SKRIPSI

Oleh: WIDIYA NUR SAFITRI NIM. 14630037

JURUSAN KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2019

SKRIPSI

Oleh: WIDIYA NUR SAFITRI NIM. 14630037

Diajukan Kepada: Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang Untuk Memenuhi Salah Satu Persyaratan dalam Memperoleh Gelar Sarjana Sains (S.Si)

JURUSAN KIMIA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2019

SKRIPSI

Oleh: WIDIYA NUR SAFITRI NIM. 14630037

Telah Diperiksa dan Disetujui untuk Diuji Tanggal: 19 Desember 2018

Pembimbing I

Nur Aini, M.Si NIDT. 19840608 20160801 2 070

Pembimbing II

Akyunul Jannah, S.Si, M.P NIP. 19750410 200501 2 009

1	Mengetahui,	
a	Ketua Jurusan Kimia	
X	(SUN PI	
*		
18	····	
1	Elek Kanalah Mayati, M.	SI
	NIP. 19790620/200604 2 0	02

SKRIPSI

Oleh: WIDIYA NUR SAFITRI NIM. 14630037

Telah Dipertahankan di Depan Dewan Penguji Skripsi Dan Dinyatakan Diterima Sebagai Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Sains (S.Si) Tanggal: 19 Desember 2018

a

: A. Ghanaim Fasya, M.Si NIP. 19820616 200604 1 002

Ketua Penguji

: Dr. Anton Prasetyo, M.Si NIP. 19770925 200604 1 003

Sekretaris Penguji : Nur Aini, M.Si NIDT, 19840608 20160801 2 070

Anggota Penguji : Akyunul Jannah, S.Si, M.P NIP. 19750410 200501 2 009

Mengetahui, Ketua Jurusan Kimia ok Ka Tavati, M. Si NIP. 19 90620/200604 2 002

PERNYATAAN KEASLIAN TULISAN

Saya yang bertanda tangan dibawah ini:

Nama	: Widiya Nur Safitri
NIM	: 14630037
Jurusan	: Kimia
Fakultas	: Sains dan Teknologi
Judul Penelitian	: Variasi konsentrasi dopan pada sintesis dan karakterisasi
	fotokatalis ZnO terdoping vanadium (III) menggunakan
	metode sonikasi

Menyatakan dengan sebenarnya bahwa skripsi yang saya tulis ini adalah benar-benar hasil karya saya sendiri, bukan merupakan pengambil alihan data, tulisan atau pikiran orang lain yang saya akui sebagai tulisan atau pikiran saya sendiri, kecuali dengan mencantumkan sumber cuplikan pada daftar pustaka. Apabila dikemudian hari terbukti atau dapat dibuktikan skripsi ini hasil jiplakan maka saya bersedia menerima sanksi perbuatan tersebut.

> Yang membuat pernyataan Malang, 10 Januari 2019

Widiya Nur Safitri NIM. 14630037

HALAMAN PERSEMBAHAN

Alhamdulillah, setelah melewati berbagai proses selama setahun ini dengan penuh rasa syukur kepada Allah SWT yang telah melimpahkan karunia dan kasih sayang-Nya. Serta shalawat dan salam yang tercurahkan kepada Nabi Muhammad SAW. Skripsi ini saya dedikasikan kepada :

- Bapak Priyo Kuswidiyanto dan Ibu Umi Nurhayati, selaku orang tua tercinta yang telah memberikan dukungan moril dan materiil.
 Sehingga penulis selalu termotivasi menyelesaikan skripsi ini.
- > Adik-adikku tersayang, Indah Nurul Khusna dan M. Zaqi Ikhwanul Kiram yang memberikan dukungan, hiburan, dan semangat.
- > Ibu Nur Aini selaku pembimbing yang selalu sabar dan memberikan ilmu yang luar biasa, serta bapak Anton Prasetyo selaku konsultan yang memberikan wawasan-wawasan pengetahuan.
- Seluruh teman-temanku, yang selalu mendukung disaat keadaan sedih maupun bahagia. Semoga usaha yang telah kita lakukan bersama akan berbuah manis dan bermanfaat kedepannya.

KATA PENGANTAR

Segala puji kita curahkan kepada Allah SWT yang karena limpahan rahmat, taufik, hidayah, dan ilmu yang diberikan kepada kita semua sehingga pada hari ini saya bisa menyelesaikan skripsi yang berjudul "**Variasi Konsentrasi Dopan Pada Sintesis Dan Karakterisasi ZnO Terdoping Vanadium (III) Menggunakan Metode Sonikasi**" dengan baik. Sholawat dan salam tidak lupa kita panjatkan kepada junjungan kita nabi agung Muhammad SAW yang telah mengeluarkan kita dari alam kegelapan menuju rahmatan lilalamin yaitu islam.

Selama dalam penyusunan dan penyelesaian skripsi ini tidak terlepas dari bantuan, bimbingan dan arahan dari berbagai pihak, baik secara langsung maupun tidak langsung. Pada kesempatan ini dengan segenap ketulusan hati saya mengucapkan terima kasih kepada :

- Orang tua yang telah banyak memberikan perhatian, nasehat, doa, dan dukungan baik moril maupun materil yang tak mungkin terbalaskan dan keluarga besar penulis.
- Ibu Nur Aini, M.Si selaku dosen pembimbing dengan penuh kesabaran dan kearifan yang telah memberikan bimbingan dan arahan kepada penulis dalam menyelesaikan skripsi ini.
- 3. Bapak Dr. Anton Prasetyo, M.Si selaku konsultan dengan penuh kesabaran dan kearifan telah memberikan arahan dan pengetahuan tambahan.
- 4. Ibu Elok Kamilah Hayati, M.Si selaku ketua jurusan Kimia Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang. Seluruh dosen jurusan Kimia Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang

yang telah memberikan ilmu pengetahuan, pengalaman, wawasannya, sebagai pedoman dan bekal bagi penulis.

- Teman-teman jurusan Kimia angkatan 2014 Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang yang telah memberi motivasi, informasi, dan masukannya pada penulis.
- 6. Kepada semua pihak yang secara langsung maupun tidak langsung telah ikut memberikan bantuan dan motivasi selama penyusunan skripsi ini sampai selesai disusun, yang tidak bisa penulis sebutkan satu per satu.

Semoga amal perbuatan Bapak/Ibu serta semua pihak yang membantu dalam proses penyelesaian skripsi ini diridhoi oleh Allah SWT dan dicatat sebagai amal sholeh Bapak/Ibu/Saudara sekalian. Penulis menyadari bahwa dalam penyusun skripsi ini masih jauh dari kata sempurna. Oleh karena itu, dengan segala kerendahan hati penulis mengharapkan kritik dan saran dari semua pihak yang bersifat membangun. Akhir kata, penulis berharap semoga skripsi ini dapat bermanfaat bagi banyak pihak. Amin ya robbal alamin.

Malang, 10 Januari 2019

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PERSETUJUAN	ii
HALAMAN PENGESAHAN	iii
PERNYATAAN KEASLIAN TULISAN	iv
HALAMAN PERSEMBAHAN	v
KATA PENGANTAR	vi
DAFTAR ISI	viii
DAFTAR LAMPIRAN	X
DAFTAR GAMBAR	xi
DAFTAR TABEL	xiii
ABSTRAK	xiv
ABSTRACT	XV
مخالا	wwi
	ΛΥΙ

BAB I PENDAHULUAN

1.1 Latar Bela	akang	1
1.2 Rumusan	Masalah	6
1.3 Tujuan Pe	enelitian	6
1.4 Batasan M	/lasalah	7
1.5 Manfaat F	Pe <mark>n</mark> elitian	7

BAB II TINJAUAN PUSTAKA

2.1	Material Semikonduktor sebagai Fotokatalis	8
2.2	Fotokatalis Seng Oksida (ZnO)1	0
2.3	Modifikasi Fotokatalis dengan Doping Vanadium1	3
2.4	Metode Sonikasi untuk Sintesis ZnO1	8

BAB III METODE PENELITIAN

3.1	Waktu dan Penelitian	23
3.2	Alat dan Bahan	23
	3.2.1 Alat	23
	3.2.2 Bahan	23
3.3	Rancangan Penelitian	24
3.4	Tahapan Penelitian	24
3.5	Prosedur Kerja	25
	3.5.1 Sintesis Material ZnO Terdoping Vanadium dengan Metode	
	Sonikasi	25
	Sonikasi	25 26
	Sonikasi 3.5.2 Karakterisasi dengan XRD 3.5.3 Karakterisasi dengan Spektroskopi Inframerah	25 26 27
	Sonikasi 3.5.2 Karakterisasi dengan XRD 3.5.3 Karakterisasi dengan Spektroskopi Inframerah 3.5.4 Karakterisasi dengan Spektroskopi Raman	25 26 27 27
	Sonikasi	25 26 27 27
	Sonikasi 3.5.2 Karakterisasi dengan XRD 3.5.3 Karakterisasi dengan Spektroskopi Inframerah 3.5.4 Karakterisasi dengan Spektroskopi Raman 3.5.5 Karakterisasi daerah Serapan Sinar dan Energi Celah Pita (band gap) dengan DRS	25 26 27 27 27
	 Sonikasi	25 26 27 27 27 27

BAB IV HASIL DAN PEMBAHASAN

4.1 Sintesis Material Fotokatalis ZnO terdoping Vanadium (III) dengan	20
	29
4.2 Karakterisasi Material Fotokatalis ZnO terdoping Vanadium (III)	
menggunakan XRD	30
4.3 Karakterisasi Material Fotokatalis ZnO terdoping Vanadium (III)	
menggunakan Spektroskopi Inframerah	34
4.4 Karakterisasi Material Fotokatalis ZnO terdoping Vanadium (III)	
menggunakan Spektroskopi Raman	38
4.5 Karakterisasi Material Fotokatalis ZnO terdoping Vanadium (III)	
menggunakan DRS	40
4.6 Karakterisasi Material Fotokatalis ZnO terdoping Vanadium (III)	
menggunakan SEM-EDX	44
4.7 Sintesis Material fotokalis ZnO terdoping Vanadium (III)	
berdasarkan perspektif Islam	46
I I	

BAB V PENUTUP

5.1	Kesimpulan	49
5.2	Saran	49

DAFTAR PUSTAKA LAMPIRAN

DAFTAR LAMPIRAN

55
57
60
62
69
70
74

DAFTAR GAMBAR

Gambar 2.1	Daerah energi pada Semikonduktor	9
Gambar 2.2	Struktur kristal seng oksida (a) <i>rocksalt</i> (b) <i>zincblende</i> (c)	11
	wurtzite	
Gambar 2.3	Mekanisme degradasi polutan organik fotokatalis ZnO	12
Gambar 2.4	Mekanisme reaksi fotokatalis ZnO doping vanadium	14
Gambar 2.5	Morfologi ZnO terdoping vanadium yang dikalsinasi pada	
	suhu: (a) 300 (b) 400 (c) 500 (d) 600, dan (e) 700 °C	
	dengan metode sol-gel	15
Gambar 2.6	Hasil DRS sintesis ZnO doping vanadium metode reaksi	
	padatan	16
Gambar 2.7	Spektra Raman ZnO terdoping vanadium dengan metode	
	reaksi padatan	17
Gambar 2.8	Spektra IR ZnO doping vanadium setelah kalsinasi suhu	
	600 °C metode sol gel dengan konsentrasi vanadium (a) 5	
	(b) 10. dan (c) 15 %	18
Gambar 2.9	Proses kavitasi	19
Gambar 2.10	Data senvawa ZnO yang disintesis dengan metode sonikasi	-
	pada variasi pelarut alkohol	20
Gambar 2.11	Hasil SEM sintesis ZnO air-isopropanol	20
Gambar 2.12	Morfologi partikel ZnO: (a) Zn(OH) ₂ kristal, (b) ZnO	-
	nanorods, (c) ZnO flowers, dan (d) ZnO flowers	21
Gambar 2.13	Spektra UV-Vis pada sintesis seng oksida (ZnO)	
	nanostruktur dengan variasi kondisi pH (pH 6-12)	22
Gambar 4.1	(a) Endapan putih hasil campuran Zn-asetat, pelarut	
	isopropanol, dan NaOH, (b) hasil padatan ZnO dan ZnO-V	30
Gambar 4.2	Pola difraksi sinar-X senvawa ZnO-V	31
Gambar 4.3	Pergeseran puncak difraksi sinar-X senyawa ZnO-V	31
Gambar 4.4	Plot hasil <i>refinement</i> senyawa ZnO tanpa dopan	32
Gambar 4.5	Spektra IR sebelum kalsinasi sampel ZnO dan ZnO-V	35
Gambar 4.6	Spektra IR setelah kalsinasi sampel ZnO dan ZnO-V	36
Gambar 4.7	Spektra Raman ZnO dan ZnO-V pada rentang bilangan	
	gelombang 100-700 cm ⁻¹ dan perbesaran puncak bilangan	
	gelombang 400-500 cm ⁻¹	39
Gambar 4.8	Spektra Raman ZnO dan ZnO-V pada rentang bilangan	
	gelombang 700-3700 cm ⁻¹	39
Gambar 4.9	Spektra DRS hubungan % R dengan panjang gelombang	
	ZnO tanpa dopan dengan ZnO variasi konsentrasi dopan	40
	vanadium	
Gambar 4.10	Spektra DRS hubungan $F(R)$ dengan panjang gelombang	
	ZnO tanpa dopan dengan ZnO variasi konsentrasi dopan	
	vanadium	41
Gambar 4.11	Spektra DRS hubungan $(F(R)*hv)^{1/2}$ dengan energi celah	-
	pita (hv) ZnO tanpa dopan dengan ZnO variasi konsentrasi	
	dopan vanadium	43
	1	-

Gambar 4.12	Karakterisasi SEM (a) ZnO, (b) ZnO-V 1%, (c) ZnO-V 3%,	
	(d) ZnO-V 5 % pada perbesaran 20000x	45
Gambar L.3.1.1	Gambar hasil sintesis ZnO dan ZnO-V 0, 1, 3, dan 5%	60
Gambar L.3.1.2	Hasil kalsinasi sampel ZnO dan ZnO-V	61
Gambar L.4.1	Difraktogram XRD ZnO tanpa dopan	63
Gambar L.4.2	Difraktogram XRD ZnO-V 1%	63
Gambar L.4.3	Difraktogram XRD ZnO-V 3%	64
Gambar L.4.4	Difraktogram XRD ZnO-V 5%	64
Gambar L.6.1	Nilai band gap ZnO tanpa dopan	70
Gambar L.6.2	Nilai band gap ZnO-V 1%	71
Gambar L.6.3	Nilai band gap ZnO-V 3%	72
Gambar L.6.4	Nilai band gap ZnO-V 5%	73
Gambar L.7.1.1	SEM sampel ZnO tanpa dopan	74
Gambar L.7.1.2	EDS sampel ZnO tanpa dopan	74
Gambar L.7.2.1	SEM sampel ZnO-V 1%	75
Gambar L.7.2.2	EDS sampel ZnO-V 1%	75
Gambar L.7.3.1.	SEM sampel ZnO-V 3%	76
Gambar L.7.3.2	EDS sampel ZnO-V 3%	76
Gambar L.7.4.1	SEM sampel ZnO-V 5%	77
Gambar L.7.4.2	EDS sampel ZnO-V 5%	77

DAFTAR TABEL

Tabel 2.1 Tabel 2.2	Nilai energi dengan perbedaan konsentrasi dopan vanadium Analisis modus vibrasi ZnO terdoping vanadium	15 17
Tabel 4.1	Data kristalografi ZnO dari proses refinement dengan metode	
	Le Bail	33
Tabel 4.2	Hasil perhitungan ukuran kristal ZnO dan ZnO-V	34
Tabel 4.3	Karakteristik gugus fungsi ZnO dan ZnO-V	35
Tabel 4.4	Hasil karakteristik gugus fungsi pada sampel ZnO dan ZnO-V	37
Tabel 4.5	Analisis modus vibrasi ZnO dan ZnO-V	38
Tabel 4.6	Nilai energi celah pita dan panjang gelombang ZnO tanpa	
	dopan dan ZnO terdoping vanadium	42
Tabel 4.7	Persentase unsur-unsur penyusun ZnO dan ZnO-V hasil EDS	45
Tabel L.4.1	Spesifikasi alat XRD	62
Tabel L.5.1	Hasil perhitungan crystallite size ZnO-V hasil sintesis	69

ABSTRAK

Safitri, W.N.2018. Variasi Konsentrasi Dopan Pada Sintesis dan Karakterisasi Fotokatalis Seng Oksida (ZnO) terdoping Vanadium (III) Menggunakan Metode Sonikasi. Jurusan Kimia Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing I: Nur Aini,M.Si, Pembimbing II: Akyunul Jannah, S.Si, M.P, Konsultan: Dr. Anton Prasetyo, M.Si

Kata kunci: Seng Oksida (ZnO), sonikasi, fotokatalis, dopan vanadium

Material ZnO dikenal sebagai senyawa yang dapat digunakan sebagai material fotokatalis dengan energi celah pita sebesar 3,2 eV. Salah satu kelemahan, ZnO sebagai material fotokatalis adalah kurang aktif pada daerah radiasi sinar tampak yang merupakan komponen terbesar dari sinar matahari, sehingga perlu dilakukan modifikasi untuk meningkatkan efisiensi penyerapan cahaya. Pendopingan dengan logam transisi seperti vanadium dapat digunakan untuk menurunkan energi celah pita. Penelitian ini bertujuan untuk mengetahui karakteristik struktur, morfologi, dan energi celah pita fotokatalis ZnO terdoping vanadium (III) konsentrasi 0, 1, 3, dan 5 % yang disintesis menggunakan metode sonikasi dengan suhu kalsinasi 500 °C.

Sintesis material ZnO dalam penelitian ini menggunakan metode sonikasi pada variasi konsentrasi dopan 0, 1, 3, dan 5% dengan waktu sonikasi selama 30 menit. Sampel hasil sintesis dikarakterisasi menggunakan XRD, IR, spektroskopi Raman, DRS, dan SEM-EDS.

Hasil penelitian diperoleh data difraksi sinar-X menunjukkan bahwa fasa ZnO telah terbentuk dengan grup ruang *P6₃mc* dan tidak ditemukan pengotor. Spektra IR menunjukkan modus vibrasi khas Zn-O pada 420 cm⁻¹. Spektra Raman ZnO menunjukkan pergeseran posisi puncak modus vibrasi 437 cm⁻¹ yang mengindikasikan adanya perubahan panjang ikatan Zn-O. Dari pengukuran DRS diketahui bahwa ZnO-V 3% lebih efektif meningkatkan potensi penyerapan sinar UV sedangkan ZnO tanpa dopan lebih efektif meningkatkan potensi penyerapan sinar tampak dan memiliki energi celah pita yang paling kecil yaitu 2,93 eV (423,49 nm). Distribusi paling homogen adalah ZnO tanpa dopan dan morfologi partikel yang terbentuk adalah *spherical* dan *long-rods*.

ABSTRACT

Safitri,W.N. 2018. Dopant Concentration Variation in Synthesis and Characterization of Zinc Oxide (ZnO) Photocatalyst Material Doped by Vanadium (III) Using Sonication Method. Department of Chemistry Science and Technology Faculty Unversitas Islam Negeri Maulana Malik Ibrahim Malang. Supervisor I: Nur Aini, M.Si, Supervisor II: Akyunul Jannah, S.Si, M.P, Consultant: Dr. Anton Prasetyo, M.Si.

Keywords : Zinc Oxide (ZnO), sonication, photocatalyst, vanadium dopant

ZnO is used material as photocatalyst with band gap energy of 3.2 eV. One disadvantage of ZnO as a photocatalyst material is less using in active area of visible light radiation which is the largest component of sunlight, so it needs a modifying to improve the efficiency of light absorption. Doping by metals such as vanadium can used to reduce band gap energy. This study aims to determine the structural, morphological, and band gap energy characteristics of ZnO photocatalyst doped vanadium (III) with concentrations of 0, 1, 3, and 5% synthesized using sonication method with calcination temperature of 500 ° C.

In this study, ZnO was synthesized using sonication method on dopant concentration variations of 0, 1, 3, and 5% with sonication time for 30 minutes. Synthesized samples were characterized using XRD, IR, Raman spectroscopy, DRS, and SEM-EDX.

XRD data showed that the ZnO phase had been formed with $P_{63}mc$ space group. IR results indicated a defect on vibration mode ~ 420 cm-1 which is showing the stretching vibration of Zn-O. The results of Raman's spectroscopic analysis showed that the vanadium dopant in ZnO lattice causes a shift of peak position on vibration mode 437.83 cm-1 to smaller wave numbers (less energy). The DRS results showed ZnO-V 3% is effective in increasing UV absorption potential while ZnO without dopant is effective in increasing the absorption potential of visible light and has the smallest band gap energy which is 2.93 eV (423.49 nm). The most homogeneous distribution is ZnO without dopants and morphology of the particles formed is spherical and long-rods. سافيتري ،وديا. ٢٠١٨ .تخليق وتمثيل المحفز الصري من ثاني أكسيدالتيتانيوم (ZnO) المخدر بالفاناديوم باستخدام الصوتنة . قسم الكيمياء، كلية العلوم والتكنولوجيا، جامعة مولانا مالك إبراهيم الإسلامية الحكومية مالانج. المشرفة الأولى: نور عيني، الماجستير ؛ المشرفة الثانية:أعين الجنة الماجستير؛ المستشارة: الدكتور انتون فراستيو، الماجستير

الكلمات الرئيسية: أكسيد الزنك (ZnO) ، صوتنة ، حفاز ضوئي ، الفاناديوم

مادة (ZnO) المعروفة باسم المركبات التي يمكن استخدامها كمادة ضوئي مع فجوة الطاقة الفرقة من eV ٣,٢. واحد العيب (ZnO) كمادة ضوئي هو أقل نشاطا في مجال أشعة الضوء المرئي الذي هو أكبر مكون من أشعة الشمس, ، لذلك أن التعديلات اللازمة لتحسين كفاءة امتصاص الضوء .مواد إشابة مع الفلزات الانتقالية مثل الفاناديوم لتقليل الطاقة ذات فجوة الحزمة. تمدف هذه الدراسة إلى تحديد خصائص الفجوة البنيوية والمورفولوجية والضيقة للمحفز الضوئي (ZnO) المشبع بتراكيز الفاناديوم (III) ، ، ١ ، ٥ ، و ٥. والتي تم توليفها باستخدام طريقة الصوتنة مع درجة حرارة التكليس ٥٠٠ درجة مئوية.

تخليق مادة أكسيد الزنك في هذه الدراسة باستخدام إشابة تركيز الاختلاف صوتنة في ١، ١، ٣، و ٥٪ في وقت صوتنة لمدة ٣٠ دقيقة .تم توليفها عينات تميزت باستخدام حيود الأشعة السينية، الأشعة تحت الحمراء، رامان الطيفي، DRS، و SEM-EDS.

أظهرت النتائج التي حصلت عليها بيانات حيود الأشعة السينية تلك المرحلة (ZnO)قد تكونت مع مجموعة P6₃mc الفضاء ولا الشوائب. تُظهر أطياف الأشعة تحت الحمراء النمط النموذجي الذبذبيد O_Zn-O عند ٢٠٤ - cm⁻¹ تُظهر أطياف رامان زنو وضع ذبذبة في وضع الذروة يبلغ ٢٣٧ ما يدل على حدوث تغيير في طول الرابطة O_Zn-O. القياس من المعروف DRS أن أكسيد الزنك V_... أكثر فعالية في تحسين القدرة على امتصاص الأشعة فوق البنفسجية في حين مخدر أكثر فعالية أكسيد الزنك دون زيادة القدرة على امتصاص الضوء المرئي ولديه طاقة فجوة من أصغر هو ٢,٩٣ فولت (٢٣,٤٩ نانومتر) .توزيع أكثر تجانسا هو دون مواد إشابة والتشكل من جزيئات أكسيد الزنك التي شكلت هي قضبان طويلة.

BAB I

PENDAHULUAN

1.1 Latar Belakang

Kemajuan zaman pada era globalisasi ini memberikan dampak positif seperti berkembangnya sektor-sektor penting dalam kehidupan. Salah satu sektor yang berkembang pesat adalah sektor industri yang memudahkan manusia untuk memenuhi kebutuhan yang sangat beragam (Permata, dkk., 2016). Tetapi perkembangan sektor industri tersebut juga membawa dampak negatif seperti kontaminasi lingkungan akibat pembuangan limbah industri yang berbahaya untuk kesehatan maupun lingkungan perairan.

Metode pengendalian pencemaran limbah industri biasanya dilakukan dengan proses kimia, fisika, dan biologi (Wang, dkk., 2014). Metode penanggulangan untuk menangani air limbah industri adalah dengan cara adsorpsi, yang memiliki kekurangan tidak dapat mendegradasi polutan menjadi senyawa yang tidak berbahaya melainkan hanya memindahkan polutan dari cairan ke permukaan adsorben (Gunlazuardi, 2001). Metode lain untuk mengolah air limbah seperti klorinasi, ozonisasi, dan biodegradasi memiliki kekurangan karena membutuhkan biaya operasional yang mahal. Metode alternatif untuk pengolahan air limbah adalah metode fotokatalisis menggunakan katalis yang berupa semikonduktor atau lebih dikenal dengan fotokatalis (Andhari dan Wardhani, 2014).

Sebagai manusia kita dilarang untuk tidak berbuat kerusakan seperti yang telah dijelaskan dalam al-Qur'an surat al-A'raf ayat 56 berikut :

2

وَلَا تُفْسِدُواْ فِي ٱلْأَرْضِ بَعْدَ إِصْلَحِهَا وَٱدْعُوهُ خَوْفَا وَطَمَعًا إِنَّ رَحْمَتَ ٱللَّهِ قَرِيبُ مِّنَ ٱلْمُحْسِنِينَ ٢

Artinya : "Dan janganlah kamu membuat kerusakan di muka bumi, sesudah (Allah) memperbaikinya dan berdoalah kepada-Nya dengan rasa takut (tidak akan diterima) dan harapan (akan dikabulkan). Sesungguhnya rahmat Allah amat dekat kepada orang-orang yang berbuat baik"

Menurut Ibnu Katsir (2008) dalam ayat ini Allah melarang perbuatan yang dapat membuat kerusakan di muka bumi. Larangan berbuat kerusakan ini seperti membahayakan kelestarian lingkungan yang sudah diperbaiki, tidak berbuat maksiat, dan tidak menghancurkan sumber-sumber penghidupan seperti (pertanian, perdagangan, perairan, dan lain-lain). Serta Allah memerintahkan kepada mereka untuk menyembah-Nya dan berdoa kepada-Nya serta berendah diri dan memohon belas kasihan-Nya. Allah menciptakan segala kelengkapan di muka bumi ini bertujuan agar manusia dapat memanfaatkan dan mengolah dengan sebaik-baiknya untuk kesejahteraan mereka. Salah satu cara untuk menjaga lingkungan adalah dengan mensintesis senyawa fotokatalis yang dapat diaplikasikan untuk mendegradasi zat warna.

Penggunaan metode fotokatalisis dianggap sebagai metode yang efisien untuk degradasi polutan organik, dekomposisi air, dan udara, dan memisahkan senyawa polutan. Penggunaan fotokatalis mempunyai beberapa keunggulan, diantaranya stabilitas kimia yang baik, tidak larut dalam air, biayanya yang murah dan mempunyai sifat reduksi oksidasi yang kuat (Aliah, dkk., 2012). Apabila semikonduktor diberi energi foton yang lebih besar atau sama dari energi celah pita, maka energi tersebut akan diabsorbsi oleh elektron yang berada pada pita valensi sehingga terjadi eksitasi menuju pita konduksi membentuk pasangan *electron-hole* pada permukaan katalis semikonduktor (Ong, dkk., 2017). *Hole* (h^+) akan berinteraksi dengan H₂O dan OH⁻ yang berada pada permukaan katalis membentuk OH radikal (•OH) yang bersifat sebagai oksidator kuat. Elektron (*e*-) akan bereaksi dengan O₂ yang berada pada permukaan katalis membentuk radikal superoksida (•O₂⁻) yang bersifat sebagai reduktor (Andhari dan Wardhani, 2014). Oksidator dan reduktor tersebut menyebabkan fotokatalis dapat menguraikan senyawa zat warna dan polutan organik menjadi senyawa yang tidak berbahaya seperti H₂O, CO₂ dan terurai menjadi anion-anionya serta beberapa asam dengan konsentrasi yang rendah (Batista, dkk., 2010; Slamet, dkk., 2006).

Material yang banyak digunakan sebagai fotokatalis adalah suatu semikonduktor yang memiliki energi celah pita yang sangat tipis yakni antara 0,5-5 eV (Fujishima, dkk., 2008). Semikonduktor oksida yang biasanya digunakan sebagai fotokatalis adalah ZrO₂, SrO₂, TiO₂, ZnO, CuO, CdO, Fe₂O₃ dan sebagainya (Linsebliger, dkk., 1995). ZnO adalah salah satu material semikonduktor yang biasanya digunakan sebagai aplikasi fotokatalis. ZnO memiliki aktivitas fotokatalisis yang tinggi (Sakthivel, dkk., 2003), tidak beracun, ramah lingkungan, dan memiliki energi celah pita (*band gap*) sebesar 3,20-3,37 eV (Gupta, dkk., 2013). Dibandingkan dengan TiO₂ efisiensi fotokatalis ZnO lebih tinggi, semikonduktor TiO₂ hanya mampu menyerap 4 %, sedangkan ZnO mampu menyerap 10 % sinar UV dari spektrum matahari. Berdasarkan penelitian Sakthivel, dkk. (2003) yang membandingkan antara fotokatalis ZnO lebih efektif daripada TiO₂ dengan persen degradasi zat pewarna untuk ZnO sebesar 84,72 % dan TiO₂ sebesar 55,93 %. Material fotokatalis ZnO kurang aktif pada radiasi sinar tampak yang merupakan komponen terbesar dari sinar matahari. Sehingga perlu dilakukan modifikasi untuk meningkatkan efisiensi penyerapan cahaya. Celah pita dari ZnO dipisahkan menjadi beberapa *sub-gap*, yang bisa dicapai dengan menggunakan ion doping berupa logam transisi (Manjula, dkk., 2011). Salah satu dopan yang dapat meningkatkan aktifitas fotokalisis adalah dengan doping vanadium. Menurut penelitian Krithiga, dkk. (2009) menunjukkan ukuran partikel dan parameter kisi ZnO menurun setelah doping vanadium dengan variasi konsentrasi 2, 6, dan 10 %. Penelitian yang dilakukan oleh Slama, dkk. (2016) dalam sintesis ZnO terdoping vanadium dengan metode sol gel dengan suhu 500 °C selama 2 jam menunjukkan sifat optik yang baik karena menurunkan energi celah pita ZnO dari 3,21 eV menjadi 3,124 eV dengan konsentrasi variasi dopan vanadium 1-5 %. Hasil uji aktivitas ZnO dengan doping vanadium konsentrasi 3 % memberikan aktivitas fotokatalisis terbaik untuk mendegradasi metilen biru dengan adsorpsi sebesar 10,35 %.

Beberapa metode yang dapat digunakan dalam sintesis ZnO adalah deposisi uap, metode sol-gel, dan lainnya. Hasil penelitian Tan (2005) menggunakan metode *Metal Organic Chemical Vapor Deposition* (MOCVD) menghasilkan ukuran partikel 8,75 nm dengan energi celah pita sebesar 3,3 eV. Kelemahan dari metode ini adalah reaktor yang digunakan terlalu rumit, waktu reaksi yang lama, dan perlu adanya kontrol tekanan dan suhu. Penelitian Brintha dan Ajhita (2015) melakukan sintesis ZnO dengan metode sol-gel dengan reaksi selama 5 jam pada suhu 80 °C, dan suhu kalsinasi 450 °C selama 4 jam dihasilkan struktur heksagonal *wurtzite* dengan ukuran partikel 14 nm. Penelitian Slama, dkk. (2011) sintesis ZnO terdoping vanadium dengan metode sol-gel pada suhu 500 °C dengan waktu yang

lebih cepat selama 2 jam dapat menurukan ukuran partikel dari 28,58 nm menjadi 19,75 nm. Kelemahan menggunakan metode ini adalah membutuhkan suhu yang tinggi, prosesnya lama, dan proses *aging* untuk menjadi gel membutuhkan waktu beberapa hari (Suwanboon, 2007).

Metode sonokimia merupakan metode alternatif yang efisien dan ramah lingkungan untuk sintesis ZnO. Metode sonokimia adalah salah satu metode yang dikembangkan untuk sintesis oksida (Suslick, 1999). Metode ini lebih mudah dan jalur reaksinya cepat dengan kelebihan dapat memecah agregat kristal berukuran besar menjadi agregat kristal berukuran kecil hingga dapat berskala nano. Menurut Yu, dkk. (2004) metode sonokimia dengan bantuan irridiasi ultrasonik dapat mempersingkat waktu reaksi dalam sintesis beberapa senyawa oksida. Penelitian Khan, dkk. (2015) berhasil mensintesis ZnO nanopartikel dengan metode sonokimia menggunakan prekusor zink asetat dengan waktu sonikasi selama 1 jam dengan suhu 37 °C dengan ukuran partikel 26 nm. Pada waktu reaksi yang lebih cepat penelitian tentang sintesis ZnO dengan variasi waktu sonikasi, didapatkan waktu sonikasi terbaik adalah 30 menit dengan morfologi ZnO yang terdistribusi merata, dengan ukuran partikel sebesar 22,5 nm, distribusi yang seragam, dan memberikan uji aktifitas fotokatalis terbaik untuk degradasi metilen biru sebesar 77,93 % (Faradis, 2017).

Jenis prekusor dalam sintesis ZnO juga mempengaruhi hasil morfologi dan aktivitas fotokatalisis. Penelitian Mayekar, dkk. (2014) melakukan sintesis ZnO dengan variasi prekusor, dimana penggunaan prekusor Zn(CH3COO)₂ menghasilkan ZnO murni dengan kristalinitas tinggi dibandingkan penggunaan prekusor Zn(NO₃)₂ dan ZnCl₂ yang menghasilkan pengotor. Tang, dkk. (2013) melaporkan penggunaan prekusor Zn(CH3COO)₂ memiliki bentuk morfologi *grain rice-like* yang memberikan aktivitas fotokatalisis untuk mendegradasi *methyl orange* sebesar 96 %.

Penelitian ini akan dilakukan sintesis fotokatalis ZnO terdoping vanadium (III) pada suhu kalsinasi 500 °C menggunakan metode sonikasi selama 30 menit. Metode ini dipilih karena sonikasi dapat memecah partikel menjadi ukuran kecil (nano) sehingga diharapkan akan efektif untuk memperoleh material dengan luas permukaan area yang besar. Dopan vanadium dengan konsentrasi 0, 1, 3, dan 5 % digunakan untuk mengetahui pengaruh dopan V³⁺ terhadap perubahan struktur, morfologi, serapan sinar, dan ukuran kristal ZnO dopan Vanadium (III).

1.2 Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah bagaimana karakteristik struktur, morfologi, serapan sinar, dan energi celah pita fotokatalis ZnO terdoping vanadium (III) konsentrasi 0, 1, 3, dan 5 % yang disintesis menggunakan metode sonikasi dengan suhu kalsinasi 500 °C ?

1.3 Tujuan Penelitian

Tujuan dalam penelitian ini adalah untuk mengetahui karakteristik struktur, morfologi, serapan sinar, dan energi celah pita fotokatalis ZnO terdoping vanadium (III) konsentrasi 0, 1, 3, dan 5 % yang disintesis menggunakan metode sonikasi dengan suhu kalsinasi 500 °C.

1.4 Batasan Masalah

- 1. Karakteristik struktur meliputi karakter struktur kristal dan lokal struktur.
- Hasil sintesis dikarakterisasi dengan menggunakan instrumen difraksi sinar-X (XRD), spektroskopi Inframerah (IR), spektroskopi Raman, Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDS), dan Diffuse Reflectance Spectroscopy (DRS).
- Konsentasi dopan vanadium yang digunakan adalah 0, 1, 3, dan 5 % dengan suhu kalsinasi 500 °C.
- 4. Sintesis menggunakan metode sonikasi *low intensity* (42 KHz, Branson *Ultrasonics* model B3510-MT) tanpa pengaturan suhu sonikasi.

1.5 Manfaat Penelitian

Manfaat dari penelitian ini yaitu dapat memberikan informasi ilmiah kepada masyarakat dan peneliti tentang karakteristik struktur, ukuran partikel, dan aktivitas material fotokatalis ZnO terdoping vanadium (III) yang disintesis menggunakan metode sonikasi. Selain itu juga dapat membantu pengembangan ilmu dan teknologi material.

BAB II

TINJAUAN PUSTAKA

2.1 Material Semikonduktor sebagai Fotokatalis

Fotokatalisis secara umum memiliki pengertian sebagai suatu proses reaksi kimia dari material katalis padat yang yang melibatkan cahaya sebagai pemicu dan katalis sebagai pemercepat proses transformasi kimia (Sutanto, dkk., 2015). Menurut Fujhisisma dan Honda, (1972) fenomena yang terjadi pada fotokatalis adalah pemecahan H₂O menjadi oksigen dan hidrogen melalui bantuan sinar UV yang memiliki energi rendah. Selain itu proses reaksi kimia tersebut dapat digunakan sebagai media untuk mengubah polutan organik menjadi zat-zat yang lebih ramah lingkungan. Material yang sering digunakan untuk fotokatalis adalah material semikonduktor seperti Zink Oksida (ZnO), Tungsten Oksida (WO₃), Titanium Oksida (TiO₂), Hematite (α -Fe₂O₃), Zink Sulfida (ZnS), dan Stronsium Titanat (SrTiO₃) (Andrerozzi, 2011). Sedangkan syarat material fotokatalis yang baik menurut Litter, 1999 adalah bersifat inert secara kimiawi maupun biologi, mudah didapatkan, tidak larut dalam reaksi, dapat memanfaatkan cahaya UV dan tampak, bersifat fotoaktif dan fotostabil (stabil terhadap cahaya).

Material fotokatalis adalah sebuah semikonduktor yang materialnya dicirikan dengan terisinya pita valensi (*bonding*) dan kosongnya pita konduksi (*antibonding*) atau konduktivitasnya berada diantara isolator dan konduktor (Palupi, 2006 dan Ningsih, 2012). Semikonduktor pita *bonding* terluar disebut pita valensi (*valence band*), sedangkan pita *antibonding* terluar disebut dengan pita konduksi (*conduction band*). Kedua pita tersebut dipisahkan oleh energi ambang atau energi sela (celah pita) ditunjukkan pada Gambar 2.1.

Gambar 2.1 Daerah energi pada semikonduktor (Licciulli, 2002)

Pembuatan fotokatalis merupakan bentuk dari pemanfaatan cahaya matahari. Cahaya matahari yang melimpah ini dapat digunakan sebagai sumber foton untuk mengeksitasi elektron, sehingga material fotokatalis akan aktif dapat mendegradasi limbah organik maupun anorganik. Anjuran untuk memanfaatkan cahaya matahari sesuai dengan firman Allah SWT dalam QS. Yunus (10) ayat 5 :

هُوَ ٱلَّذِى جَعَلَ ٱلشَّمْسَ ضِيَآءَ وَٱلْقَمَرَ نُورَا وَقَدَّرَهُ مَنَازِلَ لِتَعْلَمُواْ عَدَدَ ٱلسِّنِينَ وَٱلْحِسَابَۚ مَا خَلَقَ ٱللَّهُ ذَلِكَ إِلَّا بِٱلْحَقِّ يُفَصِّلُ ٱلْآيَتِ لِقَوْمِ يَعْلَمُونَ ٢

Artinya : "Dialah yang menjadikan matahari bersinar dan bulan bercahaya dan ditetapkan-Nya manzilah-manzilah (tempat-tempat) bagi perjalanan bulan itu, supaya kamu mengetahui bilangan tahun dan perhitungan (waktu). Allah tidak menciptakan yang demikian itu melainkan dengan hak. Dia menjelaskan tanda-tanda (kebesaran-Nya) kepada orang-orang yang mengetahui"

Ibnu Katsir (2000) menjelaskan Allah SWT menciptakan langit, bumi, dan matahari yang memancarkan sinar sebagai sumber kekuatan bagi bumi, seperti sinar dan panasnya, serta bulan yang mengirimkan cahaya. Dalam kata "*yufashshilu*" mempunyai makna dia atau kami menerangkan kepada orang-orang yang mau berpikir sehingga dapat merenungi bukti-bukti kesempurnaan dan kekuasaan Allah. Sedangkan dalam firman Allah SWT مَا خَلَقَ ٱسَمَا ذَٰلِكَ إِلَّا بِٱلْحَقَّ bermakna Allah SWT menciptakan segala sesuatu ada hikmah (tidak sia-sia) melainkan ada hujjah yang sangat dalam dan hikmah yang agung.

2.2 Fotokatalis Seng Oksida (ZnO)

ZnO merupakan semikonduktor golongan II-VI yang memiliki jarak celah pita sebesar 3,2 eV dan mempunyai struktur yang stabil yakni *wurtzite* dengan jarak kisi *a*= 0,325 nm dan *c*=0,521 dengan energi eksitasi ikatan sebesar 60 meV (Fan dan Gia, 2005). Rentang panjang gelombang cahaya tampak untuk eksitasi ZnO adalah 400-800 nm dan mampu menyerap cahaya pada panjang gelombang 365 nm (hijau) (Wang, dkk., 2004 dan Lestari, 2011). ZnO termasuk material semikonduktor yang memiliki sifat luminesensi yang baik, fotokonduktif, biaya produksi relatif murah, dan dapat dimanfaatkan sebagai material feromagnetik diatas suhu ruang (Gao, dkk., 2004).

Zink oksida dapat mengkristal menjadi tiga jenis struktur kristal, yaitu *wurtzite, zincite* atau *zincblende*, dan *rocksalt* yang ditunjukkan pada Gambar 2.2. Struktur *wurtzite* terbentuk pada kondisi tekanan normal dan fase termodinamika yang stabil, sedangkan struktur ZnO *zincblende* terbentuk pada substrat kubik, dan untuk struktur *rocksalt* terbentuk pada kondisi dengan tekanan tinggi lebih dari 9 GPa (Morkoc dan Özgür, 2009). Rata-rata mineral ZnO di alam memiliki struktur *zincite*. Struktur kristal ini berbentuk *sphalerite* dengan adanya atom Zn di setiap sudut dan bagian tengah sisi *face centered cubic* (FCC), serta atom O sebagai interstisi diantara empat atom Zn yang berdekatan. Seng oksida yang biasa diproduksi secara komersial merupakan hasil sintesis dan berstruktur *wurtzite*. Struktur ini memiliki bentuk heksagonal dan stabil pada suhu ruang (Haslinda, 2009). Struktur *wurtzite* memiliki sel satuan heksagonal dengan dua parameter kisi *a* dan *c* dalam rasio c/a = 8/3 = 1,633 (dalam struktur *wurtzite* ideal) dan memiliki grup ruang *P6₃mc* (Jesionowski, dkk., 2014). Sedangkan parameter kisi ZnO untuk struktur *wurtzite* pada suhu 300 K adalah *a* = 3,2495 Å, *c* = 5,2069 Å dan *Z* = 2 (Xie, dkk., 2012).

Gambar 2.2 Struktur kristal seng oksida (a) *rocksalt* (b) *zincblende* (c) *wurtzite* (Ong, dkk., 2017)

Proses fotokatalis terjadi ketika material semikonduktor ZnO teraktivasi karena adanya foton yang besarnya sama atau lebih dari energi celah pita sehingga elektron (e^{-}) dari pita valensi akan tereksitasi ke pita konduksi meninggalkan *hole* positif (h^+) menghasilkan pasangan elektron-*hole*. Sebagian elektron-*hole* ini akan

CENTRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MALANG

mengalami rekombinasi, sementara sebagian yang lain akan tertahan di permukaan semikonduktor dan mengalami reaksi redoks terhadap molekul yang teradsorpsi pada permukaan fotokatalis. Kemudian *hole* dapat menginisiasi reaksi oksidasi dan elektron akan menginisiasi reaksi reduksi zat kimia yang ada disekitar permukaan semikonduktor (Khan, dkk., 2015) yang ditunjukkan pada Gambar 2.3.

Gambar 2.3 Mekanisme degradasi polutan organik fotokatalis ZnO (Ong, dkk., 2017)

Secara umum proses degradasi senyawa organik dengan fotokatalis ZnO diperlihatkan pada Persamaan 2.1-2.10 (Ong, dkk., 2017).

ZnO
$$\xrightarrow{hv}$$
 ZnO $(e_{(cb)}) + (h_{(vb)})$ (2.1)

 $ZnO(h^{+}_{(vb)}) + H_2O \longrightarrow ZnO + H^{+} + OH \bullet$ (2.2)

 $ZnO(h^+_{(vb)}) + OH^- \longrightarrow ZnO + OH^{\bullet}$ (2.3)

$$ZnO(e_{(cb)}) + O_2 \longrightarrow ZnO + O2^{-}$$
 (2.4)

 $O2^{\bullet^-} + H^+ \longrightarrow HO_2^{\bullet}$ (2.5)

1	3

$$HO_2 \bullet + HO_2 \bullet \longrightarrow H_2O_2 + O_2 \tag{2.6}$$

$$ZnO(e_{(cb)}) + H_2O_2 \rightarrow OH^{\bullet} + OH^{-} + O_2$$
 (2.7)

$H_2O_2 + hv \longrightarrow$	20H•	(2.8)
Polutan Organik + OH•	\rightarrow Intermediet	(2.9)
Intermediet \rightarrow	$CO_2 + H_2O$	(2.10)

2.3 Modifikasi Fotokatalis dengan Doping Vanadium

Doping adalah proses memasukkan atom lain (dopan) ke dalam material semikonduktor. Doping memiliki beberapa keuntungan diantaranya dapat meningkatkan konduktivitas semikonduktor, memperoleh semikonduktor dengan hanya satu pembawa muatan (elektron atau lubang) saja, atau mendapatkan semikonduktor yang memiliki energi celah pita yang lebih rendah dari asalnya.

ZnO memiliki efisiensi kuantum yang rendah, sehingga cepat terjadi rekombinasi dari *photogenerate* pasangan elektron-*hole* (Mesaros, dkk., 2016). Untuk memperbaiki hal tersebut dapat dilakukan dengan doping logam transisi seperti vanadium, doping dengan logam transisi tidak hanya mengganti kisi koordinasi pada Zn tapi memodifikasi struktur pita energi elektronik ZnO. Ion dopan dapat menciptakan trap elektron yang akan mengurangi efek rekombinan antara elektron dan *hole*. Ketika vanadium masuk kedalam kisi ZnO, maka akan terbentuk tingkat energi pada celah pita yang dilarang, sehingga memberikan pengaruh menyempitnya celah pita, hal tersebut yang membuat ZnO akan lebih aktif pada sinar tampak yang dapat digunakan untuk *water splitting* dan fotodegradasi polutan organik (Mesaros, dkk., 2016 dan Feng, 2010). Mekanisme adanya dopan vanadium pada celah energi ZnO ditunjukkan pada Gambar 2.4.

Gambar 2.4 Mekanisme reaksi fotokatalisis ZnO doping vanadium (Mesaros, dkk., 2016)

Gambar 2.4 menjelaskan bahwa adanya dopan vanadium akan membentuk *sub-band gap* tersendiri. Tingkat energi yang terbentuk menawarkan transisi elektronik ZnO dari pita valensi ke tingkat energi *sub-band gap* ion vanadium yang kosong. Transisi ini membutuhkan energi lebih sedikit daripada transisi elektronik ZnO dari pita valensi ke pita konduksi sehingga dapat diinduksi oleh cahaya tampak. Hal tersebut menyebabkan vanadium dapat meningkatkan pemisahan elektron dan *hole* sehingga berkonstribusi untuk mendegradasi senyawa organik.

Watanabe, dkk. (2015) menyatakan bahwa variasi konsentrasi dopan memberikan beberapa fitur menarik misalnya, resistivitas rendah, feromagnetisme, piezoelektrik, dan menurunnya energi celah pita. Penelitian Ghoul, dkk. (2012) melaporkan sintesis ZnO doping vanadium dengan metode sol gel menggunakan variasi suhu dari 300-700 °C menujukkan pada suhu 500 °C dihasilkan bentuk nanokristal prismatik dengan agregat, ukuran partikel yang kecil yaitu 15-30 nm. Morfologi partikel yang disintesis pada variasi suhu kalsinasi ditunjukkan pada Gambar 2.5.

Penelitian Slama, (2016) yang mensintesis ZnO dengan variasi konsentrasi dopan vanadium 1-5 % dihasilkan meningkatnya konsentrasi vanadium akan menurunkan energi celah pita sehingga dapat meningkatkan aktifitas fotokatalis untuk mendegradasi metilen biru. Adapun nilai celah pita yang menurun seiring dengan meningkatnya konsentrasi dopan ditunjukkan pada Tabel 2.1.

Gambar 2.5 Morfologi ZnO terdoping vanadium yang dikalsinasi pada suhu: (a) 300 (b) 400 (c) 500 (d) 600, dan (e) 700 °C dengan metode sol-gel (Ghoul, dkk., 2011)

Tabel 2.1 Nila	i Energi	celah pita	a dengan	perbedaan	konsentrasi	dopan	vanadium
(Sla	ma, 2016	5)					

ZnO-	<i>x</i> =0	<i>x</i> =1	<i>x</i> =2	<i>x</i> =3	<i>x</i> =4	<i>x</i> =5
Vx%						
Eg (eV)	3,210	3,198	3,191	3,179	3,133	3,124

Penelitian yang dilakuan oleh Mesaros, dkk. (2016) sintesis ZnO dengan doping vanadium konsentrasi 1, 3, dan 5 % dengan meningkatnya konsentrasi dopan dapat menggeseser ke arah panjang gelombang *visible*, sehingga dapat meningkatkan aktivitas fotokatalitik untuk degradasi polutan organik Rhodamin B. Perubahan nilai absorbansi di energi celah pita di perlihatkan pada Gambar 2.6.

(Mesaros, dkk., 2016) (Mesaros, dkk., 2016)

Pengukuran dengan spektroskopi Raman pada partikel ZnO yang didoping vanadium diketahui berdasarkan penelitian Joshi, dkk. (2013). Hasil spektroskopi Raman menunjukkan pada material ZnO yang didoping vanadium mengalami dua jenis modus vibrasi yaitu TO (*transverse optical*) dan LO (*longitudinal optical*). Modus vibrasi ZnO terdoping vanadium ditunjukkan pada Gambar 2.7 dan Tabel 2.2. Daerah bilangan gelombang 100-330 cm⁻¹ mengindikasikan adanya vibrasi bending V-O sedangkan bilangan gelombang daerah 780-1000 cm⁻¹ mengindikasikan adanya pengotor berupa vanadium yang masuk pada kisi ZnO.

Gambar 2.7 Spektra Raman ZnO terdoping vanadium dengan metode reaksi padatan (Joshi, dkk., 2013)

Tabel 2.1 Analisis modus vibrasi ZnO terdoping Vanadium (Joshi, dkk., 2013)

Bilangan Gelombang (cm ⁻¹)	Jenis modus vibrasi
330	A_1 (TO)
379	E_1 (TO)
439	$E_2(high)$
590	A_1 (LO)
136-190	Stretching V ₂ O ₂
225	Bending V-O-V
315	Stretching V ₃ -O

Hasil IR untuk sintesis ZnO doping vanadium dengan struktur kristal *wurtzite* dilaporkan pada penelitian Maensiri, dkk. (2007) untuk mengetahui karakteristik strukturnya melalui deteksi gugus fungsi. Spektra IR pada Gambar 2.8 menunjukkan masing-masing pita serapan pada (a) ~3400 cm⁻¹ adalah modus vibrasi dari gugus fungsi O–H, (b) ~2900 cm⁻¹ merupakan vibrasi dari gugus fungsi C-H, (c) ~1380 cm⁻¹ dan (d) ~1600 cm⁻¹ merupakan vibrasi ulur asimetris dan simetris dari gugus fungsi C=O dari zink asetat dan pada daerah sekitar (e) ~2355 cm⁻¹ ada modus vibrasi CO₂ disebabkan adanya kelembaban dari udara

sekitar. Sedangkan bilangan gelombang (f) ~490 cm⁻¹ adalah modus vibrasi ulur Zn–O.

Gambar 2.8 Spektra IR ZnO doping vanadium setelah kalsinasi suhu 600 °C metode sol-gel dengan konsentrasi vanadium (a) 5 (b) 10, dan (c) 15% (Maensiri, dkk., 2007)

2.4 Metode Sonikasi Untuk Sintesis ZnO

Metode sonokimia merupakan metode solvolisis yang dibantu dengan irridiasi gelombang ultrasonik. Daerah yang digunakan untuk proses sonokimia adalah pada rentangan 20 kHz sampai 1 MHz. Metode sonikasi menjadi alternatif dalam sintesis material yang memiliki kelebihan seperti waktu yang digunakan relatif cepat, alat yang digunakan sederhana dan otomatis, dapat dilakukan dengan suhu rendah, dan serta partikel yang dihasilkan seragam. Menurut Suslick (1999) prinsip metode sonikasi adalah memanfaatkan gelombang ultrasonik dengan frekuensi sangat tinggi yang diiradiasikan ke dalam larutan. Ketika suatu larutan diiridiasi dengan gelombang ultrasonik, maka dalam larutan tersebut terjadi tumbukan antar partikel penyusun larutan yang bertekanan tinggi. Ketika antarpartikel penyusun kecil ini saling bertumbukan, maka suhu lokal bisa mencapai 5000 K dengan laju pendinginan $>10^{10}$ K/s dan juga membangkitkan gelembung atau rongga (kavitasi) didalam medium tersebut yang kemudian terjadi pembentukan, pertumbuhan, dan pecahnya gelembung kecil gas. Mekanisme dari proses kavitasi yang ditunjukkan seperti Gambar 2.9.

Gambar 2.9 Proses kavitasi (Joshi, dkk., 2013)

Hasil penelitian yang telah dilakukan oleh Delmifiana, (2013) telah berhasil mengendalikan bentuk maupun ukuran partikel ZnO, dengan ukuran partikel tanpa menggunakan sonikasi sebesar 57,8 nm. Sedangkan ukuran partikel pada saat menggunakan sonikasi sebesar 41,6 nm. Sintesis ZnO menggunakan metode sonikasi *high intensity* yang dilakukan oleh Banerjee, dkk. (2012) menggunakan variasi pelarut air-alkohol berupa metanol, etanol, dan isopropanol, dihasilkan material ZnO yang menggunakan isopropanol memiliki kristalinitas
yang tinggi diketahui dari puncak XRD intensitas bidang (101) mengalami peningkatan. Struktur XRD ditunjukkan pada Gambar 2.10. Sintesis ZnO menggunakan pelarut isopropanol menghasilkan bentuk batang (*rods*) panjang dengan ukuran partikel 21-28 nm yang ditunjukkan pada Gambar 2.11.

Gambar 2.10 Data senyawa ZnO yang disintesis dengan metode sonikasi pada variasi pelarut alkohol (Banerjee, dkk., 2012)

Gambar 2.11 Hasil SEM sintesis ZnO air-isopropanol (Banerjee, dkk., 2012)

Sintesis ZnO dengan metode sonikasi telah dilakukan Zak, dkk. (2013) dengan variasi waktu sonikasi 15, 30, dan 60 menit, yang menyebabkan perubahan bentuk morfologi. Bentuk yang dihasilkan adalah struktur heksagonal dengan ukuran kristal berturut-turut 30, 38, dan 36 nm. Dari hasil spektra absorbsi UV-Vis pada puncak 368, 378, dan 380 nm. Perbedaan hasil morfologi dengan variasi waktu sonikasi seperti Gambar 2.12.

(a) 5 min (b) 15 min (c) 30 min (d) 60 min Gambar 2.12 Morfologi partikel ZnO: (a) Zn(OH)₂ kristal, (b) ZnO nanorods, dan (c) ZnO flowers, dan (d) ZnO flowers (Zak, dkk., 2013)

Sintesis ZnO pada penelitian Faradis, (2017) dengan metode sonikasi *low intensity* dengan variasi waktu, dihasilkan waktu sonikasi terbaik pada 30 menit dengan morfologi yang terdistribusi sempurna. Ukuran partikel yang dihasilkan sebesar 22,35 nm, serapan panjang gelombang 444,44 nm dan nilai celah pita sebesar 2,79 eV. Uji aktivitas fotokatalisis sebesar 77,93 % untuk degradasi metilen biru.

Sintesis ZnO juga dipengaruhi pH, semakin meningkatnya nilai pH maka juga menyebabkan peningkatan kemurnian seperti penelitian Nugroho, (2013) sintesis ZnO dengan variasi pH 7, 8, 10, dan 12 menggunakan prekusor zink asetat dan penambahan NaOH didapatkan fasa murni yang tidak tercampur dengan pengotornya adalah pH 12 dengan ukuran partikel 73,8 nm dengan

ENTRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MALANG

komposisi 100 %. Sedangkan pada pH 7 kristal yang didapat masih bercampur dengan pengotor. Penelitian Wahab, (2009) pada Gambar 2.13 menunjukkan hasil UV-Vis DRS. Puncak yang dihasilkan dalam kisaran panjang gelombang 362-375 nm, yang merupakan puncak karakteristik standar fase ZnO heksagonal *wurtzite*, dan menunjukkan bahwa produk yang disintesis pada pH 12 memberikan absorbansi tertinggi pada λ maks 375 nm. Sehingga semakin tinggi pH menyebabkan ZnO lebih terabsorb pada panjang gelombang yang semakin besar dan mengarah ke sinar tampak.

Gambar 2.13 Spektra UV-Vis pada sintesis seng oksida (ZnO) nanostruktur dengan variasi kondisi pH (pH 6-12) (Wahab, dkk., 2009)

Penelitian untuk sintesis ZnO terdoping vanadium dengan metode sonikasi belum dilaporkan, sehingga pada penelitian ini akan menggunakan metode sonikasi untuk sintesis ZnO terdoping vanadium pada variasi konsentrasi dopan vanadium 1, 3, dan 5 %.

BAB III

METODOLOGI PENELITIAN

3.1 Waktu dan Tempat

Penelitian ini dilaksanakan pada bulan Januari-Agustus 2018 di Laboratorium Anorganik Jurusan Kimia Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang. Pengambilan data XRD dan SEM-EDS di Laboratorum Energi Institut Teknologi Sepuluh November Surabaya, pengambilan data DRS di Laboratorium Afiliasi MIPA Universitas Indonesia, dan pengambilan data spektra Raman di Laboratorium Kimia Fisik Material (LKFM) program studi Kimia Institut Teknologi Bandung (ITB).

3.2 Alat dan Bahan 3.2.1 Alat

Alat yang digunakan dalam penelitian ini antara lain: neraca analitis, tanur, gelas arloji, pipet tetes, spatula, alumunium foil, neraca analitik, *mortar agate*, krusibel alumina, *hotplate*, magnetik stirer, oven, gelas ukur 50 mL, corong gelas, erlenmeyer 250 mL, statif, *ultrasonic cleaner* (Branson *Ultrasonics* model B3510-MT), *X-Ray Diffraction* bubuk (XRD, Philip E'xpert Pro), IR, spektrokopi Raman, DRS, dan SEM-EDS.

3.2.2 Bahan

Bahan-bahan yang digunakan pada penelitian adalah *zinc acetate dehydrate* (Zn(C₂H₃O₂)₂.2H₂O (Merck)), *vanadium (III) acetylacetonate* (Sigma

Aldrich), etanol (EtOH, *p.a*), natrium hidroksida (NaOH), akuades, isopropanol *p.a*.

3.3 Rancangan Penelitian

Penelitian yang akan dilakukan ini adalah sintesis ZnO doping vanadium menggunakan metode sonikasi dengan prekursor seng asetat dehidrat, vanadium (III) asetil asetonat dan NaOH, dengan menggunakan variasi konsentrasi 0, 1, 3, dan 5% dengan suhu kalsinasi 500 °C. Hasil sintesis akan dikarakterisasi struktur materialnya dengan XRD, untuk mengetahui lokal struktur dan frekuensi vibrasi dari ikatan-ikatan atom menggunakan spektroskopi IR, untuk mengetahui lokal struktur dan identifikasi modus vibrasi menggunakan spektoskopi Raman, untuk mengetahui morfologi, komposisi, dan ukuran partikel digunakan SEM-EDS, dan untuk mengetahui lebar celah pita material (*band gap*) hasil sintesis menggunakan DRS.

3.4 Tahap Penelitian

- Sintesis ZnO doping vanadium (III) menggunakan metode sonikasi dengan variasi konsentrasi dopan 0, 1, 3, dan 5 %.
- Karakterisasi struktur material fotokatalis ZnO terdoping vanadium (III) dengan instrumen XRD.
- Karakterisasi untuk mengetahui frekuensi vibrasi material fotokatalis ZnO terdoping vanadium (III) dengan spektroskopi IR.
- 4. Karakterisasi untuk mengetahui modus vibrasi ZnO terdoping vanadium (III) dengan spektroskopi Raman.

- 5. Karakterisasi untuk mengetahui morfologi dan ukuran partikel material fotokatalis ZnO terdoping vanadium (III) dengan instrumen SEM-EDS.
- 6. Karakterisasi untuk mengetahui lebar celah pita material fotokatalis ZnO terdoping vanadium (III) dengan instrumen DRS.
- 7. Analisis data.

3.5 Prosedur Kerja

3.5.1 Sintesis Material ZnO Terdoping Vanadium (III) dengan Metode Sonikasi

 $Zn_{1-x}V_xO$ terdoping vanadium (III) dilakukan Sintesis dengan menambahkan ke dalam zinc acetate dehydrate Zn(C₂H₃O₂)₂.2H₂O dicampur dengan isopropanol dan ditambahkan NaOH 1M, penambahan jumlah perkusor terlampir dalam Lampiran 2. Selanjutnya dimasukkan vanadium (III) asetil asetonat berturut-turut sebanyak 0; 0,1292; 0,3389; dan 0,6505 g pada suhu ruang dan diaduk menggunakan magnetik *stirer* sampai sempurna. Kemudian diatur pH pada larutan dengan penambahan NaOH 1M perlahan sampai pH 12, selanjutnya diaduk dengan magnetik stirer selama 15 menit sampai homogen pada suhu ruang. Selanjutnya campuran tersebut disonikasi gelombang ultrasonik 42 kHz 100 W selama waktu aktif total 30 menit pada suhu 27 °C (Faradis, 2017). Erlenmeyer diposisikan di tengah-tengah tangki dari ultrasonic cleaning bath dengan bantuan statif. Hasil sonikasi didiamkan selama 24 jam untuk memaksimalkan proses kristalisasi. Kemudian hasil sonikasi diuapkan pelarutnya di dalam oven pada temperatur 105 °C selama 2 jam. Setelah kering, padatan dikarakterisasi dengan spektroskopi IR dan sebagian digerus dengan mortar agate dan dibuat pelet. Kemudian dikalsinasi di dalam tanur pada suhu 500 °C selama 2

jam. Kemudian dilakukan karakterisasi menggunakan XRD, spektroskopi IR, spektroskopi Raman, DRS, dan SEM-EDS.

3.5.2 Karakterisasi dengan XRD

Karakterisasi XRD digunakan untuk menganalisis material hasil sintesis ZnO terdoping vanadium (III). Tujuan dari karakterisasi ini adalah untuk mengetahui identifikasi fasa, kristalinitas dari material, perubahan struktur akibat adanya dopan. Pengukuran pada XRD dilakukan dengan logam target Cu $K\alpha$ (λ = 1,5405 Å pada arus 30 mA, dan generator 40 kV dan pada sudut 20 (°) = 10-90. Prinsip dari pengukuran XRD adalah, adanya elektron dari tabung katoda yang akan menumbuk pada logam target sehingga menghasilkan sinar-X sehingga terjadi hamburan difraksi. Preparasi material ini dengan menghaluskan sampel menjadi bubuk halus, kemudian dimasukkan dalam sampel *holder* untuk dikenai sinar-X. Hasil dari karakterisasi dengan XRD adalah difraktogram yang mana akan dibandingkan dengan standar *Inorganic Crystal Structure Database* (ICSD). Pengolahan data yang diperoleh akan *direfinement* dengan program Rietica dan metode Le Bail. Ukuran kristal hasil sintesis ZnO diukur dengan persamaan Debye Scherer yang ditunjukkan pada Persamaan 3.1.

dengan *D* adalah ukuran partikel (nm), λ adalah panjang gelombang radiasi, *K* adalah konstanta (0,9), β adalah lebar setengah puncak (FWHM, radian).

3.5.3 Karakterisasi dengan Spektroskopi IR.

Karakterisasi menggunakan IR digunakan untuk analisis kualitatif untuk mengetahui lokal struktur pada material melalui spektrum vibrasi yang dihasilkan senyawa pada panjang gelombang tertentu. Data yang didapat berupa spektrum yang menggambarkan transmisi dan absorbsi molekular dari sampel tersebut yang berfokus pada frekuensi radiasi elektromagnetik 400-4000 cm⁻¹.

3.5.4 Karakterisasi dengan Spektroskopi Raman.

Spektroskopi raman digunakan untuk mengetahui lokal struktur pada ZnO yang terdoping vanadium. Pengukuran dilakukan menggunakan sumber sinar pengeksitasi dengan panjang gelombang 532 nm pada rentang pengukuran 50-1500 cm⁻¹. Spektra yang dipeoleh dari hasil pengukuran kemudian dibandingkan dengan spektra ZnO terdoping vanadium yang ada pada literatur.

3.5.5 Karakterisasi daerah Serapan Sinar dan Energi Celah Pita (band gap) dengan DRS

Karakterisasi menggunakan DRS ini untuk mengetahui panjang gelombang, intensitas cahaya yang diserap baik UV maupun sinar tampak, serta besarnya celah pita (*band gap*). Preparasi sampel yang digunakan harus digerus sampai berbentuk bubuk kemudian ditempatkan pada *sample holder* kemudian diukur persen reflektansinya pada 200-900 nm. Data reflektansi yang diperoleh dari hasil karakterisasi dengan DRS akan dianalisa menggunakan persamaan Kubelka-Munk yang ditunjukkan pada Persamaan 3.2.

$$F(R) = \left(\frac{(1-R)^2}{2R} = \frac{K}{s}\right) \dots (3.2)$$

dengan F(R) adalah faktor Kubelka-Munk, *K* adalah koefisien absorbsi molar, S = koefisien *scattering*, dan *R* adalah nilai reflektan yang diukur.

Nilai energi celah pita ditentukan dari membuat plot antara antara energi foton (*hv*) (sebagai sumbu *x*) dan (*F*(*R*).*hv*)^{1/2} (sebagai sumbu *y*). Energi foton (*hv*) bisa dihitung dari data panjang gelombang yang terukur, dimana $hv = hc/\lambda$ dengan *c* adalah tetapan cahaya dan *h* adalah tetapan plank. Energi celah pita dihitung secara regresi linier pada nilai *x* (*hv* = energi celah pita) ketika *y*=0.

3.5.6 Karakterisasi Bentuk Morfologi dengan SEM-EDS

Tujuan analisis SEM-EDS pada hasil sintesis material ZnO terdoping vanadium untuk mengetahui ukuran partikel, bentuk morfologi, komposisi senyawa, dan distribusi pertumbuhan kristal. Sampel yang akan dianalisis dengan SEM-EDS dimasukkan dalam sampel *holder* sebanyak 50 mg sampel. Pengamatan sampel dilakukan pada rentang dari 3000 sampai dengan perbesaran 20000. Hasil karakterisasi SEM-EDS diolah menggunakan *software image-J* untuk mengetahui ukuran partikel dan distribusinya.

BAB IV

PEMBAHASAN

Dalam penelitian ini dilakukan (a) sintesis fotokalis ZnO terdoping vanadium (III) variasi konsentrasi 0, 1, 3, dan 5%, (b) dikarakterisasi sampel menggunakan XRD untuk mengidentifikasi struktur fasa, spektroskopi IR untuk mengidentifikasi gugus fungsi, spektroskopi Raman untuk mengidentifikasi modus vibrasi Raman, DRS untuk mengetahui energi celah pita dan serapan sinar, dan SEM-EDS untuk mengetahui morfologi permukaan dan komposisi unsur yang terdapat dalam sampel hasil sintesis.

4.1 Sintesis Material Fotokatalis ZnO terdoping Vanadium (III) dengan Metode Sonikasi.

Material fotokatalis ZnO terdoping vanadium (III) disintesis menggunakan metode sonikasi. Prekusor yang digunakan dalam perobaan ini adalah seng asetat dehidrat, isopropanol, NaOH, dan vanadium (III) asetil asetonat. Sintesis ZnO-V dilakukan dengan variasi konsentrasi dopan 0, 1, 3, dan 5%. Tahap awal sintesis mencampurkan seng asetat dehidrat dan isopropanol yang berfungsi sebagai medium cair dalam perambatan gelombang ultrasonik, membantu proses hidrolisis, dan menyediakan ion hidroksil selama proses sonikasi (Jha, dkk., 2017). Selanjutnya ditambahkan NaOH dan vanadium (III) asetil asetonat. Setelah proses sonikasi akan terbentuk endapan putih Zn(OH)₂ akibat dari penambahan NaOH yang ditampilkan pada Gambar 4.1. Zn(OH)₂ merupakan unit pembangun inti ZnO, melalui proses pemanasan Zn(OH)₂ kristal ZnO akan terbentuk, adapun persamaan reaksi pembentukan ZnO ditunjukkan pada persamaan 4.1 dan 4.2.

$$Zn(CH_{3}COO)_{2.2H_{2}O(s)} + 2NaOH(s) \rightarrow Zn(OH)_{2(s)} + 2CH_{3}COONa(l) + 2H_{2}O(l) \quad (4.1)$$

 $Zn(OH)_{2(s)} \xrightarrow{\Delta T} ZnO_{(s)}$ (4.2)

Berdasarkan Gambar 4.1 pengamatan secara fisik hasil sintesis terjadi perubahan warna, hal tersebut menunjukkan adanya reaksi yang terjadi antara ZnO dengan dopan vanadium saat proses kalsinasi. Adanya dopan vanadium secara signifikan memberikan warna abu-abu pada material, hal tersebut dikarenakan penambahan prekusor vanadium (III) asetil asetonat yang berwarna hijau kehitaman.

Gambar 4.1 (a) Endapan putih hasil campuran Zn-asetat, pelarut isopropanol, dan NaOH, (b) hasil padatan ZnO dan ZnO-V

4.2 Karakterisasi Material Fotokatalis ZnO terdoping Vanadium (III) menggunakan Teknik Difraksi Sinar-X (XRD)

Hasil sintesis dikarakterisasi menggunakan XRD untuk mengetahui fasa dan struktur kristal produk sampel. Pola difraksi sinar-X sampel ditampilkan pada Gambar 4.3. Data yang diperoleh dicocokkan dengan data standar ZnO pada *International Crystallography Standard Data* (ICSD) No. 82028 dan diperoleh hasil bahwa senyawa ZnO hasil sintesis telah terbentuk, hal ini dapat dilihat dari kecocokan pola difraksi dengan standar ZnO dan tidak ditemukan pengotor.

30

Gambar 4.3 Pergeseran puncak difraksi sinar-X senyawa ZnO-V

Dopan vanadium pada ZnO menyebabkan pergeseran puncak pada posisi 2 θ (°) : 36,24 yang ditampilkan pada Gambar 4.3, semakin besar konsentrasi dopan vanadium menyebabkan bergeser ke arah 2 θ (°) yang lebih besar dan puncak menjadi lebih lebar. Hal ini mengindikasikan adanya perubahan kisi dan cacat

31

kristal akibat dopan V^{3+} yang tersubtitusi ke dalam kisi kristal ZnO. Perbedaan atom Zn (0,74 Å) dan V^{3+} (0,78 Å) adalah 5,4 % (kurang dari 15 %) menyebabkan struktur ZnO mengalami distorsi, regangan kisi, dan cacat kristal (Shidpour, dkk., 2014).

Untuk memperoleh data kristalografi dilakukan proses *refinement* dengan metode Le Bail. Proses *refinement* menggunakan data standar ZnO ICSD No. 82028 yang memiliki nilai parameter kisi a (Å) = b =3,2488 Å, c (Å)= 5,2054 Å, Z = 2, sel satuan heksagonal, dan volume sel satuan 47,58 dengan grup ruang *P63mc*. Hasil plot *refinement* untuk ZnO tanpa dopan ditampilkan pada Gambar 4.4, sedangkan untuk variasi konsentrasi dopan vanadium ditampilkan pada Lampiran 4 dan hasil *refinement* dirangkum pada Tabel 4.1.

Gambar 4.4 Plot hasil *refinement* senyawa ZnO tanpa dopan

Berdasarkan Tabel 4.1 diketahui bahwa ZnO tanpa dopan maupun ZnO terdoping vanadium memiliki kecocokan yang baik dengan data standar ZnO (ICSD=82028), hal ini dapat dilihat dari nilai profil (R_p) dan nilai residu profil berbobot (R_{wp}), menurut Raharjo (2011) nilai kesesuaian parameter didapat jika nilai R_p dibawah 10 dan nilai R_{wp} memiliki nilai yang kurang dari 20%. Adanya dopan tidak berpengaruh terhadap struktur kristal maupun grup ruang. Nilai parameter kisi tidak mengalami perubahan yang signifikan, akan tetapi nilainya cenderung turun. Volume kisi kristal (V) juga cenderung turun, seharusnya volume kristal naik karena jari-jari ionik V³⁺ lebih besar daripada Zn^{2+.} Hal ini terjadi karena vanadium memiliki multivalensi pada keadaan oksidasi (2, 3, 4, atau 5) yang dapat tersubtitusi dalam kisi ZnO (Krithiga, dkk., 2016). Penurunan volume kristal dapat mengindikasikan adanya perubahan valensi vanadium yang tersubtitusi dalam kisi ZnO.

Parameter	ZnO tanpa dopan	ZnO-V 1%	ZnO-V 3%	ZnO-V 5 %
Grup Ruang	P6 ₃ mc	P6 ₃ mc	P6 ₃ mc	P6 ₃ mc
Kisi Kristal	Heksagonal	Heksagonal	Heksagonal	Heksagonal
Unit Asimetrik (Z)	2	2	2	2
a = b (Å)	3,2488 (0)	3,2481 (0)	3,2481(1)	3,2453 (2)
<i>c</i> (Å)	5,2054 (0)	5,2044 (0)	5,2035 (1)	5,1997 (2)
Volume Sel (Å ³)	47,5807 (0)	47,5607 (2)	47,5418 (2)	47,4278 (3)
$R_p(\%)$	4,82	4,48	5,30	6,08
R_{wp} (%)	5,83	5,07	6,35	7,49
GoF (χ2)	0,6551	0,6157	0,6084	0,7214

Tabel 4.1 Data kristalografi ZnO dari proses *refinement* dengan metode Le Bail

Keterangan : $P6_3mc$ (*P*: jenis kisi primitif, 6_3 : *screw rotation* (translasi dan rotasi), *m* : bidang cermin, dan *c* : *glide* pada sumbu c.

Crystalite size senyawa ZnO diukur menggunakan persamaan Debye Scherer. Contoh perhitungan ditampilkan pada Lampiran 5 dan hasil perhitungan *crystalite size* dirangkum pada Tabel 4.2. Dari hasil perhitungan diperoleh hasil bahwa semakin besar konsentrasi dopan, menyebabkan ukuran kristal juga semakin besar. Hal ini dimungkinkan distorsi kristal mendorong pertumbuhan kristal semakin besar (Joshi, dkk., 2013).

Tabel 4.2 Hasil perhitungan ukuran kristal ZnO dan ZnO-V

Material	Crystallite Size (nm)
ZnO tanpa dopan	27,29
ZnO-V 1%	27,94
ZnO-V 3 %	29,18
ZnO-V 5%	33,90

4.3 Karakterisasi Material Fotokatalis ZnO terdoping Vanadium (III) menggunakan spektroskopi Inframerah

Karakterisasi spektroskopi infra merah (IR) bertujuan untuk mengetahui mode vibrasi IR dari sampel ZnO tanpa dopan dan ZnO terdoping vanadium. Spektra IR sampel ditampilkan pada Gambar 4.5, 4.6 dan identifikasi modus vibrasi IR pada sampel dirangkum pada Tabel 4.4 yang dibandingkan dengan modus vibrasi IR literatur pada Tabel 4.3.

Berdasarkan Gambar 4.4 dan 4.5 menunjukkan modus vibrasi 3400 dan 1600 cm⁻¹ ditemukan pada sampel sebelum dan sesudah kalsinasi yang merupakan modus vibrasi O-H. Hal ini mengindikasikan OH dari air atau pelarut. Keberadaan sisa prekusor seng asetat diidentifikasi dengan keberadaan modus vibrasi 1500-1300 cm⁻¹ yang merupakan gugus C=O (karboksil) (Palomino, 2006). Perbandingan spektra sebelum dan sesudah kalsinasi adalah penurunan transmittan pada modus vibrasi 3400 dan 1600-1300 cm⁻¹ hal ini mengindikasikan hilangnya sisa prekursor sebagai akibat pemanasan.

Tabel 4.3 Karakteristik gugus fungsi ZnO dan ZnO-V (Maensiri, dkk., 2016; Wahab, dkk., 2009; dan Shahi, dkk., 2017)

Sampel	Bilangan Gelombang (cm ⁻¹) literatur	Modus Vibrasi
ZnO	3400-3500	Vibrasi Ulur O-H
	1639	Vibrasi Tekuk O-H
	1610-1515	Asimetrik vibrasi ulur C=O
	1495-1386	Simetrik vibrasi ulur C=O
	1300	Vibrasi ulur dan vibrasi tekuk C-H
	1000-800	Vibrasi ulur C-C
	700-500	Vibrasi tekuk Zn-OH
51	410	Vibrasi ulur Zn-O ataupun Zn- O-V

Gambar 4.5 Spektra IR sebelum kalsinasi sampel ZnO dan ZnO-V

Spektra IR pada variasi konsentrasi 3 dan 5 % sebelum kalsinasi, daerah bilangan gelombang sekitar 400 cm⁻¹ tidak menunjukkan puncak tajam dan melebar yang merupakan modus vibrasi ulur Zn-O. Hal tersebut dimungkinkan adanya pembentukan senyawa intermediet Zn(OH)₂ yang mengakibatkan adanya modus vibrasi tekuk Zn-OH dengan intensitas lemah pada bilangan gelombang 700-500 cm⁻¹ (Radzimska, dkk., 2012).

Keberadaan dopan vanadium menyebabkan perubahan pada spektra IR sebelum dan setelah kalsinasi. Setelah kalsinasi vibrasi ulur Zn-O (420 cm⁻¹) mengalami kenaikan transmittan dan sedikit mengalami pergeseran bilangan gelombang yang lebih besar, hal tersebut kemungkinan terjadi karena subtitusi Zn²⁺ oleh V³⁺ sehingga menyebabkan distorsi dan cacat kristal pada kisi ZnO. Hal ini mempengaruhi energi vibrasi ikatan Zn-O yang diperlukan dan perubahan panjang ikatan akibat pembentukan ikatan kovalen (Krithiga dan Chandrasekaran, 2009).

Tabel 4.4 Hasil karakteristik gugus fungsi pada sampel ZnO dan ZnO-V			
Sampel	Bilangan Gelombang (cm ⁻¹) sebelum kalsinasi	Bilangan Gelombang (cm ⁻¹) setelah kalsinasi	Modus Vibrasi
ZnO	3437	3453	Vibrasi ulur O-H
	- / .	1636	Vibrasi tekuk H-O-H
	1525	1562	Vibrasi ulur asimetrik C=O
	1386	1426	Vibrasi ulur simetrik C=O
	831	903	Vibrasi ulur C-C
	427	431	Vibrasi ulur ZnO
ZnO-V 1 %	3429	34 <mark>5</mark> 9	Vibrasi ulur O-H
	1582	1548	Vibrasi ulur asimetrik C=O
	1401	1438	Vibrasi ulur simetrik C=O
	1340	1353	Vibrasi ulur simetrik C=O
	848	920	Vibrasi ulur C-C
	434	440	Vibrasi ulur Zn-O ataupun Zn-O-V
ZnO-V 3 %	3433	3422	Vi <mark>b</mark> rasi ulur O-H
	- 14	1638	Vibrasi tekuk H-O-H
	1565	1539	Vibrasi ulur asimetrik C=O
	1411	1442	Vibrasi ulur simetrik C=O
	1339	1384	Vibrasi ulur C-H
	866	929	Vibrasi ulur C-C
	520	-	Vibrasi tekuk Zn-OH
	435	474	Vibrasi ulur Zn-O ataupun Zn-O-V
ZnO-V 5%	3423	3432	Vibrasi ulur O-H
		1640	Vibrasi tekuk H-O-H
	1408	1439	Vibrasi ulur asimetrik C=O
	1386	1384	Vibrasi ulur simetrik C=O
	966	927	Vibrasi ulur C-C
	540	-	Vibrasi tekuk Zn-OH
	427	434	Vibrasi ulur Zn-O ataupun Zn-O-V

4.4 Karakterisasi Material Fotokatalis ZnO terdoping Vanadium (III) menggunakan spektroskopi Raman

Karakterisasi spektroskopi Raman bertujuan untuk mengetahui modus vibrasi aktif raman pada sampel ZnO tanpa dopan dan ZnO terdoping vanadium. Spektra raman sampel ditampilkan pada Gambar 4.7 dan 4.8.

Identifikasi jenis modus vibrasi Raman dirangkum pada Tabel 4.5, karakteristik puncak dari ZnO ditunjukkan pada modus vibrasi yang terdapat pada rentang bilangan gelombang 100-700 cm⁻¹. Sedangkan puncak pada rentang bilangan gelombang 700-3700 cm⁻¹ merupakan puncak pengotor yang berasal dari sisa prekusor. Gambar *inset* pada Gambar 4.7 menunjukkan pergeseran puncak vibrasi Raman pada posisi 437 cm⁻¹. Posisi puncak bergeser ke arah kiri (energi lebih kecil) yang menunjukkan adanya dopan dengan V³⁺ menyebabkan perubahan panjang ikatan Zn-O akibat jari-jari V³⁺ (0,78 Å) lebih besar dibandingkan Zn²⁺ (0,74 Å).

2014, dan Gupta d <mark>an Kuma</mark> r, 2011)			
Bilangan Gelombang	Jenis modus vibrasi		
(cm ⁻¹)			
99	$E_2(low)$ (E ₂₁)		
334	<i>Multiphonon</i> (E ₂ ^{high} - E ₂ ^{low})		
437	$E_2(high)$ (E _{2h})		
510	oxygen vacancy (VO)		
1071	$A_1 \operatorname{dan} E_2$		
956	Stretching C-C		
1344	Stretching C-H		
1601	Stretching C-O		
3462	Stretching O-H		
	dan Kumar, 2011) Bilangan Gelombang (cm ⁻¹) 99 334 437 510 1071 956 1344 1601 3462		

Tabel 4.5 Analisis modus vibrasi ZnO dan ZnO-V (Gazali, 2018, Jehlika, dkk. 2014, dan Gupta dan Kumar, 2011)

Gambar 4.8 Spektra Raman ZnO dan ZnO-V pada rentang bilangan gelombang 700-3700 cm⁻¹

4.5 Karakterisasi Material Fotokatalis ZnO terdoping Vanadium (III) menggunakan *Diffuse Reflectance Spectroscopy* (DRS)

Pengukuran menggunakan DRS bertujuan untuk mengetahui celah pita hasil sintesis dan karakter serapan sinar pada daerah panjang gelombang UV maupun *visible*. Karakter serapan dari masing-masing sampel variasi konsentrasi dopan yang diukur terhadap nilai reflektansi ditampilkan pada Gambar 4.9, sedangkan hubungan antara nilai F(R) yang setara dengan koefisien absorbsi per *scattering* pada panjang gelombang UV dan *visible* ditampilkan pada Gambar 4.10.

Gambar 4.9 Spektra DRS hubungan %R dengan panjang gelombang ZnO tanpa dopan dengan ZnO variasi konsentrasi dopan vanadium

Gambar 4.9 menunjukkan pengaruh ZnO tanpa dopan dan ZnO terdoping vanadium terhadap nilai reflektansi. Pada daerah UV (200-350 nm), menunjukkan ZnO terdoping vanadium konsentrasi 1,3, dan 5 % memiliki nilai reklektansi yang lebih rendah dibandingkan ZnO tanpa dopan. Dengan nilai reflektansi paling

ENTRAL LIBRARY OF MAULANA MALIK IBRAHIM STATE ISLAMIC UNIVERSITY OF MALANG

rendah adalah ZnO-V 3 %, nilai reflektansi yang rendah pada daerah UV menunjukkan absorbs sinar yang tinggi pada daerah tersebut. Pada daerah *visible* (400-600 nm) perubahan nilai reflektansi meningkat sebanding dengan besarnya konsentrasi dopan vanadium. Sedangkan untuk ZnO tanpa dopan mengalami penurunan nilai reflektansi yang signifikan pada daerah tampak, jika dibandingkan dengan ZnO yang terdoping vanadium. Sehingga ZnO tanpa dopan lebih efektif meningkatkan potensi penyerapan sinar tampak yang lebih besar untuk proses fotokatalisis.

Gambar 4.10 menunjukkan pengaruh ZnO tanpa dopan dan ZnO terdoping vanadium terhadap nilai F(R) yang berkorelasi dengan koefisen absorbsi per koefisien *scattering*. Pada daerah UV ZnO terdoping vanadium konsentrasi 1, 3, dan 5 % memiliki nilai koefisien absorbsinya yang lebih besar dibandingkan ZnO

tanpa dopan, dengan nilai koefisien absorbsi paling besar adalah ZnO-V 3%. Sedangkan pada daerah *visible* ZnO tanpa dopan memiliki kenaikan koefisien absorbsi yang signifikan, kemudian ZnO terdoping vanadium konsentrasi 3 % yang mengalami kenaikan koefisien absorbsi sedangkan ZnO terdoping vanadium variasi konsentrasi 1 dan 5 % mengalami penurunan koefisien absorbsi dibawah ZnO-V 3%. Berdasarkan data tersebut material fotokatalis ZnO-V 3% memiliki aktivitas fotokatalisis yang lebih besar pada radiasi ultraviolet, sedangkan ZnO tanpa dopan memiliki aktivitas fotokatalisis lebih besar pada sinar tampak. Pengaruh ada dan tidaknya dopan juga dapat diketahui melalui energi celah pita yang didapatkan dari perhitungan persen reflektansi DRS menggunakan persamaan Kubelka Munk. Hubungan antara $(FR*hv)^{1/2}$ dengan energi foton (hv)ditampilkan pada Gambar 4.11. Sedangkan perhitungan energi celah pita dan panjang gelombang ditampilkan pada Lampiran 6 dan Tabel 4.6.

ZnO terdoping vanadium			
Material	Energi Celah Pita	Panjang Gelombang (nm)	
	(eV)		
ZnO	2,93	423,49	
ZnO-V 1%	3,14	395,16	
ZnO-V 3%	3,11	398,98	
ZnO-V 5%	3,09	401,56	

Tabel 4.6 Nilai energi celah pita dan panjang gelombang ZnO tanpa dopan dan ZnO terdoping vanadium

Nilai energi celah pita tanpa doping vanadium umumnya sebesar 3,2 eV dan dan mampu menyerap cahaya pada panjang gelombang 365 nm (Wang, dkk., 2004). Berdasarkan Tabel 4.6 menunjukkan energi celah pita dibawah 3,2 eV, tetapi adanya doping dengan vanadium dapat meningkatkan energi celah pita, hal tersebut tidak bersesuaian dengan teori. Kenaikan energi celah pita ZnO terdoping vanadium dengan konsentrasi 0-8% juga dilaporkan dalam penelitian Ghoul, dkk. (2016) dan Tahir, dkk. (2009) enegi celah pita naik dari 3,17-3,28 eV seiring bertambahnya konsentrasi dopan, hal ini dapat disebabkan karena kenaikan *grain size*, vakansi oksigen, peningkatan konsentrasi elektron, dan adanya distorsi pada kisi ZnO setelah doping dengan vanadium (Gherouel, dkk., 2013). Kenaikan celah pita juga terjadi akibat tidak seragamnya distribusi dopan vanadium ke dalam kisi ZnO, ataupun pengaruh multivalensi vanadium yang dapat membentuk *spin state* berbeda sehingga berpengaruh terhadap energi celah pita (Yang, dkk., 2008).

Gambar 4.11 Spektra DRS hubungan antara $(F(R)*hv)^{1/2}$ dengan energi celah pita (hv) ZnO tanpa dopan dengan ZnO variasi konsentrasi dopan vanadium

Berdasarkan Tabel 4.6 dapat disimpulkan ZnO tanpa dopan memiliki energi celah pita yang paling rendah yakni sebesar 2,93 eV dengan panjang gelombang sebesar 423,49 nm. Hal tersebut berkorelasi dengan penelitian Faradis (2017) yang melakukan sintesis ZnO tanpa dopan variasi waktu sonikasi 30-360 jam menghasilkan ZnO dengan waktu sonikasi 30 menit memiliki energi celah pita paling kecil yaitu sebesar 2,79 eV. Sehingga ZnO tanpa dopan dengan metode sonikasi lebih baik diaplikasikan pada daerah *visible* dan ZnO yang terdoping vanadium 1- 5% lebih efektif pada daerah UV.

4.6 Karakterisasi Material Fotokatalis ZnO terdoping Vanadium (III) menggunakan Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS)

Tujuan karakterisasi menggunakan SEM-EDS adalah untuk mengetahui morfologi distribusi permukaan partikel, serta untuk mengetahui unsur penyusun dari senyawa ZnO tanpa dopan maupun ZnO terdoping vanadium. Morfologi partikel yang terbentuk adalah *sperichal* dan *long rods* seperti batang memanjang yang ditampilkan pada Gambar 4.12. Adanya pelarut organik akan meningkatkan pembentukan dari morfologi *long rods* (Cho, dkk., 2008). Bentuk morfologi *long rods* memberikan keuntungan dalam fotokatalis karena lebih efisien dalam transfer elektron dan dapat menurukan ukuran butir, cacat permukaan, serta ketidakteraturan permukaan, dan dapat menurunkan laju rekombinasi elektronhole (Morkoc dan Ozgur, 2009). Distribusi permukaan pada ZnO tanpa dopan lebih homogen, sedangkan distribusi permukaan ZnO-V mengalami aglomerasi membentuk partikel yang lebih besar. Terjadinya aglomerasi dimungkinkan karena adanya efek kalsinasi suhu tinggi yang memberikan energi total permukaan yang tinggi, untuk menurunkan energi total permukaan tersebut partikel-partikel akan bergabung menjadi satu membentuk gumpalan yang besar. Rata-rata ukuran partikel ZnO tanpa dopan adalah 0,046 µm dan semakin besar konsentrasi dopan ukuran partikel (grain size) juga semakin besar (~0,072,

~0,081, dan ~0,119 μ m), hal tersebut terjadi karena adanya substitusi V³⁺ ke dalam kisi Zn²⁺ menyebabkan ketidakhomogenan dan distorsi yang meningkatkan pertumbuhan kristal (Colak, dkk., 2012). Hasil EDS didapat persentase unsurunsur yang ditampilkan pada Tabel 4.7.

Gambar 4.12 Karakterisasi SEM (a) ZnO, (b) ZnO-V 1%, (c) ZnO-V 3%, (d) ZnO-V 5 % pada perbesaran 20000x (Tanda kotak menunjukkan bentuk partikel ZnO berupa *sperichal* dan *long rods*)

Tabel 4.7 Persentase unsur-unsur per	enyusun ZnO dan ZnO-V hasil EDS
--------------------------------------	---------------------------------

Senyawa	Kadar Zn (%)	Kadar O (%)	Kadar V (%)
ZnO	94,81	5,19	-
ZnO-V 1%	73,35	25,38	1,27
ZnO-V 3%	75,95	22,68	1,37
ZnO-V 5%	79,01	19,33	1,66

Berdasarkan data EDS dopan vanadium terdeteksi didalam kisi ZnO. Penurunan % massa untuk unsur Zn disebabkan adanya dopan vanadium, hal ini juga dilaporkan pada penelitian Tahir, dkk. (2009) hasil EDX dari ZnO yang terdoping vanadium variasi konsentrasi 0-8 % menunjukkan kadar Zn turun, untuk unsur Zn tanpa dopan adalah 92 % dan setelah dopan dengan vanadium turun menjadi 87 %, faktor lain yang mempengaruhi adalah ketidakhomogenan dari masing-masing sampel sehingga mempengaruhi tinggi puncak dan energi yang muncul pada hasil EDX, dan kemungkinan adanya pemanasan menyebabkan sebagian unsur ada yang terdekomposisi sehingga % massa dari sampel turun.

4.7 Sintesis Material fotokalis ZnO terdoping Vanadium (III) berdasarkan perspektif Islam

Mempelajari dan mengkaji apa yang diciptakan Allah SWT di alam semesta ini seperti atom Zn, O, dan V kemudian diaplikasikan untuk mensintesis senyawa fotokatalis ZnO yang didoping dengan atom vanadium, merupakan bentuk menuntut dan mengaplikasikan ilmu. Orang-orang yang menuntut ilmu akan dapat memahami fenomena-fenomena yang terjadi sesuai dengan firman Allah SWT dalam al-Qur'an surat al-Ankabut (29) ayat 43 sebagai berikut :

وَتِلْكَ ٱلْأَمْثَالُ نَضْرِبُهَا لِلنَّاسِ وَمَا يَعْقِلُهَآ إِلَّا ٱلْعَالِمُونَ ٢

Artinya : "Dan perumpamaan-perumpamaan ini Kami buat untuk manusia dan tiada yang memahaminya kecuali orang-orang yang berilmu"

Menurut tafsir al Maragi (1993) Allah membuat perumpamanperumpamaan yang berupa pelajaran untuk mendekatkan pemahaman mereka terhadap sesuatu yang sulit dipahami. Kecuali orang-orang yang berilmu yang dapat memahami perumpamaan tersebut, yang mereka jadikan bahan untuk berpikir tentang akibat segala perkara. Mengkaji ilmu-ilmu yang ada merupakan suatu kewajiban. Kewajiban menuntut ilmu dituliskan dalam hadist dibawah ini yang berbunyi:

Artinya: "Menuntut ilmu itu merupakan suatu kewajiban atas setiap muslim" (HR.Ibnu Majjah)

Sintesis material fotokatalis ZnO-V merupakan suatu usaha untuk memperbaiki lingkungan karena fungsinya yang dapat diaplikasikan untuk mendegradasi limbah zat warna yang sangat berbahaya bagi ekosistem perairan. Modifikasi dengan adanya dopan vanadium akan meningkatkan aktivitas fotokatalis didaerah sinar tampak sehingga usaha untuk meminimalisir limbah zat warna semakin besar. Hal tersebut dapat dikaitkan dengan firman Allah dalam al-Qur'an surat ar-Ra'd ayat 11:

Artinya : "Bagi manusia ada malaikat-malaikat yang selalu mengikutinya bergiliran, di muka dan di belakangnya, mereka menjaganya atas perintah Allah. Sesungguhnya Allah tidak merubah keadaan sesuatu kaum sehingga mereka merubah keadaan yang ada pada diri mereka sendiri. Dan apabila Allah menghendaki keburukan terhadap sesuatu kaum, maka tak ada yang dapat menolaknya; dan sekali-kali tak ada pelindung bagi mereka selain Dia" Menurut tafsir al Qur'an Quraish Shihab (2011) sesungguhnya Allah memiliki malaikat-malaikat yang ditugaskan untuk menjaga dan memelihara setiap manusia. Demikian Allah tidak akan mengubah nasib suatu bangsa dari susah menjadi sejahtera ataupun dari kuat menjadi lemah. Melainkan adanya usaha dari mereka sendiri untuk mengubah keadaan yang terjadi. Kata "*qouma*" bermakna bahwa suatu perubahan tidak dapat dilakukan sendiri. Oleh sebab itu, penelitian ini dapat memberikan informasi untuk mengatasi permasalah lingkungan seperti pencemaran air dengan penggunaan fotokatalis ZnO-V.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan, maka dapat disimpulkan sebagai berikut:

- Material fotokatalis ZnO terdoping vanadium (III) konsentrasi 0, 1, 3, dan 5% berhasil disintesis dengan struktur *wurtzite* dan bergrup ruang *P*6₃*mc*.
- Adanya dopan vanadium menyebabkan perubahan lokal struktur Zn-O yang ditandai dengan pergeseran modus vibrasi IR (420 cm⁻¹) dan modus vibrasi Raman (437 cm⁻¹).
- 3. Berdasarkan data DRS menunjukkan ZnO-V 3 % memiliki nilai serapan sinar yang lebih besar pada daerah UV, sedangkan ZnO tanpa dopan memiliki nilai serapan yang lebih besar pada daerah *visible* dengan nilai energi celah pita paling kecil yaitu sebesar 2,93 eV setara panjang gelombang 423,49 nm.
- 4. Morfologi yang dihasilkan adalah *spherical* dan *long rods*, serta distribusi morfologi paling homogen didapat pada ZnO tanpa dopan.

5.2 Saran

- 1. Perlu dilakukan analisis menggunakan instrumen XPS untuk megetahui valensi vanadium yang masuk kedalam kisi ZnO.
- 2. Perlu dilakukan uji aktivitas fotokatasis pada rentang UV maupun *visible*, untuk mengetahui pengaruh dopan terhadap aktivitasnya.
- Perlu dilakukan kajian ulang mengenai atom dopan yang dapat menurunkan energi celah pita secara signifikan seperti logam Magnesium, sehingga dapat meningkatkan aktivitas fotokatalis pada daerah sinar tampak.

DAFTAR PUSTAKA

- Aliah, H., Nurasiah, A. E., Karlina, Y., Arutanti, O., Mastumi, Sustini, E., Budiman, M., dan Abdullah, M. 2012. Optimasi Durasi Pelapisan Katalis TiO₂ pada Permukaan Polimer Polipropilena serta Aplikasinya dalam Fotodegradasi Larutan Metilen Biru. *Prosiding Seminar Nasional Material Fisika- ITB* : Halaman 171-177.
- Andari dan Wardhani. 2014. Fotokatalis TiO₂-Zeolit Untuk Degradasi Metilen Biru. *Skripsi.* Malang: Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Brawijaya.
- Al-Imam Abul Firda Isma'il Ibnu Katsir ad-Dimasyqi. 2002. Terjemah Tafsir Ibnu Katsir. Bandung: Sinar Baru al-Gesindo.

Al-Maragi dan Ahmad Mustafa. 1993. Tafsir Al-Maragi. Semarang: Toha Putra.

- Anderozzi, R., Caprio, V., Insola, A., Marotta, R., dan Sanchirici. 2011. Advanced Oxidation Processes for The Treatment of Mineral Oil Contamined Waste Water. *Journal Water Resistance*, 34: 620-628.
- Batista, A. P. L., Carvalho, H. W., Luz, G. H. P., Martins, P. F. Q., Goncalves, M., dan Oliveira, L. C. A. O. 2010. Preparation of CuO/SiO₂ and Photocatalytic Activity by Degradation of Methylene Blue. *Environmental Chemistry Letter*, 2(8): 63-67.
- Banerjee, P., Chakrabarti, S., Maitra, S., dan Dutta, B. K. 2012. Ultrasonics Sonochemistry Zinc Oxide Nanoparticles Sonochemical Synthesis Characterization and Application for Photo-Remediation of Heavy Metal. Ultrasonics-Sonochemistry, 19(1): 85-93.
- Brintha, S. R., dan Ajitha, M. 2015. Synthesis and Characterization of ZnO Nanoparticles via Aqueous Solution, Sol-gel and Hydrothermal Methods. *Journal of Applied Chemistry*, 8(11): 66-72.
- Colak H, dan Turkoglu O. 2012. Synthesis, Crystal Structural and Electrical Conductivity Properties of Fe-doped Zinc Oxide Powders at High Temperatures. *Journal Materials Science Electron*, 28(3): 268-274.
- Delmifiana, B., dan Astuti. 2013. Pengaruh Sonikasi terhadap Struktur ZnO dan Morfologi Nanopartikel Magnetik yang Disintesis dengan Metode Kopresipitasi. Jurnal Fisika Univeritas Andalas, 2(3): 2302-8491.
- Fan, Z., dan Lu, J. G. 2005. *Zinc Oxide Nanostructures : Synthesis and Properties*. Amerika : University of California Irvine.

- Farradis, R. 2017. Sintesis dan Karakterisasi Material Fotokatalis Seng Oksida (ZnO) Metode Sonikasi Untuk Degradasi Metilen Biru. Skripsi. Malang : Departemen Kimia, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- Fujishima, A., dan Honda, K. 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode. *Nature*, 8(37): 238-378.
- Fujishima, A., Zhang, X., dan Tryk, D.A. 2008. *TiO*₂ Photocatalysis and Realted Surface Phenomena. *Surface Science Repost*, 63(12): 515-582
- Gazzali, P. M. M., dan Rajan, S. 2018. Transformation from Conducting Ferromagnetic to Insulating Diamagnetic in Vanadium Doped ZnO Nanoparticles. *Journal of Materials Science: Materials in Electronics*, 29(1): 823-836.
- Gao.W., dan Li, Z.W. 2004. ZnO Thin Film Produced by Magnetron Sputtering. *Ceramics International*, 30(7): 1155-1159.
- Gherouel, D., Dabbous, S., Boubaker, K., dan Amlouk, M. 2013. Vanadium Doping Patterns in ZnO Lattices in the Lattice Compatibility Theory Framework. *Journal Matter Science Semiconductor Process*. 16(1): 1434-1438.
- Ghoul, R. S. J. El, Ghiloufi, I., dan Elmir, K. 2016. Synthesis and Physico-Chemical Studies of Vanadium doped Zinc Oxide nanoparticles and its Photocatalysis. *Journal of Materials Science: Materials in Electronics*, 2(1): 1-8.
- Gunlazuardi, J. 2001. Fotokatalisis pada Permukaan TiO₂: Aspek Fundmental dan Aplikasinya. Semarang: Universitas Negeri Semarang press.
- Gupta, M. K., dan Kumar, B. 2011. High Ferroelectricity in V-doped ZnO Nanorods. *Journal of Materials Chemistry*, 21: 14559-14562.
- Haslinda. 2009. Fabrication, Structural, and Electrical Characteristic of Zinc Oxide (ZnO) Thin Films by Direct Current Spinterring. *Journal Procedia Chemistry*, 9: 211-216.
- Jehlicka, J., Edwards, H. G. M., dan Culka, A. 2010. Using Portable Raman Spectrometers for the Identification of Organic Compounds at Low Temperatures and High Altitudes. *Journal exobiological applications*. 31(2): 1-5.
- Jesionowski, T. 2014. Zinc Oxide From Synthesis to Application: A Review. Journal Materials, 7: 2833–2881.

- Joshi, R., Kumar, P., Gaur, A., dan Asokan, K. 2013. Structural, Optical and Ferroelectric Properties of V doped ZnO. *Journal Application Nanoscience*, 8(2): 57-61.
- Khan, S. H., Suriyaprabha, R., Pathak, B., dan Fulekar, M. H. 2015. Development of Zinc Oxide Nanoparticle by Sonochemical Method and Study of their Physical and Optical Properties. *Journal Centre of Nanoscience*, 18: 1–7.
- Krithiga, R., dan Chandrasekaran, G. A. 2009. Synthesis, Strucutral and Optical Properties of Vanadium Doped Zinc Oxide Nanograins. *Journal of Crystal Growth*, 311(21): 4610–4614.
- Lestari. 2011. Preparasi Nanokomposit ZnO Dengan Metode Sonokimia serta Uji Aktivitasnya untuk Fotodegradasi Fenol. *Skripsi*. Semarang: Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang.
- Licciulli, A., dan Lisi, D. 2002. Self-Cleaning Glass. University Degli Studio Di Lecce.
- Linsebigler, A. L., Lu, G., dan Yates, J. T. 1995. Photocatalysis on TiO₂ Surfaces: Principles, Mechanisms, and Selected Results. *Chemical Reviews*, 95(3): 735-758.
- Maensiri, S. 2007. Synthesis and Optical Properties of Nanocrystalline V-doped ZnO powders. *Optical Material*, 29: 1700-1705.
- Manjula, G., Nirmala, K., dan Rekha, A. 2011. Struktur, Optical, Photocatalytic and Antibacterial Activity of ZnO and Co doped ZnO Nanoparticles. *Journal Materials Letter*, 65(12): 1797-1800.
- Mesaros, D. T. A., dan Silipas, A. P. T. D. 2016. V-doped ZnO particles : Synthesis Structural, Optical and Photocatalytic Properties. *Journal of Materials Science: Materials in Electronics*: 1-8.
- Morkoç, H., dan Ozgur, U. 2009. Chapter 1 General Properties of ZnO. In Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley: VCH.
- Permata, Dr. Abrar, S.Si., dan Dr. H. Dani Gustaman Syarif, M. 2016. Green Sintesis dan Karakterisasi Fotokatalitik Nanopartikel ZnO. Journal e-Proceeding of Engineering, 4(1): 138-143.
- Ningsih, S., T. 2012. Sintesis dan Karakterisasi Fotokatalis Ni²⁺-ZnO Berbasis Zeolit Alam. *Skripsi*. Jakarta: Fakultas Teknik Universitas Indonesia.
- Nugroho, D. W., Akwalia, P. R., Rahman, T. P., Ikono, R., Widayanto, W. B., dan Sukarto. 2013. Pengaruh Variasi pH pada Sintesis Nanopartikel ZnO dengan Metode Sol-gel. *Proceeding Pertemuan Ilmiah Ilmu*

Pengetahuan dan Teknologi Bahan 2012. Serpong, 3 Oktober 2012. Halaman 63-66.

- Ong, C. B., Ng, L. Y., dan Mohammad, A. W. 2018. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. *Renewable and Sustainable Energy Reviews*, 81(2): 536-551.
- Palomino, A.G.P. 2006. Room Temperature Synthesis and Characterization of Highly Monodisperse Transition Metal-Doped ZnO Nanocrystals, *Journal Application Physic*, 125(74): 1-6
- Palupi, E. 2006. Degradasi Metilen Biru dengan Metode Fotokatalisis dan Fotoelektrokatalisis menggunakan Film TiO_{2.} *Skripsi.* Bogor: Institut Pertanian Bogor.
- Raharjo, H., dan Prasetyoko, D. 2011. Sintesis Nano ZnO dengan Metode Kopresipitasi dan Karakterisasinya. *Skripsi*. Jurusan Kimia, FMIPA **ITS** Surabaya
- Sakthivel, S., Neppolian, B., Shankar, M. V, Arabindoo, B., Palanichamy, M., dan Murugesan, V. 2003. Solar Photocatalytic Degradation of Azo Dye: Comparison of Photocatalytic Efficiency of ZnO and TiO₂. Solar Energy Materials and Solar Cells, 77(1): 65-82.
- Shidpour, R., Simchi, A., Ghanbari, F., dan Vossoughi, M. 2014. Photodegradation of Organic Dye by Zinc Oxide Nanosystems With Special Defect Structure: Effect of Morphology and Annealing Temperature. *Journal Applied Catalys A: General*, 472(2): 198-204.
- Shihab, M. Quraish. 2011. Tafsir Al-Misbah: Pesan, Kesan, dan Keserasian Al-Qur'an tentang Pendidikan. Jakarta: Lentera Hati.
- Slama, R., Ghribi, F., Houas, A., Barthou, C., dan Elmir, K. 2011. Visible Photocatalytic Properties of Vanadium Doped Zinc Oxide Aerogel Nanopowder. *Thin Solid Films*, 519(17): 5792-5795.
- Slamet, Bismo, S., Arbianti, R., dan Sari, Z. 2006. Penyisihan Fenol Dengan Kombinasi Proses Adsorpsi dan Fotokatalisis Menggunakan Karbon Aktif dan TiO₂. Jurnal Teknologi, 4(2): 1-7.
- Suslick, K.S. dan Price, G.J. 1999. Application of Ultrasound to Material Chemistry. *Annual Review of Materials Science*, 29: 295-326.
- Sutanto, H., Wibowo, dan Singgih. 2015. Semikonduktor Fotokatalis Seng Oksida dan Titania (Sintesis, Deposisi dan Aplikasi). Semarang: Telescope.

- Suwanboon, S. 2008. Srtructural and Optical Properties of Nanocrystalline ZnO Powder from Sol-Gel Method. *Journal Science Asia*, 34(2): 134-139.
- Tahir, N., Hussain, S. T., Usman, M., Hasanain, S. K., dan Mumtaz, A. 2009. Applied Surface Science Effect of Vanadium Doping on Structural, Magnetic and Optical Properties of ZnO Nanoparticles. 255(1): 8506-8510.
- Tan, S. T., Chen, B. J., Sun, X. W., dan Fan, W. J. 2005. Blueshift of Optical Band Gap in ZnO Thin Films Grown by Metal-Organic Chemical-Vapor Deposition. *Journal Applied Physics*, 98: 1-5.
- Wahab, R., Kim, Y., dan Shin, H. 2009. Synthesis, Characterization and Effect of pH Variation on Zinc Oxide Nanostructures. *Materials Transactions*, 50(8): 2092-2097.
- Wang, C., Zhang, Y. Q., dan Guo, G. 2014. Photocatalytic Organic Pollutants Degradation in Metal-organic Frameworks. *Energy Environmental Science*, 7(9): 2831-2867.
- Wang, Y., Zhang, C., Bi, S., dan Luo, G. 2010. Preparation of ZnO Nanoparticles Using the Direct Precipitation Method in a Membrane Dispersion Microstructured Reactor. *Powder Technology*, 202(3): 130-136.
- Wang, R., Xin, J.H., Yang, Y., Liu, H., Xu, L., dan Hu, J. 2004. The Characteristics and Photocatalytic Activities of Silver Doped ZnO Nanocrystallites. *Applied Surface Science*, 227(1-4): 312-317.
- Watanabe, A., Chiba, H., Kawashima, T., dan Washio, K. 2015. Effect of Vanadium Doping on Amorphization of ZnO Thin Films on c-plane Sapphire Substrate. *Thin Solid Films*, 20(2): 2-5.
- Zak, A. K., Majid, W. H., Wang, H. Z., Yousefi, R., Golsheikh, A. M., dan Ren, Z. F. 2013. Ultrasonics Sonochemistry Sonochemical Synthesis of Hierarchical ZnO Nanostructures. *Ultrasonics-Sonochemistry*, 20(1): 395-400.
- Yang Y. C., Song C., Wang X., Zeng F., dan Pan F. 2008. Cr-Substitutioninduced Ferroelectric and Improved Piezoelectric Properties of Zn_{1-x}Cr_xO Films. *Journal Application Physic*, 103(74): 1-6.

LAMPIRAN

Lampiran 1.

1. Sintesis ZnO terdoping vanadium (III) konsentrasi 0, 1, 3 dan 5% dengan Sonikasi

2. Karakterisasi Fotokatalis

1. Perhitungan Kadar

Diketahui :

Mr Zn(C ₂ H ₃ O ₂) ₂ .2H ₂ O	: 219,51 gr/mol
ρ	: 1,74 g/cm3

Target Sintesis: 3 gr

a. Menghitung % massa Zn 100%

massa

$$= \frac{\operatorname{Ar} Zn}{\operatorname{Mr} Zn0} \times \frac{\operatorname{Mr} Zn \operatorname{asetat}}{\operatorname{Ar} Zn} \times 3 \text{ g}$$
$$= \frac{65 \text{ gr/mol}}{81 \text{gr/mol}} \times \frac{219,51}{65} \times 3 \text{ g}$$
$$= 8,13 \text{ gram}$$

b. Menghitung % massa Zn 99 %

massa
$$= \frac{0.99 \times \text{Ar Zn}}{\text{Mr Zn}_{0,09}\text{V}_{0,01}\text{O}_{1}} \times \frac{\text{Mr Zn}(\text{asetat}}{\text{Ar Zn}} \times 3 \text{ g}$$
$$= \frac{0.99 \times 65}{(0.99 \times 65) + (0.01 \times 50.94) + (1 \times 16)} \times \frac{219.51}{65} \times 3 \text{ g}$$
$$= 8.0626 \text{ gram}$$

Massa atom Zn dalam 8,0626 gr Zn(C2H3O2)2.2H2O

 $Zn (g) = garam (g) \times \frac{Ar (Zn)}{Mr (garam)}$ $Zn (g) = 8,0626 \text{ g} \times \frac{65 \text{ g/mol}}{219,51 \text{ g/mol}}$

Zn (g) = 2,387 gram

Menghitung % massa V 1 %

massa V(acac)₃ =
$$\frac{0.01 \times \text{Ar V}}{\text{Mr Zn}_{0.99}\text{V}_{0.01}\text{O}_1} \times \frac{\text{Mr V}(\text{acac})_3}{\text{Ar V}} \times 3 \text{ g}$$

= $\frac{0.01 \times 50.94}{(0.99 \times 65) + (0.01 \times 50.94) + (1 \times 16)} \times \frac{348,2388}{50,94} \times 3 \text{ g}$
= 0,1292 gram
V (g) = garam (g) $\times \frac{\text{Ar (V)}}{\text{Mr (garam)}}$

 $V~(g) = 0,1292~g \times \frac{50,94~g/mol}{348,2388~g/mol}$

a. Menghitung % massa Zn 97 %

massa
$$= \frac{0.97 \times \text{Ar Zn}}{\text{Mr Zn}_{0.97}\text{V}_{0.03}\text{O}_{1}} \times \frac{\text{Mr Zn}(\text{asetat}}{\text{Ar Zn}} \times 3 \text{ g}$$
$$= \frac{0.98 \times 65}{(0.97 \times 65) + (0.03 \times 50.94) + (1 \times 16)} \times \frac{219.51}{65} \times 3 \text{ g}$$
$$= 8,0091 \text{ gram}$$

Massa atom Zn dalam 8,0091 gr dalam Zn(C2H3O2)2.2H2O

 $Zn (g) = garam (g) \times \frac{Ar (Zn)}{Mr (garam)}$ $Zn (g) = 4,6029 \text{ g} \times \frac{65 \text{ g/mol}}{219,51 \text{ g/mol}}$ Zn (g) = 1,3629 gram

Menghitung % massa V 3 %

massa V(acac)₃ = $\frac{0,03 \times \text{Ar V}}{\text{Mr Zn}_{0,97}\text{V}_{0,01}\text{O}_1} \times \frac{\text{Mr V}(\text{acac})_3}{\text{Ar V}} \times 3 \text{ g}$ = $\frac{0,03 \times 50,94}{(0,97 \times 47,9) + (0,03 \times 50,94) + (1 \times 16)} \times \frac{348,2388}{50,94} \times 3 \text{ g}$

V (g) = garam (g)
$$\times \frac{Ar(V)}{Mr(garam)}$$

V (g) = 0,3889 g $\times \frac{50,94 \text{ g/mol}}{348,2388 \text{ g/mol}}$

V(g) = 0.0569 g

b. Menghitung % massa Zn 95 %

massa

$$= \frac{0.95 \times \text{Ar Zn}}{\text{Mr Zn}_{0.95}\text{V}_{0.05}\text{O}_{1}} \times \frac{\text{Mr Zn}(\text{asetat}}{\text{Ar Zn}} \times 3 \text{ g}$$

$$= \frac{0.95 \times 65}{(0.95 \times 65) + (0.05 \times 50.94) + (1 \times 16)} \times \frac{219.51}{65} \times 3 \text{ g}$$

$$= 7,7911 \text{ gram}$$

Massa atom Zn dalam 7,7911 gr dalam Zn(C2H3O2)2.2H2O

 $Zn (g) = garam (g) \times \frac{Ar (Zn)}{Mr (garam)}$ $Zn (g) = 7,7911 \text{ g} \times \frac{65 \text{ g/mol}}{219,51 \text{ g/mol}}$

Zn (g) = 2,307 gram

Menghitung % massa V 5 %

massa V(acac)₃ = $\frac{0.05 \times \text{Ar V}}{\text{Mr Zn}_{0.95}\text{V}_{0.05}\text{O}_{1}} \times \frac{\text{Mr V}(\text{acac})_{3}}{\text{Ar V}} \times 3 \text{ g}$ = $\frac{0.05 \times 50.94}{(0.95 \times 65) + (0.05 \times 50.94) + (1 \times 16)} \times \frac{348,2388}{50.94} \times 3 \text{ g}$ = 0,6505 gram V (g) = garam (g) $\times \frac{Ar (V)}{Mr (garam)}$ V (g) = 0,6505 g $\times \frac{50.94 \text{ g/mol}}{348,2388 \text{ g/mol}}$ V (gr) = 0,0951 gram

 $mol NaOH = 1M \ge 0,1 L = 0,1 mol$ $Massa NaOH = Mol \ge Mr$

= 0,1 mol x 40 gram/mol = 4 gram

Lampiran 3. Gambar Hasil Sintesis Senyawa ZnO dan ZnO-V 1, 3, dan 5%

Gambar L.3.1. (a) Pencampuran NaOH, isopropanol, dan seng asetat, (b) hasil sonikasi, (c) endapan putih hasil sonikasi, (d) pencampuran prekusor dengan vanadium, (e) proses sonikai, (f) hasil *aging* 24 jam

Gambar L.3.1.2 Hasil Kalsinasi sampel ZnO dan ZnO-V

Lampiran 4. Hasil Karakterisasi menggunakan XRD

Karakterisasi XRD dilakukan di jurusan Teknik Material dan Metalurgi Fakultas Teknik Industri Institut Teknologi Sepuluh November Surabaya (ITS). Spesifikasi alat ditampilkan dalam Tabel L.4.1.

Tabel L.4.1 Spesifikasi alat XRD	
Spesifikasi	ITS
Anode Material	Cu
K-Alpha1 [Å]	1,54060
K-Alpha2 [Å]	1,54443
K-Beta [Å]	1,39225
K-A2 p K-A1 Ratio	0,50000
Generator Settings	30 mA, 40 kV
Diffractometer Type	XPert MPD
Diffractometer Number	$\gamma $ (1)
Start Position [°2Th.]	5,0084
End Position [°2Th.]	89,9744
Sampel	ZnO dan ZnO-V 1, 3, dan 5%

L.4.1 Pola Difraksi Sinar-X Senyawa Terdoping Vanadium (III) Konsentrasi 0, 1, 3 dan 5%

Gambar L.4.2 Difraktogram XRD ZnO-V 1%

L.4.2 Penentuan Parameter Kisi dengan Metode Le Bail Program Rietica L.4.2.1 ZnO tanpa dopan

4.82 | 5.83 | 0.6551E+00

Lampiran 5. Contoh Perhitungan Crystallite Size

Perhitungan *crystallite size* dapat menggunakan persamaan Debye-Scherrer (persamaan 3.1). data-data untuk perhitungan *crystallite size* ZnO tanpa dopan adalah :

λ (Kα) : 1,54056

β (FWHM) : 0,005859589

 $2\theta: 36,2446 \longrightarrow \theta = \frac{36,2446}{2} = 18,1223$

Cos θ : 0,747001537

Sehingga crystallite size yang diperoleh adalah :

 $D = \frac{K\lambda}{\beta \cos\theta} = \frac{0.9 \text{ x } 1,54056}{0,005859589 \text{ x } 0,747001537} = 27,29 \text{ nm}$

Perhitungan crystallite size senyawa lain dilakukan dengan cara yang sama. Hasil

pengukuran crystallite size dirangkum pada Tabel L.5.1

Material	Crystallite Size (nm)		
ZnO	27,29		
ZnO-V 1%	27,94		
ZnO-V 3 %	29,18		
ZnO-V 5%	33,90		

Tabel L.5.1 Hasil perhitungan crystallite size ZnO-V hasil sintesis

Lampiran 6. Hasil Karakterisasi Menggunakan UV-DRS

Lampiran 7. Hasil Karakterisasi menggunakan SEM-EDS L.7.1 Hasil Karakterisasi SEM-EDS Sampel ZnO tanpa dopan

Gambar L.7.1.2 EDS sampel ZnO tanpa dopan

Element Number	Element Simbol	Element Name	Atomic Conc.	Weight Conc.
30	Zn	Zinc	81.72	94.81
8	0	Oxygen	18.28	5.19

L.7.2 Hasil Karakterisasi SEM-EDS Sampel-V 1%

Presentase unsur yang terkandung :					
Element Number	Element Simbol	Element Name	Atomic Conc.	Weight Conc.	
30	Zn	Zinc	41.04	73.35	
8	0	Oxygen	58.05	25.38	
23	V	Vanadium	0.91	1.27	

L.7.3 Hasil Karakterisasi SEM-EDS Sampel-V 3%

Gambar L.7.3.2 EDS sampel ZnO-V 3%

Element Number	Element Simbol	Element Name	Atomic Conc.	Weight Conc.
30	Zn	Zinc	44.57	75.95
8	0	Oxygen	54.40	22.68
23	V	Vanadium	1.03	1.37

76

L.7.4 Hasil Karakterisasi SEM-EDS Sampel ZnO-V 5%

Gambar L.7.4.2 EDS sampel ZnO-V 5%

Element	Element	Element Name	Atomic	Weight
Number	Simbol		Conc.	Conc.
30	Zn	Zinc	49.34	79.01
8	0	Oxygen	49.33	19.33
23	V	Vanadium	1.33	1.66