PENENTUAN FITUR YANG RELEVAN TERHADAP PREDIKSI CACAT PERANGKAT LUNAK BERDASARKAN SELEKSI FITUR GAIN RATIO

JURUSAN TEKNIK INFORMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM
MALANG
2018

PENENTUAN FITUR YANG RELEVAN TERHADAP PREDIKSI CACAT PERANGKAT LUNAK BERDASARKAN SELEKSI FITUR GAIN RATIO

SKRIPSI

Diajukan Kepada:
Fakultas Sains dan Teknologi
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Untuk Memenuhi Salah Satu Persyaratan Dalam
Memperoleh Gelar Sarjana Komputer (S.Kom)

Oleh:
DIKO ANDRI VIDIAN
NIM. 14650072

JURUSAN TEKNIK INFORMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK BRAHIM MALANG 2018

PENENTUAN FITUR YANG RELEVAN TERHADAP PREDIKSI CACAT PERANGKAT LUNAK BERDASARKAN SELEKSI FITUR GAIN RATIO

SKRIPSI

Oleh:
DIKO ANDRI VIDIAN
NIM. 14650072

Telah Diperiksa dan Disetujui untuk diuji: Tanggal, Juni 2018

Dosen Pembimbing I

Dosen Pembimbing II

Fatchurrochman, M.Kom NIP. 19700731 200501 1 002 Ajib Hanani, M.T NIDT. 19840731 20160801 1 076

Mengetahui,

Ketua Jurusan Teknik Informatika Fakultas Sains dan Teknologi

Universitas Islam Neperi Maulana Malik Ibrahim Malang

Dr. Cahyo Crysdian

NIP. 19740424 200901 1 008

Tanda Tangan

PENENTUAN FITUR YANG RELEVAN TERHADAP PREDIKSI CACAT PERANGKAT LUNAK BERDASARKAN SELEKSI FITUR GAIN RATIO

SKRIPSI

Oleh: DIKO ANDRI VIDIAN NIM. 14650072

Telah Dipertahankan di Depan Dewan Penguji Skripsi dan Dinyatakan Diterima Sebagai Salah Satu Pernyataan Untuk Memperoleh Gelar Sarjana Komputer (S.Kom)

Tanggal: Juni 2018

Sususan Dewan Penguji

Penguji Utama : <u>Irwan Budi Santoso, M.Kom</u>

NIP. 19770103 201101 1 004

Ketua Penguji : Supriyono, M.Kom

NIDT. 19841010 20160801 1 078

Sekertaris Penguji : Fatchurrochman, M.Kom

NIP. 19700731 200501 1 002

Anggota Penguji : Ajib Hanani, M.T.

NIDT. 19840731 20160801 1 076

Mengetahui dan Mengesahkan, Ketua Jurusan Teknik Informatika Fakultas Sains dan Teknologi

Universitas Islam Megeri Maulana Malik Ibrahim Malang

Cahyo Crysdian

NIP. 19740424 200901 1 008

HALAMAN PERNYATAAN KEASLIAN TULISAN

Saya yang bertanda tangan dibawah ini,

Nama : Diko Andri Vidian

NIM : 14650072

Jurusan : Teknik Informatika

Fakultas: Sains dan Teknologi

Menyatakan dengan sebenarnya bahwa skripsi yang saya tulis ini benar-benar merupakan hasil karya saya sendiri, bukan merupakan pengambilan tulisan atau pikiran orang lain yang saya akui sebagai hasil tulisan atau pikiran saya sendiri, kecuali dengan mencantumkan sumber cuplikan pada daftar pustaka.

Apabila dikemudian hari terbukti atau dapat dibuktikan skripsi ini hasil jiplakan, maka saya bersedia menerima sanksi atas perbuatan tersebut.

Malang, 7 Juni 2018 Yang membuat pernyataan,

Diko Andri Vidian NIM. 14650072

MOTTO

"Bekerja keras diam-diam dan biarkan kesuksesan yang membuat keramaian"

Diko Andri Vidian

HALAMAN PERSEMBAHAN

Bismillahirrahmanirrahim

Segala puji bagi Allah atas ridho-Nya dan juga dukungan serta doa dari orangorang tercinta akhirnya skripsi ini dapat terselesaikan dengan baik. Oleh karena itu kupersembahkan karya sederhana ini kepada:

Ayah dan ibu tercinta yang selalu memberikan motivasi, pengorbanan dan doa yang tiada henti untuk kesuksesan saya.

Kakakku, Saiful Arifin yang selalu mengingatkan dan membimbingku untuk kesuksesan dan kebaikan dimasa depan.

Bapak Fatchurrochman, M.kom dan Bapak Ajib Hanani, MT selaku dosen pembimbing yang selama ini tulus, sabar serta ikhlas meluangkan waktunya untuk memberikan bimbingan, selain itu juga untuk seluruh dosen Teknik Informatika yang selama ini telah mendidik dan menyalurkan segala ilmu informatika dan juga pengalaman yang sangat berarti untuk saya. Bapak dan Ibu dosenku jasamu akan selalu terpatri dihati.

Teman-teman Biner (TI 2014) terima kasih atas semangat, dukungan dan bantuan serta kekompakan selama ini, terima kasih juga atas canda tawa dan kenangan manis yang telah mengukir selama ini. Semoga suatu hari ada moment bertemu berkumpul bersama lagi.

Seluruh teman-temanku yang senantiasa selalu memotivasi dan menjadi tempat untuk saling belajar.

Serta seluruh pihak yang tidak dapat disebutkan satu persatu, terima kasih.

KATA PENGANTAR

Assalamualaikum Wr. Wb.

Segala puji bagi Allah SWT tuhan semesta alam, karena atas segala rahmat dan karunia-Nya sehingga penulis mampu menyelesaikan skripsi ini dengan baik dan lancar. Shalawat serta salam selalu tercurahkan kepada tauladan terbaik Nabi Muhammad SAW yang telah membimbing umatnya dari zaman kebodohan menuju Islam yang rahmatan lil alamin.

Selanjutnya penulis haturkan ucapan terima kasih karena dalam penyelesaian skripsi ini tidak lepas dari bantuan, bimbingan serta dukungan dari beberapa pihak. Ucapan terima kasih ini penulis sampaikan kepada:

- Prof. DR. H. Abd. Haris, M.Ag, selaku rektor UIN Maulana Malik
 Ibrahim Malang beserta seluruh staf. Bakti Bapak dan Ibu sekalian
 terhadap UIN Maliki Malang yang menaungi segala kegiatan di kampus
 UIN Maliki Malang.
- 2. Dr. Sri Harini, M.Si selaku Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang beserta seluruh staf. Bapak dan ibu sekalian sangat berjasa memupuk dan menumbuhkan semangat untuk maju kepada penulis.
- 3. Bapak Dr. Cahyo Crysdian, selaku Ketua Jurusan Teknik Informatika Universitas Islam Negeri Maulana Malik Ibrahim Malang, yang sudah memberi banyak menginspirasi dan memotivasi untuk terus berkembang.

- 4. Bapak Fatchurrochman, M.Kom selaku dosen pembimbing I yang telah bersedia meluangkan waktu untuk membimbing, memotivasi dan memberi arahan kepada penulis dalam pengerjaan skripsi ini hingga akhir.
- Bapak Ajib Hanani, M.T selaku dosen pembimbing II yang juga senantiasa memberi masukan dan nasihat serta petunjuk dalam penyusunan skripsi ini.
- 6. Ibu Hani Nurhayati, M.T selaku dosen wali yang telah memberi arahan dan bimbingan selama ini.
- 7. Ayah, Ibu dan Kakak serta keluarga besar tercinta yang selalu memberi dorongan dan doa yang senantiasa mengiringi setiap langkah penulis.
- 8. Seluruh Dosen Teknik Informatika yang telah memberikan keilmuan serta pengalaman yang berarti kepada penulis selama ini.
- 9. Teman-teman yang telah memotivasi dan membantu banyak hal selama ini.
- 10. Seluruh teman-teman Teknik Informatika UIN Maulana Malik Ibrahim Malang yang telah banyak berbagi ilmu, pengalaman dan menjadi inspirasi untuk terus semangat belajar.
- 11. Teman-teman seperjuangan Teknik Informatika 2014 yang telah berjuang bersama dan saling mendukung selama ini.
- 12. Para peneliti yang telah melakukan penelitian tentang prediksi cacat perangkat lunak dan seleksi fitur yang menjadi acuan penulis dalam pembuatan skripsi ini. Serta semua pihak yang telah membantu yang tidak bisa disebutkan satu persatu. Terimakasih banyak.

Penulis menyadari bahwa skripsi ini masih jauh dari sempurna dikarenakan terbatasnya pengalaman dan pengetahuan yang dimiliki penulis. Oleh karena itu, penulis mengharapkan segala bentuk saran dan masukan serta kritik yang membangun dari berbagai pihak. Terlepas dari berbagai kekurangan tersebut, semoga skripsi ini dapat memberikan manfaat bagi pembaca dan mendorong peneliti selanjutnya dalam menyempurnakannya. Amin.

Wassalamualaikum Wr. Wb.

Malang, 7 Juni 2018

Penulis

DAFTAR ISI

HALA	MAN JUDUL	i
HALAI	MAN PERSETUJUAN	ii
HALAI	MAN PENGESAHAN	iii
HALAI	MAN PERNYATAAN KEASLIAN TULISAN	iv
MOTTO	O	v
HALAI	MAN PERSEMBAHAN	vi
KATA	PENGANTAR	vii
DAFTA	AR ISI	X
DAFTA	AR GAMBAR	xii
DAFTA	AR TABEL	xiii
ABSTR	RAK	xiv
	RACT	
ملخص		xvi
BAB I	PENDAHULUAN	1
1.1.	Latar Belakang	1
1.2.	Identifikasi Masalah	
1.3.	Tujuan Penelitian	
1.4.	Batasan Masalah	
1.5.	Manfaat Penelitian	6
1.6.	Sistematika Penulisan	7
BAB II	STUDI PUSTAKA	8
2.1	Cacat Perangkat Lunak	8
2.2	Prediksi Cacat Perangkat Lunak	9
2.3	Diskritisasi Data	15
2.4	Diskritisasi Data dengan Equal Width Binning	16
2.5	Seleksi Fitur	16
2.6	Seleksi Fitur dengan Gain Ratio	17
2.7	K-fold Cross Validation	19
2.8	Klasifikasi Naïve Bayes	20
2.9	Evaluasi Klasifikasi	23
2.10	Penelitian Terkait	24

BAB III ANALISIS DAN PERANCANGAN			
3.1	Analisis Sistem	27	
3.2	Perancangan Sistem	29	
3.2.	1 Proses Cleaning	30	
3.2.	2 Proses Diskritisasi dengan Equal Width Binning	31	
3.2.	Proses seleksi fitur dengan Gain Ratio	34	
3.2.	4 Klasifikasi Naïve Bayes	40	
3.2.	5 Perhitungan Akurasi	41	
	UJI COBA DAN PEMBAHASAN		
4.1	Uji Coba	43	
4.1.	1 Lingkungan Uji Coba	43	
4.1.	2 Data Uji coba	4 4	
4.1.	I .		
4.1.	4 Hasil Pengujian	48	
4.2	Pembahasan	60	
4.2.	1 Pemba <mark>h</mark> asan hasil pengujian <i>dataset</i> CM1	60	
4.2.	Pembahasan hasil pengujian <i>dataset</i> JM1	61	
4.2.	Pembahasan hasil pengujian <i>dataset</i> KC1	61	
4.2.	4 Pembahasan hasil pengujian <i>dataset</i> KC2	62	
4.2.	5 Pembahasan hasil pengujian <i>dataset</i> PC1	63	
4.3	Integrasi dengan Islam	66	
BAB V I	PENUTUP	69	
5.1	Kesimpulan	69	
5.2	5.2 Saran		
DAFTA	R PUSTAKA	71	
LAMPIF	AN-LAMPIRAN		

DAFTAR GAMBAR

Gambar 2.1 Teknik M x N Cross-Validation	20
Gambar 3.1 Desain Sistem yang diusulkan	30
Gambar 4.1 Tampilan Sistem	47
Gambar 4.2 Grafik akurasi klasifikasi NB dataset CM1	60
Gambar 4.3 Grafik akurasi klasifikasi NB dataset JM1	61
Gambar 4.4 Grafik akurasi klasifikasi NB dataset KC1	62
Gambar 4.5 Grafik akurasi klasifikasi NB dataset KC2	63
Gambar 4.6 Grafik akurasi klasifikasi NB dataset PC1	64

DAFTAR TABEL

Tabel 2	.1 Informasi fitur prediksi cacat perangkat lunak	10
Tabel 2	.2 Confusion Matrix	23
Tabel 3	.1 Isi Dataset CM1	28
	.2 Dataset CM1	
Tabel 3	.3 Hasil diskritisasi fitur ke-1	34
Tabel 3	.4 Hasil diskritisasi semua fitur dataset CM1	34
Tabel 3	.5 Hasil perankingan sesuai nilai <i>Gain Ratio</i> pada <i>dataset</i> CM1	39
Tabel 3	.6 Hasil seleksi 5 fitur pada dataset CM1	40
Tabel 3	.7 Confusion Matrix klasifikasi dataset CM1 dengan 5 fitur hasil seleksi fitur GR	
Tabel 4	.1 Dataset CM1	44
Tabel 4	.2 Dataset JM1	44
	.3 Dataset KC1	
Tabel 4	.4 Dataset KC2	45
Tabel 4	.5 Dataset PC1	45
Tabel 4	.6 Dataset Penelitian	45
Tabel 4.7 Fitur setiap <i>dataset</i>		
Tabel 4.8 Perankingan Fitur dataset CM1 Berdasarkan nilai Gain Ratio		
Tabel 4	.9 Perankingan Fitur dataset JM1 Berdasarkan nilai Gain Ratio	50
Tabel 4	.10 Perankingan Fitur dataset KC1 Berdasarkan nilai Gain Ratio	51
Tabel 4	.11 Perankingan Fitur dataset KC2 Berdasarkan nilai Gain Ratio	52
Tabel 4	.12 Perankingan Fitur dataset PC1 Berdasarkan nilai Gain Ratio	53
Tabel 4	.13 Hasil Uji Coba Klasifikasi <i>Dataset</i> CM1	55
Tabel 4	.14 Hasil Uji Coba Klasifikasi <i>Dataset</i> JM1	56
Tabel 4	.15 Hasil Uji Coba Klasifikasi <i>Dataset</i> KC1	57
Tabel 4	.16 Hasil Uji Coba Klasifikasi <i>Dataset</i> KC2	58
Tabel 4	.17 Hasil Uji Coba Klasifikasi <i>Dataset</i> PC1	59
Tabel 4	.18 Fitur yang relevan berdasarkan seleksi fitur <i>Gain Ratio</i>	65

ABSTRAK

Vidian, Diko Andri. 2018. **Penentuan Fitur yang Relevan Terhadap Prediksi Cacat Perangkat Lunak Berdasarkan Seleksi Fitur Gain Ratio.**Skripsi. Jurusan Teknik Informatika Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang. Pembimbing: (I) Fatchurrochman, M.Kom. (II) Ajib Hanani, M.T.

Kata kunci: prediksi cacat perangkat lunak, seleksi fitur Gain Ratio.

Software development life cycle (SDLC) merupakan rangkaian tahap untuk menghasilkan produk perangkat lunak. Tahap paling penting dalam SDLC ada pada tahap pengujian, tahap ini melakukan pengujian perangkat lunak dan pemeriksaan validasi, setelah produk dinyatakan tidak cacat maka persetujuan diberikan dan perangkat lunak bisa digunakan pada kebutuhan. Salah satu cara yang bisa dilakukan untuk pengujian adalah teknik prediksi cacat perangkat lunak, teknik tersebut melakukan prediksi menggunakan dataset Metrics Data Program (MDP). Perlu diketahui bahwa dalam dataset tidak semua fitur yang ada memiliki pengaruh besar terhadap prediksi cacat perangkat lunak karena dataset yang digunakan dibuat tidak khusus untuk pediksi cacat perangkat lunak. Oleh karena itu, pemilihan fitur diperlukan untuk mendapatkan fitur yang berpengaruh terhadap prediksi cacat perangkat lunak.

Penelitian ini melakukan pemilihan fitur menggunakan seleksi fitur Gain Ratio dengan jumlah pengambilan fitur yang berbeda-beda dengan tujuan mendapatkan fitur yang paling berpengaruh atau relevan. Hasil dari penelitian ini menyimpulkan bahwa fitur yang relevan terhadap prediksi cacat perangkat lunak berdasarkan seleksi fitur Gain Ratio pada dataset CM1 adalah fitur Time to write program (t). Dataset JM1 adalah fitur Error estimate (b), Count of Statement Lines (IOCode), Line of code (loc), Unique operands (uniq_Opnd), Unique operator (uniq_Op), Count of Code and Comments Lines (IOCodeAndComment), Cyclomatic complexity (v(g)), Branch count (branchCount), Time to write program (t) dan Effort to write program (e). Dataset KC1 adalah fitur Count of lines of comments (IOComment), Error estimate (b) dan Count of blank lines (10Blank). Dataset KC2 adalah fitur Count of Code and Comments Lines (10CodeAndComment), Count of blank lines (10Blank), Unique operands (uniq_Opnd) dan Time to write program (t). Dataset PC1 adalah fitur Unique operands (uniq_Opnd). Fitur-fitur tersebut dikatakan sebagai fitur yang relevan terhadap prediksi cacat perangkat lunak karena berdasarkan uji coba klasifikasi yang menghasilkan akurasi terbaik dari uji coba yang telah dilakukan.

ABSTRACT

Vidian, Diko Andri. 2018. **Determination of Relevant Features Against Software Defect Prediction Based on Gain Ratio Feature Selection.**Undergraduate Thesis. Department of Informatics Engineering Faculty of Science and Technology Islamic State University of Maulana Malik Ibrahim of Malang. Supervisor: (I) Fatchurrochman, M.Kom. (II) Ajib Hanani, M.T.

Keywords: software defect prediction, selection feature Gain Ratio.

Software development life cycle (SDLC) is a series of stages to produce software products. The most important stage in the SDLC is in the testing phase, this stage performs software testing and validation checks, after the product is declared not defective then approval is given and the software can be used on demand. One of the way that testing can be done is a software defect prediction technique, the technique predicts using the Metrics Data Program (MDP) dataset. Note that in the dataset not all features exist have a major effect on the prediction of software defects because the dataset used is not made specifically for software defect deficits. Therefore, feature selection is required to get features that affect the software defect prediction.

This study selects features using Gain Ratio feature selection with varying number of feature captures with the goal of getting the most influential or relevant features. The results of this study conclude that the relevant feature of software defect prediction based on Gain Ratio feature selection on CM1 dataset is Time to write program (t) feature. The JM1 dataset is a feature of Error Estimate (b), Count of Statement Lines (IOCode), Line of code (loc), Unique operands (uniq_Opnd), Unique operators (uniq_Op), Count of Code and Comments Lines (1OCodeAndComment), Cyclomatic complexity (v(g)),(branchCount), Time to write program (t) and Effort to write program (e). The KC1 dataset is a feature of Count of lines of comments (10Comment), Error estimate (b) and Count of blank lines (IOBlank). The KC2 dataset is a feature of Count of Code and Comments Lines (IOCodeAndComment), Count of blank lines (lOBlank), Unique operands (uniq_Opnd) and Time to write program (t). The PC1 dataset is a feature of Unique operands (uniq_Opnd). These features are said to be features relevant to the prediction of software defects because they are based on a classification test that produces the best accuracy of the experimental tests.

ملخص

فيديان، ديقو أندري. 2018. تعيين الميزات ذات الصلة بتنبؤ علة البرنامج وفقا لاختيار الميزة Gain فيديان، ديقو أندري. **Ratio**. البحث العلمي. قسم المعلوماتية كلية العلوم والتكنولوجيا، جامعة مولانا مالك إبراهيم الإسلامية الحكومية مالانج. المشرف: (1) فتح الرحمن الماجستير. (2) عجيب حناني الماجستير.

الكلمات الرئيسية: تنبؤ علة البرنامج، اختيار الميزة Gain Ratio.

يكون SDLC في Software development life cycle هذه المراحل لإنتاج منتجات البرنامج. وأهم المراحل في SDLC هي مرحلة الاختبار، تقوم هذه المرحلة باختبار البرنامج وتحقق صحته، بعد أن كان البرنامج خاليا عن العيوب فتمنح الإتفاقية ويمكن استخدام البرنامج في القضاء بالحاجة. من إحدى الطرق التي يمكن استخدامه للاختبار هي طريقة تنبؤ علة البرنامج، وهي أن يدور في عملية التنبؤ باتخدام MDP) dataset Metrics Data Program). ويعد مهما أن يلاحظ أنه ليس لكل ملاحظ في مجموعة البيانات أثرا كبيرا تنبؤ علة البرنامج إذ هي لا تبنى للتخصيص تنبؤ علة البرنامج. لذا، احتيج إلى اختيار الميزة للحصول على الميزة المؤثرة على تنبؤ علة البرنامج.

يقوم هذا البحث باختيار الميزة باستخدام اختيار الميزة الميزات المختلفة ومن أجل الحصول على الميزات الميزات الصلة واستنتجت نتائج هذا البحث أن الميزات ذات CMI الصلة بتنبؤ علمة البرنامج وفقا لاختيار الميزة Gain Ratio في مجموعة البيانات CM1 هي الميزة (b) Error estimate في الميزة الميزة (f) و الميزة (b) Error estimate هي الميزة الميزة (b) و الميزة (loc) Line of code و (loc) Count of Statement Lines و (uniq_Opnd) و (loc) Line of code and Comments Lines)، و (uniq_Opnd) و locodeAndComment) و (g)v) Cyclomatic complexity (g)v) و (branchCount) Branch count و (g)v) Cyclomatic complexity (count of blank lines)، و Effort to write program في الميزة (loc) المعروعة البيانات KC1 في الميزة (locomment) و lines of comments Count of blank lines و (locodeAndComment) و locodeAndComments Count of Code and Comments Lines في الميزة (locodeAndComment) و locodeAndComment) و locodeAndComment التي تحصل على أفضل دقةٍ من التجار ب الذي تم القيام به.

BAB I

PENDAHULUAN

Pada bab pendahuluan ini akan dijelaskan tentang latar belakang penelitian, identifikasi masalah penelitian, tujuan penelitian, batasan masalah, manfaat penelitian dan sistematika penulisan.

1.1. Latar Belakang

Software atau biasa disebut dengan perangkat lunak adalah istilah khusus untuk data yang diformat dan disimpan secara digital yang didalamnya termasuk program komputer, dokumentasinya dan berbagai informasi yang dapat dibaca dan ditulis oleh komputer. Perangkat lunak juga dapat dikatakan sebagai bagian sistem komputer yang tidak berwujud, istilah ini digunakan untuk menunjukkan perbedaannya dengan hardware atau perangkat keras komputer.

Software development life cycle (SDLC) merupakan rangkaian tahap untuk menghasilkan produk perangkat lunak. Tahap paling penting dalam SDLC ada pada tahap pengujian, tahap ini melakukan pengujian perangkat lunak dan pemeriksaan validasi, setelah produk dinyatakan tidak cacat maka persetujuan diberikan dan perangkat lunak bisa digunakan pada kebutuhan. Biaya untuk memperbaiki cacat yang terdeteksi ketika masih pada tahap pengembangan jauh lebih sedikit dibandingkan ketika perangkat lunak sudah digunakan pada kebutuhan (Pelayo dan Dick, 2007). Salah satu cara yang bisa dilakukan untuk pengujian adalah teknik prediksi cacat perangkat lunak, teknik tersebut dapat mendeteksi hingga modul terkecil perangkat lunak yang memiliki kecenderungan cacat.

Beberapa penelitian telah *dilakukan* terkait topik prediksi cacat perangkat lunak dengan menerapkan algoritma *machine learning* yang berbeda-beda. Proses prediksi cacat perangkat lunak dengan *machine learning* tersebut dilakukan dengan menggunakan sebuah *dataset* dari NASA MDP (*metrics data program*) yang berisi sekumpulan fitur, namun perlu diketahui bahwa dari keseluruhan fitur yang ada tidak semua fitur tersebut memiliki pengaruh besar terhadap proses prediksi cacat perangkat lunak karena *dataset* yang digunakan dibuat tidak khusus untuk pediksi cacat perangkat lunak (Arar & Ayan, 2017). Oleh karena itu pemilihan fitur perlu dilakukan untuk mendapatkan fitur yang memiliki pengaruh besar atau relevan terhadap proses prediksi cacat perangkat lunak dan mengabaikan atau membuang fitur yang tidak memiliki pengaruh besar terhadap proses prediksi cacat perangkat lunak.

Beberapa penelitian terkait yang menerapkan seleksi fitur, Wahono (2014) dalam penelitiannya yang berjudul "Genetic Feature Selection for Software Defect Prediction" menerapkan seleksi fitur Genetic Algorithm, hasil dari penelitian tersebut menunjukkan performa klasifikasi yang meningkat dibandingkan dengan tanpa seleksi fitur. Penelitian lain oleh Wang et.al (2012) dalam penelitiannya yang berjudul "Software measurement data reduction using ensemble techniques", pada penelitiannya Wang menggunakan 17 fitur seleksi berbasis teknik ensemble yang diterapkan pada 16 dataset yang berbeda dan setelah fitur yang memiliki pengaruh besar berhasil didapatkan langkah selanjutnya melakukan pengujian dari fitur yang didapat memang benar memiliki pengauh besar terhadap prediksi cacat perangkat lunak dengan cara melakukan klasifikasi terhadap beberapa algoritma klasifikasi dan membandingkan performa

antara tanpa seleksi fitur dan dengan seleksi fitur. Penelitian lain dilakukan oleh Karabulut et.al (2012) yang berjudul "A comparative study on the effect of feature selection on classification accuracy", pada penelitiannya Karabulut et.al melakukan perbandingan beberapa seleksi fitur yang diterapkan pada beberapa algoritma klasifikasi dan hasil akhir pada penelitiannya menyimpulkan bahwa dari 6 seleksi fitur yang diteliti berikut adalah seleksi fitur yang menghasilkan performa klasifikasi paling baik; klasifikasi Naïve Bayes dengan seleksi fitur Gain Ratio, klasifikasi Multilayer Perceptron dengan seleksi fitur Chi-square dan klasifikasi J48 dengan seleksi fitur Information Gain.

Fokus penelitian ini adalah untuk membantu menentukan fitur yang memiliki pengaruh besar terhadap proses prediksi cacat perangkat lunak, fitur yang memiliki pengaruh besar memungkinkan proses prediksi cacat perangkat lunak akan menjadi lebih akurat. Saling membantu atau tolong-menolong adalah suatu sikap yang diperintahkan dalam islam, penejelasan tersebut ada pada potongan Ayat Alqur'an surat al-ma'idah ayat 2 berikut (Al-Sheikh, 2011:9);

يَا أَيُّهَا الَّذِينَ آمَنُوا لَا تُحِلُّوا شَعَائِرَ اسَّهِ وَلَا الشَّهْرَ الْحَرَامَ وَلَا الْهَدْيَ وَلَا الْقَلَائِدَ وَلَا آمِينَ الْبَيْتَ الْحَرَامَ يَبْتَغُونَ فَضْلًا مِنْ رَبِّهِمْ وَرِضْوَانًا وَإِذَا حَلَلْتُمْ فَاصْطَادُوا وَلَا يَجْرِمَنَّكُمْ شَنَانُ قَوْمٍ أَنْ صَدُّوكُمْ عَنِ الْمَسْجِدِ يَبْتَغُونَ فَضْلًا مِنْ رَبِّهِمْ وَرِضْوَانًا وَإِذَا حَلَلْتُمْ فَاصْطَادُوا وَلَا يَجْرِمَنَّكُمْ شَنَانُ قَوْمٍ أَنْ صَدُّوكُمْ عَنِ الْمُسْجِدِ الْحَرَامِ أَنْ تَعْتَدُوا وَتَعَاوَنُوا عَلَى الْبِرِ وَالتَّقُولُ اللهَ سَولِهُ لَا يَعْوَنُوا عَلَى الْإِثْمِ وَالْعُدُوانِ وَالتَّقُولُ اللهَ شَدِيدُ اللهَ اللهَ اللهَ اللهَ اللهَ اللهَ اللهُ الللهُ اللهُ اللهُ اللهُ اللل

Artinya: "Hai orang-orang yang beriman, janganlah kamu melanggar syi'ar-syi'ar Allah, dan jangan melanggar kehormatan bulan-bulan haram, jangan (mengganggu) binatang-binatang had-ya, dan binatang-binatang qalaa-id, dan jangan (pula) mengganggu orang-orang yang mengunjungi Baitullah sedang mereka mencari kurnia dan keridhaan dari Tuhannya dan apabila kamu telah menyelesaikan ibadah haji, maka bolehlah berburu. Dan janganlah sekali-kali

kebencian(mu) kepada sesuatu kaum karena mereka menghalang-halangi kamu dari Masjidilharam, mendorongmu berbuat aniaya (kepada mereka). **Dan tolong-menolonglah kamu dalam (mengerjakan) kebajikan dan takwa, dan jangan tolong-menolong dalam berbuat dosa dan pelanggaran**. Dan bertakwalah kamu kepada Allah, sesungguhnya Allah amat berat siksa-Nya." (al-ma'idah:2).

Pada potongan ayat tersebut Allah SWT memerintahkan untuk saling tolong-menolong dalam aktivitas kebaikan dan dilarang untuk tolong-menolong dalam perbuatan yang salah dan mengakibatkan dosa, potongan ayat tersebut dalam Tafsir Ibnu Katsir dijelaskan Allah SWT memerintahkan kepada hambahamba-Nya yang beriman untuk saling menolong dalam berbuat kebaikan yaitu kebajikan dan meninggalkan hal-hal yang mungkar; hal ini dinamakan ketakwaan. Allah SWT melarang mereka bantu- membantu dalam kebatilan serta tolongmenolong dalam perbuatan dosa dan hal-hal yang diharamkan. Ibnu Jarir mengatakan bahwa dosa itu ialah meninggalkan apa yang diperintahkan oleh Allah untuk dikerjakan. Pelanggaran itu artirnya melampaui apa yang digariskan oleh Allah dalam agama kalian, serta melupakan apa yang difardukan oleh Allah atas diri kalian dan atas diri orang lain. Penjelasan tersebut kemudian diperkuat dengan hadits yang diriwayatkan oleh Imam Bukhari secara munfarid melalui hadis Hasyim dengan sanad yang sama dan lafaz yang semisal. Keduanya mengetengahkan hadis ini melalui jalur Sabit, dari Anas yang menceritakan bahwa Rasulullah Saw. telah bersabda:

انْصُرْ أَخَاكَ ظَالِمًا أَوْ مَظْلُومًا". قِيلَ: يَا رَسُولَ اللهِ، هَذَا نَصَرْتُهُ مَظْلُومًا، فَكَيْفَ أَنْصُرُهُ ظَالِمًا؟ قَالَ: "تَمْنَعُهُ مِنَ الظُّلْمَ، فَذَاكَ نَصْرُكَ إِيَّاهُ

Artinya: "Tolonglah saudaramu, baik dia berbuat aniaya ataupun dianiaya." Ditanyakan, "Wahai Rasulullah, orang ini dapat aku tolong bila dalam

keadaan teraniaya, tetapi bagaimana menolongnya jika dia berbuat aniaya?" Rasulullah Saw. menjawab, "Kamu cegah dia dari perbuatan aniaya, itulah cara kamu menolongnya.".

Berdasarkan penjelasan masalah yang ada dan juga ayat Alqur'an serta hadits, penulis melakukan penelitian ini untuk membantu menentukan fitur-fitur yang memiliki pengaruh besar atau relevan terhadap prediksi cacat perangkat lunak, proses pemilihan fitur yang relevan dilakukan dengan teknik seleksi fitur. Pada penelitian ini penulis mengusulkan teknik seleksi fitur menggunakan metode seleksi fitur *Gain ratio* karena berdasarkan penelitian-penelitian terdahulu yang menunjukkan bahwa seleksi fitur *Gain Ratio* dapat meningkatkan akurasi prediksi/klasifikasi, hal ini menunjukkan bahwa fitur yang dihasilkan dari seleksi fitur *Gain Ratio* memiliki pengaruh besar terhadap proses prediksi/klasifkasi. Oleh karena itu, pada penelitian ini penulis ingin mengangkat judul "Penentuan Fitur yang Relevan Terhadap Prediksi Cacat Perangkat Lunak Berdasarkan Seleksi Fitur *Gain Ratio*".

1.2. Identifikasi Masalah

Berdasarkan uraian pada latar belakang masalah, maka dapat diidentifikasi bahwa masalahnya adalah tidak semua fitur yang ada dalam *dataset* NASA MDP memiliki pengaruh besar atau relevan terhadap prediksi cacat perangkat lunak sehingga perlu dilakukan seleksi fitur untuk mendapatkan fitur yang relevan terhadap prediksi cacat perangkat lunak, penentuan fitur yang relevan terhadap prediksi cacat perangkat lunak, penentuan fitur yang relevan terhadap prediksi cacat perangkat lunak pada penelitian ini menggunakan seleksi fitur *Gain Ratio*.

Masalah yang ada dapat dirumuskan menjadi pertanyaan penelitian yaitu fitur apa saja yang relevan terhadap prediksi cacat perangkat lunak berdasarkan seleksi fitur *Gain Ratio*?.

1.3. Tujuan Penelitian

Berdasarkan identifikasi masalah, maka tujuan dari penelitian ini untuk menentukan fitur yang relevan terhadap prediksi cacat perangkat lunak berdasarkan seleksi fitur *Gain Ratio*.

1.4. Batasan Masalah

Untuk menjaga fokus dari penelitian ini, maka ada beberapa batasan masalah sebagai berikut:

- a. Data yang digunakan berupa dataset metrics data program (MDP) yang diunduh dari PROMISE (Predictor Models in Software Engineering) repository melalui http://promise.site.uottawa.ca/SERepository pada hari kamis, 8 Maret 2018 yang terdiri dari 5 dataset yaitu dataset CM1, JM1, KC1, KC2 dan PC1.
- b. Proses *cleaning* dan klasifikasi Naïve Bayes menggunakan fungsi dari *library Weka* versi 3.6.7.

1.5. Manfaat Penelitian

Adapun manfaat yang diharapkan dari penelitian ini adalah dapat meningkatkan kualitas perangkat lunak melalui pengujian perangkat lunak dengan cara prediksi cacat perangkat lunak yang akurat berdasarkan fitur yang relevan terhadap prediksi cacat perangkat lunak.

1.6. Sistematika Penulisan

Sistematika penulisan ini memberikan gambaran dan kerangka yang jelas mengenai pokok bahasan di setiap bab dalam penelitian ini. Berikut penjelasan sistematika pembahasan pada masing-masing bab:

BAB I: PENDAHULUAN

Pada bab pendahuluan berisi latar belakang masalah, identifikasi masalah, tujuan penelitian, manfaat penelitian, batasan masalah dan sistematika penulisan.

BAB II: STUDI PUSTAKA

Bab dua yaitu studi pustaka menjelaskan tentang penelitian terkait dan teori yang berhubungan dengan permasalahan penelitian.

BAB III: ANALISIS DAN PERANCANGAN

Pada bab ini akan dibahas tentang analisis dan perancangan sistem atau program terhadap metode yang digunakan.

BAB IV: UJI COBA DAN PEMBAHASAN

Pada bab ini menjelaskan tentang proses uji coba yang meliputi lingkungan uji coba, data uji coba, tampilan sistem dan hasil uji coba serta pembahasan terhadap hasil uji coba.

BAB V: PENUTUP

Berisi kesimpulan dan saran berdasarkan hasil yang telah dicapai sehingga dapat digunakan sebagai bahan pertimbangan bagi pihakpihak yang berkepentingan serta kemungkinan pengembangannya.

BAB II

STUDI PUSTAKA

Pada bab studi pustaka ini menjelaskan teori-teori yang digunakan dalam penelitian ini yang meliputi cacat perangkat lunak, prediksi cacat perangkat lunak, diskritisasi data, diskritisasi data dengan *Equal Width Binning*, seleksi fitur, seleksi fitur dengan *Gain Ratio*, K-fold Cross validation, klasifikasi Naïve Bayes, Evaluasi klasifikasi dan terakhir tentang penelitian terkait yang pernah dilakukan untuk mendapatkan gambaran secara lengkap terkait penelitian prediksi cacat perangkat lunak.

2.1 Cacat Perangkat Lunak

Cacat perangkat lunak atau biasa dikenal dengan Software Defect didefinisikan sebagai cacat pada perangkat lunak seperti cacat pada dokumentasi, pada kode program, pada desain dan hal-hal lain yang menyebabkan kegagalan perangkat lunak (Akbar, 2017). Penjelasan lain dari Runeson et.al (2006) yang menejelaskan bahwa cacat perangkat lunak terdiri dari defect kebutuhan (requirement defect), defect desain (design defect), dan kode cacat (code defect).

Defect atau cacat perangkat lunak merupakan faktor penting yang mempengaruhi kualitas perangkat lunak. Kualitas perangkat lunak dapat ditingkatkan dengan meminimalkan adanya cacat pada perangkat lunak melalui perbaikan pada bagian yang mungkin menghasilkan cacat perangkat lunak ketika proses pengembangan perangkat lunak.

Sebagai upaya untuk menghasilkan perangkat lunak yang kualitas maka perlu adanya pengujian yang baik seperti melakukan deteksi kecacatan perangkat lunak. Tahap pengujian merupakan tahap yang paling penting dalam *Software Development Life Cycle* (SDLC), tahap pengujian melakukan pengujian perangkat lunak dan pemeriksaan validasi, setelah produk dinyatakan tidak cacat maka persetujuan diberikan dan perangkat lunak bisa digunakan pada kebutuhan. Biaya untuk memperbaiki cacat yang terdeteksi ketika masih pada tahap pengembangan jauh lebih sedikit dibandingkan ketika perangkat lunak sudah digunakan pada kebutuhan (Pelayo & Dick, 2007). Salah satu cara yang bisa dilakukan untuk pengujian adalah teknik prediksi cacat perangkat lunak, teknik tersebut dapat mendeteksi hingga modul terkecil perangkat lunak yang memiliki kecenderungan cacat.

2.2 Prediksi Cacat Perangkat Lunak

Prediksi cacat perangkat lunak atau *Software Defect Prediction* (SDP) merupakan salah satu cara yang dapat membantu pada tahap pengujian perangkat lunak, sebagaimana telah dijelaskan bahwa dengan prediksi cacat perangkat lunak dapat mengetahui hingga modul terkecil perangkat lunak yang memiliki kecenderungan cacat.

Proses prediksi cacat perangkat lunak yang dilakukan oleh NASA MDP berdasarkan pada modul atau kode program dengan menggunakan fitur-fitur sebagai berikut;

Tabel 2.1 Informasi fitur prediksi cacat perangkat lunak

Simbol	Keterangan
loc	McCabe's "line count of code"
v(g)	McCabe "Cyclomatic complexity"
ev(g)	McCabe "Essential complexity"
iv(g)	McCabe "Design complexity"
uniq_Op	unique operators
uniq_Opnd	unique operands
total_Op	total operator
total_Opnd	total operand
n	Halstead "Total operator + operand"
V	Halstead "Volume"
1	Halstead "Program length"
d	Halstead "Difficulty"
i	Halstead "Intelligence"
e	Halstead " Effort to write program "
b	Halstead "Error estimate"
t	Halstead "Time to write program"
lOCode	Count of Statement Lines
lOComment	Count of lines of comments
lOBlank	Count of blank lines
lOCodeAndComment	Count of Code and Comments Lines
branchCount	Branch count
defect/problem	Hasil prediksi {false,true/yes,no}

Berdasarkan tabel 2.1 terlihat bahwa fitur atau metrik yang digunakan berjumlah 21 fitur, berikut adalah penjelasan dari setiap fitur yang digunakan (Menzies, 2005; Menzies, 2007; Saifudin, 2014; Akbar, 2017);

a. Line of code (loc)

Metrik loc ini merupakan metrik yang umum digunakan untuk mengukur kompleksitas sebuah kode program dengan cara menghitung jumlah baris kode program suatu perangkat lunak.

b. Cyclomatic complexity (v(g))

Metrik v(g) adalah nilai metrik kompleksitas yang digunakan untuk menilai struktur logika keputusan sebuah kode program. Logika keputusan dapat berupa statemen *if* atau *looping* yang diilustrasikan sebagai sebuah *graph* yang terdiri dari arc(e) dan node(n). Rumus perhitungannya adalah v(g) = e - n + 2.

c. Essential complexity (ev(g))

Metrik ev(g) adalah nilai metrik kompleksitas yang dihitung dengan mengurangi nilai *cyclomatix complexity* v(g) dengan jumlah *subflowgraph* yang terdiri dari *single entry* dan *single exit*. Rumus perhitungan *Essential complexity* adalah ev(g) = v(g) - m, m adalah jumlah *subflowgraph* yang merupakan *single entry* dan *single exit*.

d. Design complexity (iv(g))

Design complexity adalah cyclomatic complexity dari suatu modul yang mengurangi flowgraph. Flowgraph "g" dari sebuah modul dikurangi untuk menghilangkan kompleksitas yang tidak mempengaruhi keterkaitan antara modul desain. Design complexity dihitung dengan mengurangi modul pada flowgraph dengan cara menghilangkan node decisicon yang tidak memiliki dampak pada kontrol sebuah program.

e. *Unique operators* (uniq_Op)

Metrik uniq_Op merupakan nilai metrik yang didapat dengan cara menghitung jumlah operator yang berbeda dalam sebuah kode program. Sebagai contoh perhitungan perhatikan kode program berikut;

```
main()
{
    int a, b, c, avg;
    scanf("%d %d %d", &a, &b, &c);
    avg = (a + b + c) / 3;
    printf("avg = %d", avg);
}
```

uniq_Op pada program tersebut adalah main, (), {}, int, scanf, &, =, +, /, printf,',', ; sehingga nilai uniq_Op = 12.

f. Unique operands (uniq_Opnd)

Metrik uniq_Opnd merupakan nilai metrik yang didapat dengan cara menghitung jumlah operand yang berbeda dalam sebuah kode program. Pada kode program contoh sebelumnya maka uniq_Opnd-nya adalah a, b, c, avg, "%d %d %d", 3, "avg = %d" sehingga nilai uniq_Opnd = 7.

g. Total operator (total_Op)

Metrik total_Op merupakan nilai metrik yang didapat dengan cara menghitung jumlah operator dalam sebuah kode program. Berdasarkan contoh kode program sebelumnya maka nilai total_Op-nya adalah 27.

h. Total operand (total_Opnd)

Metrik total_Opnd merupakan nilai metrik yang didapat dengan cara menghitung jumlah operand dalam sebuah kode program. Berdasarkan contoh kode program sebelumnya maka nilai total_Opnd-nya adalah 15.

i. Total operator + operand (n)

Metrik "n" merupakan nilai metrik yang didapat dengan cara menghitung jumlah total_Op dengan total_Opnd dalam sebuah kode program. Rumus untuk menghitung "n" adalah $n = total_Op + total_Opnd$. Berdasarkan contoh sebelumnya maka nilai n = 27 + 15 = 42.

j. Volume (v)

Metrik "v" merupakan nilai metrik yang didapat dengan cara menghitung sesuai rumus $v = n * log_2(uniq_0p + uniq_0pnd)$. Berdasarkan contoh sebelumnya maka nilai $v = 42 * log_2(12 + 7) = 178.4$.

k. Program length (1)

Metrik "l" merupakan nilai metrik yang didapat dengan cara menghitung sesuai rumus $l = V^* / n$. V^* adalah volume pada implementasi minimal yang didapat dengan perhitungan $V^* = (uniq_Op^* + uniq_Opnd^*) * log_2(uniq_Op^* + uniq_Opnd^*), uniq_Op^* adalah jumlah operator potensial (hanya nama fungsi dan operator "return") sehingga nilai uniq_Op^* = 2 dan uniq_Opnd^* adalah jumlah operan potensial (jumlah argumen pada modul). Berdasarkan penjelasan tersebut sehingga rumus v* menjadi <math>V^* = (2 + uniq_Opnd^*) * log_2(2 + uniq_Opnd^*)$.

l. Difficulty (d)

Metrik "d" merupakan nilai matrik hasil perhitungan dari d = (uniq_Op / 2) * (total_Opnd / uniq_Opnd). Berdasarkan contoh sebelumnya maka nilai d = (12/2) * (15/7)=12.85.

m. Intelligence (i)

Metrik "i" digunakan untuk mengukur kompleksitas algoritma yang diterapkan pada kode program dan tidak bergantung pada bahasa pemrograman yang dipakai. Rumus dari metrik i = v / d. Berdasarkan contoh sebelumnya maka nilai i =178.4 / 12.85 = 13.8833.

n. Effort to write program (e)

Metrik e adalah metrik yang digunakan untuk mengukut effort atau usaha untuk menulis sebuah kode program. Rumus untuk menghitung nilai metrik ini dengan persamaan e = d * v. Berdasarkan contoh sebelumnya maka nilai e = 12.85 * 178.4 = 2292.44.

o. Error estimate (b)

Metrik b merupakan metrik yang menunjukkan jumlah bug validasi, perhitungan b dilakukan dengan rumus b = v / 3000. Berdasarkan contoh sebelumnya maka nilai b = 178.4 / 3000 = 0.0595.

p. Time to write program (t)

Metrik "t" merupakan metrik yang digunakan untuk mengukur perkiraan waktu yang proportional dari setiap effort. Rumus untuk menghitung nilai t dengan t = e / 18(seconds). Berdasarkan contoh sebelumnya maka nilai t = 2292.44 / 18 = 127.357.

q. Count of Statement Lines (IOCode)

Metrik IOCode merupakan metrik yang menghitung baris statement (if, while, for) dalam baris kode program.

r. Count of lines of comments (IOComment)

Metrik IOComment merupakan metrik yang menghitung jumlah baris komen dalam kode program.

s. Count of blank lines (IOBlank)

Metrik IOBlank merupakan metrik yang menghitung jumlah baris yang kosong dalam kode program.

t. Count of Code and Comments Lines (IOCodeAndComment)

Metrik IOCodeAndComment merupakan metrik yang menghitung jumlah baris kode yang terdapat komen.

u. Branch count (branchCount)

Metrik branchCount adalah metrik yang menghitung jumlah percabangan dalam kode program. Jumlah percabangan oleh statement if dan case dalam kode program.

2.3 Diskritisasi Data

Diskritisasi adalah prosedur pengolahan data yang mentransformasikan data kuantitatif menjadi data kualitatif (Yang, et.al, 2010). Diskritisasi adalah salah satu tahap pada praproses data yang paling penting. Sebagian besar algoritma machine learning yang ada mampu mengekstrak pengetahuan dari database yang menyimpan fitur diskrit. Jika fitur kontinyu, algoritma dapat diintegrasikan dengan algoritma diskritisasi yang mengubahnya menjadi fitur diskrit. Metode diskritisasi digunakan untuk mengurangi jumlah nilai fitur kontinyu yang diberikan dengan membagi rentang fitur menjadi interval. Label interval kemudian dapat digunakan untuk menggantikan nilai data aktual. Diskritisasi data

dalam proses prediksi cacat perangkat lunak dapat meningkatkan akurasi, metode *machine learning* yang digunakan Naïve Bayes dan j48 (Singh & Verma, 2009).

2.4 Diskritisasi Data dengan Equal Width Binning

Equal Width Binning adalah salah satu metode diskritisasi unsupervised, metode ini banyak digunakan karena simple sehingga mudah diterapkan. Yang, et.al (2010) menjelaskan alur proses diskritisasi dengan Equal Width Binning sebagai berikut;

- Mendifinisakan nilai K, K adalah jumlah interval. K akan membagi garis bilangan antara Vmin dan Vmax menjadi interval K dengan lebar yang sama. Vmin adalah nilai terkecil dari fitur dan Vmax adalah nilai terbesar dari fitur. Daugherty, et.al. (1995) mendefinisikan nilai $K = max\{1,2 \log L\}$, nilai L adalah jumlah nilai pengamatan yang berbeda untuk setiap fitur. Pemilihan tersebut berdasarkan penelitian oleh Spector pada tahun 1994, heuristik dipilih berdasarkan algoritma sistogram histogram S-plus.
- b. Menghitung lebar setiap interval dengan rumus $W = \frac{Vmax Vmin}{K}$
- Menentukan titik potong yang didapat dengan menghitung,
 Vmin + W, Vmin + 2W,..., Vmin + (K-1)W.

2.5 Seleksi Fitur

Esra *et.al* (2012) menjelaskan bahwa seleksi fitur merupakan salah satu teknik dari reduksi data, konsep dasar dari seleksi fitur adalah menghilangkan data yang tidak begitu berpengaruh dalam suatu *dataset*. Seleksi Fitur merupakan

proses menghapus data yang redundan atau data yang kiranya tidak begitu berpengaruh dari suatu *dataset*, dari proses seleksi fitur dapat meningkatkan akurasi dari klasifikasi karena fitur-fitur yang sebelumnya tidak begitu berpengaruh atau redundan akan terseleksi terlebih dahulu termasuk data-data yang mengandung *noisy*.

Manfaat dari adanya seleksi fitur adalah dapat meningkatkan akurasi klasifikasi dan juga dapat meningkatkan proses *training* (Bratu *et.al*, 2008). Pada penelitian ini seleksi fitur menggunakan metode *Gain Ratio* hal ini berdasarkan penelitian yang pernah dilakukan dan seleksi fitur dengan *Gain Ratio* menunjukkan peningkatan akurasi prediksi.

2.6 Seleksi Fitur dengan Gain Ratio

Tahap awal dari prosedur ini adalah merubah fitur numerik menjadi fitur kategoris karena pendekatan ini bekerja dengan data kategoris (Trabelsi, *et.al.* 2017). Proses penghitungan *Gain Ratio* (Suyanto, 2017:134-138), sebagai berikut;

a. Penghitungan nilai Entropy

$$Entropy(S) = \sum_{i}^{c} -p_{i} \log_{2} p_{i}$$
 (2,1)

C = jumlah nilai yang ada pada fitur target (jumlah kelas)

Pi = rasio antara jumlah sampel pada kelas i terhadap semua sampel pada himpunan data

Dari persamaan (2,1) dapat dicermati bahwa apabila hanya terdapat 2 kelas dan dari kedua kelas tersebut memiliki komposisi jumlah sampel yang sama, maka entropynya = 0.

b. Hitung nilai *Information Gain*

Setelah mendapatkan nilai entropy, maka langkah selanjutnya adalah melakukan perhitungan nilai Information Gain. Information Gain didefinisikan sebagai ukuran efektvitas suatu fitur dalam mengklasifikasikan data. Perhitungan nilai Information Gain dilakukan setelah perhitungan nilai Entropy karena pada perhitungan nilai Information Gain memerlukan inputan berupa nilai Entropy dan nilai Information Gain hasil perhitungan ini nantinya akan menjadi input perhitungan Gain Ratio. Berdasarkan perhitungan matematis Information Gain dari suatu fitur A dapat dilihat pada persamaan (2,2).

$$Gain(S,A) = Entropy(S) - \sum_{v \in values(A)} \frac{|S_v|}{|S|} entropy(S_v)$$
(2,2)

A : fitur

V : menyat<mark>akan suatu nil</mark>ai yang mungkin untuk fitur A

Values (A) : himpunan nilai-nilai yang mungkin untuk fitur A

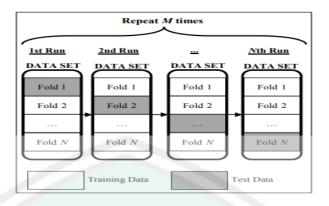
: jumlah sampel untuk nilai v

: jumlah seluruh sampel data

 $Entropy(S_v)$: entropy untuk sampel-sampel yang memiliki nilai v

c. Hitung nilai Gain Ratio

Untuk menghitung *Gain Ratio* diperlukan *split information*. *Split information* dihitung dengan persamaan (2,3).


$$SplitInfo(S,A) = -\sum_{j=1}^{c} \frac{|S_j|}{|S|} \log_2 \frac{|S_j|}{|S|}$$
 (2,3)

Dimana S_1 sampai S_c adalah c *subset* yang dihasilkan dari pemecahan S dengan menggunakan fitur A yang mempunyai banyak C nilai. Selanjutnya *Gain Ratio* dihitung dengan persamaan (2,4).

$$GainRatio(S,A) = \frac{Gain(S,A)}{SplitInfo(S,A)}$$
(2,4)

2.7 K-fold Cross Validation

K-fold Cross-Validation merupakan teknik pembagian data untuk proses testing suatu klasifikasi, k-fold Cross-Validation membagi data menjadi data training dan data testing dalam K bagian. Metode k-fold Cross-Validation bekerja dengan cara mempartisi himpunan data D secara acak menjadi k fold (subhimpunan) yang saling bebas : f₁, f₂,....., f_k, sehingga masing-masing fold berisi 1/k bagian data (Suyanto, 2017, p.243-244). Penjelasan lain oleh Arrar & Ayan (2017), teknik cross-validation ini akan melakukan pembagian dari keseluruhan data dibagi menjadi subset N; satu subset digunakan sebagai data uji, subset tersisa (N-1) digunakan sebagai data pelatihan. Proses ini diulang sebanyak N kali, untuk memungkinkan setiap subset digunakan sebagai data uji. Gambar 2.1 menunjukkan teknik dari cross-validation.

Gambar 2.1 Teknik M x N Cross-Validation

Ilustrasi dari proses k-fold cross-validation adalah sebagai berikut; misal data D akan dilakukan 5 fold cross validation maka data D akan menjadi data D₁, D₂, D₃, D₄ dan D₅. Data D₁berisi empat fold: f₂, f₃, f₄, dan f5 untuk data latih serta satu fold f1 untuk data uji. Himpunan data D₂ berisi fold f₁, f₃, f₄,dan f₅ untuk data latih fold f₂ untuk data uji. Demikian seterusnya untuk himpunan data D₃, D₄, dan D₅, sehingga setiap fold pernah menjadi data uji sebanyak satu kali (Suyanto,2017, p.243-244).

2.8 Klasifikasi Naïve Bayes

Metode klasifikasi ini didasarkan pada teorema Bayes yang ditemukan oleh Thomas Bayes pada abad ke-18 dengan mengasumsikan independensi atau ketidaktergantungan yang kuat (naif) pada fitur yang ada artinya sebuah fitur pada sebuah data tidak saling berkaitan atau tidak memiliki hubungan apapun antara fitur yang satu dengan fitur lainnya, berikut adalah persamaan umum teorema Bayes (Prasetyo, 2012:59-62; Suyanto, 2017:126-129);

$$P(Y|X) = \frac{P(Y)P(X|Y)}{P(X)}$$
(2,5)

P(Y|X): probabilitas akhir bersyarat, suatu hipotesis Y terjadi jika diberikan

bukti X terjadi

P(X|Y): probabilitas sebuah bukti X terjadi akan mempengaruhi hipotesis Y

P(Y): probabilitas awal hipotesis Y terjadi tanpa memandang bukti apapun

P(X): probabilitas awal bukti X terjadi tanpa memandang hipotesis/bukti yang lain

Dasar dari aturan bayes adalah bahwa hasil dari hipotesis atau peristiwa (Y) dapat diperkirakan berdasarkan pada beberapa bukti (X) yang diamati, misalnya ada beberapa bukti sebagai berikut X_1 , X_2 ,..., X_n , sehingga probabilitas akhir dituliskan sebagai;

$$P(Y|X_1, X_2, ..., X_n) = \frac{P(X_1, X_2, ..., X_n|Y) P(Y)}{P(X_1, X_2, ..., X_n)}$$
(2,6)

Karena Naïve Bayes mengasumsikan bahwa setiap fitur independen maka persamaan (2,6) dapat diubah menjadi;

$$P(Y|X_1, X_2, ..., X_n) = \frac{P(X_1|Y) \times P(X_2|Y) \times ... \times P(X_n|Y) \times P(Y)}{P(X_1) \times P(X_2) \times ... \times P(X_n)}$$
(2,7)

Berdasarkan persamaan (2,7) dengan k kelas maka persamaan Naïve Bayes untuk klasifikasi adalah sebagai berikut;

$$P(Y_k|X) = \frac{P(Y_k) \prod_{i=1}^n P(X_i|Y_k)}{P(X)}$$
(2,8)

 $P(Y_k|X)$ merupakan probabilitas data dengan vektor X pada kelas Y_k . $P(Y_k)$ probabilitas awal kelas Y_k . $\prod_{i=1}^n P(X_i|Y_k)$ probabilitas independen kelas Y_k dari semua fitur (n) dalam vector X. Karena nilai P(X) selalu tetap (artinya, tuple X memiliki probabilitas yang sama untuk masuk kedalam kelas manapun) sehingga

dalam perhitungan prediksi akan memaksimalkan $P(Y_k) \prod_{i=1}^n P(X_i | Y_k)$. Dalam perhitungan $P(X_i | Y_k)$ umumnya menggunakan fitur bertipe kategoris namun untuk fitur bertipe numerik (kontinu) ada 2 perlakuan yaitu;

- a. Melakukan diskritisasi terhadap fitur kontinu, mengganti nilai fitur kontinu dengan nilai interval diskrit.
- b. Membiarkan fitur tetap bertipe kontinu dan melakukan perhitungan sesuai dengan distribusi Gaussian yang didefinisiakan sebagai;

$$P(X_i|Y_k) = \frac{1}{\sigma_{Y_k}\sqrt{2\pi}}e^{-\frac{\left(x-\mu_{Y_k}\right)}{2\sigma_{Y_k}^2}}$$
(2,9)

Yang diketahui bahwa σ_{Y_k} dan μ_{Y_k} adalah standart deviasi dan rata-rata dari nilai-nilai pada fitur kontinu X_i untuk kelas Y_k .

Penentuan kelas hasil prediksi dengan memilih nilai terbesar dari probabilitas kelas hasil perhitungan $P(Y_k) \prod_{i=1}^n P(X_i | Y_k)$, jika ditulis dalam persamaan tampil sebagai berikut;

$$arg max P(Y_k) \prod_{i=1}^{n} P(X_i | Y_k)$$
 (2.10)

Perlu diketahui bahwa algoritma ini dalam menentukan hasil klasifikasi berdasarkan perhitungan dari data latih, sehingga untuk dapat menggunakan algoritma ini harus memiliki data yang bisa digunakan untuk data latih dan pengujian dilakukan dengan menggunakan data *testing* atau data baru.

2.9 Evaluasi Klasifikasi

Hasil evaluasi ini akan menunjukkan informasi mengenai seberapa besar akurasi yang dicapai. Teknik evaluasi yang akan digunakan dikenal sebagai confusion matrix. Confusion matrix ini akan merepresentasikan kebenaran dari sebuah prediksi.

Confusion matrix didapat dengan menghitung hasil dari proses klasifikasi terhadap data yang ada, teknik yang bisa digunakan untuk menguji akurasi klasifikasi adalah dengan teknik klasifikasi menggunakan croos-validation, dengan teknik tersebut bisa mempermudah dalam mengukur akurasi algoritma klasifikasi dengan jumlah data yang besar. Penggunaan teknik cross validation cukup mudah karena user hanya perlu melakukan input seluruh data klasifikasi kemudian sistem akan membagi data inputan menjadi data training dan testing sesuai dengan teknik cross validation.

Dari hasil proses klasifikasi dengan teknik *cross validation* akan didapat sebuah *confusion matrix*. Arar & Ayan (2017) menjelaskan *confusion matrix* sebagai berikut;

Tabel 2.2 Confusion Matrix

		Kenyataan			
		+	-		
Hasil	+	True Positive	False Positive		
Prediksi	-	False Negative	True Negative		

- > True Positive (TP) adalah jumlah tuple positif yang dilabeli dengan benar oleh klasifikasi.
- > False Positive (FP) jumlah tuple negative yang dilabeli salah oleh klasifikasi
- False Negative (FN) jumlah tuple positif yang dilabeli salah oleh klasifikasi.
- > True Negative (TN) adalah jumlah tuple negatif yang dilabeli dengan benar oleh klasifikasi.

Berdasarkan Nilai dari *confusion matrix* tersebut bisa dihitung nilai akurasi suatu prediksi. Untuk perhitungannya didefinisikan dengan Persamaan (2,11).

$$Akurasi = \frac{TP + TN}{TP + TN + FP + FN} \tag{2.11}$$

2.10 Penelitian Terkait

Terdapat beberapa penelitian terdahulu yang mendukung antara lain sebagai berikut;

Penelitian yang dilakukan oleh Wahono (2014) yang berjudul "Genetic Feature Selection for Software Defect Prediction", pada penelitian tersebut Wahono menerapkan seleksi fitur Genetic Algorithm (GA) untuk mendapatkan fitur yang relevan terhadap prediksi cacat perangkat lunak dan teknik Bagging untuk menangani class imbalance. Eksperimen untuk membuktikan pengaruh seleksi fitur GA dan Bagging dilakukan dengan melakukan klasifikasi terhadap 10 algoritma klasifikasi sebagai berikut; Logistic Regression (LR), Linear Discriminant Analysis (LDA), Naïve Bayes (NB), k-nearest neighbor (k-NN), K*,

Back Propagation (BP), Support Vector Machine (SVM), C4.5, Classification and Regression Tree (CART) dan Random Forest (RF). Berdasarkan hasil eksperimen yang telah dilakukan disimpulkan bahwa seleksi fitur GA dan Bagging menunjukkan peningkatan performa klasifikasi dibandingkan dengan tanpa menerapkan seleksi fitur GA dan Bagging. Jika ditinjau dari persamaan dan perbedaan antara penelitian yang dilakukan oleh Wahono dengan penelitian ini maka diketahui yaitu sama-sama untuk prediksi cacat perangkat lunak dan uji coba menggunakan klasifikasi NB, sedangkan perbedaannya adalah pada penelitian Wahono metode seleksi fitur yang digunakan GA sedangkan pada data yang digunakan juga berbeda.

Penelitian lain dilakukan oleh Wang et.al (2012) dengan judul "Software measurement data reduction using ensemble techniques", pada penelitian tersebut menggunakan 17 teknik seleksi fitur berbasis ensemble yang diterapkan pada 16 dataset berbeda yang kemudian dilakukan klasifikasi untuk mengetahui performa dari hasil seleksi fitur dan membandingkan dengan performa tanpa seleksi fitur menggunakan algoritma klasifikasi sebagi berikut; Logistic Regression (LR), Naïve Bayes (NB), k-nearest neighbor (k-NN) dan Multilayer Perceptron (MLP). Berdasarkan eksperimen yang telah dilakukan disimpulkan bahwa tidak ada metode ensemble yang mendominasi, namun secara umum bisa disimpukan bahwa ensemble dengan sedikir rangker sama atau lebih baik dari pada banyak rangker atau bahkan seluruh rangker. Jika ditinjau dari persamaan dan perbedaan antara penelitian yang dilakukan oleh Wang et.al dengan penelitian ini maka diketahui yaitu sama-sama untuk prediksi cacat perangkat lunak dan uji coba

sama-sama menggunakan klasifikasi NB, sedangkan perbedaannya adalah pada penelitian Wang *et.al* metode seleksi fitur dengan teknik *ensemble* yang berjumlah 17 seleksi fitur *ensemble* sedangkan pada penelitian ini mengunakan seleksi fitur GR dan perbedaan yang lain terletak pada data yang digunakan juga berbeda.

Penelitian lain juga dilakukan oleh Karabulut et.al (2012) dengan judul "A comparative study on the effect of feature selection on classification accuracy", pada penelitian tersebut Karabulut et.al melakukan perbandingan beberapa seleksi fitur antara lain Information Gain (IG), Gain Ratio (GR), Symmetrical Uncertainty (SU), Relief-F (RF), One-R, Chi-square (CS) yang diterapkan untuk mendapatkan fitur yang relevan pada 15 dataset dan untuk melakukan pengujian dilakukan pengukuran performa terhadap beberapa algoritma klasifikasi antara lain; Naïve Bayes (NB), Multilayer Perceptron (MLP) dan decision tree J48. Berdasarkan eksperimen yang telah dilakukan disimpulkan bahwa dari 6 seleksi fitur yang diteliti, berikut adalah seleksi fitur yang menghasilkan performa klasifikasi paling baik; klasifikasi Naïve Bayes dengan seleksi fitur Gain Ratio, klasifikasi Multilayer Perceptron dengan seleksi fitur Chi-square dan klasifikasi J48 dengan seleksi fitur Information Gain. Jika ditinjau dari persamaan dan perbedaan antara penelitian yang dilakukan oleh Karabulut et.al dengan penelitian ini maka diketahui yaitu sama-sama menggunakan seleksi fitur Gain Ratio dan juga sama-sama melakukan uji coba dengan klasifikasi Naïve Bayes, sedangkan perbedaannya terletak pada data yang digunakan.

BAB III

ANALISIS DAN PERANCANGAN

Pada bab ini akan dijelaskan terkait analisis dan perancangan sistem yang diusulkan pada penelitian ini.

3.1 Analisis Sistem

Berdasarkan penjelasan pada bab I, penelitian ini berupaya untuk menentukan atau memilih fitur yang relevan terhadap prediksi cacat perangkat lunak dari keseluruhan fitur yang ada pada *dataset* NASA MDP karena diketahui bahwa *dataset* yang digunakan dibuat tidak khusus untuk pediksi cacat perangkat lunak.

Dataset NASA MDP yang digunakan pada penelitian ini diunduh dari website PROMISE (Predictor Models in Software Engineering) repository melalui alamat http://promise.site.uottawa.ca/SERepository. Dataset yang didapat berupa data yang menyimpan log cacat perangkat lunak yang setiap baris menunjukkan modul terkecil dari sebuah program yaitu berupa method atau function dan setiap kolom menunjukkan nilai metrik. Dataset yang akan digunakan pada penelitian ini berjumlah 5 dataset yaitu dataset CM1, JM1, KC1, KC2 dan PC1. Sebagai gambaran terkait isi dari dataset yang akan digunakan pada penelitian ini penulis menunjukkan salah satu isi dataset dari dataset CM1 yang ditunjukkan pada tabel 3.1.

No	loc	v(g)	ev(g)	iv(g)	••••	defect
1	1.1	1.4	1.4	1.4		False
2	1	1	1	1		True
3	24	5	1	3		False
498	28	6	5	5		True

Setelah data yang dibutuhkan berhasil didapatkan langkah selanjutnya penulis melakukan beberapa pengkajian berbagai referensi yang berkaitan dengan klasifikasi cacat perangkat lunak dengan berbagai metode yang digunakan dari masing-masing penelitian sebelumnya. Studi pustaka ini diharapkan dapat memberikan gambaran secara lengkap terkait penelitian dan dapat memberikan dasar kontribusi untuk prediksi cacat perangkat lunak yang akan dilakukan pada penelitian ini. Berikut ini merupakan beberapa kajian referensi studi pustaka yang dilakukan:

- a. Penelitian terdahulu yang telah melakukan prediksi cacat perangkat lunak berdasarkan dataset kode program dan menerapkan seleksi fitur terhadap dataset yang digunakan.
- **b.** Metode diskritisasi dengan Equal Width Binning.
- c. Metode seleksi fitur dengan Gain Ratio.
- d. Klasifikasi Naïve Bayes.
- e. Evaluasi klasifikasi

Setelah melakukan studi literatur penulis mendapat gambaran tentang proses prediksi cacat perangkat lunak dan pada penelitian ini penulis mengusulkan alur proses yang ditunjukkan pada gambar 3.1.

Urutan proses yang penulis usulkan adalah pertama Dataset yang telah

didapat nantinya menjadi input pada penelitian ini yang kemudian dilakukan

cleaning untuk menghilangkan missing value, selanjutnya dilakukan diskritisasi

dan perhitungan nilai Gain Ratio dengan hasil berupa urutan fitur yang relevan

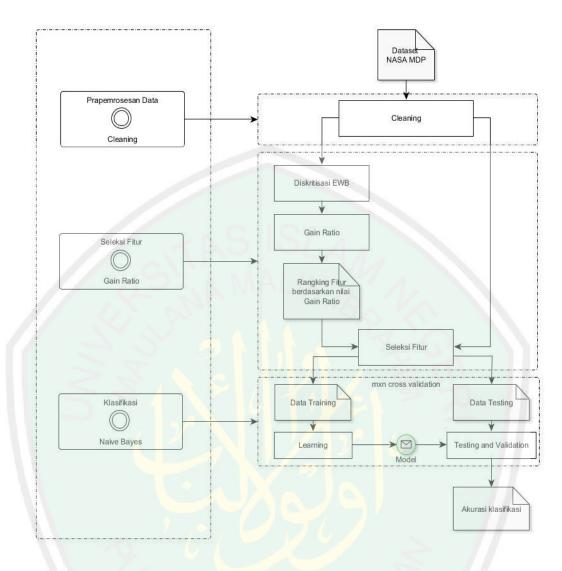
berdasarkan nilai Gain Ratio. Setelah fitur yang relevan sudah terurut maka

dataset yang asli diurutkan sesuai dengan urutan fiur yang relevan berdasarkan

nilai Gain Ratio dan dilakukan seleksi atau pengambilan fitur dengan jumlah

tertentu yang pada penelitian ini penulis melakukan pengambilan jumlah fitur

sebanyak 1 fitur, 2 fitur, 3 fitur, dan seterusnya sampai keseluruhan fitur. Tahap


setelah pengambilan fitur adalah proses klasifikasi dengan teknik 10 fold cross

validation terhadap algoritma klasifikasi Naïve Bayes, hasil dari proses ini berupa

akurasi klasifikasi.

3.2 Perancangan Sistem

Pada bagian ini akan dibahas tentang alur sistem yang diusulkan, sesuai dengan analisis yang telah dilakukan maka alur sistem yang diusulkan ditunjukkan pada gambar 3.1.

Gambar 3.1 Desain Sistem yang diusulkan

3.2.1 Proses Cleaning

Dataset yang didapat memiliki kemungkinan terdapat missing value, oleh karena itu tahap ini dilakukan untuk memperbaiki dataset yang terdapat missing value dengan cara mengisi data missing value dengan nilai rata-rata dari fitur tersebut. Pada penelitian ini untuk proses cleaning memanfaatkan fungsi dari library Weka yaitu weka.filters.unsupervised.attribute.ReplaceMissingValues. Hasil dari proses ini berupa dataset yang sudah tidak lagi terdapat missing value.

3.2.2 Proses Diskritisasi dengan Equal Width Binning

Proses ini dilakukan untuk merubah data dari setiap fitur yang bersifat kontinyu menjadi data diskrit karena data diskrit dibutuhkan untuk proses selanjutnya yaitu seleksi fitur dengan *Gain Ratio*, selain itu menurut Singh & Verma (2009) bahwa klasifikasi Naïve Bayes memiliki akurasi yang lebih baik jika menggunakan data diskrit.

Seperti yang telah dijelaskan pada bab 2 tentang diskritisasi dengan *Equal Width Binning*, adapaun tahapan melakukan diskritisasi data meliputi;

- a. Tentukan nilai $K = max\{1,2 \log L\}$ jika K bernilai 1 maka diskritisasi data menjadi all.
- b. Hitung W = (Vmax Vmin) / K.
- c. Tentukan titik potong dengan perhitungan;

```
Vmin+W, Vmin+2W,..., Vmin+(K-1)W
```

d. Langkah terakhir adalah menentukan nilai dari dataset termasuk dalam rentang yang sesuai.

Berdasarkan alur tahap perhitungan yang telah dijelaskan jika dibentuk dalam sebuah pseudocode tampil seperti berikut;

```
Vmax ← data[i][data[i].length - 1]
     L ← countDistint(data[i].length)
    K \leftarrow max(1,2 \log L)
     IF K = 1 Then
       cutPoints ← All //String
    Else
       W ← (Vmax - Vmin)/K
       For m ← 1 : K+1 do
          cutPoints ← Vmin + (m x W)
       EndFor
    EndIf
     dataBeda 	 null
     L ← 0
     K ← 0
      € 0
EndFor
For i 		 0 : dataset.length do
  For j 		 0 : dataset[i].length do
     For m 		 0 : cutPoints[i].length do
        IF m = (cutPoints[i].length -1)
           Do nothing
        Else
           a ← cutPoints[i][m]
           b ← cutPoints[i][m+1]
           IF data[i][j] <= a && dataDiskrit[i][j] ==</pre>
              null Then
              range ← "(<="+a+")"
              EndIf
           IF data[i][j] > a && data[i][j] <= b Then</pre>
              range ← a +"< & <="+ b
              EndIf
           IF data[i][j] > a && dataDiskrit[i][j] ==
              null Then
              range ← "("+a+"<)"
              dataDiskrit[i][j] ← range
           EndIf
        EndIf
     EndFor
  EndFor
EndFor
return dataDiskrit
```

Berikut adalah contoh perhitungan secara manual dari proses diskritisasi dengan Equal Width Binning. Contoh perhitungan manual ini penulis menggunakan dataset CM1.

Tabel 3.2 Dataset CM1

No	loc	v(g)	ev(g)	iv(g)	••••	defect
1	1.1	1.4	1.4	1.4		False
2	1	1	1	1	•••	True
3	24	5	1	3	• • •	False
	• • •	• • •			• • •	•••
498	28	6	5	5		True

Diketahui:

L (Jumlah Nilai berbeda) untuk fitur ke-1=102, ke-2=34, ke-3=18, .., ke-n

Vmax fitur ke-1 =
$$423$$
, ke-2 = 96 , ke-3 = 30 , ..., ke-N

Perhitungan untuk fitur ke-1;

Langkah 1, hitung nilai $K = max\{1,2 \log L\}$

$$K = max(1, 2 log 102) \rightarrow K = max(2.41) \rightarrow K = 3$$

Langkah 2, hitung nilai W = (Vmax - Vmin) / K

Langkah 3, tentukan titik potong Vmin+W, Vmin+2W,..., Vmin + (K-1)W

$$Vmin + W \rightarrow 1 + 140.66666666666666 = 141.66667$$

Karena K - 1 = 2 titik potong sudah terhitung semua, hasilnya;

Langkah 4, menentukan nilai dataset termasuk dalam interval yang sesuai

No	loc	v(g)	ev(g)	iv(g)	••••	defect
1	>=141.66667	1.4	1.4	1.4	•••	False
2	>=141.66667	1	1	1	•••	True
3	>=141.66667	5	1	3	• • •	False
498	>=141.66667	6	5	5	• • •	True

Tabel 3.3 Hasil diskritisasi fitur ke-1

Ulangi langkah 1 sampai 4 untuk semua fitur sehingga hasil akhir dari proses diskritisasi bisa dilihat pada tabel 3.4.

defect No loc $\mathbf{v}(\mathbf{g})$ iv(g) ev(g) 1 >=141.66667 >=48.5 >=15.5 >=32.0 False . . . 2 >=141.66667 >=48.5 >=15.5 >=32.0 True 3 >=141.66667 >=48.5 >=15.5 >=32.0 False 498 >=141.66667 >=48.5 >=15.5 >=32.0 True

Tabel 3.4 Hasil diskritisasi semua fitur dataset CM1

3.2.3 Proses seleksi fitur dengan Gain Ratio

Setiap *dataset* terdiri dari beberapa fitur, namun dari seluruh fitur yang ada terdapat beberapa fitur yang memiliki pengaruh yang besar namun juga ada yang tidak begitu berpengaruh pada hasil prediksi. Tahap ini dilakukan untuk memilih sebagian dari fitur yang memiliki pengaruh besar terhadap proses prediksi, seleksi fitur ini berdasarkan perangkingan nilai *Gain Ratio*. Semakin besar nilai *Gain Ratio* maka fitur tersebut memiliki pengaruh yang besar terhadap proses prediksi.

Dari keseluruhan fitur akan dipilih beberapa fitur saja yang memiliki pengaruh terhadap proses prediksi berdasarkan perankingan nilai *Gain Ratio*.

Sesuai dengan penjelasan pada bab 2 adapun proses perhitungan nilai *Gain Ratio* adalah sebagai berikut;

Tahap 1, menghitung nilai *Entropy* setiap fitur dengan persamaan (2,1).

Tahap 2, menghitung nilai *Information Gain* setiap fitur dengan persamaan (2,2).

Tahap 3, menghitung nilai *Split Information* setiap fitur dengan persamaan (2,3).

Tahap 4, menghitung nilai *Gain Ratio* setiap fitur dengan persamaan (2,4).

Tahap terakhir adalah melakukan perankingan berdasarkan nilai *Gain Ratio* dan mengambil beberapa fitur yang dianggap memiliki pengaruh terhadap proses prediksi, jumlah fitur yang dipilih sesuai dengan keinginan user.

Berdasarkan alur tahapan yang telah dijelaskan jika dibentuk dalam sebuah pseudocode tampil seperti berikut;

```
Algoritma Gain Ratio(dataset[][])
//input : Array dataset yang sudah didiskritisasi
//Asumsi : Fungsi yang sudah ada getFitur(x[]),
//getKeputusan(x[]), //HitungEntropy(x[]),
//HitungGain(x,y[]), HitungSplitInfo(x[]), //HitungGR(x,y),
reset(), sortDesc(x,y)
//Output : Nilai Gain Ratio setiap fitur
GR[], Ent[], Gain[], SplitInfo = 0//inisial
For i ← 0 : fitur.length do
   Gain ← HitungGain (EntTotal, Ent)
   SplitInfo 		HitungSplitInfo(dataset)
   Reset() //menset ulang Ent[], Gain[], SplitInfo
EndFor
GR ← sortDesc(GR,5)
return GR
```

Contoh perhitungan nilai *Gain Ratio* berdasarkan dari data yang telah didiskritisasi pada proses sebelumnya.

Entropy(Defect)

$$= \left(\left(\frac{-449}{498} \right) \log_2 \frac{449}{498} \right) + \left(\left(\frac{-49}{498} \right) \log_2 \frac{49}{498} \right) = 0.46388254$$

Entropy Fitur loc

Entropy((-inf - 141.66667))

Langkah 1, menghitung nilai *Entropy*

$$= \left(\left(\frac{-440}{485} \right) \log_2 \frac{440}{485} \right) + \left(\left(\frac{-45}{485} \right) \log_2 \frac{45}{485} \right) = 0.4456932$$

Entropy((141.66667 - 282.33334))

$$= \left(\left(\frac{-7}{10} \right) \log_2 \frac{7}{10} \right) + \left(\left(\frac{-3}{10} \right) \log_2 \frac{3}{10} \right) = 0.8812909$$

Entropy((282.33334 - inf))

$$= \left(\left(\frac{-2}{3} \right) \log_2 \frac{2}{3} \right) + \left(\left(\frac{-1}{3} \right) \log_2 \frac{1}{3} \right) = 0.91829586$$

Entropy Fitur v(g)

Entropy((-inf-48.5))

$$= \left(\left(\frac{-447}{495} \right) \log_2 \frac{447}{495} \right) + \left(\left(\frac{-48}{495} \right) \log_2 \frac{48}{495} \right) = 0.45931554$$

Entropy((48.5-inf))

$$= \left(\left(\frac{-2}{3} \right) \log_2 \frac{2}{3} \right) + \left(\left(\frac{-1}{3} \right) \log_2 \frac{1}{3} \right) = 0.91829586$$

Ulangi langkah 1 untuk fitur selanjutnya hingga mendapat nilai entropy seluruh fitur!

Langkah 2, menghitung nilai Information Gain

Information Gain Fitur loc

Gain(Defect, loc)

$$= 0.46388254$$

$$- \left(\left(\frac{485}{498} \right) 0.4456932 + \left(\frac{10}{498} \right) 0.8812909$$

$$+ \left(\frac{3}{498} \right) 0.91829586 \right)$$

= 0.006595403

Information Gain Fitur v(g)

Gain(Defect, v(g))

$$= 0.46388254 - \left(\left(\frac{495}{498} \right) 0.45931554 + \left(\frac{3}{498} \right) 0.91829586 \right)$$

= 0.001802057

Ulangi langkah 2 untuk fitur selanjutnya hingga mendapat nilai *Information Gain* seluruh fitur!

Langkah 3, menghitung nilai Split Information

SplitInfo(loc)

$$=\ -\Big(\frac{485}{498}\Big) {\log_2} \frac{485}{498} \ -\Big(\frac{10}{498}\Big) {\log_2} \frac{10}{498} \ -\Big(\frac{3}{498}\Big) {\log_2} \frac{3}{498}$$

= 0.19480705

SplitInfo(v(g))

$$= -\left(\frac{495}{498}\right)\log_2\frac{495}{498} - \left(\frac{3}{498}\right)\log_2\frac{3}{498} = 0.05309269$$

Ulangi langkah 3 untuk fitur selanjutnya hingga mendapat nilai *Split Information* seluruh fitur!

Langkah 4, menghitung nilai Gain Ratio

GainRatio(loc)

$$= \frac{0.006595403}{0.19480705} = 0.03385608$$

GainRatio(v(g))

$$= \frac{0.001802057}{0.05309269} = 0.033941716$$

Ulangi langkah 4 untuk fitur selanjutnya hingga mendapat nilai *Gain Ratio* seluruh fitur!

Langkah terakhir, melakukan perankingan sesuai dengan nilai *Gain Ratio* setiap fitur. Perankingan ini dilakukan bertujuan untuk mengetahui urutan dari fitur yang memiliki pengaruh terhadap proses prediksi cacat perangkat lunak. Sudah dijelaskan bahwa semakin besar nilai *Gain Ratio* maka fitur tersebut memiliki pengaruh yang besar terhadap proses prediksi. Hasil dari proses ini dapat dilihat pada Tabel 3.5 yang menunjukkan hasil perankingan fitur sesuai dengan nilai *Gain Ratio* pada *dataset* CM1.

Tabel 3.5 Hasil perankingan sesuai nilai Gain Ratio pada dataset CM1

GR	Fitur
0.17764027	Time to write program (t)
0.17764027	Effort to write program (e)
0.08940102	Count of lines of comments (IOComment)
0.07676358	Unique operators (UniqOp)
0.066612095	Unique operands (UniqOpnd)
0.06614874	Error estimate (b)
0.04657121	Volume (v)
0.03866517	Essential complexity (ev(g))
0.034703486	Intelligence (i)
0.033941716	Design complexity (iv(g))
0.033941716	Cyclomatic complexity (v(g))
0.033941716	Branch count (branchCount)
0.03385608	Total operand (TotalOpnd)
0.03385608	Line of code (loc)
0.032714628	Total operator + operand (n)
0.028663296	Total operator (TotalOp)
0.022667497	Difficulty (d)
0.017010132	Count of blank lines (IOBlank)
0.001916128	Count of Statement Lines (IOCode)
0.000617	Program length (L)
0.0	Count of Code and Comments Lines (IOCodeAndComment)

Jumlah seleksi fitur tergantung yang dingingkan oleh user, pada penelitian ini penulis menggunakan asumsi pengambilan fitur dengan jumlah pengambilan fitur sebanyak 1 fitur, 2 fitur, 3 fitur, dan seterusnya sampai keseluruhan fitur, hal ini dilakukan untuk melakukan percobaan dengan jumlah yang berbeda untuk menentukan jumlah yang terbaik. Sebagai contoh pada perhitungan manual ini penulis mengambil jumlah fitur sebanyak 5 fitur, yang hasilnya ditunjukkan pada tabel 3.6.

Tabel 3.6 Hasil seleksi 5 fitur pada dataset CM1

Nilai GR	Fitur
0.17764027	Time to write program (t)
0.17764027	Effort to write program (e)
0.08940102	Count of lines of comments (IOComment)
0.07676358	Unique operators (uniq_Op)
0.066612095	Unique operands (uniq_Opnd)

3.2.4 Klasifikasi Naïve Bayes

Klasifikasi ini merupakan tahap untuk melakukan prediksi berdasarkan data yang ada dengan teknik klasifikasi yang dilakukan dengan menggunakan algoritma klasifikasi Naïve Bayes. Sebelum proses klasifikasi Naïve Bayes dilakukan data akan dibagi menjadi data *training* dan juga data *testing* dengan teknik *cross validation* yang telah dijelaskan pada bab 2. Proses klasifikasi dilakukan untuk *dataset* dengan seleksi fitur *Gain Ratio* yang mengambil jumlah fitur berbeda-beda.

Pada penelitian ini proses klasifikasi Naïve Bayes menggunakan fungsi yang disediakan oleh *WEKA*, alasan penelitian ini menggunakan klasifikasi yang sudah ada karena fokus dari penelitian ini terdapat pada proses seleksi fitur. Fungsi *WEKA* dan parameter yang digunakan adalah sebagai berikut;

- weka.classifiers.bayes.NaiveBayes
- semua parameter; default

Proses klasifikasi dengan Naïve Bayes pada penelitian ini dilakukan dengan 10 cross-validation, sehingga dari data yang ada akan dibagi menjadi 10 set bagian dan dari 10 set akan diambil 1 set sebagai testing dan 9 set digunakan sebagai training. Proses ini diulang sebanyak 10 kali klasifikasi dengan masing-masing data set training dan testing yang berubah-ubah setiap klasifikasi sehingga keseluruhan data memungkinkan untuk dijadikan sebagai testing dan juga training. Berdasarkan percobaan dengan dataset CM1 yang telah melalui proses seleksi fitur Gain Ratio hasil klasifikasi Naïve Bayes dengan 10 cross validation menghasilkan confusion matrix pada tabel 3.7.

3.2.5 Perhitungan Akurasi

Seperti yang telah dijelaskan pada bab 2 bahwa proses evaluasi klasifikasi dilakukan dengan melakukan perhitungan berdasarkan *confusion matrix*. Pada tahap ini melakukan perhitungan sesuai dengan *confusion matrix* untuk mendapatkan nilai akurasi dari proses klasifikasi pada *dataset* dengan seleksi fitur *Gain Ratio*. Berikut salah satu contoh perhitungan akurasi dari proses prediksi cacat perangkat lunak pada *dataset* CM1 dengan 5 fitur hasil seleksi fitur *Gain Ratio*.

		Keny	ataan
		TRUE	FALSE
Hasil	TRUE	14	27
Prediksi	FALSE	35	422

Tabel 3.7 Confusion Matrix klasifikasi dataset CM1 dengan 5 fitur hasil seleksi fitur GR

Berdasarkan tabel 3.7 terlihat bahwa hasil pencocokan antara hasil kalsifikasi oleh Naïve Bayes dengan kenyataan menunjukkan bahwa hasil prediksi "TRUE" dan kenyataan "TRUE" berumlah 14, hasil prediksi "TRUE" dan kenyataan "FALSE" berumlah 27, hasil prediksi "FALSE" dan kenyataan "TRUE" berumlah 35 dan hasil prediksi "FALSE" dan kenyataan "FALSE" berumlah 442. Sesuai dengan rumus pada persamaan (2,11) maka perhitungan akurasi dari *confusion matrix* tabel 3.7 sebagai berikut;

Akurasi =
$$\frac{14 + 442}{14 + 442 + 27 + 35} = \frac{456}{498} = 0.8755 \times 100\% = 87.55\%$$

BAB IV

UJI COBA DAN PEMBAHASAN

Pada bab ini akan dibahas terkait uji coba dari rancangan atau desain sistem yang telah dibuat pada bab sebelumnya. Penjelasan pertama pada bab ini adalah tentang uji coba penelitian yang berisi tentang lingkungan uji coba, data yang digunakan, tampilan sistem yang berhasil dibuat, hasil uji coba seleksi fitur dan hasil uji coba klasifikasi. Penjelasan selanjutnya yaitu tentang pembahasan hasil dari uji coba yang telah dilakukan.

4.1 Uji Coba

Sebelum menjelaskan proses uji coba terlebih dahulu akan dijelasan hal-hal yang berkaitan terhadap proses uji coba yaitu lingkungan uji coba dan juga data yang digunakan untuk uji coba.

4.1.1 Lingkungan Uji Coba

Lingkungan uji coba menjelaskan tentang spesifikasi perangkat keras dan perangkat lunak yang digunakan dalam penelitian ini, adapun spesifikasi perangkat keras yang digunakan adalah sebagai berikut;

- a. Processor AMD FX-7600P Radeon R7, 12 Compute Cores 4C+8G 2.70 GHz
- b. Memory 4.00 GB
- c. Hardisk 1 TB

Sedangkan spesifikasi perangkat lunak yang digunakan adalah sebagai berikut;

- a. Sistem operasi windows 8.1 Pro 64bit
- b. Weka versi 3.7.2
- c. Netbeans 8.2 dan Ms.excel 2010

4.1.2 Data Uji coba

Data yang digunakan pada penelitian ini berupa *dataset* yang berjumlah 5 *dataset* yaitu CM1, JM1, KC1, KC2 dan PC1. Berikut adalah 5 *dataset* yang digunakan pada penelitian ini;

Tabel 4.1 Dataset CM1

No	loc	v(g)	ev(g)	iv(g)	••••	defect
1	1.1	1.4	1.4	1.4		False
2	1	1	1,	1	//	True
3	24	5	1	3		False
	/ ···		A -A		7,	
498	28	6	5	5		True

Tabel 4.2 Dataset JM1

No	loc	v(g)	ev(g)	iv(g)	••••	defect
1	1.1	1.4	1.4	1.4		False
2	1	_1	1	1		True
3	72	7	1	6		True
			•••			
10885	19	3	1	1	Z \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	False

Tabel 4.3 Dataset KC1

No	loc	v(g)	ev(g)	iv(g)	• • • •	defect
1	1.1	1.4	1.4	1.4		False
2	1	1	1	1		True
3	83	11	1	11	•••	True
•••	•••	•••	•••	• • •	•••	•••
2109	11	2	1	2	•••	False

Tabel 4.4 Dataset KC2

No	loc	v(g)	ev(g)	iv(g)	••••	defect
1	1.1	1.4	1.4	1.4		no
2	1	1	1	1		yes
3	415	59	50	51		yes
			• • •			•••
522	3	1	\mathbb{C}^1	1		yes

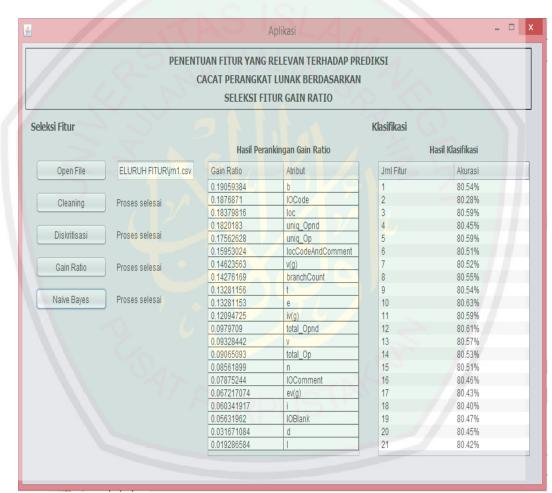
Tabel 4.5 Dataset PC1

No	loc	v(g)	ev(g)	iv(g)	••••	defect
1	1.1	1.4	1.4	1.4	7. W	False
2	1	1	1	1	/	True
3	91	9	3	2	3	True
	.,.	<i>)</i> \		J	A 7	
1109	26	18	13	6		False

Berdasarkan data setiap *dataset* maka Tabel 4.6 dan tabel 4.7 menunjukkan informasi 5 *dataset* yang digunakan pada penelitian ini. Informasi yang ditunjukkan antara lain jumlah total modul setiap *dataset*, jumlah modul yang cacat dan jumlah modul yang dinyatakan tidak cacat serta informasi tentang fitur-fitur yang ada pada setiap *dataset*.

Tabel 4.6 Dataset Penelitian

Dataset	Jumlah total	Jumlah modul	Jumlah modul	odul Jumlah fitur	
	modul	cacat	tidak cacat	Juillian Iitui	
CM1	498	449	49	21	
JM1	10885	8779	2106	21	
KC1	2109	1783	326	21	
KC2	522	415	107	21	
PC1	1109	1032	77	21	


Tabel 4.7 Fitur setiap dataset

No	Fitur	Dataset				
		CM1	JM1	KC1	KC2	PC1
1	loc	V	1	1	1	$\sqrt{}$
2	v(g)	V	1	1	1	1
3	ev(g)	V	V	V	V	√
4	iv(g)	V	V	V	V	$\sqrt{}$
5	uniq_Op	V	V	V	V	$\sqrt{}$
6	uniq_Opnd	V	1	V	V	$\sqrt{}$
7	total_Op	V	1	V	1	$\sqrt{}$
8	total_Opnd	V	V	V	V	1
9	n	V	V	V	V	1
10	V	V	V	1	V	V
11	1	1	1	V	V	V
12	d	V	V	V	√	V
13	i	V	V	V	V	1
14	e	V	V	V	V	√
15	b	V	V	V	V	1
16	t	V	V	V	V	1
17	1OCode	V	V	1	V	√
18	lOComment	V	V	V	V	√
19	lOBlank	1	V	V	V	√
20	locCodeAndComment	V	V	V	V	√
21	branchCount	V	V	V	V	√

Berdasarkan tabel 4.7 dapat diketahui bahwa semua *dataset* yang digunakan menggunakan fitur yang sama dalam melakukan prediksi cacat perangkat lunak dengan jumlah 21 fitur yaitu fitur loc, v(g), ev(g), iv(g), uniq_Op, uniq_Opnd, total_Op, total_Opnd, n, v, l, d, I, e, b, t, IOCode, IOComment, IOBlank, IOCodeAndComment dan branchCount.

4.1.3 Tampilan Sistem

Berdasarkan dari rencana yang telah dijelaskan pada desain sistem yang meliputi proses cleaning, proses diskritisasi Equal Width Binning, proses seleksi fitur Gain Ratio, proses klasifikasi dengan Naïve Bayes dan terakhir proses perhitungan akurasi. Proses-proses tersebut diimplementasikan dalam bahasa pemrograman java yang dibuat dengan tampilan ditunjukkan pada gambar 4.1.

Gambar 4.1 Tampilan Sistem

Berdasarkan gambar 4.1 dapat dilihat bahwa terdapat beberapa button yang berguna untuk menjalankan sebuah proses sesuai dengan algoritma yang telah dijelaskan pada bab sebelumnya. Alur untuk menjalankan sistem tersebut dimulai dari klik button "open file" untuk mengambil file yang akan digunakan

selanjutnya klik *button* "cleaning" tunggu sampai tulisan proses selesai muncul, kemudian klik *button* "diskritisasi" untuk menjalankan proses diskritisasi tunggu hingga muncul proses selesai. Selanjutnya klik *button* "Gain Ratio" untuk menjalankan proses perangkingan sesuai nilai Gain Ratio, tunggu hingga muncul proses selesai. Langkah selanjutnya adalah proses klasifikasi dengan cara klik *button* "Naïve Bayes", hasil dari proses klasifikasi berupa akurasi klasifikasi.

4.1.4 Hasil Pengujian

Uji coba pada penelitian ini dilakukan terhadap lima *dataset* yaitu *dataset* CM1, JM1, KC1, KC2 dan PC1. Tahap pertama dalam pengujian ini adalah menentukan urutan fitur yang relevan dari setiap *dataset* berdasarkan seleksi fitur *Gain Ratio* dan tahap kedua adalah melakukan pengujian akurasi klasifikasi Naïve Bayes pada setiap *dataset* dengan seleksi fitur *Gain Ratio*, teknik klasifikasi yang digunakan adalah 10x10 *cross-validation* atau biasa disebut dengan 10-*fold cross-validation*.

4.1.2.1 Seleksi Fitur dengan Gain Ratio

Fitur yang relevan didapat dengan melakukan seleksi fitur menggunakan metode seleksi fitur *Gain Ratio*. Hasil dari seleksi fitur ini berupa urutan atau perangkingan fitur sesuai dengan nilai *Gain Ratio*. Tabel 4.8 hingga tabel 4.12 menunjukkan urutan atau perankingan fitur berdasarkan nilai *Gain Ratio* dari kelima *dataset* yang digunakan.

Tabel 4.8 Perankingan Fitur dataset CM1 Berdasarkan nilai Gain Ratio

GR	Fitur
0.17764027	t
0.17764027	e
0.08940102	lOComment
0.07676358	uniq_Op
0.066612095	uniq_Opnd
0.06614874	b
0.04657121	V
0.03866517	ev(g)
0.034703486	i
0.033941716	branchCount
0.033941716	iv(g)
0.033941716	v(g)
0.03385608	total_Opnd
0.03385608	loc
0.032714628	n
0.028663296	total_Op
0.022667497	d
0.017010132	lOBlank
0.001916128	lOCode
6.1650225E-4	IDIIS\M
0.0	locCodeAndComment

Berdasarkan pada tabel 4.8 dapat diketahui bahwa urutan fitur berdasarkan seleksi fitur *Gain Ratio* dari keseluruhan fitur pada *dataset* CM1 adalah fitur *Time to write program* (t), *Effort to write program* (e), *Count of lines of comments* (IOComment), *Unique operators* (uniq_Op), *Unique operands* (uniq_Opnd) dan seterusnya hingga urutan paling terahir adalah fitur *Count of Code and Comments Lines* (locCodeAndComment).

Tabel 4.9 Perankingan Fitur dataset JM1 Berdasarkan nilai Gain Ratio

GR	Fitur
0.19059384	b
0.1876871	lOCode
0.18379815	loc
0.1820183	uniq_Opnd
0.17562628	uniq_Op
0.15953024	locCodeAndComment
0.14623563	v(g)
0.14276169	branchCount
0.13281153	t
0.13281153	e
0.12094725	iv(g)
0.0979709	total_Opnd
0.09328443	V
0.09065093	total_Op
0.08561899	n
0.07875244	lOComment
0.06721482	ev(g)
0.060341917	i
0.05631962	lOBlank
0.031671084	d
0.019286584	1

Tabel 4.9 menunjukkan urutan fitur berdasarkan nilai *Gain Ratio* hasil proses seleksi fitur *Gain Ratio* pada *dataset* JM1 adalah fitur *Error estimate* (b), *Count of Statement Lines* (IOCode), *Line of code* (loc), *Unique operands* (uniq_Opnd), *Unique operators* (uniq_Op), *Count of Code and Comments Lines* (locCodeAndComment), dan seterusnya hingga urutan paling akhir adalah fitur *Program length* (l).

Tabel 4.10 Perankingan Fitur dataset KC1 Berdasarkan nilai Gain Ratio

	GR	Fitur
	0.29109028	lOComment
	0.1402622	b
	0.121450596	lOBlank
	0.119554184	uniq_Op
	0.10195719	total_Op
ø	0.09851719	total_Opnd
1	0.09668424	uniq_Opnd
	0.09301534	V
	0.090276174	loc
	0.089849725	n
	0.08840168	d
	0.081891894	t //_(
	0.081891894	e
	0.07088878	1OCode
	0.0708482	i
	0.06509653	ev(g)
	0.05176313	1
í	0.045877665	branchCount
	0.045877665	v(g)
	0.031937465	iv(g)
	8.2550956E-5	locCodeAndComment

Berdasarkan tabel 4.10 dapat diketahui bahwa urutan fitur berdasarkan seleksi fitur *Gain Ratio* pada *dataset* KC1 adalah fitur *Count of lines of comments* (IOComment), *Error estimate* (b), *Count of blank lines* (IOBlank), *Unique* operators (uniq_Op) dan seterusnya hingga urutan paling akhir adalah fitur Total operator (total_Op).

Tabel 4.11 Perankingan Fitur dataset KC2 Berdasarkan nilai Gain Ratio

GR	Fitur
0.29443324	lOCodeAndComment
0.24263638	lOBlank
0.23497549	uniq_Opnd
0.23497549	t
0.23497549	loc
0.23497547	total_Opnd
0.23497547	lOCode
0.23497547	e
0.23497547	n
0.21945715	total_Op
0.21945715	b
0.21945715	b //_ (= -
0.21890852	branchCount
0.21890852	iv(g)
0.21890852	ev(g)
0.21890852	v(g)
0.20772645	d
0.19890262	i
0.1527788	uniq_Op
0.13352568	lOComment
0.039263908	1

Urutan fitur yang relevan pada dataset KC2 berdasarkan seleksi fitur Gain Ratio ditunjukkan pada tabel 4.11 yaitu fitur Count of Code and Comments Lines (IOCodeAndComment), Count of blank lines (IOBlank), Unique operands (Uniq_Opnd), Time to write program (t), Line of code (loc) dan seterusnya hingga urutan paling akhir adalah fitur Program length (l).

Tabel 4.12 Perankingan Fitur dataset PC1 Berdasarkan nilai Gain Ratio

GR	Fitur
0.36620554	uniq_Opnd
0.23978049	lOCode
0.23978047	b
0.23978047	loc
0.22594728	t
0.22594725	e
0.17856956	lOComment
0.16976582	uniq_Op
0.16976582	iv(G)
0.12490867	lOBlank
0.09281469	ev(g)
0.08957554	branchCount
0.08957554	v(g)
0.080116116	v
0.069097996	i
0.06795057	total_Op
0.048390288	total_Opnd
0.046210535	n
0.024065675	locCodeAndComment
0.009840329	1 _{DI} IST
0.009806872	d

Pada dataset PC1 urutan fitur yang relevan berdasarkan seleksi fitur Gain Ratio ditunjukkan pada tabel 4.12, urutan fitur tersebut adalah fitur Unique operands (uniq_Opnd), Count of Statement Lines (IOCode), Error estimate (b), Line of code (loc), Time to write program (t) dan seterusnya hingga urutan terakhir adalah fitur Difficulty (d).

4.1.2.2 Uji coba Klasifikasi

Pada bagian ini dilakukan pengujian klasifikasi prediksi cacat perangkat lunak dengan fitur hasil seleksi fitur *Gain Ratio* pada setiap *dataset*. Hasil dari proses pengujian ini berupa akurasi hasil klasifikasi dengan algoritma klasifikasi Naïve Bayes dengan teknik 10-fold cross-validation. Proses uji coba klasifikasi akan dilakukan dengan beberapa jumlah fitur yang berbeda untuk mendapatkan jumlah fitur yang paling relevan, pada penelitian ini penulis melakukan uji coba dengan jumlah fitur sebanyak 1 fitur, 2 fitur, 3 fitur, dan seterusnya sampai keseluruhan fitur.

Hasil dari proses uji coba klasifikasi adalah akurasi klasifikasi yang diperoleh dari perhitungan *confusion matrix*, sebagai gambaran perhitungan akurasi klasifikasi penulis melampirkan perhitungan akurasi klasifikasi *dataset* CM1 ditunjukkan pada bagian lampiran I. Perlu diketahui bahwa nilai yang ditunjukkan pada table *confusion matrix* merupakan nilai dari hasil perhitungan kecocokan antara hasil prediksi terhadap kenyataan atau data.

Hasil dari proses uji coba klasifikasi ditunjukkan mulai tabel 4.13 hingga tabel 4.17, tabel-tabel tersebut menunjukkan hasil dari proses uji coba kelima dataset yaitu dataset CM1, JM1, KC1, KC2 dan PC1.

Tabel 4.13 Hasil Uji Coba Klasifikasi Dataset CM1

Jumlah fitur	Akurasi klasifikasi NB(%)
1	89.96%
2	89.56%
3	89.16%
4	87.95%
5	87.55%
6	87.15%
7	86.95%
8	86.55%
9	86.35%
10	85.74%
11	85.94%
12	86.14%
13	85.74%
14	85.74%
15	85.74%
16	85.74%
17	85.54%
18	85.74%
19	85.54%
20	85.34%
21	85.34%

Berdasarkan pada tabel 4.13 dapat diketahui bahwa hasil kasifikasi prediksi cacat perangkat lunak pada *dataset* CM1 dengan fitur hasil seleksi fitur *Gain Ratio* didapatkan akurasi paling baik dengan jumlah fitur sebanyak 1 dengan akurasi klasifikasi Nave Bayes sebesar 89.96%.

Tabel 4.14 Hasil Uji Coba Klasifikasi Dataset JM1

Jumlah fitur	Akurasi klasifikasi NB(%)
1	80.54%
2	80.28%
3	80.59%
4	80.45%
5	80.59%
6	80.51%
7	80.52%
8	80.55%
9	80.54%
10	80.63%
11	80.59%
12	80.61%
13	80.57%
14	80.53%
15	80.51%
16	80.46%
17	80.43%
18	80.40%
19	80.47%
20	80.45%
21	80.42%

Berdasarkan pada tabel 4.14 dapat diketahui bahwa hasil kasifikasi prediksi cacat perangkat lunak pada *dataset* JM1 dengan fitur hasil seleksi fitur *Gain Ratio* didapatkan akurasi klasifikasi Naïve Bayes paling baik sebesar 80.61% dengan jumlah fitur sebanyak 12.

Tabel 4.15 Hasil Uji Coba Klasifikasi *Dataset* KC1

Jumlah fitur	Akurasi klasifikasi NB(%)
1	84.02%
2	84.35%
3	84.59%
4	83.97%
5	83.50%
6	83.45%
7	83.21%
8	83.21%
9	82.98%
10	83.03%
11	82.93%
12	83.03%
13	83.03%
14	83.07%
15	82.74%
16	82.60%
17	82.36%
18	82.36%
19	82.36%
20	82.31%
21	82.36%

Berdasarkan pada tabel 4.15 dapat diketahui bahwa hasil kasifikasi prediksi cacat perangkat lunak pada *dataset* KC1 dengan fitur hasil seleksi fitur *Gain Ratio* didapatkan akurasi klasifikasi Naïve Bayes paling baik sebesar 84.59% dengan jumlah fitur sebanyak 3.

Tabel 4.16 Hasil Uji Coba Klasifikasi Dataset KC2

Jumlah fitur	Akurasi klasifikasi NB(%)
1	80.65%
2	82.18%
3	83.52%
4	83.91%
5	83.52%
6	83.91%
7	83.72%
8	83.72%
9	83.72%
10	83.91%
11	83.72%
12	83.72%
13	83.52%
14	83.33%
15	83.72%
16	83.91%
17	83.72%
18	83.52%
19	83.52%
20	83.52%
21	83.52%

Tabel 4.16 menunjukkan hasil kasifikasi prediksi cacat perangkat lunak dataset KC2 dengan fitur hasil seleksi fitur Gain Ratio, akurasi klasifikasi Naïve Bayes paling baik sebesar 83.91% dengan jumlah fitur sebanyak 4, 6, 10, dan 16, namun pada percobaan ini terdapat beberapa fitur dengan hasil akurasi yang sama nantinya akan dipilih jumlah fitur yang paling kecil yaitu jumlah fitur 4 karena dengan jumlah fitur yang sedikit bisa menghasilkan akurasi yang sama besarnya.

Tabel 4.17 Hasil Uji Coba Klasifikasi Dataset PC1

Jumlah fitur	Akurasi klasifikasi NB(%)
1	91.97%
2	91.25%
3	91.07%
4	90.26%
5	90.26%
6	90.98%
7	90.44%
8	90.26%
9	89.54%
10	89.27%
11	89.45%
12	89.27%
13	89.36%
14	89.45%
15	89.36%
16	89.00%
17	89.18%
18	89.27%
19	89.18%
20	89.27%
21	89.18%

Berdasarkan pada tabel 4.17 dapat diketahui bahwa hasil kasifikasi prediksi cacat perangkat lunak pada *dataset* PC1 dengan fitur hasil seleksi fitur *Gain Ratio* didapatkan akurasi klasifikasi Naïve Bayes paling baik sebesar 91.97% dengan jumlah fitur sebanyak 1.

4.2 Pembahasan

Pada bagian ini akan dibahas mengenai hasil dari pengujian yang telah dilakukan, pembahasan dilakukan terhadap semua hasil pengujian yang meliputi pengujian pada *dataset* CM1, JM1, KC1, KC2 dan PC1.

4.2.1 Pembahasan hasil pengujian dataset CM1

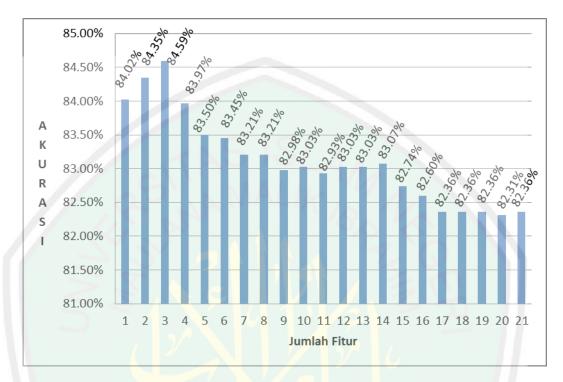
Sesuai hasil pengujian yang telah dilakukan pada *dataset* CM1 yang ditunjukkan pada tabel 4.13 maka gambar 4.2 menunjukkan grafik nilai akurasi hasil dari pengujian *dataset* CM1 dengan jumlah fitur sebanyak 1 fitur, 2 fitur, 3 fitur, dan seterusnya sampai keseluruhan fitur.

Gambar 4.2 Grafik akurasi klasifikasi NB dataset CM1

Pada grafik 4.2 terlihat bahwa akurasi paling baik ditunjukkan pada jumlah fitur sebanyak 1 fitur yaitu sebesar 89.96%, sehingga fitur yang memiliki pengaruh besar terhadap prediksi cacat perangkat lunak untuk *dataset* CM1 berdasarkan seleksi fitur *Gain Ratio* berjumlah 1 fitur yaitu fitur t.

4.2.2 Pembahasan hasil pengujian dataset JM1

Hasil pengujian yang telah dilakukan pada *dataset* JM1 yang ditunjukkan pada tabel 4.14 maka gambar 4.3 menunjukkan grafik nilai akurasi hasil dari pengujian *dataset* JM1 dengan jumlah fitur sebanyak 1 fitur, 2 fitur, 3 fitur, dan seterusnya sampai keseluruhan fitur.

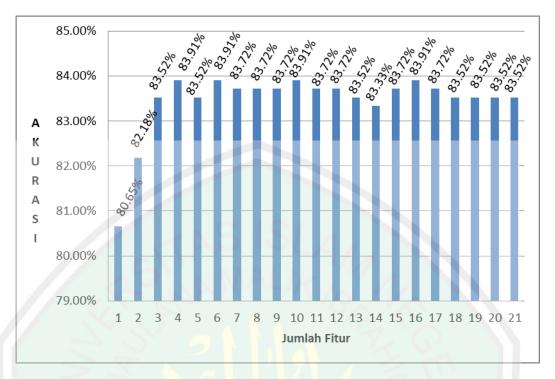

Gambar 4.3 Grafik akurasi klasifikasi NB dataset JM1

Pada grafik 4.3 terlihat bahwa akurasi paling baik ditunjukkan pada jumlah fitur sebanyak 10 fitur yaitu sebesar 80.63%, sehingga fitur yang memiliki pengaruh besar terhadap prediksi cacat perangkat lunak untuk *dataset* JM1 berdasarkan seleksi fitur *Gain Ratio* berjumlah 10 fitur yaitu fitur b, lOCode, loc, uniq_Opnd, uniq_Op, locCodeAndComment, v(g), branchCount, t dan e.

4.2.3 Pembahasan hasil pengujian dataset KC1

Sesuai hasil pengujian yang telah dilakukan pada *dataset* KC1 yang ditunjukkan pada tabel 4.15 maka gambar 4.4 menunjukkan grafik nilai akurasi

hasil dari pengujian *dataset* KC1 dengan jumlah fitur sebanyak 1 fitur, 2 fitur, 3 fitur, dan seterusnya sampai keseluruhan fitur.



Gambar 4.4 Grafik akurasi klasifikasi NB dataset KC1

Pada grafik 4.4 terlihat bahwa akurasi paling baik ditunjukkan pada jumlah fitur sebanyak 3 fitur yaitu sebesar 84.59%, sehingga fitur yang memiliki pengaruh besar terhadap prediksi cacat perangkat lunak untuk *dataset* KC1 berdasarkan seleksi fitur *Gain Ratio* berjumlah 3 fitur yaitu fitur IOComment, b dan lOBlank.

4.2.4 Pembahasan hasil pengujian dataset KC2

Sesuai hasil pengujian yang telah dilakukan pada *dataset* KC2 yang ditunjukkan pada tabel 4.16 maka gambar 4.5 menunjukkan grafik nilai akurasi hasil dari pengujian *dataset* KC2 dengan jumlah fitur sebanyak 1 fitur, 2 fitur, 3 fitur, dan seterusnya sampai keseluruhan fitur.

Gambar 4.5 Grafik akurasi klasifikasi NB dataset KC2

Pada grafik 4.5 terlihat bahwa akurasi paling baik ditunjukkan pada jumlah fitur sebanyak 4 fitur yaitu sebesar 83.91%, sehingga fitur yang memiliki pengaruh besar terhadap prediksi cacat perangkat lunak untuk *dataset* KC2 berdasarkan seleksi fitur *Gain Ratio* berjumlah 4 fitur yaitu fitur lOCodeAndComment, lOBlank, uniq_Opnd dan t.

4.2.5 Pembahasan hasil pengujian dataset PC1

Sesuai hasil pengujian yang telah dilakukan pada *dataset* PC1 yang ditunjukkan pada tabel 4.17 maka gambar 4.6 menunjukkan grafik nilai akurasi hasil dari pengujian *dataset* PC1 dengan jumlah fitur sebanyak 1 fitur, 2 fitur, 3 fitur, dan seterusnya sampai keseluruhan fitur.

Gambar 4.6 Grafik akurasi klasifikasi NB dataset PC1

Pada grafik 4.6 terlihat bahwa akurasi paling baik ditunjukkan pada jumlah fitur sebanyak 1 fitur yaitu sebesar 91.97%, sehingga fitur yang memiliki pengaruh besar terhadap prediksi cacat perangkat lunak untuk *dataset* PC1 berdasarkan seleksi fitur *Gain Ratio* berjumlah 1 fitur yaitu fitur uniq_Opnd.

Rangkuman dari keseluruhan pembahasan hasil pengujian yang telah dilakukan terhadap lima *dataset* yaitu *dataset* CM1, JM1, KC1, KC2 dan PC1 dengan jumlah fitur yang diambil sebanyak 1 fitur, 2 fitur, 3 fitur, dan seterusnya sampai keseluruhan fitur maka tabel 4.18 menunjukkan fitur yang relevan terhadap prediksi cacat perangkat lunak berdasarkan seleksi fitur *Gain Ratio* yang dibuktikan dengan hasil dari pengujian klasifikasi menunjukkan tingkat akurasi paling besar.

Tabel 4.18 Fitur yang relevan berdasarkan seleksi fitur Gain Ratio

Dataset	Fitur	Akurasi NB
CM1	• t	89.96%
JM1	 b lOCode Loc uniq_Opnd uniq_Op locCodeAndComment v(g) branchCount t e 	80.63%
KC1	lOCommentblOBlank	84.59%
KC2	 lOCodeAndComment lOBlank uniq_Opnd t 	83.91%
PC1	• uniq_Opnd	91.97%

Berdasarkan tabel 4.18 maka fitur yang relevan terhadap prediksi cacat perangkat lunak untuk dataset CM1 adalah fitur Time to write program (t) dengan akurasi sebesar 89.96%. Dataset JM1 adalah fitur Error estimate (b), Count of Statement Lines (10Code), Line of code (loc), Unique operands (uniq_Opnd), (uniq_Op), Count of Code operator and Comments Lines (IOCodeAndComment), Cyclomatic complexity (v(g)),Branch (branchCount), Time to write program (t) dan Effort to write program (e) dengan akurasi sebesar 80.63%. Dataset KC1 adalah fitur Count of lines of comments (lOComment), Error estimate (b) dan Count of blank lines (lOBlank) dengan akurasi sebesar 84.59%. Dataset KC2 adalah fitur Count of Code and Comments

Lines (IOCodeAndComment), Count of blank lines (IOBlank), Unique operands (uniq_Opnd) dan Time to write program (t) dengan akurasi sebesar 83.91%.

Dataset PC1 adalah fitur Unique operands (uniq_Opnd) dengan akurasi sebesar 91.97%.

4.3 Integrasi dengan Islam

Tolong-menolong adalah sebuah sikap yang harus dimiliki oleh seorang manusia karena sudah kodaratnya bahwa manusia adalah makluk sosial yang hidupnya membutuhkan manusia lain. Sebagimana dalam islam diperintahkan untuk saling tolong-menolong dalam hal kebaikan, penejelasan tersebut ada pada potongan Ayat Alqur'an surat al-ma'idah ayat 2 berikut (Al-Sheikh, 2011:9);

يَا أَيُّهَا الَّذِينَ آمَنُوا لَا تُحِلُّوا شَعَائِرَ اللَّهِ وَلَا الشَّهْرَ الْحَرَامَ وَلَا الْهَدْيَ وَلَا الْقَلَائِدَ وَلَا آمِينَ الْبَيْتَ الْحَرَامَ يَئْتَغُونَ فَصْلًا مِنْ رَبِّهِمْ وَرِضْوَانًا وَإِذَا حَلَلْتُمْ فَاصْطَادُوا ۚ وَلَا يَجْرِمَنَّكُمْ شَنَآنُ قَوْمٍ أَنْ صَدُّوكُمْ عَنِ الْمَسْجِدِ يَئْتَغُونَ فَصْلًا مِنْ رَبِّهِمْ وَرِضْوَانًا ۚ وَإِذَا حَلَلْتُمْ فَاصْطَادُوا ۚ وَلَا يَجْرِمَنَّكُمْ شَنَآنُ قَوْمٍ أَنْ صَدُوكُمْ عَنِ الْمُسْجِدِ الْحَرَامِ أَنْ تَعْتَدُوا مُ وَتَعَاوَنُوا عَلَى الْبِرِ وَالتَّقُولَ اللَّهُ اللَّهِ مَا اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللهُ عَلَى اللهُ الللهُ اللهُ الللللهُ الللللهُ اللهُ اللهُ

Artinya: "Hai orang-orang yang beriman, janganlah kamu melanggar syi'arsyi'ar Allah, dan jangan melanggar kehormatan bulan-bulan haram, jangan (mengganggu) binatang-binatang had-ya, dan binatang-binatang qalaa-id, dan jangan (pula) mengganggu orang-orang yang mengunjungi Baitullah sedang mereka mencari kurnia dan keridhaan dari Tuhannya dan apabila kamu telah menyelesaikan ibadah haji, maka bolehlah berburu. Dan janganlah sekali-kali kebencian(mu) kepada sesuatu kaum karena mereka menghalang-halangi kamu dari Masjidilharam, mendorongmu berbuat aniaya (kepada mereka). Dan tolong-menolonglah kamu dalam (mengerjakan) kebajikan dan takwa, dan jangan tolong-menolong dalam berbuat dosa dan pelanggaran. Dan bertakwalah kamu kepada Allah, sesungguhnya Allah amat berat siksa-Nya." (al-ma'idah:2).

Pada potongan ayat tersebut Allah SWT memerintahkan untuk saling tolong-menolong dalam aktivitas kebaikan dan dilarang untuk tolong-menolong dalam perbuatan yang salah dan mengakibatkan dosa, potongan ayat tersebut dalam Tafsir Ibnu Katsir dijelaskan Allah SWT memerintahkan kepada hambahamba-Nya yang beriman untuk saling menolong dalam berbuat kebaikan yaitu kebajikan dan meninggalkan hal-hal yang mungkar; hal ini dinamakan ketakwaan. Allah SWT melarang mereka bantu- membantu dalam kebatilan serta tolongmenolong dalam perbuatan dosa dan hal-hal yang diharamkan. Ibnu Jarir mengatakan bahwa dosa itu ialah meninggalkan apa yang diperintahkan oleh Allah untuk dikerjakan. Pelanggaran itu artirnya melampaui apa yang digariskan oleh Allah dalam agama kalian, serta melupakan apa yang difardukan oleh Allah atas diri kalian dan atas diri orang lain. Penjelasan tersebut kemudian diperkuat dengan hadits yang diriwayatkan oleh Imam Bukhari secara munfarid melalui hadis Hasyim dengan sanad yang sama dan lafaz yang semisal. Keduanya mengetengahkan hadis ini melalui jalur Sabit, dari Anas yang menceritakan bahwa Rasulullah Saw. telah bersabda:

انْصُرْ أَخَاكَ ظَالِمًا أَوْ مَظْلُومًا". قِيلَ: يَا رَسُولَ اللهِ، هَذَا نَصَرْتُهُ مَظْلُومًا، فَكَيْفَ أَنْصُرُهُ ظَالِمًا؟ قَالَ: "تَمْنَعُهُ مِنَ الظُّلْمَ، فَذَاكَ نَصْرُكَ إِيَّاهُ

Artinya: "Tolonglah saudaramu, baik dia berbuat aniaya ataupun dianiaya." Ditanyakan, "Wahai Rasulullah, orang ini dapat aku tolong bila dalam keadaan teraniaya, tetapi bagaimana menolongnya jika dia berbuat aniaya?" Rasulullah Saw. menjawab, "Kamu cegah dia dari perbuatan aniaya, itulah cara kamu menolongnya.".

Menurut kajian yang penulis lakukan pada Alqur'an potongan surat alma'idah:2 yang artinya "Dan tolong-menolonglah kamu dalam (mengerjakan)

68

kebajikan dan takwa, dan jangan tolong-menolong dalam berbuat dosa dan pelanggaran" serta telah dijelaskan di atas dengan rujukan tafsir Ibnu Katsir yang menjelaskan bahwasannya Allah SWT memerintahkan kepada hambahamba-Nya yang beriman untuk saling menolong dalam berbuat kebajikan yaitu kebajikan dan meninggalkan hal-hal yang mungkar, hal ini dinamakan ketakwaan.

Berdasarkan ayat Alqur'an surah al-ma'idah ayat 2 dan hadist yang memperkuatnya memerintahkan untuk berbuat saling tolong-menolong atau saling membantu sesama manusia dalam hal kebaikan, maka pada penelitian ini penulis bertujuan untuk membantu menentukan fitur yang relevan terhadap prediksi cacat perangkat lunak karena diketahui bahwa fitur-fitur yang terdapat pada *dataset* NASA MDP tidak semuanya relevan atau memiliki pengaruh besar terhadap prediksi cacat perangkat lunak. Prediksi cacat perangkat lunak dengan fitur yang relevan akan menghasilkan sebuah prediksi cacat perangkat lunak yang lebih akurat yang dapat meningkatkan kualitas perangkat lunak.

BAB V

PENUTUP

Pada bab penutup ini menjelaskan tentang kesimpulan dari penelitian ini serta memberi saran bagi pembaca untuk pengembangan penelitian.

5.1 Kesimpulan

Berdasarkan dari hasil penelitian yang telah dilakukan, maka disimpulkan bahwa fitur yang relevan berdasarkan seleksi fitur Gain Ratio untuk setiap dataset yaitu dataset CM1 adalah fitur Time to write program (t) dengan akurasi sebesar 89.96%. Dataset JM1 adalah fitur Error estimate (b), Count of Statement Lines (IOCode), Line of code (loc), Unique operands (uniq_Opnd), Unique operator (uniq_Op), Count of Code and Comments Lines (1OCodeAndComment), Cyclomatic complexity (v(g)),Branch count (branchCount), Time to write program (t) dan Effort to write program (e) dengan akurasi sebesar 80.63%. Dataset KC1 adalah fitur Count of lines of comments (10Comment), Error estimate (b) dan Count of blank lines (10Blank) dengan akurasi sebesar 84.59%. Dataset KC2 adalah fitur Count of Code and Comments Lines (IOCodeAndComment), Count of blank lines (IOBlank), Unique operands (uniq Opnd) dan Time to write program (t) dengan akurasi sebesar 83.91%. Dataset PC1 adalah fitur Unique operands (uniq_Opnd) dengan akurasi sebesar 91.97%. Fitur-fitur tersebut dikatakan sebagai fitur yang relevan untuk prediksi cacat perangkat lunak karena berdasarkan uji coba klasifikasi yang menghasilkan akurasi terbaik dari uji coba yang telah dilakukan.

5.2 Saran

Peneliti menyadari bahwa dalam penelitian ini masih belum sempurna, dengan demikian perlu adanya pengembangan untuk mendapatkan hasil yang lebih baik, beberapa saran dari peneliti antara lain:

- A. Melakukan seleksi fitur dengan metode seleksi fitur yang lain seperti Correlation-based Feature Selection (CFS), Symmetrical Uncertainty, Chi-suare dan Relief-F dengan tujuan mendapatkan fitur yang mungkin lebih relevan terhadap prediksi cacat perangkat lunak.
- B. Melakukan uji coba dengan dataset yang berbeda.
- C. Melakukan pembuktian dengan algoritma klasifikasi yang lain seperti C4.5, Random Forest, Support Vector Machine (SVM) atau algoritma klasifikasi yang lain dengan tujuan untuk menguji fitur yang didapat pada seleksi fitur *Gain Ratio* ini dan melakukan analisa terhadap hasil akurasi klasifikasi.

DAFTAR PUSTAKA

- Akbar, M. S. 2017. PREDIKSI CACAT PERANGKAT LUNAK DENGAN OPTIMASI NAIVE BAYES MENGGUNAKAN GAIN RATIO. Surabaya: ITS.
- Al-Sheikh, Abdullah. 2011. Luubaabut Tafsir Min Ibni Katsiir, Kairo:Mu-assasah Daar al-Hilaal. 1994M, Terj. M. Abdul Ghoffar. Tafsir Ibnu Katsir jilid 3. Bogor:Pustaka Imam Asy-Syafi'i.
- Arar, Ö.F., Ayan, K. 2017. A Feature Dependent Naive Bayes Approach and Its Application to the Software Defect Prediction Problem. Applied Soft Computing Journal.
- Bratu, C.V., Muresan, T., Potolea, R. 2008. *Improving Classification Accuracy through Feature Selection*. In: Proceeding of the 4th IEEE Internaional Conference on Intelligent Computer Communication and Processing, pp. 25-32. IEEE Press, New York.
- Dougherty, J., Kohavi, R., Sahami, M. 1995. Supervised and unsupervised discretization of continuous features. In Proceedings of the 12th International Conference on Machine Learning, pages 194–202.
- Essra , A., Rahmadani , & Safriadi . (2016, Desember). ANALISIS INFORMATION GAIN ATTRIBUTE EVALUATION UNTUK KLASIFIKASI SERANGAN INTRUSI. Jurnal ISD (Information System Development).
- Karabulut, Esra M., et.al. 2012. A comparative study on the effect of feature selection on classification accuracy. Procedia Technology 1, 323-327.
- Menzies, T., Sayyad Shirabad, J. 2005. "PROMISE Software Engineering Repository". http://promise.site.uottawa.ca/SERepository/. Diakses pada 8 Maret 2018.
- Menzies, T., Greenwald, J., & Frank, A. 2007. Data Mining Static Code Attributes to Learn Defect Predictors. IEEE Transactions on Software Engineering.
- Pelayo, L., Dick, S., 2007. Applying Novel Resampling Strategies To Software Defect Prediction. NAFIPS 2007 2007 Annual Meeting of the North American Fuzzy Information Processing Society 69–72.
- Prasetyo, Eko. 2012. DATA MINING Konsep dan Aplikasi Menggunakan MATLAB. Yogyakarta : ANDI.
- Runeson, P., Andersson, C., Thelin, T., Andrews, A., & Berling, T. (2006). What Do We Know about Defect Detection Methods? *IEEE SOFTWARE*.

- Saifudin, A. 2014. Pendekatan Level Data dan Algoritma untuk Penanganan Ketidakseimbangan Kelas pada Prediksi Cacat Software Berbasis Naive Bayes. M.Kom Thesis, Program Pascasarjana Magister Teknik Informatika STMIK Eresha.
- Singh, P., Verma, S. 2009. *An Investigation of the Effect of Discretization on Defect Prediction Using Static Measures*. in: 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies. IEEE, pp. 837–839.
- Suyanto. 2017. DATA MINING UNTUK KLASIFIKASI DAN KLASTERISASI DATA. Bandung: Penerbit Informatika.
- Trabelsi, M. 2017. A New Feature Selection Method for Nominal Classifier based on Formal Concept Analysis. Procedia Computer Science, 186–194.
- Wahono, Romi S., S. Nanna S. 2014. *Genetic Feature Selection for Software Defect Prediction*. American Scientific Publiser, 239-244.
- Wang, Huajing, Taghi M. K., Amri Napolitano. 2012. Software measurement data reduction using ensemble techniques. Neurocomputing, 124-132.
- Yang Y., Webb G.I., Wu X. 2005. *Discretization Methods*. In: Maimon O., Rokach L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA.

LAMPIRAN I

Perhitungan confusion matrix dan akurasi klasifikasi

Tabel 1 Hasil Prediksi dataset CM1 dengan jumlah fitur sebanyak 5 fitur

No	Hasil Prediksi	Kenyataan
1	FALSE	FALSE
2	FALSE	FALSE
3	TRUE	FALSE
4	FALSE	FALSE
5	FALSE	FALSE
6	TRUE	FALSE
7	FALSE	FALSE
8	FALSE	FALSE
9	FALSE	FALSE
10	FALSE	FALSE
11	TRUE	FALSE
12	FALSE	FALSE
13	FALSE	FALSE
14	FALSE	FALSE
15	FALSE	FALSE
16	FALSE	FALSE
17	FALSE	FALSE
18	FALSE	FALSE
19	FALSE	FALSE
20	FALSE	FALSE
21	FALSE	FALSE
22	FALSE	FALSE
23	FALSE	FALSE
24	TRUE	FALSE
25	FALSE	FALSE
26	FALSE	FALSE
27	FALSE	FALSE
28	FALSE	FALSE
29	FALSE	FALSE
30	FALSE	FALSE
31	FALSE	FALSE
32	FALSE	FALSE
33	TRUE	FALSE
34	FALSE	FALSE
35	FALSE	FALSE
36	TRUE	FALSE

37	FALSE	FALSE
38	FALSE	FALSE
39	FALSE	FALSE
40	FALSE	FALSE
41	FALSE	FALSE
42	FALSE	FALSE
43	FALSE	FALSE
44	FALSE	FALSE
45	FALSE	FALSE
46	FALSE	TRUE
47	FALSE	TRUE
48	FALSE	TRUE
49	FALSE	TRUE
50	FALSE	TRUE
51	FALSE	FALSE
52	FALSE	FALSE
53	FALSE	FALSE
54	FALSE	FALSE
55	FALSE	FALSE
56	FALSE	FALSE
57	FALSE	FALSE
58	FALSE	FALSE
59	FALSE	FALSE
60	FALSE	FALSE
61	FALSE	FALSE
62	FALSE	FALSE
63	FALSE	FALSE
64	FALSE	FALSE
65	FALSE	FALSE
66	FALSE	FALSE
67	FALSE	FALSE
68	FALSE	FALSE
69	FALSE	FALSE
70	FALSE	FALSE
71	FALSE	FALSE
72	FALSE	FALSE
73	FALSE	FALSE
74	FALSE	FALSE
-		

7.5	EALGE	EALGE
75	FALSE	FALSE
76	FALSE	FALSE
77	FALSE	FALSE
78	FALSE	FALSE
79	FALSE	FALSE
80	TRUE	FALSE
81	FALSE	FALSE
82	FALSE	FALSE
83	FALSE	FALSE
84	FALSE	FALSE
85	FALSE	FALSE
86	FALSE	FALSE
87	FALSE	FALSE
88	FALSE	FALSE
89	FALSE	FALSE
90	FALSE	FALSE
91	FALSE	FALSE
92	FALSE	FALSE
93	FALSE	FALSE
94	FALSE	FALSE
95	FALSE	FALSE
96	FALSE	TRUE
97	TRUE	TRUE
98	FALSE	TRUE
99	FALSE	TRUE
100	FALSE	TRUE
101	FALSE	FALSE
102	FALSE	FALSE
103	FALSE	FALSE
104	FALSE	FALSE
105	FALSE	FALSE
106	FALSE	FALSE
107	FALSE	FALSE
108	FALSE	FALSE
109	FALSE	FALSE
110	FALSE	FALSE
111	FALSE	FALSE
112	FALSE	FALSE
113	FALSE	FALSE
114	FALSE	FALSE
115	FALSE	FALSE
116	FALSE	FALSE
117	FALSE	FALSE

118	FALSE	FALSE
119	FALSE	FALSE
120	FALSE	FALSE
120	FALSE	FALSE
121	FALSE	FALSE
123	FALSE	FALSE
124	FALSE	FALSE
125	FALSE	FALSE
126	FALSE	FALSE
127	FALSE	FALSE
128	FALSE	FALSE
129	FALSE	FALSE
130	FALSE	FALSE
131	FALSE	FALSE
132	FALSE	FALSE
133	FALSE	FALSE
134	FALSE	FALSE
135	FALSE	FALSE
136	FALSE	FALSE
137	TRUE	FALSE
138	FALSE	FALSE
139	FALSE	FALSE
140	FALSE	FALSE
141	FALSE	FALSE
142	FALSE	FALSE
143	FALSE	FALSE
144	FALSE	FALSE
145	FALSE	FALSE
146	FALSE	TRUE
147	TRUE	TRUE
148	TRUE	TRUE
149	TRUE	TRUE
150	TRUE	TRUE
151	FALSE	FALSE
152	FALSE	FALSE
153	FALSE	FALSE
154	FALSE	FALSE
155	FALSE	FALSE
156	FALSE	FALSE
157	FALSE	FALSE
158	FALSE	FALSE
159	FALSE	FALSE
160	FALSE	FALSE
100	111101	171202

161 FALSE FAL 162 FALSE FAL 163 FALSE FAL 164 FALSE FAL 165 FALSE FAL 166 FALSE FAL 167 FALSE FAL 168 FALSE FAL 169 FALSE FAL 170 FALSE FAL	SE SE SE
163 FALSE FAL 164 FALSE FAL 165 FALSE FAL 166 FALSE FAL 167 FALSE FAL 168 FALSE FAL 169 FALSE FAL	SE SE
164 FALSE FAL 165 FALSE FAL 166 FALSE FAL 167 FALSE FAL 168 FALSE FAL 169 FALSE FAL	LSE
165 FALSE FAL 166 FALSE FAL 167 FALSE FAL 168 FALSE FAL 169 FALSE FAL	
166FALSEFAL167FALSEFAL168FALSEFAL169FALSEFAL	LSE
167 FALSE FAL 168 FALSE FAL 169 FALSE FAL	
168 FALSE FAL 169 FALSE FAL	
169 FALSE FAL	
170 FALSE FAL	LSE
	LSE
171 FALSE FAL	SE
172 FALSE FAL	
173 FALSE FAL	SE
174 FALSE FAL	SE
175 FALSE FAL	SE
176 TRUE FAL	SE
177 FALSE FAL	SE
178 FALSE FAL	SE
179 TRUE FAL	LSE
180 FALSE FAL	SE
181 FALSE FAL	SE
182 FALSE FAL	SE
183 FALSE FAL	SE
184 FALSE FAL	SE
185 FALSE FAL	SE
186 FALSE FAL	SE
187 FALSE FAL	SE
188 FALSE FAL	LSE
189 FALSE FAL	SE
190 FALSE FAL	SE
191 FALSE FAL	LSE
192 FALSE FAL	SE
193 FALSE FAL	SE
194 FALSE FAL	SE
195 TRUE FAI	LSE
196 FALSE TR	UE
197 FALSE TR	UE
198 FALSE TR	UE
199 FALSE TR	UE
200 FALSE TR	UE
201 FALSE FAL	LSE
202 FALSE FAL	LSE
203 FALSE FAL	LSE

204	FALSE	FALSE
205	FALSE	FALSE
206	FALSE	FALSE
207	FALSE	FALSE
208	FALSE	FALSE
209	FALSE	FALSE
210	FALSE	FALSE
211	FALSE	FALSE
212	TRUE	FALSE
213	FALSE	FALSE
214	FALSE	FALSE
215	FALSE	FALSE
216	FALSE	FALSE
217	FALSE	FALSE
218	FALSE	FALSE
219	FALSE	FALSE
220	FALSE	FALSE
221	FALSE	FALSE
222	FALSE	FALSE
223	FALSE	FALSE
224	FALSE	FALSE
225	FALSE	FALSE
226	FALSE	FALSE
227	FALSE	FALSE
228	FALSE	FALSE
229	FALSE	FALSE
230	FALSE	FALSE
231	TRUE	FALSE
232	FALSE	FALSE
233	FALSE	FALSE
234	FALSE	FALSE
235	FALSE	FALSE
236	FALSE	FALSE
237	FALSE	FALSE
238	FALSE	FALSE
239	FALSE	FALSE
240	FALSE	FALSE
241	FALSE	FALSE
242	FALSE	FALSE
243	TRUE	FALSE
244	FALSE	FALSE
245	FALSE	FALSE
246	TRUE	TRUE

248 TRUE TRUE 249 TRUE TRUE 250 FALSE TRUE 251 FALSE FALSE 252 FALSE FALSE 253 FALSE FALSE 254 FALSE FALSE 255 FALSE FALSE 256 FALSE FALSE 257 FALSE FALSE 258 FALSE FALSE 259 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE <th>247</th> <th>FALSE</th> <th>TRUE</th>	247	FALSE	TRUE
249 TRUE TRUE 250 FALSE TRUE 251 FALSE FALSE 252 FALSE FALSE 253 FALSE FALSE 254 FALSE FALSE 255 FALSE FALSE 256 FALSE FALSE 257 FALSE FALSE 258 FALSE FALSE 259 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 261 TRUE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE </th <td></td> <td></td> <td></td>			
250 FALSE TRUE 251 FALSE FALSE 252 FALSE FALSE 253 FALSE FALSE 254 FALSE FALSE 255 FALSE FALSE 256 FALSE FALSE 257 FALSE FALSE 258 FALSE FALSE 259 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 274 FALSE FALS			
251 FALSE FALSE 252 FALSE FALSE 253 FALSE FALSE 254 FALSE FALSE 255 FALSE FALSE 256 FALSE FALSE 257 FALSE FALSE 258 FALSE FALSE 259 FALSE FALSE 260 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 274 FALSE FAL			
252 FALSE FALSE 253 FALSE FALSE 254 FALSE FALSE 255 FALSE FALSE 256 FALSE FALSE 257 FALSE FALSE 258 FALSE FALSE 259 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FAL			_
253 FALSE FALSE 254 FALSE FALSE 255 FALSE FALSE 256 FALSE FALSE 257 FALSE FALSE 258 FALSE FALSE 259 FALSE FALSE 260 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FAL			
254 FALSE FALSE 255 FALSE FALSE 256 FALSE FALSE 257 FALSE FALSE 258 FALSE FALSE 259 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FAL			
256 FALSE FALSE 257 FALSE FALSE 258 FALSE FALSE 259 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 279 TRUE FALSE	254		
257 FALSE FALSE 258 FALSE FALSE 259 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 280 TRUE FALSE 281 FALSE FALS	255	FALSE	FALSE
258 FALSE FALSE 259 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALS	256	FALSE	FALSE
259 FALSE FALSE 260 FALSE FALSE 261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALS	257	FALSE	FALSE
260FALSEFALSE261TRUEFALSE262FALSEFALSE263FALSEFALSE264FALSEFALSE265FALSEFALSE266FALSEFALSE267FALSEFALSE268FALSEFALSE269FALSEFALSE270FALSEFALSE271TRUEFALSE272FALSEFALSE273FALSEFALSE274FALSEFALSE275FALSEFALSE276FALSEFALSE277FALSEFALSE278FALSEFALSE279TRUEFALSE280TRUEFALSE281FALSEFALSE282FALSEFALSE283FALSEFALSE284FALSEFALSE285FALSEFALSE286FALSEFALSE287FALSEFALSE288FALSEFALSE	258	FALSE	FALSE
261 TRUE FALSE 262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE<	259	FALSE	FALSE
262 FALSE FALSE 263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALS	260	FALSE	FALSE
263 FALSE FALSE 264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE	261	TRUE	FALSE
264 FALSE FALSE 265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE	262	FALSE	FALSE
265 FALSE FALSE 266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALS	263	FALSE	FALSE
266 FALSE FALSE 267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	264	FALSE	FALSE
267 FALSE FALSE 268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	265	FALSE	FALSE
268 FALSE FALSE 269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	266	FALSE	FALSE
269 FALSE FALSE 270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	267	FALSE	FALSE
270 FALSE FALSE 271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	268	FALSE	FALSE
271 TRUE FALSE 272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	269	FALSE	FALSE
272 FALSE FALSE 273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	270	FALSE	FALSE
273 FALSE FALSE 274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	271	TRUE	FALSE
274 FALSE FALSE 275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	272	FALSE	FALSE
275 FALSE FALSE 276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	273	FALSE	FALSE
276 FALSE FALSE 277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	274	FALSE	FALSE
277 FALSE FALSE 278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	275	FALSE	FALSE
278 FALSE FALSE 279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	276	FALSE	FALSE
279 TRUE FALSE 280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	277	FALSE	FALSE
280 TRUE FALSE 281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	278	FALSE	FALSE
281 FALSE FALSE 282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	279	TRUE	
282 FALSE FALSE 283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	280	TRUE	FALSE
283 FALSE FALSE 284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE	281		
284 FALSE FALSE 285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE			
285 FALSE FALSE 286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE			
286 FALSE FALSE 287 FALSE FALSE 288 FALSE FALSE			
287 FALSE FALSE 288 FALSE FALSE			
288 FALSE FALSE			
289 FALSE FALSE			
	289	FALSE	FALSE

290	FALSE	FALSE	
291	FALSE	FALSE	
292	FALSE	FALSE	
293	FALSE	FALSE	
294	FALSE	FALSE	
295	FALSE	FALSE	
296	TRUE	TRUE	
297	TRUE	TRUE	
298	FALSE	TRUE	
299	TRUE	TRUE	
300	FALSE	TRUE	
301	FALSE	FALSE	
302	FALSE	FALSE	
303	FALSE	FALSE	
304	FALSE	FALSE	
305	FALSE	FALSE	
306	FALSE	FALSE	
307	FALSE	FALSE	
308	FALSE	FALSE	
309	FALSE	FALSE	
310	FALSE	FALSE	
311	FALSE	FALSE	
312	FALSE	FALSE	
313	FALSE	FALSE	
314	FALSE	FALSE	
315	FALSE	FALSE	
316	FALSE	FALSE	
317	FALSE	FALSE	
318	FALSE	FALSE	
319	FALSE	FALSE	
320	FALSE	FALSE	
321	FALSE	FALSE	
322	FALSE	FALSE	
323	FALSE	FALSE	
324	FALSE	FALSE	
325	FALSE	FALSE	
326	FALSE	FALSE	
327	FALSE	FALSE	
328	FALSE	FALSE	
329	FALSE	FALSE	
330	FALSE	FALSE	
331	FALSE	FALSE	
332	FALSE	FALSE	

333	FALSE	FALSE	
334	FALSE	FALSE	
335	FALSE	FALSE	
336	FALSE	FALSE	
337	FALSE	FALSE	
338	FALSE	FALSE	
339	FALSE	FALSE	
340	FALSE	FALSE	
341	FALSE	FALSE	
342	FALSE	FALSE	
343	TRUE	FALSE	
344	FALSE	FALSE	
345	FALSE	FALSE	
346	TRUE	TRUE	
347	FALSE	TRUE	
348	FALSE	TRUE	
349	TRUE	TRUE	
350	FALSE	TRUE	
351	FALSE	FALSE	
352	FALSE	FALSE	
353	FALSE	FALSE	
354	FALSE	FALSE	
355	FALSE	FALSE	
356	TRUE	FALSE	
357	FALSE	FALSE	
358	FALSE	FALSE	
359	FALSE	FALSE	
360	FALSE	FALSE	
361	FALSE	FALSE	
362	FALSE	FALSE	
363	FALSE	FALSE	
364	FALSE	FALSE	
365	FALSE	FALSE	
366	FALSE	FALSE	
367	FALSE	FALSE	
368	FALSE	FALSE	
369	FALSE	FALSE	
370	FALSE	FALSE	
371	FALSE	FALSE	
372	FALSE	FALSE	
373	FALSE	FALSE	
374	FALSE	FALSE	
375	FALSE	FALSE	
1	1	1	

376	FALSE	FALSE	
377	FALSE	FALSE	
378	FALSE	FALSE	
379	FALSE	FALSE	
380	FALSE	FALSE	
381	FALSE	FALSE	
382	FALSE	FALSE	
383	FALSE	FALSE	
384	FALSE	FALSE	
385	FALSE	FALSE	
386	FALSE	FALSE	
387	FALSE	FALSE	
388	FALSE	FALSE	
389	FALSE	FALSE	
390	FALSE	FALSE	
391	FALSE	FALSE	
392	FALSE	FALSE	
393	FALSE	FALSE	
394	FALSE	FALSE	
395	FALSE	FALSE	
396	FALSE	TRUE	
397	TRUE	TRUE	
398	FALSE	TRUE	
399	FALSE	TRUE	
400	FALSE	TRUE	
401	FALSE	FALSE	
402	FALSE	FALSE	
403	FALSE	FALSE	
404	FALSE	FALSE	
405	FALSE	FALSE	
406	FALSE	FALSE	
407	FALSE	FALSE	
408	FALSE	FALSE	
409	FALSE	FALSE	
410	FALSE	FALSE	
411	FALSE	FALSE	
412	FALSE	FALSE	
413	TRUE	FALSE	
414	FALSE	FALSE	
415	FALSE	FALSE	
416	FALSE	FALSE	
417	FALSE	FALSE	
418	FALSE	FALSE	

419	FALSE	FALSE		
420	FALSE	FALSE		
421	FALSE	FALSE		
422	FALSE	FALSE		
423	FALSE	FALSE		
424	FALSE	FALSE		
425	FALSE	FALSE		
426	FALSE	FALSE		
427	FALSE	FALSE		
428	FALSE	FALSE		
429	FALSE	FALSE		
430	FALSE	FALSE		
431	FALSE	FALSE		
432	FALSE	FALSE		
433	FALSE	FALSE		
434	FALSE	FALSE		
435	TRUE	FALSE		
436	FALSE	FALSE		
437	FALSE	FALSE		
438	FALSE	FALSE		
439	TRUE	FALSE		
440	TRUE	FALSE		
441	FALSE	FALSE		
442	FALSE	FALSE		
443	FALSE	FALSE		
444	FALSE	FALSE		
445	FALSE	FALSE		
446	FALSE	TRUE		
447	FALSE	TRUE		
448	FALSE	TRUE		
449	FALSE	TRUE		
450	FALSE	FALSE		
451	FALSE	FALSE		
452	FALSE	FALSE		
453	FALSE	FALSE		
454	FALSE	FALSE		
455	FALSE	FALSE		
456	FALSE	FALSE		
457	FALSE	FALSE		
458	FALSE	FALSE		
459	FALSE	FALSE		
460	FALSE	FALSE		
461	FALSE	FALSE		

462	FALSE	FALSE
463	FALSE	FALSE
464	FALSE	FALSE
465	FALSE	FALSE
466	FALSE	FALSE
467	FALSE	FALSE
468	FALSE	FALSE
469	FALSE	FALSE
470	FALSE	FALSE
471	TRUE	FALSE
472	FALSE	FALSE
473	FALSE	FALSE
474	FALSE	FALSE
475	TRUE	FALSE
476	FALSE	FALSE
477	FALSE	FALSE
478	FALSE	FALSE
479	FALSE	FALSE
480	FALSE	FALSE
481	FALSE	FALSE
482	FALSE	FALSE
483	FALSE	FALSE
484	FALSE	FALSE
485	FALSE	FALSE
486	FALSE	FALSE
487	TRUE	FALSE
488	FALSE	FALSE
489	FALSE	FALSE
490	FALSE	FALSE
491	FALSE	FALSE
492	FALSE	FALSE
493	FALSE	FALSE
494	FALSE	TRUE
495	FALSE	TRUE
496	FALSE	TRUE
497	FALSE	TRUE
498	FALSE	TRUE
	1	1

Berdasarkan tabel 1 yang menunjukkan hasil prediksi dengan kenyataan jika dibentuk dalam *confusion matrix* maka akan tampil seperti tabel 2, setelah *confusion matrix* berhasil dibuat maka nilai akaurasi dapat dihitung sesuai persamaan (2,11).

Tabel 1 Confusion Matrix hasil klasifikasi dataset CM1 dengan 1 fitur hasil seleksi fitur GR

9,,,	LA1	Kenyataan	
MY	1011	TRUE	FALSE
Hasil	TRUE	14	27
Prediksi	FALSE	35	442

Akurasi =
$$\frac{14 + 442}{14 + 442 + 27 + 35} = \frac{456}{498} = 0.8755 \times 100\% = 87.55\%$$