PENGARUH VARIASI KONSENTRASI H₂SO₄ TERHADAP KARAKTERISTIK MATERIAL GRAPHENE OKISDA TEREDUKSI (rGO) DARI BULU AYAM DENGAN METODE CHEMICAL EXFOLIATION

SKRIPSI

Oleh: <u>RINDU LAKSMITHA DEWI</u> NIM. 15640023

JURUSAN FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2019

PENGARUH VARIASI KONSENTRASI H₂SO₄ TERHADAP KARAKTERISTIK MATERIAL GRAPHENE OKISDA TEREDUKSI (rGO) DARI BULU AYAM DENGAN METODE *CHEMICAL EXFOLIATION*

SKRIPSI

Diajukan kepada: Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang Untuk Memenuhi Salah Satu Persyaratan Dalam Memperoleh Gelar Sarjana Sains (S.Si)

> Oleh: <u>RINDU LAKSMITHA DEWI</u> NIM. 15640023

JURUSAN FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2019

HALAMAN PERSETUJUAN

PENGARUH VARIASI KONSENTRASI H₂SO₄ TERHADAP KARAKTERISTIK MATERIAL GRAPHENE OKISDA TEREDUKSI (rGO) DARI BULU AYAM DENGAN METODE *CHEMICAL EXFOLIATION*

SKRIPSI

Oleh: <u>Rindu Laksmitha Dewi</u> NIM. 15640023

Telah Diperiksa dan Disetujui untuk Diuji Pada tanggal, 6 November 2019

Pembimbing I

Pembimbing II

Erna Hastuti, M.Si. NIP. 19811119 200801 2 009 <u>Utiya Hikmah, M.Si</u> NIP. 19880605 20180201 1 242

Mengetahui Ketua Jurusan Fisika

<u>Drs. Abdul Basid, M.Si.</u> NIP. 19650504 199003 1 003

HALAMAN PENGESAHAN

PENGARUH VARIASI KONSENTRASI H₂SO₄ TERHADAP KARAKTERISTIK MATERIAL GRAPHENE OKISDA TEREDUKSI (rGO) DARI BULU AYAM DENGAN METODE *CHEMICAL EXFOLIATION*

SKRIPSI

Oleh: <u>Rindu Laksmitha Dewi</u> NIM. 15640023

Telah Dipertahankan di Depan Dewan Penguji Skripsi dan Dinyatakan Diterima sebagai Salah Satu Persyaratan untuk Memperoleh Gelar Sarjana Sains (S.Si) Tanggal: 8 November 2019

Penguji Utama :	Dr. Imam Tazi, M.Si. NIP. 19740730 200312 1 002
Ketua Penguji :	<u>Irjan M, Si.</u> NIP. 19691231 200604 1 003
Sekretaris Penguji :	<u>Erna Hastuti, M.Si.</u> NIP. 19811119 200801 2 009
Anggota Penguji :	<u>Utiya Hikmah, M. Si.</u> NIP. 19880605 20180201 2 242

Mengesahkan, Ketua Jurusan Fisika

<u>Drs. Abdul Basid, M.Si.</u> NIP. 19650504 199003 1 003

HALAMAN PERNYATAAN

Saya yang bertanda tangan dibawah ini:

Nama	:	Rindu Laksmitha Dewi	
NIM	:	15640023	
Jurusan	:	Fisika	
Fakultas	:	Sains Dan Teknologi	
Judul Penelitian	:	Pengaruh Variasi Konsentrasi H ₂ SO ₄ Terhadap	
		Karakteristik Material Graphene Oksida Tereduksi (rGO)	
		dari Bulu Ayam dengan Metode Chemical Exfoliation	

Menyatakan dengan sebenar-benarnya bahwa hasil penelitian saya ini tidak terdapat unsur-unsur penjiplakan karya penelitian atau karya ilmiah yang pernah dilakukan atau dibuat oleh orang lain, kecuali yang tertulis dikutip dalam naskah ini dan disebutkan dalam sumber kutipan dan daftar pustaka. Apabila ternyata hasil penelitian ini terbukti terdapat unsur-unsur jiplakan maka saya bersedia untuk menerima sanksi atas perbuatan tersebut.

Malang, 31 Oktober 2019 Yang Membuat Pernyata**an**

Rindu Laksmitha Dewi NIM. 15640023

CENTRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MALANG

ΜΟΤΤΟ

Lakukan yang terbaik dengan tulus dan ikhlas

HALAMAN PERSEMBAHAN

Skripsi ini kupersembahkan untuk:

- Almarhum Papa, Mama dan adik yang selalu mendoakan dan mendukung Rindu sampai saat ini.
- Bude mimi, yang dengan tulus ikhlas mensupport se**gala** kebutuhan Rindu untuk menempuh pendidikan S1.
- Keluarga besar yang selalu percaya dan mendoakan Rindu.
- Ibu dosen pembimbing, yang tak pernah lelah dalam menasehati dan membimbing hingga skripsi ini dapat terselesaikan dengan baik.
- Semua teman terbaik dengan nama dan kisah yang selalu terkenang dalam benak dan ingatan, khususnya Feny, Lilis dan Reni.

KATA PENGANTAR

Segala puji dan syukur kepada Allah SWT yang telah memberikan segala rahmat dan nikmatnya berupa kesehatan, kesempatan, kekuatan, keinginan, serta kesabaran, sehingga penulis dapat menyelesaikan proposal skripsi ini dengan baik. Proposal skripsi yang telah penulis susun ini berjudul "Pengaruh Variasi Konsentrasi H₂SO₄ Terhadap Karakteristik Material Graphene Okisda Tereduksi (rGO) Dari Bulu Ayam Dengan Metode *Chemical Exfoliation*". Sholawat serta salam penulis panjatkan kepada Rasulullah Muhammad SAW, yang telah menuntun manusia dari zaman jahiliyah menuju zaman yang terang benderang dan penuh dengan ilmu pengetahuan yang luar biasa saat ini.

Penulis menyadari bahwa penulisan proposal skripsi ini tidak akan tersusun dengan baik tanpa adanya bantuan dari pihak-pihak yang terkait. Oleh karena itu, pada kesempatan ini penulis mengucapkan banyak terima kasih kepada semua pihak yang telah membantu penulis dalam penyusunan penulisan proposal skripsi ini.

Selanjutnya kami ucapkan terima kasih kepada:

- Prof. Dr. Abdul Haris selaku Rektor Universitas Islam Negeri Maulana Malik Ibrahim Malang
- Dr. Sri Harini, M. Si selaku Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang
- Drs. Abdul Basid, M. Si selaku Ketua Jurusan Fisika Universitas Islam Negeri Maulana Malik Ibrahim Malang
- Erna Hastuti, M. Si selaku Dosen Pembimbing Jurusan Fisika Universitas Islam Negeri Maulana Malik Ibrahim Malang
- 5. Ibu, adik dan keluarga yang selalu mendoakan serta memberi dukungan yang berharga.
- Segenap anggota teman-teman Material Universitas Islam Negeri Maulana Malik Ibrahim Malang yang telah membantu penyusunan proposal ini baik dari segi ide dan waktu.

7. Sahabat-sahabat fisika 2015 yang saya cintai dan semua pihak yang telah membantu penyusunan skripsi ini yang tidak dapat saya sebutkan satu persatu.

DAFTAR ISI

HAI	LAMAN JUDUL	ii
HAI	LAMAN PERSETUJUAN	iii
HAI	LAMAN PENGESAHAN	iv
HAI	LAMAN PERNYATAAN	V
MO	TTO	vi
HAI	LAMAN PERSEMBAHAN	vii
KA	ΓA PENGANTAR	viii
DAI	TAR ISI	X
DAI	TAR GAMBAR	xii
DAI	TAR TABEL	xiii
DAI	TAR LAMPIRAN	xiv
ABS	STRAK	XV
BAH	B I PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	4
1.3	Tujuan Penelitian	5
1.4	Batasan Masalah	5
1.5	Manfaat Penelitian	6
BAH	3 II TINJAUAN PUSTAKA	7
2.1	Bulu Ayam	7
2.2	Karbon	9
2.3	Graphene	10
	2.3.1 Karakteristik Graphene	11
	2.3.2 Sintesis Graphene	12
	2.3.2.1 Mechanical Exfoliation	12
	2.3.2.2 <i>Chemical Exfoliation</i> (<i>CE</i>)	14
	2.3.2.3 Liquid Phase Exfoliation	15
2.4	Graphene Oksida (GO)	16
	2.4.1 Preparasi Graphene Oksida	17
2.5	Graphene Oksida Tereduksi (rGO)	17
2.6	Asam Sulfat (H_2SO_4)	18
2.7	Sifat Listrik	19
	2.7.1 Konduktivitas	19
	2.7.2 Kapasitansi	20
•	2.7.3 Permitivitas	21
2.8	Difraksi Sinar-X (XRD)	22
2.9		23
2.10 Scanning Electron Microscopy (SEM)		24
BAB III METODE PENELITIAN		27
3.1	Jenis Penelitian	27
3.2	waktu dan Tempat Penelitian	27
3.3	Alat dan Bahan Penelitian	27
	3.3.1 Alat Penelitian	27
	3.3.2 Bahan Penelitian	28
	3.3.3 Alat Karakterisasi	28

3.4	Diagra	am Alir Penelitian	29
	3.4.1	Pembuatan Karbon Bulu Ayam	29
	3.4.2	Proses Eksfoliasi	30
	3.4.3	Karakterisasi LCR	31
3.5	Prose	dur Penelitian	32
	3.5.1	Pembuatan Karbon Bulu Ayam	32
	3.5.2	Proses Eksfoliasi	32
	3.5.3	UV-Vis	33
	3.5.4	LCR meter	34
3.6	Analis	sa Data	34
	3.6.1	XRD	34
	3.6.2	UV-Vis	35
	3.6.3	SEM	37
	3.6.4	LCR meter	37
BAB	IV H	ASIL DAN PEMBAHASAN	38
4.1	Data I	Hasil Penelitian	38
4.2	Pemb	ahasan	51
BAB	S V PE	NUTUP	57
5.1	Kesin	ipulan	57
5.2	Saran		57
DAFTAR PUSTAKA			
LAN	IPIRA	N	

DAFTAR GAMBAR

Gambar 2.1	Bulu ayam	7
Gambar 2.2	Struktur skematik single graphene sheet	10
Gambar 2.3	Dua macam rute mekanis eksfoliasi grafit menjadi	
	serpihan graphene	12
Gambar 2.4	Mekanisme eksfoliasi mekanik dengan sonikasi	14
Gambar 2.5	Struktur model dari graphene oksida (GO)	16
Gambar 2.6	Konstanta dielektrik dengan frekuensi medan	
	listrik AC	22
Gambar 2.7	Diagram skematis dari difraktometer sinar-x	23
Gambar 2.8	Spektrofotometri UV-Vis (a) konvensional	
	(b) dioda array	24
Gambar 2.9	Diagram skematik fungsi dasar dan cara kerja SEM	25
Gambar 4.1	Hasil pemanasan bulu ayam pada temperatur	
	250°C	38
Gambar 4.2	Difraktogram sampel bulu ayam	39
Gambar 4.3	Hasil SEM pada sampel 400°C a) perbesaran 2000x	
	b) H_2SO_4 1 M perbesaran 2000x c) perbesaran	
	20.000x d) H ₂ SO ₄ 1 M perbesaran 20.000x	42
Gambar 4.4	Spektrum absorbansi UV-Vis sampel a) karbon 250°C	
	b) karbon 400°C c) karbon 400°C dengan variasi	
	konsentrasi aquades dan H ₂ SO ₄	43
Gambar 4.5	Plot $(\alpha hv)^2$ sebagai fungsi energi foton untuk	
	menentukan energi gap direct karbon dengan penambahan	
	a) aquades b) H_2SO_4 0,5 M c) H_2SO_4 1 M	
	d) $H_2SO_4 \ 1,5 \ M \ e$) $H_2SO_4 \ 2 \ M$	45
Gambar 4.6	Plot $(\alpha hv)^{1/2}$ sebagai fungsi energi foton untuk	
	menentukan energi gap <i>indirect</i> karbon dengan penambahan	
	a) aquades b) $H_2SO_4 0,5 M c$) $H_2SO_4 1 M$	
	d) H ₂ SO ₄ 1,5 M e) H ₂ SO ₄ 2 M	47
Gambar 4.7	Grafik nilai konduktivitas sampel dengan fungsi	
	frekuensi	48
Gambar 4.8	Grafik nilai kapasitansi sampel dengan fungsi	
	frekuensi	49
Gambar 4.9	Grafik nilai permitivitas riil sampel dengan fungsi	
	frekuensi	50
Gambar 4.10) Grafik nilai permitivitas imajiner sampel dengan fungsi	
	frekuensi	51

DAFTAR TABEL

Tabel 2.1 Konten asam amino pada keratin dari bulu ayam	8
Tabel 3.1 Ukuran struktur kristal sampel	35
Tabel 3.2 Data hasil pengujian UV-Vis	36
Tabel 4.1 Nilai FWHM, posisi puncak karbon, dan ukuran	
kristal karbon	41
Tabel 4.2 Nilai absorbansi dan panjang gelombang UV-Vis	44
Tabel 4.3 Nilai band gap direct dan indirect sampel	47
Tabel 4.4 Nilai konduktivitas dan kapasitansi sampel pada	
frekuensi 1 Mhz	49

DAFTAR LAMPIRAN

Lampiran 1 Perhitungan Bahan Lampiran 2 Data dan Perhitungan Hasil XRD Lampiran 3 Hasil SEM Lampiran 4 Data UV Vis Lampiran 5 Data LCR Meter Lampiran 6 Dokumentasi Penelitian

ABSTRAK

Dewi, Rindu Laksmitha. 2019. Pengaruh Variasi Konsentrasi H₂SO₄ terhadap Karakteristik Material Graphene Oksida tereduksi (rGO) dari Bulu Ayam dengan Metode *Chemical Exfoliation*. Skripsi. Jurusan Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing: (I) Erna Hastuti, M.Si (II) Utiya Hikmah, M.Si

Kata Kunci: Bulu Ayam, Karbon, H₂SO₄, Chemical Exfoliation

Bulu ayam merupakan limbah industri pemotongan ayam yang dapat diolah menjadi karbon karena kandungan keratinnya. Karbon dari bulu ayam telah banyak diteliti dan dikembangkan untuk diaplikasikan pada perangkat penyimpanan energi seperti superkapasitor dan baterai. Karbon dipanaskan pada suhu 400°C selama 5 jam dan dieksfoliasi dalam aquades dan H₂SO₄ dengan konsentrasi 0,5 M, 1 M, 1,5 dan 2 M. Hasil karakterisasi mikrostruktur menggunakan XRD menunjukkan bahwa karbon membentuk struktur rGO. Ukuran kristal menurun mencapai 13,53 Å pada karbon yang diekfoliasi dalam larutan H₂SO₄ 2 M. Karbon yang dieksfoliasi pada larutan H₂SO₄ 1,5 M memiliki konduktivitas listrik dan permitivitas tertinggi dengan nilai energi gap terendah mencapai 5,47 eV. Kapasitansi area terbesar dimiliki karbon dengan penambahan H₂SO₄ 2 M.

ABSTRACT

Dewi, Rindu Laksmitha. 2017. The Effect of Various H₂SO₄ Concentrations in Chemical Exfoliation for rGO based on Chicken Feather. Thesis. Physics Department, Faculty of Science and Technology, Maulana Malik Ibrahim State Islamic University, Malang. Advisor: (I) Erna Hastuti, M.Si (II) Utiya Hikmah, M.Si

Keywords: Chicken Feather, Carbon, H2SO4, Chemical Exfoliation

Reduced Graphene Oxide (rGO) has been prepared from chicken feather by rapid reduction of heating at 400°C for 5 hours and chemical exfoliation using various concentration of $H_2SO_4(0,5 \text{ M}, 1 \text{ M}, 1,5 \text{ and } 2 \text{ M})$ and aquades. Microstruture characterization of material using XRD shows that carbon forned reduced graphene oxide (rGO) strucutre and crystallite size decrease after exfoliating process. Carbon exfoliated in $H_2SO_4 2$ M had the smallest crystallite size (13,53 Å). Carbon made into sheets then measured by LCR meter for evaluate it's electrical properties. Carbon exfoliated in $H_2SO_41,5$ M had the highest conductivity and permitivity with a low energy gap (5,47 eV) while carbon exfoliated in H_2SO_42 M had the biggest capacitance compared to any carbon exfoliated in other H_2SO_4 concentrations.

مستخلص البحث

ديوي، ريندو لاكسميتا. 2019. أثر التنقع التركيز (H₂SO₄) لخصائص مادة إنخفاض أكسيد الجرافين (rGO) من ريش الدجاج بالطريقة (*Chemical Exfoliation*). البحث العلمي. قسم الفيزياء، كلية العلوم والتكنولوجية، جامعة مولانا مالك إبراهيم الإسلامية الحكومية مالانج. المشرف: 1) إيرنا هاستوتي الماجستير 2) أعطي حكمة الماجستير.

الكلمات المفتاحية: ريش الدجاج، الكربون، (H2SO4)، (Chemical Exfoliation).

ريش الدجاج هو النفايات الصناعية الذبحة الدجاجة التي تستطيع ان ترعى ان تصبح الكربون لأنّ المحتوى كيراتينه. الكربون من ريش الدجاج كثير الذي بحث وتطوّر لتطبيق في أنواع جهاز تخزين الطاقة مثل السوفركافاسيتورة والبطارية. يسخّن الكربون في الدرجة الحرارة 400 درجة زلزيوس حينما 5 الساعات ويقشر في التنوّع التركيز المحلول ((R 2 RD) يسخّن الكربون في الدرجة الحرارة 400 درجة زلزيوس حينما 5 الساعات ويقشر في التنوّع التركيز المحلول التركيب (rGO) وينقص معيار البلورة بعد يقشر. الكربون الذي يقشر المحلول (R 2 SO4 (M)) يدلّ أنّ الكربون يشكّل الأصغر حتى 13،53 أ. يجعل الكربون ان يصبح الصفحة ليصف الخواص كهربائيته يستخدم (LCR) متر. الكربون الذي يقشر المحلول (R 2 SO4 (M)) يملك الموصلية الكهربائية والسماحية الأعلى بقيمة الطاقة الفجوة الأدني حتى الذي الذي يقشر الحلول (R 2 SO4 (M)) متر. الكربون بزيادة (R 2 SO4) متر. الكربون

BAB I PENDAHULUAN

1.1 Latar Belakang

Ayam merupakan sumber protein hewani yang banyak dikonsumsi oleh masyarakat Indonesia. Menurut data Komoditas Pertanian Subsektor Peternakan (2016), rata-rata produksi daging ayam tiap tahun mencapai 1,55 juta ton. Kontribusi terbesar dalam produksi daging ayam berasal dari Pulau Jawa mencapai 1,07 juta ton selama 5 tahun terakhir. Produksi daging ayam yang meningkat akan berdampak pada limbah yang dihasilkan sehingga dapat menyebabkan pencemaran lingkungan. Oleh karena itu berbagai upaya telah dilakukan untuk mengurangi hal tersebut diantaranya pengolahan bulu ayam untuk pakan ternak (Sari dkk, 2015), berbagai kerajinan tangan , dan adsorpsi ion Pb dalam limbah tekstil (Latifah dkk, 2013)

Firman Allah kepada manusia untuk memanfaatkan binatang ternak terdapat dalam al-Quran surat an-Nahl ayat 5:

وَالْأَنْعَامَ خَلَقَهَا لَكُمْ فِيْهَا دِفْءٌ وَمَنَافِعُ وَمِنْهَا تَأْكُلُوْنَ

"Dan Dia telah menciptakan binatang ternak untuk kamu; padanya ada (bulu) yang menghangatkan dan berbagai-bagai manfaat, dan sebahagiannyaa kamu makan."(Q.S An-Nahl 16:5)

Potongan ayat diatas menjelaskan bahwa Allah SWT menciptakan hewan ternak untuk memenuhi kebutuhan hidup manusia. Hewan ternak merupakan hewan yang dipelihara manusia untuk memenuhi kebutuhan hidupnya, seperti ayam, unta, kambing, sapi dan sebagainya. Manfaat hewat ternak menurut As Suyuthi dan Jalaluddin (1990) pada tafsir Jalalain, yaitu bulu dan kulitnya dapat dibuat pakaian dan selimut untuk menghangatkan tubuh (dan manfaat lainnya), dagingnya untuk dikonsumsi, dan susu untuk diminum. Manusia harus terus menjaga dan memelihara hewan ternak dengan baik agar manfaat dari hewan ternak dapat dimanfaatkan secara maksimal. Oleh karena itu pada penelitian ini digunakan limbah bulu ayam sebagai bahan dasar pembuatan material karbon.

Bulu ayam memiliki kandungan 91% protein (keratin), 1% lemak, dan 8% air (Misra et al, 2004). Kandungan keratin yang tinggi pada bulu ayam menjadi penyebab pemanfaatan limbah yang belum optimal dikarenakan sukar larut dalam air dan sulit dicerna. Bidang ilmu pengetahuan yang terus berkembang menemukan bahwa keratin akan mengeras dan membentuk struktur yang mirip dengan carbon nanotube (CNT) ketika dipanaskan sehingga dapat menghasilkan penyimpanan yang cukup besar (Giraldo, 2013). Bulu ayam sebagai bahan dasar karbon telah banyak diteliti dan dikembangkan untuk diaplikasikan pada berbagai perangkat penyimpanan energi seperti superkapasitor dan baterai.

Penelitian oleh Wang et al, (2013) membuat karbon dari bulu ayam (*Chicken Feather Carbon*) dengan aktivasi KOH yang menghasilkan nilai kapasitansi mencapai 302 F/g sehingga dapat berpotensi diaplikasikan pada elektroda superkapasitor. Elektroda superkapasitor berbahan dasar karbon dapat memberikan daya dan kinerja energi yang baik karena luas permukaan dan nilai konduktivitasnya tinggi (Tetra dkk, 2018). Kabon yang biasa digunakan pada elektroda superkapasitor yaitu karbon mesopori (Lufrano, 2010), karbon CNT (Farma et al, 2013), graphene (Horn, 2019), dan graphene oksida tereduksi (rGO) (Putra, 2017).

Graphene merupakan material yang berbentuk lembaran 2D dengan susunan heksagon karbon (Darminto dkk, 2018). Graphene banyak dikembangkan oleh berbagai peneliti karena memiliki sifat yang baik dalam menghantarkan listrik, konduktivitas termal, sifat mekanik, dan luas permukaan yang tinggi. Lembaran graphene dapat dioksidasi dengan eksfoliasi di dalam air menggunakan ultrasonikasi untuk membentuk satu atau beberapa lembar atom karbon. Lembaran atom karbon ini menjadi material baru yang dinamakan graphene oksida (GO). Sifat yang menarik dari GO yaitu dapat direduksi menjadi lembaran seperti graphene dengan menghilangkan gugus fungsi oksigen, sehingga dapat meningkatkan nilai konduktivitas listrik sebesar 550 Ω^{-1} cm⁻¹ dari 340 Ω^{-1} cm⁻¹ (Pranata, 2015). Material hasil reduksi dari GO ini disebut graphene oksida tereduksi (rGO) (Pei and Cheng, 2012).

Pembuatan rGO dapat dilakukan dengan metode *chemical exfoliation*. Metode ini menggunakan pelarut asam yang mempunyai interaksi yang baik seperti H₂SO₄, HCl, dan H₃PO₄. Kovtyukhova (2014), menggunakan berbagai pelarut asam seperti H₃PO₄, methanesulfonic (MeSO₃H), ethanesulfonic (EtSO₃H), 1-propanesulfonic (n-PrSO₃H) dan dichloroacetic (Cl₂CHCOOH) untuk membentuk rGO. Dari penelitian tersebut didapatkan proses interkalasi asam yang paling efisien untuk membentuk lembaran graphene menggunakan pelarut H₃PO₄. Islamiyah dkk, (2017) membuat rGO yang menghasilkan nilai konduktivitas listrik sebesar 1,1 x 10⁻³ S/m dan energi gap yang rendah mencapai 0,17 eV pada larutan H₂SO₄. Sedangkan pada larutan HCl, konduktivitas listrik lebih rendah dari H₂SO₄ yaitu 3,6x10⁻⁵ S/m dan energi gap yang dihasilkan mencapai 0,19 eV. Hal ini membuat H_2SO_4 lebih efektif dibanding HCl dalam proses eksfoliasi rGO.

Penelitian ini dilakukan untuk menemukan potensi rGO yang dibuat dari bulu ayam dengan suhu pemanasan 400°C dan eksfoliasi dalam variasi konsentrasi H₂SO₄. Variasi konsentrasi H₂SO₄ dilakukan untuk mendapatkan konsentrasi yang tepat, nilai konduktivitas dan kapasitansi terbaik dari sampel. Karakterisasi yang digunakan dalam penelitian ini diantaranya LCR meter untuk mengetahui sifat listrik sampel, XRD untuk mengetahui struktur kristal dan fasa yang terbentuk, SEM untuk mengetahui morfologi sampel, dan UV-Vis untuk mengetahui nilai absorbansi dan energi gapnya.

1.2 Rumusan Masalah

- Bagaimana pengaruh variasi konsentrasi H₂SO₄ terhadap sifat fisis (struktur kristal, fasa yang terbentuk, dan energi gap) material rGO dari bulu ayam?
- 2. Bagaimana pengaruh variasi konsentrasi H₂SO₄ terhadap sifat listrik (konduktivitas, kapasitansi dan permitivitas) material rGO dari bulu ayam?

1.3 Tujuan Penelitian

- Untuk menganalisis pengaruh variasi konsentrasi H₂SO₄ terhadap sifat fisis (struktur kristal, fasa yg terbentuk, dan energi gap) material rGO dari bulu ayam
- Untuk menganalisis pengaruh variasi konsentrasi H₂SO₄ terhadap sifat listrik (konduktivitas, kapasitansi dan permitivitas) material rGO dari bulu ayam?

1.4 Batasan Masalah

- Pengujian ini dilakukan dengan mencampur rGO dari bulu ayam dan variasi konsentrasi H₂SO₄ 0,5 M, 1 M, 1,5 M, 2 M dan aquades untuk larutan standar.
- 2. Penelitian ini akan menggunakan metode chemical exfoliation
- 3. Karakterisasi material rGO yang dilakukan yaitu menggunakan LCR meter untuk mengetahui sifat listrik, XRD untuk mengetahui struktur kristal dan fasa yang terbentuk, SEM untuk mengetahui morfologi sampel, dan UV-Vis untuk mengetahui energi gapnya.

1.5 Manfaat Penelitian

- 1. Secara Umum
 - Memberikan informasi kepada peneliti mengenai potensi bulu ayam sebagai material rGO.
 - b. Menjadi referensi bagi para akademisi untuk dijadikan acuan pada penelitian selanjutnya.
- 2. Secara Khusus
 - a. Meningkatkan pengetahuan penulis tentang material grapahene dan potensi bulu ayam sebagai material graphene oksida tereduksi.
 - b. Meningkatkan pengetahuan penulis tentang metode *chemical exfoliation*

BAB II TINJAUAN PUSTAKA

2.1 Bulu Ayam

Bulu merupakan ciri khas burung dari vertebrata lainnya dan memiliki peranan penting dalam proses fisiologis dan fungsional. Sebagian besar burung seluruh tubuhnya ditutupi dengan bulu kecuali pada paruh, mata, dan kaki. Bulu tidak hanya memberikan kemampuan terbang, tetapi juga berperan dalam mengatur suhu tubuh. Bulu tersusun teratur, strukturnya bercabang hierarkis, dan termasuk struktur keratin paling kompleks yang ditemukan pada vertebrata (Yu, 2002).

Gambar 2.1 Bulu ayam

Bulu ayam mengandung sekitar 91% protein (keratin), 1% lemak, dan 8% air. Urutan asam amino yang utama terdiri dari sistein, glutamin, prolin dan serin seperti yang ditunjukkan pada Tabel 1. Keratin adalah protein yang tidak larut hadir dalam rachis, bulu, kuku, sisik, rambut, kuku (keratin keras). Protein yang termasuk dalam kelompok *scleroprotein* ini, secara intensif sangat kebal terhadap aktivitas fisik, kimia, dan biologis. Stabilitas mekanik dan resistensi yang tinggi terhadap degradasi proteolitik keratin disebabkan adanya ikatan disulfida, ikatan hidrogen, ikatan garam dan ikatan silang (Misra et al, 2004).

Functional Group	Amino Acid	Percent Content
Positively charged	Arginine	4.30
Negatively charged	Aspartic acid	6.00
	Glutamine	7.62
Hydrophobic	Tyrosine	1.00
	Leucine	2.62
11.5	Isoleucine	3.32
	Valine	1.61
1 50 . 8	Cysteine	8.85
	Alanine	3.44
$\sim $	Phenylalanine	0.86
$\langle S \rangle$	Methionine	1.02
Hygroscopic	Threonine	4.00
1 2	Serine	16.00
Special	Proline	12.00
	Asparagine	4.00

Tabel 2.1 Konten asam amino pada keratin dari bulu ayam (Saravanan and Dhurai, 2012)

Bulu ayam terdiri atas α -heliks dan beberapa konformasi- β . *Rachis* bagian luar hampir seluruhnya terdiri dari konformasi- β dan sedikit konformasi α -heliks. Keratin- β memiliki kandungan sistein yang lebih tinggi daripada keratin α -heliks lunak dan dengan demikian kehadiran ikatan disulfida (S-S) yang jauh lebih besar menghubungkan protein keratin yang berdekatan. Adanya ikatan kovalen yang kuat dapat menstabilkan struktur protein tiga dimensi dan sangat sulit untuk putus (Saravanan dan Dhurai, 2012). Bulu mengandung ~ 91% protein keratin, dan dengan demikian, bulu dapat dimanfaatkan menjadi senyawa yang bernilai tinggi atau produk yang terdiri dari protein keratin dan serat keratin.

2.2 Karbon

Karbon adalah elemen dasar dari semua bahan organik, salah satu elemen paling melimpah di bumi dan juga satu-satunya elemen dari tabel periodik yang memiliki bentuk alotropik dari 0 dimensi hingga 3 dimensi karena kemampuan hibridisasinya yang berbeda-beda. Karbon memiliki kemampuan unik untuk membentuk alotrop, yang dapat dijelaskan dengan hibridisasi ikatan valensi, sp^n . Bentuk-bentuk yang terkenal adalah berlian, memiliki n = 3, dan grafit memiliki n = 2. Hibridisasi ikatan valensi menentukan sifat fisik dan kimia dari alotrop karbon. Fullerene (nol-dimensi), nanotube karbon (satu-dimensi) dan graphene (lapisan tunggal grafit, dua dimensi) semuanya terbuat dari atom karbon hibridisasi sp^2 , sedangkan berlian (tiga dimensi) adalah hibridisasi sp^3 (Talat and Srivasta, 2014).

Fullerene, bentuk karbon ketiga, ditemukan pada tahun 1985 oleh Kroto, dan carbon nanotube (CNTs) ditemukan pada tahun 1991 oleh Iijima. Setelah itu, karbon menjadi sangat penting dalam bidang sains dan teknologi. Dengan demikian, tiga-dimensi (3D) (berlian dan grafit), satu-dimensi (1D; CNT), dan alotrop karbon nol-dimensi (0D; fullerene) yang banyak dikenal dalam komunitas karbon. Meskipun pada tahun 1991 telah diketahui bahwa CNT dapat dibentuk dengan menggulung lembaran graphene dua dimensi (2D), dengan satu lapisan dari kristal grafit 3D, isolasi graphene cukup sulit dipahami. Graphene adalah elemen struktural dasar dari beberapa alotrop karbon, termasuk grafit, CNT, dan fullerene. Fullerene seluruhnya terdiri dari karbon dalam bentuk bola yang disebut *bucky balls*. Sedangkan CNTs memiliki susunan tubular. Selama lebih dari dua

10

dekade, bahan-bahan berbasis fullerene dan CNT banyak diterapkan dalam berbagai bidang penelitian seperti elektronik, baterai, kapasitor super, sel bahan bakar, sensor elektrokimia, biosensor, dan aplikasi obat. (Ray, 2015).

2.3 Graphene

Penemuan terbaru pada kelompok struktur nano karbon adalah graphene. Graphene adalah material setebal satu atom yang terdiri dari karbon ikatan sp² dengan struktur sarang lebah. Hal tersebut menyerupai molekul polyaromatik besar dengan ukuran semi tak terbatas. Dalam lima tahun terakhir, bahan nano berbasis graphene telah menjadi fokus tidak hanya oleh ilmuwan material tetapi juga insinyur dan ilmuwan medis. Sifat-sifat menarik dari lembaran graphene layer tunggal diantaranya seperti kekuatan mekanik yang tinggi, elastisitas tinggi, konduktivitas termal, mobilitas elektron pada suhu kamar yang sangat tinggi, sifat optik dan band gap yang dapat diatur membawa kemajuan dalam bidang ilmiah terutama di bidang material, fisika, kimia dan ilmu kedokteran (Talat dan Srivasta, 2014).

Gambar 2.2 Struktur skematik single graphene sheet (Moura et al, 2016)

2.3.1 Karakteristik Graphene

Panjang ikatan C-C pada graphene adalah ~1,42 Å dengan ikatan yang kuat pada lapisan tertentu tetapi memiliki ikatan yang lemah pada antar lapisan. Luas permukaan spesifik dari satu lembar graphene adalah ~2630 m²/g. Graphene memiliki sifat optik yang unik dan luar biasa dengan nilai transmitansi >97,7% dan nilai band gap ~0 - 0,25 eV. Beberapa karakteristik menarik lainnya termasuk mobilitas pembawa yang tinggi sekitar ~200.000 cm²/Vs dan modulus Young yang tinggi yaitu 1.0 TPa. Graphene dan material kompositnya dapat digunakan sebagai semi-konduktor karena sifat konduktornya yang luar biasa. Graphene diasumsikan sebagai blok bangunan dari semua bentuk allotrop grafitik penting lainnya: fullrene-versi graphene yang dibungkus; CNT-versi graphene yang digulung; dan grafit-versi graphene yang ditumpuk. (Geim dan Novoselov, 2007). Beberapa sifat potensial dari graphene adalah sebagai berikut (Chen, S. et al, 2012):

- a. Modulus Young yang tinggi ~1000 GPa
- b. Penghalang kelembaban yang efektif
- c. Konduktivitas listrik yang mirip dengan tembaga
- d. Kepadatan empat kali lebih rendah dari tembaga
- e. Konduktivitas termal lima kali lipat dari tembaga
- f. Pada CNT; luas permukaan sekitar ~2500 m² / g
- g. Kepadatan lebih rendah dari baja tetapi bisa 50 kali lebih kuat

2.3.2 Sintesis Graphene

Grafit adalah lapisan bertumpuk banyak dari lembar graphene yang terikat bersama oleh gaya van der Waals yang lemah. Pada prinsipnya, dimungkinkan untuk menghasilkan graphene dari lembaran grafit dengan kemurnian tinggi bila ikatan ini dapat diputus. Metode eksfoliasi dan pemisahan menggunakan energi mekanik dan kimia untuk memutuskan ikatan lemah ini dan memisahkan masingmasing lembaran graphene. Untuk meningkatkan proses produksi, berbagai metode sintetis telah banyak dikembangkan (Talat dan Srivasta, 2014).

2.3.2.1 Mechanical Exfoliation

a) Pembelahan mikromekanis

Gambar 2.3 Dua macam rute mekanis eksfoliasi grafit menjadi serpihan graphene (Yi dan Shen, 2015)

Mekanika pengelupasan metode ini adalah ketika pita *Scotch* diaplikasikan pada permukaan HOPG (Highly Ordered Pyrolite Graphite), dapat memberikan gaya normal. Jika seseorang berusaha keras untuk mengulangi gaya normal ini berkali-kali, lapisan grafit dapat menjadi lebih tipis dan akhirnya ia akan menjadi graphene *single-layer*. Metode ini dapat digunakan untuk menyiapkan lembaran graphene berkualitas tinggi dengan

13

area permukaan yang luas. Berdasarkan sampel graphene yang disiapkan dengan metode ini, banyak sifat graphene yang luar biasa telah ditemukan. Namun, metode ini sangat tidak efisien dan memakan waktu yang lama. Metode ini hanya terbatas pada penelitian laboratorium dan tampak mustahil untuk diterapkan pada produksi industri (Yi dan Shen, 2015).

b) Sonikasi

Metode ini sangat menarik dan membuka pandangan baru untuk produksi graphene dengan skala besar dan murah. Manfaat dari metode ini adalah menghasilkan graphene tampaknya sangat mudah. Masalah dari metode ini adalah konsentrasi graphene yang sangat rendah (~0,01 mg mL⁻ ¹), yang jauh dari aplikasi praktis. Setelah pekerjaan ini, berdasarkan ide yang sama, banyak sekali peneliti telah berkontribusi untuk mencapai graphene konsentrasi tinggi dengan memperpanjang waktu sonication, meningkatkan konsentrasi grafit awal, menambahkan surfaktan dan polimer, metode pertukaran pelarut, pencampuran pelarut, dll. (Yi dan Shen, 2015).

Ketika energi permukaan graphene dan pelarut dekat, entalpi pencampuran akan lebih kecil dan eksfoliasi (pengelupasan) terjadi lebih mudah. Oleh karena itu, energi permukaan pelarut sangat penting untuk pengelupasan. Dengan menggunakan berbagai pelarut dengan energi permukaan yang berbeda dan mengukur konsentrasi yang sesuai dari dispersi graphene yang dihasilkan, energi permukaan pelarut yang optimal dapat diperkirakan secara kasar (Yi dan Shen, 2015).

Gambar 2.4 Mekanisme eksfoliasi mekanik dengan sonikasi (Yi dan Shen, 2015)

Dalam metode sonikasi, mekanika pengelupasan berasal dari kavitasi cair, seperti yang diilustrasikan pada Gambar. 2.7. Gelembung yang diinduksi kavitasi menyebar di sekitar serpihan grafit. Ketika gelembung-gelembung ini runtuh, jet-mikro dan gelombang kejut akan bekerja pada permukaan grafit secara instan, menghasilkan gelombang tekanan yang merambat ke seluruh bagian grafit. Menurut teori gelombang tegangan, begitu gelombang tekan menyebar ke antarmuka bebas grafit, gelombang tegangan tarik akan dipantulkan kembali ke bagian-bagian grafit. Dengan demikian, keruntuhan banyak mikro-gelembung akan terjadi secara intensif

2.3.2.2 Chemical Exfoliation (CE)

Salah satu metode lain yang umum digunakan untuk sintesis graphene dengan kualitas baik dan murah adalah metode CE. Hal ini termasuk dengan penggunaan suara ultrasonik pada larutan dan tahap interkalasi. Pada metode ini penggunaan suara ultrasonik dibantu juga dengan larutan air-surfaktan sebagai pelarut *graphite*. Metode CE telah dikenal luas karena metode ini memungkinkan dilakukan tanpa zat tambahan dalam pelarut organik yang mempunyai afinitas tinggi untuk *graphite* dimana ultrasonik digunakan untuk memberikan energi pada pembelahan lapisan *graphene*. Keberhasilan penggunaan ultrasonik dipengaruhi oleh pemilihan pelarut dan surfaktan yang diiringi dengan frekuensi , amplitudo dan waktu sonikasi (Wisnuwijaya, 2017).

2.3.2.3 Liquid Phase Exfoliation

Graphite dapat dieksfoliasi dengan baik dalam bentuk larutan menggunakan suara ultrasonik untuk memecahkan lapisan-lapisan graphite. LPE pada dasarnya terjadi pada tiga tahap : 1) dispersi graphite pada pelarut , 2) eksfoliasi , dan 3) pemurnian. Metode LPE dibagi menjadi 2 jenis, yaitu metode LPE dengan dan tanpa bantuan surfaktan. Metode LPE dengan surfaktan menjelaskan bahwa pengelupasan graphene dapat diproduksi oleh eksfoliasi dari surfaktan pada graphite melalui dispersi kimiawi, dilanjutkan dengan ultrasonikasi pada larutan organik. Sedangkan metode LPE tanpa surfaktan menjelaskan bahwa pada proses sonikasi, terdapat gaya pengikisan dan kavitasi yang menyebabkan kemunculan dan pemecahan gelembung berukuran mikrometer yang mengakibatkan eksfoliasi pada material yang berukuran besar (*bulk*). Proses sonikasi langsung tanpa bantuan surfaktan pada larutan graphite dapat disebut juga dengan metode *liquid sonication exfoliation* (Ciesielski, 2013).

2.4 Graphene Oksida (GO)

Skalabilitas merupakan faktor penting untuk sintesis graphene, dan salah satu pendekatan paling populer terhadap eksfoliasi grafit adalah penggunaan zat pengoksidasi yang kuat untuk mendapatkan Graphene oxide (GO), yaitu bahan karbon yang hidrofilik dan nonkonduktif (Alam dkk, 2017).

Gambar 2.5 Struktur model dari graphene oksida (GO) (Lerf et al, 1998)

Menurut Li et al, (2014) terdapat dua masalah utama dalam memperoleh graphene. Masalah pertama adalah tentang bagaimana dapat menghasilkan lembaran graphene pada skala yang cukup. Seperti telah diketahui bahwa graphite, meskipun harganya murah dan tersedia dalam jumlah banyak, graphite tidak mudah terkelupas untuk menghasilkan lembaran graphene satu lapis. Masalah kedua adalah bahwa lembaran graphene sulit digabungkan dan didistribusikan secara homogen ke berbagai matriks untuk aplikasi. Sebagai solusi, graphene oxide (GO) yang mengandung banyak kelompok berbasis oksigen dapat diperoleh dengan mudah dari oksidasi graphite. GO dipandang sebagai pendahulu untuk menghasilkan graphene (mengurangi GO) dengan reaksi kimia dan termal.

2.4.1 Preparasi Graphene Oksida

Proses preparasi GO melibatkan dua langkah seperti yang ditunjukkan pada gambar 2.5. Langkah pertama yaitu pembuatan GO dari serbuk graphite yang dapat dilakukan dengan mendispersi graphite dalam air atau pelarut polar lainnya karena adanya gugus hidroksil dan epoksida di bidang basal gugus GO dan karbonil serta karboksil pada bagian tepi. Langkah kedua, bongkahan GO dapat dikelupas oleh sonikasi atau perlakuan lainnya untuk membentuk suspensi koloid dari lapisan monolayer, lapisan dua lapis atau beberapa lapisan GO dalam pelarut yang berbeda. Titik kritis dalam preparasi GO adalah pemilihan bahan pengoksidasi yang sesuai untuk mengoksidasi graphite (Li dkk, 2014).

2.5 Graphene Oksida tereduksi (rGO)

Reduksi adalah reaksi yang paling dipahami dan paling jelas di mana GO dapat terlibat. Larutan GO yang dengan cepat mengubah warnanya dari kuningcoklat menjadi hitam, menandakan pemulihan jaringan sp² terkonjugasi dan pembentukan struktur grafis. Namun, dengan ciri khas GO, jaringan graphene asli tidak sepenuhnya pulih. Hal ini karena GO sendiri sudah sangat rusak karena defect yang ada tidak dapat diperbaiki selama proses reduksi. Dua jenis spesies yang berbeda tetap pada rGO setelah reduksi yitu hole dan beberapa fungsi oksigen (Eigler dan Dimiev, 2017).

Pengurangan bahan kimia tidak pernah menghasilkan bahan seperti graphene yang sangat konduktif karena sifat rGO yang sangat rusak dan keberadaan fungsi oksigen yang tersisa. Untuk meningkatkan konduktivitas, rGO yang diperoleh harus dianil pada sekitar 900°C-1000°C. Setelah anil, konduktivitas dapat meningkat dua atau tiga kali lipat dan mencapai nilai 200-300 Scm⁻¹. Ini terjadi karena rekonstruksi jaringan karbon yang signifikan pada suhu tinggi. Konduktivitas rGO tidak hanya tergantung pada efektivitas metode reduksi, tetapi juga pada kualitas (densitas cacat) dari prekursor GO. Inilah sebabnya mengapa, untuk membandingkan keefektifan agen pereduksi yang berbeda, seseorang perlu memasukkan prekursor GO yang sama ke agen pereduksi yang berbeda (Eigler dan Dimiev, 2017).

2.6 Asam Sulfat (H₂SO₄)

Asam sulfat atau juga dikenal sebagai hidrogen sulfat, merupakan asam mineral yang sangat korosif, jernih, tidak berwarna, tidak berbau, dan kuat dengan rumus H₂SO₄. Dalam industri modern, asam sulfat merupakan bahan kimia komoditas penting, dan digunakan terutama untuk produksi asam fosfat. Ini juga baik untuk menghilangkan oksidasi dari besi dan baja, sehingga digunakan dalam jumlah besar oleh produsen logam (Cheremisinoff et al, 2010). Asam sulfat memiliki berat jenis 1,8357 gr dan titik didih normal 274°C. Asam sulfat diproduksi dari unsur sulfur dalam tiga tahap proses (Speight, 2017):

$$S + O_2 \rightarrow SO_2$$
 (2.1)

$$2SO_2 + O_2 \rightarrow 2SO_3 \tag{2.2}$$

$$SO_3 + H_2O \rightarrow H_2SO_4$$
 (2.3)

Karena reaksi belerang dengan udara kering bersifat eksoterm, belerang dioksida harus didinginkan untuk menghilangkan panas berlebih dan menghindari reaksi balik.

Asam sulfat mudah bereaksi dengan banyak senyawa organik untuk menghasilkan berbagai macam produk. Asam sulfat membentuk garam yang mengendap dengan kalsium oksida atau hidroksida. Asam sulfat pekat juga merupakan agen dehidrasi yang baik dan dapat berfungsi sebagai agen pengoksidasi. Viskositas asam sulfat mencapai 25 mPas pada suhu ruang 25°C.

2.7 Sifat Listrik

2.7.1 Konduktivitas

Salah satu sifat listrik yang paling penting dari material padat adalah proses mentransmisikan arus listrik. Hukum ohm berkaitan dengan arus I dan tegangan V yang diberikan sebagai berikut (Callister, 2007).

$$V = I R \tag{2.4}$$

dimana R adalah resistansi dari material yang dilalui oleh arus. Satuan V, I, R adalah Volts (J/C), amperes (C/s) dan ohm (V/A).

Konduktivitas listrik AC menunjukkan pengaruh frekuensi yang mengindikasikan lompatan elektron pada sampel karbon dan dapat dihitung menggunakan persamaan (Kazmi et al, 2017):
$$\sigma_{AC} = \varepsilon_r' \varepsilon_0 \omega D \tag{2.5}$$

Dimana ω merupakan frekuensi sudut dan ε_0 merupakan permitivitas vakum (8,854 x 10⁻¹² F/m). Telah diamati bahwa konduktivitas AC meningkat seiring dengan peningkatan aplikasi yang diberikan karena frekuensi yang tinggi meningkatkan frekuensi lompatan elektron yang lebih tinggi.

2.7.2 Kapasitansi

Ketika voltase diberikan pada kapasitor, satu pelat menjadi bermuatan positif dan yang lainnya bermuatan negatif dengan medan listrik, sesuai diarahkan dari positif ke negatif. Kapasitansi C terkait dengan jumlah muatan yang disimpan pada kedua pelat Q oleh (Callister, 2007):

$$C = \frac{Q}{V}$$
(2.6)

dimana V adalah tegangan yang diberikan kepada kapasitor. Satuan kapasitansi adalah Coulomb per volt atau Farads (F). Kapasitansi dapat dihitung dari hubungan (Callister, 2007):

$$C = \varepsilon_0 \frac{A}{l} \tag{2.7}$$

dimana A merepresentasikan area dari lempengan, dan l adalah jarak diantara kedua lempeng. Parameter ε_0 merupakan permitivitas vakum yang memiliki nilai konstanta 8,85 x 10⁻¹² F/m.

2.7.3 Permitivitas

Konstanta dielektrik adalah salah satu karakteristik material yang menjadi pertimbangan utama untuk desain kapasitor. Permitivitas relatif yang sering disebut konstanta dielektrik, adalah sama dengan rasio:

$$\epsilon_{r=\frac{\epsilon}{\epsilon_0}}$$
 (2.8)

yang lebih besar dari satu dan mewakili peningkatan kapasitas penyimpanan muatan dengan memasukkan media dielektrik di antara pelat (Callister, 2007).

Pengaruh frekuensi konstanta dielektrik riil dapat dihitung menggunakan persamaan (Kazmi et al, 2017):

$$\varepsilon_r' = \frac{Cp t}{\varepsilon_{0 A}} \tag{2.9}$$

Dimana 'Cp' adalah kapasitansi dalam farad (F), 't' adalah ketebalan pelet, ε_0 merupakan permitivitas vakum (8,854 x 10⁻¹² F/m) dan 'A' adalah luas permukaan dari pelet.

Konstanta dielektrik imajiner ε_r " untuk semua sampel dihitung menggunakan persamaan (Kazmi et al, 2017):

$$\varepsilon_r = \varepsilon_r' \tan \delta$$
 (2.10)

Dimana tan δ merupakan *dielectric loss* (D) yaitu energi yang hilang dari tegangan yang diberikan pada sampel (energi ini adalah disipasi panas) dan kemudian dinamakan sebagai *dielectric loss*.

Peningkatan kapasitansi, atau konstanta dielektrik, dapat dijelaskan dengan menggunakan model polarisasi yang disederhanakan dalam bahan dielektrik. Polarisasi adalah penyelarasan momen dipol atom atau molekul permanen atau terinduksi dengan medan listrik yang diterapkan secara eksternal. Dipol tidak dapat terus bergeser arah orientasi ketika frekuensi medan listrik yang diterapkan melebihi frekuensi relaksasi dan, oleh karena itu, tidak akan memberikan kontribusi pada konstanta dielektrik. Ketergantungan pada frekuensi dapat dilihat secara skematis pada gambar 2.7. Seperti ditunjukkan pada gambar 2.7, ketika mekanisme polarisasi berhenti berfungsi, ada penurunan pada konstanta dielektrik (Callister, 2007).

Gambar 2.6 Konstanta dielektrik dengan frekuensi medan listrik AC (Callister, 2007)

2.8 Difraksi Sinar-X (XRD)

Sinar-X adalah radiasi elektromagnetik energi tinggi. Sinar-X memiliki rentang energi dari sekitar 200 eV hingga 1 MeV, dimana berada diantara sinar gamma dan radiasi ultraviolet (UV) dalam spektrum elektromagnetik. Hal ini penting untuk menyadari bahwa tidak ada batasan batasan tajam diantara perbedaan daerah dari spektrum elektromagnetik (Suryanarayana dan Norton, 1998). Difraktometer adalah alat yang digunakan untuk menentukan sudut di mana difraksi terjadi untuk spesimen bubuk; fitur-fiturnya ditampilkan secara skematis pada Gambar 3.20. Spesimen S dalam bentuk pelat datar didukung sehingga rotasi tentang sumbu berlabel O dimungkinkan; sumbu ini tegak lurus terhadap bidang halaman. Sinar x-monokromatik dihasilkan pada titik T, dan intensitas sinar yang terdifraksi dideteksi dengan penghitung berlabel C pada gambar. Spesimen, sumber x-ray, dan counter semuanya coplanar (Callister, 2007).

Gambar 2.7 Diagram skematis dari difraktometer sinar-x (Callister, 2007)

Penghitung dipasang pada carrier bergerak yang juga dapat diputar di sumbu O; posisi sudut dalam hal ditandai pada skala lulus. Carriage dan spesimen digabungkan secara mekanis sedemikian sehingga rotasi spesimen melalui disertai oleh rotasi counter; ini memastikan bahwa sudut insiden dan refleksi dipertahankan sama satu sama lain (Callister, 2007).

2.9 UV-Vis

Menurut Owen (2000), terdapat dua jenis spektrofotometer UV-Vis, yaitu spektrofotometer konvensional dan spektrofotometer *dioda array*.

Spektrofotometer konvensional menggunakan cahaya polikromatis sebagai sumber cahaya yang didispersikan menjadi cahaya monokromatis menggunakan monokromator. Cahaya monokromatis ini dilewatkan pada sampel dan sinar transmisinya akan terdeteksi oleh detektor. Sedangkan pada spektrofotometer *dioda array* cahaya polikromatis dilewatkan pada sampel kemudian diteruskan pada polikromator. Dispersi cahaya dari polikromator akan terdeteksi oleh dioda.

Gambar 2.8 Spektrofotometri UV-Vis (a) konvensional (b) dioda array (Owen, 2000)

2.10 Scanning Electron Microscopy (SEM)

SEM terdiri dari sebuah senapan elektron yang memproduksi berkas elektron pada tegangan dipercepat 2-30 kV. Berkas elektron tersebut dilewatkan pada beberapa lensa elektromagnetik untuk menghasilkan image beukurab<~10nm pada sampel yang ditampilkan dalam bentuk film fotografi atau ke dalam tabung layer (Trewin, 1998). Diagram skematik dan cara kerja SEM digambarkan sebagai berikut:

Gambar 2.9 Diagram skematik fungsi dasar dan cara kerja SEM (Anggraeni, 2008)

SEM digunakan untuk mengamati permukaan kasar dengan perbesaran antara 20 kali sampai 500.000 kali. Sebelum melalui lensa elektromagnetik terakhir *scanning raster* mendeflesikan berkas elektron untuk men-*scan* permukaan sampel. Hasil scan ini tersinkronisasi dengan tabung sinar katoda dan gambar sampel akan tampak pada area yang di scan. Tingkat kontras yang tampak pada tabung sinar katoda timbul karena hasil refleksi yang berbeda-beda dari sampel. Sewaktu berkas elektron menumbuk permukaan sampel sejumlah elektron direfleksikan sebagai *backscattered electron* (BSE) dan yang lain membebaskan energi rendah *secondary electron* (SE). Emisi radiasi elektromagnetik dari sampel timbul pada panjang gelombang yang bervariasi tapi pada dasarnya panjang gelombang yang lebih menarik untuk digunakan adalah daerah panjang gelombang cahaya tampak (*cathodoluminescence*) dan sinar-X (Anggraeni, 2008).

26

Elektron-elektron BSE dan SE yang direfleksikan dan dipancarkan sampel dikumpulkan oleh sebuah *scintillator* yang memancarkan sebuah pulsa cahaya pada elektron yang datang. Cahaya yang dipancarkan kemudian diubah menjadi sinyal listrik dan diperbesar oleh *photomultiplier*. Setelah melalui proses pembesaran sinyal tersebut dikirim ke bagian *grid* tabung sinar katoda. *Scintillator* biasanya memiliki potensial positif sebesar 5 – 10 kV untuk mempercepat energi rendah yang dipancarkan elektron agar cukup untuk mengemisikan cahaya tampak ketika menumbuk *scintillator*. *Scintillator* harus dilindungi agar tidak terkena defleksi berkas elektron utama yang memiliki potensial tinggi. Pelindung metal yang mengandung metal *gauze* terbuka yang menghadap sampel memungkinkan hampir seluruh elektron melalui permukaan *scintillator* (Anggraeni, 2008).

BAB III METODE PENELITIAN

3.1 Jenis Penelitian

Penelitian ini termasuk jenis eksperimen untuk membuat material rGO dari bulu ayam dengan variasi konsentrasi larutan H₂SO₄. Selanjutnya, dilakukan karakterisasi dengan menggunakan XRD, UV-Vis, SEM, dan LCR meter.

3.2 Waktu dan Tempat Penelitian

Penelitian dilakukan mulai bulan Maret 2019, bertempat di Laboratorium Riset Material Jurusan Fisika Fakultas Sains dan Teknologi. Pengujian XRD dilakukan di Institut Teknologi Surabaya. Pengujian UV-Vis dan LCR dilakukan di Universitas Islam Negeri Maulana Malik Ibrahim Malang, dan untuk pengujian SEM dilakukan di Laboratorium Sentral Universitas Negeri Malang.

3.3 Alat dan Bahan Penelitian

3.3.1 Alat Penelitian

Alat-alat yang digunakan dalam penelitian ini antara lain:

- 1. Gelas Beaker
- 2. Vial
- 3. Hot Plate Stirrer
- 4. Bar Magnetic
- 5. Spatula
- 6. Caawan Petri
- 7. Timbangan digital

- 8. Mortar Alumina
- 9. Krusibel
- 10. Ultrasonic Cleaner
- 11. Oven
- 12. Furnace
- 13. Ayakan 250 mesh screen

3.3.2 Bahan Penelitian

Bahan-bahan yang digunakan dalam penelitian ini antara lain:

- 1. Bulu ayam
- 2. Aquades
- 3. H₂SO₄ 98%
- 4. NaOH 0,25 M
- 5. PVDF (Polyvinil difluoride)
- 6. DMSO (Dimethyl Sulfoxide)

3.3.3 Alat Karakterisasi

- 1. XRD (X-Ray Diffraction)
- 2. UV-Vis Spectroscopy
- 3. SEM (Scanning Electron Microscopy)
- 4. LCR Meter

3.4 Diagram Alir Penelitian

3.4.1 Pembuatan Karbon Bulu Ayam

3.5 Prosedur Penelitian

Langkah-langkah dalam penelitian ini dimulai dari proses pembuatan karbon bulu ayam, kemudian proses eksfoliasi menggunakan larutan H₂SO₄ dan ultrasonic cleaner. Karakterisasi dilakukan untuk mengetahui sifat fisis dan listrik dari sampel.

3.5.1 Pembuatan Karbon Bulu Ayam

- Bulu ayam yang sudah dicuci dikeringkan pada suhu 75°C selama satu jam sampai kandungan air pada bulu ayam teruapkan sepenuhnya.
- Dimasukan kedalam oven untuk dipanaskan sampai menjadi karbon pada suhu 250 °C selama 30 menit.
- 3. Kemudian karbon bulu ayam dihaluskan menggunakan mortar sampai terbentuk serbuk dengan ukuran 250 mesh.
- 4. Dikarakterisasi dengan uji XRD dan UV-Vis.
- Karbon bulu ayam dipanaskan kembali dalam furnace pada temperatur 400°C dengan waktu tahan 5 jam untuk mengoksidasi sampel. Sampel dalam krusibel tidak ditutup agar oksidasi terjadi secara sempurna.

3.5.2 Proses Eksfoliasi

- Disiapkan sampel arang bulu ayam yang telah dipanaskan tadi dengan massa 15 gram.
- Sampel dicampur dengan larutan H₂SO₄ 150 ml variasi konsentrasi 0,5
 M, 1 M, 1,5 M dan 2 M dan aquades sebagai larutan standar.

- Larutan H₂SO₄ yang telah dicampur dengan sampel diaduk selama 2 jam pada suhu 75°C dengan kecepatan 400 rpm menggunakan hot plate stirrer.
- Proses eksfoliasi dilakukan dengan mensonikasi sampel yang telah dicampur H₂SO₄ menggunakan ultrasonic cleaner selama 5 jam.
- 5. Sampel kemudian dicuci menggunakan NaOH dan aquades untuk menghilangkan kadar keasaman sampel.
- Setelah pH sampel netral, sampel dikeringkan di oven dengan suhu 100°C selama 2 jam untuk menghilangkan kadar air dan siap untuk uji karakterisasi menggunakan XRD, UV-Vis, SEM, dan LCR meter.

3.5.3 UV-Vis

- Serbuk sampel sebanyak 1 gr dimasukan ke dalam vial yang berisi 10 ml aquades.
- 2. Sampel disonikasi selama 1 jam agar serbuk rgo larut sempurna d**alam** aquades.
- 3. Setelah proses sonikasi, sampel ditutup rapat agar tidak terkontaminasi.
- Sampel kemudian didiamkan selama 24 jam agar serbuk sampel dalam aquades dapat mengendap.
- 5. Cairan sampel yang bening dan tidak ada endapan diambil menggunakan pipet.
- Sampel dimasukan dalam wadah sampel untuk diuji lebih lanjut dengan UV-Vis.

3.5.4 LCR meter

- PVDF sebanyak 0,08 gram dilarutkan dalam dmso 2 ml pada suhu 90°C dengan kecepatan 250 rpm.
- Setelah pvdf telah larut sepenuhnya, serbuk sampel dimasukkan sebanyak 0,1 gram, kemudian diaduk pada suhu 70°C.
- 3. Serbuk sampel yang telah larut dalam pvdf dan dmso dituang ked**alam** cetakan untuk membentuk lembaran.
- 4. Sampel dipanaskan sampai mengering.
- 5. Setelah sampel mengering, sampel dilapisi pasta perak untuk diuji LCR.
- 6. Pengujian LCR dlilakukan dari frekuensi 500 Hz sampai 1 MHz.

3.6 Analisa Data

Data yang diambil dalam penelitian ini adalah data pengujian sifat fisis dan sifat listrik. Pengujian sifat fisis menghasilkan data struktur kristal, fasa yg terbentuk, dan energi gap. Pengujian sifat listrik menghasilkan data impedansi, konduktansi, dan kapasitansi.

3.6.1 XRD

Sampel uji yang digunakan berupa serbuk sebanyak 1 gram. Setelah diuji, data XRD dianalisis menggunakan aplikasi Highscore untuk mengetahui fasa yang terbentuk, struktur kristal, ukuran kristal, dan puncak difraksi. Puncak yang terbentuk setelah dianalisis dicocokan dengan hasil XRD dari jurnal lain untuk mengetahui jenis material yang terbentuk. Ukuran kristal (D) dan jarak antar lapisan (d) dapat dihitung dengan persamaan Scherrer (Callister,2007):

$$D = \frac{\kappa\lambda}{\beta\cos\theta} \tag{3.1}$$

$$d = \frac{\lambda}{2\sin\theta} \tag{3.2}$$

Tabel 3.1 Ukuran struktur kristal sampel

No	Sampel	FWHM	20	d	D
1	Karbon 250°C	ALIK	14		
2	Karbon 400°C		80		
3	Karbon + Aquades		7		
4	Karbon + H_2SO_4 0.5 M	1719	13	1 m	
5	Karbon + H_2SO_4 1 M	1, -1 1	las	$\leq \pi$	
6	Karbon + H_2SO_4 1,5 M				
7	Karbon + $H_2SO_4 2 M$		$\mathcal{V} = \mathcal{C}$		

3.6.2 UV-Vis

- 1. Hasil uji spektrometer UV-Vis berupa spektrum absorpsi dan panjang gelombang
- Data panjang gelombang (λ) digunakan untuk mencari photon energy (hv) dengan menggunakan persamaan (Kazmi et al, 2017):

$$hv = 1240/\lambda \tag{3.3}$$

3. Data absorbansi (A) digunakan untuk mengetahui nilai α pada persamaan (Kazmi et al, 2017):

$$\alpha = 2,303 \times A \tag{3.4}$$

4. Data α dan hv kemudian dimasukan kedalam persamaan band gap direct dan indirect. Pada band gap direct (Kazmi et al, 2017):

$$(\alpha h v)^2 \tag{3.5}$$

Pada band gap indirect (Kazmi et al, 2017):

$$(\alpha hv)^{1/2}$$
 (3.6)

- 5. Kemudian dibuat plot grafik hubungan $hv \, dan \, (\alpha hv)^2$ untuk band gap direct dan plot hubungan $hv \, dan \, (\alpha hv)^{1/2}$ untuk band gap indirect.
- Masing-masing plot akan memberikan garis yang lurus pada daerah tertentu. Ekstrapolasi dari garis lurus ini akan mengintersepsi pada sumbu hv untuk memberikan nilai energi gap.
- 7. Nilai absorbansi, panjang gelombang, dan energi gap dapat ditunjukkan pada tabel 3.2.

1 0	J			
Sampel	Absobansi	Panjang	Energi Gap	Energi Gap
		Gelombang	direct	indirect
		(nm)	5 //	
Karbon + Aquades	ERP	IS In		
Karbon + $H_2SO_4 0.5 M$				
Karbon + H_2SO_4 1 M				
Karbon + H_2SO_4 1,5 M				
Karbon + $H_2SO_4 2 M$				

Tabel 3.2 Data hasil pengujian UV-Vis

3.6.3 SEM

Hasil karakterisasi menggunakan SEM didapatkan dalam bentuk gambar morfologi sampel dengan beberapa perbesaran. Kemudian hasil SEM untuk sampel standar dan sampel yang telah diberi perlakuan dibandingkan dengan perbesaran yang sama untuk melihat perubahan struktur partikel yang ada dalam sampel. Kemudian dicocokan kembali dengan hasil penelitian dari jurnal sebelumnya.

3.6.4 LCR meter

- 1. Hasil uji lcr berupa CP, Rp, D dan teta.
- 2. Nilai konduktivitas didapatkan dari persamaan (Kazmi et al, 2017):

$$\sigma_{AC} = \varepsilon_r' \varepsilon_0 \omega D \tag{3.7}$$

Dimana ε'_r merupakan permitivitas riil. ε_0 merupakan permitivitas vakum, ω merupakan frekuensi sudut, dan D adalah disipasi energi.

- 3. Nilai kapasitansi area didapatkan dengan membagi nilai Cp pada LCR dengan luas penampang sampel (A).
- Nilai Permitivitas riil (ε_r') dan imajiner (ε_r ") didapatkan dari persamaan (Kazmi et al, 2017):

$$\varepsilon_r' = \frac{Cpt}{\varepsilon_0 A} \tag{3.8}$$

$$\varepsilon_r " = \varepsilon_r' . D \tag{3.9}$$

 Konduktivitas, kapasitansi, permitivitas riil dan imajiner diplot sebagai fungsi frekuensi.

BAB IV HASIL DAN PEMBAHASAN

4.1 Data Hasil Penelitian

Preparasi sampel dilakukan di Laboratorium Riset Fisika Universitas Islam Negeri Maulana Malik Ibrahim Malang. Karakterisasi XRD sampel dilakukan di Institut Teknologi Sepuluh November, UV-Vis di Jurusan Kimia Universitas Islam Negeri Maulana Malik Ibrahim Malang, SEM di Laboratorium Sentral Universitas Negeri Malang, dan LCR dilakukan di Laboratorium Medan Magnet Jurusan Fisika Universitas Islam Negeri Maulana Malik Ibrahim Malang.

Karbon dibuat dari bulu ayam yang sudah dicuci bersih dan dioven sampai kering. Bulu ayam yang sudah kering dipanaskan pada suhu 250°C selama 30 menit sampai menjadi karbon seperti gambar 4.1.

Gambar 4.1 Hasil pemanasan bulu ayam pada temperatur 250°C

Karbon hasil pemanasan tersebut diayak menggunakan 250 mesh screen. Kemudian karbon dipanaskan kembali pada temperatur 400°C selama 5 jam dengan kenaikan temperatur 5°/menit. Pemanasan dilakukan dalam kondisi atmosfir untuk mengoksidasi sampel. Setelah proses pemanasan, karbon dieksfoliasi menggunakan ultrasonic cleaner selama 5 jam dengan menambahkan larutan aquades dan H₂SO₄ variasi konsentrasi 0,5 M, 1 M, 1,5 M dan 2 M. Sampel yang sudah dieksfoliasi disaring dan dicuci menggunakan NaOH 0,25 M dan aquades. Pencucian sampel menggunakan basa akan menyebabkan reaksi netralisasi. Reaksi netralisasi terjadi karena interaksi antara asam dan basa melibatkan ion H⁺ dan ion OH⁻ untuk membentuk air dan garam sehingga pH sampel menjadi netral. Sampel yang memiliki pH netral dikeringkan selama dua jam pada suhu 100°C.

Pengujian XRD dilakukan di Laboratorium Teknik Material Institut Teknologi Sepuluh November. Gelombang yang digunakan yaitu Cu_K-alpha 1,54 Å dengan rentang pengukuran $2\theta^{\circ} 5^{\circ}$ - 60° . Hasil pengujian XRD berupa grafik intensitas terhadap sudut difraksi 2θ . Grafik XRD karbon dari bulu ayam dengan variasi konsentrasi larutan H₂SO₄ dapat dilihat pada gambar 4.2.

Gambar 4.2 Difraktogram sampel karbon bulu ayam

Pola XRD sampel yang ditunjukkan pada gambar 4.2 terdiri dari proses pemanasan dan eksfoliasi dengan penambahan larutan aquades dan H₂SO₄. Proses pemanasan pada temperatur 250°C menghasilkan puncak difraksi yang lebar dan landai disekitar $2\theta \sim 19^{\circ}$. Ketika sampel dipanaskan kembali pada temperatur 400°C, puncak difraksi bergeser ke arah kanan dengan gundukan yang lebih runcing pada posisi $2\theta \sim 25^{\circ}$. Setelah data XRD dianalisis menggunakan software *Highscore*, peregeseran puncak ini disebabkan adanya perubahan struktur kristal sampel. Sampel yang dipanaskan pada temperatur 250°C memiliki struktur ortorombik. Ketika sampel dipanaskan kembali pada 400°C sampel memiliki struktur heksagonal dengan indeks bidang (002). Pola XRD dan struktur kristal menunjukan sampel termasuk dalam fasa rGO.

Struktur kristal heksagonal tersusun dari atom-atom karbon yang berikatan kovalen membentuk struktur heksagonal datar. Susunan kisi-kisi heksagonal tampak seperti pelat-pelat datar yang saling bertumpuk dengan sela-sela diantaranya.

FWHM (Full Width Half Maximum) merupakan lebar setengah puncak difraksi. Nilai FWHM dan sudut difraksi sampel ditunjukkan pada tabel 4.1. Saat proses pemanasan pada temperatur 250°C, sampel memiliki nilai FWHM yang cukup besar. Ketika sampel dipanaskan pada 400°C, nilai FWHM menjadi lebih kecil. Nilai FWHM yang semakin kecil menunjukan adanya keteraturan susunan kristal sampel yang semakin baik.

Sampel	FWHM	Sudut difraksi	d _{00l} (Å)	$\mathbf{D}_{00l}(\mathbf{\mathring{A}})$
	20	20		
Karbon 250°C	17,04	19,57	-	-
Karbon 400°C	4,50	25,63	3,47	18,70
Karbon + aquades	4,19	25,52	3,48	20,01
Karbon + H_2SO_4 0,5 M	4,23	25,76	3,45	19,74
Karbon + H_2SO_4 1 M	4,30	25,47	3,49	19,46
Karbon + H_2SO_4 1,5 M	5,07	25,27	3,52	16,52
Karbon + $H_2SO_4 2 M$	6,19	25,43	3,50	13,53

Tabel 4.1 Nilai FWHM, posisi puncak karbon, dan ukuran kristal karbon

Tabel 4.1 menunjukkan puncak semakin melebar pada proses eksfoliasi dengan penambahan larutan H₂SO₄, seiring meningkatnya konsentrasi larutan sehingga nilai FWHM semakin besar. Proses eksfoliasi ini menyebabkan puncak difraksi mengalami pergeseran. Nilai D (ukuran krsital) yang menurun seiring dengan penambahan konsentrasi asam mengindikasikan bahwa ukuran kristal semakin kecil. Nilai d (jarak antar lapisan) menunjukkan fasa yang dimiliki oleh sampel merupakan fasa rGO.

Morfologi permukaan sampel dapat terlihat dengan baik dengan menggunakan *Scanning Electron Microscopy* (SEM). Karakterisasi SEM menggunakan FEI, Type: Inspect-S50. Gambar 4.3 menunjukan hasil SEM dengan perbesaran 2000x dan 20.000x memiliki perbedaan yang signifikan.

Gambar 4.3 Hasil SEM pada sampel 400°C a) perbesaran 2000x b) H₂SO₄ 1 M perbesaran 2000x c) perbesaran 20.000x d) H₂SO₄ 1 M perbesaran 20.000x

Pada morfologi sampel karbon 400°C dengan perbesaran 2000x terlihat banyak partikel yang menutupi seluruh permukaan sampel, sedangkan pada sampel H₂SO₄ 1 M, partikel karbon terpecah menjadi ukuran yang lebih kecil. Sampel 400°C dengan perbesaran 20.000x menunjukkan lembaran yang terbentuk belum terkelupas sepenuhnya. Proses eksfoliasi dengan H₂SO₄ 1 M mengakibatkan ukuran lembaran menjadi lebih kecil sehingga pada permukaan sampel terlihat lembaran yang teraglomerasi dan menumpuk satu sama lain. Pengujian menggunakan alat spektrofotometri UV-Vis digunakan untuk mengetahui nilai absorbanasi, panjang gelombang maksimum dan band gap dari sampel. Data hasil UV-Vis berupa plot panjang gelombang terhadap absorbansi. Gambar 4.4 menunjukan perbandingan spektrum absorbansi karbon bulu ayam dengan variasi konsentrasi H₂SO₄ yang berbeda.

Gambar 4.4 Sprektrum absorbansi UV-Vis sampel a) karbon 250°C (b) karbon 400°C (c) karbon 400°C dengan variasi konsentrasi aquades dan H₂SO₄

Hasil plot grafik absorbansi menunjukan nilai absorbansi yang berbeda pada setiap sampel. Spektrum absorbansi karbon pada pemanasan 250°C memiliki nilai absorbansi tinggi dibandingkan dengan sampel lainnya. Nilai absorbansi kemudian menurun drastis ketika karbon dipanaskan pada temperatur 400°C. Proses eksfoliasi dengan penambahan aquades dan larutan H₂SO₄ dengan variasi konsentrasi juga berpengaruh pada nilai absorbansi sampel. Sampel karbon dengan penambahan larutan H₂SO₄ 1 M memiliki nilai absorbansi yang paling tinggi diantara sampel lainnya.

Sampel Absorbansi Panjang Gelombang (a.u)(nm)Karbon + Aquades 0,269 230 230 Karbon + H_2SO_4 0.5 M 0,162 Karbon + H_2SO_4 1 M 0,335 231 Karbon + H_2SO_4 1,5 M 0,222 231 Karbon + $H_2SO_4 2 M$ 0,169 230 234 0,189

Tabel 4.2 Nilai absorbansi dan panjang gelombang UV-Vis

Data spektrum panjang gelombang dan absorbansi dapat digunakan untuk mengetahui nilai band gap dari sampel dengan menggunakan metode ekstrapolasi plot hubungan $(\alpha hv)^n$ sebagai fungsi energi foton. Hasil ekstrapolasi memberikan nilai band gap yang berbeda setiap sampel. Energi foton yang menunjukan nilai dibawah 6 menandakan bahwa sampel termasuk bahan semikonduktor. Semikonduktor memiliki 2 kasifikasi energi gap, direct dan indirect. Plot band gap direct dan indirect dapat dilihat pada gambar 4.5 dan 4.6.

Gambar 4.5 Plot (*αhv*)² sebagai fungsi energi foton untuk menentukan energi gap *direct* karbon dengan penambahan (a) aquades (b) H₂SO₄ 0,5 M (c) H₂SO₄ 1 M (d) H₂SO₄ 1,5 M (e) H₂SO₄ 2 M

Garis ekstrapolasi ditunjukkan dengan warna merah. Ketika garis ekstrapolasi ditarik menuju sumbu *x*, energi gap sampel menunjukkan 5 eV. Nilai

energi gap direct terendah pada sampel karbon dengan penambahan H₂SO₄ 1,5 M dan energi gap tertinggi pada sampel aquades. Plot band gap direct memiliki nilai $(\alpha hv)^2$ yang cukup tinggi. Hal ini berbeda bila dibandingkan pada plot energi gap indirect yang ditunjukkan pada gambar 4.6

Gambar 4.6 Plot (*αhv*)^{1/2} sebagai fungsi energi foton untuk menentukan energi gap *indirect* karbon dengan penambahan (a) aquades (b) H₂SO₄ 0,5 M (c) H₂SO₄ 1 M (d) H₂SO₄ 1,5 M (e) H₂SO₄ 2 M

Plot pada gambar 4.6 menunjukkan energi gap indirect optik pada sampel karbon. Nilai $(\alpha hv)^{1/2}$ pada indirect band gap lebih rendah dibanding direct band gap. Hal ini dipengaruhi oleh nilai $(\alpha hv)^n$ dimana *n* pada energi direct bernilai 2 dan *n* bernilai ¹/₂. Energi gap terendah pada indirect band gap juga dimiliki oleh sampel karbon 1,5 M. Nilai energi gap direct dan indirect seluruh sampel dapat dilihat pada tabel 4.2 dibawah.

Sampel	Energi Gap	Energi Gap	
	direct	indirect	
Karbon + Aquades	5,62	4,59	
Karbon + H_2SO_4 0.5 M	5,56	4,44	
Karbon + H_2SO_4 1 M	5,49	4,43	
Karbon + H_2SO_4 1,5 M	5,47	4,39	
Karbon $+ H_2SO_4 2 M$	5,58	4,57	

Tabel 4.3 Nilai band gap direct dan indirect sampel

Karakterisasi sifat listrik dilakukan dengan alat Hioki 3532-50 LCR Hitester di Laboratorium Medan Magnet Jurusan Fisika Universitas Islam Negeri Maulana Malik Ibrahim Malang. Data yang diperoleh dari LCR berupa Cp, Rp, D dan θ . Pengambilan data dilakukan dengan menguji sampel dalam rentang

frekuensi 500 Hz sampai 1 MHz. Kemudian data diolah sehingga menghasilkan plot konduktivitas, kapasitansi dan permitivitas.

Gambar 4.7 Grafik nilai konduktivitas sampel dengan fungsi frekuensi

Gambar 4.7 menunjukan penambahan larutan H_2SO_4 berpengaruh pada nilai konduktivitas bahan. Hal ini dapat diketahui konduktivitas meningkat seiring bertambahnya konsentrasi H_2SO_4 . Konduktivitas tertinggi mencapai 1,18 x 10⁻⁴ S/m pada sampel karbon dengan penambahan H_2SO_4 1,5 M. Tetapi pada karbon dengan penambahan H_2SO_4 2 M konduktivitas mengalami penurunan dengan nilai konduktivitas 2,57 x 10⁻⁵ S/m. Hal ini disebabkan karena konsentrasi larutan asam yang terlalu pekat dapat mempengaruhi cacat (*defect*) pada sampel sehingga menurunkan nilai konduktivitasnya.

Sampel	Konduktivitas (S/m)	Kapasitansi (F/m ²)
Karbon + Aquades	6,98 x 10 ⁻⁵	4,28 x 10 ⁻⁷
Karbon + H_2SO_4 0,5 M	9,59 x 10 ⁻⁵	5,69 x 10 ⁻⁷
Karbon + H_2SO_4 1 M	1,28 x 10 ⁻⁴	6,04 x 10 ⁻⁷
Karbon + H_2SO_4 1,5 M	1,84 x 10 ⁻⁴	6,36 x 10 ⁻⁷
$Karbon + H_2SO_4 2 M$	1,33 x 10 ⁻⁴	9,67 x 10 ⁻⁷

Tabel 4.4 Nilai kondutivitas dan kapasitansi sampel pada frekuensi 1 MHz

Kapasitansi merupakan kemampuan suatu material dalam menyimpan muatan. Grafik kapasitansi sebagai fungsi frekuensi pada gambar 4.8 menunjukan penurunan di frekuensi rendah kemudian stabil pada frekeunsi 1s00 KHz – 1 MHz. Kapasitansi tertinggi dimiliki oleh sampel dengan penambahan H₂SO₄ 2 M dan terendah pada sampel dengan penambahan aquades.

Gambar 4.8 Grafik nilai kapasitansi area sampel dengan fungsi frekuensi

Permitivitas relatif atau konstanta dielektrik merupakan perbandingan energi listrik yang tersimpan pada bahan jika diberi potensial dan relatif terhadap ruang hampa. Permitivitas dipengaruhi oleh banyaknya muatan yang tersimpan dalam bahan dielektrik. Jika kapasitor diisi dengan bahan dielektrik maka karakteristik dapat dianalisis menggunakan data permitivitas relatif. Permitivitas riil dapat dihitung dengan persamaan:

$$\varepsilon_r' = \frac{C \, d}{\varepsilon_0 \, A} \tag{4.1}$$

Sedangkan permitivitas imajiner dihitung dengan persamaan:

$$\varepsilon_r " = \varepsilon_r' . D \tag{4.2}$$

Permitivitas riil dan permitivitas imajiner diplot sebagai fungsi frekuensi untuk mengidentifikasi polarisabilitas bahan dielektrik.

Gambar 4.9 Grafik nilai permitivitas riil sampel dengan fungsi frekuensi

Gambar 4.9 menunjukkan eksfoliasi dengan H_2SO_4 meningkatkan nilai permitivitas rill pada sampel sampai pada konsentrasi 1,5 M. Penambahan konsentrasi H_2SO_4 2 M menurunkan nilai permitivitas riilnya. Nilai permitivtas riil pada frekuensi tinggi menurun bila dibandingkan pada frekuensi rendah.

Permitivitas imajiner memiliki nilai yang positif dan memiliki nilai lebih kecil dibandingkan permitivitas riil. Grafik pada 4.10 menunjukkan nilai permitivitas imajiner menurun ketika frekuensi semakin tinggi.

Gambar 4.10 Grafik nilai permitivitas imajiner sampel dengan fungsi frekuensi

Gambar 4.10 menunjukkan penambahan H₂SO₄ pada proses eksfoliasi meningkatkan nilai permitivitas imajiner sampel. Nilai permitivitas pada frekuensi tinggi lebih kecil bila dibandingkan pada frekuensi rendah. Tetapi pada frekuensi tinggi, nilai permitivitas cenderung stabil.

4.2 Pembahasan

Bulu ayam memiliki potensi untuk dimanfaatkan sebagai bahan dasar material rGO. rGO merupakan salah satu alotrop karbon yang berbentuk lembaran dan memiliki karakteristik mekanik dan listrik yang baik. rGO didapatkan dari proses pemanasan dan proses *chemical exfoliation* dengan larutan H₂SO₄. Reaksi antara karbon dengan larutan H₂SO₄ ditunjukkan pada persamaan berikut (Camino et al, 2001):

$$2 H_2SO_4 + C \rightarrow 2H_2O + CO_2 + 2SO_2$$

Hasil pengujian XRD karbon dari bulu ayam menunjukkan penurunan nilai FWHM secara signifikan pada proses pemanasan menyebabkan posisi puncak difraksi bergeser. Hal ini disebabkan adanya perubahan struktur kristal sampel dari ortorombik menjadi heksagonal. Pada proses eksfoliasi karbon dengan aquades dan H₂SO₄ variasi konsentrasi, puncak difraksi kembali mengalami pergeseran. Hal ini dikarenakan adanya cacat kristal pada sampel seiring dengan penambahan konsentrasi H₂SO₄. Cacat kristal dapat terjadi karena adanya interaksi asam kuat dengan sampel karbon. Penambahan asam akan menginduksi lebih banyak karbon untuk membentuk ikatan dengan oksigen. Atom - atom oksigen akan tereduksi dan meninggalkan cacat ikatan (*defect*) yang berupa ikatan karbon yang lepas sehingga struktur kristal yang berbentuk heksagonal mengalamai perubahan (distorsi) (Darminto dkk, 2018).

Nilai D (ukuran kristal) menurun seiring dengan penambahan konsentrasi H₂SO₄ yang semakin tinggi. Hal ini sesuai dengan hasil SEM sampel karbon dengan pemanasan 400°C memiliki partikel karbon yang cukup besar diseluruh permukaan. Partikel tersebut kemudian terpecah membentuk kepingan lapisan tipis ketika sampel dieksfoliasi dengan larutan H₂SO₄. Pada proses eksfoliasi, H₂SO₄ menginterkalasi lembaran-lembaran karbon yang bertumpuk. Lembaranlembaran ini berikatan lemah dengan gaya van der Waals. Atom S dan O dari H₂SO₄ dapat terlepas dari ikatan mereka yang biasa, dan menjadi ion bebas. Ionion ini mampu mengisi ruang antar lapisan untuk melemahkan ikatan Van der Waals. Kemudian ikatan tersebut dipecahkan oleh energi sonikasi pada proses eksfoliasi yang mengakibatkan ukuran kristal yang semakin kecil. Sehingga pada hasil SEM terlihat serpihan dan lembaran tipis yang bertmpuk-tumpuk.

Sampel karbon H₂SO₄ 1,5 M memiliki konduktivitas tertinggi dibandingkan sampel lainnya. Hal ini dikarenakan sampel ini memiliki energi gap yang kecil dan sudut difraksi pada hasil XRD mengalami pergeseran yang paling besar sehingga terjadi peningkatan konsentrasi *defect. Defect* akan mempengaruhi mobilitas elektron untuk bergerak lebih mudah dalam struktur kristal sehingga dapat meningkatkan nilai konduktivitas. Namun, pada penambahan H₂SO₄ 2 M nilai konduktivitas menjadi turun. Sampel karbon dengan penambahan konsentrasi H₂SO₄ 2 M menyebabkan pergeseran merah pada spektrum absorbansi UV-Vis. Pergeseran merah merupakan pergeseran puncak ke panjang gelombang yang lebih panjang dan menyebabkan energi gap pada sampel meningkat. Persegeran merah terjadi pada sampel karbon dengan penambahan H₂SO₄ 2 M karena banyaknya ikatan oksigen yang terinduksi untuk berikatan dengan atom C sehingga dapat menurunkan *defect*. Hal ini sesuai dengan hasil XRD, sudut difraksi pada sampel karbon dengan penambahan H₂SO₄ konsentrasi 2 M mengalami pergeseran yang lebih sedikit dibandingkan pada konsentrasi 1,5 M.

Permitivitas riil dan imajiner sebagai fungsi frekuensi menunjukkan polarisabilitas suatu bahan dielektrik. Pada saat medan listrik dikenakan pada bahan, ion pembawa muatan bergerak sesuai arah medan listrik kemudian terperangkap pada permukaan elektroda yang secara langsung menghasilkan permitivitas dielektrik. Nilai permitivitas pada frekuensi rendah kemudian menurun pada frekuensi tinggi. Hal ini disebabkan oleh polarisasi *interface/space* *charge* yang dipengaruhi oleh frekuensi arus bolak-balik. Pada frekuensi rendah, dipol memiliki waktu untuk sejajar dengan medan listrik selama siklus, sehingga nilai konstanta dielektrik riil dan imajiner tinggi. Dalam rentang frekuensi tinggi, dipol tidak punya waktu untuk menyejajarkan sehingga permitivitas riil dan imajiner menurun (Matchawet et al, 2015). Data konduktivitas sampel linear dengan permitivitas relatif baik riil maupun imajiner. Hal ini dikarenakan nilai permitivitas sampel dipengaruhi oleh *defect* yang terjadi pada struktur kristal. Sampel yang mengalami *defect* akan membentuk *grain boundaries* (batas butir). Elektron akan menumpuk pada batas butir sehingga peningkatan *defect* mampu mempengaruhi konsentrasi polarisasi sampel.

Penambahan H₂SO₄ 2 M pada proses eksfoliasi mengakibatkan ukuran kristal semakin kecil sehingga memiliki kapasitansi yang besar dibandingkan sampel lainnya. Pada data SEM, partikel karbon terpecah menjadi lebih kecil dan membentuk layer tipis yang menumpuk. Hal ini mengakibatkan luas permukaan semakin besar sehingga muatan dapat tersimpan lebih banyak. Banyaknya muatan yang tersimpan mempengaruhi kapasitansi yang dimiliki oleh sampel.

Semua ciptaan Allah tidak ada yang sia-sia didunia ini. Maka dari itu, sudah menjadi kewajiban sebagai saintis muslim untuk mengkaji dan mengeksplorasi ciptaan-Nya agar kelak menjadi manfaat bagi umat yang lain. Sebagaimana firman Allah dalam Q.S Ali-Imran:

اِنَّ فِيْ خَلْقِ السَّمُوٰتِ وَالْأَرْضِ وَاحْتِلَافِ الَّيْلِ وَالنَّهَارِ لَاٰيٰتٍ لِّأُولِى الْأَلْبَابِ ݣْ۞الَّذِيْنَ يَدْكُرُوْنَ اللَّهَ قِيَامًا وَّقُعُوْدًا وَعَلٰى جُنُوْبِهِمْ وَيَتَفَكَّرُوْنَ فِيْ خَلْقِ السَّمُوٰتِ وَالْأَرْضِ^{قَ} رَبَّنَا مَا خَلَقْتَ لهٰذَا بَاطِلَا ۚ سُبْحٰنَكَ فَقِنَا عَذَابَ النَّارِ ۞

55

"Sesungguhnya, dalam penciptaan langit dan bumi, dan pergantian malam dan siang, terdapat tanda-tanda (kebesaran Allah) bagi orang yang berakal, (yaitu) orang-orang yang mengingat Allah sambil berdiri, duduk, atau dalam keadaan berbaring, dan mereka memikirkan tentang penciptaan langit dan bumi (seraya berkata), "Ya Tuhan kami, tidaklah Engkau menciptakan semua ini sia-sia; Mahasuci Engkau, lindungilah kami dari azab neraka." (QS. Ali-'Imran 3: 190-191).

Menurut As Suyuthi dan Jalaluddin (1990) pada tafsir Jalalain, kata yang yang bermakna "berakal" pada ayat diatas artinya adalah orang yang menggunakan pemikiran mereka. Ulul albab berarti orang yang menjadi *na'at* atau *badal* bagi sebelumnya, yaitu selalu mengingat Allah baik dalam kondisi berdiri, duduk maupun berbaring. Ia juga berfikir mengenai penciptaan alam semesta, yang mana semua ciptaan Allah di muka bumi ini tidak ada yang sia-sia dan memiliki manfaat. Dari proses berfikir inilah dikembangkan bulu ayam menjadi sesuatu yang memiliki nilai lebih. Bulu ayam yang biasa dianggap sebagai limbah produksi ternak ayam pedaging dapat bermanfaat jika diolah dan diteliti dengan baik maka akan menghasilkan material baru, misalnya karbon. Karbon dapat dimanfaatkan pada banyak aplikasi misalnya elektroda superkapasitor. Sebuah penelitian akan menghasilkan ilmu pengetahuan baru.

Al-Qur'an digunakan untuk menjadi petunjuk dan peringatan untuk orangorang yang berfikir sehingga seorang Ulul Albab tidak salah dan tersesat dalam menekuni ilmu pengetahuan (As Suyuthi dan Jalaluddin, 1990) . Allah berfirman pada suat Ghafir ayat 54:

هُدًى وَذِكْرَى لِأُولِي الْأَلْبَاب
"Untuk menjadi petunjuk dan peringatan bagi orang-orang yang berfikir"(Q.S Ghafir 40:54)

Sebuah penelitian akan menghasilkan ilmu pengetahuan baru. Ilmu pengetahuan yang terus berkembang mampu menciptakan berbagai inovasi untuk mencapai kesejahteraan umat manusia. Ayat diatas menunjukan bahwa seorang yang berakal (saintis muslim) hendaknya berhati-hati dalam melakukan penelitian agar tidak terjadi kesalahan yang dapat merugikan orang lain.

BAB V PENUTUP

5.1 Kesimpulan

- Variasi konsentrasi H₂SO₄ pada proses eksfoliasi berpengaruh terhadap sifat fisis sampel. Struktur kristal yang terbentuk yaitu hexagonal dengan fasa rGO. Nilai D (ukuran kristal) menurun hingga 13 Å pada konsentrasi H₂SO₄ 2 M. Pada hasil SEM, penambahan H₂SO₄ pada proses eksfoliasi menyebabkan ukuran partikel menjadi lebih kecil dan berbentuk seperti lembaran tipis yang tertumpuk. Energi gap tertinggi dimiliki oleh sampel dengan penambahan H₂SO₄ 1,5 M yaitu 5,47 eV.
- 2. Variasi konsetrasi H₂SO₄ berpengaruh pada sifat listrik sampel. Konduktivitas tertinggi dimiliki sampel karbon yang dieksfoliasi dalam larutan H₂SO₄ 1,5 M sebesar 1,84x10⁻⁴ S/m. Penambahan konsentrasi H₂SO₄ 2 M memiliki kapasitansi tertinggi mencapai 9,67x10⁻⁷ F/m². Permitivitas riil dan imajiner menunjukkan bahwa sampel memiliki jenis polarisasi space charge/interface. Polarisasi tertinggi terjadi pada sampel yang dieksfoliasi dalam larutan H₂SO₄ 1,5 M.

5.2 Saran

Perlu dilakukan penelitian lebih lanjut dengan peningkatan suhu pemanasan dan variasi jenis larutan asam pada proses eksfoliasi agar didapat karakteristik material yang semakin baik.

DAFTAR PUSTAKA

- *Al Qur'an dengan Kode Warna Hukum Tajwid*. Departemen Agama RI. Semarang: PT. Karya Toha Putra.
- Alam Syed N., Sharma N., Kumar L. 2017. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO). Graphene (6) : 1-18.
- Anggraeni, Nuha Desi. 2008. Analisa SEM (Scanning Electron Microscopy) dalam Pemantauan Proses Oksidasi Magnetite Menjadi Hematite. Seminar Nasional – VII Rekayasa dan Aplikasi Teknik Mesin di Industri: 50-56.
- As Suyuthi, Jalaluddin dan Jalaluddin Muhammad Ibnu Ahmad Al Mahally. 1990. *Tafsir Jalalain*. Bnadung: Sinar Baru
- Cai, M., Thorpe, D., Adamson, D.H., Schniepp, H.C. 2012. *Methods of Graphite Exfoliation*. Journal of Materials Chemistry 22: 24992–25002.
- Callister, D William. 2014. *Material Science and Engineering*. USA: Willey & Sons.
- Camino, G., Duquesne, S., Delobel, R., Eling, B., Lindsay, C., & Roels, T. 2001. Mechanism of Expandable Graphite Fire Retardant Action in Polyurethanes. Fire and Polymers: 90–109
- Chen, S., Qingzhi Wu, Columbia Mishra, Junyong Kang, Hengji Zhang, Kyeongjae Cho, Weiwei Cai, Alexander A. Balandin & Rodney S. Ruoff. 2012. Thermal Conductivity of Isotopically Modified Graphene. Nature Material 11: 203-207.
- Cheremisinoff, Nicholas P. & Paul Rosenfeld. 2010. Handbook of Pollution Prevention and Cleaner Production Vol. 1: Best Practices in the Petroleum Industry. USA: William Andrew
- Ciesielski, Artur dan Samori Paolo. 2013. *Graphene via Sonication Assisted Liquidphase Exfoliation*. Journal of Chemical Society Reviews 43: 381-398.
- Conway, B.E. 1999. *Electrochemical Supercapacitor: Scientific Fundamentals adn Technological Applications*. New York: Kluwer Academic-Plenum Publisher.
- Darminto, Malik Anjelh B, Retno Asih. 2018. Pengembangan Bahan Karbon dai Biomassa. Surabaya: ITS Press.

- Eigler dan Dimiev. 2017. *Graphene Oxide: Fundamentals and Applications*. First Edition. New York: John Wiley & Sons.
- Farma R., M. Deraman, Awitdrus, I.A. Talib , R. Omar , J.G. Manjunatha, M.M. Ishak, N.H. Basri and B.N.M. Dolah. 2013. *Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from Carbon Nanotube and Biomass Carbon*. International Journal of Electrochemical Science Vol. 8: 257-273.
- Geim, A.K., dan Novoselov, K.S. 2007. *The rise of graphene*. Nature Materials Vol. 6: 183–191.
- Giraldo, L., & Moreno-Piraján, J. C. 2013. *Exploring The Use Of Rachis Of Chicken Feathers For Hydrogen Storage*. Journal of Analytical and Applied Pyrolysis, 104, 243–248.
- Horn, M., Gupta, B., MacLeod, J., Liu, J., & Motta, N. 2019. Graphene-Based Supercapacitor Electrodes: Addressing Challenges in Mechanisms and Materials. Journal of Current Opinion in Green and Sustainable Chemistry.
- Islamiyah W., Nashirudin, W., Baqiya, M. A., Cahyono, Y., & Darminto. 2017. Sulfuric Acid Intercalated-Mechanical Exfoliation Of Reduced Graphene Oxide From Old Coconut Shell. Journal of AIP: Proceedings of the 3rd International Conference on Materials and Metallurgical Engineering and Technology (ICOMMET 2017)
- Kazmi, S. A., Hameed, S., Ahmed, A. S., Arshad, M., & Azam, A. 2017. Electrical and Optical Properties of Graphene-TiO 2 Nanocomposite and Its Applications in Dye Sensitized Solar Cells (DSSC). Journal of Alloys and Compounds, 691, 659–665.
- Komoditas Pertanian Subsektor Peternakan. 2016. *Outlook Daging Ayam*. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jendral-Kementrian Pertanian.
- Kovtyukhova. 2014. Non Oxidative Intercalation and Exfoliation of Graphite By Brønsted Acids. Nature Chemistry Vol. 6: 957-963.
- Lai, Q., Shifu Zhu, Xueping Luo, Min Zou, & S. Huang. 2012. Ultraviolet-Visible Spectroscopy of Graphene Oxide. AIP Advances Vol. 2: 1-5.
- Latifah Nur R., Roro Ernia, Anisya lisdiana, Erick Rian Yulianto, Nur Jannah Asrilya, Ayuni Dita Rosalia, Rosid Eka Mustofa, Edi Pramono. 2014.

- Lerf, A. He, H. Forster, M. Klinowski, J. 1998. Structure Of Graphite Oxide Revisited. Journal Phyics Chemistry B, 102: 4477–4482.
- Li, J., Xiangqiong Zeng, Tianhui Ren, dan Emile Van der Heide. 2014. *The Preparation of Graphene Oxide and Its Derivatives and Their Application in Bio-Tribological Systems*. Lubricants Vol.2 (3): 137-161.
- Lufrano, F & P. Staiti. 2010. Mesoporous Carbon Materials as Electrodes for Electrochemical Supercapacitors. International Journal of Electrochemical Science Vol. 5: 903-916.
- Matchawet, S., Kaesaman, A., Bomlai, P., & Nakason, C. 2015. Electrical, Dielectric, and Dynamic Mechanical Properties of Conductive Carbon Black/Epoxidized Natural Rubber Composites. Journal of Composite Materials, 50(16), 2191–2202.
- Misra, M., Kar P, Priyadarshan G, & Licata C. 2004. *Keratin Protein Nanofbre For Removal Of Heavy Metals And Contaminants*. In: MRS proceedings. Cambridge University Press, Cambridge: 1–11.
- Moura, D., Mano, J. F., Paiva, M. C., & Alves, N. M. 2016. Chitosan Nanocomposites Based on Distinct Inorganic Fillers for Biomedical Applications. Journal of Science and Technology of Advanced Materials, 17(1), 626–643.
- Owen, T. 2000. Fundamental of Modern UV-Visible Spectroscopy. Berlin: Agilent Technologies.
- Pei, S., & Cheng, H.M. 2012. The Reduction of Graphene Oxide. Journal of Carbon, 50(9): 3210–3228.
- Pranata, G., Deri Lasmana, Lusi Safriani, Norman Syakir, Fitrilawati. 2015. Karakterisasi Lapisan Reduced Graphene Oxide (Rgo) Pada Substrat Ito Untuk Aplikasi Sel Surya Organik. Jurnal Material dan Energi Indonesia Vol. 05, No. 02: 39 – 44.
- Putra, Gilang B.A., Herdy Y. Pradana, Dimas E.T Soenaryo, Malik A. Baqiya, Darminto. 2017. Synthesis of Green Fe3+/Glucose/Rgo Electrode for Supercapacitor Application Assisted by Chemical Exfoliation Process from Burning Coconut Shell. Journal of AIP: Proceedings of the 3rd International

- Ray, Sekar C. 2015. Applications of Graphene and Graphene-Oxide Based Nanomaterials. Elsevier (E-book).
- Saravanan, K., dan Dhurai B. 2012. Exploration On The Amino Acid Content And Morphological Structure In Chicken Feather Fibre. J Text Appar Technol. Manag 7(3): 1–6.
- Sari, Endah P., Imela Sukma Tifana Putri, Rinanti Anindya Putri, Shafa Imanda, Dewi Elfidasari, Riris Lindiawati Puspitasari. 2015. *Pemanfaatan Limbah Bulu Ayam Sebagai Pakan Ternak Ruminansia*. Jurnal Pros Sem Nas Masy Biodiv Indon Vol. 1 No.1 Maret :136-138.
- Schmidt, W.F. dan Line, M.J. 1996. Physical and Chemical Structures Of Poultry Feather Fiber Fractions in Fiber Process Development. 1996 Nonwovens Conference TAPPI Proceedings: 135-141.
- Speight, J. G. (2017). *Industrial Inorganic Chemistry*. Environmental Inorganic Chemistry for Engineers, 111–169
- Suryanarayana, C. dan Norton, M. G. 1998. *X-Ray Diffraction*. New York and London: Plenum Press.
- Talat, M. dan Srivastava, O. N. 2014. Advanced Carbon Materials and *Technology*. Scrivener Publishing LLC: 1-34.
- Tesfaye, T., Sithole, B., Ramjugernath D. 2017. Valorisation Of Chicken Feathers: A Review On Recycling And Recovery Route—Current Status And Future Prospects. Clean Techn Environ Policy
- Tetra, Olly N., Hermansyah Aziz, Emriadi, Sanusi Ibrahim, dan Admin Alif. 2018. Superkapasitor Berbahan Dasar Karbon Aktif dan Larutan Ionik Sebagai Elektrolit. Jurnal Zarah, Vol. 6 No.1: 39-46
- Trewin, N. 1998. Use of the Scanning Electron Microscope in Sedimentology. Oxford: Blackwell Scientific Publications
- Wang, Q., Cao, Q., Wang, X., Jing, B., Kuang, H., & Zhou, L. 2013. A High-Capacity Carbon Prepared from Renewable Chicken Feather Biopolymer for Supercapacitors. Journal of Power Sources, 225: 101–107.
- Wisnuwijaya. Rhyko I. 2017. Preparasi dan Sintesis Graphene Oxide Dengan Metode Liquid Sonication Exfoliation dan Random Collision Marbles

Shaking dengan Bahan Dasar Graphite Limbah Baterai Zinc-Carbon Berdasarkan Uji Spektrofotometer UV-Vis (Skripsi). Yogyakarta: Universitas Negeri Yogyakarta

- Yi dan Shen, 2015. A Review On Mechanical Exfoliation For The Scalable Production of Graphene. Journal of Materials Chemistry A 2015 (3): 11700–11715
- Yu, M., Wu, P., Widelitz, R.B., Chuong, C. 2002. The Morphogenesis of *Feathers*. Nature (420): 308-312.

LAMPIRAN 1 PERHITUNGAN BAHAN

a) Pengenceran H₂SO₄

Berat jenis $H_2SO_4 = 1,84$ g/mL

Konsentrasi 96% = $\frac{96 \text{ gram H2SO4}}{100 \text{ gram larutan}}$

Berat molekul $H_2SO_4 = 98,079$ gram/mol

 $Mol = \frac{massa}{Mr} = \frac{96}{98,08} = 0,978 \ mol$

100 gram larutan = $\frac{100}{1,84}$ = 54,347 mL = 0,054347 L

Molaritas = $\frac{mol}{L} = \frac{0,0978}{0,054347} = 17,995$ M

1. $M1 \ge V1 = M2 \ge V2$

17,995 x V1 = 0,5 x 150 mL

17,995 V1 = 75

- V1 = 75/17,995
- V1 = 4,167 mL = 4,2 mL
- 2. $M1 \times V1 = M2 \times V2$

17,995 x V1 = 1 x 150 mL

- 17,995 V1 = 150
- V1 = 150/17,995
- V1 = 8,335 mL = 8,4 mL
- 3. M1 x V1 = M2 x V2
 - 17,995 x V1 = 1,5 x 150 mL
 - 17,995 V1 = 225
 - V1 = 225/17,995
 - V1 = 12,503 mL = 12,5 mL

4. M1 x V1 = M2 x V2
17,995 x V1 = 2 x 150 mL
17,995 V1 = 300
V1 = 300/17,995
V1 = 1,67 mL = 16,8 mL

b) Pengenceran NaOH

Berat jenis NaOH = $2,13 \text{ g/cm}^3$

Konsentrasi 48% $=\frac{48 \text{ gram NaOH}}{100 \text{ gram larutan}}$

Berat molekul NaOH = 39,997 g/mol

 $Mol = \frac{massa}{Mr} = \frac{48 gr}{39,997} = 1,2 mol$

100 gram larutan = $\frac{100}{2,13}$ = 46,95 mL = 0,04695 L

Molaritas = $\frac{mol}{L} = \frac{1,2}{0,05695} = 25,56 \text{ M}$

 $M1 \ge V1 = M2 \ge V2$

 $25,56 \ge V1 = 0,25 \ge 150 \text{ mL}$

25,56 V1 = 37,5

V1 =37,5/25,256

V1 =
$$1,47 \text{ mL}$$

LAMPIRAN 2 DATA DAN PERHITUNGAN HASIL XRD

Raw Data Origin PHILIPS-binary (scan) (.RD) Scan Axis Gonio Start Position [°2Th.] 5.0084 End Position [°2Th.] 59.9864 0.0170 Step Size [°2Th.] Scan Step Time [s] 10.1500 Scan Type Continuous Offset [°2Th.] 0.0000 **Divergence Slit Type** Fixed Divergence Slit Size [°] 0.2500 Specimen Length [mm] 10.00 12.7500 Receiving Slit Size [mm] Measurement Temperature [°C] -273.15 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000 **Generator Settings** 30 mA, 40 kV Diffractometer Type **XPert MPD** Diffractometer Number 1 Goniometer Radius [mm] 200.00 Dist. Focus-Diverg. Slit [mm] 91.00 Incident Beam Monochromator No Spinning No Spinning No

1. Pemanasan 250°C

Peak List: (Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
19.6457	89.74	0.0900	4.51516	100. 00
30.9002	24.69	0.4896	2.89153	27.52

2. Pemanasan 400°C

Peak List: (Bookmark 3)

-					
	Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
	6.0662	26.29	0.8029	14.57004	18.93
	25.5465	138.89	0.0900	3.48405	100.00
	30.8245	87.38	0.2676	2.90085	62.92

3. Karbon + aquades

Peak List: (Bookmark 3)

Rel. Int. [%]	d-spacing [Å]	FWHM Left [°2Th.]	Height [cts]	Pos. [°2Th.]
61.41	14.29341	0.9368	30.06	6.1837
100.00	2.90594	0.2676	48.95	30.7692
49. 64	2.84206	0.2007	24.30	31.4785

4. Karbon + $H_2SO_4 0,5 M$

Peak List: (Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
26.6196	183.10	0.1004	3.34875	100.00
31.9470	33.48	0.5353	2.80145	18.28

5. Karbon + H_2SO_4 1 M

-					
	Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
	6.0108	18.47	0.8029	14.70414	20.69
	25.4731	89.25	0.6691	3.49681	100.00
	31.7843	28.60	0.4015	2.81541	32.05

6. Karbon + H₂SO₄ 1,5 M

Peak List: (Bookmark 3)

Pos. [°2Th.	.] Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
14.582	21 32.43	0.4015	6.07467	62. 79
29.582	26 21.37	0.8029	3.01974	41.38
31.815	56 51.65	0.3011	2.81272	100.00

7. Karbon + $H_2SO_4 2 M$

Peak List: (Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
31.7820	26.96	0.4896	2.81328	100.00

Perhitungan Kristal (D,d)

1. Karbon 400°C
Diketahui:

$$Kc = 0.9$$

 $\beta_1 = 0.076 \text{ rad}$
 $\theta_1 = 12.815^\circ$
 $\lambda = 1.54 \text{ Å}$
Ditanya= D.....?
Jawab=
 $D = \frac{Kc \lambda}{\beta_1 \cos \theta_1} = \frac{0.9 \times 1.54}{0.076 \cos 12.815} = 18,70 \text{ Å}$
 $d = \frac{\lambda}{2 \sin \theta_1} = \frac{1.54}{2 \sin 12.815} = 3,47 \text{ Å}$

2. Karbon + Aquades Diketahui: Kc = 0.9 $\beta_1 = 0,071$ rad $\theta_1 = 12,76^{\circ}$ $\lambda = 1,54 \text{ Å}$ Ditanya= D....? d....? Jawab= $D = \frac{Kc \,\lambda}{\beta_1 \cos \theta_1} = \frac{0.9 \times 1.54}{0.071 \cos 12.76} = 20.01 \text{ Å}$ $d = \frac{\lambda}{2\sin\theta_1} = \frac{1,54}{2\sin 12,76} = 3,48 \text{ Å}$ 3. Karbon + H_2SO_4 0,5 M Diketahui: Kc = 0.9 $\beta_1 = 0,072$ rad $\theta_1 = 12,88^{\circ}$ $\lambda = 1,54 \text{ Å}$ Ditanya= D....? d.....? Jawab= $D = \frac{Kc \lambda}{\beta_1 \cos \theta_1} = \frac{0.9 \times 1.54}{0.072 \cos 12.88} = 19,74 \text{ Å}$ $d = \frac{\lambda}{2\sin\theta_1} = \frac{1,54}{2\sin 12,88} = 3,45 \text{ Å}$ 4. Karbon + H_2SO_4 1 M Diketahui: Kc = 0,9 $\beta_1 = 0,073 \text{ rad}$ $\theta_1 = 12,735^{\circ}$ $\lambda = 1,54 \text{ Å}$ Ditanya= D....? d.....? Jawab= $Lc = \frac{Kc \lambda}{\beta_1 \cos \theta_1} = \frac{0.9 \times 1.54}{0.073 \cos 12.735} = 19,46 \text{ Å}$ $d = \frac{\lambda}{2 \sin \theta_1} = \frac{1.54}{2 \sin 12.735} = 3,49 \text{ Å}$ 5. Karbon + H_2SO_4 1,5 M Diketahui: Kc = 0.9 $\beta_1 = 0.086$ $\theta_1 = 12,635^{\circ}$ $\lambda = 1,54 \text{ Å}$ d.....? Ditanya= D....? Jawab= $D = \frac{Kc \lambda}{\beta_1 \cos \theta_1} = \frac{0.9 \times 1.54}{0.086 \cos 12.635} = 16,52 \text{ Å}$ $d = \frac{\lambda}{2\sin\theta_1} = \frac{1,54}{2\sin12,635} = 3,52 \text{ Å}$ 6. Karbon + $H_2SO_4 2 M$ Diketahui: Kc = 0.9 $\beta_1 = 0,073$ rad $\theta_1 = 12,715^{\circ}$ $\lambda = 1,54 \text{ Å}$ Ditanya= D....? d.....? Jawab= $D = \frac{Kc \lambda}{\beta_1 \cos \theta_1} = \frac{0.9 \times 1.54}{0.105 \cos 12.715} = 13,53 \text{ Å}$ $d = \frac{\lambda}{2 \sin \theta_1} = \frac{1.54}{2 \sin 12.715} = 3,50 \text{ Å}$

LAMPIRAN 3 HASIL SEM

1. Morfologi sampel karbon 400°C

Perbesaran 2000x

Perbesaran 6000x

Perbesaran 20.000x

Perbesaran 500x

Perbesaran 2000x

Perbesaran 6000x

Perbesaran 20.000x

Perbesaran 50.000x

Wavelength (nm) Abs

230.0

0.269

4. Lamda Maks Karbon H_2SO_4 0,5 M

231.0 0.335

6. Lamda Maks Karbon H₂SO₄ 1,5 M

230.0 0.196

Data Mentah UV-Vis

1. Karbon 400°C

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
800,0286255	0,082262568	758,9529419	0,091163203	717,9597778	0,084453456
799,0582275	0,083215535	757,9671021	0,091533549	716,9595947	0,084767863
797,9487305	0,083291851	756,980896	0,091314845	715,9590454	0,085406043
796,9775391	0,0840666	755,9943848	0,091949478	714,9581299	0,085697688
796,0059814	0,083796144	755,0074463	0,091586441	713,9569092	0,086557142
795,0340576	0,084153593	754,0202026	0,091168851	712,9553833	0,08702001
794,0617065	0,083836108	753,0325928	0,091896825	711,9534302	0,087510057
792,9500732	0,084049352	752,0446167	0,091509514	710,9512329	0,088406585
791,9769287	0,083977737	751,0562744	0,091336146	709,9486694	0,089589313
791,003418	0,08352717	750,067627	0,0915602	708,9457397	0,090012997
790,029541	0,084375486	748,9372559	0,091543615	707,9425049	0,090106703
789,0552979	0,084903188	747,94 <mark>7</mark> 8149	0,091850668	706,9389038	0,091418348
787,9414063	0,084819287	74 <mark>6</mark> ,9580078	0,091498174	705,9349976	0,092199452
786,9663696	0,084651083	74 <mark>5</mark> ,9678955	0,091473408	704,9307861	0,093141392
785,9909668	0,085985772	744,977417	0,091704056	704,0697632	0,093596943
785,0151978	0,085970625	743,9865723	0,091452606	703,0648804	0,096268766
784,0390625	0,085989431	742,9953613	0 <mark>,0</mark> 918511 <mark>8</mark> 2	702,0596924	0,096774645
783,0625	0,085471749	742,0037842	0,091551602	701,0541992	0,098076865
781,9460449	0,085734427	741,0119019	0,0911844 <mark>6</mark> 7	700,0483398	0,099066734
780,968689	0,086142056	740,0196533	0,0913717	699,0421143	0,100082569
779,9910278	0,086957008	739,0270386	0, <mark>09099958</mark> 1	698,0356445	0,099711247
779,0130005	0,086751938	738,0341187	0,09045323	697,0288086	0,100793973
778,0345459	0,086823381	737,0408325	0,090253703	696,0216064	0,102154918
777,0557861	0,087103449	736,0471802	0,0 <mark>89</mark> 436941	695,0140991	0,10289719
775,9367065	0,088020757	735,0531616	0,089310467	694,0062866	0,103574589
774,9571533	0,08795061	734,0588379	0,088601418	692,9981079	0,103979975
773,9771729	0,08843416	733,0641479	0,088192366	691,989624	0,105293393
772,9968872	0,088212214	732,0691528	0,087408111	690,980835	0,105797909
772,0162354	0,089205936	730,9315186	0,086522609	689,9716797	0,10690359
771,0352173	0,089216582	729,935791	0,085994981	688,9622192	0,107405439
770,053772	0,089923866	728,9396362	0,085424513	687,9524536	0,108126864
768,9317627	0,08962813	727,9431763	0,085032977	686,9423218	0,108690068
767,949585	0,090181567	726,9464111	0,08446946	685,9318848	0,109634981
766,967041	0,089591667	725,9492188	0,085229807	685,0655518	0,110046342
765,9841309	0,089349478	724,9517822	0,083509728	684,0545044	0,110824555
765,0008545	0,089996181	723,9539185	0,084359795	683,0431519	0,111618921
764,0172729	0,090066567	722,9557495	0,084212102	682,0314941	0,112262867
763,0332642	0,090174273	721,9572144	0,084255382	681,0194702	0,112482324
762,0489502	0,09122707	720,958374	0,084078126	680,0071411	0,113116838
761,064209	0,090799101	719,9592285	0,084089376	678,9945068	0,113731757
759,9384155	0,091028787	718,9596558	0,084772363	677,9815674	0,114203788

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
676,9682617	0,114455357	631,9274902	0,131554768	587,0482788	0,149769247
675,9546509	0,11542581	631,0469971	0,131895006	586,0085449	0,150296107
674,9407349	0,11607191	630,0195313	0,133491918	584,9685669	0,150670871
674,0714111	0,116483793	628,9917603	0,134013668	583,9282837	0,150920704
673,0568848	0,11703562	627,9636841	0,134349734	583,036438	0,151301146
672,0420532	0,117498629	626,9353027	0,134842038	581,9956665	0,151545584
671,0269165	0,118066214	626,0535889	0,135067418	580,9545898	0,151905239
670,0114136	0,118990816	625,0246582	0,134254307	580,0620728	0,152361676
668,9956665	0,119129539	623,9954834	0,135916963	579,0205078	0,152532488
667,9795532	0,119129159	622,9659424	0,135294676	577,9786377	0,152 776286
666,9631348	0,119507179	621,9361572	0,136618227	576,9365234	0,1530101
665,9464111	0,119514674	621,0532227	0,135952577	576,0430908	0,153186575
664,9293823	0,119557999	620,0228882	0,137754008	575,0004883	0,153446257
664,057373	0,120238215	618,9921875	0,136856243	573,9575806	0,153495938
663,0397339	0,120072313	617,9613037	0,138330489	573,0634766	0,154137418
662,0217896	0,12059167	616,93 <mark>0</mark> 0537	0,138894647	572,0201416	0,154023036
661,00354	0,122005701	61 <mark>6</mark> ,0458984	0,139556021	570,9764404	0,154858485
659,9849854	0,122004263	615,0141602	0,139395952	569,9325562	0,154810861
658,9661255	0,121522181	613,9820557	0,139750958	569,0375366	0,156128034
657,9469604	0,12 <mark>1</mark> 938549	6 <mark>12,94</mark> 9707	0,140423909	567,993103	0,156545579
656,9274292	0,12 <mark>1</mark> 948183	612,0646362	0,141008318	566,9484253	0,156688407
656,0533447	0 <mark>,122</mark> 454725	611,0317383	0, <mark>1</mark> 41122729	566,0527344	0,157305941
655,0332642	0,122780353	609,9985352	0, <mark>1</mark> 415026 <mark>3</mark> 4	565,0075684	0,157531157
654,0128784	0,123172768	608 <mark>,9650</mark> 879	0,141982481	563,9620972	0,157652617
652,9921875	0,123180434	607,9313354	0,14230293	563,0657959	0,157845199
651,9711914	0,123474024	607,0450439	0,142533943	562,0198364	0,157981828
650,9498901	0,124257125	606 <mark>,010</mark> 7422	0 <mark>,1</mark> 43290237	560,9736328	0,15820016
649,9282837	0,124316 <mark>4</mark> 32	604,9761963	0,143570006	559,9271851	0,158413127
649,0523682	0,124978915	603,9413452	0,144036308	559,0299683	0,158309698
648,0302124	0,125407666	603,0540771	0,144559473	557,9830322	0,158806101
647,0076904	0,125771478	602,0187378	0,144810185	556,935791	0,159 027383
645,9849243	0,125921413	600,9830322	0,14521037	556,0379639	0,15870069
644,961792	0,126908183	599,9470825	0,145608544	554,9902344	0,158 929065
643,9384155	0,126604885	599,0588989	0,145813569	553,9422607	0,159143314
643,0609741	0,127092883	598,0224609	0,145940632	553,0437622	0,15896979
642,0369873	0,127453387	596,9857178	0,146367639	551,9953003	0,1591295
641,0127563	0,128101021	595,9486694	0,146785095	550,9465942	0,159117922
639,9881592	0,128107384	595,0595093	0,147001565	550,0474854	0,159236953
638,9633179	0,128581807	594,0219727	0,14731282	548,99823	0,158710241
637,9381104	0,12877968	592,9841309	0,147808179	547,9487915	0,159094662
637,0591431	0,1297822	591,9459839	0,148026779	547,0490112	0,159016788
636,0334473	0,130229652	591,0559692	0,148078948	545,9990845	0,159309521
635,0073853	0,131403402	590,017334	0,149123743	544,9488525	0,159381524
633,9810791	0,130739734	588,9783936	0,148844123	544,0485229	0,159456924
632,9544067	0,132114723	587,939209	0,149540275	542,9978027	0,160608396

Wayelength	Absorbance	Wayelength	Absorbance	Wayelength	Absorbance
5/1 0/6800/	0 15072101	106 0761252	0 105226682	452 0204502	0 228788201
541,9408994	0,13973191	490,9701333	0,195250085	452,0594592	0,228788391
541,0456964	0,160242409	490,0001920	0,195900959	450,9064145	0,229492784
539,9944458	0,160610497	495,0043945	0,195989549	450,0502014	0,230535209
538,9428101	0,101043257	493,9423218	0,19657734	448,9787903	0,231101118
538,0411377	0,161497548	493,0318298	0,197646856	448,0602417	0,231742457
536,9890137	0,161772162	491,9693298	0,197229669	446,9884033	0,232381597
535,9366455	0,162607431	491,0584412	0,19762589	446,069519	0,233578473
535,0343628	0,162950337	489,9955139	0,197843179	444,9972839	0,234338462
533,9815063	0,163336903	488,932373	0,199254766	443,9248657	0,234956309
532,9284058	0,1643/164	488,0209351	0,199863881	443,0054626	0,235669851
532,0255127	0,165079892	486,9573364	0,200400218	441,9326477	0,236275241
530,9719238	0,165901214	486,0455322	0,200320885	441,0129089	0,237195745
530,0686646	0,167901576	484,9815369	0,200272933	439,9396973	0,237970769
529,0146484	0,168755546	484,0693359	0,201346874	439,0196533	0,238924816
527,9603271	0,16862382	483,0049133	0,200646266	437,9460449	0,239376739
527,0564575	0,169573993	481,9402771	0,2010874	437,0256653	0,24001053
526,001709	0,170759574	481,0275269	0,201683685	435,9516907	0,240961224
524,9467163	0,171876654	479,9624634	0,202012971	435,0309753	0,241518915
524,0421753	0,173070744	479,0493469	0,202564225	433,9566345	0,241977662
522,9867554	0,17 <mark>4</mark> 044475	477,983856 <mark>2</mark>	0,203378126	433,0355835	0,242634505
521,9310303	0,17 <mark>5</mark> 204516	477,0703735	<mark>0,2</mark> 04430223	431,9608459	0,243233323
521,0259399	0 <mark>,176058</mark> 859	476,0044861	0, <mark>2</mark> 05271259	431,0394897	0,243783265
519,9697876	0 <mark>,176867515</mark>	474,938324	0, <mark>2</mark> 059968 <mark>8</mark> 6	429,9643555	0,244403988
519,06427	0,17 <mark>78</mark> 36612	474 <mark>,0243</mark> 225	0,206994206	429,0426636	0,245117664
518,0076294	0,179 <mark>2</mark> 12287	472,9577637	0,20825544	427,9671631	0,246913776
516,9508057	0,18027316	472,043396	0,20932287	427,045166	0,246099368
516,0446777	0,181084007	470,9764404	0 <mark>,21052</mark> 0193	425,9692993	0,248007909
514,9873657	0,18203 <mark>26</mark> 9	470,0617065	0 ,21 1030349	425,0469666	0,248492882
513,9298096	0,182896286	468,9943237	0,212347999	423,9707336	0,249317646
513,0231323	0,184153676	467,9267273	0,21358946	423,0480652	0,249975145
511,9651184	0,185005873	467,0114441	0,214712173	421,9714661	0,250329107
511,058075	0,185732156	465,9434509	0,215922639	421,0484924	0,251084715
509,9996033	0,186679199	465,027832	0,216920584	419,9715271	0,250317037
508,9408875	0,187328696	463,9594116	0,217989683	419,0482483	0,251005441
508,0332642	0,188361481	463,043457	0,218820125	417,9708862	0,25172019
506,9740906	0,189309135	461,9746094	0,221175104	417,0473022	0,252324253
506,0660706	0,18978858	461,0583191	0,221950397	415,969574	0,252670944
505,0064697	0,19062081	459,9890747	0,222010031	415,0456543	0,253200144
503,9466553	0,191144526	459,0724182	0,222786561	413,9675903	0,253981113
503,0380249	0,191812173	458,0028076	0,223949015	413,0433655	0,254228234
501,9777527	0,192765251	456,9329529	0,224832997	411,9649353	0,254803002
501,0687561	0,193188682	456,0157471	0,225631356	411,0404053	0,255549908
500,0080566	0,193600431	454,9454956	0,226515323	409,9615784	0,255911917
498,947113	0,194317445	454,0279846	0,227149829	409,0367432	0,256377637
498,0375366	0,194611326	452,9573364	0,228295177	407,9575806	0,256919086

Wayolongth	Absorbance	Wayolongth	Absorbance	Wayolongth	Absorbance
407 0224402		261 0006022		216 0941614	
407,0324402	0,257294065	261,9990033	0,300210033	216 0467520	0,331100500
405,9529419	0,257794887	361,0678711	0,30288893	310,0407529	0,330850929
405,0274658	0,258011401	359,9806519	0,303513765	314,9529724	0,332886726
403,9476013	0,25860107	359,048645	0,304780781	314,0153198	0,33260262
403,0218506	0,259049326	357,9611511	0,304716319	313,0775757	0,33210659
401,9416199	0,259432226	357,0288696	0,304941237	311,9833984	0,334022909
401,015564	0,259863943	355,94104	0,307592899	311,0454407	0,335580289
399,9349976	0,26080358	355,0084839	0,305131555	309,9509888	0,33/152869
399,0086365	0,260989517	354,0758057	0,308859766	309,0127563	0,337012976
397,9277039	0,261395156	352,9875488	0,310658097	308,0744324	0,338012576
397,0010376	0,262395233	352,0545959	0,309817016	306,9795837	0,337050259
396,0742493	0,262461454	350,9660034	0,310925305	306,0410461	0,33798492
394,9928284	0,26311478	350,0328064	0,312646687	304,9459229	0,338 <mark>855058</mark>
394,0657349	0,263970554	348,9439087	0,311432004	304,0071411	0,339906931
392,9839478	0,264289945	348,0104675	0,311261952	303,0682678	0,339774609
392,0565491	0,265456021	347,07 <mark>6</mark> 8738	0,314671159	301,9727478	0,341189146
390,9744263	0,265991688	345,9875488	0,31237933	301,0336304	0,340767533
390,0467529	0,266726404	345,0536804	0,317271173	299,9378662	0,342260301
388,9642944	0,267347306	343,9640503	0 <mark>,3</mark> 14346612	298,9985352	0,342904151
388,0363159	0,26 <mark>8</mark> 365681	34 <mark>3,0299</mark> 377	0,31600517	298,059082	0,342566937
386,9534912	0,26 <mark>9</mark> 147635	341,9400024	<mark>0,3</mark> 178997 <mark>9</mark> 3	296,9629517	0,343915075
386,025238	0 <mark>,270174</mark> 503	341,0056458	0,318891138	296,0232544	0,343992949
384,9420776	0,271182925	340,071167	0, <mark>3</mark> 180828 <mark>3</mark> 9	294,9268494	0,345552862
384,0135498	0,27 <mark>2</mark> 060812	338 <mark>,9807</mark> 739	0, <mark>3201</mark> 426 <mark>2</mark> 7	293,986969	0,346960753
382,9300537	0,273320019	338,046051	0 <mark>,320544</mark> 064	293,0469666	0,347353429
382,0012207	0,274599969	336,9553833	0,320393592	291,9501953	0,348012954
381,0722351	0,275584549	336 <mark>,02</mark> 03857	0 <mark>,31992</mark> 8169	291,0099792	0,347971231
379,9882507	0,276795209	334,92941 <mark>2</mark> 8	0,320671678	290,0696716	0,350344539
379,0589905	0,277915925	333,9941711	0,321312159	288,9725037	0,34992823
377,9747009	0,279009968	333,0588379	0,321453661	288,0319824	0,351832688
377,045166	0,280209541	331,9674377	0,323122978	286,9345703	0,352706641
375,9605103	0,282088995	331,0318298	0,323640704	285,9938354	0,353063792
375,0307007	0,283247083	329,9401245	0,32358411	285,0529785	0,354266763
373,9457397	0,284471929	329,0042725	0,325802058	283,9552002	0,356702924
373,015625	0,285418183	328,0683289	0,322802186	283,0141602	0,356085897
371,9303284	0,287033826	326,9761963	0,324792326	282,072998	0,358630359
370,999939	0,290646553	326,0400085	0,325334489	280,9748535	0,36035499
370,0694275	0,294392556	324,9476013	0,325536251	280,0334778	0,357664555
368,9836426	0,294863522	324,0111389	0,327053815	278,9351196	0,364256918
368,0528564	0,295639128	323,074585	0,328849942	277,9935303	0,360711187
366,9667664	0,295264125	321,9817505	0,328516096	277,0518494	0,363293856
366,0357056	0,295574188	321,0449524	0,331405103	275,953125	0,363644362
364,9492798	0,298814654	319,9518738	0,328878284	275,0112305	0,363842249
364,0179443	0,298395455	319,014801	0,333418548	274,0692749	0,364879519
362,9312134	0,298813045	318,0776367	0,331337988	272,9701843	0,365705878

Wavelength	Absorbance	Wavelength	Absorbance
272,0279846	0,366696596	226,994278	0,471516728
270,9286499	0,367427588	226,0535278	0,479864568
269,9862671	0,36936307	224,9558716	0,48619923
269,0437927	0,371580839	224,0149536	0,49082166
267,9441223	0,371247619	223,0739594	0,497335196
267,0014343	0,373982459	221,9760284	0,504813433
266,0586548	0,373631448	221,0348511	0,513013005
264,9586487	0,374577642	219,9367371	0,518524945
264,015686	0,376167476	218,9954071	0,524582148
263,0726318	0,375814319	218,0540009	0,532826841
261,9722595	0,373982728	216,9555969	0,544084787
261,0289917	0,37371859	216,0140228	0,554971278
259,9284058	0,376543284	215,0723877	0,56338048
258,9849548	0,380288899	213,9737091	0,575084031
258,0414124	0,381709307	213,0319061	0,586074829
256,9404907	0,385965884	211,93 <mark>3</mark> 0444	0,600401878
255,9967651	0,388038158	210,9910889	0,616316021
255,0529327	0,382968128	210,049057	0,629691005
253,9516907	0,383503079	208,9499207	0,646264136
253,0076752	0,386506379	20 <mark>8,0077</mark> 362	0,663013041
252,0635681	0,388212025	207,0654755	0,680418253
250,9620056	0 <mark>,</mark> 38 <mark>627</mark> 2043	205,9660797	0,706819832
250,0177002	0,389212042	205,0236664	0, <mark>7</mark> 265495 <mark>6</mark> 6
248,9223938	0,39 <mark>08</mark> 32245	203 <mark>,924</mark> 0875	0, <mark>74954748</mark> 2
247,9835358	0,391 <mark>415983</mark>	202,9815216	0,774587035
247,0446014	0,395746917	202,0388794	0,808953524
245,9490814	0,394013763	200,9390564	0,847801089
245,0099487	0,401618391	199,9962158	0,880021751
244,070755	0,402883232		
242,9749146	0,405335844		
242,0355225	0,407968819	Com I	
240,9394684	0,411172897	CRPU	
239,9999084	0,422453165		
239,0602722	0,42199415		
237,963913	0,432417601		
237,0240784	0,435735434		
235,9275208	0,438421279		
234,9875183	0,437052161		
234,0474396	0,459343642		
232,9505768	0,440930933		
232,0103149	0,455147654		
231,0699768	0,458371729		
229,9728241	0,472431719		
229,0323181	0,459289074		
227,9349518	0,465428531		

2. Karbon + Aquades

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
800,041016	0,016124	757,968628	0,020515	715,950012	0,007521
798,931702	0,016958	756,982239	0,020259	714,948914	0,007923
797,960632	0,016602	755,995422	0,020016	713,947449	0,008513
796,989197	0,017293	755,008240	0,020014	712,945618	0,008893
796,017395	0,017881	754,020752	0,019768	711,943481	0,009565
795,045166	0,017760	753,032898	0,020297	710,940979	0,01 0236
793,933594	0,018054	752,044678	0,019586	709,938171	0,01 0777
792,960632	0,017262	751,056091	0,019618	708,934998	0,010375
791,987244	0,017324	750,067139	0,019403	707,931519	0,011271
791,013489	0,017985	748,936523	0,019829	707,071106	0,012960
790,039368	0,018345	747,946838	0,019460	706,067017	0,012825
789,064880	0,018972	746,956787	0,018967	705,062561	0,013528
787,950684	0,018960	745,966431	0,018789	704,057800	0,014502
786,975403	0,019231	744,97 <mark>5</mark> 647	0,019079	703,052734	0,016158
785,999756	0,018417	74 <mark>3</mark> ,984558	<mark>0</mark> ,018774	702,047241	0,016355
785,023682	0,019666	74 <mark>2</mark> ,993103	0,018038	701,041504	0,018196
784,047302	0,019 <mark>291</mark>	742,001343	0,017806	700,035400	0,018594
782,930969	0, <mark>01</mark> 9343	74 <mark>1,009</mark> 155	0,017449	699,028992	0,019400
781,953735	0,0 <mark>2</mark> 0185	74 <mark>0</mark> ,016663	0,017247	698,022217	0,020383
780,976196	0,0 <mark>1</mark> 9144	739,023804	0,016666	697,015137	0,020165
779,998230	0,019542	738,030640	0,016597	696,007690	0,020727
779,019959	0,0 <mark>1</mark> 9641	73 <mark>7,0370</mark> 48	0,016217	694,999939	0,021674
778,041260	0,0 <mark>19</mark> 835	736,043213	0,015676	693,991882	0,022330
777,062195	0,02 <mark>0482</mark>	735,048950	0,014875	692,983460	0,023129
775,942871	0,020165	734 <mark>,05</mark> 4382	0,013490	691,974731	0,024079
774,963013	0,01996 <mark>9</mark>	733,059448	0,013265	690,965698	0,024436
773,982849	0,020351	732,064148	0,012401	689,956299	0,025059
773,002319	0,020379	731,068543	0,011699	688,946594	0,025201
772,021362	0,020831	729,930237	0,010495	687,936585	0,025813
771,040100	0,020542	728,933899	0,009895	687,070618	0,026634
770,058411	0,019963	727,937195	0,010053	686,059937	0,027303
768,936096	0,020139	726,940125	0,009943	685,049011	0,027586
767,953674	0,020105	725,942749	0,008941	684,037720	0,027793
766,970886	0,020445	724,945007	0,007360	683,026123	0,028370
765,987732	0,020336	723,946899	0,007906	682,014160	0,029037
765,004211	0,020334	722,948486	0,007869	681,001953	0,029044
764,020325	0,020653	721,949707	0,007617	679,989380	0,029577
763,036133	0,020851	720,950623	0,007558	678,976502	0,030019
762,051514	0,020598	719,951172	0,007238	677,963257	0,030977
761,066589	0,020016	718,951416	0,007379	676,949768	0,031326
759,940430	0,020412	717,951294	0,007523	675,935913	0,031598
758,954712	0,020192	716,950806	0,007581	675,066650	0,031665

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
674,052185	0,032464	631,017578	0,040385	588,048340	0,051014
673,037415	0,032918	629,989868	0,041710	587,008667	0,050903
672,022339	0,033061	628,961853	0,041726	585,968750	0,051290
671,006958	0,033675	627,933533	0,041935	584,928528	0,051646
669,991272	0,034441	627,051880	0,042294	584,036682	0,051635
668,975220	0,034787	626,023010	0,042430	582,995911	0,052017
667,958862	0,034390	624,993835	0,042770	581,954895	0,052113
666,942200	0,035279	623,964356	0,042886	581,062439	0,052268
666,070557	0,036320	622,934631	0,042441	580,020874	0,052687
665,053284	0,037416	622,051758	0,043160	578,979065	0,052647
664,035767	0,039163	621,021423	0,043753	577,937012	0,052717
663,017883	0,041158	619,990845	0,043855	577,043579	0,052909
661,999695	0,043771	618,959961	0,044179	576,001038	0,053215
660,981201	0,045201	617,928772	0,043376	574,958191	0,053203
659,962402	0,046058	617,044678	0,043664	574,064087	0,053454
658,943298	0,047033	616,0 <mark>13</mark> 001	0,044607	573,020752	0,053587
658,069519	0,046488	614,980957	0,045245	571,977112	0,053747
657,049805	0,046248	613,948669	0,045357	570,933228	0,054049
656,029785	0,045994	613,063599	0,045550	570,038269	0,055010
655,009522	0, <mark>0</mark> 45539	61 <mark>2,030</mark> 762	0,045853	568,993897	0,055188
653,988892	0, <mark>0</mark> 45375	610,99 <mark>7</mark> 681	0,046162	567,949219	0,054972
652,967957	0, <mark>0</mark> 45181	609,964233	0,046321	567,053589	0,055331
651,946716	0,044747	60 <mark>8,</mark> 930542	0,046802	566,008423	0,055646
651,071106	0, <mark>04</mark> 4351	60 <mark>8,044</mark> 312	0,047107	564,963013	0,055297
650,049316	0,043749	607,010071	0,047011	564,066711	0,055650
649,027161	0,044009	605,975525	0,047238	563,020813	0,055640
648,004761	0,043760	60 <mark>4,94</mark> 0735	0,047679	561,974609	0,055825
646,982056	0,043350	604,053 <mark>528</mark>	0,047711	560,928223	0,055705
645,958984	0,043415	603,018189	0,048275	560,031006	0,055908
644,935669	0,042920	601,982544	0,048051	558,984070	0,055613
644,058289	0,042264	600,946655	0,048413	557,936890	0,055408
643,034363	0,041657	600,058533	0,048835	557,039063	0,055505
642,010132	0,040719	599,022095	0,048894	555,991394	0,055306
640,985657	0,040002	597,985352	0,049062	554,943420	0,055347
639,960815	0,039125	596,948364	0,049196	512,967163	0,066543
638,935730	0,038773	596,059326	0,049241	512,060120	0,067419
638,0568237	0,038926	595,021790	0,049621	511,001648	0,067944
637,031128	0,038857	593,984009	0,049898	509,942963	0,068320
636,005188	0,039185	592,94592 <mark>3</mark>	0,049984	509,035309	0,068691
634,978882	0,040332	592,055908	0,050373	507,976196	0,069241
633,952332	0,039717	591,017334	0,050497	507,068146	0,069640
633,072144	0,039854	589,978455	0,050527	506,008575	0,070030
632,045044	0,040295	588,939270	0,050892	504,948761	0,070117

Wavelength	Absorbance	Wayelength	Absorbance	Wayalangth	Absorbance
		460 001272		110 040000	0 107996
504,040101	0,070320	400,991272	0,080347	410,040009	0,107880
502,979889	0,071119	460,074616	0,080085	410,971101	0,108175
502,070892	0,071172	459,004974	0,089039	410,047241	0,108482
501,010193	0,071240	457,935120	0,089933	414,969147	0,108709
499,949249	0,071451	457,017914	0,090389	414,044891	0,108912
499,039703	0,071454	455,947662	0,091028	412,966431	0,109242
497,978302	0,071533	455,030121	0,091682	412,041870	0,109466
497,068390	0,071623	453,959473	0,092391	410,963043	0,109712
496,006561	0,071849	453,041596	0,093035	410,038178	0,109862
494,944519	0,071805	451,970551	0,093450	408,959015	0,110221
494,033997	0,0/1959	451,052307	0,094046	408,033844	0,110307
492,971527	0,072914	449,980866	0,094593	406,954285	0,110304
492,060638	0,071824	449,062317	0,095225	406,028809	0,110475
490,997742	0,072125	447,990479	0,096760	404,948914	0,110483
489,934601	0,072056	447,071594	0,096170	404,023132	0,110732
489,023132	0,073149	445,999359	0,096823	402,942902	0,110805
487,959564	0,073121	444,926910	0,097226	402,016815	0,111012
487,047760	0,073342	444,007507	0,097860	400,936218	0,111074
485,983765	0,073 <mark>28</mark> 0	442,93 <mark>4</mark> 662	<mark>0</mark> ,09 <mark>8</mark> 471	400,009827	0,111419
485,071564	0, <mark>0</mark> 73033	44 <mark>2,014</mark> 923	0,098793	398,928864	0,111635
484,007141	0, <mark>07326</mark> 5	44 <mark>0</mark> ,941711	0,099365	398,002197	0,111624
482,942505	0, <mark>072</mark> 258	<mark>440</mark> ,021637	0,099824	397,075348	0,111910
482,029755	0,072539	43 <mark>8,</mark> 948029	0,100375	395,993897	0,112282
480,964691	0,072775	43 <mark>8,0276</mark> 18	0 <mark>,100899</mark>	395,066773	0,112407
480,051575	0,073066	436,953644	0,101213	393,984955	0,112859
478,986084	0,073471	436,032898	0,101594	393,057556	0,112952
478,072632	0,073888	434 <mark>,95</mark> 8527	0,102010	391,975403	0,113497
477,006714	0,074483	434,037476	<mark>0,10</mark> 2445	391,047699	0,114018
475,940552	0,075315	432,962708	0,102672	389,965179	0,114472
475,026550	0,075689	432,041351	0,102994	389,037201	0,114929
473,959992	0,076567	430,966217	0,103368	387,954346	0,115337
473,045624	0,077425	430,044495	0,103682	387,026062	0,116018
471,978668	0,078154	428,968994	0,104094	385,942871	0,116715
471,063934	0,079017	428,046967	0,104318	385,014282	0,117193
469,996552	0,080008	426,971069	0,105900	383,930786	0,118097
468,928955	0,080830	426,048737	0,106275	383,001892	0,118577
468,013672	0,081610	424,972473	0,106814	382,072907	0,119532
466,945648	0,082558	424,049805	0,107035	380,988892	0,120531
466,030029	0,083372	422,973175	0,105990	380,059601	0,121421
464,961609	0,084343	422,050201	0,107713	378,975250	0,122163
464,045654	0,085147	420,973175	0,106819	378,045685	0,123041
462,976807	0,086006	420,049896	0,107042	376,960999	0,123942
462,060516	0,086642	418,972504	0,107593	376,031158	0,125073

Wavelength	Absorbance	Wavelength	Absorbance	Wayelength	Absorbance
274.046127	0 126297		0 1E2/19	200 020220	0 172196
374,940137	0,120387	220 020721	0,152416	209,020229	0,173160
374,015991	0,127030	330,956721	0,152611	207,950725	0,174040
372,930664	0,127970	330,002808	0,152577	286,989929	0,174821
372,000244	0,131973	329,000803	0,152606	286,049042	0,174900
371,069702	0,133441	327,974640	0,153581	284,951172	0,177000
369,983887	0,134370	327,038361	0,152192	284,010071	0,176973
369,053070	0,132904	325,945923	0,154584	283,068848	0,177464
367,966950	0,134108	325,009430	0,153999	281,970642	0,1/81/1
367,035828	0,135925	324,072784	0,154371	281,029205	0,1/9/13
365,949371	0,136082	322,979919	0,156502	279,930756	0,180835
365,018005	0,136421	322,043060	0,155161	278,989105	0,181563
363,931244	0,137600	320,949921	0,157153	278,047394	0,182138
362,999573	0,136927	320,012817	0,156826	276,948578	0,182323
362,067810	0,138100	319,075623	0,158057	276,006622	0,182381
360,980560	0,139965	317,982056	0,158638	275,064575	0,183894
360,048523	0,141181	317,044617	0,156678	273,965424	0,184062
358,960968	0,140410	315,950775	0,158418	273,023193	0,184208
358,028656	0,142258	315,013092	0,160062	271,923767	0,184960
356,940765	0,1 <mark>41304</mark>	314,075287	<mark>0</mark> ,161166	270,981323	0,185621
356,008179	0, <mark>1</mark> 44086	31 <mark>2,981</mark> 049	0,160691	270,038788	0,187449
355,075470	0, <mark>1</mark> 449 <mark>2</mark> 2	31 <mark>2</mark> ,04 <mark>2</mark> 999	0,159994	268,939026	0,186717
353,987152	0, 1 43145	<mark>310</mark> ,948486	0,161478	267,996277	0,188324
353,054169	0,144750	310,010223	0 <mark>,</mark> 162045	267,053436	0,188606
351,965546	0,143480	30 <mark>9,071</mark> 869	0 <mark>,161702</mark>	265,953369	0,191149
351,032318	0,1 <mark>4</mark> 5666	307,976959	0,162495	265,010315	0,186345
349,943359	0,146483	307,038330	0,163833	264,067200	0,187609
349,009857	0,147109	305 <mark>,9</mark> 43176	0,163736	262,966766	0,190829
348,076233	0,146790	305,004334	<mark>0,16</mark> 4018	262,023438	0,189639
346,986847	0,146189	304,065399	0,163821	260,922760	0,189777
346,052979	0,147514	302,969818	0,164682	259,979248	0,191769
344,963287	0,149285	302,030640	0,164660	259,035614	0,194117
344,029144	0,150737	300,934815	0,166450	257,934631	0,193925
342,939148	0,148881	299,995422	0,165539	256,990814	0,199362
342,004730	0,148942	299,055939	0,166383	256,046936	0,195946
341,070221	0,147713	297,959717	0,166779	254,945602	0,198978
339,979797	0,150471	297,019989	0,168115	254,001526	0,198027
339,045013	0,151300	295,923523	0,168725	253,057343	0,198309
337,954285	0,151807	294,983582	0,169163	251,955689	0,198102
337,019257	0,151909	294,043518	0,170119	251,011337	0,200120
335,928223	0,151456	292,946655	0,171426	250,066879	0,202337
334,992950	0,150377	292,006409	0,171148	248,971085	0,199415
334,057556	0,150460	291,066040	0,170854	248,032074	0,202338
332,966095	0,151572	289,968811	0,172053	246,936462	0,205746

Wavelength	Absorbance	Wavelength	Absorbance
245,997284	0,205553	203,022644	0,455365
245,057999	0,209461	201,922714	0,475921
243,962082	0,209358	200,979843	0,499709
243,022614	0,210009	200,036911	0,522740
241,926483	0,215623		
240,986847	0,218428		
240,047134	0,228048		
238,950684	0,224862		
238,010788	0,235081		
237,070801	0,232579		
235,974060	0,241527	515	
235,033905	0,245521	$\sim \sim$	
233,936951	0,261442	NAAI	
232,996628	0,257331	X IAN VEL	
232,056213	0,263120		
230,958969	0,263336		
230,018387	0,268524		
229,077713	0,255485		
227,980179	0,259853		
227,039352	0, <mark>2</mark> 63385		
225,941605	0, <mark>2</mark> 69918		
225,000610	0,273002		
224,059525	0,276314		
222,961502	0, <mark>28</mark> 0243		
222,020264	0,284435		
220,922043	0,289032		
219,980637	0,292685		
219,039154	0,295787		
217,940659	0,298576		
216,999008	0,304268		
216,057282	0,309571		
214,958511	0,316946	CRPU	
214,016632	0,323020		
213,074677	0,329307		
211,975632	0,338896		
211,033524	0,350511		
209,934296	0,360105		
208,992020	0,370598		
208,049683	0,380407		
206,950180	0,395881		
206,007690	0,410765		
205,065125	0,440505		
203,965363	0,440505		

3. Karbon + H₂SO₄ 0,5 M

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
800,041016	0,012859	757,968628	0,014744	715,950012	0,000373
798,931702	0,012823	756,982239	0,014602	714,948914	0,000106
797,960632	0,013191	755,995422	0,014750	713,947449	0,000566
796,989197	0,013293	755,008240	0,014286	712,945618	0,000867
796,017395	0,013353	754,020752	0,013864	711,943481	0,001423
795,045166	0,013673	753,032898	0,013878	710,940979	0,001959
793,933594	0,013742	752,044678	0,013886	709,938171	0,002559
792,960632	0,013562	751,056091	0,013768	708,934998	0,002431
791,987244	0,013339	750,067139	0,013054	707,931519	0,003233
791,013489	0,013553	748,936523	0,012994	707,071106	0,004631
790,039368	0,013816	747,946838	0,012928	706,067017	0,004553
789,064880	0,013876	746,956787	0,012706	705,062561	0,005077
787,950684	0,014087	745,966431	0,012297	704,057800	0,005886
786,975403	0,014601	744,97 <mark>5</mark> 647	0,012230	703,052734	0,007660
785,999756	0,014626	743,984558	0,012299	702,047241	0,007716
785,023682	0,014786	74 <mark>2,</mark> 993103	0,011229	701,041504	0,009665
784,047302	0,015014	742,001343	0,011536	700,035400	0,010403
782,930969	0 <mark>,0</mark> 14465	741,009155	0,010844	699,028992	0,011281
781,953735	0, <mark>01462</mark> 6	740,016663	0,01080 <mark>5</mark>	698,022217	0,011854
780,976196	0, <mark>0</mark> 14966	739,023804	0,009929	697,015137	0,011424
779,998230	0,014851	738,030640	0,009605	696,007690	0,012038
779,019959	0,014964	737 <mark>,0370</mark> 48	0,009360	694,999939	0,012651
778,041260	0, <mark>015515</mark>	736,043213	0,008211	693,991882	0,013473
777,062195	0,0 <mark>1603</mark> 9	735,048950	0,007604	692,983460	0,014307
775,942871	0,015993	734 <mark>,054</mark> 382	0,006908	691,974731	0,014787
774,963013	0,0161 <mark>42</mark>	733,059448	0,005942	690,965698	0,015551
773,982849	0,015716	732,064148	0,004981	689,956299	0,015995
773,002319	0,015928	731,068543	0,004376	688,946594	0,016476
772,021362	0,015620	729,930237	0,003354	687,936585	0,017160
771,040100	0,015661	728,933899	0,002619	687,070618	0,017578
770,058411	0,014685	727,937195	0,002744	686,059937	0,017858
768,936096	0,015150	726,940125	0,002150	685,049011	0,018543
767,953674	0,014843	725,942749	0,001598	684,037720	0,018947
766,970886	0,015627	724,945007	0,000120	683,026123	0,019321
765,987732	0,015334	723,946899	0,000412	682,014160	0,019370
765,004211	0,015342	722,948486	0,000160	681,001953	0,019903
764,020325	0,015436	721,949707	0,000255	679,989380	0,020719
763,036133	0,015242	720,950623	0,000279	678,976502	0,020642
762,051514	0,015616	719,951172	0,000487	677,963257	0,021468
761,066589	0,015142	718,951416	0,000655	676,949768	0,021982
759,940430	0,015045	717,951294	0,000613	675,935913	0,022120
758,954712	0,015110	716,950806	0,000606	675,066650	0,022125

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
674.052185	0.022556	631.0175781	0.027933309	612.0307617	0.031721622
673,037415	0,022898	629,9898682	0,028797699	610,9976807	0,031862192
672.022339	0.023248	628.961853	0.029143816	609.9642334	0.032047059
671.006958	0.023890	627.9335327	0.029251987	608.930542	0.03206275
669,991272	0,024239	627,0518799	0,029165935	608,0443115	0,032397702
668,975220	0,024198	626,0230103	0,029387686	607,0100708	0,032379098
667,958862	0,023912	624,9938354	0,029613208	605,9755249	0,032346468
666,942200	0,024076	623,9643555	0,029960087	604,9407349	0,032735255
666,070557	0,023831	631,0175781	0,027933309	604,0535278	0,033038829
665,053284	0,023629	629,9898682	0,028797699	603,0181885	0,033172615
664,035767	0,024090	628,961853	0,029143816	601,9825439	0,03319234
663,017883	0,024088	627,9335327	0,029251987	600,9466553	0,03341 2244
661,999695	0,024811	627,0518799	0,029165935	600,0585327	0,033362318
660,981201	0,024544	626,0230103	0,029387686	599,0220947	0,033387505
659,962402	0,024808	624,9938354	0,029613208	597,9853516	0,033263095
658,943298	0,024830	623,964 <mark>35</mark> 55	0,029960087	596,9483643	0,033592459
658,069519	0,023986	631,0175781	0,027933309	596,0593262	0,033859942
657,049805	0,024102	629, <mark>9</mark> 898682	0,028797699	595,0217896	0,03396792
656,029785	0,023819	<mark>628,9</mark> 61853	0,029143816	593,9840088	0,034018643
655,009522	0,0 <mark>2</mark> 3969	627, <mark>93353</mark> 27	0,029251987	592,9459229	0,034028105
653,988892	0,0 <mark>2</mark> 4797	627,0518799	0,029165935	592,0559082	0,034002826
652,967957	0,0 <mark>2</mark> 4361	6 <mark>26,02</mark> 30103	0,029387686	591,017334	0,034247678
651,946716	0,024310	624,9938354	0,02 <mark>9</mark> 613208	589,9784546	0,034342501
651,071106	0,024906	623,9 <mark>6435</mark> 55	0,029960087	588,93927	0,034281012
650,049316	0,0 <mark>24612</mark>	631,0175781	0,027933309	588,0483398	0,034521896
649,027161	0,02 <mark>5</mark> 191	629,9 <mark>8</mark> 98682	0,028797699	587,008667	0,034764152
648,004761	0,025531	628, <mark>9618</mark> 53	0,029143816	585,96875	0,034621265
646,982056	0,025640	6 2 7,9335327	0,029251987	584,9285278	0,034969307
645,958984	0,025682	6 <mark>27,05187</mark> 99	0,029165935	584,0366821	0,034752429
644,935669	0,025546	626,0230103	0,029387686	582,9959106	0,034615967
644,058289	0,025512	624,9938354	0,029613208	581,954895	0,034766536
643,034363	0,025877	623,9643555	0,029960087	581,062439	0,034982271
642,010132	0,025879	622,9346313	0,028733062	580,020874	0,034880631
640,985657	0,026658	622,0517578	0,030193234	578,9790649	0,03491867
639,960815	0,026433	621,0214233	0,030092541	577,9370117	0,034977306
638,935730	0,026154	619,9908447	0,030479232	577,0435791	0,035116039
638,0568237	0,026772	618,9599609	0,030656371	576,0010376	0,034960162
637,031128	0,026865	617,928772	0,030072207	574,9581909	0,034928683
636,005188	0,027042	617,0446777	0,030038528	574,0640869	0,034764487
634,978882	0,028054	616,0130005	0,03089748	573,020752	0,034752347
633,952332	0,027426	614,980957	0,03141541	571,9771118	0,034778062
633,072144	0,027413	613,9486694	0,031440843	570,9332275	0,034800272
632,045044	0,027615	613,0635986	0,031532023	570,038269	0,035278909

Mouslongth	Absorbance	Mayolo noth	Absorbance	Manalonath	Absorbonso
506,9956905	0,035351636	525,0440074	0,034663670	460,904091	0,043001
567,9492188	0,035153314	523,9885804	0,035507351	480,051575	0,043998
567,0535889	0,034943748	522,9329224	0,036383945	478,986084	0,044389
566,0084229	0,034644842	522,027832	0,037003055	478,072632	0,044672
564,9630127	0,034891739	520,9/16/9/	0,037456755	477,006714	0,045049
564,0667114	0,03479626	520,0662231	0,037692547	475,940552	0,045715
563,020813	0,034/1008/	519,0095825	0,03815395	475,026550	0,046011
561,9746094	0,034131341	517,9527588	0,03894145	473,959992	0,046768
560,9282227	0,034270227	517,0466919	0,039570142	473,045624	0,04/44/
560,0310059	0,033860527	515,9893799	0,040335815	4/1,9/8668	0,047986
558,9840698	0,034016937	514,9318237	0,040714256	471,063934	0,048693
557,9368896	0,033598948	514,0251465	0,04088046	469,996552	0,049552
557,0390625	0,033526041	512,9671631	0,041367531	468,928955	0,050143
555,991394	0,033044636	512,0601196	0,042050932	468,013672	0,050956
554,9434204	0,032936998	511,0016479	0,042380095	466,945648	0,051792
552,996521	0,032528669	509,9429626	0,04261601	466,030029	0,052257
551,947876	0,032201089	509,0353088	0,043067381	464,961609	0,053178
551,0487671	0,031924512	507,9761963	0,043335274	464,045654	0,053913
549,9995728	0,031737663	507,0681458	0,043698587	462,976807	0,054385
548,9501343	0,031296629	50 <mark>6,0085754</mark>	0,043928374	462,060516	0,054966
548,050415	0,030804349	504,948761	0,044217918	460,991272	0,056757
547,0004883	0,030667596	504,0401611	0,044329539	460,074616	0,056156
545,9503174	0,030424755	502,9798889	0,0446749 <mark>7</mark> 8	459,004974	0,056775
545,0499268	0,030291727	502 <mark>,0708</mark> 923	0,0449625 <mark>8</mark> 1	457,935120	0,057318
543,9992676	0,030 <mark>1</mark> 31329	501,0101929	0, <mark>04481492</mark> 6	457,017914	0,057876
542,9483643	0,02985798	499,9492493	0,044778135	455,947662	0,058246
542,0473633	0,029620552	499,0397034	0,044725563	455,030121	0,058870
540,9959717	0,029803164	497,978302	0,044792168	453,959473	0,059261
539,9443359	0,029936485	497,0683899	0,044804506	453,041596	0,059606
539,0427246	0,02982845	496,0065613	0,04482761	451,970551	0,059975
537,9906006	0,029902874	494,944519	0,044768836	451,052307	0,060418
536,9382324	0,030107772	494,0339966	0,044649903	449,980866	0,060880
536,0360107	0,030223703	492,9715271	0,045568489	449,062317	0,061101
534,9831543	0,030528245	492,0606384	0,044478577	447,990479	0,062811
533,9301147	0,030616011	490,9977417	0,044557419	447,071594	0,061796
533,0272217	0,031069146	489,9346008	0,044314947	445,999359	0,062350
531,9736938	0,031540122	489,0231323	0,045275111	444,926910	0,062733
531,0704346	0,031832162	487,9595642	0,045217108	440,941711	0,063910
530,0164185	0,033325337	487,04776	0,045108307	440,021637	0,064344
528,9620972	0,033791889	485,9837646	0,044937205	438,948029	0,064702
528,0582275	0,034434263	485,0715637	0,044661693	438,027618	0,064921
527,00354	0,033766035	484,0071411	0,044779368	436,953644	0,065252
525,9485474	0,034472656	482,9425049	0,043698102	436,032898	0,065420
Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
------------	-------------------------	--	------------------------	------------	------------
434,958527	0,065599	391,975403	0,067962	349,009857	0,091465
434,037476	0,065729	391,047699	0,068258	348,076233	0,092369
432,962708	0,065765	389,965179	0,068463	346,986847	0,091151
432,041351	0,065937	389,037201	0,068795	346,052979	0,092260
430,966217	0,066044	387,954346	0,069126	344,963287	0,092175
430,044495	0,066290	387,026062	0,069397	344,029144	0,092597
428,968994	0,066445	385,942871	0,069700	342,939148	0,092300
428,046967	0,066558	385,014282	0,070205	342,004730	0,092242
426,971069	0,067774	383,930786	0,070865	341,070221	0,093168
426,048737	0,067945	383,001892	0,071054	339,979797	0,094858
424,972473	0,068107	382,072907	0,071674	339,045013	0,093022
424,049805	0,068226	380,988892	0,072355	337,954285	0,092209
422,973175	0,067019	380,059601	0,073134	337,019257	0,092947
422,050201	0,068641	378,975250	0,073697	335,928223	0,092894
420,973175	0,067487	378,045685	0,074305	334,992950	0,092245
420,049896	0,067630	376,96 <mark>0</mark> 999	0,075107	334,057556	0,093045
418,972504	0,067800	376,031158	0,075987	332,966095	0,093030
418,048889	0,068002	37 <mark>4</mark> ,94 <mark>6</mark> 137	0,076710	332,030457	0,093609
416,971161	0,068097	374,015991	0,077721	330,938721	0,093544
416,047241	0,068139	37 <mark>2</mark> ,930664	0,077969	330,002808	0,092239
414,969147	0 <mark>,0</mark> 67966	37 <mark>2,</mark> 000244	0,082276	329,066803	0,093434
414,044891	0 <mark>,0</mark> 68193	371,069702	0,083524	327,974640	0,090910
412,966431	0,068312	369,983887	0,083727	327,038361	0,091835
412,041870	0,068375	369 <mark>,05307</mark> 0	0,083308	325,945923	0,092551
410,963043	0, <mark>06</mark> 8117	367,966950	0,084472	325,009430	0,092767
410,038178	0,0 <mark>6821</mark> 8	367,035828	0,085799	324,072784	0,094328
408,959015	0,068164	365 <mark>,94</mark> 9371	0,085124	322,979919	0,094562
408,033844	0,068175	365,018005	<mark>0,0</mark> 86295	322,043060	0,094115
406,954285	0,068089	363,931244	0,085317	320,949921	0,094326
406,028809	0,067864	362,999573	0,085885	320,012817	0,095295
404,948914	0,067869	362,067810	0,086316	319,075623	0,094593
404,023132	0,067717	360,980560	0,087940	317,982056	0,095669
402,942902	0,067766	360,048523	0,086862	317,044617	0,094984
402,016815	0,067663	358,960968	0,088521	315,950775	0,095117
400,936218	0,067656	358,028656	0,088455	315,013092	0,096597
400,009827	0,067473	356,940765	0,089601	314,075287	0,096217
398,928864	0,067458	356,008179	0,088993	312,981049	0,095923
398,002197	0,067503	355,075470	0,089726	312,042999	0,096833
397,075348	0,067475	353,987152	0,090613	310,948486	0,096611
395,993897	0,067500	353,054169	0,090833	310,010223	0,095716
395,066773	0,067630	351,965546	0,090815	309,071869	0,098064
393,984955	0,067689	351,032318	0,090493	307,976959	0,097465
393,057556	0,067695	349,943359	0,089410	307,038330	0,097446

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
305.943176	0.096858	260.922760	0.107302	217.940659	0.172915
305.004334	0.096712	259,979248	0.107840	216.999008	0.176995
304.065399	0.097583	259.035614	0.111053	216.057282	0.180865
302.969818	0.096744	257.934631	0.109638	214.958511	0.185603
302,030640	0,097646	256,990814	0,110568	214,016632	0,189403
300,934815	0,098457	256,046936	0,114426	213,074677	0,194817
299,995422	0,097977	254,945602	0,114870	211,975632	0,202685
299,055939	0,097597	254,001526	0,113423	211,033524	0,210294
297,959717	0,098246	253,057343	0,113865	209,934296	0,218855
297,019989	0,098928	251,955689	0,114418	208,992020	0,225366
295,923523	0,098354	251,011337	0,113213	208,049683	0,234613
294,983582	0,099388	250,066879	0,113962	206,950180	0,247334
294,043518	0,099854	248,971085	0,115100	206,007690	0,257934
292,946655	0,100239	248,032074	0,115617	205,065125	0,267328
292,006409	0,100684	246,936462	0,116195	203,965363	0,280360
291,066040	0,101204	245,99 <mark>7</mark> 284	0,120345	203,022644	0,291080
289,968811	0,101651	245,057999	0,118454	201,922714	0,306600
289,028229	0,102102	24 <mark>3</mark> ,96 <mark>2</mark> 082	0,120937	200,979843	0,322231
287,930725	0,101405	243,022614	0,120503	200,036911	0,335910
286,989929	0,100969	24 <mark>1,926</mark> 483	0,126826	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
286,049042	0,103236	240,986847	0,128296		
284,951172	0 <mark>,1</mark> 02335	240,047134	0,131628	5	
284,010071	0,102987	238,950684	0,1364 <mark>6</mark> 3		
283,068848	0,103391	238 <mark>,0107</mark> 88	0,132514		
281,970642	0,103976	237,070801	0,136876		
281,029205	0,104238	235,974060	0,140031		
279,930756	0,105643	235 <mark>,03</mark> 3905	0,142700	~	
278,989105	0,105252	233,936951	0,152915	<	
278,047394	0,105834	232,996628	0,156142		
276,948578	0,106297	232,056213	0,154361	~ //	
276,006622	0,106413	230,958969	0,148936		
275,064575	0,107472	230,018387	0,162342		
273,965424	0,105732	229,077713	0,144958		
273,023193	0,106756	227,980179	0,147966		
271,923767	0,105744	227,039352	0,149584		
270,981323	0,107759	225,941605	0,153686		
270,038788	0,108002	225,000610	0,156300		
268,939026	0,109296	224,059525	0,158469		
267,996277	0,108080	222,961502	0,160719		
267,053436	0,109963	222,020264	0,163479		
265,953369	0,109729	220,922043	0,166365		
265,010315	0,109820	219,980637	0,169040		
264,067200	0,108374	219,039154	0,170925		

4. Karbon + H_2SO_4 1 M

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
800,041016	0,042446	757,968628	0,049249	715,950012	0,040787
798,931702	0,041474	756,982239	0,049245	714,948914	0,041219
797,960632	0,042659	755,995422	0,049079	713,947449	0,041667
796,989197	0,042849	755,008240	0,048916	712,945618	0,042258
796,017395	0,043093	754,020752	0,049656	711,943481	0,042842
795,045166	0,043413	753,032898	0,049383	710,940979	0,043537
793,933594	0,043206	752,044678	0,049772	709,938171	0,044813
792,960632	0,043893	751,056091	0,049509	708,934998	0,044539
791,987244	0,043364	750,067139	0,049240	707,931519	0,045279
791,013489	0,044163	748,936523	0,048839	707,071106	0,046967
790,039368	0,043973	747,946838	0,049361	706,067017	0,047099
789,064880	0,044125	746,956787	0,048665	705,062561	0,047900
787,950684	0,044843	745,966431	0,048935	704,057800	0,049151
786,975403	0,044704	744,97 <mark>5</mark> 647	0,049010	703,052734	0,050912
785,999756	0,044474	743,98 <mark>4</mark> 558	0,048974	702,047241	0,051136
785,023682	0,045550	74 <mark>2</mark> ,99 <mark>3</mark> 103	0,048502	701,041504	0,052977
784,047302	0,045 <mark>92</mark> 6	742,001343	0,048476	700,035400	0,053532
782,930969	0 <mark>,0</mark> 45840	741,009155	0,048206	699,028992	0,054505
781,953735	0 <mark>,0</mark> 45779	740,016663	0,047882	698,022217	0,055310
780,976196	0 <mark>,0</mark> 46272	739,023804	0,047789	697,015137	0,055817
779,998230	0,046413	738,030640	0,046876	696,007690	0,056675
779,019959	0,046818	737 <mark>,03704</mark> 8	0,046836	694,999939	0,057547
778,041260	0 <mark>,0</mark> 47158	736,043213	0,046684	693,991882	0,058130
777,062195	0,0 <mark>46771</mark>	735,048950	0,046619	692,983460	0,059034
775,942871	0,047599	734 <mark>,054</mark> 382	0,044988	691,974731	0,059680
774,963013	0,047202	733,059448	0,044762	690,965698	0,060696
773,982849	0,047173	732,064148	0,044067	689,956299	0,061302
773,002319	0,047846	731,068543	0,043137	688,946594	0,061814
772,021362	0,047513	729,930237	0,042274	687,936585	0,062637
771,040100	0,048242	728,933899	0,041823	687,070618	0,062922
770,058411	0,048333	727,937195	0,041857	686,059937	0,063764
768,936096	0,047751	726,940125	0,041667	685,049011	0,064277
767,953674	0,048557	725,942749	0,041379	684,037720	0,065203
766,970886	0,048938	724,945007	0,039886	683,026123	0,065209
765,987732	0,047991	723,946899	0,040435	682,014160	0,065969
765,004211	0,048154	722,948486	0,040321	681,001953	0,066783
764,020325	0,048803	721,949707	0,040200	679,989380	0,067317
763,036133	0,049195	720,950623	0,039946	678,976502	0,068052
762,051514	0,049012	719,951172	0,040315	677,963257	0,068417
761,066589	0,048914	718,951416	0,040121	676,949768	0,069042
759,940430	0,048828	717,951294	0,040293	675,935913	0,069671
758,954712	0,048875	716,950806	0,040617	675,066650	0,070062

Mayolongth	Absorbanco	Mayolongth	Absorbanco	Wavalangth	Absorbanco
674 052185	0.070426	621 017578	0 083022	588 048240	
672 027/15	0,070420	670 080868	0,0853933	587 008667	0,100484
672 02220	0,070738	629,989808	0,085284	587,008007	0,100040
671 006059	0,071030	627 022522	0,085903	585,908730	0,100839
660 001272	0,072237	627 051000	0,085908	504,920520	0,101029
669,991272	0,072377	627,051880	0,080442	584,050082	0,101030
667 059962	0,072678	620,023010	0,080007	582,995911	0,101722
666.042200	0,073017	622 064256	0,007140	581,954895	0,102140
666.070557	0,075098	622,904550	0,087037	501,002459	0,102420
665 052294	0,073298	622,954051	0,080949	560,020674	0,102554
664 025767	0,073210	621,031/30	0,088000	576,979005	0,102714
662 017992	0,073341	610 000945	0,088900	577,957012	0,103522
661 000605	0,073408	619 050061	0,000900	577,043579	0,103500
660 081201	0,074910	617 028772	0,089332	574 058101	0,103327
650 062402	0,074380	617 04/679	0,089008	574,958191	0,103843
659 042209	0,07500	616 012001	0,089337	574,004087	0,104217
652 060510	0,073832	614 020057	0,090431	575,020732	0,104320
657 040905	0,074800	612 049660	0,090987	571,977112	0,104434
656 020785	0,075319	612 062500	0,091337	570,955228	0,104099
655 009522	0,075023	612 030762	0,091742	568 003807	0 105807
653 088802	0,076470	610 997681	0,092020	567 9/9219	0 105881
652 967957	0.076567	609 964233	0.092736	567 053589	0 105799
651 9/6716	0.076852	608 9305/2	0,092750	566 008/123	0 106070
651 071106	0.077042	608 044312	0.093495	564 963013	0.106276
650 049316	0 077061	607 010071	0.093982	564 066711	0 106600
649.027161	0.077975	605,975525	0.094345	563.020813	0.106639
648.004761	0.078177	604,940735	0.094611	561.974609	0.106585
646.982056	0.078462	604.053528	0.095020	560.928223	0.106420
645.958984	0.078931	603.018189	0.095280	560.031006	0.106925
644.935669	0.079052	601.982544	0.095724	558.984070	0.106751
644,058289	0,079551	600,946655	0,096048	557,936890	0,106985
643,034363	0,079806	600,058533	0,096286	557,039063	0,106866
642,010132	0,080489	599,022095	0,096837	555,991394	0,106952
640,985657	0,080397	597,985352	0,096890	554,943420	0,106961
639,960815	0,081032	596,948364	0,097279	554,044983	0,106851
638,935730	0,081264	596,059326	0,097628	552,996521	0,107226
638,0568237	0,081390	595,021790	0,098095	551,947876	0,107262
637,031128	0,081803	593,984009	0,098135	551,048767	0,107265
636,005188	0,082496	592,945923	0,098609	549,999573	0,107301
634,978882	0,083653	592,055908	0,099029	548,950134	0,107090
633,952332	0,082809	591,017334	0,099390	548,050415	0,106807
633,072144	0,083317	589,978455	0,099701	547,000488	0,106977
632,045044	0,083954	588,939270	0,100027	545,950317	0,107041

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
545,049927	0,106986	502,070892	0,134308	459,004974	0,165317
543,999268	0,10/1//	501,010193	0,134/43	457,935120	0,166008
542,948364	0,107305	499,949249	0,134893	457,017914	0,166595
542,047363	0,107237	499,039703	0,135592	455,947662	0,167346
540,995972	0,107646	497,978302	0,135832	455,030121	0,167817
539,944336	0,108028	497,068390	0,136069	453,959473	0,168556
539,042725	0,108370	496,006561	0,136595	453,041596	0,169099
537,990601	0,108773	494,944519	0,136973	451,970551	0,169421
536,938232	0,109065	494,033997	0,137242	451,052307	0,170183
536,036011	0,109660	492,971527	0,138685	449,980866	0,170607
534,983154	0,109980	492,060638	0,137995	449,062317	0,171176
533,930115	0,110553	490,997742	0,139171	447,990479	0,172892
533,027222	0,111261	489,934601	0,139489	447,071594	0,172036
531,973694	0,111923	489,023132	0,141306	445,999359	0,172792
531,070435	0,112390	487,959564	0,142312	444,926910	0,173410
530,016419	0,114302	487,04 <mark>7</mark> 760	0,143087	444,007507	0,173686
528,962097	0,115218	485,983765	0,143267	442,934662	0,174037
528,058228	0,116078	48 <mark>5</mark> ,07 <mark>1</mark> 564	0,143832	442,014923	0,174293
527,003540	0, <mark>11578</mark> 0	48 <mark>4</mark> ,007141	0,145542	440,941711	0,174917
525,948547	0 <mark>,1</mark> 16616	48 <mark>2,942</mark> 505	0,144631	440,021637	0,175441
525,044067	0,117296	482,029755	0,1456 <mark>9</mark> 1	438,948029	0,176140
523,988586	0 <mark>,1</mark> 18390	480,964691	0,146421	438,027618	0,176455
522,932922	0,119526	480,051575	0,146784	436,953644	0,176966
522,027832	0,120281	478 <mark>,9860</mark> 84	0,147539	436,032898	0,177164
520,971680	0,120985	478,072632	0,148141	434,958527	0,177737
520,066223	0,1 <mark>216</mark> 58	477,006714	0,149167	434,037476	0,178045
519,009583	0,122619	475 <mark>,94</mark> 0552	0,150261	432,962708	0,178590
517,952759	0,123677	475,026550	0,150890	432,041351	0,178828
517,046692	0,124441	473,959992	0,151623	430,966217	0,179156
515,989380	0,125652	473,045624	0,152747	430,044495	0,179704
514,931824	0,126261	471,978668	0,153811	428,968994	0,180189
514,025147	0,126569	471,063934	0,154604	428,046967	0,180519
512,967163	0,127376	469,996552	0,155680	426,971069	0,182245
512,060120	0,128450	468,928955	0,156524	426,048737	0,182539
511,001648	0,129256	468,013672	0,157416	424,972473	0,183217
509,942963	0,129805	466,945648	0,158599	424,049805	0,183696
509,035309	0,130218	466,030029	0,159321	422,973175	0,182771
507,976196	0,131183	464,961609	0,160440	422,050201	0,184619
507,068146	0,131632	464,045654	0,161082	420,973175	0,183645
506,008575	0,132318	462,976807	0,161712	420,049896	0,184336
504,948761	0,132858	462,060516	0,162468	418,972504	0,184933
504,040161	0,133349	460,991272	0,164587	418,048889	0,185368
502,979889	0,133931	460,074616	0,164667	416,971161	0,186000

ſ						
	Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
	416,047241	0,186374	372,930664	0,210241	330,002808	0,236610
	414,969147	0,186734	372,000244	0,215097	329,066803	0,235005
	414,044891	0,187201	371,069702	0,215569	327,974640	0,237693
	412,966431	0,187400	369,983887	0,216601	327,038361	0,236622
	412,041870	0,187716	369,053070	0,216829	325,945923	0,236876
	410,963043	0,188203	367,966950	0,218489	325,009430	0,239153
	410,038178	0,188535	367,035828	0,218705	324,072784	0,238007
	408,959015	0,189045	365,949371	0,220823	322,979919	0,242174
	408,033844	0,189028	365,018005	0,220331	322,043060	0,240280
	406,954285	0,189380	363,931244	0,219636	320,949921	0,240607
	406,028809	0,189579	362,999573	0,220596	320,012817	0,240392
	404,948914	0,189873	362,067810	0,221820	319,075623	0,240843
	404,023132	0,190086	360,980560	0,222954	317,982056	0,242124
	402,942902	0,190237	360,048523	0,223783	317,044617	0,242817
	402,016815	0,190581	358,960968	0,224434	315,950775	0,243142
9	400,936218	0,190904	358,0 <mark>28</mark> 656	0,224619	315,013092	0,244103
(400,009827	0,191177	356,940765	0,225020	314,075287	0,243500
	398,9288 <mark>6</mark> 4	0,191622	35 <mark>6</mark> ,00 <mark>8</mark> 179	0,226607	312,981049	0,243995
	398,002197	0,191 <mark>86</mark> 4	355,075470	0,226782	312,042999	0,244400
	397,075348	0,192136	35 <mark>3,987</mark> 152	0,227068	310,948486	0,245746
	395,993897	0,192400	353,054169	0,227709	310,010223	0,246411
	395,066773	0,192872	351,965546	0,231248	309,071869	0,245981
	393,984955	0,193224	351,032318	0,230093	307,976959	0,248470
	393,057556	0,193693	349 <mark>,9433</mark> 59	0,229342	307,038330	0,248150
	391,975403	0,194314	349,009857	0,231072	305,943176	0,248481
	391,047699	0,194761	348,076233	0,229560	305,004334	0,248256
	389,965179	0,195589	346 <mark>,98</mark> 6847	0,231065	304,065399	0,249400
	389,037201	0,195944	346,052979	0,230965	302,969818	0,249783
	387,954346	0,196459	344,963287	0,232009	302,030640	0,249458
	387,026062	0,197133	344,029144	0,231398	300,934815	0,249974
	385,942871	0,198180	342,939148	0,234518	299,995422	0,249650
	385,014282	0,198914	342,004730	0,234464	299,055939	0,250212
	383,930786	0,199657	341,070221	0,233970	297,959717	0,250398
	383,001892	0,200131	339,979797	0,234402	297,019989	0,251327
	382,072907	0,201084	339,045013	0,234803	295,923523	0,250613
	380,988892	0,202357	337,954285	0,234884	294,983582	0,252920
	380,059601	0,203089	337,019257	0,235599	294,043518	0,252505
	378,975250	0,204168	335,928223	0,235543	292,946655	0,253207
	378,045685	0,204829	334,992950	0,235596	292,006409	0,253492
	376,960999	0,206316	334,057556	0,234003	291,066040	0,254922
	376,031158	0,207347	332,966095	0,236499	289,968811	0,255897
	374,946137	0,208491	332,030457	0,236601	289,028229	0,256604
	374,015991	0,209419	330,938721	0,237779	287,930725	0,256463

	Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
	286,989929	0,257779	243,962082	0,288657	200,979843	0,544297
	286,049042	0,257705	243,022614	0,289991	200,036911	0,565123
	284,951172	0,259980	241,926483	0,292153		
	284,010071	0,259834	240,986847	0,300158		
	283,068848	0,259098	240,047134	0,299440		
	281,970642	0,261729	238,950684	0,304026		
	281,029205	0,261604	238,010788	0,308283		
	279,930756	0,263347	237,070801	0,310414		
	278,989105	0,265278	235,974060	0,309162		
	278,047394	0,263088	235,033905	0,325777		
	276,948578	0,264074	233,936951	0,318169		
	276,006622	0,265965	232,996628	0,319672		
	275,064575	0,264163	232,056213	0,329468		
	273,965424	0,263928	230,958969	0,335262		
	273,023193	0,266533	230,018387	0,335129		
	271,923767	0,265196	229,07 <mark>7</mark> 713	0,321446	10	
	270,981323	0,267257	227,980179	0,324506		
	270,038788	0,267974	22 <mark>7</mark> ,03 <mark>9</mark> 352	0,327330	2 11	
	268,939026	0,271577	225,941605	0, <mark>33</mark> 1642	2 1	
	267,996277	0 <mark>,2</mark> 69194	225,000610	0,334879	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	267,053436	0,269766	224,059525	0,337014		
	265,953369	0 <mark>,2</mark> 70979	222,961502	0,339972		
	265,010315	0,269620	222,020264	0,343369		
	264,067200	0 <mark>,2</mark> 71048	220 <mark>,922</mark> 043	0,346735		
	262,966766	0,270167	219,980637	0,350249		
	262,023438	0,271005	219,039154	0,352768		
	260,922760	0,270865	217,940659	0,354808	× 1	
	259,979248	0,272599	216,999008	0,359774	$\langle \langle \rangle$	
	259,035614	0,273430	216,057282	0,365227		
	257,934631	0,276212	214,958511	0,370849		
	256,990814	0,273093	214,016632	0,376206		
	256,046936	0,279142	213,074677	0,382121		
	254,945602	0,279092	211,975632	0,391464		
	254,001526	0,276368	211,033524	0,400470		
	253,057343	0,278997	209,934296	0,411253		
╞	251,955689	0,279788	208,992020	0,421162		
-	251,011337	0,281639	208,049683	0,430888		
-	250,066879	0,281524	206,950180	0,445448		
ŀ	248,971085	0,281727	206,007690	0,459738		
╞	248,032074	0,282773	205,065125	0,472211		
ŀ	246,936462	0,282941	203,965363	0,487757		
ŀ	245,997284	0,287318	203,022644	0,500931		
L	245,057999	0,290338	201,922714	0,524595		

5. Karbon + H₂SO₄ 1,5 M

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
800,041016	0,019070	757,968628	0,023071	715,950012	0,010451
798,931702	0,019820	756,982239	0,023456	714,948914	0,010658
797,960632	0,019595	755,995422	0,023096	713,947449	0,010978
796,989197	0,019640	755,008240	0,022979	712,945618	0,011801
796,017395	0,020129	754,020752	0,022606	711,943481	0,011994
795,045166	0,020209	753,032898	0,022242	710,940979	0,012815
793,933594	0,020072	752,044678	0,022261	709,938171	0,013515
792,960632	0,020397	751,056091	0,021849	708,934998	0,013234
791,987244	0,021031	750,067139	0,022671	707,931519	0,013929
791,013489	0,020836	748,936523	0,022273	707,071106	0,015769
790,039368	0,021408	747,946838	0,022118	706,067017	0,015797
789,064880	0,021598	746,956787	0,021926	705,062561	0,016255
787,950684	0,021450	745,966431	0,021558	704,057800	0,01 7218
786,975403	0,021515	744,97 <mark>5</mark> 647	0,021639	703,052734	0,018969
785,999756	0,021933	743,984558	0,021198	702,047241	0,018731
785,023682	0,021743	74 <mark>2</mark> ,993103	0,020994	701,041504	0,020902
784,047302	0,021986	742,001343	0,020752	700,035400	0,021437
782,930969	0 <mark>,0</mark> 21920	741,009155	0,020332	699,028992	0,022246
781,953735	0,022866	740,016663	0,020063	698,022217	0,023024
780,976196	0, <mark>022</mark> 175	739,023804	0,019655	697,015137	0,022836
779,998230	0,022691	738,030640	0,019544	696,007690	0,023416
779,019959	0,022565	737 <mark>,03</mark> 7048	0,018567	694,999939	0,024237
778,041260	0, <mark>02</mark> 2892	736,043213	0,018236	693,991882	0,025030
777,062195	0,022221	735,048950	0,017505	692,983460	0,025833
775,942871	0,022501	734 <mark>,054</mark> 382	0,016913	691,974731	0,026394
774,963013	0,023034	733,059448	0,016278	690,965698	0,027271
773,982849	0,022683	732,064148	0,015211	689,956299	0,027287
773,002319	0,023523	731,068543	0,014237	688,946594	0,028146
772,021362	0,023474	729,930237	0,013381	687,936585	0,028648
771,040100	0,022957	728,933899	0,012815	687,070618	0,029311
770,058411	0,022749	727,937195	0,012985	686,059937	0,029440
768,936096	0,022463	726,940125	0,012148	685,049011	0,030079
767,953674	0,023566	725,942749	0,011870	684,037720	0,030664
766,970886	0,023331	724,945007	0,010408	683,026123	0,031208
765,987732	0,023027	723,946899	0,010781	682,014160	0,031391
765,004211	0,022655	722,948486	0,010676	681,001953	0,032222
764,020325	0,023037	721,949707	0,010376	679,989380	0,032445
763,036133	0,023475	720,950623	0,010056	678,976502	0,032908
762,051514	0,023489	719,951172	0,010013	677,963257	0,033490
761,066589	0,023757	718,951416	0,010198	676,949768	0,033856
759,940430	0,023247	717,951294	0,009998	675,935913	0,034145
758,954712	0,023285	716,950806	0,009964	675,066650	0,034815

Maximum la constala	A b a a b b a a a b	Maria Iana ath			A b a a b b a a a b
Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
674,052185	0,034730	631,017578	0,042739	588,048340	0,052987
673,037415	0,035589	629,989868	0,044197	587,008667	0,053048
672,022339	0,035787	628,961853	0,044131	585,968750	0,053079
671,006958	0,035738	627,933533	0,044602	584,928528	0,053317
669,991272	0,036512	627,051880	0,044559	584,036682	0,053628
668,975220	0,036443	626,023010	0,044866	582,995911	0,053589
667,958862	0,036280	624,993835	0,045088	581,954895	0,053954
666,942200	0,036432	623,964356	0,045155	581,062439	0,053797
666,070557	0,036540	622,934631	0,044729	580,020874	0,054022
665,053284	0,036920	622,051758	0,046026	578,979065	0,054068
664,035767	0,036758	621,021423	0,045848	577,937012	0,054217
663,017883	0,036802	619,990845	0,046295	577,043579	0,054188
661,999695	0,037672	618,959961	0,046737	576,001038	0,054390
660,981201	0,037836	617,928772	0,045835	574,958191	0,054506
659,962402	0,038074	617,044678	0,045918	574,064087	0,054766
658,943298	0,038157	616,01 <mark>3</mark> 001	0,047083	573,020752	0,054784
658,069519	0,037655	61 <mark>4</mark> ,98 <mark>0</mark> 957	0,047351	571,977112	0,054951
657,049805	0,037432	613,948669	0,047725	570,933228	0,054988
656,029785	0,03 <mark>780</mark> 6	613,063599	0,047640	570,038269	0,055959
655,009522	0 <mark>,</mark> 037711	61 <mark>2,030762</mark>	0,048360	568,993897	0,055697
653,988892	0 <mark>,0</mark> 38051	610,997681	0,0482 <mark>4</mark> 1	567,949219	0,055844
652,967957	0 <mark>,0</mark> 38424	609,964233	0,048597	567,053589	0,055715
651,946716	0,038445	608,930542	0,049100	566,008423	0,056015
651,071106	0,038711	608 <mark>,044312</mark>	0,049435	564,963013	0,055903
650,049316	0,039094	607,010071	0,049361	564,066711	0,056023
649,027161	0,039319	605,975525	0,049401	563,020813	0,055777
648,004761	0,039192	604,940735	0,049694	561,974609	0,055798
646,982056	0,0395 <mark>2</mark> 9	604,053528	0,050085	560,928223	0,056022
645,958984	0,039572	603,018189	0,050119	560,031006	0,055880
644,935669	0,039700	601,982544	0,050715	558,984070	0,055409
644,058289	0,040168	600,946655	0,050578	557,936890	0,055705
643,034363	0,040322	600,058533	0,050744	557,039063	0,055399
642,010132	0,040671	599,022095	0,050836	555,991394	0,055285
640,985657	0,040873	597,985352	0,051021	554,943420	0,055051
639,960815	0,040746	596,948364	0,051288	554,044983	0,055095
638,935730	0,041222	596,059326	0,051522	552,996521	0,054854
638,0568237	0,041233	595,021790	0,051590	551,947876	0,054646
637,031128	0,041903	593,984009	0,051578	551,048767	0,054527
636,005188	0,041823	592,945923	0,051785	549,999573	0,054386
634,978882	0,042874	592,055908	0,052247	548,950134	0,054288
633,952332	0,042083	591,017334	0,052207	548,050415	0,053635
633,072144	0,042152	589,978455	0,052531	547,000488	0,053596
632,045044	0,042652	588,939270	0,052905	545,950317	0,053482
	· · ·		, –	· ·	· · ·

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
545,049927	0,053490	502,070892	0,071592	459,004974	0,088844
543,999268	0,053205	501,010193	0,0/1//5	457,935120	0,089445
542,948364	0,053188	499,949249	0,071926	457,017914	0,090133
542,047363	0,053066	499,039703	0,072186	455,947662	0,090755
540,995972	0,053320	497,978302	0,072159	455,030121	0,091298
539,944336	0,053392	497,068390	0,072563	453,959473	0,092018
539,042725	0,053498	496,006561	0,072466	453,041596	0,092523
537,990601	0,053568	494,944519	0,072668	451,970551	0,092930
536,938232	0,053807	494,033997	0,072503	451,052307	0,093650
536,036011	0,054194	492,971527	0,073519	449,980866	0,094107
534,983154	0,054408	492,060638	0,072340	449,062317	0,094518
533,930115	0,054640	490,997742	0,072583	447,990479	0,096279
533,027222	0,055122	489,934601	0,072543	447,071594	0,095300
531,973694	0,055687	489,023132	0,073667	445,999359	0,096343
531,070435	0,056145	487,959564	0,073721	444,926910	0,096664
530,016419	0,057614	487,04 <mark>7</mark> 760	0,073683	444,007507	0,097046
528,962097	0,058277	485,983765	0,073596	442,934662	0,097566
528,058228	0,058972	48 <mark>5</mark> ,071564	0,073468	442,014923	0,097770
527,003540	0,058352	484,007141	0,073745	440,941711	0,098494
525,948547	0,059128	48 <mark>2,942</mark> 505	0,072667	440,021637	0,099042
525,044067	0 <mark>,0</mark> 59688	482,029755	0,0730 <mark>0</mark> 9	438,948029	0,099448
523,988586	0,060579	480,964691	0,073140	438,027618	0,100022
522,932922	0,061507	480,051575	0,073406	436,953644	0,100274
522,027832	0,061795	478 <mark>,9860</mark> 84	0,073881	436,032898	0,100651
520,971680	0,062474	478,072632	0,074344	434,958527	0,100970
520,066223	0,063027	477,006714	0,074863	434,037476	0,101346
519,009583	0,063629	475 <mark>,94</mark> 0552	0,075363	432,962708	0,101584
517,952759	0,064643	475,026550	0,075924	432,041351	0,102054
517,046692	0,065276	473,959992	0,076853	430,966217	0,102164
515,989380	0,065797	473,045624	0,077599	430,044495	0,102653
514,931824	0,066512	471,978668	0,078602	440,941711	0,098494
514,025147	0,066733	471,063934	0,079116	440,021637	0,099042
512,967163	0,067164	469,996552	0,080049	438,948029	0,099448
512,060120	0,067962	468,928955	0,080926	438,027618	0,100022
511,001648	0,068521	468,013672	0,081734	436,953644	0,100274
509,942963	0,068930	466,945648	0,082637	434,958527	0,100970
509,035309	0,069472	466,030029	0,083363	434,037476	0,101346
507,976196	0,069837	464,961609	0,084477	432,962708	0,101584
507,068146	0,070195	464,045654	0,084988	432,041351	0,102054
506,008575	0,070507	462,976807	0,085867	430,966217	0,102164
504,948761	0,070831	462,060516	0,086553	430,044495	0,102653
504,040161	0,071072	460,991272	0,088375	428,968994	0,102964
502,979889	0,071577	460,074616	0,088010	428,046967	0,103053

I				I		
	Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
	426,971069	0,104748	383,930786	0,113603	341,070221	0,140088
	426,048737	0,104907	383,001892	0,114214	339,979797	0,139893
	424,972473	0,105253	382,072907	0,115147	339,045013	0,139838
	424,049805	0,105665	380,988892	0,115903	337,954285	0,139054
	422,973175	0,104623	380,059601	0,116734	337,019257	0,140044
	422,050201	0,106115	378,975250	0,117387	335,928223	0,141533
	420,973175	0,105236	378,045685	0,118131	334,992950	0,139752
	420,049896	0,105780	376,960999	0,118979	334,057556	0,140403
	418,972504	0,106069	376,031158	0,119835	332,966095	0,141955
	418,048889	0,106151	374,946137	0,120981	332,030457	0,141962
	416,971161	0,106584	374,015991	0,121674	330,938721	0,142499
	416,047241	0,106946	372,930664	0,122507	330,002808	0,140689
	414,969147	0,106904	372,000244	0,124854	329,066803	0,143052
	414,044891	0,107221	371,069702	0,126734	327,974640	0,142284
	412,966431	0,107445	369,983887	0,126621	327,038361	0,141460
1	412,041870	0,107420	369,05 <mark>3</mark> 070	0,126231	325,945923	0,142206
6	410,963043	0,107696	367,966950	0,129015	325,009430	0,142047
	410,038178	0,107799	36 <mark>7</mark> ,03 <mark>5</mark> 828	0,129164	324,072784	0,144329
	408,959015	0,10 <mark>796</mark> 9	365,949371	0,130261	322,979919	0,144106
	408,033844	0,108079	36 <mark>5,018</mark> 005	0,130730	322,043060	0,144902
	406,954285	0 <mark>,107918</mark>	363,931244	0,1306 <mark>4</mark> 1	320,949921	0,144519
	406,028809	0,107952	362,999573	0,130182	320,012817	0,143849
	404,948914	0,108164	362,067810	0,131577	319,075623	0,144600
	404,023132	0,108037	360 <mark>,9805</mark> 60	0,132411	317,982056	0,144047
	402,942902	0,108371	360,048523	0,132104	317,044617	0,146047
	402,016815	0,108214	358,960968	0,132856	315,950775	0,144619
	400,936218	0,108385	358,028656	0,133307	315,013092	0,145984
	400,009827	0,1084 <mark>2</mark> 4	356,940765	0,134761	314,075287	0,145511
	398,928864	0,108622	356,008179	0,135410	312,981049	0,145761
	398,002197	0,108629	355,075470	0,137259	312,042999	0,146946
	397,075348	0,108998	353,987152	0,136475	310,948486	0,146776
	395,993897	0,108853	353,054169	0,137238	310,010223	0,147097
	395,066773	0,109163	351,965546	0,136689	309,071869	0,148597
	393,984955	0,109351	351,032318	0,137039	307,976959	0,147182
	393,057556	0,109748	349,943359	0,135790	307,038330	0,149617
	391,975403	0,110113	349,009857	0,138457	305,943176	0,148340
	391,047699	0,110263	348,076233	0,137287	305,004334	0,149176
	389,965179	0,110886	346,986847	0,136614	304,065399	0,149061
	389,037201	0,111143	346,052979	0,137461	302,969818	0,149921
	387,954346	0,111404	344,963287	0,138482	302,030640	0,150634
	387,026062	0,112013	344,029144	0,139471	300,934815	0,150381
	385,942871	0,112687	342,939148	0,139968	299,995422	0,150547
	385,014282	0,113202	342,004730	0,138270	299,055939	0,150850

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
297 959717	0 150908	254 945602	0 171899	211 975632	0 264343
297.019989	0.152277	254.001526	0.173452	211,033524	0.271947
295.923523	0.152644	253.057343	0.169359	209.934296	0.280675
294.983582	0.153785	251.955689	0.172485	208.992020	0.287710
294,043518	0,153962	251,011337	0,174822	208,049683	0,296664
292,946655	0,154285	250,066879	0,173319	206,950180	0,307753
292,006409	0,153138	248,971085	0,173592	206,007690	0,319552
291,066040	0,154639	248,032074	0,172095	205,065125	0,329129
289,968811	0,156363	246,936462	0,175232	203,965363	0,342249
289,028229	0,155712	245,997284	0,177748	203,022644	0,353165
287,930725	0,155999	245,057999	0,176828	201,922714	0,369992
286,989929	0,157906	243,962082	0,179326	200,979843	0,384845
286,049042	0,157673	243,022614	0,179953	200,036911	0,39 734 4
284,951172	0,159526	241,926483	0,184221		
284,010071	0,159416	240,986847	0,184332		
283,068848	0,159568	240,04 <mark>7</mark> 134	0,184743		
281,970642	0,160606	23 <mark>8</mark> ,950684	0,195595		
281,029205	0,161038	23 <mark>8</mark> ,010788	0,196749		
279,930756	0,162552	237,070801	0,195457	2 5	
278,989105	0 <mark>,1</mark> 60290	23 <mark>5,974</mark> 060	0,202770	~ ~	
278,047394	0,162513	235,033905	0,204827		
276,948578	0 <mark>,1</mark> 61327	233,936951	0,212791	5	
276,006622	0,162285	232,996628	0,215441		
275,064575	0,165054	232 <mark>,0562</mark> 13	0,216371		
273,965424	0,164181	230,958969	0,222196		
273,023193	0,163212	230,018387	0,213528		
271,923767	0,163247	229,077713	0,205824		
270,981323	0,166550	227,980179	0,208630	<	
270,038788	0,165776	227,039352	0,210204		
268,939026	0,167440	225,941605	0,215198		
267,996277	0,167264	225,000610	0,217088		
267,053436	0,167476	224,059525	0,218967		
265,953369	0,165852	222,961502	0,221320		
265,010315	0,165490	222,020264	0,224552		
264,067200	0,166075	220,922043	0,227532		
262,966766	0,166613	219,980637	0,2295/1		
262,023438	0,164766	219,039154	0,232040		
260,922760	0,164//1	217,940659	0,233318		
259,979248	0,16/023	216,999008	0,23/180		
259,035614	0,166951	216,057282	0,241239		
257,934631	0,169575	214,958511	0,247763		
256,990814	0,171804	214,016632	0,251386		
256,046936	0,1/3893	213,0/46//	0,257015		

6. Karbon + $H_2SO_4 2 M$

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
800,041016	0,016908	757,968628	0,020002	715,950012	0,006475
798,931702	0,017573	756,982239	0,020093	714,948914	0,006833
797,960632	0,016432	755,995422	0,020092	713,947449	0,007031
796,989197	0,017808	755,008240	0,020466	712,945618	0,007831
796,017395	0,018060	754,020752	0,019828	711,943481	0,008229
795,045166	0,017395	753,032898	0,019909	710,940979	0,008982
793,933594	0,018376	752,044678	0,019971	709,938171	0,009686
792,960632	0,017795	751,056091	0,019313	708,934998	0,009289
791,987244	0,018514	750,067139	0,019771	707,931519	0,010066
791,013489	0,018351	748,936523	0,019061	707,071106	0,011786
790,039368	0,017820	747,946838	0,018898	706,067017	0,011682
789,064880	0,019184	746,956787	0,019134	705,062561	0,012540
787,950684	0,018335	745,966431	0,018347	704,057800	0,013286
786,975403	0,018142	744,97 <mark>5</mark> 647	0,017998	703,052734	0,015049
785,999756	0,019099	743,984558	0,018341	702,047241	0,014891
785,023682	0,019022	74 <mark>2</mark> ,99 <mark>3</mark> 103	0,017838	701,041504	0,016628
784,047302	0,019490	742,001343	0,017523	700,035400	0,017487
782,930969	0 <mark>,0</mark> 19200	741,009155	0,016828	699,028992	0,018464
781,953735	0 <mark>,019331</mark>	740,016663	0,016608	698,022217	0,018850
780,976196	0 <mark>,0</mark> 19373	739,023804	0,016030	697,015137	0,019011
779,998230	0,019544	738,030640	0,016015	696,007690	0,019126
779,019959	0,019948	737 <mark>,03704</mark> 8	0,015267	694,999939	0,020478
778,041260	0, <mark>02</mark> 1065	736,043213	0,014488	693,991882	0,021013
777,062195	0,0 <mark>20676</mark>	735,048950	0,013987	692,983460	0,021287
775,942871	0,019726	734 <mark>,054</mark> 382	0,013065	691,974731	0,022239
774,963013	0,020320	733,059448	0,012529	690,965698	0,023140
773,982849	0,019558	732,064148	0,011765	689,956299	0,023171
773,002319	0,019754	731,068543	0,010869	688,946594	0,023579
772,021362	0,020027	729,930237	0,009583	687,936585	0,024400
771,040100	0,020281	728,933899	0,009407	687,070618	0,025171
770,058411	0,020755	727,937195	0,009369	686,059937	0,025422
768,936096	0,019784	726,940125	0,008731	685,049011	0,025707
767,953674	0,020735	725,942749	0,008229	684,037720	0,026114
766,970886	0,020341	724,945007	0,006778	683,026123	0,026755
765,987732	0,019747	723,946899	0,007567	682,014160	0,027122
765,004211	0,020192	722,948486	0,007100	681,001953	0,027557
764,020325	0,020911	721,949707	0,006676	679,989380	0,027776
763,036133	0,020436	720,950623	0,006388	678,976502	0,028431
762,051514	0,020486	719,951172	0,006458	677,963257	0,028734
761,066589	0,020047	718,951416	0,006191	676,949768	0,028897
759,940430	0,020715	717,951294	0,006195	675,935913	0,029821
758,954712	0,020240	716,950806	0,006448	675,066650	0,029492

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
674 052185	0.030372	638 935730	0.035244	596.059326	0.043942
673 037415	0.030572	638 0568237	0.035938	595,033320	0.043817
672 022339	0.030586	637 031128	0.036036	593,984009	0.043988
671 006958	0.031205	636.005188	0.036186	592,904003	0.044114
669 991272	0.031750	634 978882	0.036927	0 044242	
668.975220	0.031807	633,952332	0.036278	591.017334	0.044491
667.958862	0.031660	633.072144	0.036777	589.978455	0.044785
666.942200	0.031803	632.045044	0.036323	588,939270	0.044753
674.052185	0.030372	631.017578	0.036989	588.048340	0.044880
673.037415	0.030572	629,989868	0.038185	587.008667	0.044842
672,022339	0,030586	628,961853	0,038186	585,968750	0,044975
671,006958	0,031205	627,933533	0,038073	584,928528	0,045255
669,991272	0,031750	627,051880	0,038543	584,036682	0,045372
668,975220	0,031807	626,023010	0,038678	582,995911	0,045289
667,958862	0,031660	624,993835	0,038924	581,954895	0,045521
666,942200	0,031803	623,96 <mark>4</mark> 356	0,039129	581,062439	0,045390
666,070557	0,031622	622,934631	0,038545	580,020874	0,045657
665,053284	0,031854	62 <mark>2</mark> ,051758	0,039481	578,979065	0,045385
664,035767	0,032022	621,021423	0,039598	577,937012	0,045511
663,017883	0,031912	619,990845	0,039670	577,043579	0,045674
661,999695	0, <mark>03271</mark> 9	618,959961	0,040037	576,001038	0,045718
660,981201	0 <mark>,0</mark> 32898	617,928772	0,039322	574,958191	0,045737
659,962402	0,032948	617,044678	0,039413	574,064087	0,045553
658,943298	0,033243	616 <mark>,0130</mark> 01	0,040357	573,020752	0,045816
658,069519	0, <mark>032211</mark>	614,980957	0,040616	571,977112	0,045860
657,049805	0,032124	613,948669	0,040893	570,933228	0,045745
656,029785	0,032533	613 <mark>,063</mark> 599	0,041028	570,038269	0,046874
655,009522	0,033018	612,0307 <mark>62</mark>	0,041404	568,993897	0,046590
653,988892	0,032947	610,997681	0,041512	567,949219	0,046679
652,967957	0,032960	609,964233	0,041779	567,053589	0,046373
651,946716	0,033275	608,930542	0,042050	576,001038	0,045718
651,071106	0,033329	608,044312	0,042343	574,958191	0,045737
650,049316	0,033613	607,010071	0,042222	574,064087	0,045553
649,027161	0,033540	605,975525	0,042107	573,020752	0,045816
648,004761	0,033916	604,940735	0,042458	571,977112	0,045860
646,982056	0,033897	604,053528	0,042872	570,933228	0,045745
645,958984	0,033996	603,018189	0,042852	570,038269	0,046874
644,935669	0,034353	601,982544	0,043190	568,993897	0,046590
644,058289	0,034906	600,946655	0,043178	567,949219	0,046679
643,034363	0,035067	600,058533	0,043249	567,053589	0,046373
642,010132	0,034874	599,022095	0,043344	566,008423	0,046297
640,985657	0,035196	597,985352	0,043375	564,963013	0,046391
639,960815	0,035343	596,948364	0,043561	564,066711	0,046398

Manalan ath	Abaaybayaa	Maria la verth	Absorbores	Maria la math	Abaaybayaa
563,020813	0,046236	519,009583	0,051345	475,940552	0,059832
561,974609	0,046064	517,952759	0,051860	475,026550	0,060269
560,928223	0,045896	517,046692	0,052584	473,959992	0,061057
560,031006	0,045768	515,989380	0,053327	473,045624	0,061755
558,984070	0,045666	514,931824	0,053781	4/1,9/8668	0,062359
557,936890	0,045535	514,025147	0,053792	4/1,063934	0,063085
557,039063	0,045351	512,967163	0,054611	469,996552	0,063834
555,991394	0,044906	512,060120	0,055241	468,928955	0,064556
554,943420	0,044956	511,001648	0,055518	468,013672	0,065397
554,044983	0,044806	509,942963	0,055923	466,945648	0,066329
552,996521	0,044687	509,035309	0,056273	466,030029	0,066916
551,947876	0,044458	507,976196	0,056618	464,961609	0,067833
551,048767	0,044272	507,068146	0,057178	464,045654	0,068362
549,999573	0,043948	506,008575	0,057314	462,976807	0,069138
548,950134	0,043594	504,948761	0,057687	462,060516	0,069630
548,050415	0,043045	504,04 <mark>0161</mark>	0,057893	460,991272	0,071491
547,000488	0,042993	502,979889	0,057984	460,074616	0,071084
545,950317	0,042786	50 <mark>2</mark> ,07 <mark>0</mark> 892	0,058442	459,004974	0,071464
545,049927	0,042572	501,010193	0,058334	457,935120	0,072245
543,999268	0,042556	49 <mark>9,</mark> 949249	0,058356	457,017914	0,072718
542,948364	0,042294	499,039703	0,058219	455,947662	0,073262
542,047363	0,042062	497,978302	0,058392	455,030121	0,073833
540,995972	0,042126	497,068390	0,058450	453,959473	0,074272
539,944336	0,042393	496 <mark>,0065</mark> 61	0,058445	453,041596	0,074692
539,042725	0,042484	494,944519	0,058453	451,970551	0,075237
537,990601	0,042537	494,033997	0,05 <mark>8</mark> 463	451,052307	0,075505
536,938232	0,042484	492 <mark>,97</mark> 1527	0,059249	449,980866	0,076141
536,036011	0,042937	492,060638	0,058061	449,062317	0,076341
534,983154	0,043129	490,997742	0,058233	447,990479	0,078172
533,930115	0,043253	489,934601	0,057979	447,071594	0,077338
533,027222	0,043575	489,023132	0,059009	445,999359	0,077888
531,070435	0,044498	487,959564	0,058942	444,926910	0,078088
530,016419	0,046105	487,047760	0,058965	444,007507	0,078434
528,962097	0,046483	485,983765	0,058773	442,934662	0,078805
528,058228	0,047194	485,071564	0,058625	442,014923	0,078994
527,003540	0,046597	484,007141	0,058676	440,941711	0,079377
525,948547	0,047243	482,942505	0,057593	440,021637	0,079783
525,044067	0,047813	482,029755	0,057864	438,948029	0,080335
523,988586	0,048453	480,964691	0,057988	438,027618	0,080649
522,932922	0,049335	480,051575	0,058212	436,953644	0,081033
522,027832	0,049968	478,986084	0,058506	436,032898	0,081148
520,971680	0,050113	478,072632	0,058872	434,958527	0,081302
520,066223	0,050761	477,006714	0,059296	434,037476	0,081601

			1		
Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
432,962708	0,081890	389,037201	0,086809	346,052979	0,111877
432,041351	0,081974	387,954346	0,087018	344,963287	0,111116
430,966217	0,082091	387,026062	0,087610	344,029144	0,113805
430,044495	0,082357	385,942871	0,087983	342,939148	0,112247
428,968994	0,082558	385,014282	0,088294	342,004730	0,114362
428,046967	0,082767	383,930786	0,089002	341,070221	0,113807
426,971069	0,084084	383,001892	0,089412	339,979797	0,112498
426,048737	0,084382	382,072907	0,090354	339,045013	0,112541
424,972473	0,084463	380,988892	0,091070	337,954285	0,113952
424,049805	0,084672	380,059601	0,091548	337,019257	0,114569
422,973175	0,083650	378,975250	0,092165	335,928223	0,113700
422,050201	0,085095	378,045685	0,093011	334,992950	0,114450
420,973175	0,083936	376,960999	0,093779	334,057556	0,113064
420,049896	0,084167	376,031158	0,094357	332,966095	0,114613
418,972504	0,084568	374,946137	0,095539	332,030457	0,113607
418,048889	0,084715	374,01 <mark>5</mark> 991	0,096278	330,938721	0,114554
416,971161	0,084887	372,930664	0,096915	330,002808	0,113968
416,047241	0,084843	37 <mark>2</mark> ,000244	0,101319	329,066803	0,114086
414,969147	0,085 <mark>13</mark> 8	371,069702	0,102375	327,974640	0,113214
414,044891	0 <mark>,0</mark> 85262	369,983887	0,101267	327,038361	0,113439
412,966431	0 <mark>,0</mark> 85268	369,053070	0,1039 <mark>2</mark> 3	325,945923	0,114336
412,041870	0 <mark>,0</mark> 85249	367,966950	0,103853	325,009430	0,113788
410,963043	0,085234	367,035828	0,103019	324,072784	0,114467
410,038178	0,085238	365 <mark>,94937</mark> 1	0,104644	322,979919	0,115169
408,959015	0,085320	365,018005	0,105159	322,043060	0,116313
408,033844	0,0 <mark>8541</mark> 4	363,931244	0,104911	320,949921	0,116085
406,954285	0,085318	362 <mark>,99</mark> 9573	0,104671	320,012817	0,115792
406,028809	0,085203	362,067810	0,105099	319,075623	0,116250
404,948914	0,085087	360,980560	0,106334	317,982056	0,117770
404,023132	0,085117	360,048523	0,105959	317,044617	0,116348
402,942902	0,084978	358,960968	0,107481	315,950775	0,116364
402,016815	0,085006	358,028656	0,107963	315,013092	0,116976
400,936218	0,085171	356,940765	0,108122	314,075287	0,118007
400,009827	0,085050	356,008179	0,107762	312,981049	0,118423
398,928864	0,085169	355,075470	0,108587	312,042999	0,117544
398,002197	0,085129	353,987152	0,109638	310,948486	0,117440
395,993897	0,085268	353,054169	0,111389	310,010223	0,118232
395,066773	0,085272	351,965546	0,109831	309,071869	0,117855
393,984955	0,085674	351,032318	0,109641	307,976959	0,118720
393,057556	0,085816	349,943359	0,111112	307,038330	0,119853
391,975403	0,085933	349,009857	0,112431	305,943176	0,119742
391,047699	0,086269	348,076233	0,111125	305,004334	0,120283
389,965179	0,086567	346,986847	0,110760	304,065399	0,120416

Wavelength	Absorbance	Wavelength	Absorbance	Wavelength	Absorbance
302 969818	0 119973	259 9792/18	0 13/060	216 999008	0 21/157/
302,000640	0 120084	259,03561/	0,134000	216,057282	0,214374
300 93/815	0 1197/0	257,033014	0,13550/	210,057202	0,215075
299 995/22	0,110740	257,554051	0,133304	214,036511	0,220244
299.055939	0 120343	256,046936	0 138385	213,074677	0,236400
297 959717	0 120250	254 945602	0 140321	213,07 1077	0 244830
297.019989	0.120831	254.001526	0.139629	211.033524	0.254364
295.923523	0.120845	253.057343	0.139599	209.934296	0.265586
294.983582	0.121847	251.955689	0.140214	208.992020	0.273692
294,043518	0,122283	251,011337	0,142361	208,049683	0,283307
292,946655	0,122744	250,066879	0,144861	206,950180	0,297731
292,006409	0,122801	248,971085	0,141252	206,007690	0,312255
291,066040	0,123151	248,032074	0,143435	205,065125	0,325489
289,968811	0,124029	246,936462	0,142924	203,965363	0,339106
289,028229	0,122521	245,997284	0,147943	203,022644	0,353212
287,930725	0,124356	245,057999	0,150715	201,922714	0,372864
286,989929	0,125466	243,962082	0,148191	200,979843	0,393913
286,049042	0,126615	243,022614	0,148240	200,036911	0,412206
284,951172	0,126437	241,926483	0,152548	2 1	
284,010071	0,125986	240,986847	0,159849	$- \lambda$	
283,068848	0,127241	240,047134	0,156949		
281,970642	0,126748	238,950684	0,161728	5	
281,029205	0,128494	238,010788	0,168968		
279,930756	0 <mark>,1</mark> 28778	237 <mark>,0708</mark> 01	0,170720		
278,989105	0,128575	235,974060	0,170410		
278,047394	0,129732	235,033905	0,177574		
276,948578	0,129274	233 <mark>,93</mark> 6951	0,188628	~ /	
276,006622	0,130074	232,996628	0,186267	< /	
275,064575	0,131104	232,056213	0,175341		
273,965424	0,132065	230,958969	0,184976	~ //	
273,023193	0,131194	230,018387	0,196441		
271,923767	0,131672	229,077713	0,178645		
270,981323	0,131186	227,980179	0,181631		
270,038788	0,133852	227,039352	0,183892		
268,939026	0,134783	225,941605	0,188212		
267,996277	0,133767	225,000610	0,191322		
267,053436	0,135058	224,059525	0,193582		
265,953369	0,132272	222,961502	0,196075		
265,010315	0,134985	222,020264	0,199212		
264,067200	0,132902	220,922043	0,202745		
262,966766	0,135348	219,980637	0,205493		
262,023438	0,132832	219,039154	0,208119		
260,922760	0,133603	217,940659	0,210399		

LAMPIRAN 5 DATA LCR METER

1. Karbon + Aquades

	NO	f (Hz)	Cp (pF)	D	Rp (MΩ)	θ	d (m)	A (m2)	R (Ω)	C (F/m2)	εr'	٤r"	σ (S/m2)
ſ	1	500	23,2890	0,31429	43,49	-72,55	3,6E-04	3,42E-05	4,13E+06	6,81E-07	2,77E+01	8,70E+00	2,42E-07
	2	600	22,4970	0,30245	38,98	-73,17	3,6E-04	3,42E-05	3,71E+06	6,57E-07	2,67E+01	8,09E+00	2,70E-07
ſ	3	700	21,9040	0,29265	35,65	-73,78	3,6E-04	3,42E-05	3,39E+06	6,40E-07	2,60E+01	7,62E+00	2,96E-07
	4	800	21,3880	0,28151	33,04	-74,28	3,6E-04	3,42E-05	3,14E+06	6,25E-07	2,54E+01	7,16E+00	3,18E-07
Γ	5	900	20,9690	0,27377	30,81	-74,69	3,6E-04	3,42E-05	2,93E+06	6,13E-07	2,49E+01	6,82E+00	3,41E-07
	6	1000	20,6290	0,26582	29,08	-75,14	3,6E-04	3,42E-05	2,76E+06	6,03E-07	2,45E+01	6,52E+00	3,62E-07
Γ	7	2000	18,8370	0,21368	19,762	-77,94	3,6E-04	3,42E-05	1,88E+06	5,50E-07	2,24E+01	4,78E+00	5,32E-07
	8	3000	18,8370	0,21368	19,732	-79,51	3,6E-04	3,42E-05	1,88E+06	5,50E-07	2,24E+01	4,78E+00	7,98E-07
	9	4000	17,5250	0,16719	13,580	-80,51	3,6E-04	3,42E-05	1,29E+06	5,12E-07	2,08E+01	3,48E+00	7,74E-07
	10	5000	17,2160	0,15271	12,107	-81,32	3,6E-04	3,42E-05	1,15E+06	5,03E-07	2,05E+01	3,13E+00	8,68E-07
Γ	11	6000	16,9740	0,14201	11,005	-81,92	3,6E-04	3,4 <mark>2</mark> E-05	1,05E+06	4,96E-07	2,02E+01	2,87E+00	9,56E-07
	12	7000	16,7890	0,13379	10,122	-82,38	3,6E-04	3,42E-05	9,62E+05	4,91E-07	2,00E+01	2,67E+00	1,04E-06
Γ	13	8000	16,6480	0,12786	9,346	-82,71	3,6E-04	3,42E-05	8,88E+05	4,86E-07	1,98E+01	2,53E+00	1,13E-06
	14	9000	16,5310	0,12314	8,687	-82,98	3,6E-04	3,42E-05	8,26E+05	4,83E-07	1,97E+01	2,42E+00	1,21E-06
ſ	15	10000	16,4430	0,11880	8,147	-83,23	3,6E-04	3,42E-05	7,74E+05	4,81E-07	1,95E+01	2,32E+00	1,29E-06
1	16	20000	15,8150	0,09362	5,375	-84,65	3,6E-04	3,42E-05	5,11E+05	4,62E-07	1,88E+01	1,76E+00	1,96E-06
	17	30000	15,5340	0,08259	<mark>4</mark> ,138	-85 <mark>,</mark> 28	3,6E-04	3,42E-05	3,93E+05	4,54E-07	1,85E+01	1,53E+00	2,54E-06
	18	40000	15,3520	0,07571	<mark>3,</mark> 423	-85,67	3,6E-04	3,42E-05	3,25E+05	4,49E-07	1,82E+01	1,38E+00	3,07E-06
Γ	19	50000	15,2330	0,07100	<mark>2</mark> ,939	-85,93	3,6E-04	3,42E-05	2,79E+05	4,45E-07	1,81E+01	1,29E+00	3,57E-06
Γ	20	60000	15,1300	0,06756	<mark>2</mark> ,595	-86,14	3,6E-04	3,42E-05	2,47E+05	4,42E-07	1,80E+01	1,22E+00	4,05E-06
	21	70000	15,0480	0,06540	<mark>2</mark> ,311	-86,26	3,6E-04	3,42E-05	2,20E+05	4,40E-07	1,79E+01	1,17E+00	4,55E-06
	22	80000	14,9 <mark>81</mark> 0	0,06299	2 <mark>,1</mark> 082	-86,40	3,6E-04	3,42E-05	2,00E+05	4,38E-07	1,78E+01	1,12E+00	4,99E-06
Γ	23	90000	14,9 <mark>53</mark> 0	0,06271	1 <mark>,8</mark> 858	-86,41	3,6E-04	3,42E- <mark>0</mark> 5	1,79E+05	4,37E-07	1,78E+01	1,11E+00	5,58E-06
Γ	24	100000	14,9 <mark>20</mark> 0	0,06136	1, 7 386	-86,49	3,6E-04	3,42E-05	1,65E+05	4,36E-07	1,77E+01	1,09E+00	6,05E-06
	25	200000	14,5 <mark>52</mark> 0	0,05757	949,9600	-86,71	3,6E-04	3,42E- <mark>05</mark>	9,03E+04	4,25E-07	1,73E+01	9,96E-01	1,11E-05
	26	300000	14,3740	0,05627	657,9400	- <mark>86,</mark> 78	3,6 <mark>E</mark> -04	3,42E- <mark>05</mark>	6,25E+04	4,20E-07	1,71E+01	9,61E-01	1,60E-05
	27	400000	14,3430	0,05798	486,8800	-86,74	3,6E-04	3,42E- <mark>05</mark>	4,63E+04	4,19E-07	1,70E+01	9,89E-01	2,20E-05
	28	500000	14,3240	0,05938	374,6200	-86,61	3,6 <mark>E-04</mark>	3,42E-05	3,56E+04	4,19E-07	1,70E+01	1,01E+00	2,81E-05
	29	600000	14,3300	0,06072	304,8700	-86,53	3,6E-04	3,42E-05	2,90E+04	4,19E-07	1,70E+01	1,03E+00	3,45E-05
	30	700000	14,371 <mark>0</mark>	0,06276	252,1000	-86,41	3,6E-04	3,4 <mark>2</mark> E-05	2,40E+04	4,20E-07	1,71E+01	1,07E+00	4,17E-05
	31	800000	14,4300	0,06447	213,35	-86,31	3,6E-04	3,42E-05	2,03E+04	4,22E-07	1,72E+01	1,11E+00	4,92E-05
	32	900000	14,5330	0,06562	185,220	-86,24	3,6E-04	3,42E-05	1,76E+04	4,25E-07	1,73E+01	1,13E+00	5,67E-05
ſ	33	1000000	14.6500	0.06754	150,760	-86.14	3.6E-04	3.42E-05	1.43E+04	4.28E-07	1.74E+01	1.18E+00	6.54E-05

2. Karbon + H_2SO_4 0,5 M

	NO	f (Hz)	Cp (pF)	D	θ	Rp (MΩ)	d (m)	A (m2)	R (Ω)	C (F/m2)	εr'	٤r"	σ (S/m)
	1	500	16,9480	0,37667	-69,36	49,86	2,70E-04	1,50E-05	2,77E+06	1,13E-06	3,45E+01	1,30E+01	3,61E-07
	2	600	16,1840	0,36013	-70,19	45,78	2,70E-04	1,50E-05	2,54E+06	1,08E-06	3,29E+01	1,19E+01	3,95E-07
	3	700	15,5050	0,34696	-70,87	42,26	2,70E-04	1,50E-05	2,35E+06	1,03E-06	3,15E+01	1,09E+01	4,26E-07
	4	800	14,9740	0,32436	-72,03	40,96	2,70E-04	1,50E-05	2,28E+06	9,98E-07	3,05E+01	9,88E+00	4,39E-07
	5	900	14,6160	0,31121	-72,71	38,88	2,70E-04	1,50E-05	2,16E+06	9,74E-07	2,97E+01	9,25E+00	4,63E-07
	6	1000	14,2060	0,30241	-73,17	36,78	2,70E-04	1,50E-05	2,04E+06	9,47E-07	2,89E+01	8,74E+00	4,86E-07
	7	2000	11,9370	0,27126	-74,82	24,58	2,70E-04	1,50E-05	1,37E+06	7,96E-07	2,43E+01	6,59E+00	7,32E-07
	8	3000	11,2330	0,20618	-78,25	22,76	2,70E-04	1,50E-05	1,26E+06	7,49E-07	2,28E+01	4,71E+00	7,85E-07
	9	4000	10,8970	0,18779	-79,36	19,44	2,70E-04	1,50E-05	1,08E+06	7,26E-07	2,22E+01	4,16E+00	9,25E-07
	10	5000	10,6530	0,17176	-80,25	17,40	2,70E-04	1,50E-05	9,66E+05	7,10E-07	2,17E+01	3,72E+00	1,03E-06
	11	6000	10,5360	0,15894	-80,97	15,84	2,70E-04	1,50E-05	8,80E+05	7,02E-07	2,14E+01	3,41E+00	1,14E-06
	12	7000	10,4150	0,15350	-81,27	14,22	2,70E-04	1,50E-05	7,90E+05	6,94E-07	2,12E+01	3,25E+00	1,27E-06
	13	8000	10,2890	0,14329	-81,85	13,49	2,70E-04	1,50E-05	7,50E+05	6,86E-07	2,09E+01	3,00E+00	1,33E-06
	14	9000	10,1900	0,13905	-82,08	12,48	2,70E-04	1,50E-05	6,93E+05	6,79E-07	2,07E+01	2,88E+00	1,44E-06
	15	10000	10,1180	0,13732	-82,18	11,46	2,70E-04	1,50E-05	6,36E+05	6,75E-07	2,06E+01	2,83E+00	1,57E-06
	16	20000	9,6849	0,11402	-83,50	7,21	2,70E-04	1,50E-05	4,00E+05	6,46E-07	1,97E+01	2,25E+00	2,50E-06
1	17	30000	9,4465	0,10182	-84,19	5,52	2,70E-04	1,50E-05	3,06E+05	6,30E-07	1,92E+01	1,96E+00	3,26E-06
	18	40000	9,3174	0,09860	-84,37	<mark>4</mark> ,33	2,70E-04	1,50E-05	2,41E+05	6,21E-07	1,90E+01	1,87E+00	4,15E-06
1	19	50000	9,2209	0,09137	<mark>-84</mark> ,78	3,78	2,70E-04	1,50E-05	2,10E+05	6,15E-07	1,88E+01	1,71E+00	4,76E-06
	20	60000	9,1284	0,09118	-84,79	3,19	2,70E-04	1,50E-05	1,77E+05	6,09E-07	1,86E+01	1,69E+00	5,65E-06
	21	70000	9,0648	0, <mark>088</mark> 30	-84,94	2,83	2,70E-04	1,5 <mark>0</mark> E-05	1,57E+05	6,04E-07	1,84E+01	1,63E+00	6,33E-06
	22	80000	9,0182	0,0 <mark>876</mark> 5	-84,99	2 ,53	2,70E-04	1,50E-05	1,41E+05	6,01E-07	1,83E+01	1,61E+00	7,15E-06
	23	90000	8,9563	0,08432	-85,15	2,33	2,70E-04	1,50E-05	1,29E+05	5,97E-07	1,82E+01	1,54E+00	7,68E-06
	24	100000	8,9182	0,08397	-85,20	2, 13	2,70E-04	1,50E-05	1,18E+05	5,95E-07	1,81E+01	1,52E+00	8,47E-06
	25	200000	8,6172	0,07745	- <mark>85,</mark> 57	1, 19	2,70E-04	1,50E-0 <mark>5</mark>	6,62E+04	5,74E-07	1,75E+01	1,36E+00	1,51E-05
	26	300000	8,5 <mark>3</mark> 35	0,08002	-85 <mark>,4</mark> 3	776,93	2,70E-04	1,50E-05	<mark>4</mark> ,32E+04	5,69E-07	1,74E+01	1,39E+00	2,32E-05
	27	400000	8,4 <mark>846</mark>	0,08333	-85,24	562,73	2,70E-04	1,50E-0 <mark>5</mark>	3,13E+04	5,66E-07	1,73E+01	1,44E+00	3,20E-05
	28	500000	8,4691	0,08647	-85,06	435,68	2,70E-04	1,50E-0 <mark>5</mark>	2,42E+04	5,65E-07	1,72E+01	1,49E+00	4,14E-05
	29	600000	8,4195	0,08936	-84,90	353,22	2,70E-04	1,50E-05	1,96E+04	5,61E-07	1,71E+01	1,53E+00	5,10E-05
	30	700000	8,4050	0,09236	-84,73	293,86	2,70E-04	1,50E-05	1,63E+04	5,60E-07	1,71E+01	1,58E+00	6,14E-05
	31	800000	8,4401	0,09432	-84,61	249,90	2,70E-04	1,50 <mark>E-</mark> 05	1,39E+04	5,63E-07	1,72E+01	1,62E+00	7,20E-05
1	32	900000	8,4965	0,09635	-84,50	216,02	2,70E-04	1, <mark>50</mark> E-05	1,20E+04	5,66E-07	1,73E+01	1,67E+00	8,33E-05
	33	1000000	8,5316	0,099 <mark>3</mark> 5	-84,33	187,78	2,70E-04	1,50E-05	1,04E+04	5,69E-07	1,74E+01	1,72E+00	9,58E-05

3. Karbon + $H_2SO_4 1 M$

NO	f (Hz)	Cp (pF)	D	Rp (MΩ)	θ	d (m)	A (m2)	R (Ω)	σ (S/m)	C (F/m)	εr'	٤r"	σ (S/m)
1	500	29,6810	0,72778	14,7360	-53,95	3,20E-04	1,75E-05	8,06E+05	1,24E-06	1,70E-06	6,13E+01	4,46E+01	1,24E-06
2	600	27,1800	0,68308	14,2870	-55,66	3,20E-04	1,75E-05	7,81E+05	1,28E-06	1,55E-06	5,62E+01	3,84E+01	1,28E-06
3	700	25,7360	0,65371	13,5140	-56,83	3,20E-04	1,75E-05	7,39E+05	1,35E-06	1,47E-06	5,32E+01	3,48E+01	1,35E-06
4	800	24,6090	0,62834	12,8660	-57,86	3,20E-04	1,75E-05	7,04E+05	1,42E-06	1,41E-06	5,08E+01	3,19E+01	1,42E-06
5	900	23,5890	0,60380	12,4200	-58,88	3,20E-04	1,75E-05	6,79E+05	1,47E-06	1,35E-06	4,87E+01	2,94E+01	1,47E-06
6	1000	22,7810	0,58228	12,0000	-59,79	3,20E-04	1,75E-05	6,56E+05	1,52E-06	1,30E-06	4,71E+ 01	2,74E+01	1,52E-06
7	2000	19,1820	0,46390	8,9326	-65,11	3,20E-04	1,75E-05	4,89E+05	2,05E-06	1,10E-06	3,96E+ 01	1,84E+01	2,04E-06
8	3000	17,5940	0,40391	7,4652	-68,01	3,20E-04	1,75E-05	4,08E+05	2,45E-06	1,01E-06	3,64E+ 01	1,47E+01	2,45E-06
9	4000	16,6710	0,36551	6,5296	-69,92	3,20E-04	1,75E-05	3,57E+05	2,80E-06	9,53E-07	3,44E+ 01	1,26E+01	2,80E-06
10	5000	16,0350	0,33625	5,9036	-71,41	3,20E-04	1,75E-05	3,23E+05	3,10E-06	9,16E-07	3,31E+ 01	1,11E+01	3,10E-06
11	6000	15,4520	0,31353	5,4435	-72,59	3,20E-04	1,75E-05	2,98E+05	3,36E-06	8,83E-07	3,19E+ 01	1,00E+01	3,34E-06
12	7000	15,1490	0,29584	5,0732	-73, <mark>5</mark> 2	3,20E-04	1,75E-05	2,77E+05	3,60E-06	8,66E-07	3,13E+ 01	9,26E+00	3,60E-06
13	8000	14,8380	0,28098	4,7719	-74, <mark>3</mark> 1	3,20E-04	1,75E-05	2,61E+05	3,83E-06	8,48E-07	3,07E+ 01	8,61E+00	3,83E-06
14	9000	14,5930	0,26897	4,5054	-74,95	3,20E-04	1,75E-05	2,46E+05	4,06E-06	8,34E-07	3,02E+ 01	8,11E+00	4,06E-06
15	10000	14,3800	0,25744	4,2991	-75,56	3,20E-04	1,75E-05	2,35E+05	4,25E-06	8,22E-07	2,97E+ 01	7,65E+00	4,25E-06
16	20000	13,2510	0,20434	2,9307	-78,46	3,20E-04	1,75E-05	1,60E+05	6,24E-06	7,57E-07	2,74E+ 01	5,59E+00	6,22E-06
17	30000	12,7320	0,17878	2,3307	-79,86	3,20E-04	1,75E-05	1,27E+05	7,85E-06	7,28E-07	2,63E+ 01	4,70E+00	7,84E-06
18	40000	12,4100	0,16269	1,9707	-80,76	3,20E-04	1,75E-05	1,08E+05	9,28E-06	7,09E-07	2,56E+ 01	4,17E+00	9,27E-06
19	50000	12,1860	0,15169	1,72 <mark>5</mark> 6	-8 <mark>1,</mark> 39	3,20E-04	1,75E-05	9,44E+04	1,06E-05	6,96E-07	2,52E+ 01	3,82E+00	1,06E-05
20	60000	11,8830	0,13936	1,6024	-8 <mark>2,</mark> 07	3 <mark>,2</mark> 0E-04	1,75E-05	8,76E+04	1,14E-05	6,79E-07	2,46E+ 01	3,42E+00	1,14E-05
21	70000	11,7450	0,13302	1,4554	-82 <mark>,</mark> 42	3,20E-04	1,75E-05	7,96E+04	1,26E-05	6,71E-07	2,43E+01	3,23E+00	1,26E-05
22	80000	11,6330	0 <mark>,12</mark> 823	1,33 <mark>3</mark> 6	-82 <mark>,</mark> 69	3 <mark>,2</mark> 0E-04	1,75E-05	7,29E+04	1,37E-05	6,65E-07	2,40E+ 01	3,08E+00	1,37E-05
23	90000	11,5480	0,1 <mark>24</mark> 69	1,2281	-82 <mark>,</mark> 89	3,20E-04	1,75E-05	6,72E+04	1,49E-05	6,60E-07	2,39E+01	2,98E+00	1,49E-05
24	100000	11,4680	0,12143	1,14 <mark>2</mark> 9	-83,08	3,20E-04	1,75E-05	6, 25 E+04	1,60E-05	6,55E-07	2,37E+01	2,88E+00	1,60E-05
25	200000	10,8950	0,10960	721,9000	-84,25	3,20E-04	1,75E-05	3,95E+04	2,53E-05	6,23E-07	2,25E+ 01	2,47E+00	2,74E-05
26	300000	10,7220	0,09654	512,6600	-84 <mark>,4</mark> 8	3,20E-04	1,75E-05	2, <mark>80</mark> E+04	3,57E-05	6,13E-07	2,22E+01	2,14E+00	3,57E-05
27	400000	10,6130	0,09851	382,1500	-84 <mark>,4</mark> 6	3,20E-04	1,75E-05	2,09E+04	4,78E-05	6,06E-07	2,19E+ 01	2,16E+00	4,80E-05
28	500000	10,5470	0,09806	306,72	-84 <mark>,3</mark> 0	3 <mark>,20</mark> E-04	1,75E-05	1,6 <mark>8</mark> E+04	5,96E-05	6,03E-07	2,18E+ 01	2,14E+00	5,94E-05
29	600000	10,4980	0,09935	254,86	-84,34	3,20E-04	1 <mark>,7</mark> 5E-05	1,3 <mark>9</mark> E+04	7,17E-05	6,00E-07	2,17E+ 01	2,15E+00	7,19E-05
30	700000	10,4830	0,10037	216,05	-84,27	3,20E-04	1,75E-05	1,1 <mark>8E</mark> +04	8,46E-05	5,99E-07	2,17E+ 01	2,17E+00	8,46E-05
31	800000	10,4830	0,10255	185,05	- <mark>84,1</mark> 5	3,20E-04	1,75E-05	1,01E+04	9,88E-05	5,99E-07	2,17E+01	2,22E+00	9,88E-05
32	900000	10,5200	0,10432	161,14	-84,04	3,20E-04	1,75E-05	8,81E+03	1,13E-04	6,01E-07	2,17E+ 01	2,27E+00	1,13E-04
33	1000000	10,5650	0,10591	142,38	-83 <mark>,9</mark> 5	3,20E-04	1,75E-05	7,79E+03	1,28E-04	6,04E-07	2,18E+ 01	2,31E+00	1,28E-04

4. Karbon + H_2SO_4 1,5 M

NO	f (Hz)	Cp (pF)	D	Rp (MΩ)	θ	d (m2)	A (m2)	R (Ω)	C (F/m2)	εr'	εr"	σ (S/m)
1	500	37,704	0,46092	18,3187	-65,25	4,60E-04	2,88E-05	1,15E+06	1,31E-06	6,80E+01	3,13E+01	8,70E-07
2	600	36,031	0,44266	16,6310	-66,12	4,60E-04	2,88E-05	1,04E+06	1,25E-06	6,49E+01	2,87E+01	9,59E-07
3	700	34,769	0,42755	15,2940	-66,85	4,60E-04	2,88E-05	9,59E+05	1,21E-06	6,27E+01	2,68E+01	1,04E-06
4	800	33,727	0,41315	14,2770	-67,55	4,60E-04	2,88E-05	8,95E+05	1,17E-06	6,08E+01	2,51E+01	1,12E-06
5	900	32,809	0,39954	13,4960	-68,22	4,60E-04	2,88E-05	8,46E+05	1,14E-06	5,91E+01	2,36E+01	1,18E-06
6	1000	32,035	0,38726	12,8290	-68,83	4,60E-04	2,88E-05	8,04E+05	1,11E-06	5,77E+0 1	2,24E+01	1,24E-06
7	2000	28,269	0,31463	8,9473	-72,54	4,60E-04	2,88E-05	5,61E+05	9,80E-07	5,10E+0 1	1,60E+01	1,78E-06
8	3000	26,563	0,27646	7,2266	-74,55	4,60E-04	2,88E-05	4,53E+05	9,21E-07	4,79E+0 1	1,32E+01	2,21E-06
9	4000	25,649	0,25358	6,1198	-75,78	4,60E-04	2,88E-05	3,84E+05	8,89E-07	4,62E+0 1	1,17E+01	2,61E-06
10	5000	24,924	0,23455	5,4449	-76,80	4,60E-04	2,88E-05	3,41E+05	8,64E-07	4,49E+0 1	1,05E+01	2,93E-06
11	6000	24,376	0,22087	4,9265	-77,57	4,60E-04	2,88E-05	3,09E+05	8,45E-07	4,39E+0 1	9,70E+00	3,24E-06
12	7000	23,972	0,20945	4,5284	-78,17	4,60E-04	2,88E-05	2,84E+05	8,31E-07	4,32E+0 1	9,05E+00	3,52E-06
13	8000	23,63 <mark>8</mark>	0,20032	4,2014	-78,67	4,60E-04	2,88E-05	2,63E+05	8,20E-07	4,26E+0 1	8,54E+00	3,79E-06
14	9000	23,345	0,19252	3,9346	-79,10	4,60E-04	2,88E-05	2,47E+05	8,10E-07	4,21E+0 1	8,10E+00	4,05E-06
15	10000	23,075	0,18861	3,6569	-79,32	4,60E-04	2,88E-05	2,29E+05	8,00E-07	4,16E+0 1	7,84E+00	4,36E-06
16	20000	21,776	0,15215	2,4018	-81,35	4,60E-04	2,88E-05	1,51E+05	7,55E-07	3,93E+0 1	5,97E+00	6,64E-06
17	30000	21,064	0,13381	1,882 <mark>2</mark>	-8 <mark>2</mark> ,38	4,60E-04	2,88E-05	1,18E+05	7,30E-07	3,80E+01	5,08E+00	8,47E-06
18	40000	20,680	0,12465	1,543 <mark>5</mark>	-8 <mark>2,</mark> 89	4,60E-04	2,88E-05	9,68E+04	7,17E-07	3,73E+01	4,65E+00	1,03E-05
19	50000	20,397	0,11825	1,3195	- <mark>83,</mark> 25	4,60E-04	2,88E-05	8,27E+04	7,07E-07	3,68E+01	4,35E+00	1,21E-05
20	60000	20,155	0,11349	1,1606	-83,53	4,60E-04	2,88E-05	7,28E+04	6,99E-07	3,63E+01	4,12E+00	1,37E-05
21	70000	20,016	0,11026	1,0302	-83,71	4,60E-04	2,88E-05	6,46E+04	6,94E-07	3,61E+0 1	3,98E+00	1,55E-05
22	80000	19 <mark>,9</mark> 72	0,10766	932,68	-83 <mark>,</mark> 87	4,60E-04	2,88E-05	5,85E+04	6,93E-07	3,60E+01	3,88E+00	1,72E-05
23	90000	19, <mark>7</mark> 12	0,10477	856,31	-84,02	4,60E-04	2,88E-05	5,37E+04	6,84E-07	3,55E+01	3,72E+00	1,86E-05
24	100000	19, <mark>6</mark> 16	0,10311	786,64	-84,11	4,60E-04	2,88E-05	4,93E+04	6,80E-07	3,54E+01	3,65E+00	2,03E-05
25	200000	18,770	0,09663	442,45	-84,54	4,60E-04	2,88E-05	2,77E+04	6,51E-07	3,38E+01	3,27E+00	3,63E-05
26	300000	18,436	0,09314	309,01	- <mark>84</mark> ,68	4,6 <mark>0</mark> E-04	2,88 <mark>E-</mark> 05	1,94E+04	6,39E-07	3,32E+01	3,10E+00	5,16E-05
27	400000	18, <mark>27</mark> 1	0,09257	235,25	-84,71	4,60E-04	2,88 <mark>E-</mark> 05	1,47E+04	6,34E-07	3,29E+01	3,05E+00	6,78E-05
28	500000	18,156	0,09356	187,83	-84,66	4,60E-04	2,88E-05	1,18E+04	6,30E-07	3,27E+01	3,06E+00	8,51E-05
29	600000	18,09 <mark>2</mark>	0,09465	154,95	-84,58	4,60E-04	2,88E-05	9,71E+03	6,27E-07	3,26E+01	3,09E+00	1,03E-04
30	700000	18,090	0,0 <mark>96</mark> 26	130,64	-84,50	4,60E-04	2,88E-05	8,19E+03	6,27E-07	3,26E+01	3,14E+00	1,22E-04
31	800000	18,124	0,09752	112,56	-84,43	4,60E-04	2,88E-05	7,06E+03	6,29E-07	3,27E+0 1	3,19E+00	1,42E-04
32	900000	18,248	0,0990 <mark>3</mark>	97,88	-84,34	4,60E-04	2,88E-05	6,14E+03	6,33E-07	3,29E+0 1	3,26E+00	1,63E-04
33	1000000	18,336	0,10020	86,64	-84,28	4,60E-04	2,88E-05	5,43E+03	6,36E-07	3,31E+0 1	3,31E+00	1,84E-04

5. Karbon + $H_2SO_4 2 M$

NO	f (Hz)	Cp (pF)	D	Rp (MΩ)	θ	d (m)	A (m2)	R (Ω)	C (F/cm2)	εr'	εr"	σ (S/m)
1	500	64,7930	0,50680	9,69	-63,12	2,00E-04	2,64E-05	1,28E+06	2,46E-06	5,56E+01	2,82E+01	7,82E-07
2	600	61,4290	0,49362	8,75	-63,73	2,00E-04	2,64E-05	1,15E+06	2,33E-06	5,27E+01	2,60E+01	8,67E-07
3	700	58,7350	0,48130	8,04	-64,29	2,00E-04	2,64E-05	1,06E+06	2,23E-06	5,04E+01	2,42E+01	9,43E-07
4	800	56,5410	0,46962	7,49	-64,84	2,00E-04	2,64E-05	9,87E+05	2,15E-06	4,85E+01	2,28E+01	1,01E-06
5	900	54,6690	0,45882	7,05	-65,35	2,00E-04	2,64E-05	9,29E+05	2,07E-06	4,69E+01	2,15E+01	1,08E-06
6	1000	53,0690	0,44876	6,68	-65,83	2,00E-04	2,64E-05	8,81E+05	2,01E-06	4,55E+01	2,04E+01	1,13E-06
7	2000	45,3690	0,38356	4,57	-69,01	2,00E-04	2,64E-05	6,03E+05	1,72E-06	3,89E+01	1,49E+01	1,66E-06
8	3000	41,8360	0,34499	3,68	-70,97	2,00E-04	2,64E-05	4,84E+05	1,59E-06	3,59E+01	1,24E+01	2,06E-06
9	4000	39,7410	0,31800	3,16	-72,36	2,00E-04	2,64E-05	4,16E+05	1,51E-06	3,41E+01	1,08E+01	2,41E-06
10	5000	38,2480	0,29700	2,80	-73,46	2,00E-04	2,64E-05	3,69E+05	1,45E-06	3,28E+01	9,74E+00	2,71E-06
11	6000	37,1570	0,28053	2,55	-74,33	2,00E-04	2,64E-05	3,35E+05	1,41E-06	3,19E+01	8,94E+00	2,98E-06
12	7000	36,2990	0,26754	2,34	-75,02	2,00E-04	2,64E-05	3,09E+05	1,38E-06	3,11E+01	8,33E+00	3,24E-06
13	8000	35,6180	0,25671	2,18	-75,60	2,00E-04	2,64E-05	2,87E+05	1,35E-06	3,05E+01	7,84E+00	3,49E-06
14	9000	35,0510	0,24723	2,04	-76,11	2,00E-04	2,64E-05	2,69E+05	1,33E-06	3,01E+01	7,43E+00	3,72E-06
15	10000	34,5140	0,23854	1,93	-76,58	2,00E-04	2,64E-05	2,55E+05	1,31E-06	2,96E+01	7,06E+00	3,92E-06
16	20000	31,8580	0,19341	1,29	-79,05	2,00E-04	2,64E-05	1,70E+05	1,21E-06	2,73E+01	5,28E+00	5,87E-06
17	30000	30,5780	0,17198	1,01	-80 <mark>,</mark> 24	2,00E-04	2,64E-05	1,33E+05	1,16E-06	2,62E+01	4,51E+00	7,52E-06
18	40000	29,8210	0,15675	851,17	-81 <mark>,0</mark> 9	2,00E-04	2,64E-05	1,12E+05	1,13E-06	2,56E+01	4,01E+00	8,91E-06
19	50000	29,2590	0,14698	740,44	- <mark>81,6</mark> 4	2,00E-04	2,64E-05	9,76E+04	1,11E-06	2,51E+01	3,69E+00	1,02E-05
20	60000	28,8060	0,13970	659,17	-82 <mark>,0</mark> 5	2,00E-04	2,64E-05	8,69E+04	1,09E-06	2,47E+01	3,45E+00	1,15E-05
21	70000	28,4740	0,13485	592,19	-82, <mark>3</mark> 2	2,00E-04	2,64E-05	7,80E+04	1,08E-06	2,44E+01	3,29E+00	1,28E-05
22	80000	28, <mark>20</mark> 30	0,12985	543,26	-82,60	2,00E-04	2,64E-05	7,16E+04	1,07E-06	2,42E+01	3,14E+00	1,40E-05
23	90000	27,9 <mark>7</mark> 30	0,12628	500,86	-82, <mark>8</mark> 1	2, <mark>00</mark> E-04	2,64E-05	6,60E+04	1,06E-06	2,40E+01	3,03E+00	1,52E-05
24	100000	27,7 <mark>8</mark> 60	0,12327	464,64	-82,97	2,00E-04	2,64E-05	6,12E+04	1,05E-06	2,38E+01	2,94E+00	1,63E-05
25	200000	26,4 2 70	0,10992	273,73	-83, <mark>72</mark>	2,00E-04	2,64E-05	3,61E+04	1,00E-06	2,27E+01	2,49E+00	2,77E-05
26	300000	25,8900	0,10553	194,17	-83,98	2,0 <mark>0</mark> E-04	2,64 <mark>E-</mark> 05	2,56E+04	9,82E-07	2,22E+01	2,34E+00	3,91E-05
27	400000	25,5 <mark>94</mark> 0	0,10363	149,93	-84,08	2,00E-04	2,64 <mark>E-</mark> 05	1,98E+04	9,71E-07	2,19E+01	2,27E+00	5,06E-05
28	500000	25,4110	0,10401	120,44	-84,06	2,00E-04	2,64E-05	1,59E+04	9,64E-07	2,18E+01	2,27E+00	6,30E-05
29	600000	25,2900	0,10697	100,88	-84,06	2,00E-04	2,64E-05	1,33E+04	9,60E-07	2,17E+01	2,32E+00	7,74E-05
30	700000	25,2460	0,1 <mark>0</mark> 492	85,83	-84,01	2,00E-04	2,64E-05	1,13E+04	9,58E-07	2,16E+01	2,27E+00	8,84E-05
31	800000	25,2800	0,10676	73,69	-83 <mark>,9</mark> 1	2,00E-04	2,64E-05	9,71E+03	9,59E-07	2,17E+01	2,31E+00	1,03E-04
32	900000	25,3530	0 <mark>,1</mark> 0780	64,70	-83,85	2,00E-04	2,64E-05	8,53E+03	9,62E-07	2,17E+01	2,34E+00	1,17E-04
33	1000000	25,4890	0,10946	57,08	-83,76	2,00E-04	2,64E-05	7,52E+03	9,67E-07	2,19E+01	2,39E+00	1,33E-04

LAMPIRAN 6 DOKUMENTASI PENELITIAN

Pemanasan Bulu Ayam 250°C

Tanur untuk pemanasan karbon 400°C

Proses Sonikasi karbon dalam H₂SO₄

Hasil Pemanasan 250°C

Hasil pemanasan 400°C

Proses Pencucian karbon dengan NaOH

Pengecekan pH sampel menggunakan pH indikator

Pengeringan sampel yang telah dicucuci

