitas tinggi untuk penyelesaian permasalahan yang ada saat ini. Salah satu metode yang dapat diterapkan dalam pengujian tersebut yaitu dengan meganalisa pola spekel beras yang diperoleh dari *Laser Speckle Imaging* (LSI).

LSI (*Laser Speckle Imaging*) dapat digunakan untuk mendeteksi sinyal optik dari jaringan biologi yang bersifat tidak merusak (*Non-Destructive Detection*) sehingga cocok digunakan untuk mendeteksi kualitas mutu beras. Metode LSI sudah banyak digunakan oleh peneliti untuk mengidentifikasi banyak hal. Metode *Laser Speckle Imaging* (LSI) untuk mendeteksi formalin pada tomat oleh Fitrya dkk (2013), penelitian ini menghasilkan kesimpulan bahwa pada buah tomat yang mengandung formalin memiliki nilai kontras citra spekel lebih kecil apabila dibandingkan dengan nilai kontras citra spekel pada buah tomat yang tidak menggunakan formalin. Kemudian metode LSI digunakan untuk pengukuran kadar gula darah oleh Zulkarnain dan Minarni (2018), penelitian ini menghasilkan kesimpulan bahwa nilai kontras citra spekel yang terukur pada kadar glukosa darah 98 mg/dl yaitu sebesar 0,943 a.u dan intensitas citra spekel yang terukur pada kadar glukosa darah 142 mg/dl yaitu sebesar 0,732 a.u. Kemudian, metode LSI juga digunakan mendeteksi pengaruh sudut penyinaran terhadap hasil *gray value* pola spekel pada buah apel oleh Siregar dkk (2016), penelitian ini menghasilkan nilai derajat keabuan akan terpengaruh oleh sudut penyinaran yaitu semakin besar sudut penyinaran maka semakin kecil tingkat *gray value* pola spekel dihasilkan. Penelitian-penelitian tersebut mendorong penulis untuk menggunakan metode *Laser Speckle Imaging* (LSI).

Pengujian kualitas mutu beras sudah pernah dilakukan dengan berbagai metode, salah satunya dengan menggunakan citra digital. Metode citra digital pada penelitian yang dilakukan oleh Ajay dkk (2013), digunakan untuk mengklasifikasikan keutuhan bentuk bulir beras menggunakan metode morfologi citra memiliki efisiensi cukup baik dalam membedakan bulir beras yang utuh dan bulir beras yang patah. Kemudian penggunaan citra digital dalam penelitian yang dilakukan oleh Suminar dkk (2012) dengan menerapkan metode ekstraksi ciri statistik pada citra digital menggunakan *K-Nearest Neighbour* (KNN). Kesimpulan yang diperoleh yaitu penggunaan *K-Nearest Neighbour* (KNN) memiliki akurasi sebesar 84,167% dalam mengklasifikasikan ekstraksi ciri statistik citra digital. Selanjutnya penelitian lain yang dilakukan oleh Somantri dkk (2013) membahas tentang penggunaan pengolahan citra digital dan Jaringan Syaraf Tiruan (JST) untuk

identifikasi kualitas mutu fisik beras. Klasifikasi warna bulir beras dapat dibedakan menggunakan *Red, Green, Blue* (RGB) dan *Hue, Saturation, Intensity* (HSI) sedangkan klasifikasi bentuk bulir beras melalui luas dan kelilingnya memanfaatkan metode jaringan syaraf tiruan. Kesimpulan penelitian ini yaitu penggunaan metode pengolahan citra digital dan jaringan syaraf tiruan memiliki tingkat akurasi yang tinggi dalam mengidentifikasi kualitas mutu beras.

Penggunaan citra spekel dalam pengujian kualitas bahan memiliki beberapa parameter yang harus diperhatikan. Menurut Muchlian dkk pada tahun 2013, ukuran bulir spekel yang dihasilkan bergantung pada panjang gelombang cahaya, ukuran berkas cahaya, jarak bidang pengamatan terhadap sumber cahaya, kekasaran permukaan benda, serta sudut yang terbentuk oleh laser dan detektor terhadap bidang. Oleh karena itu dilakukan penelitian kali ini untuk mengetahui pengaruh variasi sudut datang dan sudut tangkap cahaya laser terhadap pola spekel yang dihasilkan. Selain itu juga untuk mengetahui besar sudut datang laser dan sudut tangkap detektor (kamera) yang tepat agar pola spekel yang dihasilkan memiliki nilai kontras optimum, sehingga pola spekel dapat digunakan sebagai pengukuran untuk menguji kualitas beras berbasis citra digital.

Pengolahan citra untuk memperoleh nilai kontras citra spekel merupakan suatu metode cukup jarang diketahui. Sehingga dibuatlah aplikasi analisis kontras citra spekel dengan mengimplementasikan *Graphical User Interface* (GUI) MATLAB. Dengan pembuatan aplikasi ini diharapkan dapat mempermudah dalam menganalisis citra spekel. Sehingga dapat diterapkan untuk melakukan pengujian secara visual melalui citra digital pada beras.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah dipaparkan, maka didapatkan rumusan masalah yang akan diselesaikan dalam penelitian kali ini antara lain yaitu :

- Bagaimana pengaruh sudut datang dan sudut tangkap cahaya laser terhadap pola spekel beras yang dihasilkan ?
- 2. Berapakah nilai sudut datang dan sudut tangkap cahaya laser yang tepat agar menghasilkan pola spekel beras yang optimum ?
- 3. Bagaimana tingkat akurasi pengukuran dari aplikasi pengolahan citra spekel berbasis *Graphical User Interface* (GUI) MATLAB ?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah yang akan dibahas, maka tujuan penelitian kali ini adalah sebagai berikut :

- 1. Untuk menganalisis pengaruh variasi sudut datang dan sudut tangkap cahaya laser terhadap pola spekel beras yang dihasilkan.
- 2. Untuk mengetahui besar nilai sudut datang dan sudut tangkap cahaya laser yang tepat agar menghasilkan pola spekel beras yang optimum.
- 3. Untuk mengetahui tingkat akurasi pengukuran dari aplikasi pengolahan citra spekel berbasis *Graphical User Interface* (GUI) MATLAB yang dibuat.

1.4 Batasan Masalah

Untuk membuat penelitian kali ini lebih terarah sesuai yang diharapkan, maka permasalahan yang terbentuk harus diberi batasan. Adapun batasan masalah yang ada pada penelitian kali ini adalah sebagai berikut :

- 1. Penelitan dilakukan pada citra spekel beras.
- Software MATLAB yang digunakan penelitian kali ini yaitu MATLAB versi R2015a.
- 3. Aplikasi GUI yang dibuat hanya digunakan untuk analisis kontras citra spekel sesuai metode *Laser Speckle Contrast Imaging* (LSCI).
- 4. Pengambilan data dilakukan pada sudut datang antara $0^0 80^0$ dengan variasi sudut setiap 10 derajat dan sudut tangkap pada rentang $10^0 80^0$.
- Jenis kamera yang digunakan adalah Sport Action Camera VGA (Kamera VGA) 30 fps.
- Citra yang dapat diolah hanya yang berasal dari kamera VGA atau kamera CCD (resolusi 640x480 piksel).
- Hasil penelitian kali ini digunakan untuk pengembangan sensor kualitas beras berbasis cahaya.

1.5 Manfaat Penelitian

Adapun manfaat dari penelitian kali ini adalah sebagai berikut :

1. Bagi Penulis

Manfaat yang dapat diambil oleh penulis dari penelitian kali ini yaitu untuk menambah pengetahuan tentang cara analisis kontras citra spekel dengan metode *Laser Speckle Contras Imaging* (LSCI). Serta dapat menambah wawasan tentang bahasa pemrograman maupun penggunaan fitur-fitur yang ada dalam Software MATLAB untuk pengolahan citra digital.

7

2. Bagi Pembaca

Manfaat yang dapat diambil oleh pembaca yaitu untuk mengetahui besar sudut datang dan sudut tangkap cahaya laser yang cocok agar menghasilkan citra spekel yang optimum, serta mengetahui cara pengunaan aplikasi berbasis *Graphical User Interface* (GUI) MATLAB yang dapat membantu untuk menganalisis kontras citra spekel.

BAB II KAJIAN PUSTAKA

2.1 Standar Kualitas Mutu Beras

Menurut Inpres No.5 tahun 2015, pengadaan beras baik untuk kebutuhan dalam negeri maupun pengadaan beras dari luar negeri hanya dilakukan oleh Perum BULOG. Pengadaan beras ditentukan oleh beberapa kriteria yang harus dipenuhi petani agar beras dapat diterima oleh BULOG yaitu :

- Pembelian pada gabah kering panen dalam negeri dapat dilakukan dengan kualitas kadar air maksimum 25% (dua puluh lima perseratus) dan kadar hampa/kotoran maksimum 10% (sepuluh perseratus).
- Pembelian pada gabah kering giling dalam negeri dapat dilakukan dengan kualitas kadar air maksimum 14% (empat belas perseratus) dan kadar hampa/kotoran maksimum 3% (tiga perseratus).
- Pembelian Beras dalam negeri dapat dilakukan dengan kualitas kadar air maksimum 14% (empat belas perseratus).

Proses pengujian yang di tetapkan dari pihak BULOG terdapat dua tahap, yaitu uji visual dan uji laboratorium. Uji kualitas beras secara visual dapat dilihat dari keutuhan, kebersihan, dan putihnya beras. Pengujian beras secara masih menggunakan cara manual, dengan mengandalkan indra penglihatan dan penciuman manusia (Aprilia dan Ristu, 2015).

Pengujian kualitas mutu beras yang dilakukan sebagian besar masih menggunakan cara manual yang rawan dalam mengakibatkan terjadinya kesalahan karena keterbatasan penglihatan manusia dan subjektivitas penguji. Sehingga pengujian mutu beras dengan memanfaatkan pengolahan citra digital dapat menjadi salah satu solusi yang memiliki efektivitas dan subjektivitas tinggi untuk penyelesaian permasalahan yang ada saat ini (Amal dan Bambang, 2017).

2.2 Cahaya

Cahaya adalah energi berbentuk gelombang elekromagnetik yang kasat mata dengan panjang gelombang sekitar 380–750 nm. Pada bidang fisika, cahaya adalah radiasi elektromagnetik, baik dengan panjang gelombang kasat mata maupun yang tidak. Paket cahaya yang disebut spektrum kemudian dipersepsikan secara visual oleh indera penglihatan sebagai warna (Bueche dan Eugene, 2006).

Selain itu cahaya juga mempunyai sifat yang berkaitan dengan partikel, karena energinya tidak disebarkan merata pada muka gelombang, melainkan dilepaskan dalam bentuk buntelan-buntelan seperti partikel, sebuah buntelan diskrit (kuantum) energi elektromagnet ini dikenal sebagai sebuah foton (Krane, 1992).

2.2.1 Pemantulan Cahaya Baur/Difus

Ketika gelombang dari tipe apapun mengenai sebuah penghalang seperti sebuah cermin, gelombang-gelombang baru yang dibangkitkan akan bergerak menjauhi bidang tersebut. Fenomena ini disebut dengan pemantulan cahaya. Pemantulan terjadi pada bidang batas antara dua medium berbeda. Cahaya yang terpantul akan memiliki fase dan intensitas tertentu, bergantung pada jenis fenomena pemantulan cahaya yang terjadi. Adapun salah satu jenis pemantulan cahaya adalah pemantulan baur/difus, yang dapat digambarkan seperti dibawah ini (Halliday dkk, 2013).

Gambar 2.1 Pemantulan Cahaya Baur/Difus (Bueche dan Eugene, 2006)

Pada saat cahaya mengenai suatu permukaan yang tidak rata, maka sinarsinar sejajar yang datang pada permukaan tersebut dipantulkan tidak sebagai sinar-sinar sejajar. Pemantulan yang seperti ini disebut pemantulan baur. Akibat pemantulan baur ini kita dapat melihat benda dari berbagai arah. Misalnya pada kain atau kertas yang disinari lampu sorot di dalam ruang gelap kita dapat melihat apa yang ada pada kain atau kertas tersebut dari berbagai arah. Sifat-sifat pemantulan baur antara lain (Bueche dan Eugene, 2006):

- 1. Berkas sinar-sinar sejajar dipantulkan ke segala arah.
- Hanya sedikit sinar pantul yang mengenai mata pengamat sehingga benda tampak suram.
- 3. Terjadi pada benda yang mempunyai permukaan kasar.

Persamaan umum pemantulan cahaya adalah (Bueche dan Eugene, 2006):

$$\theta_i = \theta_r \tag{2.1}$$

$$I_{i}\sin\theta_{i} = I_{r}\sin\theta_{r} \qquad (2.2)$$

Dimana :

- θ_i = sudut datang (derajat)
- θ_r = sudut pantul (derajat)
- $I_i = sinar datang$
- $I_r = sinar pantul$

2.2.2 Interferensi Cahaya

Interferensi adalah fenomena di mana dua atau lebih gelombang saling tumpang tindih pada suatu titik tertentu dalam ruang. Interferensi sebagian besar dibahas untuk gelombang koheren. Dua buah gelombang dikatakan koheren bila kedua gelombang memiliki frekuensi sama dan beda fase yang konstan. Untuk gelombang koheren, pola interferensi dapat digambarkan secara matematis dengan cara yang sederhana (Tipler, 1998).

Ketika dua gelombang koheren dengan amplitudo yang sama berinteraksi satu sama lain (tumpang tindih di suatu titik), maka amplitudo yang dihasilkan pada titik tersebut dapat bervariasi dari nol hingga dua kali amplitudo. Prinsip utama interferensi adalah prinsip superposisi. Interferensi dua gelombang dapat berupa interferensi konstruktif (saling menguatkan) atau interferensi destruktif (saling melemahkan). Berikut ini adalah penjelasan mengenai macam-macam interferensi gelombang (Tipler, 1998) :

A. Interferensi Konstruktif

Bila dua atau lebih gelombang tiba sefase di sebuah titik, maka ampitudo gelombang resultan adalah jumlah dari amplitudo gelombang-gelombang tersebut, yang bersifat saling memperkuat. Hal ini dinamakan interferensi konstruktif. Hasilnya interferensi konstruktif yaitu membentuk gelombang resultan dengan amplitudo lebih tinggi dari amplitudo dari gelombang yang bergabung tersebut (Halliday dkk, 2013).

12

Gambar 2.2 Hasil Gelombang Interferensi Konstruktif (Halliday dkk, 2013)

Persamaan umum pola interferensi maksimum dapat dicari apabila memenuhi persamaan sebagai berikut :

$$d\sin\theta = m\,\lambda\tag{2.3}$$

Persamaan diatas berlaku untuk semua nilai θ . Apabila nilai θ sangat kecil berlaku nilai sin θ Ätan $\theta = p/L$ (dalam satuan radian). Maka persamaan yang digunakan untuk mencari pola interferensi maksimum adalah (Halliday dkk, 2013):

$$\frac{d\,p}{L} = m\,\lambda \tag{2.4}$$

Keterangan :

- d = Jarak antara kedua celah
- p = Jarak dari pita terang pusat ke pita terang ke-m
- λ = Panjang gelombang
- m = Orde interferensi (bilangan bulat = 1, 2, 3, ...)
- L = Jarak celah ke layar (detektor cahaya)

B. Interferensi Destruktif

Ketika gelombang-gelombang berbeda fase sebanyak setengah siklus. Amplitudo resultan itu adalah selisih di antara kedua amplitudo gelombang tersebut dan saling meniadakan. Keadaan saling meniadakan dari gelombanggelombang individu itu yang disebut interferensi destruktif (Halliday dkk, 2013).

Gambar 2.3 Hasil Gelombang Interferensi Destruktif (Halliday dkk, 2013)

Persamaan umum pola interferensi maksimum dapat dicari apabila memenuhi persamaan sebagai berikut :

$$d\sin\theta = \left(m - \frac{1}{2}\right)\lambda\tag{2.5}$$

Persamaan diatas berlaku untuk semua nilai θ . Apabila nilai θ sangat kecil berlaku nilai sin θ Ätan $\theta = p/L$ (dalam satuan radian). Maka persamaan yang digunakan untuk mencari pola interferensi maksimum adalah (Halliday dkk, 2013):

$$\frac{d \cdot p}{L} = \left(m - \frac{1}{2}\right) \lambda \tag{2.6}$$

Keterangan :

d = Jarak antara kedua celah

p = Jarak dari pita terang pusat ke pita gelap ke-m

 λ = Panjang gelombang

m = Orde interferensi (bilangan bulat = 1, 2, 3, ...)

L = Jarak celah ke layar (detektor cahaya)

Interferensi cahaya terjadi karena bergabungnya dua gelombang cahaya dimana kedua gelombang cahaya harus bersifat koheren yang berarti kedua gelombang cahaya tersebut mempunyai amplitudo, frekuensi yang sama pada fase yang tetap. Apabila kedua gelombang cahaya berinterferensi memiliki fase yang sama saling memperkuat atau bersifat konstruktif. Sebaliknya, apabila kedua gelombang cahaya tersebut saling memperlemah atau bersifat dekstruktif jika kedua gelombang bertemu dalam fase yang berlainan. Interferensi cahaya dapat terjadi pada peristiwa pemantulan dan sinar laser sebagai penghasil cahaya koheren (Tipler, 1998).

(Bueche,2006)

Thomas Young melakukan percobaan untuk membuktikan terjadinya interferensi pada cahaya koheren. Intensitas interferensi cahaya yang terjadi dapat dihitung dengan persamaan yaitu (Bueche dan Eugene, 2006) :

$$I = 4I_0 \cos^2 \frac{k(r_1 - r_2)}{2}$$
(2.7)

$$I = 4I_0 \cos^2 \frac{ym\pi}{s\lambda} \tag{2.8}$$

2.2.3 Laser Helium Neon (He-Ne)

Laser (Light Amplification by Stimulated Emission of Radiation) merupakan alat yang dapat memancarkan cahaya (gelombang

15

radioelektromagnetik) pada daerah *infrared*, *visible* atau ultraviolet. Cahaya yang dipancarkan oleh laser dihasilkan dari stimulasi emisi radiasi dari medium yang ada di laser, emisi radiasi tersebut dikuatkan sehingga menghasilkan cahaya yang mempunyai sifat monokromatis (tunggal/hanya satu), koheren, terarah dan *brightness* (sifat kecerahan tinggi) (Adiansyah, 2014).

Gambar 2.5 Bagian-Bagian Laser He-Ne (Csala, 2004)

Laser Helium Neon atau laser He-Ne, merupakan jenis laser gas yang media penguatannya terdiri dari campuran 90% gas Helium dan 10% gas Neon. Laser He-Ne dapat berosilasi pada panjang gelombang 0,543µm, 0,594 µm, 0,633µm, 1,15µm dan 3,39 µm. Laser He-Ne yang paling terkenal dan paling banyak digunakan beroperasi pada panjang gelombang 0,633µm atau sekitar 632,8 nm (Csala, 2004).

Laser He-Ne pada dasarnya merupakan rongga optik yang terdiri dari sebuah tabung kaca dengan cermin pada kedua ujungnya dimana cermin pada bagian belakang bersifat 100% reflektor dan cermin bagian depan bersifat 99% reflektor. Cermin bagian depan biasanya disebut dengan cermin coupler, hasilnya keluaran laser He-Ne kontinu dan stabil (Adiansyah, 2014).

Adapun karakteristik dari laser He-Ne adalah sebagai berikut (Sri, 2014) :

- Pembangkit berkas : Arus DC pada rentang 3 mA – 30 mA

-	Daya keluaran	: 0,5 mW – 100 mW
-	Medium Pembangkit	: Gas, 90% Helium dan 10% Neon
-	Panjang gelombang	: 543,5 nm (hijau), 594,1 nm (kuning), 611,9
		nm (jingga), dan 632,8 nm (merah)
_	Frekuensi cahaya	$: 4,74 \ge 10^{14} \text{ Hz}$

2.3 Metode Laser Speckel Imaging (LSI)

Laser speckle Imaging (LSI) adalah fenomena interferensi gelombang cahaya yang terjadi ketika cahaya koheren digunakan untuk menerangi sampel. Interferensi cahaya ini ditandai dengan visualisasi bintik-bintik terang dan gelap yang disebut *speckles*. Pola bintik gelap dan terang yang diperoleh dapat bervariasi dalam ukuran dan bentuk, tergantung pada sampel yang digunakan, sumber cahaya yang koheren dan deteksi citra pada sistem (Briers dkk, 2013).

Efek spekel banyak digunakan dalam aplikasi biomedis sebagai alat untuk mengukur persebaran pola bintik gelap terang pada citra (Briers dkk, 2013). Pemanfaatannya dalam sampel yang dianalisis yaitu pola spekel akan berubah seiring waktu. Perubahan pola spekel yang terukur menyajikan informasi yang dapat dikaitkan dengan variabel yang sedang dianalisis. Analisis pola laser spekel dari waktu ke waktu disebut *dynamic laser speckle* (Vaz dkk, 2017).

Gambar 2.6. Pola Spekel Laser Sintetis dengan Resolusi 320 × 240 Piksel dan Ukuran Spot 8 Piksel Per Spekel. (Vaz dkk, 2017)

Efek yang ditimbulkan pada spekel merupakan hasil dari interferensi gelombang yang memiliki fasa berbeda dan nilai amplitudonya besar sehingga bersifat interferensi konstruktif, kemudian memberikan gelombang resultan. Kekasaran obyek merupakan penyebab utama terjadinya spekel. Cahaya pada tiap titik gelombang telah tersebar di setiap titik permukaan yang diterangi cahaya. Jika permukaan kasar maka cukup untuk membuat suatu celah dengan perbedaan panjang melebihi satu panjang gelombang. Sehingga menimbulkan perubahan fase lebih besar dari 2π , amplitudo dan intensitas cahaya yang dihasilkan bervariasi secara acak. Digital Spekle Pattern Interferometry (DSPI) merupakan salah satu teknik interferometri spekel yang melibatkan pola spekel pada permukaan difus, hasil penyinaran cahaya laser yang dipadukan dengan komputer pengelolah citra. Konsep dasarnya yaitu merekam citra spekel objek yang diuji sebelum mengalami deformasi dengan kamera CCD dan selanjutnya disimpan dalam memori komputer untuk diolah. Pengolahan operasi komputer yang utama adalah mengurangkan atau mensubtrasikan kedua buah citra tersebut piksel per piksel, dan hasilnya ditampilkan dalam bentuk pola frinji (Kumala dkk, 2015).

Informasi dari pola spekel yang diperoleh dapat dianalisis dengan berbagai cara. Di satu sisi, perubahan pola spekel dapat diidentifikasi dengan membandingkan dua pola spekel berturut-turut. Di sisi lain, pola spekel dapat dianalisis dengan menghitung kontrasnya menggunakan metode yang sering disebut *Laser Speckle Contrast Imaging* (LSCI). Kontras pola terkait dengan pancaran sinar cahaya yang ada dalam sampel. Penyebar yang lebih cepat berarti hubungan dekorasi gambar yang lebih cepat yang mengarah ke kontras yang lebih rendah (Draijer dkk, 2009).

2.3.1 Laser Speckle Contrast Imaging (LSCI)

Pola spekel dapat dianalisis dengan menghitung kontrasnya menggunakan metode yang sering disebut *Laser Speckle Contrast Imaging* (LSCI). Kontras pola terkait dengan pancaran sinar cahaya yang ada dalam sampel. Penyebaran yang lebih cepat mengartikan hubungan penyusun gambar yang mengarah ke kontras yang lebih rendah (Draijer dkk, 2009).

Spekel yang merupakan pola interferensi acak yang dihasilkan oleh fluktuasi intensitas spasial atau temporal dari laser yang tersebar dari permukaan yang diterangi. Ketika partikel yang menyala bergerak, pola interferensi berubah seiring waktu. *Laser Speckle Contrast Imaging* (LSCI) digunakan untuk menganalisis secara statistik fluktuasi intensitas pola spekel yang bervariasi waktu dan memberikan informasi kecepatan 2D tentang partikel yang bergerak dengan resolusi spasial dan temporal (Choi dkk, 2006).

Kontras (C), dari pola spekel laser adalah properti orde pertama yang sering diselidiki untuk menyimpulkan terkait dengan dinamika sistem biofisika. Sebagai contoh, *Laser Speckle Contrast Imaging* (LSCI) adalah metode yang umum digunakan untuk pencitraan relatif dan kualitatif pada aliran darah. LSCI relatif sederhana untuk diterapkan, memiliki bidang pandang yang luas, dan resolusi spasial dan temporal yang relatif baik. Fitur-fitur ini memungkinkan teknik-teknik ini digunakan sebagai alat yang kuat dalam pengukuran dan pemantauan sistem secara optik (Khaksari dan Sean, 2017).

Kontras bintik dapat dihitung dengan menggunakan tiga algoritma yang berbeda yaitu: pertama menggunakan perhitungan kontras berbasis spasial, kedua menggunakan perhitungan berbasis temporal dan, ketiga menggabungkan
perhitungan spasial dan temporal. Variasi spekel temporal menyediakan informasi yang dapat dikaitkan dengan kecepatan pencar cahaya. Analisis pola spekel laser dengan melihat pancaran cahaya disebut *dynamic laser speckle* (Vaz dkk, 2017).

Ketika berkas atau sinar koheren dari laser dikenakan pada permukaan bahan, maka terbentuklah pola cahaya yang khas dalam bentuk suatu granular (butiran) bernama spekel. Pola gelap terang suatu spekel terjadi karena frekuensi yang berbeda. Deskripsi tentang statistik distribusi intensitas yang dihasilkan oleh spekel ketika cahaya laser menerangi suatu bahan (Goodman, 2007).

Kekasaran suatu bahan akan menyebabkan distribusi intensitas dan fase yang acak. Pola spekel dapat terbentuk ketika ada perpaduan dari cahaya yang memiliki amplitudo dan fase yang berbeda pada bidang kompleks. Tinjauan secara kompleks didasari dari fenomena alami yang terjadi ketika pola spekel terbentuk. Phasor merepresentasikan sinyal sinusoidal dari cahaya yang mengalami pemantulan. Sehingga tinjauan secara kompleks dalam pola spekel dapat dilihat pada persamaan berikut (Goodman, 2007):

$$u_{i}(P) = |u_{i}|e^{i\phi j} = |u_{i}|e^{ikrj}$$
(2.9)

Persamaan tersebut adalah jarak (variasi acak) dari elemen sampel yang memiliki intensitas cahaya pada bidang ke j pada titik P. Persamaan ini menyatakan cara distribusi cahaya secara acak dalam bidang kompleks dengan fasa acak $\phi j = kr_j$. Maka P dapat dituliskan dalam persamaan (Goodman, 2007) :

$$U_{j}(P) = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} u_{j}(P) = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} |u_{j}| e^{i\phi j} = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} |u_{j}| e^{ikrj}$$
(2.10)

Dengan mengasumsikan amplitudo u_j dan fase ϕ_j secara statistik *independent* (bebas) dianggap sebagai fase dari data spekel. Fase ϕ_j didistribusikan secara menyeluruh pada interval ($-\pi,\pi$), dari keadaan tersebut diperoleh persamaan densitas citra spekel. Fungsi densitas pada persebaran intensitas diberikan oleh persamaan dibawah ini (Goodman, 2007) :

$$P_{r,i}(U^{(r)}, U^{(i)}) = \frac{1}{2\pi\sigma^2} exp\left[\frac{(U^{(r)})^2 + (U^{(i)})^2}{2\sigma^2}\right]$$
(2.11)

Dimana nilai Circular Gaussian, yaitu :

$$\sigma^{2} = \lim_{N \to \infty} \sum_{j=1}^{N} \frac{\langle |u_{j}| \rangle^{2}}{2}$$
(2.12)

Nilai intensitas I dan fase ϕ medan resultan pada bagian riil dan imajiner medan mengacu pada persamaan dibawah ini :

$$U^{(r)} = \sqrt{I} \cos \phi \tag{2.13}$$

$$U^{(i)} = \sqrt{I}\sin\phi \tag{2.14}$$

Rata-rata intensitas pada diagram spekel adalah $\langle I \rangle$. Distribusi intensitas mengikuti hukum eksponensial negatif dimana fase terdistribusi secara merata dalam interval (- π , π). Distribusi kejadian intensitas didefinisikan pada persamaan dibawah ini (Goodman, 2007):

$$\langle I \rangle = n! \, (2\sigma^2)^n = n! \, \langle I \rangle^n \tag{2.15}$$

Probabilitas intensitas p(I) dan probabilitas fase $p(\phi)$ didapatkan dengan mensubtitusikan persamaan 2.13 dan 2.14 kedalam persamaan 2.11. Sehingga diperoleh persamaan dibawah ini (Goodman, 2007):

$$P_{r,i}(U^{(r)}, U^{(i)}) = \frac{1}{2\pi\sigma^2} exp\left[\frac{(\sqrt{l}\cos\phi)^2 + (\sqrt{l}\sin\phi)^2}{\langle l \rangle}\right]$$
(2.16)

$$= \frac{1}{2\pi\sigma^2} exp\left[\frac{\sqrt{l^2}\cos^2\phi + \sqrt{l^2}\sin^2\phi}{\langle l\rangle}\right]$$
(2.17)

$$= \frac{1}{2\pi\sigma^2} exp\left[\frac{\sqrt{l^2}(\cos^2\phi + \sin^2\phi)}{\langle l \rangle}\right]$$
(2.18)

Maka diperoleh persamaan dibawah ini :

$$P_{r,i}(U^{(r)}, U^{(i)}) = \frac{1}{2\pi\sigma^2} exp\left[\frac{I}{\langle I \rangle}\right]$$
(2.19)

Persamaan tersebut dapat diuraikan untuk memperoleh persamaan probabilitas intensitas p(I) dan probabilitas $p(\phi)$, seperti yang dapat dilihat dibawah ini :

$$p(I) = \frac{1}{\sqrt{I}} e^{-\frac{I}{\langle I \rangle}} \operatorname{untuk} I \ge 0$$
(2.20)

$$p(\phi) = \frac{1}{2\pi} \text{ untuk } -\pi \le \phi \le \pi$$
 (2.21)

Distribusi kejadian intensitas pada orde kedua dinyatakan dalam persamaan berikut ini :

$$\langle I \rangle = n! \, (2\sigma^2)^n = n! \, \langle I \rangle^n \tag{2.22}$$

$$I^{2} = 2! \langle I \rangle^{2}$$

$$= 2 \langle I \rangle^{2}$$
(2.23)

Standar deviasi diperoleh dari :

$$\sigma_I^2 = \langle I^2 \rangle - \langle I \rangle^2 = \langle I^2 \rangle \tag{2.24}$$

Persamaan diatas menunjukkan bahwa standar deviasi dari pola spekel terpolarisasi sama dengan nilai rata-rata intensitas. Nilai kontras dari pola spekel didefinisikan sebagai rasio dari standar deviasi (σ_I) dan (μ_I) rata-rata dari intensitas yang diukur dari gambar spekel. Sehingga diperoleh nilai kontras yang dinyatakan dengan persamaan (Goodman, 2007) :

$$C = \frac{\sigma_I}{\langle I \rangle} \tag{2.25}$$

Konsep lain di balik LSCI adalah mengaitkan gerakan pancaran sinar dalam ruang objek atau ruang pencitraan yang diamati. Dengan demikian, pola intensitas spekel yang dicitrakan merupakan penduga yang bukan hasil bias dari bidang spekel yang timbul. Jadi, kontras didefinisikan dalam hal nilai yang diharapkan tetapi dalam praktiknya itu dihitung atas daerah spasial (atau temporal, atau keduanya) dalam hal statistika sampel untuk intensitas dapat dinyatakan dengan persamaan (Khaksari dan Sean, 2017):

$$C = \frac{S}{M} \tag{2.26}$$

$$M = \frac{1}{N_s} \sum_{i=1}^{N} I_i$$
 (2.27)

$$S = \sqrt{\frac{1}{N_s - 1} \sum_{i=1}^{N} (I_i - M)^2}$$
(2.28)

di mana M adalah intensitas rata-rata (*mean*) dan S adalah standar deviasi dari citra spekel . Jika diasumsikan bahwa statistik sampel (M dan S) adalah estimasi intensitas cahaya yang diperoleh dari histogram (Khaksari dan Sean, 2017).

Ukuran N \times N kernel dipindahkan untuk menghitung kontras di suatu gambar. Ukuran kernel yang kecil mengurangi akurasi statistik, sedangkan ukuran kernel yang lebih besar membatasi resolusi spasial. Untuk memastikan pengambilan sampel yang tepat untuk LSCI, perlu diketahui bahwa ukuran satu spekel dalam bidang pencitraan kira-kira sama dengan ukuran satu piksel pada kamera *chargecoupled device* (CCD) atau VGA. Ukuran spekel ditentukan sebagai berikut (Khaksari dan Sean, 2017):

$$d = 1.2 x (M+1) x \lambda x f$$
 (2.29)

di mana d adalah ukuran spekel, M adalah perbesaran sistem pencitraan, λ adalah panjang gelombang laser, dan f adalah fokus dari lensa kamera.

2.4 Software MATLAB

Software Matrix Laboratory atau yang biasa dikenal dengan MATLAB merupakan salah satu software yang digunakan dalam ranah analisis dan komputasi numerik yang dibuat dengan algoritma pemrograman menggunakan sifat dan bentuk matriks. Awalnya, software ini adalah interface dari proyek LINPACK (Linear System Package) dan EISPACK (Eigen System Package), yang kemudian dikembangkan oleh perusahaan Mathworks, Inc. Software MATLAB menggunakan bahasa pemrograman C++ (dalam komunikasinya) dan assembler (untuk fungsi-fungsi dasar MATLAB) (Suarga, 2007).

Sebagai sebuah sistem dalam pemrosesan dan analisis data, Matlab tersusun dari 5 bagian utama (Suarga, 2007) :

a. Development Environment

Merupakan sekumpulan perangkat dan fasilitas yang membantu untuk menggunakan fungsi-fungsi dan file-file Matlab. Beberapa perangkat ini merupakan sebuah *Graphical User Interfaces* (GUI).

b. Mathematical Function Library

Merupakan sekumpulan algoritma komputasi mulai dari fungsi- fungsi dasar sepertri: sum, sin, cos, dan aritmatika kompleks, sampai dengan fungsi—fungsi yang lebih kompek seperti *matrix inverse, matrix eigenvalues, Bessel functions*, dan *Fast Fourier Transforms* (FFT).

c. Matlab Language

Merupakan suatu bahasa pemrograman tingkat tinggi dengan control flow statements, fungsi, struktur input/output data, dan fitur-fitur pemrograman berorientasi objek.

d. Graphics

Matlab memiliki fasilitas untuk menampilkan vector dan matrices sebagai suatu grafik. Didalamnya melibatkan fungsi-fungsi tingkat tinggi untuk visualisasi data dua dimensi dan data tiga dimensi, *image processing*, animasi, dan *presentation graphics*.

e. Graphical User Interface (GUI)

GUIDE atau GUI (*Graphical User Interface*) Builder merupakan sebuah Graphical User Interface (GUI) yang terdiri atas tombol (*pushbutton*), edit, slider, text, combo, sumbu (axes), maupun menu dan lain-lain. Aplikasi yang menggunakan fitur dari GUI MATLAB umumnya lebih mudah digunakan karena orang yang menjalankannya tidak perlu mengetahui algoritma pemrograman yang bekerja. GUI MATLAB memiliki banyak kelebihan, antara lain (Sugiharto, 2006):

- 1. GUIDE MATLAB cocok untuk membuat *software* yang cennderung berorientasi sains dan matematis.
- 2. GUI pada MATLAB juga menyediakan fungsi *built-in* yang siap digunakan, sehingga tidak perlu membuat dari awal.
- File yang dihasilkan oleh MATLAB cenderung kecil, meskipun menampilkan gambar grafik.
- 4. Fitur yang disediakan oleh MATLAB sangat beragam.

2.4.1 Algoritma Pengolahan Citra Spekel dari Kamera CCD pada MATLAB

Efek spekel banyak digunakan dalam aplikasi biomedis sebagai alat untuk mengukur persebaran pola bintik gelap terang pada citra. Pengolahan citra spekel didasarkan pada perhitungan nilai kontras yang merupakan rasio dari standar deviasi (σ_I) dan *mean* (μ_I) atau distribusi intensitas cahaya I yang tersebar dalam jaringan atau permukaan objek yang disinari. Dalam pengolahan citra spekel, sangat bergantung pada kamera yang digunakan untuk pengambilan gambar karena akan mempengaruhi persebaran intensitas cahaya dan kualitas gambar. Untuk analisis tersebut dapat menggunakan fitur MATLAB, pengolahan citra spekel yang diambil melalui kamera CCD melalui beberapa tahapan yaitu (Postnikov dkk,2019) :

a. Pemanggilan citra

- Pemanggilan citra spekel yang akan dianalisis pada Matlab dapat melalui fungsi *imread* seperti dibawah ini (Postnikov dkk, 2019):
 - i =imread('Image.jpg');
- Jika menggunakan fitur GUI maka dapat menggunakan algoritma seperti

dibawah ini :

```
[filename, pathname] = uigetfile('*.*');
if ~isequal(filename, 0)
    handles.data1 =
imread(fullfile(pathname, filename));
    guidata(hObject, handles);
    axes(handles.axes1)
    cla reset
    imshow(handles.data1);
else
    return
```

b. Pengolahan citra spekel

Algoritma pengolahan citra spekel yang diambil melalui kamera ccd ada 2

metode yaitu (Postnikov dkk, 2019):

- Metode *block partition*

```
function out=blockslaska(image,L)
invL=1/L;
Std =imresize(image,invL,' return ');
Bp =imresize(Std,L,' return ');
Me =imresize((image-Bp).^2,invL,'return');
```

Metode filter FFT

```
function out=slideslaskaf(image,kernel)
% image: input speckle image;
% kernel: the sliding kernel
Fkernel =fft2(kernel);
   Std =fftshift(ifft2(fft2(image).*Fkernel));
   D2 =(image-Std).^2;
   Me =fftshift(ifft2(fft2(D2).*Fkernel));
```

c. Perhitungan nilai kontras

Algoritma perhitungan nilai kontras citra spekel yang diambil melalui kamera ccd yaitu (Postnikov dkk, 2019):

- Metode *block partition*

Perhitungan nilai kontras citra spekel dari kamera CCD dan diolah dengan

metode *block partition* menggunakan algoritma (Postnikov dkk, 2019):

C = (1-invL^2) *Std.^2./Mean;

- Metode filter FFT

Perhitungan nilai kontras citra spekel dari kamera CCD dan diolah dengan metode *block partition* menggunakan algoritma (Postnikov dkk, 2019):

$$C = Std.^2./Mean;$$

Algoritma penentuan nilai kontras citra spekel dapat berubah-ubah sesuai dengan metode yang digunakan. Akan tetapi tetap mengacu pada persamaan untuk mencari nilai kontras yaitu rasio antara standar deviasi (σ_I) dan *mean* (μ_I) (Postnikov dkk, 2019).

2.4.2 Algoritma Pengolahan Citra Spekel dari Kamera VGA pada MATLAB

Pengolahan citra spekel didasarkan pada perhitungan nilai kontras yang merupakan rasio dari standar deviasi (σ_I) dan *mean* (μ_I) atau distribusi intensitas cahaya I yang tersebar dalam jaringan atau permukaan objek yang disinari (Vaz dkk, 2017).

Menurut Huda dkk pada tahun 2015, dalam pengolahan citra spekel, sangat bergantung pada kamera yang digunakan untuk pengambilan gambar karena akan mempengaruhi persebaran intensitas cahaya dan kualitas gambar. Kamera yang sering digunakan dalam pengambilan citra spekel yaitu kamera VGA 30 fps (640 x 480 piksel). Untuk citra yang diperoleh dapat menggunakan fitur MATLAB, pengolahan citra spekel yang diambil melalui kamera VGA melalui beberapa tahapan yaitu :

- a. Pemanggilan citra
 - Pemanggilan citra spekel yang akan dianalisis pada Matlab dapat melalui, fungsi imread seperti dibawah ini (Huda dkk, 2015):

i =imread('Image.jpg');

- Jika menggunakan fitur GUI maka dapat menggunakan algoritma seperti dibawah ini :

[filename, pathname] = uigetfile('*.*');

```
if ~isequal(filename,0)
    handles.data1 =
imread(fullfile(pathname,filename));
    guidata(hObject,handles);
    axes(handles.axes1)
    cla reset
    imshow(handles.data1);
else
    return
```

b. Pengolahan citra menjadi grayscale

- Citra spekel yang telah dipanggil selanjutnya harus dirubah menjadi citra hitam putih (*grayscale*), proses ini dapat dilakukan dengan cara sebagai berikut (Huda dkk, 2015):

I = rgb2gray(Image);

- Jika menggunakan GUI maka algoritma yang digunakan adalah :

Img = handles.data1; I = rgb2gray(Img);

c. Pemanggilan histogram citra

Setelah citra dirubah dalam *grayscale*, maka histogram dapat dimunculkan. Histogram citra pada Matlab dapat dimunculkan apabila citra dalam bentuk *grayscale*. Pemanggilan histogram citra dapat dilakukan dengan cara sebagai berikut (Huda dkk, 2015):

```
Histo = imhist(I);
```

d. Ekstraksi nilai standar deviasi dan mean citra

Untuk menampilkan nilai standar deviasi dan mean dari suatu citra, maka dapat dilakukan dengan cara sebagai berikut (Huda dkk, 2015):

I = rgb2gray(Image); M = mean2(I); S = std2(I); Jika menggunakan GUI maka algoritma yang digunakan adalah :

Img = handles.data1; I = rgb2gray(Img); M = mean2(I); S = std2(I);

e. Perhitungan nilai kontras citra

Untuk memperoleh nilai kontras citra, maka dapat dilakukan dengan cara

sebagai berikut :

```
I = rgb2gray(Image);
M = mean2(I);
S = std2(I);
C = S/M;
```

2.5 Citra Digital

Suatu gambar dapat didefinisikan sebagai fungsi dua dimensi, f (x, y), di mana x dan y adalah koordinat spasial, dan amplitudo dari f pada setiap pasangan koordinat (x,y) yang disebut intensitas atau tingkat abu-abu dari gambar pada titik itu. Ketika x, y, dan nilai amplitudo dari f berbentuk diskrit, kita sebut gambar sebagai gambar digital. Bidang pemrosesan gambar digital mengacu pada pemrosesan gambar digital dengan menggunakan komputer. Perhatikan bahwa gambar digital dibuat dari sejumlah elemen yang terbatas, yang masing-masing memiliki lokasi dan nilai tertentu. Elemen-elemen ini disebut sebagai elemen gambar. Piksel adalah istilah yang paling banyak digunakan untuk menunjukkan unsur-unsur gambar digital (Hermawati, 2013).

Citra digital tersusun dari sejumlah nilai tingkat keabuan yang dikenal sebagai piksel pada posisi tertentu. Untuk melakukan pemrosesan citra digital, maka citra analog harus dikonversi dahulu ke citra digital. Terdapat dua jenis citra digital, yaitu citra diam (*still image*) dan citra bergerak (*moving image*). Pada

prinsipnya, citra bergerak adalah sekumpulan citra diam dalam bentuk frameframe, sedangkan citra diam merupakan komponen-komponen piksel yang menyusun suatu gambar. Suatu citra digital dapat dinyatakan dengan persamaan (Purnomo dan Arif, 2010) :

$$f(x, y) = \begin{bmatrix} f(1,1) & f(1,2) & f(1,n) \\ f(m-1,1) & f(m-1,2) & f(m-1,n) \\ f(m,1) & f(m,2) & f(m,n) \end{bmatrix}$$
(2.30)

Dari persamaan diatas, citra digital dapat dinyatakan sebagai matriks dengan tinggi citra diwakili dengan huruf m dan lebar citra diwakili dengan huruf n. Dengan menggunakan prinsip dari operasi matriks, maka suatu citra digital dapat dianalisis maupun diolah sesuai kebutuhan yang diinginkan.

2.6 Pengolahan Citra Digital

Bidang pemrosesan gambar digital mengacu pada pemrosesan gambar digital dengan menggunakan komputer dengan *software* tertentu sesuai dengan kebutuhan. Gambar digital dibuat dari sejumlah elemen yang terbatas, yang masing-masing memiliki lokasi dan nilai tertentu. Elemen-elemen ini disebut sebagai elemen gambar. Piksel adalah istilah yang paling banyak digunakan untuk menunjukkan unsur-unsur gambar digital (Hermawati, 2013).

Penglihatan merupakan indera paling kompleks bagi manusia, sehingga tidak mengherankan bahwa citra gambar memainkan peran penting dalam persepsi manusia. Namun, penglihatan manusia, yang terbatas pada pita visual dari spektrum elektromagnetik (EM). Pada dasarnya, mesin pencitraan mencakup hampir seluruh spektrum EM, mulai dari gamma hingga gelombang radio. Dengan demikian, pemrosesan gambar digital mencakup bidang aplikasi yang luas dan beragam (Hermawati, 2013).

Ada tiga jenis penggolongan dalam proses pengolahan citra digital, yaitu : proses tingkat rendah, menengah, dan tinggi. Proses tingkat rendah melibatkan operasi primitif seperti *pre-prosessing* gambar untuk mengurangi *noise*, peningkatan kontras, dan penajaman gambar. Proses tingkat rendah dicirikan oleh input maupun outputnya adalah gambar. Proses tingkat menengah pada gambar melibatkan fungsi-fungsi seperti segmentasi (mempartisi gambar menjadi wilayah atau objek), deskripsi objek-objek tersebut untuk menguranginya ke bentuk yang sesuai untuk pemrosesan komputer dan klasifikasi (pengenalan) objek individual. Proses tingkat menengah memiliki output berupa citra yang diekstraksi dari gambar tersebut. Kemudian, pemrosesan tingkat yang lebih tinggi melibatkan fungsi kognitif yang biasanya diasosiasikan dengan penglihatan manusia. Output dari proses pengolahan citra digital tingkat tinggi dapan berupa ekstraksi ciri statistika pada citra yang dianalisis (Hermawati, 2013).

Jenis operasi pada pemrosesan digital diantaranya adalah operasi titik, operasi lokal, operasi global, dan operasi obyek. Operasi titik (Point prosessing) merupakan operasi yang dilakukan dengan mengoperasikan piksel tanpa memperhatikan piksel yang lainnya. Operasi lokal yaitu operasi citra yang melibatkan piksel yang terletak disekitar piksel yang akan dioperasikan. Operasi global merupakan operasi yang melibatkan seluruh piksel citra sehingga menghasilkan nilai yang baru. Operasi obyek merupakan gabungan operasi titik dan operasi lokal yang berbasis obyek, contohnya pada segmentasi citra (Purnomo dan Arif, 2010).

2.7 Kamera VGA (Action Camera VGA 30 fps)

Kamera VGA yaitu kamera digital yang menyimpan gambar mereka secara langsung di dalam memori kamera atau ke kartu memori terpasang. Kamera yang memiliki sebutan VGA mengambil gambar yang memiliki resolusi 640 x 480, yang berarti bahwa sebuah gambar akan menjadi 640 piksel lebar 480 piksel panjang (Suarga, 2007).

Bedanya dengan kamera MP, piksel kamera MP lebih banyak (sesuai namanya *Mega Pixel*), sedangakan kamera VGA hanya memiliki resolusi 640 x 480. Piksel lebih banyak berarti lebih banyak data yang masuk ke sensor, sehingga gambar yang dihasilkan menjadi lebih jernih (Suarga, 2007).

Gambar 2.7 Action Camera VGA 30 fps Resolusi 640 x 480 Piksel (Suarga, 2007)

Spesifikasi (Suarga, 2007):

- Resolusi Video : FHD 1080p, HD 720p (1280x720 Piksel)@30fps,

VGA (640x480 piksel)@30fps

- Kamera : 1m / 2m / 3m / 5m Piksel (JPEG/JPG)

- Prosessor CPU : Sunplus SPCA1521/ Generalplus 6624
- Sensor : GC1004
- Sudut lensa $: 170^{\circ}$ 6G wide angle lens
- Anti Air : sampai kedalaman 30 meter
- Layar : LCD 2 inci
- Bahasa : Multi Bahasa
- Baterai : 900mAh (1.5 jam) 3.7V Li-Po battery
- Waktu Pengisian : 4-5 hours
 - Penyimpanan : *Micro* SDHC *Class* 6-10 4GB sampai 32GB
- Input / Output : *Micro* USB2.0 & *Mini* HDMI (Type D), TF card slot
- Ukuran Kamera : 59.3mm x 29.3mm x 41.1mm
- Berat Kamera : 170 gram

BAB III METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan pada bulan November 2019 sampai dengan bulan Februari 2020 di ruang gelap Laboratorium Zat Padat dan Optik, Jurusan Fisika, gedung B.J. Habibie lantai 2, Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang.

3.2 Jenis Penelitian

Jenis penelitian yang dilaksanakan kali ini adalah penelitian yang bersifat eksperimental dan rancang bangun aplikasi pengolahan citra. Penelitian bersifat eksperimental dengan melakukan pengambilan data citra spekel beras terhadap variasi sudut datang dan sudut tangkap cahaya laser oleh detektor berupa kamera, kemudian dilakukan perancangan aplikasi untuk pengolahan citra spekel. Jenis *output* yang diharapkan pada penelitian kali ini berupa data sudut yang tepat agar bisa mendapatkan nilai kontras yang optimum pada citra spekel beras, serta aplikasi pengolahan citra spekel berbasis *Graphical User Interface* (GUI) MATLAB untuk analisis kontras citra spekel.

3.3 Studi Literatur

Studi literatur dilakukan bertujuan untuk mengkaji hal-hal yang berhubungan dengan teori-teori relevan yang mendukung dalam pengambilan data dan perancangan aplikasi. Kajian pustaka yang diperlukan penelitian ini mengenai interferensi cahaya, pemantulan cahaya, metode *Laser Speckel Imaging* (LSI), parameter yang mempengaruhi kualitas citra spekel, cara mencari nilai kontras citra spekel, GUI MATLAB dan pengolahan citra digital pada MATLAB.

3.4 Alat dan Bahan

3.4.1 Alat Penelitian

Adapun alat-alat yang digunakan dalam penelitian kali ini adalah sebagai berikut :

1.	Kamera VGA 30 fps (640 x 480 Piksel)	2 Buah
2.	Laser He-Ne	2 Buah
3.	Cawan Petri	1 Buah
4.	Meja Optik	4 Buah
5.	Statif	5 Buah
6.	Klem	3 Buah
7.	Batang Penyangga	2 Buah
8.	Kaki Magnet	5 Buah
9.	Busur	2 Buah
10.	Power Supply	2 Buah
11.	Kacamata Anti Radiasi	1 Buah
12.	Tempat Kamera	1 Buah
13.	Holder Kamera	1 Buah
14.	Kabel USB	1 Buah
15.	Kaca (30 cm x 30 cm)	2 Buah
16.	Penggaris/Mistar	2 Buah
17.	PC @Windows 10, Core 2 Duo, RAM 6 GB	1 Unit

- 18. Software
 - a. MATLAB R2015a
 - b. ImageJ
 - c. Microsoft Excel 2010

3.4.2 Bahan Penelitian

Adapun bahan-bahan yang digunakan dalam penelitian kali ini adalah sebagai berikut :

- 1. Beras IR 64
- 2. Kertas
- 3. Tali

3.5 Diagram Alir Penelitian

Penelitian analisis kontras citra spekel beras dengan variasi sudut datang dan sudut tangkap cahaya laser berbasis *Graphical User Interface* (GUI) MATLAB ini meliputi beberapa tahapan yakni seperti yang ditunjukkan pada diagram alir sebagai berikut :

Gambar 3.1 Diagram Alir Penelitian

3.6 Prosedur Perancangan Alat dan Aplikasi

Pengambilan data dan perancangan sistem dibagi menjadi dua tahap, yakni tahap penyusunan alat untuk pengambilan data citra spekel secara eksperimental dan tahap pembuatan aplikasi pengolahan citra spekel berbasis *Graphical User Interface* (GUI) MATLAB.

3.6.1 Prosedur Penyusunan Alat Pengambilan Data

Pengambilan data citra spekel beras secara eksperimental menggunakan laser He-Ne dilakukan dengan menyusun alat pada meja optik. Adapun prosedurnya sebagai berikut:

- Menyusun 4 meja optik dengan susunan membentuk persegi panjang yang berfungsi untuk tempat pergerakan *laser head* dan kamera pada saat variasi sudut datang dan sudut tangkap cahaya laser.
- Meletakkan 2 klem pada statif dengan kaki magnet, kemudian menaruhnya pada meja optik.
- 3. Mengatur posisi laser He-Ne dengan cara dijepit menggunakan klem yang ada pada statif.
- Meletakkan 1 batang statif lagi dengan kaki magnet untuk menahan posisi kamera.
- Meletakkan beras pada cawan petri sebagai sampel yang diukur, permukaan beras harus rata pada cawan petri agar citra yang dihasilkan bagus.
- 6. Mengatur posisi laser He-Ne terhadap sampel agar mendapat sudut datang yang sesuai dengan yang diinginkan, pengukuran sudut datang dapat

dilakukan menggunakan busur dengan titik acuan yaitu pusat cahaya laser yang mengenai sampel.

- 7. Mengatur posisi kamera pada meja optik sebagai penangkap cahaya laser yang mengalami pemantulan baur, kemudian menyesuaikan sudut tangkap (sudut kamera) dengan titik pusat sudut yaitu sumbu putar kamera.
- Memfoto sampel beras dengan sudut datang dan sudut tangkap cahaya laser yang sudah diatur sesuai kebutuhan.
- 9. Menyimpan hasil citra spekel yang sudah diperoleh pada saat pengambilan data secara eksperimental.

3.6.2 Prosedur Pembuatan Aplikasi Pengolahan Citra Spekel

Pembuatan aplikasi untuk analisis kontras citra spekel beras pada Graphical User Interface (GUI) MATLAB dapat dilakukan dengan beberapa langkah yang harus dilakukan. Adapun prosedurnya sebagai berikut :

- 1. Membuat *layout* aplikasi yang akan dibuat.
- 2. Mengatur tata letak tombol dan penampil citra sesuai dengan *layout* yang sudah dibuat sebelumnya.
- Membuat algoritma pemrograman dari aplikasi dibuat menggunakan software MATLAB R2015a.
- Membuat koding fungsi dan perintah dari tiap komponen yang ada pada sketsa aplikasi berbasis GUI.
- 5. Memasukkan koding pada m-file MATLAB.
- 6. Melakukan *compile* aplikasi berbasis GUI yang telah dibuat dengan menggunakan *toolbox deploytool*.

- 7. Memasukkan file koding dengan format (.m), file *layout* aplikasi berupa *figure file* (.fig), dan memasukkan file grafik dengan format (.asv).
- 8. Mengekstrak file yang sudah dimasukkan, sehingga menjadi aplikasi yang *standalone*.
- 9. Melakukan kalibrasi hasil pengukuran aplikasi pengolahan citra spekel berbasis *Graphical User Interface* (GUI) MATLAB.

3.7 Metode Pengambilan Data

Metode pengambilan data pada analisis kontras citra spekel penelitian ini dengan melakukan pengambilan data secara eksperimental di laboratotium untuk memperoleh data citra spekel dengan variasi sudut datang dan sudut tangkap laser. Variasi sudut datang cahaya dilakukan dengan perubahan 10^o setiap pengambilan data pada rentang sudut 0^o hingga 80^o, dan variasi sudut tangkap cahaya (sudut kamera) dilakukan dengan perubahan 10^o setiap pengambilan data pada rentang sudut 10^o hingga 80^o.

Selain pengambilan data secara eksperimental, dilakukan juga pembuatan aplikasi berbasis *Graphical User Interface* (GUI) MATLAB untuk mencari nilai kontras spekel yang dihasilkan. Pengujian akurasi pengukuran aplikasi dilakukan dengan cara membandingkan nilai kontras citra spekel beras yang diperoleh dari aplikasi berbasis GUI MATLAB dengan hasil pengukuran yang diperoleh dari *software* ImageJ. Sehingga akan diperoleh persen error dan persen akurasi dari hasil pengukuran aplikasi yang telah dibuat.

41

3.7.1 Skema Pengambilan Data

Metode pengambilan data pada analisis kontras citra spekel penelitian kali ini dilakukan dengan menentukan posisi pengambilan data dan kemudian mengatur sudut pengambilan data. Pengaturan posisi dan sudut pengambilan data dapat dilihat pada skema pada gambar 3.2 dan gambar 3.3.

Pengambilan data Sumbu Y Pengambilan data Pengambilan data Kuadran 2 Kuadran I Kamera VGA **30°** 30° Laser Pengambilan data He-Ne 30° 30° Sumbu X Beras (sampel) Pengambilan data Pengambilan data Kuadran 4 Kuadran 3

A. Skema Letak Pengambilan Data

Gambar 3.2 Skema Posisi Pengambilan Data

B. Skema Penentuan Sudut Datang dan Sudut Tangkap

Gambar 3.3 Skema Penentuan Sudut Datang dan Sudut Tangkap

Sudut Kamera (Sudut Tangkap)	Sudut Laser (Sudut Datang)	Nilai Mean citra	Nilai Standar Deviasi Citra	Nilai Kontras	Rata-rata Nilai Kontras
	0				
	10				
	20		An		
	30				
2	40				
	50				
	60				
	70			2 /	
	80	/FDDI			

Tabel 3.1 Format Tabel Pengambilan Data Penelitian

3.8 Pengolahan Data

Tahap pengolahan data terdiri dari dua tahapan, yaitu pengolahan data pada aplikasi berbasis GUI MATLAB, dilanjutkan dengan menampilkan hasil yang diperoleh. Hasil *image processing* akan menunjukkan nilai kontras dari histogram yang ditampilkan, sehingga dapat dianalisis lebih lanjut.

3.8.1 Diagram Alir Pengolahan Data pada Aplikasi

Gambar 3.4 Diagram Alir Pengolahan Data pada Aplikasi

3.8.2 Penentuan Nilai Kontras Citra Spekel

Nilai kontras (c) dari pola spekel dapat didefinisikan sebagai rasio dari deviasi standar (σ_I) dan rata-rata dari intensitas (μ_I) yang diukur dari citra spekel (Khaksari dan Sean, 2017) :

$$C = \frac{\sigma_I}{\mu I}$$
(3.1)

Nilai Kontras =
$$\frac{Standar Deviasi}{Mean}$$
 (3.2)

3.9 Metode Analisis Data

Analisis data pada penelitian kali ini dilakukan secara kualitatif dan kuantitatif dengan melihat hasil pengolahan citra spekel beras yang diperoleh dari variasi sudut datang laser dan sudut tangkap cahaya pada saat pengambilan data secara eksperimental. Analisis secara kuantitatif dilakukan dengan cara mengambil nilai kontras rata-rata dari data citra yang sudah diambil dengan perulangan 3 kali. Sedangkan analisis data secara kualitatif dilakukan dengan cara mencari nilai kontras yang paling baik untuk menghasilkan citra spekel yang optimum. Nilai kontras dapat diketahui dengan melihat histogram citra. Pada histogram terebut memberi informasi berupa nilai *mean* dan standar deviasi citra, sehingga digunakan untuk mengetahui nilai kontrasnya.

Analisis data pada aplikasi pengolahan citra spekel berbasis *Graphical User Interface* (GUI) MATLAB dapat dilakukan dengan cara mengkalibrasi nilai *mean*, standar deviasi, dan nilai kontras yang didapatkan. Nilai tersebut dapat dibandingkan dengan hasil yang diperoleh dari software ImageJ. Kemudian dapat diketahui tingkat akurasi pengukuran dari aplikasi yang sudah dibuat.

3.10 Layout Interface Aplikasi Pengolahan Citra Spekel Berbasis GUI MATLAB

Gambar 3.5 Layout Aplikasi Pengolahan Citra Spekel Berbasis GUI MATLAB

BAB IV HASIL DAN PEMBAHASAN

4.1 Hasil Penelitian

Pengambilan data citra spekel beras dilakukan pada bulan Januari hingga Februari 2020 di ruang gelap Laboratorium Zat Padat dan Optik, Jurusan Fisika, Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang. Penelitian analisis pengaruh sudut datang dan sudut tangkap cahaya pada persebaran citra spekel beras memerlukan pengambilan data secara eksperimental dan rancang bangun pembuatan aplikasi (*software*) pengolahan kontras citra spekel. Penelitian kali ini menggunakan metode *Laser Speckle Contrast Imaging* (LSCI). Metode ini mengekstraksi komponen statistika dari suatu citra yang berupa nilai *mean* dan standar deviasi, nilai tersebut digunakan untuk mencari nilai kontras citra spekel. Nilai kontras yang sudah diketahui dapat dianalisis lebih lanjut untuk mengetahui hubungan dari variabel yang sedang diamati.

Terdapat dua hasil yang diperoleh dalam penelitian kali ini, hasil yang pertama yaitu mengenai pengaruh variasi sudut datang dan sudut tangkap cahaya pada persebaran citra spekel beras. Penelitian bersifat eksperimental dengan melakukan pengambilan data citra spekel beras terhadap variasi sudut datang dan sudut tangkap cahaya pada posisi sumbu X, sumbu Y, dan pada kuadran 1 hingga kuadran 4. Diperoleh hasil citra spekel dengan resolusi 640 x 480 piksel pada rentang sudut datang dan sudut tangkap yang telah ditetapkan. Data tersebut diolah untuk mengetahui nilai kontras tiap spekel. Sehingga dapat dianalisis untuk mengetahui sudut datang dan sudut tangkap yang optimal dalam menghasilkan citra spekel. Hasil yang kedua yaitu diperoleh aplikasi analisis kontras citra spekel

untuk mengetahui nilai kontrasnya. Serta diperoleh tingkat akurasi pengukuran nilai kontras dari aplikasi yang dibuat dibandingkan dengan pengukuran nilai kontras dengan aplikasi ImageJ. Penjelasan lebih lanjut akan diuraikan pada pembahasan dibawah ini.

4.1.1 Pembuatan dan Pengoperasian Aplikasi Pengolahan Citra Spekel Berbasis GUI MATLAB

Nilai mean, standar deviasi, dan nilai kontras citra spekel diperoleh dari hasil pengolahan citra digital dalam aplikasi. Aplikasi analisis kontras citra spekel dibuat menggunakan fitur GUI yang ada pada MATLAB. Fitur yang digunakan adalah *guide* dan *deploytool*, fitur tersebut digunakan untuk membuat aplikasi yang bersifat *standalone*. Adapun langkah-langkah yang harus dilakukan untuk membuat aplikasi tersebut adalah :

 Membuat GUI kosong yang baru dengan cara pilih menu HOME > New Graphical User Interface, kemudian pilih Create New GUI > pilih Blank GUI (Default).

MATLAB R2015a	GUIDE Quick Start - C X
HOME PLOTS AP Image: Script Image: Script Image: Script Image: Script Image: Script Ctrl+N File: Image: Script Ctrl+N File:	Create New GU Open Existing GUI GUIDE templates GUI with Uicontrols GUI with Axes and Menu Modal Question Dialog BLANK
System Object >	Save new figure as: C:\Program Files\MATLAB\MATLAB Product Browse
Graphical User Interface	OK Cancel Help
Command Shortcut	(b)
(a)	

Gambar 4.1 (a) Letak Menu GUI Baru (b) Pemilihan GUI Kosong untuk Pembuatan Aplikasi

2. Membuat template *software*/aplikasi

Gambar 4.2 Desain Template GUI dari Aplikasi Analisis Kontras Citra Spekel

Pembuatan template aplikasi berbasis GUI MATLAB menggunakan beberapa macam tombol, listbox, dan grafik. Adapun komposisi fitur yang digunakan dapat dilihat pada tabel 4.1, yaitu :

No.	Nama	Jenis	Fungsi
5	Button	Button	
1.	APLIKASI	Static text 2	Untuk menampilkan judul
	ANALISIS	DDI IS	aplikasi yang dibuat
	KONTRAS		
	CITRA		
	SPEKEL		
2.	Axes 1	Axes1	Untuk menampilkan citra yang
			dipilih dan belum diolah
3.	Axes 2	Axes2	Untuk menampilkan hasil image
			processing sehingga gambar
			menjadi hitam-putih

Tabel 4.1 Fitur yang Digunakan untuk Membuat Aplikasi

()
ž
2
5
LL.
Ο
>
Í-
Ň
Π.
5
5
0
Ě
2
٩
()
ш
Ë.
۷
F
ເ
5
T,
4
Ľ
m
Y
4
Σ
5
4
7
2
Ц.,
0
2
2
\mathbf{m}
5
ñ
\sim

	4 2	4 2	TT 1 11 - 1
4.	Axes 3	Axes3	Untuk menampilkan histogram
			citra hasil image processing
			grayscale
5.	INPUT	Pushbuttton	Untuk membuka dan
	FOLDER	1	menginputkan folder gambar
			yang akan dianalisis pada
			aplikasi.
6.	ANALISIS	Pushbuttton	Untuk menjalankan perintah
	GAMBAR	2	mencari nilai mean, standar
	A D	DISL	deviasi, dan nilai kontras dari
· ,	SYX	MALLE	citra yang diinputkan.
7.	EXPORT	Pushbuttton	Untuk menjalankan perintah
\sim	DATA	3	menyimpan data dalam bentuk
, .	2.2		file excel atau file txt.
8.	RESET	Pushbuttton	Untuk menjalankan perintah
		4	mengatur ulang tampilan
			gambar, histogram, dan nilai
		1/2	yang didapatkan.
9.	KELUAR	Pushbuttton	Untuk menjalankan perintah
	1 10 1	5	keluar dari aplikasi.
10.	Excel File	Radio	Untuk menjalankan perintah
	(.xlsx)	buttton 1	pemilihan file penyimpanan data
	MT Dr		dalam bentuk excel file.
11.	Text File	Radio	Untuk menjalankan perintah
	(.txt)	buttton 2	pemilihan file penyimpanan data
			dalam bentuk text file.
12.	Panel1	Panel	Sebagai panel untuk letak tombol
13.	Panel2	Panel	pilihan format file penyimpanan
14.	Panel3	Panel	data
15.	Panel4	Panel	Sebagai panel untuk tempat
16.	Panel5	Panel	penampil gambar dan histogram
17.	Panel6	Panel	citra

18.	Panel7	Panel	Sebagai panel untuk tempat
19.	Panel8	Panel	penampil nilai mean, standar
20.	Panel9	Panel	deviasi, dan kontras citra yang
21.	Panel10	Panel	diolah.
22.	Listbox1	Listbox	Untuk menampilkan nama file
			gambar yang ada pada folder.
23.	Edit1	Edit Text 1	Untuk menuliskan nama file
			sebagai penyimpanan data.
24.	Edit2	Edit Text 2	Untuk menampilkan nilai mean
	AN	D IOL	dari citra yang diolah.
25.	Edit3	Edit Text 3	Untuk menampilkan nilai standar
	- san		deviasi dari citra yang diolah.
26.	Edit4	Edit Text 4	Untuk menampilkan nilai kontras
2.5		[) 9	dari citra yang diolah.

3. Kemudian memberikan identitas dan mengatur penamaan, serta tampilan masing- masing tombol pada template dengan cara klik 2 kali pada tombol, lalu akan muncul menu *pop-up*, kemudian isi kolom *tag* dan *string* sesuai keinginan.

Gambar 4.3 Pengaturan Tombol Template GUI pada Aplikasi Analisis Kontras Citra Spekel

4. Kemudian memasukkan *coding* pada tiap tombol. Sehingga tombol dapat terhubung dan melakukan perintah sesuai yang diharapkan, langkah yang dilakukan yaitu :

Klik kanan pada tombol > kemudian pilih *View Callbacks* > pilih *Callback*

Gambar 4.4 Pemanggilan Editor MATLAB untuk Pengisian Coding

5. Setelah itu akan tampil editor file MATLAB sebagai tempat untuk memasukkan *coding* agar tombol dapat berfungsi dan berjalan dengan baik.

_								
📝 Edit	or - D:\File SKRIPSI\Citra Spekel Beras\GUI untuk skripsi\I	InterfaceGUI.m						🕤 🗙
+ 1 1 ∫	PSD_cobaEllip.m × PSD_FilterSinyal.m × PSD_	_Gelombang.m 🛛 🕹	contrast_Value.m	× TugasUAS_Det	eksiWajah.m	× PSD_coba.m	× InterfaceGUI.m	- ×] +
82								~
83	% Executes on button press in	pushbutton2.						
84	function pushbutton2 Callback(hOb)	ject, eventdata	, handles)					
85 -	<pre>Img = handles.datal;</pre>							
86								
87 -	<pre>I = rgb2gray(Img);</pre>							
88 -	<pre>M = mean2(I);</pre>							
89 -	<pre>S = std2(I);</pre>							
90 -	C = S/M;							_
91								-
92 -	<pre>set(handles.editl,'string',M);</pre>							=
93 -	<pre>set(handles.edit2,'string',S);</pre>							-
94 -	<pre>set(handles.edit3,'string',C);</pre>							
95								=
96 -	if C<0.96260 C>0.91617							=
97 -	set(handles.edit5,'string','12%	%')						
98 -	<pre>set(handles.edit6,'string','Bai</pre>	ik')						~
Comm	and Window							
comm								
New to	MATLAB? See resources for <u>Getting Started</u> .							×
>>								
>>	guide							
War	ning: MATLAB has disabled some advanc	ced graphics rem	ndering featu	res by switchi	ng to so	ftware OpenGL.	. For more	
inf	ormation, click <u>here</u> .							
$f_{\mathbf{x}} >>$					А	ctivate Wind	lows	
					G	a ta Cattinge ta	activata Window	
							activate windows	
				Inte	rfaceGUI		Ln 9 C	ol 36

Gambar 4.5 Pengisian Coding Aplikasi

6. Apabila semua *coding* sudah selesai dimasukkan, selanjutnya adalah mengekstrak aplikasi agar menjadi *standalone* menggunakan fitur *deploytool*. Pemanggilan fitur dapat dilakukan dengan mengetik *deploytool* pada *command window*, seperti pada gambar 4.6 :

Gambar 4.6 Pemanggilan Fitur *deploytool*

7. Kemudian akan tampil menu *pop up*, pilih **Application Compiler**. Setelah itu isi informasi tambahan mengenai aplikasi yang akan diekstrak. Isi data yang dibutuhkan dan tambahkan file *coding* beserta file *figure* dari aplikasi yang dibutuhkan sehingga tanda centang menjadi warna hijau. Seperti pada gambar 4.7 dan gambar 4.8.

Gambar 4.7 (a)Pemanggilan Fitur *Application Compiler* (b)Memasukkan File Utama Aplikasi dan Ekstraksi Aplikasi

plication informat	on				
AKCS				1.0	
Mahardhika Mega					
megadika55@gma	il.com				Select custom splash scree
UIN Malang					
			Set as de	fault contact	
Aplikasi Pengolaha	in Citra Spekel Berbasis (GUI MATLAB			
Aplikasi yang digu	nakan untuk memperole	eh nilai mean, standar devia	si, dan nilai kontras da	ari citra spekel	
Aplikasi yang digu	nakan untuk memperole	eh nilai mean, standar devia	si, dan nilai kontras da	ari citra spekel	
Aplikasi yang digu Additional install	nakan untuk memperole er options	eh nilai mean, standar devia	si, dan nilai kontras da	ari citra spekel	
Aplikasi yang digu Additional install es required for you	nakan untuk memperole er options r application to run	eh nilai mean, standar devia	si, dan nilai kontras da	ari citra spekel	
Aplikasi yang digu Additional install es required for you g ProjectGUI.asv	er options er application to run	eh nilai mean, standar devia	si, dan nilai kontras da	ari citra spekel	
Aplikasi yang digu Additional install es required for you g ProjectGUI.asv es installed for you	er options er options M ProjectGULfig r end user	eh nilai mean, standar devia	si, dan nilai kontras da	ari citra spekel	

Gambar 4.8 Pengisian Informasi dan File Penunjang Aplikasi

8. Aplikasi dapat kita jalankan dengan cara klik 2 kali pada file berekstensi

.exe yang ada pada folder aplikasi.

← → · ↑ 🚺 → Thi	s PC → DATA (D:) → File SKRIPSI → Citra S	pekel Beras > GUI untuk skrij	psi > GUI Baru > AKC	S → for_testing
🗎 Documents 🖈 ^	Name ^	Date modified	Туре	Size
📰 Pictures 🛛 🖈	AKCS.exe	03/04/2020 10.23	Application	10.889 KB
🖶 Downloads	mccExcludedFiles.log	03/04/2020 10.22	Text Document	2 KB
GUI Baru	readme.txt	03/04/2020 10.23	Text Document	2 KB
Hasil Revisi	requiredMCRProducts.txt	03/04/2020 10.23	Text Document	1 KB
Resepsi	🖬 splash.png	25/04/2013 13.07	PNG File	39 KB
Desktop				

Gambar 4.9 Pengujian untuk Menjalankan Aplikasi

9. Maka akan tampil aplikasi yang sudah dibuat.

Gambar 4.10 Tampilan Aplikasi

10. Selanjutnya klik tombol **INPUT FOLDER** untuk memasukkan folder yang berisi citra pada *listbox* di aplikasi. Untuk membuka gambar dapat dilakukan dengan memilih nama file, kemudian klik 1 kali.

Gambar 4.11 File Gambar Ditampilkan pada *Listbox*

11. Setelah itu klik tombol ANALISIS GAMBAR, untuk menjalankan perintah analisis citra spekel agar menampilkan histogram, nilai *mean*, nilai standar deviasi, dan nilai kontras. Maka tampilan aplikasi akan menjadi seperti pada gambar 4.12.

Gambar 4.12 Tampilan Aplikasi Ketika Dijalankan
12. Untuk menyimpan data hasil pengolahan citra, dapat dilakukan dengan cara sebagai berikut :

Klik tombol pilihan format file penyimpanan > masukkan nama file beserta formatnya > klik tombol **EXPORT DATA**

Maka aplikasi akan menjadi seperti pada gambar 4.13 :

Gambar 4.13 Tampilan Aplikasi Ketika Proses Export Data

13. Lokasi file hasil export data terletak pada folder ketika membuka aplikasi

pertama kali.

📙 🛃 🚽 D:\	File SKRIF	SI\Citra Spekel Ber	as\GUI untuk skripsi	\GUI Baru\AKCS					
File Home	Share	View							
Pin to Quick Copy access	Paste	Cut Copy path Paste shortcut	Move Copy to • to •	Velete Rename	New item	s • Properties	Dpen ▼ Se Edit Se History 🔡 In	elect all elect none avert selection	
Cli	pboard		Organi	se	New	Open		Select	
$\leftarrow \rightarrow \cdot \uparrow$	> This	PC > DATA (D:)	> File SKRIPSI > C	Citra Spekel Bera	s » GUI untuk skripsi	> GUI Baru > AKC	S >		
🖈 Quick access	^	Name	^	Da	te modified	Туре	Size		
E Desktop	*	for_redist	ibution	03/	/04/2020 10.23	File folder			
Documents	*	📙 for_redistr	ibution_files_only	03/	/04/2020 10.23	File folder			
Pictures		for_testin	9	03/	/04/2020 10.23	File folder			
Downloads	^	🔏 AKCS.exe		03/	/04/2020 10.23	Application	10.889 KB	ł	
Downloads		Packaging	JLog.txt	03/	04/2020 10.23	Text Document	3 KB	ł	
File Semhas		🗹 🖳 UjiCoba.x	lsx	11/	/04/2020 20.56	Microsoft Excel W	9 KB	1	
File Skripsi K	onsi							-	
File Skripsi K	onsi								
Desktop									

Gambar 4.14 Lokasi File Hasil Export Data pada Aplikasi

4.1.2 Pemrograman Aplikasi

Aplikasi analisis kontras citra spekel dibuat menggunakan fitur GUI yang ada pada MATLAB. Fitur yang digunakan adalah *guide* dan *deploytool*, fitur tersebut digunakan untuk membuat aplikasi yang bersifat *standalone*. Agar dapat berjalan sesuai perintah maka diperlukan pemrograman pada masing-masing tombol dan komponen dalam *template* aplikasi. Pembuatan program untuk aplikasi diawali dengan membuat runtutan/algoritma kinerja aplikasi, sehingga dapat berjalan dengan baik. Adapun alur pemrograman dalam aplikasi berbasis GUI untuk analisis kontras citra spekel beserta program dalam Matlab yaitu :

1. Input folder dan input file gambar hasil penelitian

Program yang harus dibuat pertama kali pada aplikasi berbasis GUI adalah input citra hasil penelitian. Data penelitian dikelompokkan berdasarkan sumbu pengambilan citra spekel. Fitur yang digunakan adalah *pushbutton* sebagai pemanggil file dan *listbox* untuk menampilkan rincian data citra pada folder tersebut. Program pada *input* file bertujuan untuk memfilter file yang ditampilkan, file citra yang dapat terbaca hanya yang memiliki ekstensi .jpg. Adapun script pemrogramannya yaitu:

```
function pushbutton1_Callback(hObject, eventdata,
handles)
handles.folder = uigetdir; %store the selected
folder
files = dir(fullfile(handles.folder,'*jpg'));
    for i =1:length(files)
        piclist{i} = files(i).name;
    end
set(handles.listbox1,'String',piclist);
guidata(hObject, handles);
```

```
57
```

```
% --- Executes on selection change in listbox1.
function listbox1 Callback(hObject, eventdata,
handles)
list= get(handles.listbox1,'string');
selected = get(handles.listbox1, 'value');
   data1 =
imread(fullfile(handles.folder, cell2mat(list(select
ed))));
   axes(handles.axes1);
   handles=guidata(gcbo);
set(handles.figure1, 'CurrentAxes', handles.axes1);
   axes(handles.axes1);
cla reset
imshow(data1);
set(handles.figure1, 'Userdata', data1);
set(handles.axes1, 'Userdata', data1);
```

2. Image processing untuk mendapatkan nilai mean, standar deviasi, dan

nilai kontras citra

Program yang harus dibuat selanjutnya yaitu *image processing*. Proses ini bertujuan untuk mengekstraksi nilai *mean*, standar deviasi, dan nilai kontras dari citra yang diinputkan. Tahap *image processing* dilakukan dengan mengubah gambar kedalam *grayscale*, kemudian dapat digunakan untuk menampilkan histogram citra dan mengesktraksi besaran yang dicari. Fitur yang digunakan adalah *pushbutton* untuk menjalankan perintah *image processing*. Adapun *script* pemrogramannya yaitu :

```
function pushbutton2_Callback(hObject, eventdata,
handles)
handles = guidata(gcbo);
    I = get(handles.axes1,'Userdata');
Img = rgb2gray(I);
M = mean2(Img); %mencari nilai mean
S = std2(Img); %mencari nilai standar deviasi
C = S/M; %mencari nilai kontras
set(handles.edit2,'string',M);
set(handles.edit3,'string',S);
set(handles.edit4,'string',C);
```

3. Menampilkan histogram dan citra hasil image processing

Program berikutnya yaitu penampil citra hasil dan histogram. Proses ini bertujuan untuk menampilkan gambar yang sudah melalui tahap *image processing* dan menampilkan histogramnya. Fitur yang digunakan adalah *pushbutton* dan *axes*. Adapun script pemrogramannya yaitu :

```
function pushbutton2_Callback(hObject, eventdata,
handles)
handles = guidata(gcbo);
        I = get(handles.axes1,'Userdata');
axes(handles.axes2)
imshow(Img);
axes(handles.axes3)
imhist(Img);
```

4. Penyimpanan data hasil dalam bentuk excel file atau text file

Program terakhir yaitu penyimpanan data hasil. Proses ini bertujuan untuk menyimpan hasil pengolahan citra berupa nilai mean, standar deviasi dan nilai kontras dalam bentuk *excel file* atau *text file*. Fitur yang digunakan adalah *pushbutton* untuk menjalankan perintah penyimpanan data hasil. Adapun script pemrogramannya yaitu :

```
function pushbutton3 Callback(hObject, eventdata,
handles)
handles = guidata(gcbo);
pilih=handles.pilih
switch handles.pilih
case 1 %Export ke Excel
         = {'Mean', 'Standar Deviasi', 'Nilai
Header
Kontras' }
xlswrite(filename, Header, 'Sheet1', 'A1');
case 2 %Export ke txt file
Data1 = [RowM; RowS; RowC];
fileID = fopen(F, 'w');
fprintf(fileID,'%f %f %f\r\n',Data1);
fclose(fileID);
end
```

4.1.3 Data Hasil Pengolahan Citra Spekel Beras

Pengambilan data citra spekel beras secara eksperimental menggunakan laser He-Ne dilakukan pada berbagai posisi. Adapun posisi pengambilan data kali ini yaitu sumbu X, Sumbu Y, kuadran 1, kuadran 2, kuadran 3, dan kuadran 4. Pada masing-masing posisi pengambilan data dilakukan variasi sudut datang dan variasi sudut tangkap. Pengambilan data citra spekel dilakukan pada jarak yang sudah ditentukan pada tiap variasi sudut datang dan sudut tangkap. Adapun jarak antar perangkat pengambilan data dapat dilihat pada tabel 4.2.

Sudut Datang	Jar <mark>ak Laser</mark> - Sampel (meter)	Sudut Tangkap	Jarak Kamera - Sampel (meter)
0	0	10	0,55
10	0,04	20	0,36
20	0,08	30	0,27
30	0,14	40	0,18
40	0,2	50	0,15
50	0,28	<mark>60</mark>	0,12
60	0,36	70	0,08
70	0,6	80	0,05
80	0,9	IS \r	-

Tabel 4.2 Data Penentuan Jarak Antar Perangkat Pengambilan Data

Jarak yang sudah ditentukan pada tabel 4.2 digunakan untuk mengatur posisi laser sebagai sudut datang dan posisi kamera sebagai sudut tangkap dalam pengambilan data citra spekel beras. Citra yang diperoleh dapat diolah pada aplikasi untuk mengetahui nilai *mean*, standar deviasi dan nilai kontras. Adapun data yang dihasilkan adalah sebagai berikut :

A. Data Hasil Pengolahan Citra Spekel Beras pada Sumbu X

Pengambilan data awal dilakukan dengan meletakkan laser sebagai sumber cahaya dan kamera sebagai detektor cahaya pada posisi yang berpelurus yaitu pada posisi sumbu X. Pengambilan data kali ini menghasilkan 211 citra spekel dengan sudut datang pada rentang 0° hingga 80°, serta sudut tangkap pada rentang 10° hingga 70°. Citra spekel yang diperoleh kemudian diolah untuk mendapatkan nilai kontrasnya. Data hasil yang diperoleh pada variasi sudut datang dapat dilihat pada tabel 4.3.

Sudut Datang	Mean	Standar Deviasi	Nilai Kontras (a.u)
0 [°]	66,752	66,099	0,99022
10 [°]	68 <mark>,</mark> 394	6 <mark>6</mark> ,838	0,97725
20°	70,088	6 <mark>6</mark> ,412	0,94756
30°	71,563	6 <mark>5</mark> ,076	0,90939
40°	74,651	63,520	0,85093
50°	82,812	61,376	0,74117
60°	82,043	62,365	0,72172
70°	84,483	60,146	0,71193
80°	82,114	61,461	0,74851

Tabel 4.3 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Datang di Sumbu X

Berdasarkan data pada tabel 4.3 dapat diketahui bahwa nilai *mean* akan mengalami peningkatan seiring dengan penambahan sudut datang cahaya. Namun sebaliknya, semakin besar sudut datang cahaya maka nilai kontras citra spekel yang terukur akan semakin kecil. Hal ini dipengaruhi oleh intensitas cahaya hasil dari pemantulan baur yang tertangkap oleh kamera. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.15.

Gambar 4.15 Grafik Hubungan Variasi Sudut Datang Terhadap Nilai Kontras Citra Spekel Beras di Sumbu X

Berdasarkan grafik pada gambar 4.15, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut datang 0°. Secara garis besar semakin besar sudut datang cahaya, maka nilai kontras citra spekel yang dihasilkan semakin kecil. Penurunan nilai kontras mengindikasikan peningkatan intensitas cahaya yang terukur pada citra spekel. Selain data pada variasi sudut datang, juga diperoleh data hasil pengolahan citra spekel beras pada variasi sudut tangkap. Data yang diperoleh dapat dilihat pada tabel 4.4.

Tabel 4.4 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Tangkap di Sumbu X

Sudut Tangkap	Mean	Standar Deviasi	Nilai Kontras (a.u)
10 ^o	15,297	20,148	1,31716
20°	27,253	39,020	1,43178
30°	45,224	53,583	1,18488
40°	51,490	58,900	1,14388
50°	63,528	66,703	1,04998

60°	66,752	66,099	0,99022
70°	87,000	65,419	0,75193

Pada tabel 4.4 dapat diketahui bahwa nilai *mean* dan standar deviasi mengalami peningkatan yang cukup signifikan seiring dengan penambahan sudut tangkap cahaya, sehingga mengakibatkan nilai kontras citra spekel semakin kecil. Hal ini dikarenakan nilai kontras citra spekel diperoleh dari rasio standar deviasi dengan *mean*. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.16.

Gambar 4.16 Grafik Hubungan Variasi Sudut Tangkap Terhadap Nilai Kontras Citra Spekel Beras di Sumbu X

Sesuai dengan grafik pada gambar 4.16, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut tangkap 20°. Pada grafik tampak bahwa nilai kontras citra spekel semakin kecil seiring dengan penambahan sudut tangkap cahaya. Hal ini dipengaruhi oleh intensitas cahaya yang tertangkap oleh kamera, akibat dari fenomena pemantulan cahaya baur/difus.

B. Data Hasil Pengolahan Citra Spekel Beras pada Sumbu Y

Pengambilan data citra spekel beras yang kedua dilakukan pada sumbu Y. Posisi pengambilan data dilakukan dengan meletakkan laser pada sumbu X, kemudian kamera diletakkan pada sumbu Y. Pengambilan data kali ini menghasilkan 231 citra spekel dengan sudut datang pada rentang 0° hingga 80°, serta sudut tangkap pada rentang 10° hingga 70°. Data hasil yang diperoleh pada variasi sudut datang dapat dilihat pada tabel 4.5.

Sudut Datang	Mean	Standar Deviasi	Nilai Kontras (a.u)
0 ⁰	75,965	70,431	0,99491
10 ^o	78,500	71,976	0,98437
20°	81,882	71,792	0,94648
30°	<mark>85</mark> ,767	70, <mark>9</mark> 39	0,89553
40°	9 <mark>1,07</mark> 1	66, <mark>4</mark> 40	0,79790
50°	91,267	65,150	0,78442
60°	9 <mark>8,74</mark> 9	60,392	0,68186
70 [°]	101,684	60,392	0,67545
80°	98,122	60,347	0,69124

Tabel 4.5 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Datang di Sumbu Y

Berdasarkan data pada tabel 4.5 dapat diketahui bahwa nilai *mean* mengalami peningkatan seiring dengan penambahan sudut datang cahaya. Namun sebaliknya, semakin besar sudut datang cahaya maka nilai kontras citra spekel yang terukur akan semakin kecil. Hal ini dipengaruhi oleh intensitas cahaya hasil dari pemantulan baur yang tertangkap oleh kamera dan nilai kontras berbanding terbalik dengan nilai *mean* citra. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.17.

Gambar 4.17 Grafik Hubungan Variasi Sudut Datang Terhadap Nilai Kontras Citra Spekel Beras di Sumbu Y

Berdasarkan grafik pada gambar 4.17, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut datang 0°. Secara garis besar semakin besar sudut datang cahaya, maka nilai kontras citra spekel yang dihasilkan semakin kecil. Penurunan nilai kontras mengindikasikan peningkatan intensitas cahaya yang terukur pada citra spekel. Selain data pada variasi sudut datang, juga diperoleh data hasil pengolahan citra spekel beras pada variasi sudut tangkap. Data yang diperoleh dapat dilihat pada tabel 4.6.

Sudut Tangkap	Mean	Standar Deviasi	Nilai Kontras (a.u)	
10 ^o	15,225	20,537	1,34911	
20°	20,853	30,642	1,46945	
30°	52,303	57,275	1,09506	
40°	46,165	57,157	1,23811	
50°	54,919	62,354	1,13539	

Tabel 4.6 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Tangkap di Sumbu Y

60°	063,789	68,638	1,07604
70°	75,965	70,431	0,99491

Pada tabel 4.6 dapat diketahui bahwa nilai *mean* dan standar deviasi mengalami peningkatan yang cukup signifikan seiring dengan penambahan sudut tangkap cahaya, sehingga mengakibatkan nilai kontras citra spekel semakin kecil. Hal ini dikarenakan nilai kontras citra spekel diperoleh dari rasio standar deviasi dengan *mean*. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.18.

Gambar 4.18 Grafik Hubungan Variasi Sudut Tangkap Terhadap Nilai Kontras Citra Spekel Beras di Sumbu Y

Sesuai dengan grafik pada gambar 4.18, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut tangkap 20°. Pada grafik tampak bahwa nilai kontras citra spekel semakin kecil seiring dengan penambahan sudut tangkap cahaya. Hal ini dipengaruhi oleh intensitas cahaya yang tertangkap oleh kamera, akibat dari fenomena pemantulan cahaya baur/difus.

C. Data Hasil Pengolahan Citra Spekel Beras pada Kuadran 1

Pengambilan data citra spekel beras berikutnya dilakukan pada kuadran 1. Posisi pengambilan data dilakukan dengan meletakkan laser pada sumbu X, kemudian kamera diletakkan pada kuadran 1 (membentuk sudut 30⁰ terhadap sumbu X). Pengambilan data kali ini menghasilkan 237 citra spekel dengan sudut datang pada rentang 0° hingga 80°, serta sudut tangkap pada rentang 10° hingga 80°. Data hasil yang diperoleh pada variasi sudut datang dapat dilihat pada tabel 4.7.

Sudut Datang	Mean	Standar Deviasi	Nilai Kontras (a.u)
0 ⁰	51,383	65,292	1,27070
10 ^o	51,637	65 <mark>,</mark> 424	1,26701
20	53,102	66 <mark>,</mark> 022	1,24330
30°	5 <mark>4,65</mark> 3	66,095	1,20935
40°	56,354	64,706	1,14821
50°	61,244	64,016	1,04530
60°	64,554	61,730	0,95626
70 [°]	69,361	61,197	0,88230
80°	68,220	60,434	0,88587

Tabel 4.7 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Datang di Kuadran 1

Berdasarkan data pada tabel 4.7 dapat diketahui bahwa nilai *mean* mengalami peningkatan seiring dengan penambahan sudut datang cahaya. Namun sebaliknya, semakin besar sudut datang cahaya maka nilai kontras citra spekel yang terukur akan semakin kecil. Hal ini dipengaruhi oleh intensitas cahaya hasil dari pemantulan baur yang tertangkap oleh kamera dan nilai kontras berbanding terbalik dengan nilai *mean* citra. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.19.

Gambar 4.19 Grafik Hubungan Variasi Sudut Datang Terhadap Nilai Kontras Citra Spekel Beras di Kuadran 1

Berdasarkan grafik pada gambar 4.19, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut datang 0° . Secara garis besar semakin besar sudut datang cahaya, maka nilai kontras citra spekel yang dihasilkan semakin kecil. Penurunan nilai kontras mengindikasikan peningkatan intensitas cahaya yang terukur pada citra spekel. Selain data pada variasi sudut datang, juga diperoleh data hasil pengolahan citra spekel beras pada variasi sudut tangkap. Data yang diperoleh dapat dilihat pada tabel 4.8.

Tabel 4.8 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Tangkap di Kuadran 1

Sudut Tangkap	Mean	Standar Deviasi	Nilai Kontras (a.u)
10 [°]	15,372	19,480	1,26718
20 [°]	28,938	40,113	1,38617

\smile
_
Z
D
الي
\geq
Ц.,
\square
$\mathbf{\overline{\mathbf{v}}}$
≻
. .
<u> </u>
_
-
\mathbf{U}
-
Ľ
<u></u>
ш.
>
~
C)
-
>
-
ца II.
ш
S.,
_
n
••
_
>
_
÷.
7
A T
ZAF
RAF
SRAF
BRAF
IBRAF
IBRAF
<i>(IBRAF</i>
K IBRAF
IK IBRAF
LIK IBRAF
LIK IBRAF
ALIK IBRAF
ALIK IBRAF
MALIK IBRAF
MALIK IBRAF
MALIK IBRAF
A MALIK IBRAF
A MALIK IBRAF
NA MALIK IBRAF
NA MALIK IBRAF
NNA MALIK IBRAF
ANA MALIK IBRAF
-ANA MALIK IBRAF
LANA MALIK IBRAF
JLANA MALIK IBRAF
ULANA MALIK IBRAF
NULANA MALIK IBRAF
AULANA MALIK IBRAF
1AULANA MALIK IBRAF
MAULANA MALIK IBRAF
MAULANA MALIK IBRAF
: MAULANA MALIK IBRAF
F MAULANA MALIK IBRAF
JF MAULANA MALIK IBRAF
OF MAULANA MALIK IBRAF
OF MAULANA MALIK IBRAF
OF MAULANA MALIK IBRAF
Y OF MAULANA MALIK IBRAF
OF MAULANA MALIK IBRAF
RY OF MAULANA MALIK IBRAF
VRY OF MAULANA MALIK IBRAF
ARY OF MAULANA MALIK IBRAF
VARY OF MAULANA MALIK IBRAF
RARY OF MAULANA MALIK IBRAF
RARY OF MAULANA MALIK IBRAF
BRARY OF MAULANA MALIK IBRAF
IBRARY OF MAULANA MALIK IBRAF
<u>-IBRARY</u> OF MAULANA MALIK IBRAF
LIBRARY OF MAULANA MALIK IBRAF
. LIBRARY OF MAULANA MALIK IBRAF
L LIBRARY OF MAULANA MALIK IBRAF
VL LIBRARY OF MAULANA MALIK IBRAF
AL LIBRARY OF MAULANA MALIK IBRAF
VAL LIBRARY OF MAULANA MALIK IBRAF
RAL LIBRARY OF MAULANA MALIK IBRAF
TRAL LIBRARY OF MAULANA MALIK IBRAF
TRAL LIBRARY OF MAULANA MALIK IBRAF
ITRAL LIBRARY OF MAULANA MALIK IBRAF
NTRAL LIBRARY OF MAULANA MALIK IBRAF
ENTRAL LIBRARY OF MAULANA MALIK IBRAF

30°	43,690	52,088	1,19222
40°	41,751	55,582	1,33129
50°	45,893	59,308	1,29230
60°	45,801	58,929	1,28665
70°	51,383	65,292	1,27070
80°	51,323	63,937	1,24577

Pada tabel 4.8 dapat diketahui bahwa nilai *mean* dan standar deviasi mengalami peningkatan yang cukup signifikan seiring dengan penambahan sudut tangkap cahaya, sehingga mengakibatkan nilai kontras citra spekel semakin kecil. Hal ini dikarenakan nilai kontras citra spekel diperoleh dari rasio standar deviasi dengan *mean*. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.20.

Gambar 4.20 Grafik Hubungan Variasi Sudut Tangkap Terhadap Nilai Kontras Citra Spekel Beras di Kuadran 1

Sesuai dengan grafik pada gambar 4.20, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut tangkap 20°. Pada grafik tampak bahwa nilai kontras citra spekel semakin kecil seiring dengan

68

48

penambahan sudut tangkap cahaya. Hal ini dipengaruhi oleh intensitas cahaya hasil dari pemantulan baur yang tertangkap oleh kamera. Semakin besar sudut tangkap yang digunakan, maka akan semakin banyak intensitas cahaya yang tertangkap kamera akibat dari fenomena pemantulan cahaya baur/difus.

D. Data Hasil Pengolahan Citra Spekel Beras pada Kuadran 2

Pengambilan data citra spekel beras berikutnya dilakukan pada kuadran 2. Posisi pengambilan data dilakukan dengan meletakkan laser pada sumbu X, kemudian kamera sebagai detektor (penangkap) cahaya laser diletakkan pada kuadran 2 (membentuk sudut 30[°] terhadap sumbu X atau laser). Pengambilan data kali ini menghasilkan 237 citra spekel dengan sudut datang pada rentang 0[°] hingga 80[°], serta sudut tangkap pada rentang 10[°] hingga 80[°]. Data hasil yang diperoleh pada variasi sudut datang dapat dilihat pada tabel 4.9.

Sudut Datang	Mean	Standar Deviasi	Nilai Kontras (a.u)
0 ⁰	55,862	66,640	1,19295
10 [°]	56,109	66,275	1,18119
20°	58,660	66,012	1,12534
30°	59,421	65,907	1,10916
40°	60,336	65,435	1,08452
50°	64,774	63,456	0,97965
60°	69,206	60,283	0,87108
70°	73,340	59,790	0,81525
80°	72,194	59,616	0,82578

Tabel 4.9 Data Hasil Pengolahan Citra Spekel pada Variasi SudutDatang di Kuadran 2

Berdasarkan data pada tabel 4.9 dapat diketahui bahwa nilai *mean* mengalami peningkatan seiring dengan penambahan sudut datang cahaya. Namun sebaliknya, semakin besar sudut datang cahaya maka nilai kontras citra spekel yang terukur akan semakin kecil. Hal ini dipengaruhi oleh intensitas cahaya hasil dari pemantulan baur yang tertangkap oleh kamera dan nilai kontras berbanding terbalik dengan nilai *mean* citra. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.21.

Gambar 4.21 Grafik Hubungan Variasi Sudut Datang Terhadap Nilai Kontras Citra Spekel Beras di Kuadran 2

Berdasarkan grafik pada gambar 4.21, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut datang 0° . Secara garis besar semakin besar sudut datang cahaya, maka nilai kontras citra spekel yang dihasilkan semakin kecil. Penurunan nilai kontras mengindikasikan peningkatan intensitas cahaya yang terukur pada citra spekel. Selain data pada variasi sudut datang, juga diperoleh data hasil pengolahan citra spekel beras pada variasi sudut tangkap. Data yang diperoleh dapat dilihat pada tabel 4.10.

Sudut Tangkap	kap Mean Standar De		Nilai Kontras (a.u)
$10^{\rm o}$	13,703	16,434	1,19902
20°	22,490	33,998	1,51173
30°	38,863	51,024	1,31295
40°	41,915	54,914	1,31011
50°	45,182	59,463	1,31609
60°	51,547	63,597	1,23377
70°	55,862	66,640	1,19295
80°	59,659	67,297	1,12803

Tabel 4.10 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Tangkap di Kuadran 2

Pada tabel 4.10 dapat diketahui bahwa nilai *mean* dan standar deviasi mengalami peningkatan yang cukup signifikan seiring dengan penambahan sudut tangkap cahaya, sehingga mengakibatkan nilai kontras citra spekel semakin kecil. Hal ini dikarenakan nilai kontras citra spekel diperoleh dari rasio standar deviasi dengan *mean*. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.22.

Gambar 4.22 Grafik Hubungan Variasi Sudut Tangkap Terhadap Nilai Kontras Citra Spekel Beras di Kuadran 2

Sesuai dengan grafik pada gambar 4.22, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut tangkap 20°. Pada grafik tampak bahwa nilai kontras citra spekel semakin kecil seiring dengan penambahan sudut tangkap cahaya. Hal ini dipengaruhi oleh intensitas cahaya yang tertangkap oleh kamera. Semakin besar sudut tangkap yang digunakan, maka akan semakin banyak intensitas cahaya yang tertangkap kamera akibat dari fenomena pemantulan difus/baur.

E. Data Hasil Pengolahan Citra Spekel Beras pada Kuadran 3

Pengambilan data citra spekel beras berikutnya dilakukan pada kuadran 3. Posisi pengambilan data dilakukan dengan meletakkan laser pada sumbu X, kemudian kamera sebagai detektor (penangkap) cahaya laser diletakkan pada kuadran 3 (membentuk sudut 30° terhadap sumbu X). Pengambilan data kali ini menghasilkan 237 citra spekel dengan sudut datang pada rentang 0° hingga 80°, serta sudut tangkap pada rentang 10° hingga 80°. Data hasil yang diperoleh pada variasi sudut datang dapat dilihat pada tabel 4.11.

Sudut Datang	Mean	Standar Deviasi	Nilai Kontras (a.u)	
0°	66,386	70,533	1,06250	
10 ^o	67,274	70,038	1,04109	
20°	69,248	68,965	0,99592	
30°	71,029	67,570	0,95133	
40°	73,955	63,057	0,85264	
50°	78,334	64,224	0,81994	
60°	83,574	60,544	0,72448	

Tabel 4.11 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Datang di Kuadran 3

7	
- *	
. <u></u>	
4	
2	
11.	
$\mathbf{\nabla}$	
~	
í.	
C	
111	
4 4	
()	
\sim	
\geq	
S	
111	
10	
5	
_	
T	
I	
AHI	
AHI	
RAHI	
RAHI	
BRAHI	
IBRAHI	
IBRAHI	
(IBRAHI	
K IBRAHI	
IK IBRAH	
LIK IBRAHI	
LIK IBRAHI	
ALIK IBRAHI	
IALIK IBRAHI	
MALIK IBRAHI	
MALIK IBRAHI	
MALIK IBRAHI	
A MALIK IBRAHI	
IA MALIK IBRAHI	
NA MALIK IBRAHI	
NA MALIK IBRAHI	
ANA MALIK IBRAHI	
ANA MALIK IBRAHI	
LANA MALIK IBRAHI	
JLANA MALIK IBRAHI	
ULANA MALIK IBRAHI	
NULANA MALIK IBRAHI	
AULANA MALIK IBRAHI	
1AULANA MALIK IBRAHI	
MAULANA MALIK IBRAHI	
MAULANA MALIK IBRAHI	
F MAULANA MALIK IBRAHI	
F MAULANA MALIK IBRAHI	
DF MAULANA MALIK IBRAHI	
OF MAULANA MALIK IBRAHI	
OF MAULANA MALIK IBRAHI	
Y OF MAULANA MALIK IBRAHI	
Y OF MAULANA MALIK IBRAHI	
RY OF MAULANA MALIK IBRAHI	
RY OF MAULANA MALIK IBRAHI	
ARY OF MAULANA MALIK IBRAHI	
LARY OF MAULANA MALIK IBRAHI	
RARY OF MAULANA MALIK IBRAHI	
SRARY OF MAULANA MALIK IBRAHI	
BRARY OF MAULANA MALIK IBRAHI	
IBRARY OF MAULANA MALIK IBRAHI	
IBRARY OF MAULANA MALIK IBRAHI	
LIBRARY OF MAULANA MALIK IBRAHI	
. LIBRARY OF MAULANA MALIK IBRAHI	
L LIBRARY OF MAULANA MALIK IBRAHI	
NL LIBRARY OF MAULANA MALIK IBRAHI	
AL LIBRARY OF MAULANA MALIK IBRAHI	
WAL LIBRARY OF MAULANA MALIK IBRAHI	
RAL LIBRARY OF MAULANA MALIK IBRAHI	
TRAL LIBRARY OF MAULANA MALIK IBRAHI	
TRAL LIBRARY OF MAULANA MALIK IBRAHI	
NTRAL LIBRARY OF MAULANA MALIK IBRAHI	
INTRAL LIBRARY OF MAULANA MALIK IBRAHI	

70°	84,151	60,517	0,71915
80°	79,297	59,409	0,74920

Berdasarkan data pada tabel 4.11 dapat diketahui bahwa nilai *mean* mengalami peningkatan seiring dengan penambahan sudut datang cahaya. Namun sebaliknya, semakin besar sudut datang cahaya maka nilai kontras citra spekel yang terukur akan semakin kecil. Hal ini dipengaruhi oleh intensitas cahaya hasil dari pemantulan baur yang tertangkap oleh kamera dan nilai kontras berbanding terbalik dengan nilai *mean* citra. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.23.

Gambar 4.23 Grafik Hubungan Variasi Sudut Datang Terhadap Nilai Kontras Citra Spekel Beras di Kuadran 3

Berdasarkan grafik pada gambar 4.23, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut datang 0°. Secara garis besar semakin besar sudut datang cahaya, maka nilai kontras citra spekel yang dihasilkan semakin kecil. Penurunan nilai kontras mengindikasikan peningkatan intensitas cahaya yang terukur pada citra 17

spekel. Selain data pada variasi sudut datang, juga diperoleh data hasil pengolahan citra spekel beras pada variasi sudut tangkap. Data yang diperoleh dapat dilihat pada tabel 4.12.

Sudut Tangkap	Mean	Standar Deviasi	Nilai Kontras (a.u)	
10 ^o	16,393	22,189	1,35356	
20°	24,404	35,947	1,47304	
30°	52,502	56,020	1,06702	
40 ^o	55,308	59,561	1,07691	
50°	57, <mark>7</mark> 88	64,931	1,12361	
60 [°]	62, <mark>5</mark> 27	68,456	1,09482	
70°	<mark>66,386</mark>	70,533	1,06250	
80°	74,173	72 <mark>,</mark> 367	0,97566	

Tabel 4.12 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Tangkap di Kuadran 3

Pada tabel 4.12 dapat diketahui bahwa nilai *mean* dan standar deviasi mengalami peningkatan yang cukup signifikan seiring dengan penambahan sudut tangkap cahaya, sehingga mengakibatkan nilai kontras citra spekel semakin kecil. Hal ini dikarenakan nilai kontras citra spekel diperoleh dari rasio standar deviasi dengan *mean*. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.24.

Gambar 4.24 Grafik Hubungan Variasi Sudut Tangkap Terhadap Nilai Kontras Citra Spekel Beras di Kuadran 3

Sesuai dengan grafik pada gambar 4.24, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut tangkap 20°. Pada grafik tampak bahwa nilai kontras citra spekel semakin kecil seiring dengan penambahan sudut tangkap cahaya. Hal ini dipengaruhi oleh intensitas cahaya yang tertangkap oleh kamera. Semakin besar sudut tangkap yang digunakan, maka akan semakin banyak intensitas cahaya yang tertangkap kamera akibat dari fenomena pemantulan difus/baur.

F. Data Nilai Kontras Citra Spekel Beras pada Kuadran 4

Pengambilan data citra spekel beras berikutnya dilakukan pada kuadran 4. Posisi pengambilan data dilakukan dengan meletakkan laser pada sumbu X, kemudian kamera sebagai detektor (penangkap) cahaya laser diletakkan pada kuadran 4 (membentuk sudut 30° terhadap sumbu X). Pengambilan data kali ini menghasilkan 237 citra spekel dengan rentang sudut datang pada rentang 0° hingga 80°, serta sudut tangkap pada rentang 10° hingga 80°. Data hasil yang diperoleh pada variasi sudut datang dapat dilihat pada tabel 4.13.

Sudut Datang	Mean	Standar Deviasi	Nilai Kontras (a.u)
0°	66,645	68,412	1,02653
10°	68,863	68,892	1,00043
20°	68,961	68,594	0,99468
30°	69,630	68,012	0,97677
40°	72,617	65,695	0,90469
50°	74,952	62,280	0,83096
60°	79,063	62,025	0,78451
70 [°]	78,981	61,114	0,77380
80°	7 <mark>7</mark> ,931	62,097	0,79684

Tabel 4.13 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Datang di Kuadran 4

Berdasarkan data pada tabel 4.13 dapat diketahui bahwa nilai *mean* mengalami peningkatan seiring dengan penambahan sudut datang cahaya. Namun sebaliknya, semakin besar sudut datang cahaya maka nilai kontras citra spekel yang terukur akan semakin kecil. Hal ini dipengaruhi oleh intensitas cahaya hasil dari pemantulan baur yang tertangkap oleh kamera dan nilai kontras berbanding terbalik dengan nilai *mean* citra. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.25.

Gambar 4.25 Grafik Hubungan Variasi Sudut Datang Terhadap Nilai Kontras Citra Spekel Beras di Kuadran 4

Berdasarkan grafik pada gambar 4.25, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut datang 0°. Penurunan nilai kontras mengindikasikan peningkatan intensitas cahaya yang terukur pada citra spekel. Selain data pada variasi sudut datang, juga diperoleh data hasil pengolahan citra spekel beras pada variasi sudut tangkap. Data yang diperoleh dapat dilihat pada tabel 4.14.

Sudut Tangkap	Mean	Standar Deviasi	Nilai Kontras (a.u)
10 [°]	13,558	15,741	1,16096
20 [°]	26,522	36,174	1,36395
30°	44,920	52,080	1,15938
40°	49,176	57,968	1,17882
50°	55,311	62,564	1,13113
60°	61,780	67,042	1,08519
70 [°]	66,645	68,412	1,02653

Tabel 4.14 Data Hasil Pengolahan Citra Spekel pada Variasi Sudut Tangkap di Kuadran 4

80°	74,006	66,299	0,89586

Pada tabel 4.14 dapat diketahui bahwa nilai *mean* dan standar deviasi mengalami peningkatan yang cukup signifikan seiring dengan penambahan sudut tangkap cahaya, sehingga mengakibatkan nilai kontras citra spekel semakin kecil. Hal ini dikarenakan nilai kontras citra spekel diperoleh dari rasio standar deviasi dengan *mean*. Penyajian data secara lebih jelas dapat dilihat pada gambar 4.26.

Gambar 4.26 Grafik Hubungan Variasi Sudut Tangkap Terhadap Nilai Kontras Citra Spekel Beras di Kuadran 4

Sesuai dengan grafik pada gambar 4.26, diperoleh informasi bahwa nilai kontras citra spekel beras yang optimum berada pada sudut tangkap 20°. Pada grafik tampak bahwa nilai kontras citra spekel semakin kecil seiring dengan penambahan sudut tangkap cahaya. Hal ini dipengaruhi oleh intensitas cahaya yang tertangkap oleh kamera. Semakin besar sudut tangkap yang digunakan, maka akan semakin banyak intensitas cahaya yang tertangkap kamera akibat dari fenomena pemantulan cahaya baur/difus.

78

4.1.4 Data Tingkat Akurasi Pengukuran Aplikasi

Pembuatan aplikasi analisis kontras citra spekel menggunakan fitur GUI MATLAB tentunya harus dilakukan pengujian terlebih dahulu sebelum bisa digunakan. Pengujian dilakukan karena hasil pengukuran tiap aplikasi dalam membaca citra digital memiliki ketelitian yang berbeda, terutama pada aplikasi yang dibuat dalam penelitian kali ini. Selain itu, pengujian tersebut bertujuan untuk mengetahui tingkat akurasi pengukuran aplikasi yang dibuat dalam memperoleh nilai *mean*, standar deviasi, dan nilai kontras dari suatu citra spekel. Nilai akurasi dapat diperoleh dengan membandingkan antara hasil nilai kontras menggunakan *software* ImageJ dan aplikasi yang dibuat. Selanjutnya dari kedua hasil tersebut dapat dibandingkan untuk memperoleh persen akurasi aplikasi. Persamaan yang digunakan untuk menentukan persen akurasi aplikasi adalah :

$$\% Error = \frac{Nilai \ Kontras \ GUI - Nilai \ kontras \ ImageJ}{Nilai \ kontras \ GUI} x \ 100\%$$
(4.1)

$$\% Akurasi = 100\% - \% Error \tag{4.2}$$

Berdasarkan persamaan 4.1 dan 4.2 maka prosentase error dan prosentase akurasi pengukuran pada aplikasi berbasis GUI MATLAB dapat dihitung. Adapun hasil pengujian dari aplikasi yang dibuat dapat dilihat pada tabel 4.15.

Tabel 4.15 Data Hasil Pengujian Tingkat Akurasi Pengukuran Aplikasi

Letak Pengambi lan Data	Nilai Kontras Hasil ImageJ	Nilai Kontras Hasil GUI MATLAB	Nilai Error (%)	Akurasi (%)	Rata- Rata Akurasi (%)
	0,99022	0,99023	0,00107	100,00	
Sumbu X	0,97725	0,97726	0,00097	100,00	100,00
	0,94756	0,94766	0,01063	99,99	

	0,90939	0,90940	0,00114	100,00	
	0,85093	0,85094	0,00152	100,00	
	0,74117	0,74118	0,00197	100,00	
	0,72172	0,72173	0,00182	100,00	
	0,71193	0,71195	0,00188	100,00	
	0,74851	0,74852	0,00170	100,00	
	0,99491	0,99491	0,00044	100,00	
	0,98437	0,98437	0,00059	100,00	
	0,94648	0,94649	0,00114	100,00	
	0,89553	0,89554	0,00168	100,00	
Sumbu Y	0,79790	0,79792	0,00209	100,00	100,00
	0,78442	0,78443	0,00135	100,00	
	0,68186	0, <mark>6</mark> 8187	0,00240	100,00	
	0,67 <mark>54</mark> 5	0, <mark>6</mark> 7546	0,00207	100,00	
	0 <mark>,6</mark> 9124	0,69126	0,002 <mark>3</mark> 7	100,00	
	1, <mark>2</mark> 7070	1, <mark>2</mark> 7071	0,001 <mark>0</mark> 2	100,00	
	1, <mark>2</mark> 6701	1,26703	0,001 <mark>6</mark> 6	100,00	
	1, <mark>2</mark> 4330	1,24331	0,001 <mark>0</mark> 3	100,00	
	1,20935	1,20938	0,00204	100,00	
Kuadran 1 (Sudut 30)	1,14821	1,14823	0,00199	100,00	100,00
(Budut 50)	1,04530	1,04533	0,00261	100,00	
	0,95626	0,95629	0,00311	100,00	
	0,88230	0,88234	0,00427	100,00	
	0,88587	0,88590	0,00320	100,00	
	1,19295	1,19296	0,00084	100,00	
-	1,18119	1,18120	0,00076	100,00]
	1,12534	1,12537	0,00263	100,00]
Kuadran 2 (Sudut 30)	1,10916	1,10920	0,00429	100,00	100,00
(Sudul 50)	1,07656	1,07659	0,00235	100,00]
	0,97586	0,97591	0,00426	100,00]
-	0,87108	0,87112	0,00405	100,00	

	0,81525	0,81529	0,00524	99,99	
	0,82578	0,82581	0,00431	100,00	
	1,06250	1,06236	0,01358	100,00	
	1,04109	1,04110	0,00088	100,00	
	0,99592	1,00079	0,48684	99,51	
	0,95133	0,95134	0,00062	100,00	
Kuadran 3 (Sudut 30)	0,85264	0,85265	0,00109	100,00	99,95
(2000000)	0,81994	0,81995	0,00119	100,00	
	0,72448	0,72449	0,00212	100,00	
	0,71915	0,71916	0,00140	100,00	
	0,74920	0,74921	0,00168	100,00	
4	1,02653	1,02654	0,00057	100,00	
	1,00043	1, <mark>0</mark> 00 <mark>4</mark> 4	0,00092	100,00	
	0,99 <mark>46</mark> 8	0, <mark>9</mark> 9469	0,00120	100,00	
	0 <mark>,</mark> 97677	0,97677	<mark>0,0008</mark> 9	100,00	
Kuadran 4 (Sudut 30)	0 <mark>,90469</mark>	0, <mark>9</mark> 0470	0,001 <mark>2</mark> 4	100,00	100,00
(54441 50) =	0 <mark>,8</mark> 3096	0, <mark>8</mark> 3097	0,001 <mark>5</mark> 9	100,00	
	0 <mark>,7</mark> 8451	0,78451	0,000 <mark>9</mark> 5	100,00	
	0,77380	0,77381	0,00190	100,00	
	0,79684	0,79685	0,00109	100,00	

Pada tabel 4.15 dapat diketahui bahwa hasil pengukuran antara aplikasi yang dibuat dengan hasil pengukuran ImageJ tidak jauh berbeda. Sehingga diperoleh tingkat akurasi pada rentang antara 99,95 % sampai dengan 100,00 %. Hal ini menunjukkan bahwa aplikasi sudah berjalan sesuai algoritma program yang dimasukkan.

4.2 Pembahasan

Tumbuhan biji-bijian yang tidak asing bagi masyarakat Indonesia adalah padi (*Oryza sativa*). Padi menjadi sumber makanan pokok sebagian besar masyarakat Indonesia karena memiliki kandungan karbohidrat yang tinggi dan berbagai kandungan gizi lainnya. Beras sebagai hasil pasca panen padi sebagian besar disimpan telebih dahulu sebelum didistribusikan kepada masyarakat. Sehingga perlu dilakukan pengecekan kualitas untuk memastikan kondisi beras sebelum dipasarkan. Salah satu metode pengecekan kualitas beras yaitu dengan menerapkan citra digital berupa metode *Laser Speckle Imaging* (LSI). Penggunaan metode ini agar pengecekan bersifat *non-invasive* atau tidak bersentuhan dengan beras secara langsung.

Penggunaan citra spekel dalam pengujian kualitas bahan memiliki beberapa faktor yang harus diperhatikan. Menurut Muchlian dkk pada tahun 2013, spekel yang dihasilkan bergantung pada panjang gelombang cahaya, ukuran berkas cahaya, jarak bidang pengamatan terhadap sumber cahaya, kekasaran permukaan benda, serta sudut yang terbentuk oleh laser dan detektor terhadap bidang. Pengaruh sudut penyinaran (sudut datang cahaya) dan sudut tangkap cahaya pada persebaran citra spekel yang dihasilkan akan dibahas lebih lanjut dalam bab ini.

4.2.1 Pengaruh Variasi Sudut Datang dan Sudut Tangkap Cahaya pada Citra Spekel Beras yang Dihasilkan

Variasi sudut datang dan sudut tangkap cahaya laser yang dilakukan pada penelitian kali ini yaitu pada sudut datang sinar laser dengan rentang 0° hingga 80°, serta sudut tangkap sinar laser pada rentang 10° hingga 80°. Khusus untuk pengambilan data di sumbu X dan sumbu Y dilakukan pada sudut tangkap dengan interval 10° hingga 70°, berbeda dari pengambilan data di posisi lainnya karena posisi kamera di sudut 80° menghalangi perkenaan sinar laser terhadap bidang. Adapun citra spekel yang dihasilkan dari variasi beberapa sudut tangkap dapat dilihat pada gambar 4.27.

Gambar 4.27 Citra Spekel Beras pada Variasi Sudut Tangkap (Rentang Sudut 10° hingga 80°)

Pada gambar 4.27 di sudut tangkap 10° citra spekel yang dihasilkan cenderung berukuran kecil dan sedikit lonjong. Sementara itu, ketika sudut tangkap yang digunakan semakin besar maka citra spekel yang dihasilkan akan memiliki ukuran semakin besar dan berbentuk bulat. Hal ini dikarenakan semakin besar sudut tangkap maka kamera akan semakin dekat dengan sampel, sehingga cahaya akan lebih banyak tertangkap oleh kamera dengan sudut tangkap besar. Intensitas cahaya akibat fenomena pemantulan baur yang tertangkap kamera akan mempengaruhi nilai mean citra dan secara otomatis juga

mempengaruhi nilai kontras citra. Semakin banyak intensitas cahaya yang tertangkap kamera maka nilai mean citra akan semakin besar, hal ini akan mengakibatkan nilai kontras semakin kecil. Untuk citra spekel pada variasi sudut datang dapat dilihat pada gambar 4.28.

Gambar 4.28 Citra Spekel Beras Pada Variasi Sudut Datang (Rentang Sudut 0° hingga 80°)

Pada gambar 4.28 merupakan citra spekel beras dari hasil variasi sudut datang. Dapat diamati bahwa semakin besar sudut datang yang digunakan maka citra spekel yang dihasilkan akan semakin melebar. Hal ini diakibatkan ketika sudut datang yang digunakan kecil maka berkas sinar laser yang mengenai bahan akan cenderung mengumpul sehingga citra yang dihasilkan berbentuk bulat dan lebih terang. Sebaliknya ketika sudut datang yang digunakan semakin besar, maka berkas sinar laser yang mengenai bahan akan cenderung menyebar sehingga pola spekel yang dihasilkan cenderung menyebar dan memiliki *mean* tinggi.

Fenomena pemantulan cahaya baur atau difus yang terjadi pada penelitian kali ini mengakibatkan intensitas cahaya yang terpantul memiliki fase yang acak. Oleh karena itu, persamaan yang digunakan untuk perhitungan nilai kontras diperoleh dengan mengacu pada persamaan probabilitas, statistika, dan distribusi intensitas yang terjadi ketika sinar laser menerangi bahan dan mengalami reflektansi.

Pengaruh variasi sudut datang dan sudut tangkap cahaya laser pada nilai kontras citra spekel beras secara lebih spesifik dapat ditinjau menurut hasil distribusi intensitas cahaya yang diperoleh dari ekstraksi statistika berupa nilai *mean*, standar deviasi, serta nilai kontras dari citra spekel. Rasio dari standar deviasi dengan *mean* menjadi penentu nilai kontras. Data hasil penelitian dapat dilihat pada sub bab 4.1.3. Dari grafik dan data yang telah dipaparkan, secara garis besar dapat diketahui bahwa semakin besar sudut datang cahaya maka nilai kontras citra spekel yang terukur akan semakin kecil. Artinya semakin besar sudut datang maka intensitas cahaya yang mengenai sampel dan yang mengalami pemantulan baur akan semakin besar. Besarnya intensitas cahaya yang terukur pada peristiwa pemantulan baur berhubungan dengan nilai *mean* citra. Selain itu semakin besar sudut datang cahaya maka standar deviasi yang dihasilkan juga akan semakin kecil ketika sudut datang cahaya yang digunakan semakin besar.

Selain pengaruh variasi sudut datang cahaya terhadap citra spekel, juga diperoleh pengaruh variasi sudut tangkap cahaya terhadap citra spekel yang dihasilkan. Dari grafik dan data yang telah dipaparkan dapat diketahui bahwa semakin besar sudut tangkap cahaya yang digunakan, maka nilai kontras citra spekel yang terukur akan semakin kecil. Hal ini diakibatkan ketika sudut tangkap cahaya yang digunakan kecil, maka akan sedikit intensitas cahaya yang digunakan besar, maka intensitas cahaya yang tertangkap akan semakin banyak. Intensitas cahaya akibat dari fenomena pemantulan baur/difus yang tertangkap oleh kamera berhubungan dengan nilai *mean* citra yang dihasilkan. Demikian pula dengan nilai standar deviasi yang terus bertambahan nilai *mean* pada variasi sudut tangkap cahaya cenderung lebih besar dibandingkan pertambahan nilai standar deviasi citra spekel. Sehingga nilai kontras yang dihasilkan akan semakin kecil seiring pertambahan sudut tangkap cahaya.

4.2.2 Sudut Datang dan Sudut Tangkap Cahaya yang Tepat untuk Menghasilkan Pola Spekel Optimum

Pengambilan data citra spekel beras pada penelitian kali ini dilakukan pada beberapa posisi yang berbeda. Pengambilan data pertama dilakukan pada sumbu X dengan posisi sinar datang berupa laser berpelurus terhadap detektor cahaya berupa kamera VGA. Kemudian pengambilan data pada sumbu Y dan pengambilan data pada kuadran 1 hingga kuadran 4 dengan rentang sudut datang dan sudut tangkap yang sudah ditentukan. Pada sumbu X diperoleh citra spekel sebanyak 211 buah. Kemudian pada sumbu Y diperoleh citra spekel sebanyak 230 buah. Pengambilan data pada posisi kuadran 1 hingga kuadran 4 dilakukan pada sudut 30^o dengan acuan sumbu X. Pada masing-masing kuadran diperoleh citra sebanyak 237 buah. Sehingga total citra yang diperoleh pada kuadran 1 hingga 4 adalah 948 buah. Adapun data nilai kontras citra spekel yang optimum pada berbagai posisi pengambilan data dapat dilihat pada tabel 4.16.

Posisi Pengambilan Data	Sudut Datang	Nilai Kontras (a.u)	Sudut Tangkap	Nilai Kontras (a.u)
Sumbu X	0 ^o	0, <mark>99</mark> 022	20°	1,43178
Sumbu Y	0 ⁰	0,99491	20°	1,46945
Kuadran 1	0 ⁰	1,27070	20°	1,38617
Kuadran 2	0 ^o	1,19295	20°	1,51173
Kuadran 3	0°	1,06250	20°	1,47304
Kuadran 4	0 ^o	1,02653	20°	1,36395

Tabel 4.16 Nilai Kontras Citra Spekel yang Optimum Pada Variasi Posisi Pengambilan Data

Dari tabel 4.15 dapat diketahui bahwa nilai kontras citra spekel beras yang optimum dapat diperoleh dengan menggunakan sudut datang laser sebesar 0° dan sudut tangkap cahaya sebesar 20° pada semua posisi pengambilan data. Nilai kontras citra yang optimum pada variasi sudut datang yaitu sebesar 1,27070 a.u. Selain itu nilai kontras citra spekel beras yang optimum pada variasi sudut tangkap cahaya yaitu sebesar 1,51173 a.u. Citra spekel beras yang memiliki nilai kontras optimum dapat dilihat pada gambar 4.29.

Gambar 4.29 (a) Citra Spekel Beras Pada Sudut Datang 0° dengan Nilai Kontras Optimum (b) Citra Spekel Beras Pada Sudut Tangkap 20° dengan Nilai Kontras Optimum

Probabilitas persebaran intensitas dan pola spekel yang ditemukan pada penelitian kali ini dapat mengacu pada persamaan 2.20 dan 2.21. Persamaan tersebut mendefinisikan bahwa fase terdistribusi secara merata dalam interval (- π,π). Artinya pola spekel dari suatu bahan dapat ditemui pada interval $-\pi$ hingga π , namun citra spekel yang memiliki nilai kontras optimum harus dicari lebih spesifik melalui penelitian karena persebaran pola spekel sebagai hasil dari intensitas cahaya yang acak akibat fenomena pemantulan cahaya baur/difus. Diperoleh citra spekel dengan kontras optimum pada sudut datang 0° dan sudut tangkap 20°.

4.2.3 Tingkat Akurasi Pengukuran Aplikasi Analisis Kontras Citra Spekel

Pembuatan aplikasi analisis kontras citra spekel berbasis GUI MATLAB bertujuan untuk memudahkan dalam pengolahan citra spekel untuk memperoleh nilai *mean*, standar deviasi, dan nilai kontrasnya. Aplikasi ini dibuat untuk mengubah pengolahan citra spekel yang sebelumnya diolah secara manual, maka dengan aplikasi ini dapat lebih menghemat waktu karena pengolahan citra spekel dilakukan dengan otomatis. Sebelum aplikasi dapat digunakan, maka harus dilakukan pengujian terlebih dahulu dengan membandingkan hasil pengukuran aplikasi terhadap hasil pengukuran pada *software* ImageJ. Hasil pengujian tingkat akurasi pengukuran aplikasi dapat dilihat lebih lengkap pada tabel 4.15. Untuk mendapatkan nilai persen *error* dan persen akurasi pengukuran nilai kontras citra spekel digunakan rumus pada persamaan 4.1 dan 4.12. Diperoleh rata-rata persen akurasi pengukuran pada tabel 4.16.

Letak Pengambilan Data	Tingkat Akurasi Rata-Rata		
Sumbu X	100,00 %		
Sumbu Y	100,00 %		
Kuadran 1	100,00 %		
Kuadran 2	100,00 %		
Kuadran 3	99,95 %		
Kuadran 4	100,00 %		

Tabel 4.16 Hasil Akhir Pengujian Tingkat Akurasi Pengukuran Aplikasi

Berdasarkan tabel 4.16 dapat diketahui bahwa tingkat akurasi pengukuran aplikasi setelah dilakukan pengujian yaitu tingkat akurasi pengukuran yang diperoleh berkisar antara 99,95 % sampai dengan 100,00 %. Hasil tersebut mengindikasikan bahwa aplikasi yang dibuat telah berjalan sesuai program dan dapat digunakan untuk mecari nilai *mean*, standar deviasi, dan nilai kontras dari citra spekel.

4.3 Integrasi Penelitian dengan Al-Qur'an

Beras yang menjadi sumber makanan pokok sebagian besar masyarakat Indonesia karena memiliki kandungan karbohidrat yang tinggi dan berbagai kandungan gizi lainnya. Beras diperoleh dari hasil pengolahan padi. Padi yang tergolong kedalam tumbuhan biji-bijian telah dijelaskan oleh Allah SWT secara tersirat dalam Surah Al-An'aam ayat 95.

Firman Allah SWT :

إِنَّ اللَّهَ فَالِقُ الْحَبِّ وَالنَّوَىٰ عَيْرِجُ الْحَيَّ مِنَ الْمَيِّتِ وَمُخْرِجُ الْمَيِّتِ مِنَ الْحَيِّ عَذَٰلِكُمُ اللَّهُ مِفَاًنَىٰ تُؤْفَكُون

Artinya :

Sesungguhnya Allah menumbuhkan butir tumbuh-tumbuhan dan biji buahbuahan. Dia mengeluarkan yang hidup dari yang mati dan mengeluarkan yang mati dari yang hidup. (Yang memiliki sifat-sifat) demikian ialah Allah, maka mengapa kamu masih berpaling ? (Q.S Al-An'aam: 95)

Pada ayat in padi dan beras dijelaskan secara tersirat lafadz di Surah Al-An'am ayat 95 yang berbunyi إِنَّ اللَّهُ قَالِقُ الحُبِّ وَالتَّوَىٰ menumbuhkan butir tumbuh-tumbuhan''. Hal ini menjadi salah satu tanda kekuasaan Allah SWT yang wajib diyakini. Selain pada ayat diatas, Allah SWT juga telah menunjukkan tanda kekuasaannya pada Al-Qur'an Surah Yasin ayat 33. Firman Allah SWT :

وَآيَةٌ لَهُمُ الْأَرْضُ الْمَيْتَةُ أَحْيَيْنَاهَا وَأَخْرَجْنَا مِنْهَا حَبًّا فَمِنْهُ يَأْكُلُون

Artinya :

Dan suatu tanda (kekuasaan Allah yang besar) bagi mereka adalah bumi yang mati. Kami hidupkan bumi itu dan Kami keluarkan dari padanya biji-bijian, maka daripadanya mereka makan. (Q.S Yasin: 33)
Pada lafadz إنَّ اللَّهَ فَالِقُ الْحَبَّرِ وَاللَّوَى dalam surah Al-An'aam 95 diperjelas dengan surah Yasin ayat 33, menurut Al-Mahalli (2007) pada tafsir Jalalain menyatakan (Dan suatu tanda bagi mereka) yang menunjukkan bahwa mereka akan dibangkitkan kembali, lafal ayat ini berkedudukan menjadi Khabar Muqaddam (adalah bumi yang mati) dapat dibaca الْمَيْتَةُ Pada surah Yasin ayat 33 atau المَتَعَبَّ (Kami hidupkan bumi itu) dengan air, menjadi Mubtada Muakhkhar (dan Kami keluarkan daripadanya biji-bijian) seperti gandum (maka daripadanya mereka makan.).

Menurut Al-Imam Ibnu Katsir (2002) menjelaskan bahwa pada surah yasin ayat 33 Allah SWT menunjukkan kekuasaannya pada kata الأزعن الميتة tafsir Ibnu Katsir dalam firman Allah SWT tersebut dapat dijabarkan bahwa "Yakni pada asal mulanya tandus, tidak ada suatu tumbuh-tumbuhan pun padanya. Apabila Allah Swt. menurunkan hujan padanya, maka menjadi suburlah ia dan menumbuhkan beraneka ragam tumbuh-tumbuhan yang subur". Kemudian dilanjutkan pada firman Allah SWT di kata berikutnya yaitu ترافز المرافز المرافز بقيته وأخرجتنا وترافز منها حبال

Menurut Shihab (2001) pada tafsir Al-Misbah ditafsirkan bahwa "bukti untuk mereka bahwa Kami Mahakuasa membangkitkan dan mengumpulkan adalah tanah kering- kerontang yang Kami hidupkan dengan air. Lalu, dari tanah itu, Kami keluarkan biji-bijian yang kemudian dapat mereka makan". Pada Al-Qur'an juga dijelaskan mengenai cahaya beserta manfaatnya untuk menunjang kehidupan makhluk hidup. Allah SWT menciptakan cahaya untuk membantu aktivitas makhluk hidup di bumi. Adapun ayat dalam Al-Qur'an yang menjelaskan tentang cahaya disebutkan Allah SWT dalam Q.S An-Nur ayat 35. Firman Allah SWT :

اللَّهُ نُورُ السَّمَاوَاتِ وَالْأَرْضِ ، مَثَلُ نُورِهِ كَمِشْكَاةٍ فِيهَا مِصْبَاحٌ الْمِصْبَاحُ فِي زُجَاجَةٍ الزُّجَاجَةُ كَأَنَّهَا كَوْكَبٌ دُرِّيٌّ يُوقَدُ مِنْ شَجَرَةٍ مُبَارَكَةٍ زَيْتُونَةٍ لَا شَرْقِيَّةٍ وَلَا غَرْبِيَّةٍ يَكَادُ زَيْتُهَا يُضِيءُ وَلَوْ لَمْ تَمْسَسْهُ نَارٌ ، نُورٌ عَلَىٰ نُورٍ ، يَهْدِي اللَّهُ لِنُورِهِ مَنْ يَشَاءُ ، وَيَضْرِبُ اللَّهُ الْأَمْنَالَ لِلنَّاسِ ، وَاللَّهُ بِكُلِّ شَيْءٍ عَلِيمٌ

Artinya :

Allah (Pemberi) cahaya (kepada) langit dan bumi. Perumpamaan cahaya Allah, adalah seperti sebuah lubang yang tak tembus, yang di dalamnya ada pelita besar. Pelita itu di dalam kaca (dan) kaca itu seakan-akan bintang (yang bercahaya) seperti mutiara, yang dinyalakan dengan minyak dari pohon yang berkahnya, (yaitu) pohon zaitun yang tumbuh tidak di sebelah timur (sesuatu) dan tidak pula di sebelah barat(nya), yang minyaknya (saja) hampir-hampir menerangi, walaupun tidak disentuh api. Cahaya di atas cahaya (berlapis-lapis), Allah membimbing kepada cahaya-Nya siapa yang dia kehendaki, dan Allah memperbuat perumpamaan-perumpamaan bagi manusia, dan Allah Maha Mengetahui segala sesuatu (Q.S An-Nur: 35).

Menurut Shihab (2001) pada tafsir Al-Misbah menyatakan bahwa Allah SWT adalah sumber segala cahaya di langit dan di bumi. Dialah yang menerangi keduanya dengan cahaya yang bersifat materiil (ألبصنتاح) yang dapat kita lihat dan berjalan di bawah cahayanya. Cahayanya juga ada yang bersifat maknawi (ثور) seperti cahaya kebenaran, keadilan, pengetahuan, keutamaan, petunjuk dan keimanan. Pada lafadz البِصبَاخ فِي رُجَاجَةٍ Allah SWT menunjukkan kejelasan cahaya-Nya yang agung dan bukti-buktinya yang mengagumkan adalah seperti cahaya sebuah lampu yang sangat terang. Lampu itu dapat membantu mengumpulkan cahaya dan memantulkannya. Lampu itu berada dalam kaca yang bening dan bersinar seperti matahari, mengkilap seperti mutiara. Demikianlah bukti-bukti materi dan maknawi yang terpancar di alam raya ini menjadi tanda-tanda yang jelas yang menghapus keraguan akan wujud Allah dan kewajiban beriman kepada-Nya serta risalah-risalah-Nya. Allah memaparkan contoh-contoh yang bersifat materiil agar persoalan-persoalan yang bersifat rasionil mudah ditangkap. Allah SWT Maha luas pengetahuan-Nya.

Firman Allah SWT :

هُوَ الَّذِي يُصَلِّي عَلَيْكُمْ وَمَلَائِكَتُهُ لِيُخْرِجَكُمْ مِنَ الظُّلُمَاتِ إِلَى النُّورِ ، وَكَانَ بِالْمُؤْمِنِينَ رَحِيمًا

Artinya :

Dialah yang memberi rahmat kepadamu dan malaikat-Nya (memohonkan ampunan untukmu), supaya Dia mengeluarkan kamu dari kegelapan kepada cahaya (yang terang). Dan adalah Dia Maha Penyayang kepada orang-orang yang beriman (Q.S Al-Ahzab: 43).

Menurut Al-Qarni (2007) pada tafsir Muyassar manyatakan bahwa pada lafadz ليُحْرِجَكُمْ مِنَ الظُّلُمَاتِ إِلَى النُّور mengandung makna bahwa "Allah SWT menuntun hambanya yakni dari kegelapan maksiat menuju cahaya ketaatan, dan dari kegelapan kesesatan menuju cahaya petunjuk". Pada ayat ini tujuan Allah SWT menciptakan cahaya untuk menuntun hamba-Nya agar terbebas dari kegelapan, baik kegelapan secara fisis maupun secara tauhid.

Berdasarkan ayat beserta tafsir yang telah dipaparkan, terdapat kesinambungan antara Surah Al-An'am ayat 95 dengan Surah Yasin ayat 33. Dimana pada ayat tersebut Allah SWT menunjukkan kekuasaanya dengan menumbuhkan butir tumbuhan agar dapat menjadi sumber makanan bagi manusia

dan makhluk hidup lainnya. Selain itu Allah SWT juga menunjukkan kekuasannya dalam Surah An-Nur ayat 35 dan Surah Al-Ahzab ayat 43 dengan menciptakan cahaya sebagai petunjuk, serta nikmat untuk menunjang kehidupan manusia agar selalu dalam ketaqwaan kepada Allah SWT. Hendaknya kita sebagai seorang muslim yang bertaqwa harus senantiasa mensyukuri apa yang telah diberikan oleh Allah SWT. Salah satu bukti syukur kita yaitu dengan memanfaatkan butir tumbuh-tumbuhan (beras) yang diberikan Allah SWT dan juga menjaga kualitas bahan makanan yang dikonsumsi agar senantiasa menyehatkan untuk tubuh.

Sebagai seorang muslim yang juga berakal tentunya harus memanfaatkan teknologi yang ada untuk diterapkan dalam pengecekan kualitas makanan yang akan dikonsumsi. Salah satu metode pengecekan kualitas beras dengan memanfaatkan cahaya yang telah diciptakan oleh Allah SWT. Metode yang dapat dilakukan dan bersifat tidak merusak (*Non-Destructive Detection*) adalah menggunakan identifikasi pola spekel (*Laser Speckle Imaging*) hasil dari fenomena pemantulan cahaya baur/difus. Hal inilah yang mendorong untuk dilakukannya penelitian kali ini.

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian yang telah dipaparkan mengenai analisis pengaruh variasi sudut datang dan sudut tangkap cahaya pada persebaran citra spekel beras dengan metode *Laser Speckle Contrast Imaging* (LSCI) berbasis GUI MATLAB, maka dapat disimpulkan bahwa :

- Pengaruh variasi sudut datang dan sudut tangkap cahaya terhadap pola spekel yang dihasilkan yaitu :
 - a. Semakin besar sudut datang cahaya maka pola spekel yang terbentuk akan menyebar dan mengakibatkan nilai mean yang terus meningkat, sehingga nilai kontras yang terukur akan semakin kecil.
 - b. Semakin besar sudut tangkap cahaya maka intensitas yang terukur akan semakin banyak, sehingga pola spekel yang terbentuk akan berukuran semakin besar dan nilai kontras yang terukur semakin kecil.
- 2. Sudut datang dan sudut tangkap cahaya laser yang tepat agar citra spekel memiliki nilai kontras optimum berada pada sudut datang 0° (sejajar garis normal) dan sudut tangkap (sudut kamera) 20° pada semua posisi pengambilan data. Sehingga diperoleh rata-rata nilai kontras citra spekel beras yang paling optimum pada variasi sudut datang yaitu sebesar 1,27070 a.u. dan pada variasi sudut tangkap cahaya yaitu sebesar 1,51173 a.u.
- Tingkat akurasi pengukuran aplikasi yang dibuat dapat diuji dengan membandingkan hasil pengukuran nilai kontras antara aplikasi berbasis GUI MATLAB dengan *software* ImageJ. Sehingga diperoleh hasil pengujian

tingkat akurasi pengukuran aplikasi berkisar antara 99,95 % hingga 100,00 %. Hasil tersebut mengindikasikan bahwa aplikasi yang dibuat dapat sesuai program dan bisa digunakan untuk mecari nilai *mean*, standar deviasi, dan nilai kontras dari citra spekel.

5.2 Saran

Berdasarkan hasil penelitian dan kesimpulan yang telah dipaparkan maka disarankan :

- Diperlukan penelitian lebih lanjut dengan menambahkan variabel-variabel lain yang dapat mempengaruhi pengukuran nilai kontras serta penentuan kualitas beras menggunakan citra spekel.
- 2. Diperlukan penelitian lebih lanjut dengan menambahkan fitur pengukuran variabel lain pada aplikasi analisis kontras citra spekel agar dapat digunakan lebih luas dan fleksibel.

DAFTAR PUSTAKA

- Adiansyah, Dimas Syahrul. 2014. LASER DAN SIFAT OPTIK "Sifat Berkas dan Tipe Cahaya Laser. Surabaya : Universitas Negeri Surabaya.
- Ajay G, Suneel M, Kumar K K, dan Prasad P S. 2013. *Quality Evaluation of Rice Using Morphological Method*. International Journal of Soft Computing and Engineering (IJSCE). 2(6): 35-37.
- Al-Imam Abul Fida Isma'il Ibnu Katsir ad-Dimasyqi. 2002. *Terjemah Tafsir Ibnu Katsir Juz* 22. Bandung: Sinar Baru Al-Gesindo.
- Al-Mahalli, Imam Jalaluddin dan As-Suyuti. 2007. *Tafsir Jalalain*. Terj. Bahrun Abu Bakar. Bandung : Sinar Baru Al-Gesindo.
- Al-Qarni, Aidh. 2007. Tafsir Muyassar. Jakarta: Qisthi Press.
- Amal, Ikhlasul dan Bambang Sumarno. 2017. Pengenalan Komponen Kualitas Beras Melalui Pengujian Citra Bentuk dengan Metode Smallest Univalue Asimilating Nucleus dan Pengujian Citra Tekstur Menggunakan Metode Neurofuzzy. Jurusan Pendidikan Matematika, FMIPA, Univesitas Negeri Yogyakarta.
- Aprilia, Arissa dan Ristu Saptono. 2015. *Identifikasi Kualitas Beras dengan Citra Digital*. Solo: Prodi Informatika, FMIPA, Universitas Negeri Sebelas Maret.
- Briers D, Duncan D, Kirkpatrick S, Larsson M, Stromberg T, dan Thompson O. (2013). Laser speckle contrast imaging : theoretical and practical limitations. Biomedical Optics Journal. 18(6):1–9.
- Bueche, Frederick J dan Eugene Hecht. 2006. *Fisika Universitas Edisi Kesepuluh* .Jakarta: Erlangga.
- Choi J, Ramirez S J, Lotfi J, dan J. S. Nelson. 2006. "Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics," J. Biomed. Opt. **11**, 041129.
- Csala, Mark. 2004. Fundamental Of light Source and laser. A John Wiley and & Jean.Inc
- Departemen Agama RI. 2015. *Al-Qur'an Terjemahan*. Bandung: CV Darus Sunnah.
- Draijer M, Hondebrink E, Van Leeuwen T, dan Steenbergen W. 2009. *Review of laser speckle contrast techniques for visualizing tissue perfusion*. Lasers Med. Sci., 24(4):639–651.

- Fitrya N, Harmadi, dan Sandra. 2013. Analisis Kontras Spekel Menggunakan LSI (Laser Speckel Imaging) Untuk Mendeteksi Formalin pada Tomat. Jurusan Fisika FMIPA, Universitas Andalas, Jurnal Fisika dan Aplikasinya 9(2): 80-85.
- Goodman, J.W. 2007. *Speckle Phenomena in Optic; Theory and Application*. Englewood, Colorado : Robert and Co.
- Halliday D, Robert Resnick dan Jearl Walker. 2013. *Fisika Dasar Edisi 7 Jilid 2*. Jakarta : Erlangga.
- Hermawati, Fajar Astuti. 2013. Pengolahan Citra Digital. Yogyakarta: Penerbit ANDI
- Huda A K, Diana A N, Ning R, dan Diky A. 2015. *Analisa Kekerasan Bahan dengan Metode Citra Spekel*. Surabaya : Laboratorium Optoelektronika, FMIPA, Institut Teknologi Sepuluh Nopember [dirujuk 15 Oktober 2019]. Tersedia pada : https://www.academia.edu/19605703/Analisa_Kekerasan_Bahan_dengan_ Metode_Citra_Spekel
- Inpres No. 5 Tahun 2015. 2015. Instruksi Presiden (INPRES) tentang Kebijakan Pengadaan Gabah/Beras dan Penyaluran Beras oleh Pemerintah. https://peraturan.bpk.go.id/Home/Details/77363/inpres-no-5-tahun-2015. Diakses tanggal 28 Oktober 2019.
- Khaksari, Kosar dan Sean J. Kirkpatrick. 2017. "Laser Speckle Modeling and Simulation for Biophysical Dynamics: Influence of Sample Statistics" J. Biomed. Opt. 11, 040302.
- Krane, Kenneth. 1992. Fisika Modern . Jakarta: Universitas Indonesia (UI Press).
- Kumala P P, Ning R, Diani A N, dan Gontjang P. 2015. Uji Kekasaran Permukaan Bahan dengan Metode Citra Spekel dan Menggunakan Pengolahan Software ImageJ. Surabaya : Institut Teknologi Sepuluh Nopember (ITS).
- Muchlian M, Dahyunir D, dan Harmadi. 2013. Analisis Pola dan Bulir Spekel Menggunakan LSI (Laser Speckle Imaging) Pada Lapisan Tipis TiO2. Jurnal Fisika dan Aplikasinya. 9(2):52-56
- Postnikov, Eugene B, Maria O. Tsoy, dan Dmitry E. Postnov. 2019. *MATLAB for Laser Speckle Contrast Analysis (LASCA): a practice-based approach.* Kursk : Department of Theoritical Physics, Kursk State University.
- Purnomo, Mauridhi Henri dan Arif Muntasa. 2010. Konsep Pengolahan Citra Digital dan Ekstraksi Fitur. Yogyakarta: Graha Ilmu.

- Shihab, Muhammad Quraish. 2001. *Tafsir Al-Misbah: Pesan, Kesan dan Keserasian al-Qur'an*. Jakarta: Lentera Hati.
- Siregar R P, Minarni, dan Tengku E. 2016. Analisa Pengaruh Sudut Penyinaran Terhadap Gray Value Pada Pola Spekel Buah Apel Menggunakan Metode Laser Speckel Imaging (LSI). Riau: Universitas Riau [dirujuk 15 Oktober 2019]. Tersedia pada : https://repository.unri.ac.id/bitstream/handle/123456789/7857/.
- Somantri A S, Emmy D, dan I Wayan A. 2013. Identifikasi Mutu Fisik Beras dengan Menggunakan Teknologi Pengolahan Citra dan Jaringan Syaraf Tiruan. Jurnal Pascapanen. 10(2): 95-103.
- Sri, L. H. 2014. Analisis Pola Interferensi Celah Banyak untuk Menentukan Panjang Gelombang Laser He-Ne dan Laser Dioda. Jurnal Fisika Vol 1 No 1.
- Suarga. 2007. FISIKA KOMPUTASI : Problema Fisika dengan MATLAB. Yogyakarta: Penerbit ANDI.
- Sugiharto, Aris. 2006. *Pemrograman GUI dengan MATLAB*. Yogyakarta: Penerbit ANDI.
- Suminar R, Hidayat B, dan Atmaja R D. 2012. Klasifikasi Kualitas Beras Berdasarkan Ciri Fisik Berbasis Pengolahan Citra Digital. Jurnal Telkom University.
- Tipler, Paul A. 1998. Fisika: Untuk Sains dan Teknik. Jakarta: Erlangga
- Vaz, Pedro G, Anne Humeau H, Edite Figueiras, Carlos Coreia, dan Joao Cardoso. 2017. *Performance Analysis of Spatial Laser Speckle Contrast Implementations*. Journal Of BIOSTEC : 148 -153.
- Zulkarnain, Shidiq dan Minarni. 2018. Investigasi Penggunaan Metode Laser Speckel Imaging (LSI) Untuk Pengukuran Kadar Gula Darah. Jurusan Fisika FMIPA, Universitas Riau, Jurnal Fisika Unnes 8 (2): 60-67.

LAMPIRAN

CENTRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MALANG

Lampiran 2 : Citra Spekel Beras Hasil Variasi Sudut Datang

A. Citra Spekel Hasil Pengambilan Data di Sumbu X

C. Citra Spekel Hasil Pengambilan Data di Kuadran 1

D. Citra Spekel Hasil Pengambilan Data di Kuadran 2

E. Citra Spekel Hasil Pengambilan Data di Kuadran 3

F. Citra Spekel Hasil Pengambilan Data di Kuadran 4

Lampiran 3 : Citra Spekel Beras Hasil Variasi Sudut Tangkap

A. Citra Spekel Hasil Pengambilan Data di Sumbu X

B. Citra Spekel Hasil Pengambilan Data di Sumbu Y

C. Citra Spekel Hasil Pengambilan Data di Kuadran 1

D. Citra Spekel Hasil Pengambilan Data di Kuadran 2

E. Citra Spekel Hasil Pengambilan Data di Kuadran 3

F. Citra Spekel Hasil Pengambilan Data di Kuadran 4

Lampiran 4 : Coding Aplikasi

```
function varargout = ProjectGUI(varargin)
% PROJECTGUI MATLAB code for ProjectGUI.fig
% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name',
                                      mfilename, ...
                        _Singleton', gui_Singleton, ...
_OpeningFcn', @ProjectGUI_OpeningFcn, ...
                    'gui
                    'gui
                    'gui OutputFcn', @ProjectGUI OutputFcn, ...
                    'gui_LayoutFcn',
                                      [],...
                    'qui Callback',
                                      []);
if nargin && ischar(varargin{1})
    gui State.gui Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else
    gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before ProjectGUI is made visible.
function ProjectGUI OpeningFcn(hObject, eventdata, handles,
varargin)
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% --- Outputs from this function are returned to the command line.
function varargout = ProjectGUI OutputFcn(hObject, eventdata,
handles)
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1 Callback (hObject, eventdata, handles)
handles.folder = uigetdir; %store the selected folder in
handles.folder;
 files = dir(fullfile(handles.folder, '*jpg')); %get all png files
     for i =1:length(files)
        piclist{i} = files(i).name; %lists each of them in a cell
    end
 set(handles.listbox1,'String',piclist);
 guidata(hObject, handles); %update the gui to save handles
% --- Executes on selection change in listbox1.
function listbox1 Callback(hObject, eventdata, handles)
list= get(handles.listbox1, 'string'); %get the picture list
selected = get(handles.listbox1, 'value'); % get which one is
selected.
data1= imread(fullfile(handles.folder,cell2mat(list(selected))));
%open the picture
      axes(handles.axes1);
      handles=quidata(qcbo);
```

```
set(handles.figure1, 'CurrentAxes', handles.axes1);
       axes(handles.axes1)
    cla reset
    imshow(data1);
    set(handles.figure1, 'Userdata', data1);
    set(handles.axes1, 'Userdata', data1);
% --- Executes on button press in pushbutton2.
function pushbutton2 Callback(hObject, eventdata, handles)
handles = guidata(gcbo);
      I = get(handles.axes1, 'Userdata');
Img = rgb2gray(I); %pengubahan citra kedalam grayscale
M = mean2(Img); %mencari nilai mean
S = std2(Img);
                    %mencari nilai standar deviasi
C = S/M;
                    %mencari nilai kontras
set(handles.edit2, 'string', M);
set(handles.edit3, 'string',S);
set(handles.edit4, 'string',C);
axes(handles.axes2)
imshow(Img);
axes(handles.axes3)
imhist(Img);
% --- Executes during object creation, after setting all
properties.
function listbox1 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
% --- Executes on button press in pushbutton3.
function pushbutton3 Callback(hObject, eventdata, handles)
handles = guidata(gcbo);
M1 = str2num(char(get(handles.edit2, 'String')));
S1 = str2num(char(get(handles.edit3, 'String')));
C1 = str2num(char(get(handles.edit4, 'String')));
   = get(handles.edit1, 'string');
pilih=handles.pilih
switch handles.pilih
case 1
%Export ke Excel
         = {'Mean', 'Standar Deviasi', 'Nilai Kontras'}
Header
filename = F;
xlswrite(filename,Header,'Sheet1', 'A1');
  % cek apakah file ada
if exist(filename, 'file')
     % File exists.
          data= xlsread(filename, 'Sheet1', 'A2:A1000');
```

```
MBaru = [data;M1];
     xlswrite(filename,MBaru,'Sheet1', 'A2');
          data1= xlsread(filename, 'Sheet1', 'B2:B1000');
       SBaru = [data1;S1];
     xlswrite(filename,SBaru,'Sheet1', 'B2');
          data2= xlsread(filename, 'Sheet1', 'C2:C1000');
       CBaru = [data2;C1];
     xlswrite(filename,CBaru,'Sheet1', 'C2');
else
     % File does not exist.
      xlswrite(filename,M1,'Sheet1', 'A2');
      xlswrite(filename,S1,'Sheet1', 'B2');
      xlswrite(filename,C1,'Sheet1', 'C2');
end
case 2
%Export ke txt file
RowM = M1.';
RowS = S1.';
RowC = C1.';
Data1 = [RowM; RowS; RowC];
fileID = fopen(F, 'w');
fprintf(fileID,'%f %f %f\r\n',Data1);
fclose(fileID);
end
function edit1 Callback(hObject, eventdata, handles)
% hObject
            handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)
function edit1 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
% --- Executes on button press in radiobutton1.
function radiobutton1 Callback(hObject, eventdata, handles)
set(handles.radiobutton2, 'Value', 0);
pilih = 1;
handles.pilih=pilih;
guidata(hObject,handles)
% --- Executes on button press in radiobutton2.
function radiobutton2 Callback(hObject, eventdata, handles)
set(handles.radiobutton1, 'Value', 0);
pilih = 2;
handles.pilih=pilih;
guidata(hObject,handles)
function edit4 Callback(hObject, eventdata, handles)
```

```
handle to edit4 (see GCBO)
% hObject
% handles
             structure with handles and user data (see GUIDATA)
% --- Executes during object creation, after setting all
properties.
function edit4 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit3_Callback(hObject, eventdata, handles)
          handle to edit3 (see GCBO)
% hObject
% handles
             structure with handles and user data (see GUIDATA)
% --- Executes during object creation, after setting all
properties.
function edit3 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit2 Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% handles
             structure with handles and user data (see GUIDATA)
% --- Executes during object creation, after setting all
properties.
function edit2 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
% --- Executes on button press in pushbutton4.
function pushbutton4 Callback(hObject, eventdata, handles)
set(handles.edit1, 'string', '');
set(handles.edit2, 'string', '');
set(handles.edit3, 'string', '');
set(handles.edit4, 'string', '');
axes(handles.axes1)
plot(0)
axes(handles.axes2)
plot(0)
axes(handles.axes3)
plot(0)
% --- Executes on button press in pushbutton5.
function pushbutton5 Callback(hObject, eventdata, handles)
close
```

Lampiran 5 : Data Hasil Pengolahan Citra Spekel

A. Data Pada Sumbu X dan Y

Sudut	Sudut	Mean	Standar	Kontras	Rata-Rata	No
Tangkap	Datang	Wiean	Deviasi	Konuas	Kontras	Gambar
		15,326	20,532	1,339684197		0
	0	15,338	20,445	1,332963881	1,349110541	1
		15,01	20,634	1,374683544		2
		15,479	20,409	1,318496027		3
	10	15,56	20,494	1,317095116	1,320051782	4
		15,661	20,744	1,324564204		5
		15,397	20,538	1,333896214		6
	20	15,554	20,625	1,32602546	1,331801985	7
		15,652	20,903	1,335484283		8
		14,8	20,541	1,387905405		9
	30	14,787	20,509	1,38696152	1,386411457	10
		14,892	20,616	1,384367446		11
		16,141	22,98	1,423703612		12
10	40	16,291	23,2	1,424099196	1,425089732	13
		16,289	23,252	1,427466388		14
	()	16,433	24 <mark>,</mark> 14	1,468995314	$\langle \rangle$	15
	50	16,469	24,271	1,473738539	1,474091731	16
	\rightarrow	16,57	24,516	1,47954134		17
		16,489	25,134	1,52428892		18
	60	16,454	25,153	1,528686034	1,529804437	19
		16,425	25,236	1,536438356		20
		17,801	27,954	1,570361216		21
	70	17,704	27,998	1,58145052	1,577521233	22
		17,82	28,169	1,580751964		23
		18,335	28,12	1,533678756		24
	80	18,334	28,102	1,532780626	1,541243415	25
		18,526	28,85	1,557270863		26
		20,98	30,724	1,464442326		27
	0	20,634	30,449	1,475671222	1,469446618	28
		20,945	30,752	1,468226307		29
		22,111	32,234	1,457826421		30
	10	21,765	31,683	1,455685734	1,46938495	31
		22,026	32,921	1,494642695		32
		22,667	33,587	1,481757621		33
	20	22,647	33,738	1,48973374	1,47022895	34
		22,523	32,415	1,439195489		35
		23,092	34,206	1,481292222		36
	30	22,919	34,097	1,487717614	1,482236956	37
		23,454	34,658	1,477701032		38
20		23,968	35,812	1,494158879		39
	40	23,77	35,567	1,496297854	1,490379845	40
		24,253	35,911	1,480682802		41
		24,469	36,133	1,476684785		42
	50	24,386	37,112	1,521856803	1,496757947	43
		25,158	37,529	1,491732252		44
		26,53	40,422	1,523633622		45
	60	27,292	40,164	1,471640041	1,50225998	46
		26,768	40,46	1,511506276	1	47
		27,076	42,66	1,575565076		48
	70	28,953	42,529	1,468897869	1,49840001	49
		29,576	42,907	1,450737084	1	50
	80	28,122	41,792	1,486096295	1,497495446	51

1	1	27.785	41.602	1.497282706]	52
		27.67	41.757	1.509107336		53
		52.038	57.094	1.097159768		54
	0	52,359	57,474	1,097690941	1,095057067	55
		52,513	57,256	1,090320492		56
		52,852	57,643	1,09064936		57
	10	52,806	57,693	1,092546302	1,094280043	58
		52,597	57,838	1,099644466		59
		53,421	58.971	1.103891728		60
	20	53,648	58,125	1,083451387	1,093307633	61
		53,489	58,441	1,092579783		62
		54,35	60,146	1,106642134		63
	30	55,586	60,29	1,084625625	1,091437766	64
		55,885	60,526	1,08304554		65
		56,263	62,02	1,102323019		66
30	40	57,401	62,026	1,080573509	1,091476328	67
		56,876	62,082	1,091532457		68
		55,273	59,711	1,080292367		69
	50	54,744	59,459	1,08612816	1,087846992	70
	1 A	54,314	59,589	1,097120448		71
		54,314	59,842	1,101778547		72
	60	54,811	59,647	1,088230465	1,087458545	73
		54,901	58 <mark>,8</mark> 74	1,072366624		74
		54,244	58,221	1,073316865		75
	70	54,021	59,255	1,096888247	1,088277539	76
		54,202	59,331	1,094627505		77
		54,059	59,14	1,0939899	4 1	78
	80	54,974	59,201	1,076890894	1,087941141	79
		54,227	59,2 <mark>6</mark> 7	1,09294263		80
	6	46,141	57,085	1,237186017		81
	0	46,015	57,115	1,241225687	1,238108432	82
		46,339	57,271	1,23591359 <mark>3</mark>		83
		51,509	59,672	1,158477159		84
	10	51,26	<mark>59,28</mark> 9	1,156632852	1,160432092	85
		51,346	59,879	1,166186266		86
		48,22	59,288	1,229531315	/	87
	20	47,719	59,143	1,239401496	1,238147096	88
		47 <mark>,5</mark> 34	59,2 <mark>04</mark>	1,245508478	< //	89
		47,739	59,68 6	1,250256604		90
	30	47,707	59,712	1,251640221	1,251011706	91
		47,659	59,628	1,251138295		92
		51,374	61,028	1,187916066		93
40	40	51,289	60,958	1,188519956	1,18812682	94
		51,329	60,976	1,187944437		95
		56,464	60,68	1,074667044		96
	50	56,33	60,729	1,078093378	1,077815355	97
		56,181	60,714	1,080685641		98
		63,316	60,465	0,954971887	4 4	99
	60	63,435	60,384	0,951903523	0,952441456	100
		63,369	60,229	0,950448958	ļ	101
		64,833	58,541	0,902950658	4 4	102
	70	65,234	58,517	0,897032222	0,899576092	103
		65,439	58,813	0,898745396		104
	_	62,442	56,515	0,905079914	4	105
	80	62,319	56,477	0,906256519	0,903691784	106
		62,816	56,518	0,89973892		107
		54,797	62,266	1,136303082	4 6	108
50	0	54,675	62,241	1,138381344	1,135388915	109
	1	55,285	62,554	1,131482319		110

	1	56.57	(2.14)	1 11/04/526		111
	10	56,57	63,146	1,11024530	1 110572052	111
	10	56,505	63,228	1,118980621	1,1185/3852	112
		56,5	63,308	1,120495575		113
	20	55,62	63,384	1,139590076	1 124756706	114
	20	55,749	63,329	1,135966564	1,134/56/96	115
		56,412	63,673	1,128/13/49		116
	20	57,199	64,085	1,12038672	1 11 00 1 00 71	117
	30	57,65	64,129	1,112385082	1,116846271	118
		57,376	64,133	1,117/6/011		119
	10	58,474	64,693	1,106354961	1 100777000	120
	40	58,462	64,711	1,106889946	1,108/7/833	121
		58,211	64,794	1,113088592		122
		65,699	63,149	0,961186624	0.0.444 50 004	123
	50	65,978	63,233	0,958395223	0,961152994	124
		65,471	63,106	0,963877136		125
		74,95	59,591	0,795076718		126
	60	75,249	59,564	0,791558692	0,791758854	127
		75,483	59,529	0,788641151		128
		77,808	58,117	0,746928336		129
	70	77,18	58,15	0,753433532	0,75179374	130
		77,002	58,138	0,75501935		131
		77,046	56,387	0,731861485		132
	80	77,467	56,132	0,724592407	0,729264761	133
_		11,373	56,586	0,73134039		134
	0	63,554	68,597	1,079349844	1.07(02(007	135
	0	63,361	08,54	1,078334199	1,0/003098/	130
		64,251	68,776	1,070426919		137
	10	05,88	69,428	1,055555002	1.054421146	138
	10	65,438	69,162	1,050585902	1,034421140	139
		68 536	72 002	1,052622041		140
	20	68 848	72,003	1,030380555	1 048028272	141
	20	69,461	72,047	1,040404070	1,040020272	142
		68 12	72,728	1,047033387		143
	30	69.042	71,020	1,038387780	1.044836279	144
	50	69.636	72 011	1,041015127	1,044030277	146
		76 452	70,724	0.925077173	< / i	140
60	40	76,453	70,724	0.924999673	0.925018142	147
00	-10	76,937	71,165	0.924977579	0,925010142	140
		82,728	67 517	0.816132386		150
	50	82,782	67 578	0.816336885	0 814903187	150
	20	83.266	67.632	0.81224029	0,011/0010/	152
		88.5	64.347	0.727084746		153
	60	88.071	64.351	0.730671844	0.724936504	154
		89.621	64.263	0.717052923		155
		90,946	63,116	0,693994238		156
	70	90,956	62,999	0,692631602	0,688859962	157
		92,268	62,738	0,679954047		158
		89,618	61,953	0,691300855		159
	80	91,417	61,907	0,67719352	0,678167427	160
		92,598	61,671	0,666007905		161
		75,755	70,453	0,93001122		162
	0	75,771	70,331	0,928204722	0,927165109	163
		76,368	70,509	0,923279384		164
70		78,583	71,859	0,91443442		165
70	10	78,578	71,991	0,916172466	0,916894662	166
		78,338	72,077	0,920077102		167
	20	81,935	71,767	0,875901629	0.876770502	168
2	20	82,072	71,743	0,87414709	0,070773372	169

		81,639	71,866	0,880290057		170
		85,742	70,966	0,827669054		171
	30	85,817	70,912	0,826316464	0,827120329	172
		85,741	/0,94	0,82/3/5468		1/3
	10	90,566	66,528	0,734580306	0.700557064	1/4
	40	91,234	66,414	0,727952298	0,729557864	1/5
		91,412	66,378	0,726140988		1/6
	50	90,869	65,177	0,/1/263313	0.71205616	1//
	50	91,219	65,292	0,/15//1933	0,71385616	1/8
		91,712	64,981	0,708533234		1/9
	60	98,914	60,332	0,609943992	0 611579525	180
	00	98,707	60,543	0,010903170	0,011378333	101
		98,303	60,502	0,013828438		102
	70	101,042	60,093	0,000071008	0 502042087	183
	70	101,802	60.237	0,591707432	0,393943087	104
		08.024	60,240	0,38943082		105
	80	98,034	60,442	0,0103412	0.615020573	100
	80	98,20	60,281	0,013464033	0,013020375	10/
		98,0707	00,317	0,013033887		100
	0	0	0	K		0
	0	0	0	- 4/9		0
	× .	0	0	~~~~~		0
	10	0	0			0
	10	0	0			0
		85 274	57 905	0.6790/6368		189
	20	84.026	58 188	0.60240004	0.682941128	100
		85,702	58 044	0,09249994	0,082941128	190
		90.968	66 818	0.73452203		192
	30	90,908	66 7119	0,73432203	0 732311057	102
	50	91 624	66 746	0.728477255	0,752511957	194
	40	100 635	63 649	0,720477293	0,63199239	195
80		97.099	61 335	0.631674889		196
00		97 441	61 566	0.631828491		197
		99,933	61,397	0.614381636		198
	50	100.187	61,283	0.611686147	0.611454055	199
	_	100.767	61,296	0.608294382		200
		103.061	59.042	0.57288402	- //	201
	60	102.82	59,285	0.576590158	0.572114551	202
		103.874	58,883	0,566869476		203
		103.36	57,578	0,557062693		204
	70	103,274	57,413	0,555928888	0,555058986	205
		103,918	57,382	0,552185377		206
		101.84	60,549	0,594550275		207
	80	101,418	61,055	0,602013449	0,594170847	208
		103,55	60,675	0,585948817		209
				.,		0
	0				1 1	0
					1 1	0
						0
	10				1 1	0
					1 [0
90		86,53	68,544	0,792141454	1 1	210
	20	89,882	70,927	0,789112392	0,78895127	211
		89,972	70,682	0,785599964	1 1	212
		95,205	67,871	0,71289323	1	213
	30	94,472	67,866	0,718371581	0,714328631	214
		95,196	67,753	0,711721081	1 1	215
	40	96,163	63,632	0,661709805	0,663305509	216

	95,191	63,586	0,667983318		217
	96,328	63,598	0,660223403		218
	100,613	61,998	0,616202678		219
50	100,465	62,133	0,618454188	0,61316018	220
	101,914	61,64	0,604823675	1	221
	103,073	59,42	0,576484627		222
60	102,916	59,344	0,576625598	0,576697139	223
	103,246	59,571	0,576981191	1	224
	101,652	58,053	0,571095502		225
70	102,101	57,975	0,5678201	0,567308557	226
	102,682	57,811	0,56301007	1	227
	100,125	53,235	0,531685393		228
80	98,614	63,357	0,642474699	0,604561573	229
	98,617	63,068	0,639524626	1	230

B. Data Pada Kuadran 1 Hingga Kuadran 4

Sudut	Sudut	Mean	Standar	Kontras	Rata-Rata	No
тапукар	Datang	13 556	16 043	1 183/61108	Konuras	Gailibar
	0	13,550	16,043	1,183401198	1 100024700	1
	0	13,555	17,106	1,101109795	1,199024709	2
		13,555	15,912	1,232423133		3
	10	13,571	15,912	1,172500104	1,172450787	4
	10	13,490	15,012	1,171000402		5
		13,555	16,007	1,175245770	6 11	6
	20	13,551	16 391	1,210757334	1 211819899	7
	20	13,54	16,556	1,2103013	1,211017077	8
		13,653	16,930	1,214139044		9
	30	13,005	16.73	1,230403277	1 228572302	10
	50	13,05	16,75	1,227439472	1,220572502	10
		13,004	17,145	1,227874133		11
10	40	13,509	17,145	1,203341897	1 261707816	12
10	40	13,555	17,005	1,200420509	1,261/0/816	14
		12 995	17,119	1,201101045	1,33530907	14
	50	13,003	18,505	1,337034373		15
		13,005	18,501	1,332443083		10
	60	14 705	20 591	1,00272016	1,398728252	17
		14,703	20,571	1,400272010		10
		14,703	20,347	1,397409904		20
		14,042	20,470	1,398442830	1 426633771	20
	70	15,102	21,017	1,4237333371		21
	10	15,210	21,075	1,424300171	1,420033771	22
		15,121	21,021	1,42980373		23
	80	15,547	22,378	1,437377372	1 440598154	24
	00	15,523	22,337	1,440378773	1,440576154	25
		22 541	34.026	1,442030290		20
	0	22,341	33,963	1,505515555	1 511725647	28
	0	22,377	34,005	1 5093879	1,511725047	20
	-	22,929	34 445	1 503557554		30
	10	22,505	34 34	1,503507534	1 505709197	31
20	10	22,697	34 274	1,505502027	1,505705157	32
20	-	23 3214	35 501	1 522249951		33
	20	23,3214	35.66	1 502042879	1 509783392	34
	20	23,741	35 563	1,5020+2075	1,507705572	35
		23,027	37.045	1 539756432		36
	30	23,887	36.947	1,557750452	1,543105832	37
30	23,887	36,947	1,546740905	1,543105832	37	

	1	23 949	36 949	1 54282016		38
		24.905	37.978	1.524914676		39
	40	24.913	37,946	1.523140529	1.525982933	40
		24,905	38,102	1,529893596	,	41
		25,514	40,036	1,569177706		42
	50	25.521	40.188	1.574703186	1.570729681	43
		25,546	40,064	1,56830815	,	44
	-	27.412	42.333	1.544323654		45
	60	27.625	42,254	1.529556561	1.538729162	46
		27,383	42,233	1,542307271	<i>,</i>	47
		30,091	44,617	1,482735702		48
	70	29,735	44,567	1,498806121	1,488198311	49
		29,976	44,456	1,483053109		50
		33,614	45,6	1,356577616		51
	80	33,686	45,54	1,35189693	1,355531317	52
		33.5	45,497	1.358119403		53
		39,087	51,051	1,306086423		54
	0	38,654	50,958	1,318311171	1,31295401	55
	1	38,847	51,063	1,314464437		56
		38,571	51,05	1,323533224		57
	10	38,415	51,064	1,32927242	1,327574293	58
		38,543	51,259	1,329917235		59
		39.363	51.741	1.31445774		60
	20	39.31	51,748	1.316408039	1.318092842	61
		39.077	51.715	1.323412749	,	62
		40.287	53.16	1.319532355		63
	30	40.433	53,181	1.315287018	1,319449351	64
		40.219	53,231	1.32352868		65
		40,979	55,104	1,344688743	1,343572942	66
30	40	40.896	55	1,344874804		67
20		41.081	55.096	1.341155279		68
		43,389	57,304	1.320703404		69
	50	42.989	57,309	1.33310847	1.328506472	70
		43.056	57,338	1.331707544	,	71
		40,633	54,575	1,343120124		72
	60	40,746	54,513	1,337873656	1,339023264	73
	124	40,836	54,56	1,336076011		74
		46,842	57,246	1,222108364		75
	70	46,764	57,163	1,22237191	1,22136795	76
		46,862	57,154	1,219623576		77
		46,717	53,416	1,143395338		78
	80	46,407	53,383	1,15032215	1,147427261	79
		46,458	53,36	1,148564295		80
		41,887	54,937	1,31155251		81
	0	42,011	54,844	1,305467616	1,310114846	82
		41,848	54,96	1,313324412		83
		44,925	56,815	1,264663328		84
	10	44,952	56,858	1,264860295	1,262888888	85
		45,253	56,98	1,25914304	<i>,</i>	86
		39,594	54,589	1,378718998		87
40	20	39,576	54,676	1,38154437	1,380815734	88
40		39,481	54,57	1,382183835	1	89
		40,411	55.032	1,361807429		90
	30	40.635	55,049	1,354718838	1,355819467	91
		40.874	55,218	1,350932133	,	92
		41.149	55.823	1,356606479		93
	40	40.871	55.758	1,364243596	1,360168965	94
		41.028	55,784	1,35965682	,_ ,	95
					-	

l	1	41.645	56.051	1.34592388		97
		41.634	56.138	1.348369121		98
		44,423	55.707	1.254012561		99
	60	44,423	55,688	1,253584855	1,255885861	100
		44,209	55,706	1,260060169		101
		48,556	55,047	1,133680699		102
	70	48,596	55,146	1,134784756	1,13520603	103
		48,508	55,161	1,137152635		104
		52,52	54,333	1,034520183		105
	80	52,26	54,383	1,040623804	1,036703096	106
		52,595	54,434	1,034965301		107
		45,185	59,5	1,316808675		108
	0	45,258	59,393	1,312320474	1,316090808	109
		45,102	59,496	1,319143275		110
		47,441	61,129	1,288526802		111
	10	47,474	61,246	1,290095631	1,289364819	112
		47,521	61,277	1,289472023		113
		48,479	60,917	1,256564698		114
	20	48,513	60,954	1,256446726	1,257327518	115
		48,461	61,011	1,258971131		116
		48,26	60,839	1,260650642		117
	30	48,315	60,809	1,258594639	1,26120365	118
		48,153	60,883	1,264365668		119
		47,977	59,429	1,238697709		120
50	40	47,884	59,482	1,242210342	1,242112753	121
		4/,814	59,549	1,245430209		122
	50	51,861	60,421	1,165056594	1 1 (502 (719	123
	50	51,89	60,44	1,164//1632	1,165036/18	124
		51,875	60,449	1,105281928		125
	60	55,285	60,21	1,089083838	1 000129251	120
	00	55 229	60.236	1,090042321	1,090128551	127
		61.841	57 356	0.9274753		120
	70	61 794	57,403	0,928941321	0 928824924	12)
	10	61 737	57 419	0.93005815	0,920024924	130
		62,125	56,565	0.910503018		132
	80	62.091	56,593	0.911452545	0.912204771	133
		61,963	56.675	0.914658748		134
	62	51,516	63,551	1,23361674		135
	0	51,636	63,541	1,230556201	1,233768788	136
		51,49	63,7	1,237133424		137
		53,001	64,933	1,225127828		138
	10	52,923	64,982	1,227859343	1,228924369	139
		52,732	65,06	1,233785936		140
		53,337	64,629	1,211710445		141
	20	53,464	64,561	1,207560227	1,210141868	142
		53,501	64,798	1,211154932		143
		53,605	64,613	1,205353978	_	144
60	30	53,73	64,716	1,204466778	1,206218275	145
		53,588	64,779	1,208834067		146
		54,581	64,602	1,183598688	4	147
	40	54,51	64,388	1,181214456	1,182143265	148
		54,582	64,495	1,18161665		149
		58,15	62,719	1,078572657		150
	50	58,07	62,765	1,080850697	1,082108583	151
		57,835	62,861	1,086902395	ļ	152
		64,515	62,104	0,962628846	0.0000000	153
	60	64,434	62,065	0,963233696	0,962558795	154
		64,526	62,062	0,961813842		155

		67,751	59,162	0.873226963		156
	70	67.79	59.23	0.873727688	0.874411341	157
		67,709	59,332	0,876279372		158
		66,887	59,746	0,893237849		159
	80	66,817	59,835	0,895505635	0,895259508	160
		66,78	59,904	0,89703504		161
		55,875	66,604	1,192017897		162
	0	56,019	66,635	1,189507132	1,192946291	163
		55,693	66,682	1,197313846		164
		56,3	66,285	1,177353464		165
	10	56,125	66,221	1,179884187	1,181192759	166
		55,903	66,32	1,186340626		167
		58,611	65,938	1,125010664		168
	20	58,824	66,046	1,122773018	1,125343035	169
		58,544	66,052	1,128245422		170
		59,478	65,919	1,108292142		171
	30	59,486	65,843	1,106865481	1,10915597	172
		59,3	65,96	1,112310287		173
	(C	60,367	65,991	1,093163483		174
70	40	60,415	64,973	1,07544484	1,084518811	175
		60,225	65,341	1,084948111		176
	1	64,86	63,861	0,984597595		177
	50	64,687	63,211	0,977182432	0,979649166	178
		64,776	63,297	0,977167469		179
	(0)	69,356	60,197	0,867942211	0.071070056	180
~ ~	60	69,221	60,291	0,870992907	0,8/10/9956	181
		69,04	60,362	0,8/4304/51		182
	70	73,428	59,762	0,813885/11	0.915245712	183
	70	72 222	50,78	0,815064077	0,813243712	104
		73,323	50 564	0,813904977		185
	80	72,253	59 688	0,823724801	0.825776218	187
	00	72,134	59,596	0.826173148	0,023770210	188
		59 753	67 291	1 126152662		189
	0	59,656	67,299	1,128117876	1.128030247	190
	-	59,567	67.3	1.129820202		191
		59.66	67.391	1.129584311		192
	10	59,746	67,475	1,129364309	1,130674562	193
	6/2	59,628	67,563	1,133075065		194
		57,283	63,749	1,112878166		195
	20	57,127	63,657	1,11430672	1,115049698	196
		56,941	63,658	1,117964209		197
		61,26	65,232	1,064838394		198
	30	61,169	65,347	1,068302572	1,066555113	199
		61,376	65,459	1,066524374		200
80		62,701	64,15	1,023109679		201
00	40	62,636	64,208	1,025097388	1,024271499	202
		62,664	64,206	1,02460743		203
		67,41	63,619	0,943762053		204
	50	67,292	63,788	0,947928431	0,945408034	205
		67,284	63,552	0,944533619		206
		69,857	59,95	0,858181714	0.05222.40.40	207
	60	69,727	59,218	0,849283635	0,853224049	208
		69,807	59,49	0,852206799		209
	70	/4,866	57,599	0,769361259	0.770260740	210
	70	/4,/8	57,61	0,771226912	0,770363742	211
		/4,/3	37,042 50,904	0.701722491		212
	80	75.60	59,000	0,776421582	0,832337544	213
	1	15,02	50,715	0,770421302	L	214

		75,254	69,901	0,928867569		215
				#DIV/0!		0
	0			#DIV/0!	#DIV/0!	0
				#DIV/0!		0
				#DIV/0!		0
	10			#DIV/0!	#DIV/0!	0
				#DIV/0!		0
		59,835	67,09	1,121250104		216
	20	60,373	67,25	1,113908535	1,116755359	217
		60,361	67,309	1,115107437		218
		65,487	69,071	1,054728419		219
	30	65,471	69,105	1,055505491	1,054482116	220
		65,511	68,997	1,053212438		221
		66,328	65,354	0,985315402		222
90	40	66,214	65,437	0,988265322	0,986968811	223
		66,197	65,358	0,98732571		224
		70,307	65,197	0,927318759		225
	50	70,273	65,303	0,929275824	0,92629715	226
	6	70,705	65,211	0,922296867		227
		73,956	63,886	0,863837958		228
	60	74,021	63,846	0,862539009	0,86346519	229
		73,966	63,908	0,864018603		230
/		76,764	63, 1 51	0,82266427		231
_	70	76,738	63,284	0,824676171	0,82441424	232
		76,75	63,388	0,82590228		233
		74,482	63, <mark>3</mark> 08	0,849977176		234
	80	74,719	63,379	0,848231374	0,850849655	235
		74,221	63, <mark>4</mark> 1	0,854340416		236

Lampiran 6 : Grafik Plotting Data

1. Pengambilan Data di Sumbu X

Sudut Datang

y = 0,8253e^{-0,005x}

R² = 0,7996

2. Pengambilan Data di Sumbu Y

Sudut Datang

 $R^2 = 0,7074$

CENTRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MALANG

BUKTI KONSULTASI SKRIPSI

Nama	: Mahardhika Mega Utama
NIM	: 16640053
Fakultas/ Jurusan	: Sains dan Teknologi/ Fisika
Judul Skripsi	: Analisis Pengaruh Variasi Sudut Datang dan Sudut Tangkap Cahaya pada Persebaran Citra Spekel Beras
	dengan Metode Laser Speckle Contrast Imaging (LSCI) Berbasis Graphical User Interface (GUI) MATLAB
Pembimbing I	: Farid Samsu Hananto, M.T.
Pembimbing II	: Wiwis Sasmitaninghidayah, M.Si.

No	Tanggal	HAL	Tanda Tangan
1	16 Oktober 2019	Konsultasi Bab I, II, dan III	Au
2	30 Oktober 2019	Konsultasi Bab I, II, dan III	A
3	04 November 2019	Konsultasi Bab I, II, III dan ACC	1
4	13 Desember 2019	Konsultasi Kajian Agama Bab I, II,III	W
5	26 Februari 2020	Konsultasi Data Hasil Bab IV	t
6	09 Maret 2020	Konsultasi Bab IV dan Bab V	*
7	20 Maret 2020	Konsultasi Kajian Agama dan Bab IV	W I
8	26 Maret 2020	Konsultasi Kajian Agama dan Bab V	WHY
9	29 April 2020	Konsultasi Semua Bab, Abstrak dan ACC	Au
10	02 Mei 2020	Konsultasi Kajian Agama, Abstrak dan ACC	W

Malang, 04 Mei 2020 Mengetahui, Ketua Jurusan Fisika,

Drs. Abdul Basid, M.Si NIP. 19650504 199003 1 003