SINTESIS MATERIAL CaTiO3 TERDOPING Fe³⁺ DENGAN MENGGUNAKAN METODE LELEHAN GARAM TUNGGAL NaCI

SKRIPSI

Oleh: DWI RAHAYU NOVIANTI NIM. 15630035

JURUSAN KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2020

SINTESIS MATERIAL CaTiO₃ TERDOPING Fe³⁺ DENGAN MENGGUNAKAN METODE LELEHAN GARAM TUNGGAL NaCI

SKRIPSI

Oleh: DWI RAHAYU NOVIANTI NIM. 15630035

Diajukan Kepada: Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang Untuk Memenuhi Salah Satu Persyaratan dalam Memperoleh Gelar Sarjana Sains (S.Si)

JURUSAN KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2020

SINTESIS MATERIAL CaTiO₃ TERDOPING Fe³⁺ DENGAN MENGGUNAKAN METODE LELEHAN GARAM TUNGGAL NaCI

SKRIPSI

Oleh: DWI RAHAYU NOVIANTI NIM. 15630035

Telah Diperiksa dan Disetujui untuk Diuji Tanggal: 23 April 2020

Pembimbing I

Dr. Anton Prasetyo, M.Si NIP. 19770925 200604 1 003

Pembimbing II

Dr. H. Ahmad Barizi, M.A NIP. 19731212 199803 1 008

SINTESIS MATERIAL CaTiO₃ TERDOPING Fe³⁺ DENGAN MENGGUNAKAN METODE LELEHAN GARAM TUNGGAL NaCI

SKRIPSI

Oleh: DWI RAHAYU NOVIANTI NIM. 15630035

Telah Dipertahankan di Depan Dewan Penguji Skripsi Dan Dinyatakan Diterima Sebagai Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Sains (S.Si) Tanggal: 23 April 2020

Penguji Utama	: Rachmawati Ningsih, M.Si NIP. 19810811 200801 2 010	(
Ketua Penguji	: Febi Yusniyanti, S.Si., M.Sc LB. 68004	(
Sekretaris Penguji	: Dr. Anton Prasetyo, M.Si NIP. 19770925 200604 1 003	ć
Anggota Penguji	: Dr. H. Ahmad Barizi, M.A NIP. 19731212 199803 1 008	(

PERNYATAAN ORISINALITAS PENELITIAN

Saya yang bertanda tangan di bawah ini:

Nama	:	Dwi Rahay	u Noviant	i			
NIM	:	15630035					
Jurusan	÷	Kimia					
Fakultas	:	Sains dan 7	Feknologi				
Judul Penelitian	÷	"Sintesis	Material	CaTiO ₃	Terdoping	Fe ³⁺	dengan
		Mengguna	kan Metod	le Lelehan	Garam Tun	ggal N	aCl"

menyatakan dengan sebenar-benarnya bahwa skripsi ini merupakan hasil karya saya sendiri, bukan merupakan pengambilalihan data, tulisan atau pikiran orang lain yang saya akui sebagai hasil tulisan atau pikiran saya, kecuali dengan mencantumkan sumber kutipan pada daftar pustaka. Apabila dikemudian hari terbukti atau dapat dibuktikan skripsi ini hasil jiplakan, maka saya bersedia memepertanggungjawabkannya sesuai peraturan yang berlaku.

Malang, 23 April 2020 Yang membuat pernyataan,

HE470533738

Dwi Rahayu Novianti NIM. 15630035

HALAMAN PERSEMBAHAN

Tak henti-hentinya memanjatkan puja dan puji syukur ke hadirat Allah SWT atas segala limpahan rahmat, hidayah dan ridho-Nya. Dan tak lupa sholawat serta salam tetap tercurahkan kepada baginda Rasulullah Muhammad SAW.

Saya persembahkan karya ini untuk diri saya sendiri dan orang-orang yang saya sayangi sebagai bentuk penghargaan, ucapan terima kasih, dan bentuk hormat saya. Teruntuk kedua orang tua saya, Bapak Romadhon dan Ibu Nani
Agustriani Sjarifah. Kedua orang tua yang teramat luar biasa baik, yang selalu mendukung, memotivasi, menyemangati, dan menjadi panutan untuk saya.
Terimakasih karena telah mendukung saya untuk menempuh pendidikan setinggitingginya. Terimakasih telah berkorban begitu banyak untuk saya agar saya dapat sampai di titik ini. Panjang umur dan sehat selalu untuk kedua orang tua saya, semoga Allah selalu melindungi Bapak dan Mama dimanapun berada.
Untuk kedua saudara saya, Rina Noviana Miftasari dan Tri Wahyu Lestari yang telah menjadi kakak dan adik yang terbaik bagi saya. Teruntuk nenek saya Almh. Siti Amina yang semasa hidup beliau selalu mendukung saya untuk bersekolah setinggi-tingginya. Terimakasih untuk keluarga saya yang telah menjadi alasan terbesar saya untuk meraih cita-cita saya. Semoga saya dapat terus menjadi kebanggaan kalian orang-orang tersayang.

......

Untuk seluruh dosen dan laboran jurusan Kimia Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang. Terutama untuk **Bapak Dr. Anton Prasetyo, M.Si** selaku pembimbing saya. Terimakasih untuk semua bantuan, motivasi, dukungan untuk saya menyelesaikan studi saya dengan sebaik-baiknya. Bapak adalah dosen pembimbing terbaik untuk saya dan selalu menjadi panutan

untuk saya meraih sukses.

Untuk sahabat-sahabat saya yang selalu mendukung saya dalam keadaan apapun untuk sampai di titik ini dan memperoleh gelar Sarjana Sains (S.Si). Dan untuk semua teman-teman yang tidak bisa saya sebutkan satu-persatu. Semoga Allah membalas semua kebaikan kalian.

TRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MAL

KATA PENGANTAR

Syukur Alhamdulillah, segala puji syukur kehadirat Allah SWT yang telah melimpahkan Rahmat, Taufiq dan Hidayah-Nya tiada henti dan tiada batas kepada penulis, sehingga penulis dapat menyelesaikan penelitian yang berjudul "Sintesis Material CaTiO₃ Terdoping Fe³⁺ dengan Menggunakan Metode Lelehan Garam Tunggal NaCl". Shalawat serta salam semoga senantiasa tercurahkan kepada Nabi Muhammad SAW beserta keluarga dan sahabatnya karena Beliaulah yang menuntut umat manusia dari jaman jahiliyah menuju jaman yang penuh dengan ilmu pengetahuan.

Selanjutnya penulis haturkan ucapan terima kasih seiring do'a dan harapan jazakumullah ahsanal jaza' kepada semua pihak yang telah membantu terselesaikannya skripsi ini. Ucapan terima kasih ini penulis sampaikan kepada:

- Kedua orang tua tercinta yang selalu memberikan do'a, cinta, semangat, moral dan motivasi kepada penulis sehingga dapat terselesaikan laporan hasil penelitian ini.
- Ibu Elok Kamilah Hayati, M.Si selaku ketua Jurusan Kimia. Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang.
- Dr. Anton Prasetyo, M.Si dan Dr. H. Ahmad Barizi, M.A selaku dosen pembimbing yang telah meluangkan waktu untuk membimbing, memotivasi, mengarahkan dan memberi masukan untuk terselesainya skripsi ini.

- Segenap civitas akademika Jurusan Kimia, yaitu seluruh dosen dan laboran khususnya Bu Isnaeni H, S.Si yang telah memberikan pengetahuan, pengalaman serta wawasannya sebagai pedoman dan bekal bagi penulis.
- 5. Teman-teman seperjuangan Kimia Angkatan 2015 khususnya segenap keluarga Arsitek Molekul Kimia A yang telah memberi motivasi yang luar biasa kepada penulis dan selalu memberikan dukungan.
- 6. Teman-teman tim penelitian kimia Anorganik yaitu Anor Squad (Elen, Fifit, Dhifa, Nende, Rumaisha, Abel, Elisa, Vita, Faiz, dan Fatachi) dan Tim Aurivillius dan Perovskit (Riv'ah, Hasal, Aldi, Azzah, Hanif, dan Andi) yang telah berjuang bersama, memberi masukan dan semangat kepada penulis untuk menyelesaikan penelitian ini.
- Sahabat-sahabat terbaik saya Tri Rohmatul Jannah dan Ahmad Asadbaz yang telah membantu, memotivasi, menghibur penulis dikala penat hingga terselesainya skripsi ini.
- 8. Semua pihak yang secara langsung maupun tidak langsung telah ikut memberikan bantuan dan motivasi dalam menyelesaikan penelitian ini.

Penulis menyadari bahwa dalam pelaksanaan maupun penyusunan proposal ini terdapat kekurangan dan penulis berharap semoga penelitian ini bisa memberikan manfaat kepada para pembaca khususnya bagi penulis secara pribadi. *Aamiin Ya Rabbal Aalamiin*.

Malang, 23 April 2020

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PERSETUJUAN	ii
HALAMAN PENGESAHAN	iii
PERNYATAAN ORISINALITAS PENELITIAN	iv
HALAMAN PERSEMBAHAN	V
KATA PENGANTAR	vi
DAFTAR ISI	viii
DAFTAR LAMPIRAN	X
DAFTAR GAMBAR	xi
DAFTAR TABEL	xiii
DAFTAR PERSAMAAN	xiv
ABSTRAK	XV
ABSTRACT	xvi
الملخص	xvii

BAB I PENDAHULUAN

1.1 Latar Belakang	1
1.2 Rumusan Masalah	6
1.3 Tujuan	7
1.4 Batasan Masalah	7
1.5 Manfaat	7

BAB II TINJAUAN PUSTAKA

2.1 Senyawa Kalsium Titanat	8
2.2 CaTiO ₃ sebagai Material Fotokatalis	9
2.3 Pengaruh Doping Fe ³⁺ terhadap Senyawa Kalsium Titanat	11
2.4 Sintesis Metode Lelehan Garam	14

BAB III METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian	22
3.2 Alat dan Bahan	22
3.2.1 Alat	22
3.2.2 Bahan	22
3.3 Rancangan Penelitian	22
3.4 Prosedur Kerja	23
3.4.1 Preparasi Bahan	23
3.4.2 Sintesis Kalsium Titanat dengan Metode Lelehan Garam	24
3.4.3 Karakterisasi CaTi _{1-x} Fe _x O ₃ dengan XRD	24
3.4.4 Karakterisasi CaTi _{1-x} Fe _x O ₃ dengan Spektroskopi Raman	24
3.4.5 Karakterisasi CaTi _{1-x} Fe _x O ₃ dengan SEM-EDS	25
3.4.6 Karakterisasi CaTi _{1-x} Fe _x O ₃ menggunakan UV-Vis DRS	25
3.5 Analisis Data	25
3.5.1 Analisis Data XRD	25
3.5.2 Analisis Data Spektroskopi Raman	25
3.5.3 Analisis Data SEM-EDS	26

3.5.4 Analisis Data UV-Vis DRS	26
BAB IV HASIL DAN PEMBAHASAN	
4.1 Sintesis CaTiO ₃ Terdoping Fe ³⁺ dengan Metode Lelehan Garam	27
4.2 Karakterisasi dan Analisis Data CaTi _{1-x} Fe _x O ₃ dengan XRD	29
4.3 Karakterisasi dan Analisis Data CaTi _{1-x} Fe _x O ₃ dengan Spektroskopi	
Raman	32
4.4 Karakterisasi dan Analisis Data CaTi _{1-x} Fe _x O ₃ dengan SEM-EDS	34
4.5 Karakterisasi dan Analisis Data CaTi _{1-x} Fe _x O ₃ dengan UV-Vis DRS.	37
4.6 Hasil Sintesis dan Karakterisasi CaTiO3 Terdoping Fe dalam	
Perspektif Islam	40
1	

BAB V PENUTUP

5.1 Kesimpulan	
5.2 Saran	
DAFTAR PUSTAKA	
LAMPIRAN	

CENTRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MALANG

ix

DAFTAR LAMPIRAN

Lampiran 1	Diagram Alir	48
Lampiran 2	Perhitungan	49
Lampiran 3	Data Analisis XRD	53
Lampiran 4	Data Analisis SEM-EDS	68
Lampiran 5	Hasil Analisa DRS	73
Lampiran 6	Dokumentasi Penelitian	74

DAFTAR GAMBAR

Gambar 2.1	Struktur kristal CaTiO ₃
Gambar 2.2	Pola difraksi sinar-X CaTi _{1-x} Fe _x O ₃ dengan variasi (a) $x=0$; (b)
	0,05; (c) 0,1; (d) 0,15; (e) 0,2; (f) 0,3; dan (g) 0,411
Gambar 2.4	Skema celah pita dari CaTi _{1-x} Fe _x O ₃ 12
Gambar 2.5	Spektra DRS dari CaTi _{1-x} Fe _x O ₃ ($0 \le x \le 0, 4$)
Gambar 2.6	Prosedur sintesis metode lelehan garam14
Gambar 2.7	Tahapan metode lelehan garam15
Gambar 2.8	Morfologi partikel La2Ti2O7 terdoping Rh yang disintesis
	dengan (a) metode lelehan garam campuran NaCl-KCl dan (b) metode solid-state
Gambar 2.9	Morfologi senvawa CaTiO ₂ yang disintesis dengan metode
Gambar 2.9	lelehan garam tunggal NaCl pada suhu 1.100°C selama 10 jam
~ 1 ~ 1 0	
Gambar 2.10	Pola difraksi sinar-X dari serbuk CaCu ₃ T ₁₄ O ₁₂ yang disintesis
	menggunakan garam NaCl pada suhu (a) 750, (b) 800, (c) 850,
	(d) 900, (e) 950, dan (f) 1.000° C
Gambar 2.11	Morfologi partikel CaCu ₃ Ti ₄ O ₁₂ yang disintesis pada suhu kalsinasi 850°C selama 2 jam
Gambar 2.12	Pola difraksi sinar-X $SrTiO_3$ yang disintesis (a) tanpa
	menggunakan garam (b) menggunakan garam NaCl-KCl pada
	suhu 700°C selama 10 jam
Gambar 4.1	Perubahan warna sampel (a) sebelum kalsinasi, (b) setelah
	kalsinasi suhu 900°C, dan (c) setelah penyaringan sampel
	CaTi _{x-1} Fe _x O ₃ ($x=0$; 0.05; 0.10; 0.15; dan 0.20)28
Gambar 4.2	Pola difraksi sinar-X senyawa CaTi _{x-1} Fe _x O ₃ ($x=0$; 0.05; 0.10;
	0.15: dan 0.20)
Gambar 4.3	Pergeseran puncak difraksi sinar-X senyawa CaTi _{x-1} Fe _x O ₃ ($x=$
	0: 0.05: 0.10: 0.15: dan 0.20)
Gambar 4.4	Plot <i>refinement</i> data senvawa CaTi _{x-1} Fe _x O ₃ (a) $x=0$ dengan
	metode Le-bail
Gambar 4.5	Spektra Raman senvawa CaTi _{x-1} Fe _x O ₃ ($x=0$: 0.05: 0.10: 0.15:
	dan 0.20)
Gambar 4.6	Pergeseran puncak spektra Raman senyawa CaTi _{1-x} Fe _x O ₃ ($x=$
Sumour no	0: 0.05: 0.10: 0.15: dan 0.20) pada bilangan gelombang 247
	cm^{-1}
Gambar 4 7	Morfologi partikel CaTi _x $_{1}$ Fe _x O ₂ $r = (a) 0: (b) 0.05: (c) 0.10: (d)$
	0.15: dan (e) 0.20 pada perbesaran 20000x 35
Gambar 4 8	Snektra DRS hubungan % reflektansi dengan Panjang
	gelombang senyawa CaTi _x $_1$ Fe _x O ₂ ($r = 0.05$; 0.10; 0.15; dan
	$\begin{array}{c} 0.20 \end{array}$
Gambar 4 9	Snektra DRS hubungan konstanta Kubelka-Munk dengan
Sumoul 7.7	Paniang gelombang senyawa CaTi, $Fe_{0.02}$ (r= 0.05, 0.10)
	$\begin{array}{c} \text{(11)} \text{(11)}$
	0,12, aur 0,20,

Gambar 4.10	Spektra DRS energi celah pita (band gap) senyawa CaTi _{x-}
	$_{1}$ Fe _x O ₃ (x=0,05; 0,10; 0,15; dan 0,20)
Gambar L.3.1	Difraktogram Standar CaTiO ₃ JCPDS No. 82-022953
Gambar L.3.2.2	Difraktogram CaTi _{x-1} Fe _x O ₃ ($x=0$)
Gambar L.3.3.2	Difraktogram CaTi _{x-1} Fe _x O ₃ ($x=0,05$)
Gambar L.3.4.2	Difraktogram CaTi _{x-1} Fe _x O ₃ ($x=0,10$)
Gambar L.3.5.2	Difraktogram CaTi _{x-1} Fe _x O ₃ ($x=0,15$)
Gambar L.3.6.2	Difraktogram CaTi _{x-1} Fe _x O ₃ ($x=0,20$)
Gambar L.4.1.1	Morfologi CaTi _{x-1} Fe _x O ₃ ($x=0$) yang disintesis dengan metode
	lelehan garam tunggal NaCl pada perbesaran (a) 20.000x dan
	(b) 40.000x
Gambar L.4.2.1	Morfologi CaTi _{x-1} Fe _x O ₃ (x=0,05) yang disintesis dengan
	metode lelehan garam tunggal NaCl pada perbesaran (a)
	20.000x dan (b) 40.000x
Gambar L.4.3.1	Morfologi CaTi _{x-1} Fe _x O ₃ ($x=0,10$) yang disintesis dengan
	metode lelehan garam tunggal NaCl pada perbesaran (a)
	20.000x dan (b) 40.000x
Gambar L.4.4.1	Morfologi CaTi _{x-1} Fe _x O ₃ ($x=0,15$) yang disintesis dengan
	metode lelehan garam tunggal NaCl pada perbesaran (a)
	20.000x dan (b) 40.000x
Gambar L.4.5.1	Morfologi CaTi _{x-1} Fe _x O ₃ ($x=0,20$) yang disintesis dengan
	metode lelehan garam tunggal NaCl pada perbesaran (a)
	20.000x dan (b) 40.000x
Gambar L.5.1	Spektra DRS energi celah pita senyawa CaTiO ₃ 73
Gambar L.6.1	Proses penimbangan sampel
Gambar L.6.2	Penggerusan Sampel74
Gambar L.6.3	Sampel sebelum kalsinasi74
Gambar L.6.4	Sampel setelah kalsinasi
Gambar L.6.5	Produk hasil sintesis CaTi _{x-1} Fe _x O ₃ ($x=0$; 0,05; 0,10; 0,15; dan
	0,20)75

DAFTAR TABEL

Tabel 2.1	Sintesis BaZrO ₃ dengan variasi jenis garam	17
Tabel 3.1	Komposisi prekursor senyawa CaTi _{1-x} Fe _x O ₃ (x=0; 0,05; 0,10;	
	0,15; 0,20).	23
Tabel 4.1	Parameter kristal CaTi _{x-1} Fe _x O ₃ (x=0; 0,05; 0,10; dan 0,15)	32
Tabel 4.2	Analisis modus vibrasi Raman senyawa CaTi _{x-1} Fe _x O ₃ (x=0;	
	0,05; 0,10; 0,15; dan 0,20)	33
Tabel 4.3	Komposisi unsur-unsur penyusun CaTi _{1-x} Fe _x O ₃ ($x = 0$; 0,05;	
	0,10; 0,15; dan 0,20) berdasarkan perhitungan secara teori dan	
	hasil EDS	36
Tabel L.3.2.3	Puncak-puncak XRD CaTi _{1-x} Fe _x O ₃ (x=0)	55
Tabel L.3.3.3	Puncak-puncak XRD CaTi _{1-x} Fe _x O ₃ (x=0,05)	57
Tabel L.3.4.3	Puncak-puncak XRD CaTi _{1-x} Fe _x O ₃ (x=0,10)	59
Tabel L.3.5.3	Puncak-puncak XRD CaTi _{1-x} Fe _x O ₃ (x=0,15)	61
Tabel L.3.6.3	Puncak-puncak XRD CaTi _{1-x} Fe _x O ₃ (x=0,20)	63

DAFTAR PERSAMAAN

Persamaan 3.1	Persamaan Kubelka-Munk	
Persamaan 4.1	Reaksi Pencucian Garam	

ABSTRAK

Novianti, Dwi Rahayu. 2020. Sintesis Material CaTiO₃ Terdoping Fe³⁺ dengan Metode Lelehan Garam Tunggal NaCl. Skripsi. Jurusan Kimia, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing I: Dr. Anton Prasetyo, M.Si; Pembimbing II: Dr. H. Ahmad Barizi, M.A.

Kata kunci: CaTiO₃, dopan Fe, metode lelehan garam, partikel polihedral regular

Kalsium titanat (CaTiO₃) adalah salah satu material berstruktur perovskit yang memiliki peluang digunakan sebagai material fotokatalis dengan energi celah pita 3.5 eV (350 nm) sehingga hanya bekerja dalam rentang panjang gelombang cahaya ultraviolet. Salah satu cara untuk memperkecil energi celah pita yaitu dengan cara pendopingan dengan atom logam. Dalam penelitian ini, sintesis senyawa CaTi_{1-x}Fe_xO₃ (x=0; 0,05; 0,1; 0,15; dan 0,2) menggunakan metode lelehan garam tunggal NaCl pada suhu 900 °C. Sampel hasil sintesis dikarakterisasi serta dianalisa menggunakan teknik difraksi sinar-X(XRD), spektroskopi Raman, SEM-EDS, dan UV-Vis DRS. Difraktogram senyawa CaTi_{1-x}Fe_xO₃ (x=0; 0,05; 0,1; 0,15; dan 0.2) menunjukkan bahwa sampel berhasil disintesis akan tetapi pada x=0.2ditemukan pengotor Ca₂Fe₂O₅. Spektra Raman menunjukkan pergeseran posisi puncak modus vibrasi 247 cm⁻¹ yang mengindikasikan adanya perubahan panjang Ti-O sebagai akibat pergantian sebagian Ti⁴⁺ oleh Fe³⁺. Gambar SEM menunjukkan bahwa partikel berbentuk polihedral reguler dan dopan Fe³⁺ menyebabkan aglomerasi. Spektra EDS menunjukkan bahwa unsur penyusun senyawa adalah Ca, Ti, Fe, dan O yang merata. Spektra UV-Vis DRS menunjukkan adanya perubahan pola serapan pada panjang gelombang cahaya tampak yang disebabkan oleh adanya dopan Fe³⁺.

ABSTRACT

Novianti, Dwi Rahayu. 2020. Synthesis of Fe³⁺-doped CaTiO₃ Material by Molten Single Salt NaCl Method. Thesis. Chemistry Department, Science and Technology Faculty, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Supervisor I: Dr. Anton Prasetyo, Supervisor II: Dr. H. Ahmad Barizi, M.A.

Kata kunci: CaTiO₃, iron dopant, molten salt method, polyhedral regular particle

Calcium titanate (CaTiO₃) is a perovskite material which potentially applied as photocatalyst material with the band gap energy of 3.5 eV (350 nm) as result it will work in the range of ultraviolet light wavelength. One of techniques to reduce the band gap energy is doped by metal atoms. In this work, we synthesized CaTi_{x-1}Fe_xO₃ with x=0; 0.05; 0.1; 0.15; and 0.2 using molten single salt NaCl method. Synthesized samples were characterized by X-ray diffraction (XRD) technique, SEM-EDS and UV-Vis diffuse reflectance spectroscopy (DRS). Diffractogram of CaTi_{x-1}Fe_xO₃ (x=0; 0.05; 0.1; 0.15; and 0.2) showed that the samples were successfully synthesized however at x=0.2 the impurities of Ca₂Fe₂O₅ were found. The Raman spectra showed shifting the peak position of the vibration mode 247 cm⁻¹ which indicates a change in the length of Ti-O as result of the substitution of Ti⁴⁺ by Fe³⁺. SEM image showed that polyhedral regular particles and iron dopant may cause agglomeration. The EDS spectra showed that the constituent elements are the uniform of Ca, Ti, Fe, and O. The UV-Vis DRS spectra showed the changing of visible light absorption due to iron dopant. الملخص

نوفيانتي، دوي راهايو. 2020. توليفات مادة التيتان الكالسيوم CaTiO₃ المذممة بالحديد +Fe³⁺ بنهج صهارة الملح المفرد NaCl. بحث جامعي. قسم الكيمياء، كلية العلوم والتكنولوجيا، جامعة مولانا مالك إبراهيم الإسلامية الحكومية مالانج. المشرف الأول: الدكتور أنطون فراستيا؛ المشرف الثاني: الدكتور الحاج أحمد بارزي.

الكلمات الرئيسية: التيتان الكالسيوم CaTiO3، مذمم الحديد، منهج صهارة الملح، جسيم السطوح المتعددة العادية

التيتان الكالسيوم (CaTiO₃) هي إحد المواد البيروفسكيتية الصالحة لأن تستخدم لمادة الحفاز الضوئي بطاقة فرجة نطاقي 3.5 إلكترون فولط (350 النانومتر) حتى فقط تعمل في مدى طيلة موج الضوء فوق البنفسجية. ومن إحدى الطرق لتقليل الفرجة النطاقية هي بتذميم الذرة الفلزية. ففي هذا البحث، تستوعب توليفات مستحضر CaTi_{1-x}Fe_xO₃ (x = 0؛ 5.0؛ 1.0؛ 5.0.9؛ و0.2) غج صهارة الملح المفرد في حرارة 900 درجة سلسيوس. تم وصف العينات من نتيجة التوليفات وتحليلها بطريقة التصوير البلوري بالأشعة السينية (XRD)، مطافية رامان، المهجر الإلكتروني-نظام وتحليلها بطريقة التصوير البلوري بالأشعة السينية (XRD)، مطافية رامان، المهجر الإلكتروني-نظام ديزل الإلكتروني، مطيافية الانعكاسية الناشرة فوق البنفسجية المرئية. مخطط الانحراف لمستحضر ولكن في x = 0.2 توجد ملوث 1.0% داره دولار)، تدل على أنه نجحت توليفات العينات ولكن في x = 0.2 توجد ملوث 1.0% داره، وتدل مطيافية رامان تحول مكانة قمة غط الاهتزاز ولكن في x = 0.2 توجد ملوث دومة دولت دولتان مطيافية رامان تحول مكانة قمة غط الاهتزاز وأطياف نظام ديزل الإلكتروني تدل على التغير الطويل O-11 عقب تبديل بعض ⁺¹⁴ من عار الميزاز وأطياف نظام ديزل الإلكتروني تدل على أن جسيم السطوح المتعددة العادية ومذمم الحديد تؤدي إلى التكتر وأطياف نظام ديزل الإلكتروني تدل على على أنه جسيم المتودي إلى التكتل وتكن ي تدع على أن جسيم السطوح المتعددة العادية ومذمم الحديد تؤدي إلى التكتل وأطياف نظام ديزل الإلكتروني تدل على على العناصر التي تبني المستحضرات هي الكالسيوم، وأطياف نظام ديزل الإلكتروني تدل على على على العناصر التي تبني المتحضرات هي الكالسيوم، التيتانيوم، الحديد، والأكسوجين العمومية. فأطياف مطيافية الانعكاسية الناشرة فوق البنفسجية المرئية

BAB I

PENDAHULUAN

1.1 Latar Belakang

CaTiO₃ merupakan material perovskit yang berpeluang dimanfaatkan sebagai material fotokatalis berbasis semikonduktor untuk pengolahan limbah. Limbah industri semakin meningkat seiring dengan semakin pesatnya perkembangan industri. Namun, perkembangan ini memiliki dampak negatif bagi masyarakat dan lingkungan. Salah satu dampak yang merugikan adalah banyaknya pencemaran lingkungan, yang disebabkan oleh limbah-limbah industri yang tidak dibuang pada tempatnya dan tidak dapat diolah kembali. Salah satu limbah industri yang sangat merugikan masyaraat dan kesehatan adalah limbah cair senyawa berwarna yang sulit terurai, seperti rodamin B, metil jingga, metilen biru, dan lain sebagainya. Beberapa metode telah dilakukan untuk mendegradasi limbah zat warna tersebut, antara lain yaitu menggunakan metode adsorpsi, biodegradasi, klorinasi, dan fotokatalis (Amelia, 2017 dan Quader, 2010).

Sebagai manusia kita diharuskan untuk tetap menjaga ekosistem dan lingkungan. Memelihara, mempertahankan, meningkatkan kelestarian lingkungan merupakan bagian tugas manusia. Allah melarang manusia untuk berbuat kerusakan seperti yang telah disebutkan dalam firman Allah Q.S surat al-A'raf (7) ayat 56.

Artinya:

"Dan janganlah kamu membuat kerusakan di muka bumi, sesudah (Allah) memperbaikinya dan berdoalah kepada-Nya dengan rasa takut (tidak akan diterima) dan harapan (akan dikabulkan). Sesungguhnya rahmat Allah amat dekat kepada orang-orang yang berbuat baik." (Q.S al-A'raf (7):56)

Berdasarkan ayat tersebut Allah melarang perbuatan yang membuat kerusakan di muka bumi. Larangan tersebut seperti tidak berbuat maksiat, laranga perbuatan yang membahayakan kelestarian lingkungan, dan perbuatan yag menghancurkan sumber-sumber penghidupan. Manusia diperintahka untuk menyembah Allah dan berdoa kepada-Nya serta berendah diri dan memohon belas kasihan-Nya. Allah meciptakan segala kelengkapan di muka bumi bertujuan agar manusia dapat memanfaatkan dan mengolah dengan sebaik-baiknya (Ibnu Katsir, 2007). Mencegah pencemaran air dan lingkungan oleh limbah-limbah industri, zat kimia, dan zat beracun lainnya merupakan salah satu bentuk pelestarian dan pemeliharaan lingkungan. Oleh karena itu pengolahan limbah zat warna dan polutan organik sangat perlu dilakukan sebagai bentuk pelestarian lingkungan.

Material fotokatalis berbasis semikonduktor telah menarik minat yang besar untuk digunakan dalam pemecahan air, degradasi polutan organik di udara atau air, dan degradasi limbah zat warna dikarenakan murah, tidak beracun dan mampu digunakan secara luas tanpa kehilangan aktivitas fotokatalitik (Gaikward, dkk., 2012), selain itu fotokatalis semikonduktor tidak menghasilkan limbah yang berbahaya dan lebih efektif dalam mendegradasi limbah-limbah senyawa organik maupun anorganik (Naimah, dkk., 2014). Beberapa material semikonduktor yang dilaporkan mempunyai peluang dimanfaatkan sebagai material fotokatalis adalah *titanium oxide* (TiO₂), *zinc oxide* (ZnO), *zirconium oxide* (ZrO₂), *tin oxide* (SnO₂), *iron oxide* (Fe₂O₃), *cadmium sulfide* (CdS), *zinc sulfide* (ZnS), dan *lead sulfide* (PbS) (Mishra dan Chun, 2015).

Material perovskit adalah salah satu bahan penting yang telah banyak diterapkan dalam industri fotokatalisis dan elektronik. Material berstruktur perovskit yang telah dimanfaatkan sebagai material fotokatalis di antaranya adalah SrTiO₃, CaTiO₃, BaTiO₃, NaTaO₃, dan AgTaO₃ (Kanhere dan Chen, 2014). Material perovskit memiliki rumus kimia *ABO*₃ dimana posisi *A* dan *B* dapat ditempati oleh berbagai kation anorganik sedangkan posisi O ditempati oleh anion oksigen. Kation *A* dapat berupa ion logam monovalen, divalen, dan trivalen seperti K⁺, Na⁺, Li⁺, Ba²⁺, Ca²⁺, atau La³⁺, Pr³⁺, Nd³⁺. Kation *B* adalah ion logam transisi seperti Ti⁴⁺, Ni²⁺, Fe³⁺, Co²⁺, atau Mn⁴⁺ (Roth, 1957). Material perovskit memiliki kelebihan dikarenakan memiliki struktur yang unik dimana kation *A* dan *B* dapat disubstitusi dengan kation lain sehingga diharapkan dapat meningkatkan aktivitas fotokalitiknya (Fu, dkk., 2013).

CaTiO₃ berpeluang dimanfaatkan sebagai material fotokatalis yang memiliki energi celah pita sebesar ~3,5 eV. CaTiO₃ memiliki potensi pita konduksi dan pita valensi yang cukup (>3 eV) untuk pemecahan air dan pendegradasi polutan organik dengan laju rekombinasi yang kecil, dibandingkan dengan senyawa perovskit yang lain (Jang, dkk., 2011). Namun energi ini membuat CaTiO₃ kurang efektif dalam penggunaannya yang memanfaatkan spektrum matahari karena energi celah pita yang cukup besar. Oleh karena itu, dilakukan upaya untuk memperluas kemampuan penyerapan cahaya ke dalam rentang cahaya tampak spektrum matahari. Doping dengan atom logam atau non logam telah banyak dilakukan banyak peneliti untuk menurunkan energi celah dari CaTiO₃. Zhang, dkk. (2010) telah mensintesis CaTiO₃ terdoping logam Cu dan berhasil memperkecil energi celah pita dengan membentuk tingkat energi baru dalam struktur pita CaTiO₃ serta meningkatkan aktivitas fotokatalitik CaTiO₃ di daerah cahaya tampak.

Beberapa peneliti melaporkan bahwa logam besi (Fe) dapat meningkatkan kemampuan fotokatalitik dari CaTiO₃. Logam Fe dapat membentuk donor atau tingkat akseptor baru di celah pita yang menyebabkan adanya tingkat energi baru sehingga meningkatkan aktifitas fotokatalitik dari CaTiO₃. Logam Fe memiliki potensi untuk dijadikan sebagai dopan senyawa CaTiO3 karena Fe3+ (0.645 Å) memiliki ukuran jari-jari kristal ionik yang serupa dengan Ti⁴⁺ (0.605 Å) sehingga dopan Fe tidak akan mempengaruhi struktur dari CaTiO₃ (Shannon, 1976). Jang, dkk. (2011) mensintesis CaTiO₃ terdoping Fe menggunakan metode solid-state pada suhu 1.100°C selama 5 jam dan melaporkan bahwa doping dengan Fe dapat memperkecil energi celah pita dari CaTiO₃ dari 3,38 eV menjadi 2,25 eV dan meningkatkan aktivitas fotokatalitik di bawah sinar tampak. Menurut Yang, dkk. (2014) menunjukkan bahwa doping dengan Fe dapat secara signifikan meningkatkan kemampuan penyerapan cahaya CaTiO₃ di wilayah cahaya tampak. Dari aktivitas fotokatalitik diperoleh hasil bahwa CaTiO₃ terdoping Fe memiliki aktivitas fotokatalitik yang lebih tinggi daripada CaTiO₃ murni untuk degradasi metilen biru (MB).

Beberapa metode yang banyak digunakan dalam sintesis material perovskit terdoping antara lain, *solid-state reaction* (SSR), hidrotermal, dan sol-gel (Mourao, dkk., 2017; dan Han, dkk., 2017). Metode sintesis basah umumnya menggunakan pelarut dengan titik didih yang rendah, sehingga kondisi ini tidak memungkinkan untuk mensintesis semua senyawa logam. Selain itu proses sintesis yang lebih rumit menjadikan metode ini tidak cukup efisien. Metode SSR membutuhkan kondisi reaksi pada suhu tinggi dengan waktu sintesis yang cukup lama serta menghasilkan partikel dengan morfologi yang tidak teratur (Liu, dkk., 2013). Metode sederhana dan mudah untuk mesintesis CaTiO₃ adalah metode lelehan garam (*molten salt*). Metode lelehan garam memiliki kelebihan, antara lain menggunakan lelehan garam yang dapat meningkatkan laju reaksi dan menurunkan suhu reaksi, menghasilkan produk yang relatif murni dengan tingkat homogenitas yang tinggi, garam yang digunakan sebagai pelarut mudah didapatkan, stabil, dan murah, garam dapat mudah dihilangkan dengan penambahan air, dan metode yang ramah lingkungan. Selain itu penggunaan garam dapat mengontrol ukuran partikel, bentuk partikel (morfologi partikel), dan mengontrol status aglomerasi (Kimura, 2011). Selain itu pada metode lelehan garam menggunakan suhu yang lebih rendah dibandingkan dengan metode *solid-state* sehingga fenomena perubahan bilangan valensi pada kation bisa diminimalisir.

Beberapa penelitian telah dilakukan untuk mensintesis material perovskit sebagai fotokatalis semikonduktor menggunakan metode lelehan garam. Bercmans, dkk. (2017) telah mensintesis material CaTiO₃ menggunakan metode lelehan garam dari campuran garam NaCl-KCl pada suhu 850°C selama 5 jam. Penggunaan garam NaCl-KCl menghasilkan kristal yang murni dengan kristalinitas yang tinggi dengan ukuran kristal sebesar 50 nm. Chen dan Zhang (2010) telah mensintesis material CaCu₃Ti₄O₁₂ menggunakan (a) metode lelehan garam campuran NaCl-KCl dengan suhu kalsinasi 750-1000°C, dan (b) Na₂SO₄-K₂SO₄ dengan suhu kalsinasi 850-1000°C dengan rasio molar 1:1. Didapatkan senyawa murni tanpa pengotor dengan morfologi polihedral reguler dengan ukuran partikel rata-rata sekitar 2 mm.

6

Garam tunggal NaCl banyak digunakan dalam metode lelehan garam karena mempunyai titik leleh yang relatif rendah yaitu sebesar 801°C. Mao (2005) telah mensintesis Ca_{1-x}Sr_xTiO₃ menggunakan garam tunggal NaCl dengan suhu kalsinasi 820°C dan diperoleh kristal nanopartikel dengan ukuran 100 nm. Zheng dan Zhang (2007) juga telah mensintesis NiO menggunakan metode lelehan garam tunggal NaCl dengan suhu kalsinasi 1000°C dan diperoleh morfologi partikel adalah pelat heksagonal dengan ukuran partikel 50-80 nm. Selain itu, Zhou, dkk. (2018) mensintesis Na_{0.5}Bi_{0.5}TiO_{3-x}SrTiO₃ menggunakan garam tunggal NaCl dan diperoleh partikel dengan bentuk *whisker*. Disamping itu, kelimpahan yang cukup besar dan murah memberikan nilai positif bagi penggunaan garam ini dalam metode sintesis lelehan garam.

Berdasarkan uraian di atas, maka tujuan dari penelitian ini adalah untuk mengetahui struktur, morfologi, modus vibrasi, dan energi celah pita dari CaTiO₃ yang didoping dengan besi (Fe) menggunakan metode lelehan garam tunggal NaCl. Hasil sintesis akan dikarakterisasi dan dianalisa menggunakan teknik difraksi sinar-X (XRD) untuk identifikasi struktur, spektroskopi Raman untuk identifikasi modus vibrasi, *scanning electron microscopy–energy dispersive X-ray spectroscopy* (SEM-EDS) untuk mengetahui morfologi dan komposisi unsur senyawa, serta UV-Vis *diffuse reflectance spectroscopy* (DRS) untuk mengetahui nilai energi celah pita.

1.2 Rumusan Masalah

Bagaimanakah struktur, modus vibrasi raman, morfologi, komposisi unsur penyusun senyawa, dan nilai energi celah pita dari senyawa CaTi_{1-x}Fe_xO₃ (x= 0; 0,05; 0,10; 0,15; dan 0,20) yang disintesis dengan metode lelehan garam tunggal NaCl?

1.3 Tujuan

Mengetahui struktur, modus vibrasi raman, morfologi, komposisi unsur penyusun senyawa, dan nilai energi celah pita dari senyawa CaTi_{1-x}Fe_xO₃ (x= 0; 0,05; 0,10; 0,15; dan 0,20) yang disintesis dengan metode lelehan garam tunggal NaCl.

1.4 Batasan Masalah

- 1. Rasio mol CaTiO₃/NaCl yang digunakan dalam proses sintesis adalah 1:7.
- 2. Suhu sintering yang digunakan adalah 900°C.

1.5 Manfaat

Memberikan gambaran pengaruh dopan besi (Fe) pada kalsium titanat (CaTiO₃) dengan metode lelehan garam tunggal NaCl pada evolusi struktur, morfologi, komposisi unsur penyusun senyawa, energi celah pita, dan perubahan lokal struktur dari CaTi_{1-x}Fe_xO₃ hasil sintesis.

BAB II

TINJAUAN PUSTAKA

2.1 Senyawa Kalsium Titanat

Kalsium titanat (CaTiO₃) merupakan salah satu material yang termasuk golongan mineral perovskit. Mineral perovskit memiliki rumus kimia umum *AB*O₃, dimana *A* dan *B* merupakan kation. Biasanya kation *A* memiliki ukuran jari-jari atom sekitar 1,2-1,6 Å (mirip dengan ion oksigen) sedangkan kation *B* memiliki ukuran jari-jari atom sekitar 0,6-0,8 Å. Kation Ca²⁺ dalam material CaTiO₃ memiliki ukuran jari-jari atom sebesar 1,35 Å dan kation Ti⁴⁺ berukuran 0,605 Å. Kalsium titanat pada suhu 20°C memiliki struktur tetragonal pada fasa paraelektrik (Kasap, 2006).

Kalsium titanat memiliki struktur ortorombik pada suhu ruang dengan parameter kisi a=5,381 Å, b=7,645 Å, dan c=5,443 Å (Roth, 1957). Menurut Yashima dan Ali (2009), kalsium titanat memiliki *space group* yaitu *Pbnm* pada struktur kristal ortorombik, *I4/mcm* pada struktur kristal Tetragonal, dan *Pm3m* pada struktur kristal kubus. Kalsium titanat memiliki konstanta dielektrik (ε_r) sebesar 160 dan suhu sintering sebesar 1400°C (Sebastian, 2010). Struktur senyawa CaTiO₃ secara umum ditampilkan pada Gambar 2.1 (Zhang, dkk., 2016).

Kalsium titanat telah banyak dikaji mengenai karakteristik sifat fisik dan kimianya oleh beberapa peneliti. Kalsium titanat terkenal karena sifat dielektrik, luminesen dan semikonduktor yang tinggi (Gaikwad, dkk., 2012). Selain itu kalsium titanat telah banyak dikaji memiliki kemampuan fotokatalitik yang tinggi (Zhang, dkk., 2010 dan Yang, dkk., 2014).

Gambar 2.1 Struktur kristal CaTiO₃ (Zhang, dkk., 2016).

Sifat fotokatalitik yang tinggi membuat kalsium titanat banyak dimanfaatkan sebagai katalis limbah organik seperti limbah zat warna ataupun untuk mendegradasi polutan udara dan air (Yang, dkk., 2014). Kalsium titanat sering digunakan sebagai bahan keramik elektronik, sebagai bahan ferolisktrik dan bahan dielektrik untuk kapasitor. Disamping itu, kalsium titanat juga berfungsi sebagai katalis pada proses fotokatalisis, fotovoltaik, fotoluminesens, dan sebagainya (Chen, dkk., 2003).

2.2 CaTiO₃ sebagai Material Fotokatalis

Kalsium titanat (CaTiO₃) dapat dimanfaatkan sebagai material fotokatalis untuk degradasi zat warna seperti metilen biru, metil jingga, dan sebagainya. CaTiO₃ banyak digunakan sebagai material fotokatalis karena biaya rendah, kemudahan sintesis bahan, dan stabilitas kimia yang tinggi terhadap asam (Mizoguchi, dkk., 2002). CaTiO₃ memiliki potensi pita konduksi dan pita valensi yang cukup untuk pemecahan air dan pendegradasi polutan organik. Pita konduksi berasal dari orbital 3*d* Ti sedangkan pita valensi berasal dari orbital 4*s* Ca dan 2*p* O, posisi pita konduksi dan pita valensi ini menyebabkan CaTiO₃ memiliki energi celah yang cukup untuk proses pemecahan air dan pendegradasi polutan organik (Jang, dkk., 2011). CaTiO₃ adalah katalis semikonduktor dimana material semikonduktor memiliki elektron-hole sebagai sisi aktif yang berperan dalam proses fotokatalitik. Elektron-hole terbentuk jika elektron dari pita valensi tereksitasi menuju pita konduksi. Telah diketahui bahwa ketika semikonduktor menyerap foton dengan energi yang sama atau lebih tinggi dari energi celah pita, elektron (e) akan tereksitasi dari pita valensi menuju pita konduksi dan meninggalkan lubang positif atau hole (h^+) pada pita valensi. Pasangan elektron*hole* fotoeksitasi dapat digunakan untuk degradasi polutan organik. *Hole* (h^+) dapat bereaksi dengan air (H₂O) atau gugus hidroksil (OH⁻) yang diserap di permukaan untuk menghasilkan radikal hidroksil (OH⁻), dan elektron dapat bereaksi dengan oksigen (O₂) untuk membentuk radikal anion superoksida (O₂⁻). Radikal aktif ini adalah oksidator dan reduktor yang akan menyerang berbagai polutan organik dan limbah zat warna sehingga menghasilkan CO₂ dan H₂O. Efisiensi fotokatalitik sangat tergantung pada laju rekombinasi elektron-*hole* dan pemanfaatan energi matahari. Secara umum dianggap bahwa rekombinasi elektron adalah salah satu faktor yang paling merugikan pada aktivitas fotokatalitik (Huang, dkk., 2016). Mekanisme fotokatalitik ditampilkan pada Gambar 2.2.

Gambar 2.2 Mekanisme fotokatalitik (Huang, dkk., 2016).

2.3 Pengaruh Doping Fe³⁺ terhadap Senyawa Kalsium Titanat

Kalsium titanat umumnya memiliki nilai energi celah sebesar ~3,5 eV (Huang, dkk., 2016). Besarnya nilai energi celah tersebut menyebabkan CaTiO₃ kurang efektif dalam pemanfaatannya sebagai fotokatalis. Salah satu upaya yang dilakukan untuk meningkatkan aktivitas fotokatalitik dan menurunkan energi celah pita dari CaTiO₃ adalah dengan cara pendopingan dengan logam. Pendopingan dengan logam dapat membentuk donor atau tingkat akseptor baru di celah pita yang menyebabkan adanya tingkat energi baru sehingga meningkatkan aktifitas fotokatalitik. Biasanya logam yang dapat digunakan sebagai dopan memiliki ukuran dan muatan yang relatif sama sehingga dapat dengan mudah terdoping ke dalam senyawa tanpa mengubah struktur senyawa tersebut (Zhang, dkk., 2010).

Gambar 2.3 Pola difraksi sinar-*X* CaTi_{1-x}Fe_xO₃ dengan variasi (a) x=0; (b) 0,05; (c) 0,1; (d) 0,15; (e) 0,2; (f) 0,3; dan (g) 0,4 (Jang, dkk., 2011).

TRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MAL

Logam Fe memiliki potensi untuk dijadikan sebagai dopan senyawa CaTiO₃. Jika reaksi substitusi terjadi maka Fe³⁺ akan menggantikan Ti⁴⁺ dalam CaTiO₃ karena Fe³⁺ memiliki ukuran jari-jari kristal ionik yang serupa yaitu 0,645 Å dengan Ti⁴⁺ yaitu 0,605 Å, sedangkan ukuran jari-jari kristal ionik Ca²⁺ lebih besar yaitu 0,99 Å (Shannon, 1976). Jang, dkk. (2011) mensintesis CaTi_{1-x}Fe_xO₃ dengan variasi ($0 \le x \le 0,4$) menggunakan metode *solid-state* pada suhu sintering 1.100°C selama 2 jam. Berdasarkan hasil pola difraksi sinar-*X* pada Gambar 2.3 diketahui bahwa struktur fase produk adalah ortorombik dengan parameter kisi *a*= 5,37, *b*= 7,64, dan *c*= 5,44 Å dan ditemukan fasa pengotor pada sampel dengan konsentrasi besi yang tinggi (*x*=0,15-0,4). Hal ini menunjukkan bahwa terdapat batas maksimum konsentrasi dopan Fe yang dapat menggantikan Ti dari struktur kristal CaTiO₃ tanpa mengubah struktur aslinya.

Gambar 2.4 Skema celah pita dari CaTi_{1-x}Fe_xO₃ (Jang, dkk., 2011).

Jang, dkk. (2011) melaporkan bahwa doping dengan Fe dapat memperkecil energi celah pita dari CaTiO₃ dari 3,38 eV menjadi 2,25 eV, skema penurunan energi celah pita ditunjukkan pada Gambar 2.4. Gambar 2.5 menunjukkan spektrum reflektansi difusi UV dari sampel CaTi_{1-x}Fe_xO₃ ($0 \le x \le 0,4$). Sampel CaTiO₃ yang tidak didoping menunjukkan puncak spektrum muncul di daerah 388 nm, namun spektrum absorpsi sampel CaTiO₃ terdoping Fe menunjukkan penyerapan baru di wilayah cahaya tampak yaitu 550 nm. Penyerapan cahaya meningkat seiring menurunnya konsentrasi logam Fe yang didoping.

Gambar 2.5 Spektra DRS dari CaTi_{1-x}Fe_xO₃ ($0 \le x \le 0,4$) (Jang, dkk., 2011).

CaTiO₃ memiliki aktivitas fotokatalitik yang tinggi dibawah sinar UV. 25,9% dari MB berhasil terdegradasi dibawah sinar UV tanpa menggunakan CaTiO₃ selama 60 menit, sedangkan hampir 96,6% MB dapat terdegradasi menggunakan CaTiO₃ selama 60 menit (Han, dkk., 2017). Pendopingan dengan Fe dapat meningkatkan aktivitas fotokatalitik dari CaTiO₃ dibawah sinar UV maupun sinar tampak. Doping Fe meningkatkan aktivitas fotokatalitik untuk mendegradasi senyawa zat warna seperti MB. Kurang dari 50% MB terdegradasi oleh CaTiO₃ murni sementara hampir 100% MB terdegradasi oleh CaTiO₃ terdoping Fe selama 180 menit. (Yang, dkk., 2014).

2.4 Sintesis Metode Lelehan Garam

Metode lelehan garam merupakan salah satu metode sederhana untuk mensintesis oksida kompleks dengan komposisi yang diinginkan dengan garam titik leleh rendah. Dengan cara ini garam-garam biasanya digunakan sebagai pelarut atau spesies reaksi untuk reaksi kimia, karena tingkat difusi komponen dalam garam-garam jauh lebih tinggi (Zheng, dkk., 2007). Metode lelehan garam adalah metode yang sederhana, serbaguna, dan ramah lingkungan, yang telah banyak digunakan untuk mensintesis oksida anorganik nanometer murni dan tinggi dengan komposisi dan morfologi yang dapat dikontrol (Xue, dkk., 2018). Contoh-contoh khas dari garam yang digunakan dalam sintesis garam cair adalah klorida dan sulfat. Beberapa garam yang sering digunakan pada metode lelehan garam antara lain NaCl, KCl, NaOH, KOH, NaNO₃, KNO₃, Na₂SO₄, K₂SO₄, dan Li₂SO₄ (Kimura, 2011).

Gambar 2.6 Prosedur sintesis metode lelehan garam.

Prosedur sintesis dengan metode lelehan garam digambarkan dalam Gambar 2.6. Sintesis dengan metode lelehan garam terdiri dari 3 tahap yang ditunjukkan pada Gambar 2.7. Tahap pertama yaitu oksidan reaktan atau prekursor lain yang sesuai dengan senyawa yang diinginkan dicampur dengan garam yang, dimana perbandingan rasio garam lebih besar daripada prekursor sampel. Tahap kedua yaitu campuran dipanaskan pada suhu di atas titik leleh dari medium garam untuk membentuk suatu *molten flux*. Pada suhu ini, molekul prekursor membubarkan, berdisosiasi, mengatur ulang, dan kemudian menyebar dengan cepat ke seluruh garam. Pada tahap ketiga, campuran didinginkan dan partikel produk mulai terbentuk dan tumbuh melalui proses pengendapan. Kemudian produk dicuci menggunakan air hangat yang bertujuan untuk memisahkan garam dan prekursor, kemudian dikeringkan dalam oven untuk mendapatkan produk akhir yang kering (Xue, dkk., 2018).

Gambar 2.7 Tahapan metode lelehan garam (Xue, dkk., 2018).

Umumnya dalam proses metode lelehan garam, dua mekanisme reaksi mendasar terlibat selama pembentukan produk akhir. Mekanisme pertama adalah semua oksida reaktan dilarutkan sepenuhnya dalam garam cair dan mereka berdifusi untuk bereaksi dalam waktu singkat. Mekanisme kedua adalah bahwa beberapa reaktan lebih banyak terlarut dalam garam cair daripada komponen lain, sehingga mereka sulit ke permukaan komponen lain dan bereaksi dengan mereka, membentuk produk akhir dengan morfologi yang sama sebagai reaktan larut (Xue, dkk., 2018).

Peran garam cair adalah (1) untuk meningkatkan laju reaksi dan menurunkan suhu reaksi; (2) untuk meningkatkan tingkat homogenitas (distribusi elemen penyusun dalam larutan padat); (3) untuk mengontrol ukuran partikel; (4) untuk mengontrol bentuk partikel (morfologi partikel); dan (5) untuk mengontrol status aglomerasi (Kimura, 2011). Metode lelehan garam membutuhkan waktu yang lebih relatif singkat untuk memperoleh kristal kemurnian tinggi dengan suhu reaksi yang lebih rendah dibandingkan metode *solid-state* karena mobilitas ion dalam garam cair (10⁻⁵-10⁻⁸ cm²/s) 10¹⁰ kali lebih tinggi daripada dalam padatan (~10⁻¹⁸ cm²/s) sehingga mempercepat proses difusi prekursor. Selain itu penggunaan suhu yang lebih rendah dapat menimalisir perubahan bilangan valensi pada kation (He, dkk., 2014).

Penelitian yang dilakukan Wang, dkk. (2013) menunjukkan bahwa senyawa La₂Ti₂O₇ terdoping Rh yang disintesis menggunakan metode lelehan garam campuran NaCl-KCl pada suhu 1.000 °C selama 12 jam menunjukkan morfologi partikel *plate-like* dengen beberapa aglomerasi dan ukuran partikel sebesar 127 nm dengan kristalinitas yang tinggi. Morfologi partikel seperti pelat dan berlapis diperoleh karena garam klorida dapat menstabilkan permukaan kristalografi tertentu dalam pembuatan oksida pipih. Sebaliknya, senyawa La₂Ti₂O₇ terdoping

Rh yang disintesis menggunakan metode *solid-state* pada suhu sintering 1.150°C selama 10 jam menghasilkan morfologi partikel yang tidak jelas dan ukuran partikel yang lebih kecil sebesar 100 nm seperti ditampilkan pada Gambar 2.8.

Gambar 2.8 Morfologi partikel La₂Ti₂O₇ terdoping Rh yang disintesis dengan (a) metode lelehan garam campuran NaCl-KCl dan (b) metode *solid-state*.

Jenis Garam	Hasil Produk
Tanpa garam	BaZrO ₃ (69%; agregat)
NaOH-KOH	BaZrO ₃ (100%; ~320 nm; sphere)
NaCl-KCl	BaZrO ₃ (93,6%; ~200 nm; kubus)
NaCl	BaZrO ₃ (93,3%; ~200 nm; kubus)
NaNO ₃	Tidak terbentuk BaZrO3 dengan pengotor
NaNO ₃ -NaCl	Tidak terbentuk BaZrO3 dengan pengotor

Tabel 2.1 Sintesis BaZrO₃ dengan variasi jenis garam (Zhou, dkk., 2007).

Beberapa syarat garam yang dapat digunakan yaitu mudah didapat atau tersedia, murah, stabil, mudah larut dalam air, serta memiliki titik leleh yang rendah Persyaratan lain yaitu memiliki tekanan uap rendah pada suhu pemanasan dan tidak menyebabkan reaksi yang tidak diinginkan dengan reaktan atau produk. (Rahaman, 2003). Garam NaCl banyak digunakan dalam metode lelehan garam karena kelimpahannya yang cukup besar dan murah serta memiliki titik leleh yang rendah yaitu 801°C. Zhou, dkk. (2007) mensintesis perovskite BaZrO₃ menggunakan variasi garam seperti yang ditampilkan pada Tabel 2.1. Diketahui sintesis

menggunakan garam tunggal NaCl menghasilkan kemurnian 93,3% dengan ukuran partikel rata-rata ~200 nm sedangkan sintesis tanpa garam menghasilkan kemurnian 69% dengan agregat. Garam basa NaOH-KOH mengasilkan kemurnian 100% dengan ukuran partikel yang lebih besar ~320 nm, namun garam basa bersifat korosif sehingga tidak efisien untuk keselamatan kerja. Yoshida, dkk. (2015) mensintesis CaTiO₃ dengan metode lelehan garam menggunakan garam NaCl pada suhu 1.100°C selama 10 jam. Didapatkan senyawa CaTiO₃ murni dengan kristalinitas yang tinggi. Morfologi partikel yang terbentuk yaitu polihedral reguler dengan diameter 1-7 μm seperti yang ditunjukkan pada Gambar 2.9.

Gambar 2.9 Morfologi senyawa CaTiO₃ yang disintesis dengan metode lelehan garam tunggal NaCl pada suhu 1.100°C selama 10 jam (Yoshida, dkk., 2015).

Metode lelehan garam untuk mensintesis material perovskit telah banyak dilakukan oleh beberapa peneliti. Chen dan Zhang (2010) mensintesis material CaCu₃Ti₄O₁₂ menggunakan metode lelehan garam campuran NaCl-KCl dengan variasi suhu kalsinasi 750-1.000°C. Berdasarkan pola difraksi sinar-*X* pada Gambar 2.10 diperoleh hasil bahwa terbentuk fase CaCu₃Ti₄O₁₂ yang konstan pada suhu 750-1.000°C, namun puncak pengotor CaTiO₃ dan CuO masih terbentuk. Hasil ini
didukung oleh pengamatan SEM didapatkan senyawa murni tanpa pengotor dengan morfologi polihedral reguler dengan ukuran partikel rata-rata sekitar 2 mm seperti pada Gambar 2.11.

Gambar 2.10 Pola difraksi sinar-X dari serbuk CaCu₃Ti₄O₁₂ yang disintesis menggunakan garam NaCl pada suhu (a) 750, (b) 800, (c) 850, (d) 900, (e) 950, dan (f) 1.000°C (Chen dan Zhang, 2010).

Gambar 2.11 Morfologi partikel CaCu₃Ti₄O₁₂ yang disintesis pada suhu kalsinasi 850°C selama 2 jam (Chen dan Zhang, 2010).

Gambar 2.12 Pola difraksi sinar-X SrTiO₃ yang disintesis (a) tanpa menggunakan garam (b) menggunakan garam NaCl-KCl pada suhu 700°C selama 10 jam (Li, dkk., 2010).

Li, dkk. (2010) mensintesis SrTiO₃ menggunakan metode lelehan garam NaCl-KCl pada suhu kalsinasi 700°C selama 10 jam. Gambar 2.12 menunjukkan bahwa sintesis tanpa menggunakan garam menyebabkan masih terbentuknya fase pengotor, sedangkan sintesis menggunakan garam NaCl-KCl terbentuk produk murni SrTiO₃ dan tidak teridentifikasi adanya fase pengotor sehingga penggunaan garam membantu pembentukan produk SrTiO₃ murni menggunakan suhu yang relatif rendah.

Allah menciptakan segala sesuatu tidak tanpa tujuan dan alasan yang jelas. Allah telah menjelaskan peciptaan garam sebagai bukti kekuasaan dan Keesaan-Nya dan bukti hanya Allah sebagai pencipta segala sesuatu yang ada di alam semesta ini dalam firman Allah Al-Qur'an surat al-Furqan (25) ayat 53.

Artinya:

"Dan Dialah yang membiarkan dua laut yang mengalir (berdampingan): yang ii tawar lagi segar dan yang lain asin lagi pahit; dan Dia jadikan antara keduanya dinding dan batas yang menghalangi" (Q.S al-Furqan (25): 53).

Munawwir (1984) menyebutkan makna طح *milhun* berarti garam, jika digunakan untuk menyifati air maka berarti asin atau air laut yang terasa asin. Surat al-Furqan ayat 53 diatas mejelaskan tentang air laut yang asin dan air yang tawar terdapat sebuah pembatas dan pemisah yang tidak bisa ditembus. Dengan demikian air suatu laut tidak akan mencampuri air laut yang lain karena masing-masing akan menjaga kepadatan air, kadar garam, dan partikel-partikel penyusun yang terdapat dalam kandungan airnya (Thayyarah, 2013). Firman Allah dalam surat an-Nahl (16) ayat 14 menjelaskan manfaat laut sebagai sumber berbagai macam kebutuhan.

وَهُوَ ٱلَّذِي سَخَّرَ ٱلْبَحْرَ لِتَأْكُلُواْ مِنْهُ لَحَمَّا طَرِيًّا وَتَسْتَخْرِجُواْ مِنْهُ حِلْيَةَ تَلْبَسُونَهَا ۖ وَتَرَى ٱلْفُلْكَ مَوَاخِرَ فِيهِ وَلِتَبْتَغُواْ مِن فَضْلِهِ <mark>وَلَعَلَّكُمْ تَش</mark>ُكُرُونَ ٢

Artinya:

"Dan Dialah, Allah yang menundukkan lautan (untukmu), agar kamu dapat memakan daripadanya daging yang segar (ikan), dan kamu mengeluarkan dari lautan itu perhiasan yang kamu pakai; dan kamu melihat bahtera berlayar padanya, dan supaya kamu mencari (keuntungan) dari karunia-Nya, dan supaya kamu bersyukur" (Q.S an-Nahl (16): 14).

Ayat diatas menjelaskan bahwa Allah menciptakan laut dengan beberapa manfaat dengan tujuan agar manusia dapat memanfaatkannya dengan sebaik mungkin dan kembali mengingat kekuasaan Allah. Begitupun garam yang digunakan untuk mensintesis material $CaTi_{1-x}Fe_xO_3$ (x= 0; 0,05; 0,10; 0,15; 0,20) merupakan salah satu bagian dari lautan yang dapat kita manfaatkan.

BAB III

METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian ini akan dilakukan pada bulan Mei-November 2019 yang bertempat di Laboratorium Kimia Anorganik Jurusan Kimia, Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang.

3.2 Alat dan Bahan 3.2.1 Alat

Alat yang digunakan antara lain seperangkat alat gelas, tanur, neraca analitik, *hotplate*, *mortar agate*, seperangkat instrumen XRD, seperangkat instrumen spektroskopi Raman, seperangkat instrumen SEM-EDS, dan seperangkat instrumen DRS.

3.2.2 Bahan

Bahan yang digunakan antara lain CaCO₃ (Aldrich, 99,9% serbuk), TiO₂ (Aldrich, 99,9% serbuk), Fe₂O₃ (Aldrich, 99,9% serbuk), NaCl (Aldrich, 99,5% serbuk), aseton, dan akuades.

3.3 Rancangan Penelitian

1. Tahap preparasi bahan

Proses ini mencakup pengadaan bahan dan alat, perhitungan jumlah bahan, penghalusan material awal, proses homogenasi, dan proses pemanasan awal.

2. Tahapan sintesis kalsium titanat terdoping Fe³⁺ dengan metode lelehan garam

Proses ini mencakup sintesis dengan metode lelehan garam pada suhu 900°C dengan garam campuran NaCl, kemudian dilanjutkan dengan pendinginan sampai suhu ruang, dan penghilangan garam dengan air panas.

3. Tahapan proses karakterisasi

Proses ini mencakup karakterisasi dan analisa produk sintesis menggunakan instrumen difraksi sinar-X untuk mengetahui struktur yang terbentuk, karakterisasi perubahan lokal struktur dan identifikasi modus vibrasi dengan spektroskopi Raman, analisa morfologi dan komposisi produk sintesis dengan SEM-EDS, dan mengetahui lebar celah pita produk sintesis menggunakan DRS.

Tabel 3.1 Komposisi prekursor senyawa CaTi_{1-x}Fe_xO₃ (x=0; 0,05; 0,10; 0,15; 0,20).

Target	Massa	Massa pereaksi (gram)			
Senyawa	Target	CaCO ₃	TiO ₂	Fe ₂ O ₃	NaCl
	(gram)	1011		- 10	
CaTiO ₃	2,5	1,8407	1,4694	-	7,5101
CaTi _{0,95} Fe _{0,05} O ₃	2,5	1,8353	1,3918	0,0732	7,4897
CaTi _{0,9} Fe _{0,1} O ₃	2,5	1,8299	1,3147	0,1460	7,4652
CaTi _{0,85} Fe _{0,15} O ₃	2,5	1,8246	1,2381	0,2183	7,4448
CaTi _{0,8} Fe _{0,2} O ₃	2,5	1,8193	1,1618	0,2903	7,4243

3.4 Prosedur Kerja 3.4.1 Preparasi Bahan

Dalam penelitian CaTi_{1-x}Fe_xO₃ (x=0; 0,05; 0,10; 0,15; 0,20) disintesis sebanyak 2,5 gram. Banyaknya prekursor CaCO₃, TiO₂, dan Fe₂O₃ yang digunakan disesuaikan dengan perhitungan stoikiometri yang dirangkum pada Tabel 3.1. Campuran prekursor dihomogenkan dengan cara digerus menggunakan *mortar agate* selama 1 jam dan ditambahkan dengan aseton tetes per tetes secukupnya untuk menghomogenkan sampel. Sampel kemudian dipanaskan pada suhu 700°C selama 6 jam, kemudian sampel didinginkan pada suhu ruang. Diulangi perlakuan di atas untuk sampel yang lain (Zhao, dkk., 2014).

3.4.2 Sintesis Kalsium Titanat dengan Metode Lelehan Garam

Masing-masing campuran sampel hasil dari preparasi bahan dicampurkan dengan garam NaCl dengan perbandingan mol 1:7 (stoikiometri perhitungan ditampilkan pada Tabel 3.1). Campuran tersebut dihomogenkan dengan digerus dalam *mortar agate* selama 1 jam dan ditambahkan aseton tetes per tetes secukupnya. Kemudian campuran dipanaskan pada suhu 900°C selama 8 jam. Hasil produk dikeluarkan dari tanur dan diletakkan di atas kertas saring, kemudian disaring menggunakan corong *Buchner*. Sampel dicuci beberapa kali menggunakan air suling panas untuk melarutkan garam alkali. Untuk mengidentifikasi garam NaCl maka diuji dengan menggunakan larutan AgNO₃. Kemudian produk dikeringkan menggunakan oven pada suhu 100°C sampai kering. Diulangi perlakuan di atas untuk sampel yang lain (Zhao, dkk., 2014; Zulhadjri, dkk., 2011).

3.4.3 Karakterisasi CaTi1-xFexO3 dengan XRD

Karakterisasi menggunakan XRD bertujuan untuk mengetahui struktur kristal dan mengidentifikasi fasa produk sintesis. Pengukuran dilakukan pada suhu kamar menggunakan XRD dengan radiasi Cu $K\alpha$ pada 40 kV dan 300 mA pada rentang $2\theta = 20-80^{\circ}$ (Yang, dkk., 2014).

3.4.4 Karakterisasi CaTi_{1-x}Fe_xO₃ dengan Spektroskopi Raman

Karakterisasi menggunakan spektroskopi raman bertujuan untuk mengetahui modus vibrasi khas produk sintesis. Karakterisasi menggunakan sumber sinar dengan panjang gelombang 532 nm. Perubahan struktur diamati dari perubahan modus vibrasi Raman produk sintesis (Zheng, dkk., 2003).

3.4.5 Karakterisasi CaTi_{1-x}Fe_xO₃ dengan SEM-EDS

Karakterisasi menggunakan SEM-EDS bertujuan untuk mengetahui bentuk morfologi dan komposisi unsur-unsur yang terkandung dalam produk sintesis. Produk hasil sintesis dianalisa menggunakan Instrumen SEM-EDS (Yang, dkk., 2014).

3.4.6 Karakterisasi CaTi_{1-x}Fe_xO₃ dengan UV-Vis DRS

Karakterisasi menggunakan UV-Vis DRS bertujuan untuk mengetahui intensitas cahaya yang diserap baik UV maupun sinar tampak, dan besarnya energi celah pita *(band gap energy)*. Sampel digerus hingga berbentuk serbuk halus kemudian ditempatkan pada *sample holder*. Sampel diukur menggunakan DRS pada panjang gelombang 200-900 nm.

3.5 Analisis Data 3.5.1 Analisis Data XRD

Data yang diperoleh dari karakterisasi menggunakan XRD adalah pola difraksi sinar-X yang selanjutnya akan dibandingkan dengan standar $CaTi_{1-x}Fe_xO_3$ yang terdapat pada database *Joint Committee on Powder Diffraction Standards* (JCPDS). Dari data XRD yang didapat selanjutnya dilakukan analisa (*refinement*) dengan perangkat lunak *Rietica* menggunakan metode *Le-Bail* yang bertujuan untuk mengidentifikasi data kristalografi. Selain itu dari data difraksi sinar-X juga dapat menunjukkan kristalinitas dan kemurnian $CaTi_{1-x}Fe_xO_3$ hasil sintesis.

3.5.2 Analisis Data Spektroskopi Raman

Hasil sintesis CaTi_{1-x}Fe_xO₃ yang dikarakterisasi dengan spektroskopi Raman berupa spektra yang menggambarkan evolusi lokal struktur. Dari spektra yang diperoleh akan diidentifikasi jenis modus vibrasinya dan akan dibandingkan dengan hasil penelitian terdahulu.

3.5.3 Analisis Data SEM-EDS

Hasil karakterisasi SEM-EDS berupa morfologi, ukuran partikel, dan komposisi unsur-unsur penyusun senyawa CaTi_{1-x}Fe_xO₃. Gambar hasil karakterisasi diolah menggunakan *software image-J*. Dari semua data akan dibandingkan morfologi partikel yang terbentuk untuk mengetahui pengaruh dopan Fe terhadap morfologi dan komposisi senyawa.

3.5.4 Analisis Data UV-Vis DRS

Hasil karakterisasi dengan DRS berupa data reflektansi. Data reflektansi dianalisa menggunakan persamaan Kubelka-Munk yang ditunjukkan pada Persamaan 3.1.

$$F(R) = \left(\frac{(1-R)^2}{2R} = \frac{K}{s}\right)....(3.1)$$

dengan F(R) adalah faktor Kubelka-Munk, K adalah koefisien absorbs molar, S adalah koefisien *scattering*, dan R adalah nilai reflektan yang diukur. Nilai energi celah pita ditentukan dari membuat plot antara antara energi foton (*hv*) (sebagai sumbu x) dan $(F(R).hv)^{1/2}$ (sebagai sumbu y). Energi foton (*hv*) bisa dihitung dari data panjang gelombang yang terukur, dimana $hv = hc/\lambda$ dengan c adalah tetapan cahaya dan h adalah tetapan plank. Energi celah pita dihitung secara regresi linier pada nilai x (*hv* = energi celah pita) ketika y=0.

BAB IV

HASIL DAN PEMBAHASAN

Dalam penelitian ini dilakukan sintesis senyawa $CaTi_{1-x}Fe_xO_3$ dengan menggunakan metode lelehan garam tunggal NaCl dengan perbandingan mol 1:7 pada suhu 900°C selama 8 jam dengan variasi konsentrasi doping Fe³⁺ yaitu *x*= 0; 0,05; 0,10; 0,15; dan 0,20. Hasil sintesis dikarakterisasi dengan (a) Teknik difraksi sinar-X (XRD) untuk mengetahui fasa sampel yang terbentuk, (b) *scanning electron microscopy* (SEM-EDS) untuk mengetahui morfologi partikel sampel dan unsur penyusun senyawa, (c) spektroskopi Raman untuk mengetahui modus vibrasi Raman, dan (d) UV-Vis DRS untuk mengetahui serapan cahaya dan energi *band gap*.

4.1 Sintesis CaTiO₃ Terdoping Fe³⁺ dengan Metode Lelehan Garam

Sintesis CaTi_{x-1}Fe_xO₃ dilakukan dengan mereaksikan kalsium karbonat (CaCO₃), titanium oksida (TiO₂), dan besi oksida (Fe₂O₃) dengan pemanasan awal (tanpa penggunaan garam) untuk mencegah dan meminimalisir penguapan kalsium karbonat pada suhu tinggi karena senyawa kalsium karbonat meleleh pada suhu 825°C. CaCO₃ akan mengalami dekomposisi termal yaitu pelepasan CO₂ menjadi CaO (Yoshida, dkk., 2015). Prekursor digerus untuk memaksimalkan kontak antar prekursor dengan bantuan penambahan aseton untuk menghomogenkan prekursor. Aseton tidak bereaksi dengan prekursor karena memiliki tetapan dielektrik yang rendah (ε_c =21) dan mudah menguap pada suhu ruang (TD 56,53°C). Senyawa ionik dapat larut pada pelarut polar yang memiliki tetapan dielektrik yang tinggi (Effendy, 2016).

Metode lelehan garam dapat memaksimalkan reaksi antar prekursor, memperbaiki morfologi partikel karena dapat meningkatkan laju difusi antar prekursor, dan dapat mengontrol karakteristik senyawa hasil sintesis. Pada suhu 900°C garam NaCl akan meleleh (TL 801°C) sehingga terjadi kontak antar prekursor dan reaksi pembentukan senyawa CaTi_{x-1}Fe_xO₃. Garam NaCl dicuci menggunakan akuades panas dan diidentifikasi menggunakan AgNO₃ sehingga terbentuk endapan putih sesuai dengan reaksi sebagai berikut:

$$AgNO_{3(aq)} + NaCl_{(aq)} \rightarrow AgCl_{(s)} \downarrow + NaNO_{3(aq)}....(4.1)$$

(b)

(a)

Gambar 4.1 Perubahan warna sampel (a) sebelum kalsinasi, (b) setelah kalsinasi suhu 900°C, dan (c) setelah penyaringan sampel CaTi_{1-x}Fe_xO₃ (*x*=0; 0,05; 0,10; 0,15; dan 0,20).

Sampel CaTiO₃ tanpa doping berwarna putih sedangkan sampel CaTiO₃ terdoping Fe³⁺ berwarna hijau kehitaman. Perubahan warna terjadi pada sampel sebelum dan sesudah proses kalsinasi yang dapat dilihat pada Gambar 4.1. Perubahan warna pada sampel mengidentifikasikan bahwa terjadi reaksi pada proses kalsinasi. Sampel sebelum kalsinasi menunjukkan warna merah bata sedangkan setelah kalsinasi mengalami perubahan warna menjadi hijau kehitaman, hal ini dapat disebabkan adanya penambahan Fe³⁺ sebagai doping.

4.2 Karakterisasi dan Analisis Data CaTi_{1-x}Fe_xO₃ dengan XRD

Senyawa hasil sintesis dikarakterisasi menggunakan XRD untuk mengetahui fasa yang terbentuk dari CaTi_{1-x}Fe_xO₃. Pola difraksi sinar-*X* sampel CaTi_{1-x}Fe_xO₃ (x=0; 0,05; 0,10; 0,15; dan 0,20) ditampilkan pada Gambar 4.2 dan dicocokkan dengan data standar CaTiO₃ dalam *Joint Committee on Powder Diffraction Standards* (JCPDS) No.82-0229. Pola difraksi sinar-*X* sampel menunjukkan kesesuaian dengan standar yang mengindikasikan bahwa senyawa yang terbentuk CaTi_{1-x}Fe_xO₃ (x=0; 0,05; 0,10; dan 0,15), namun pada sampel x=0,20 ditemukan adanya pengotor yaitu Ca₂Fe₂O₅ yang ditandai dengan keberadaan puncak-puncak pada posisi 2 $\theta=$ 29,15; 32,19; 46,61; dan 58,13°. Adanya pengotor menunjukkan bahwa terdapat batas maksimum konsentrasi dopan Fe yang dapat menggantikan Ti dari struktur kristal CaTiO₃ tanpa merngubah struktur aslinya. Hal ini sesuai dengan penelitian Jang, dkk. (2011) yang menyatakan bahwa ditemukan pengotor pada konsentrasi dopan Fe yang tinggi yaitu x>0,15-0,4.

Pola pergeseran puncak difraksi sinar-X pada posisi 2θ = 32,96° ditampilkan pada Gambar 4.3 dan diketahui bahwa posisi puncak utama bergeser ke arah 2θ yang lebih kecil yang mengindikasikan terjadi perubahan kisi kristal akibat doping menggunakan Fe. Hal ini dapat disebabkan karena dopan Fe³⁺ dapat tersubstitusi atau interstisi ke dalam kisi kristal CaTiO₃ sehingga menyebabkan ukuran kisi kristal berubah. Sampel *x*= 0,20 memiliki tingkat kristalinitas yang semakin rendah, hal ini dapat disebabkan karena adanya fasa pengotor dan adanya tumpang tindih antara puncak difraksi senyawa $CaTi_{1-x}Fe_xO_3$ (x=0,20) dan senyawa pengotor $Ca_2Fe_2O_5$.

Gambar 4.2 Pola difraksi sinar-X senyawa CaTi_{1-x}Fe_xO₃ (x=0; 0,05; 0,10; 0,15; dan 0,20).

Gambar 4.3 Pergeseran puncak difraksi sinar-X senyawa CaTi_{1-x}Fe_xO₃ (x = 0; 0,05; 0,10; 0,15; dan 0,20).

Data XRD dianalisis lebih lanjut (*refinement*) dengan program Rietica dengan metode *Le Bail* untuk memperoleh data kristalografi. Untuk senyawa dengan doping x= 0,20 tidak dilakukan *refinement* dikarenakan ditemukan pengotor. Proses *refinement* menggunakan data standar CaTiO₃ JCPDS No. 82-0229 yang memiliki sistem kristal ortorombik dengan *space group* yaitu *Pbnm*. Parameter kisi kristal a= 5,4086 Å; b= 5,4553 Å; c= 7,6782 Å; dan $\alpha=\beta=\gamma=90^{\circ}$ dengan volum sel satuan 226,55. Plot hasil *refinement* CaTi_{1-x}Fe_xO₃ (x= 0) ditampilkan pada Gambar 4.4 dan hasil *refinement* dirangkum pada Tabel 4.1. Plot hasil *refinement* untuk senyawa CaTi_{1-x}Fe_xO₃ (x= 0,05; 0,10; 0,15; dan 0,20) ditampilkan pada Lampiran 3.

Gambar 4.4 Plot *refinement* data senyawa $CaTi_{1-x}Fe_xO_3$ (a) x=0 dengan metode Le-bail.

Data difraksi sinar-X memiliki kesesuaian yang baik dengan standar CaTiO₃ dimana hal ini ditunjukkan oleh nilai profil (R_p) dan nilai residu profil berbobot (R_{wp}) yaitu kurang dari 20% (Raharjo, 2011). Adanya dopan Fe tidak menyebabkan perubahan sistem kristal maupun *space group*. Data kristalografi menunjukkan bahwa terdapat perubahan panjang kisi kristal *a, b*, dan *c* akibat adanya doping dengan Fe³⁺. Hal ini sesuai dengan pergeseran puncak utama XRD pada Gambar 4.3. Dopan Fe³⁺ dapat tersubstitusi menggantikan Ti⁴⁺ pada kristal CaTiO₃, perbedaan muatan dapat menyebabkan kompensasi muatan sehingga cacat krital dapat terbentuk. Selain itu, substitusi dopan Fe pada kristal CaTiO₃ dapat menyebabkan bertambahnya volum sel (*V*) seperti yang ditampilkan pada Tabel 4.1.

Parameter	CaTi _{1-x} Fe _x O ₃	$CaTi_{1-x}Fe_xO_3$ $CaTi_{1-x}Fe_xO_3$		CaTi _{1-x} Fe _x O ₃
	(x=0)	(x=0,05)	(<i>x</i> =0,10)	(<i>x</i> =0,15)
Sistem Kristal	Ortorombik	Ortorombik	Ortorombik	Ortorombik
Space Group	Pbnm	Pbnm	Pbnm	Pbnm
Jumlah Satuan Azimetrik (<i>Z</i>)	4	4	4	4
a (Å)	5,3953(3)	5,41670(0)	5 <mark>,4</mark> 3790(0)	5,40860(0)
<i>b</i> (Å)	5,4335(9)	5,45500(0)	5 <mark>,4</mark> 3880(0)	5,46387(6)
<i>c</i> (Å)	7,6445(0)	7,68660(0)	7,67010(0)	7,66909(9)
α, β, γ (°)	90, 90, 90	90, 90, 90	90,90,90	90, 90, 90
Volum sel (V)	22 <mark>4,</mark> 1069(2)	227,12442(0)	226,84817(5)	226,63661(2)
R_p (%)	13,45	14,27	11,41	8,87
R_{wp} (%)	8,51	13,84	9,96	7,41

Keterangan: *Pbnm* (*P*: jenis kisi primitif, *b*: *glide* pada sumbu *b*, *n*: *glide* setengah pada sumbu (a+b), (b+c), atau (a+c), dan *m*: bidang cermin.

4.3 Karakterisasi dan Analisis Data CaTi_{1-x}Fe_xO₃ dengan Spektroskopi Raman

Karakterisasi menggunakan spektroskopi Raman untuk mengetahui modus vibrasi Raman pada senyawa CaTi_{1-x}Fe_xO₃ (x= 0; 0,05; 0,10; 0,15; dan 0,20). Spektra Raman ditampilkan pada Gambar 4.5. Karakteristik senyawa CaTiO₃

ditunjukkan pada modus vibrasi pada rentang bilangan gelombang 100-700 cm⁻¹. Identifikasi modus vibrasi Raman senyawa CaTi_{1-x}Fe_xO₃ (x= 0; 0,05; 0,10; 0,15; dan 0,20) dirangkum pada Tabel 4.2.

Gambar 4.5 Spektra Raman senyawa $CaTi_{1-x}Fe_xO_3$ (x = 0; 0,05; 0,10; 0,15; dan 0,20).

Tabel 4.2Analisis modus vibrasi Raman senyawa $CaTi_{1-x}Fe_xO_3$ (x=0; 0,05;
0,10; 0,15; dan 0,20) (Balachandran dan Eror, 1982; Hirata, dkk.,
1996; Zheng, dkk., 2003).

Bilangan Gelombang	Bilangan Gelombang	Jenis modus vibrasi	
literatur (cm ⁻¹)	(cm^{-1})	2	
155 dan 183	155 dan 183	<i>Motion</i> kation <i>A</i>	
227-339	227, 247, 288, 339	Bending Ti-O	
470-494	479, 494	<i>Torsional</i> Ti-O ₃	
641-677	641 dan 670	Stretching Ti-O	

Gambar 4.6 menunjukkan adanya pergeseran posisi puncak vibrasi Raman pada bilangan gelombang 247 cm⁻¹ ke arah kiri (energi lebih kecil) yang menunjukkan adanya perubahan panjang ikatan Ti-O sebagai akibat penggantian sebagian atom Ti⁴⁺ (0,605 Å) oleh dopan Fe³⁺ (0,645 Å) yang memiliki ukuran jari-jari ion yang lebih besar. Hal ini sesuai dengan hasil karakterisasi menggunakan XRD, dimana dopan Fe menyebabkan perubahan panjang kisi kristal CaTiO₃. Namun adanya dopan Fe³⁺ tidak menyebabkan perubahan struktur senyawa CaTiO₃ karena hasil spektra Raman CaTi_{1-x}Fe_xO₃ (x=0,05; 0,10; 0,15; dan 0,20) mempunyai pola spektra yang mirip dengan senyawa CaTiO₃.

Gambar 4.6 Pergeseran puncak spektra Raman senyawa $CaTi_{1-x}Fe_xO_3$ (x=0; 0,05; 0,10; 0,15; dan 0,20) pada Bilangan gelombang 247 cm⁻¹.

4.4 Karakterisasi dan Analisis Data CaTi1-xFexO3 dengan SEM-EDS

Karakterisasi menggunakan SEM-EDS untuk mengetahui morfologi partikel dan mengetahui unsur penyusun senyawa CaTi_{1-x}Fe_xO₃ (x= 0; 0,05; 0,10; 0,15; dan 0,20). Morfologi partikel yang terbentuk pada adalah polihedral reguler seperti yang ditampilkan pada Gambar 4.7. Yoshida, dkk. (2015) juga mensintesis CaTiO₃ dengan metode lelehan garam NaCl pada suhu 1100 °C dan menghasilkan morfologi partikel berbentuk polihedral reguler. Distribusi permukaan pada CaTiO₃ tanpa dopan lebih homogen dengan sedikit aglomerasi, sedangkan pada sampel CaTi_{1-x}Fe_xO₃ (x= 0,05; 0,10; 0,15; dan 0,20) mengalami lebih banyak aglomerasi dan membentuk partikel yang tidak beraturan dengan ukuran butiran yang lebih kecil.

Gambar 4.7 Morfologi partikel CaTi_{1-x}Fe_xO₃ (x= (a) 0; (b) 0,05; (c) 0,10; (d) 0,15; dan (e) 0,20) pada perbesaran 20000x.

Aglomerasi dapat disebabkan oleh adanya efek kalsinasi pada suhu tinggi yang memberikan energi total permukaan yang tinggi sehingga untuk menurunkan energi total permukaan, partikel tersebut akan membentuk gumpalan yang besar. Selain itu aglomerasi juga dapat disebabkan karena sifat ion Fe yang sangat reaktif. Ukuran pertikel yang lebih kecil disebabkan adanya cacat partikel akibat adanya substitusi dopan Fe dalam kisi CaTiO₃ yang menyebabkan ketidakhomogenan dan distorsi yang menurunkan pertumbuhan kristal. Menurut Sato, dkk. (2019) pergantian atom Ti⁴⁺ oleh dopan Fe³⁺ yang memiliki muatan yang lebih kecil mengakibatkan adanya ketidakseimbangan muatan yang dapat dikompensasi dengan adanya kekosongan oksigen (*oxygen vacancy*). Kekosongan oksigen ini menghambat gerak ion sehingga akan menurunkan pertumbuhan butiran dan ukuran partikel yang lebih kecil.

Tabel 4.3Komposisi unsur-unsur penyusun CaTi_{1-x}Fe_xO₃ (x=0; 0,05; 0,10; 0,15;dan 0,20) berdasarkan perhitungan secara teori dan hasil EDS.

Sampel	Kadar	Ca (%)	Kadar	Ti (%)	Kadar	Fe (%)	Kadar	O (%)
	Teori	EDS	Teori	EDS	Teori	EDS	Teori	EDS
<i>x</i> =0	29,48	26,02	35,21	31,30	<u>)</u> -	6-	35,29	40,38
<i>x</i> =0,05	29,39	26,40	33,35	31,47	2,05	1,88	35,18	37,32
x=0,10	29,31	25,52	31,51	29,03	4,08	3,99	35,08	38,12
<i>x</i> =0,15	29,22	26,56	29,67	<mark>26,</mark> 74	6,11	6,16	34,98	37,35
<i>x</i> =0,20	29,14	24,23	27,84	22,40	8,12	8,41	34,88	39,32

Perbandingan persentase komposisi unsur-unsur penyusun senyawa CaTi_x- $_1$ Fe_xO₃ berdasarkan hasil perhitungan secara teori dan hasil EDS ditampilkan pada Tabel 4.3. Berdasarkan data tersebut diketahui dopan Fe terdeteksi pada kisi kristal CaTiO₃. Terjadi penurunan % massa pada unsur Ti yang disebabkan oleh adanya dopan besi (Fe). Sedangkan % massa unsur Fe mengalami meningkatan seiring dengan bertambahnya konsentrasi dopan Fe.

4.5 Karakterisasi dan Analisis Data CaTi_{1-x}Fe_xO₃ dengan UV-Vis DRS

Karakterisasi menggunakan UV-Vis DRS bertujuan untuk mengetahui celah pita dan karakter serapan sinar pada daerah panjang gelombang UV maupun sinar tampak. Karakterisasi menggunakan UV-Vis DRS menghasilkan nilai panjang gelombang (λ) dan % Reflektansi (R). Karakter serapan dari masing-masing sampel CaTi_{1-x}Fe_xO₃ (x= 0; 0,05; 0,10; 0,15; dan 0,20) ditampilkan pada Gambar 4.8.

Gambar 4.8 Spektra DRS hubungan % reflektansi dengan Panjang gelombang senyawa CaTi_{1-x}Fe_xO₃ (x=0,05; 0,10; 0,15; dan 0,20).

Berdasarkan spektra DRS diketahui bahwa terdapat perubahan pola serapan sinar yang signifikan terhadap nilai % reflektansi antara CaTiO₃ tanpa dopan dan CaTiO₃ terdoping Fe³⁺. Sampel CaTi_{1-x}Fe_xO₃ (x= 0,05; 0,10; 0,15; dan 0,20) menunjukkan pergeseran nilai reflektansi yang lebih menurun pada daerah sinar tampak yang menunjukkan penyerapan sinar yang tinggi pada daerah tersebut. Penyerapan di daerah UV pada CaTiO₃ tanpa dopan disebabkan transisi elektronik dari orbital 2*p* O ke orbital 3*d* Ti. Penyerapan di daerah sinar tampak disebabkan oleh keberadaan dopan Fe dalam kisi CaTiO₃. Penyerapan sinar tampak oleh CaTiO₃ terdoping Fe merupakan indikasi dari adanya eksitasi elektron dari Fe ke pita konduksi CaTiO₃. Dimungkinkan terdapat pita baru diantara pita konduksi dan pita valensi CaTiO₃ (Jang, dkk., 2011).

Gambar 4.9 Spektra DRS hubungan konstanta Kubelka-Munk dengan Panjang gelombang senyawa $CaTi_{1-x}Fe_xO_3$ (x=0,05; 0,10; 0,15; dan 0,20).

Data reflektansi dianalisa menggunakan persamaan Kubelka-Munk yang ditunjukkan pada persamaan 3.1 pada bab sebelumnya. Faktor Kubelka-Munk dinyatakan dalam F(R), dimana F(R) sebanding dengan koefisien absorbs molar (*K*) per koefisien *scattering* (*S*). Hubungan antara faktor Kubelka-Munk dan Panjang gelombang ditampilkan pada Gambar 4.9. Berdasarkan spektra DRS hubungan F(R) dengan Panjang gelombang pada daerah UV diketahui bahwa tidak

terjadi terjadi perubahan koefisien absorpsi yang signifikan pada senyawa CaTiO₃ tanpa dopan dengan CaTiO₃ terdoping Fe. Namun pada daerah sinar tampak (400-800 nm) terdapat perubahan koefisien absorpsi pada sampel CaTiO₃ tanpa dopan dan CaTiO₃ terdoping Fe yang signifikan dimana dopan Fe³⁺ dapat meningkatkan penyerapan pada daerah sinar tampak.

Gambar 4.10 Spektra DRS energi celah pita (*band gap*) senyawa CaTi_{1-x}Fe_xO₃ (x=0; 0,05; 0,10; 0,15; dan 0,20).

Analisa selanjutnya adalah penentuan energi celah pita yang dilakukan dengan memplotkan grafik hubungan antara $(F(R)hv^{1/2})$ dengan energi celah pita (eV). Energi celah pita dihitung secara regresi linier pada nilai x (hv = energi celah pita) ketika y=0. Penentuan nilai energi celah pita hanya bisa dilakukan pada sampel yang memiliki koefisien determinasi (R^2) mendekati 1. Berdasarkan Gambar 4.10 diketahui bahwa hanya sampel CaTiO₃ yang dapat ditarik garis linier karena memiliki nilai R² mendekati 1. Sehingga sampel CaTiO₃ terdoping Fe³⁺ tidak dapat ditentukan energi celah pitanya karena memiliki nilai reflektansi yang sangat

rendah. Energi celah pita sapel CaTiO₃ murni diketahui sebesar 3,43 eV. Berdasarkan perhitungan energi celah pita dan Panjang gelombang pada Lampiran 5, diketahui bahwa Panjang gelombang senyawa CaTiO₃ murni yaitu 361 nm. Hal ini menunjukkan fotokatalis CaTiO₃ dapat bekerja di daerah sinar UV. Energi celah pita CaTiO₃ tanpa doping umumnya sebesar ~3,5 eV dan mampu menyerap cahaya pada daerah ultraviolet (Yang, dkk., 2014). Sampel CaTi_{1-x}Fe_xO₃ (*x*=0,05; 0,10; 0,15; dan 0,20) menunjukkan pergeseran penyerapan cahaya pada daerah sinar tampak, sehingga dapat diindikasikan bahwa energi celah pita senyawa terdoping Fe lebih kecil dibandingkan CaTiO₃ murni. Jang, dkk. (2011) melaporkan bahwa doping dengan Fe dapat memperkecil energi celah pita dari CaTiO₃ dari 3,38 eV menjadi 2,25 eV yang setara dengan penyerapan pada Panjang gelombang 550 nm.

4.6 Sintesis dan Karakterisasi CaTiO₃ Terdoping Fe dalam Perspektif Islam

Penelitian tentang material CaTiO₃ terdoping Fe merupakan suatu bentuk usaha menjaga dan melindungi lingkungan. Sebagai manusia berpikir adalah salah satu tipologi terpenting manusia. Berpikir merupakan salah satu nikmat diantara nikmat-nikmat yang Allah anugerahkan kepada manusia terlebih sebagai seorang ilmuwan yang dituntut untuk senantiasa memperhatikan, merenungkan, dan memikirkan segala bentuk ciptaan-Nya baik di langit, bumi maupun diantara keduanya, yang dijelaskan oleh firman Allah dalam Q.S Ali Imran (3) Ayat 190-191. إِنَّ فِي خَلْقِ ٱلسَّمَوَاتِ وَٱلْأَرْضِ وَٱخْتِلَفِ ٱلَّيْلِ وَٱلنَّهَارِ لَآيَتِ لِأُوْلِي ٱلأَلْبَبِ ٢ الَّذِينَ يَدُكُرُونَ ٱللَّهَ قِيَمَا وَقُعُودَا وَعَلَى جُنُوبِهِمْ وَيَتَفَكَّرُونَ فِي خَلْقِ ٱلسَّمَوَاتِ وَٱلْأَرْضِ رَبَّنَا مَا خَلَقْتَ هَذَا بَطِلَا سُبْحَننَكَ فَقِنَا عَذَابَ ٱلنَّارِ ٢

Artinya:

190. "Sesungguhnya dalam penciptaan langit dan bumi, dan silih bergantinya malam dan siang terdapat tanda-tanda bagi orang-orang yang berakal".

191. "(yaitu) orang-orang yang mengingat Allah sambal berdiri atau duduk atau dalam keadaan berbaring dan mereka memikirkan tentang penciptaan langit dan bumi (seraya berkata): "Ya Tuhan Kami, Tiadalah Engkau menciptakan ini dengan sia-sia, Maha suci Engkau, Maka periharalah Kami dari siksa neraka".

Menurut tafsir Ibnu Katsir (2007: 209-211) ayat diatas menjelaskan tentang tanda-tanda kekusaan dan keesaan Allah yang agung dan dapat disaksikan, berupa binatang-binatang, daratan dan lautan, pegunungan, tumbuh-tumbuhan, dan segala yang terdapat di bumi dan di langit. Selain itu ayat tersebut menyebutkan tandatanda orang yang berakal *(ulul albab)* yakni mereka yang mempunyai akal yang sempurna lagi bersih, yang mengetahui hakekat banyak hal secara jelas dan nyata. Mereka bukan orang yang tuli dan bisu yang tidak berakal. Ayat tersebut juga menjelaskan bahwa Allah tidak menciptakan segala sesuatu dengan sia-sia tetapi dengan hak. Allah akan memberikan balasan yang baik kepada orang yang baik kepada orang-orang yang berbuat kebaikan.

Berdasarkan penjelasan ayat di atas, sebagai seorang ilmuwan kita diberikan nikmat oleh Allah berupa akal untuk berpikir dan merenungkan segala yang terjadi, salah satunya permasalahan-permasalahan lingkungan seperti yang telah dijabarkan sebelumnya. Metode penanggulangan pencemaran dan pengolahan limbah cair yang sedang banyak dikembangkan saat ini adalah metode fotokatalis. Selain itu, segala sesuatu yang Allah ciptakan memiliki hikmah yang terkandung didalamnya dan memiliki manfaat yang besar. Kita sebagai seorang ilmuwan juga dapat mengembangkan segala sesuatu yang Allah ciptakan untuk menjadikannya sebagai sesuatu yang bermanfaat. Salah satunya adalah pengembangan material fotokatalis. CaTiO₃ merupakan salah satu material semikonduktor yang berpotensi memiliki aktivitas fotokatalitik yang tinggi sehingga dapat dikembangkan sebagai upaya pelestarian lingkungan.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian yang diperoleh dapat diambil kesimpulan sebagai berikut:

- 1. Senyawa CaTi_{x-1}Fe_xO₃ (x=0; 0.05; 0,10; 0,15; dan 0,20) telah berhasil disintesis akan tetapi pada x=0,20 ditemukan senyawa tambahan Ca₂Fe₂O₅.
- Dopan Fe³⁺ menyebabkan perubahan panjang ikatan Ti-O yang ditandai dengan pergeseran modus vibrasi Raman pada bilangan gelombang 247 cm⁻¹.
- Bentuk partikel CaTi_{x-1}Fe_xO₃ (x=0; 0.05; 0,10; 0,15; dan 0,20) adalah Polihedral Reguler dan dopan Fe³⁺ menyebabkan aglomerasi partikel dengan distribusi komposisi unsur Ca, Ti, Fe, dan O yang merata.
- Dopan Fe³⁺ menyebabkan adanya perubahan pola serapan pada panjang gelombang cahaya tampak.

5.2 Saran

- 1. Perlu dilakukan uji aktivitas fotokatalis pada rentang UV maupun *visible*, untuk mengetahui pengaruh dopan Fe terhadap aktivitas fotokatalitiknya.
- Perlu dilakukan uji *photoluminescence* untuk mengetahui pengaruh dopan Fe³⁺ terhadap laju rekombinasi.

DAFTAR PUSTAKA

- Amelia, Shinta., Sediawan, Wahyudi Budi., dan Prasetyo, Imam. 2017. Degradasi Limbah Zat Warna dengan Katalis Karbon Aktif Teremban Oksida Besi. Prosiding SNST ke-8 Universitas Wahid Hasyim Semarang: Halaman 24-29.
- Balachandran, U dan Eror, N.G. 1982. Laser-Induced Raman Scattering in Calcium Titanate. *Journal of Solid State Communication*, 44(6): 815-818.
- Bercmans, L. John., Sornakumar, T., Siva, G., dan Vankatesh, G. 2017. Synthesis and Characterization of Calcium Titanate and Calcium Zirconate Compound Powders by Molten Salt Method. *Journal of Nano Hybrids and Composites*, 17: 88-95.
- Chen, Ke-pi dan Zhang, Xiao-wen. 2010. Synthesis of Calcium Copper Titanate Ceramics via The Molten Salt Method. *Journal of Ceramics International*, 36: 1523-1527.
- Chen, X. M., Li, L., dan Liu, X. Q. 2003. Layered Complex Structure of MgTiO₃ and CaTiO₃ Dielectric Ceramics. *Journal of Material Science Engineering B*, 99: 255-258.
- Effendy. 2016. Perspektif Baru Ikatan Ionik Edisi 3. Malang: Indonesian Academic Publishing
- Fu, Q., Li, J. L., He, T., dan Yang, G. W. 2013. Band-Engineered CaTiO₃ Nanowires for Visible Light Photocatalysis. *Journal of Applied Physics*, 13(10): 104303.
- Gaikwad, Sharad S, Ashok V Borhade., dan Vishwas B Gaikwad. 2012. A Green Chemistry Approach for Synthesis of CaTiO₃ Photocatalyst: Its Effects on Degradation of Methylene Blue. *Journal of Phytotoxicity and Microbial Study*, 10.
- Goffar, M. Abdul. 2007. *Tafsir Ibnu Katsir Jilid 2*. Jakarta: Pustaka Imam Asy-Syafi'i.
- Han, Chong., Liu, Jingjing., Yang, Wangjin., Wu, Qianqian., Yang, He., dan Xue, Xiangxin. 2017. Photocatalytic Activity of CaTiO₃ Synthesized by Solid State, Sol–Gel and Hydrothermal Methods. *Journal of Sol-Gel Science and Technology*, 81(3): 806-813.
- He, Hongquan., Yin, Jiao., Li, Yingxuan., Zhang, Ying., Qiu, Hengshan., Xu, Jinbao., Xu, Tao., Wang, Chuanyi. 2014. Size Controllable Synthesis of Single-crystal Ferroelectric Bi₄Ti₃O₁₂ Nanosheet Dominated with {0 0 1} Facets toward Enhanced Visible-light-driven Photocatalytic Activities. *Journal Environmental.* 156-157: 35-43.

- Hirata, T., Ishioka, K., dan Kitajima, M. 1996. Vibrational Spectroscopy and X-Ray Diffraction of Perovskite Compounds $Sr_{1-x}M_xTiO_3$ (M= Ca, Mg; $0 \le x \le 1$). Journal of Solid State Chemistry. 124: 353-359.
- Huang, Xiao-jun., Yan, Xin., Wu, Hai-yan., Fang, Ying., Min, Ya-hong., Li, Wen-Sheng., Wang, Shuang-yin., dan Wu, Zhen-jun. 2016. Preparation of Zr-Doped CaTiO₃ with Enhanced Charge Separation Efficiency and Photocatalytic Activity. *Transactions of Nonferrous Metals Society of China*, 26(2): 464–71.
- Jang, J. S., Borse, P.H., Lee, J. S., Lim, K. T., dan Kim, H.G. 2003. Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-doped CaTiO₃. Bulletin of the Korean Chemical Society, 32(1): 95-99.
- Kanhere, Pushkar dan Chen, Zhoung. 2014. A Review on Visible Light Active Perovskite Based Photocatalysts. *Journal of Molecules*, 19(12): 19995-20022.
- Kasap, Safa. 2006. Springer Handbook of Electronic and Photonic Materials. Springer Science & Business Media.
- Kimura, T. 2011. Molten Salt Synthesis of Ceramic Powders. Advances in Ceramics Synthesis and Characterization, Processing and Specific Applications. Rijeka: In Tech.
- Li, Hui-Ling., Du, Zhen-Ni., Wang, Gen-Lin., dan Zhang, Yong-Cai. 2010. Low Temperature Molten Salt Synthesis of SrTiO₃ Submicron Crystallites and Nanocrystals in The Euctectic NaCl-KCl. *Journal of Material Letters*, 64(3): 431-434.
- Liu, Xiaofeng., Fechler, Nina., dan Antonietti, Markus. 2013. Salt Melt Synthesis of Ceramics, Semiconductors, and Carbon Nanostructures. *Chemical Society Reviews*, 42(21): 8237.
- Mao, Y., dan Wong, S. S. 2005. Composition and Shape Control of Crystalline Ca₁₋ _xSr_xTiO₃ Perovskite Nanoparticles. *Journal of Advanced Materials*, 17(18): 2194-2199.
- Mishra, Maneesha dan Chun, Doo-Man. 2015. α-Fe₂O₃ as A Photocatalytic Material: A Review. *Journal of Applied Catalysis*, 498: 126-141.
- Mizoguchi, Hiroshi., Ueda, Kazushige., Orita, Masahiro., Moon, Sang-Chul., Kajihara, Koichi., Hirano, Masahiro., dan Hosono, Hideo. 2002. Decomposition of Water by A CaTiO₃ Photocatalyst under UV Light Irradiation. *Materials Research Bulletin*, 37(15): 2401-2406.
- Mourao, Henrique A. J. L., Lopes, Osmando F., Avansi, Waldir., Pires, Manoel J. M., Souza, Solange., Riberio, Caue., dan Mastelaro, Valmor R. 2017. SrTi_{1-y}Fe_yO₃ Samples Obtained by Hydrothermal Methode: The Effect of

The Amount of Fe on Structural and Photocatalytic. *Journal of Materials Science in Semiconductor Processing*, 68: 140-146.

- Munawwir, Ahmad Warson. 1984. Kamus al-Munawwir. Yogyakarta: Pustaka Progresif.
- Naimah, Siti., A, Silvie Ardhanie., dan Jati, Bumiarto Nugroho. 2014. Degradasi Zat Warna pada Limbah Cair Industri Tekstil dengan Metode Fotokatalitik Menggunakan Nanokomposit TiO₂–Zeolit. Jurnal Kimia dan Kemasan, 36(2).
- Quader, A. K. M. Abdul. 2010. Treatment of Textile Wastewater with Clorine: An Effective Method. *Chemical Engineering Research Bulletin*, 14(1).
- Rahaman. 2007. Sintering of Ceramics. Florida: CRC Press.
- Roth, R.S. 1957. Classification of Perovskite and Other ABO₃-Type Compounds. Journal of Research of the National Bureau of Standards, 58 (2).
- Sato, Nicha., Haruta, Makito., Sasagawa., Kiyotaka., Ohta, Jun., dan Jongprateep, Oratai. 2019. Fe and Co-Doped (Ba, Ca)TiO₃ Perovskite as Potential Electrocatalyst for Glutamate Sensing. *Journal of Engineering*, 23(6): 265-278.
- Sebastian, Mailadil T. 2010. Dielectric Materials for Wireless Communication. Elsevier.
- Shannon, R. D. 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Published in Acta Crystallographica*. A32: 751-767.
- Thayyarah, Nadiah. 2013. Sains dalam al-Qur'an: Mengerti Mukjizat Ilmiah Firman Allah. Jakarta: Zaman.
- Wang, Qian., Hisatomi, Takashi., Moriya, Yosuke., Maeda, Kazuhiko., dan Domen, Kazunari. 2013. Physicochemical Properties and Photocatalytic H₂ Evolution Activity of Rh-Doped La₂Ti₂O₇ Prepared by Molten Salt Synthesis. *Journal of Catalysis Science and Technology*, 3(8): 2098.
- Xue, Piaojie., Wu, Heng., Lu, Yao., dan Zhu, Xinhua. 2018. Recent Progress in Molten Salt Synthesis of Low-Dimensional Perovskite Oxide Nanostructures, Structural Characterization, Properties, and Functional Applications: A Review. Journal of Materials Science & Technology, 34(6): 914–30.
- Yang, He., Han, Chong., dan Xue, Xiangxin. 2014. Photocatalytic Activity of Fe-Doped CaTiO₃ under UV–Visible Light. *Journal of Environmental Sciences*, 26(7): 1489-1495.

- Yoshida, Hisao., Zhang, Like., Masumi, Sato., dan Morikawa, Takeshi. 2015. Calcium Titanate Photocatalyst Prepared by A Flux Method for Reduction of Carbon Dioxide with Water. *Journal of Catalysis*, 251: 132-139.
- Zhang, Guan., Liu, Gang., Wang, Lianzhou., dan Irvine, John T. S. 2016. Inorganic Perovskite Photocatalysts for Solar Energy Utilization. *Journal of Chemical Society Reviews*, 45(21): 5951-5984.
- Zhang, Hongjie., Chen, Gang., Li, Yingxuan., dan Teng, Yujie. 2010. Electronic Structure and Photocatalytic Properties of Copper-Doped CaTiO₃. *International Journal of Hydrogen Energy*, 35(7): 2713–16.
- Zheng, H., Bagshaw, H., Reaney, I. M., Ubic, R., dan Yarwood, J. 2003. Raman Spectroscopy and Microwave Properties of CaTiO₃-Based Ceramics. *Journal of Applied Physics*, 94(5): 2948–56.
- Zheng, Yan-Zhen., dan Zhang, Mi-Lin. 2007. Preparation and Electrochemical Properties of Nickel Oxide by Molten-Salt Synthesis. *Materials Letters*, 61(18): 3967–69.
- Zhou, Hongjun., Mau, Yuanbing., dan Wong, Stanislaus S. Probing Structure Parameter Correlations in the Molten Salt Synthesis of BaZrO₃ Perovskite Submicrometer-Sized Particles. *Journal of Chemistry of Materials*, 19(22): 5238-5249.
- Zhou, Xuefan., Wu, Zhong., Jiang, Chao., Luo, Hang., Yan, Zhongna., dan Zhang, Dou. 2018. Molten Salt Synthesis and Characterization of Lead-Free (1x)Na_{0.5}Bi_{0.5}TiO_{3-x}SrTiO₃ (x=0,0.10,0.26) Whiskers. Journal of Ceramics International. 44 (8): 9174-9180.

LAMPIRAN

Lampiran 1. Diagram Alir

L.1.1 Preparasi Bahan

CaCO₃, TiO₂, dan Fe₂O₃

Dihomogenkan dalam mortar agate selama satu jam dan ditambahkan

aseton

_

- Dipanaskan pada suhu 700°C selama 6 jam Hasil

L.1.2 Sintesis dengan Metode Lelehan Garam

Sampel dan garam dengan perbandingan mol 1:7

- Dihomogenkan dalam *mortar agate* selama satu jam dan ditambahkan

aseton

- Dipanaskan dengan suhu 900°C selama 8 jam
- Dikeluarkan sampel dari tanur
- Diletakkan diatas kertas saring dan disaring menggunakan corong Buchner
- Dicuci dengan air hangat berulang kali
- Dikeringkan pada suhu 70°C sampai kering

Hasil

Lampiran 2. Perhitungan

Diketahui:

- Target massa produk adalah 2,5 gram
- Perbandingan mol prekursor CaTi_{1-x}Fe_xO₃ : NaCl adalah 1:7
- Variasi Konsentrasi Fe adalah x = 0; 0,05; 0,1; 0,15; dan 0,2

 $Mr CaCO_3 = 100,09 \text{ g/mol}$

Mr TiO₂ = 79,9 g/mol

 $Mr Fe_2O_3 = 159,69 \text{ g/mol}$

Mr NaCl = 58,34 g/mol

Ar Ca = 40,078 g/mol

Ar Ti = 47,867 g/mol

Ar Fe = 55,845 g/mol

1. Konsentrasi Fe (x=0)

 $Mol \ CaTiO_3 = \frac{\text{massa } CaTiO_3}{\text{Mr } CaTiO_3}$ $= \frac{2.5 \text{ gram}}{135,9432 \text{ g/mol}} = 0,01839 \text{ mol}$ $Massa \ CaCO_3 = \frac{Ar \ Ca}{\text{Mr } CaTiO_3} \times \frac{Mr \ CaCO_3}{Ar \ Ca} \times Massa \ Target$ $= \frac{40,078 \text{ g/mol}}{135,9432 \text{ g/mol}} \times \frac{100,09 \text{ g/mol}}{40,078 \text{ g/mol}} \times 2,5 \text{ gram}$ = 1,8407 gram $Massa \ TiO_2 = \frac{Ar \ Ti}{\text{Mr } CaTiO_3} \times \frac{Mr \ TiO_2}{Ar \ Ti} \times Massa \ Target$ $= \frac{47,867 \text{ g/mol}}{135,9432 \text{ g/mol}} \times \frac{79,9 \text{ g/mol}}{47,867 \text{ g/mol}} \times 2,5 \text{ gram}$ = 1,4694 gram $Mol \ \text{NaCl} = 7 \times mol \ CaTiO_3$

 $= 7 \times 0,01839 \ mol = 0,12873 \ mol$

$$Massa \text{ NaCl} = Mr \times mol \text{ NaCl}$$
$$= 58,34 \text{ g/mol} \times 0,12873 \text{ mol} = 7,5101 \text{ gram}$$

2. Konsentrasi Fe (x=0,05)

$$Mol \operatorname{CaTi}_{0,95}\operatorname{Fe}_{0,05}\operatorname{O}_{3} = \frac{Massa}{Mr}$$

$$= \frac{2.5 \operatorname{gram}}{136,3421 \operatorname{g/mol}} = 0,01834 \operatorname{mol}$$

$$Massa \operatorname{CaCO}_{3} = \frac{Ar \operatorname{Ca}}{\operatorname{Mr} \operatorname{CaTi}_{0,95}\operatorname{Fe}_{0,05}\operatorname{O}_{3}} \times \frac{Mr \operatorname{CaCO}_{3}}{Ar \operatorname{Ca}} \times \operatorname{Massa} \operatorname{Target}$$

$$= \frac{40,078 \operatorname{g/mol}}{136,3421 \operatorname{g/mol}} \times \frac{100,09 \operatorname{g/mol}}{40,078 \operatorname{g/mol}} \times 2,5 \operatorname{gram}$$

$$= 1,8353 \operatorname{gram}$$

$$Massa \operatorname{TiO}_{2} = \frac{(Ar \operatorname{Ti} \times 0,95)}{\operatorname{Mr} \operatorname{CaTi}_{0,95}\operatorname{Fe}_{0,05}\operatorname{O}_{3}} \times \frac{Mr \operatorname{TiO}_{2}}{Ar \operatorname{Ti}} \times \operatorname{Massa} \operatorname{Target}$$

$$= \frac{(47,867\times0,95) \operatorname{g/mol}}{136,3421 \operatorname{g/mol}} \times \frac{79,9 \operatorname{g/mol}}{47,867 \operatorname{g/mol}} \times 2,5 \operatorname{gram}$$

$$= 1,3918 \operatorname{gram}$$

$$Massa \operatorname{Fe}_{2}\operatorname{O}_{3} = \frac{(Ar \operatorname{Fe} \times 0,05)}{\operatorname{Mr} \operatorname{CaTi}_{0,95}\operatorname{Fe}_{0,05}\operatorname{O}_{3}} \times \frac{Mr \operatorname{Fe}_{2}\operatorname{O}_{3}}{(Ar \operatorname{Fe} \times 2)} \times \operatorname{Massa} \operatorname{Target}$$

$$= \frac{(55,845\times0,05) \operatorname{g/mol}}{136,3421 \operatorname{g/mol}} \times \frac{159,69 \operatorname{g/mol}}{(55,845\times2) \operatorname{g/mol}} \times 2,5 \operatorname{gram}$$

$$= 0,0732 \operatorname{gram}$$

$$Mol \operatorname{NaCl} = 7 \times \operatorname{mol} \operatorname{CaTi}_{0,95}\operatorname{Fe}_{0,05}\operatorname{O}_{3}$$

$$= 7 \times 0,01834 \operatorname{mol} = 0,12838 \operatorname{mol}$$

$$Massa \operatorname{NaCl} = Mr \times \operatorname{mol} \operatorname{NaCl}$$

$$= 58,34 \operatorname{g/mol} \times 0,12838 \operatorname{mol} = 7,4897 \operatorname{gram}$$

3. Konsentrasi Fe (x=0,1)

 $mol \ CaTi_{0,9}Fe_{0,1}O_3 = \frac{massa}{Mr}$ $= \frac{2,5 \text{ gram}}{136,741 \text{ g/mol}} = 0,01828 \text{ mol}$ $Massa \ CaCO_3 = \frac{Ar \ Ca}{Mr \ CaTi_{0,9}Fe_{0,1}O_3} \times \frac{Mr \ CaCO_3}{Ar \ Ca} \times Massa \ Target$

$$= \frac{40,078 g/mol}{136,741 g/mol} \times \frac{100,09 g/mol}{40,078 g/mol} \times 2,5 gram$$

$$= 1,8299 gram$$

$$Massa TiO_2 = \frac{(Ar Ti \times 0,9)}{Mr CaTi_{0,9}Fe_{0,1}O_3} \times \frac{Mr TiO_2}{Ar Ti} \times Massa Target$$

$$= \frac{(47,867 \times 0,9) g/mol}{136,741 g/mol} \times \frac{79,9 g/mol}{47,867 g/mol} \times 2,5 gram$$

$$= 1,3147 gram$$

$$Massa Fe_2O_3 = \frac{(Ar Fe \times 0,1)}{Mr CaTi_{0,9}Fe_{0,1}O_3} \times \frac{Mr Fe_2O_3}{(Ar Fe \times 2)} \times Massa Target$$

$$= \frac{(55,845 \times 0,1) g/mol}{136,741 g/mol} \times \frac{159,69 g/mol}{(55,845 \times 2) g/mol} \times 2,5 gram$$

$$= 0,1460 gram$$

$$Mol NaCl = 7 \times mol CaTi_{0,9}Fe_{0,1}O_3$$

$$= 7 \times 0,01828 mol = 0,12796 mol$$

$$Massa NaCl = Mr \times mol NaCl$$

$$= 58,34 g/mol \times 0,12796 mol = 7,4652 gram$$

4. Konsentra<mark>si F</mark>e (x=0,15)

$$mol \ CaTi_{0,85}Fe_{0,15}O_3 = \frac{massa}{Mr} \\ = \frac{2.5 \text{ gram}}{137,1399 \text{ g/mol}} = 0,01823 \text{ mol} \\ Massa \ CaCO_3 = \frac{Ar \ Ca}{Mr \ CaTi_{0,85}Fe_{0,15}O_3} \times \frac{Mr \ CaCO_3}{Ar \ Ca} \times Massa \ Target \\ = \frac{40,078 \text{ g/mol}}{137,1399 \text{ g/mol}} \times \frac{100,09 \text{ g/mol}}{40,078 \text{ g/mol}} \times 2,5 \text{ gram} \\ = 1,8246 \text{ gram} \\ Massa \ TiO_2 = \frac{(Ar \ Ti \times 0,85)}{Mr \ CaTi_{0,85}Fe_{0,15}O_3} \times \frac{Mr \ TiO_2}{Ar \ Ti} \times Massa \ Target \\ = \frac{(47,867 \times 0,85) \text{ g/mol}}{137,1399 \text{ g/mol}} \times \frac{79,9 \text{ g/mol}}{47,867 \text{ g/mol}} \times 2,5 \text{ gram} \\ = 1,2381 \ gram \\ Massa \ Fe_2O_3 = \frac{(Ar \ Fe \times 0,15)}{Mr \ CaTi_{0,85}Fe_{0,15}O_3} \times \frac{Mr \ Fe_2O_3}{(Ar \ Fe \times 2)} \times Massa \ Target \\ = \frac{(55,845 \times 0,15) \text{ g/mol}}{137,1399 \text{ g/mol}} \times \frac{159,69 \text{ g/mol}}{(55,845 \times 2) \text{ g/mol}} \times 2,5 \text{ gram} \\ \end{cases}$$

= 0,2183 gram

 $\begin{array}{ll} Mol \ {\rm NaCl} & = \ 7 \times mol \ {\rm CaTi}_{0,85} {\rm Fe}_{0,15} {\rm O}_3 \\ \\ & = \ 7 \times 0,01823 \ mol = 0,12761 \ mol \\ \\ Massa \ {\rm NaCl} & = \ Mr \times mol \ {\rm NaCl} \\ \\ & = \ 58,34 \ g/mol \times 0,12761 \ mol = 7,4448 \ gram \end{array}$

5. Konsentrasi Fe (x=0,2) $mol \ CaTi_{0,8}Fe_{0,2}O_3 = \frac{massa}{Mr}$ $= \frac{2,5 \text{ gram}}{137,5388 \text{ g/mol}} = 0,01818 \text{ mol}$ $Massa CaCO_{3} = \frac{Ar Ca}{Mr CaTi_{0.8}Fe_{0.2}O_{3}} \times \frac{Mr CaCO_{3}}{Ar Ca} \times Massa Target$ $=\frac{40,078 \ g/mol}{137,5388 \ g/mol} \times \frac{100,09 \ g/mol}{40,078 \ g/mol} \times 2,5 \ gram$ = 1,8193 gram $Massa \operatorname{TiO}_{2} = \frac{(Ar \operatorname{Ti} \times 0,8)}{\operatorname{Mr} \operatorname{CaTi}_{0,8}\operatorname{Fe}_{0,2}O_{3}} \times \frac{Mr \operatorname{TiO}_{2}}{Ar \operatorname{Ti}} \times Massa Target$ $=\frac{(47,867\times0,8) g/mol}{137,5388 g/mol} \times \frac{79,9 g/mol}{47,867 g/mol} \times 2,5 gram$ = 1,1618 gram $Massa \operatorname{Fe}_{2}\operatorname{O}_{3} = \frac{(Ar \operatorname{Fe} \times 0,2)}{\operatorname{Mr} \operatorname{CaTi}_{0,8}\operatorname{Fe}_{0,2}\operatorname{O}_{3}} \times \frac{Mr \operatorname{Fe}_{2}\operatorname{O}_{3}}{(Ar \operatorname{Fe} \times 2)} \times Massa Target$ $=\frac{(55,845\times0,2) \ g/mol}{137,5388 \ g/mol} \times \frac{159,69 \ g/mol}{(55,845\times2) \ g/mol} \times 2,5 \ gram$ = 0,2903 gramMol NaCl $= 7 \times mol \, CaTi_{0.8} Fe_{0.2} O_3$ $= 7 \times 0.01818 mol = 0.12726 mol$ $Massa NaCl = Mr \times mol NaCl$ = 58,34 g/mol × 0,12726 mol = 7,4243 gram

Lampiran 3. Data XRD CaTiO₃

L.3.1 Standar CaTiO₃ JCPDS No. 82-0229

Reference code:	01-082-0229			
Mineral name: ICSD name:	Perovskite, syn Calcium Titanium Oxide			
Empirical formula:	CaO ₃ Ti			
Chemical formula:	CaTiO ₃			
Crystal system: Space group: Space group number:	Orthorhombic Pbnm 62			
a (Å): b (Å): c (Å): Alpha (°): Beta (°): Gamma (°):	5.4086 5.4553 7.6782 90.0000 90.0000 90.0000			
Calculated density (g/cm ³): Volume of cell (10 ⁶ pm ³): Z:	3.99 226.55 4.00			
RIR:	2.83			
Intensity [%] 100				

Gambar L.3.1 Standar CaTiO₃ JCPDS No. 82-0229.

L.3.2 Data XRD CaTi_{x-1}Fe_xO₃ (x=0)

L.3.2.1 Measurement Conditions

	Dataset Name	СТО		
File name		E:\DATA PENGUJIAN\Pengujian		
	2019\September\Khawiyatur\CT	TO\CTO.rd		
	Comment	Configuration=Reflection-Transmission Sp		
		Goniometer=PW3050/60 (Theta/Theta); Mini		
	Measurement Date / Time	9/19/2019 9:42:00 AM		
	Raw Data Origin	PHILIPS-binary (scan) (.RD)		
	Scan Axis	Gonio		
	Start Position [°2Th.]	20.0084		
	End Position [°2Th.]	79.9844		
	Step Size [°2Th.]	0.0170		
	Scan Step Time [s]	10.1500		
	Scan Type	Continuous		
	Offset [°2Th.]	0.0000		
	Divergence Slit Type	Fixed		
	Divergence Slit Size [°]	0.2500		
	Specimen Length [mm]	10.00		
	Receiving Slit Size [mm]	12.7500		
	Measurement Temperature [°C]	-273.15		
	Anode Material	Cu		
	K-Alpha1 [Å]	1.54060		
	K-Alpha2 [Å]	1.54443		
	K-Beta [Å]	1.39225		
	K-A2 / K-A1 Ratio	0.50000		
	Generator Settings	30 mA, 40 kV		
	Diffractometer Type	XPert MPD		
	Diffractometer Number			
	Goniometer Radius [mm]	200.00		
	Dist. Focus-Diverg. Slit [mm]	91.00		
	Incident Beam Monochromator	No		
	Spinning	No		

L.3.2.3 Peak List:

Tabel L.3.2.3 Puncak-puncak XRD $CaT_{1x-1}Fe_xO_3(x=0)$.						
Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]		
23.2341	185.56	0.0669	3.82847	12.38		
25.9974	40.79	0.1673	3.42747	2.72		
33.1081	1498.50	0.1673	2.70580	100.00		
34.8797	10.19	0.4015	2.57232	0.68		
37.2163	23.49	0.4015	2.41602	1.57		
39.0904	102.41	0.1673	2.30440	6.83		
40.6464	71.61	0.1338	2.21971	4.78		
40.9981	68.92	0.1338	2.20147	4.60		
42.6538	32.15	0.2342	2.11977	2.15		
44.0881	18.71	0.1673	2.05409	1.25		
47.4405	725.03	0.1224	1.91487	48.38		
47.5135	817.67	0.1171	1.91369	54.57		
48.9385	31.96	0.3011	1.86125	2.13		
52.2793	11.63	0.4684	1.74990	0.78		
53.1307	15.25	0.2342	1.72385	1.02		
53.5828	33.65	0.2676	1.71037	2.25		
54.6744	32.44	0.2676	1.67877	2.16		
58.8470	197.16	0.2007	1.56930	13.16		
59.2609	386.19	0.0836	1.55933	25.77		
61.8516	6.51	0.4015	1.50009	0.43		
65.4421	14.12	0.2676	1.42621	0.94		
68.9561	36.74	0.2007	1.36186	2.45		
69.4579	216.91	0.1338	1.35325	14.47		
73.1479	11.99	0.4015	1.29382	0.80		
75.4441	2.33	0.2676	1.26005	0.16		
79.1579	100.56	0.2007	1.20999	6.71		

L.3.3 Data XRD CaTi_{x-1}Fe_xO₃ (x=0,05)

L.3.3.1 Measurement Conditions

Dataset Name	X=0,05
File name	E:\DATA PENGUJIAN\Pengujian
2019\Agustus\Dwi Rahayu\X=0,05\	X=0,05.rd
Comment	Configuration=Reflection-Transmission Sp
	Goniometer=PW3050/60 (Theta/Theta);
Mini	
Measurement Date / Time	9/2/2019 9:33:00 AM
Raw Data Origin	PHILIPS-binary (scan) (.RD)
Scan Axis	Gonio
Start Position [°2Th.]	20.0084
End Position [°2Th.]	79.9844
Step Size [°2Th.]	0.0170
Scan Step Time [s]	10.1500
Scan Type	Continuous
Offset [°2Th.]	0.0000
Divergence Slit Type	Fixed
Divergence Slit Size [°]	0.2500
Specimen Length [mm]	10.00
Receiving Slit Size [mm]	12.7500
Measurement Temperature [°C]	-273.15
Anode Material	Cu
K-Alphal [Å]	1.54060
K-Alpha2 [Å]	1.54443
K-Beta [Å]	1.39225
K-A2 / K-A1 Ratio	0.50000
Generator Settings	30 mA, 40 kV
Diffractometer Type	XPert MPD
Diffractometer Number	1
Goniometer Radius [mm]	200.00
Dist. Focus-Diverg. Slit [mm]	91.00
Incident Beam Monochromator	No
Spinning	No

L.3.3.2 Main Graphics, Analyze View:

L.3.3.3 Peak List:

Pos. [°2Th.]	Height [cts]	FWHM Left	d-spacing	Rel. Int. [%]
		[°2Th.]	[Å]	
22.9555	75.83	0.1338	3.87430	15.78
32.8225	480.63	0.1171	2.72870	100.00
38.8630	26.87	0.2007	2.31735	5.59
40.6930	22.88	0.4684	2.21727	4.76
42.4145	4.65	0.4015	2.13118	0.97
47.2405	285.02	0.1506	1.92411	59.30
48.8073	9.41	0.4015	1.86594	1.96
53.2944	16.92	0.2676	1.71894	3.52
54.4696	10.26	0.5353	1.68460	2.14
58.6402	74.53	0.2007	1.57434	15.51
59.0109	138.24	0.2007	1.56533	28.76
69.2000	82.07	0.1338	1.35766	17.08
78.9094	48.70	0.3346	1.21318	10.13

Tabel L.3.3.3 Puncak-puncak XRD CaTi_{x-1}Fe_xO₃ (x=0,05).

L.3.4 Data XRD CaTi_{x-1}Fe_xO₃ (x=0,10)

L.3.4.1 Measurement Conditions

Dataset Name	X=0,1
File name	E:\DATA PENGUJIAN\Pengujian
2019\Agustus\Dwi Rahayu\X=0,1\X	(=0,1.rd
Comment	Configuration=Reflection-Transmission Sp
	Goniometer=PW3050/60 (Theta/Theta);
Mini	
Measurement Date / Time	9/2/2019 9:12:00 AM
Raw Data Origin	PHILIPS-binary (scan) (.RD)
Scan Axis	Gonio
Start Position [°2Th.]	20.0084
End Position [°2Th.]	79.9844
Step Size [°2Th.]	0.0170
Scan Step Time [s]	10.1500
Scan Type	Continuous
Offset [°2Th.]	0.0000
Divergence Slit Type	Fixed
Divergence Slit Size [°]	0.2500
Specimen Length [mm]	10.00
Receiving Slit Size [mm]	12.7500
Measurement Temperature [°C]	-273.15
Anode Material	Cu
K-Alpha1 [Å]	1.54060
K-Alpha2 [Å]	1.54443
K-Beta [Å]	1.39225
K-A2 / K-A1 Ratio	0.50000
Generator Settings	30 mA, 40 kV
Diffractometer Type	XPert MPD
Diffractometer Number	1
Goniometer Radius [mm]	200.00
Dist. Focus-Diverg. Slit [mm]	91.00
Incident Beam Monochromator	No
Spinning	No

L.3.4.2 Main Graphics, Analyze View

L.3.4.3 Peak List

Pos. [°2Th.]	Height [cts]	FWHM Left	d-spacing	Rel. Int. [%]
		[°2Th.]	[Å]	
22.9690	137.71	0.1673	3.87206	12.11
25.7578	18.93	0.2007	3.45881	1.66
32.8559	1137.40	0.1428	2.72374	100.00
32.9233	1015.59	0.0612	2.72507	89.29
36.9669	20.79	0.2448	2.42973	1.83
38.8669	55.23	0.2448	2.31522	4.86
40.5046	51.81	0.4896	2.22530	4.55
42.3346	11.16	0.4896	2.13325	0.98
44.1904	12.61	0.5712	2.04787	1.11
47.2875	566.64	0.1224	1.92071	49.82
48.7809	18.21	0.6528	1.86535	1.60
53.2966	36.11	0.2448	1.71745	3.17
54.5158	14.74	0.4080	1.68189	1.30
59.1197	244.37	0.3672	1.56142	21.48
69.2363	140.52	0.2040	1.35591	12.35
77.2187	25.87	0.2040	1.23444	2.27
78.9380	76.88	0.2040	1.21181	6.76

L.3.5 Data XRD CaTi_{x-1}Fe_xO₃ (x=0,15)

L.3.5.1 Measurement Conditions

Dataset Name	CTFO X=0,15
File name	E:\DATA PENGUJIAN\Pengujian
2019\Oktober\Riv'ah\CTFO X=0	,15\CTFO X=0,15.rd
Comment	Configuration=Reflection-Transmission Sp
	Goniometer=PW3050/60 (Theta/Theta); Mini
Measurement Date / Time	10/14/2019 10:01:00 AM
Raw Data Origin	PHILIPS-binary (scan) (.RD)
Scan Axis	Gonio
Start Position [°2Th.]	20.0084
End Position [°2Th.]	79.9844
Step Size [°2Th.]	0.0170
Scan Step Time [s]	10.1500
Scan Type	Continuous
Offset [°2Th.]	0.0000
Divergence Slit Type	Fixed
Divergence Slit Size [°]	0.2500
Specimen Length [mm]	10.00
Receiving Slit Size [mm]	12.7500
Measurement Temperature [°C]	-273.15
Anode Material	Cu
K-Alpha1 [Å]	1.54060
K-Alpha2 [Å]	1.54443
K-Beta [Å]	1.39225
K-A2 / K-A1 Ratio	0.50000
Generator Settings	30 mA, 40 kV
Diffractometer Type	XPert MPD
Diffractometer Number	
Goniometer Radius [mm]	200.00
Dist. Focus-Diverg. Slit [mm]	91.00
Incident Beam Monochromator	No
Spinning	No

CENTRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MALANG

L.3.5.3 Peak List

I we the decide it			0,10).	
Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
23.0347	155.96	0.1673	3.86115	10.55
32.1541	50.14	0.2007	2.78387	3.39
32.8804	1478.91	0.1171	2.72402	100.00
36.9854	25.78	0.2007	2.43057	1.74
38.8556	72.40	0.1004	2.31778	4.90
40.4805	70.04	0.1004	2.22842	4.74
42.5087	14.53	0.5353	2.12667	0.98
44.0058	22.59	0.4015	2.05773	1.53
46.6504	58.24	0.1004	1.94706	3.94
47.2988	669.22	0.1506	1.92187	45.25
48.6943	26.32	0.5353	1.87001	1.78
52.0597	14.78	0.4015	1.75676	1.00
53.3437	44.51	0.2676	1.71747	3.01
54.5809	20.57	0.2676	1.68143	1.39
59.0627	332.89	0.2342	1.56409	22.51
65.3357	7.82	0.4015	1.42828	0.53
69.2735	159.93	0.1673	1.35640	10.81
79.0404	86.31	0.3346	1.21150	5.84

Tabel L.3.5.3 Puncak-puncak XRD CaTi_{x-1}Fe_xO₃ (x=0,15).

L.3.6 Data XRD CaTi_{x-1}Fe_xO₃ (x=0,20)

L.3.6.1 Measurement Conditions

Dataset Name	CTFO X=0,2
File name	E:\DATA PENGUJIAN\Pengujian
2019\Oktober\Riv'ah\CTFO X=0	,2\CTFO X=0,2.rd
Comment	Configuration=Reflection-Transmission Sp
	Goniometer=PW3050/60 (Theta/Theta); Min
Measurement Date / Time	10/14/2019 9:52:00 AM
Raw Data Origin	PHILIPS-binary (scan) (.RD)
Scan Axis	Gonio
Start Position [°2Th.]	20.0084
End Position [°2Th.]	79.9844
Step Size [°2Th.]	0.0170
Scan Step Time [s]	10.1500
Scan Type	Continuous
Offset [°2Th.]	0.0000
Divergence Slit Type	Fixed
Divergence Slit Size [°]	0.2500
Specimen Length [mm]	10.00
Receiving Slit Size [mm]	12.7500
Measurement Temperature [°C]	-273.15
Anode Material	Cu
K-Alpha1 [Å]	1.54060
K-Alpha2 [Å]	1.54443
K-Beta [Å]	1.39225
K-A2 / K-A1 Ratio	0.50000
Generator Settings	30 mA, 40 kV
Diffractometer Type	XPert MPD
Diffractometer Number	
Goniometer Radius [mm]	200.00
Dist. Focus-Diverg. Slit [mm]	91.00
Incident Beam Monochromator	No
Spinning	No

CENTRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MALANG

Gambar L.3.6.2 Difraktogram CaTi_{x-1}Fe_xO₃ (x=0,20).

L.3.6.3 Peak List

$1 \text{ aber } 1.5.0.5 \text{ 1 aneak-puneak ARD call x_{x-1} c_x 0_3 (x - 0.20).$							
Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]			
22.6986	72.26	0.1004	3.91757	11.99			
23.0694	66.08	0.1338	3.85542	10.96			
29.1853	81.49	0.1673	3.05994	13.52			
32.1470	124.52	0.0836	2.78447	20.66			
32.8898	602.83	0.0669	2.72327	100.00			
33.0592	596.21	0.0669	2.70969	98.90			
38.9286	33.49	0.6691	2.31360	5.56			
40.6591	29.44	0.5353	2.21904	4.88			
46.6203	175.37	0.1004	1.94825	29.09			
47.3133	291.68	0.2342	1.92132	48.39			
48.5045	64.36	0.2676	1.87688	10.68			
58.0943	75.95	0.0836	1.58783	12.60			
58.7718	145.25	0.1004	1.57113	24.09			
69.4443	59.67	0.5353	1.35348	9.90			

Tabel L.3.6.3 Puncak-puncak XRD CaTi_{x-1}Fe_xO₃ (x=0,20).

L.4.1 Data SEM -EDX CaTi_{x-1}Fe_xO₃ (x=0)

L.4.1.1 Data SEM

Gambar L.4.1.1 Morfologi CaTix-1FexO3 (x=0) yang disintesis dengan metode lelehan garam tunggal NaCl pada perbesaran (a) 20.000x dan (b) 40.000x.

Κ

СК	0.277	2.29	0.05	4.75	1.5286
ΟK	0.525	40.38	0.25	62.82	19.7429
Ca K	3.690	26.02	0.12	16.16	41.0107
Ti K	4.508	31.30	0.18	16.27	37.7178
Total		100.00		100.00	

L.4.2.1 Data SEM

Gambar L.4.2.1 Morfologi CaTi_{x-1}Fe_xO₃ (x=0,05) yang disintesis dengan metode lelehan garam tunggal NaCl pada perbesaran (a) 20.000x dan (b) 40.000x.

				keV			
Element K	(keV) Mass	% Erro	or% Atom%	Compound	Mass%	Cation
СК	0.277	2.52	0.05	5.37			1.6174
ОК	0.525	37.32	0.27	59.66			17.7600
Na K	1.041	0.41	0.08	0.45			0.3161
Ca K	3.690	26.40	0.13	16.85			40.8476
Ті К	4.508	31.47	0.19	16.81			37.2619
Fe K	6.398	1.88	0.42	0.86			2.1970
Total		100.00		100.00			

L.4.2.2 Data EDX

L.4.3 Data SEM -EDX CaTi_{x-1}Fe_xO₃ (x=0,10)

L.4.3.1 Data SEM

Gambar L.4.3.1 Morfologi CaTi_{x-1}Fe_xO₃ (x=0,10) yang disintesis dengan metode lelehan garam tunggal NaCl pada perbesaran (a) 20.000x dan (b) 40.000x.

L.4.3.2 Data EDX

	k	e	١

Element K	(keV) Mass	s% Err	or% At	com%	Compound	Mass%	Cation
СК	0.277	2.89	0.05	6.08				1.8249
O K	0.525	38.12	0.23	60.22				19.1670
Na K	1.041	0.45	0.07	0.50				0.3498
Ca K	3.690	25.52	0.11	16.09				39.4611
Ті К	4.508	29.03	0.17	15.32				34.5110
Fe K	6.398	3.99	0.38	1.80				4.6862
Total		100.00		100.0	0			

L.4.4 Data SEM -EDX CaTi_{x-1}Fe_xO₃ (x=0,15)

L.4.4.1 Data SEM

Gambar L.4.4.1 Morfologi CaTi_{x-1}Fe_xO₃ (x=0,15) yang disintesis dengan metode lelehan garam tunggal NaCl pada perbesaran (a) 20.000x dan (b) 40.000x.

L.4.4.2 Data EDX

Element

(keV)

ĸ						
CI	K	0.277	2.83	0.05	6.01	1.7397
Oł	K	0.525	37.35	0.23	59.61	19.0058
Na H	K	1.041	0.35	0.08	0.39	0.2637
Ca H	ζ	3.690	26.56	0.12	16.92	40.4720
Ti ł	K	4.508	26.74	0.18	14.26	31.3519
Fe H	K	6.398	6.16	0.39	2.82	7.1670
Tota	al		100.00		100.00	

Error%

Atom% Compound Mass%

Cation

Mass⁸

L.4.5.1 Data SEM

Gambar L.4.5.1 Morfologi CaTi_{x-1}Fe_xO₃ (x=0,15) yang disintesis dengan metode lelehan garam tunggal NaCl pada perbesaran (a) 20.000x dan (b) 40.000x.

L.4.5.2 Data EDX

	keV							
Element K	(ke\	/) Mass	% Err	or% Atom%	Compound	Mass%	Cation	
СК	0.277	5.27	0.06	10.62			3.2698	
0 K	0.525	39.32	0.26	59.43			22.2776	
Na K	1.041	0.37	0.09	0.38			0.2781	
Ca K	3.690	24.23	0.14	14.62			37.3921	
Ti K	4.508	22.40	0.21	11.31			26.8091	
Fe K	6.398	8.41	0.47	3.64			9.9734	
Total		100.00		100.00				

CENTRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MALANG

Lampiran 5. Hasil Analisa DRS

L.5.1 Grafik perhitungan band gap CaTiO₃

Lampiran 6. Dokumentasi Penelitian

Gambar L.6.1 Proses penimbangan sampel.

Gambar L.6.2 Penggerusan sampel.

Gambar L.6.3 Sampel sebelum kalsinasi.

Gambar L.6.4 Sampel setelah kalsinasi.

Gambar L.6.5 Produk hasil sintesis CaTi_{x-1}Fe_xO₃ (*x*=0; 0,05; 0,10; 0,15; dan 0,20).

