ANALISIS MEKANISME TRANSMISI KEBIJAKAN MONETER SYARIAH JALUR KREDIT TERHADAP INFLASI DI INDONESIA

2010.1 - 2017.12

SKRIPSI

Diajukan Kepada:

Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang untuk Memenuhi Salah Satu Persyaratan dalam Memperoleh Gelar Sarjana Ekonomi (SE)

Oleh

NUR KHOLILIN KARIMA

NIM: 14540061

JURUSAN PERBANKAN SYARIAH (S1)
FAKULTAS EKONOMI
UNIVERSITAS ISLAM NEGERI (UIN)
MAULANA MALIK IBRAHIM
MALANG
2018

LEMBAR PERSETUJUAN

ANALISIS MEKANISME TRANSMISI KEBIJAKAN MONETER SYARIAH JALUR KREDIT TERHADAP INFLASI DI INDONESIA

2010.1 - 2017.12

Oleh

NUR KHOLILIN KARIMA NIM: 14540061

Telah disetujui pada tanggal 04 Juni 2018

Dosen Pembimbing,

Eko Suprayitho, S.E., M.Si., Ph.D NIP. 19751109 199903 1 003

Mengetahui:

Ketua Jurusan ErPerhankan Syariah (S1)

Eko Supravitno, S.E., M.Si., Ph.D NFP: 19751109 199903 1 003

ii

LEMBAR PENGESAHAN

ANALISIS MEKANISME TRANSMISI KEBIJAKAN MONETER SYARIAH JALUR KREDIT TERHADAP INFLASI DI INDONESIA

2010.1 - 2017.12

SKRIPSI

Oleh

NUR KHOLILIN KARIMA

NIM: 14540061

Telah Dipertahankan di Depan Dewan Penguji Dan Dinyatakan Diterima Sebagai Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Ekonomi (SE) Pada Tanggal 07 Juni 2018

Susunan Dewan Penguji

1. Ketua

Ahmad Sidi Pratomo, SEi., MA NIP. 19840419 20160801 1 050

Dosen Pembimbing/Sekretaris
 Eko Suprayitno, S.E., M.Si., Ph.D
 NIP. 19751109 199903 1 003

3. Penguji Utama
<u>Ulfi Kartika Oktaviana, SE., Ak., M.Ec</u>
NIP. 1976, 019 200801 2 011

Tanda Tangan

Grul

Disahkan Oleh:

Ketua Jurusan Perbankan Syariah (S1),

Eko Suprayituo, S.E., M.Si., Ph.D. 19731109 199903 1 003

ii .

SURAT PERNYATAAN

Yang bertanda tangan di bawah ini:

Nama : Nur Kholilin Karima

NIM : 14540061

Fakultas/Jurusan : Ekonomi/S1 Perbankan Syariah

menyatakan bahwa "Skripsi" yang saya buat untuk memenuhi persyaratan kelulusan pada Jurursan S1 Perbankan Syariah Fakultas Ekonomi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang, dengan judul:

ANALISIS MEKANISME TRANSMISI KEBIJAKAN MONETER SYARIAH JALUR KREDIT TERHADAP INFLASI DI INDONESIA (2010.1 = 2017.12)

adalah hasil karya saya sendiri, bukan "duplikasi" dari karya orang lain.

Selanjutnya apabila di kemudian hari ada "klaim" dari pihak lain, bukan menjadi tanggung jawab Dosen Pembimbing dan/atau pihak Fakultas Ekonomi, tetapi menjadi tanggung jawab sendiri.

Demikian surat pernyataan ini saya buat dengan sebenarnya dan tanpa paksaan dari siapapun.

Malang, 29 Juni 2018 Hormat saya,

DOSAFF122840616

Nur Kholilin Karima NIM: 14540061

LEMBAR PERSEMBAHAN

Skripsi ini penulis persembahkan untuk:

Kedua orang tua abah Ahmad Fauzi dan ibu Halimah Sadiyah,

seluruh kakak dan keluarga tercinta, keluarga besar perbankan syariah, dan juga seluruh teman griya tahfidz muslimah teman seperjuangan.

> Semuanya yang telah mendukung dan selalu hadir di kala sedih dan senang, selalu memberikan doa, semangat, dan motivasi untuk penulis.

HALAMAN MOTTO

لاَ يُكَلِّفُ ٱللَّهُ نَفْسًا إلاَّ وُسْعَهَا

"Allah tidak membebani seseorang melainkan sesuai dengan kesanggupannya"

(QS. Al Baqarah:286)

Al-harakah, Barakah. Polah adalah berkah.

Di dalam gerak, ada kebaikan yang terus meruyak.

~ Salim A Fillah ~

KATA PENGANTAR

Segala puji syukur kehadirat Allah SWT, karena atas rahmat dan hidayah-Nya penelitian ini dapat terselesaikan dengan judul "Analisis Mekanisme Transmisi Kebijakan Moneter Syariah Jalur Kredit Terhadap Inflasi Di Indonesia (2010.1 – 2017.12)".

Sholawat serta salam semoga tetap tercurahkan kepada junjungan kita Nabi Muhammad SAW yang telah membimbing kita dari kegelapan menuju jalan kebaikan, yakni Din al-Islam.

Penulis menyadari bahwa tujuan penulisan tugas akhir skripsi ini tidak akan terwujud tanpa adanya bimbingan dan sumbangan pemikiran dari berbagai banyak pihak. Pada kesempatan ini penulis menyampaikan terima kasih yang tak terhingga kepada:

- 1. Bapak Prof. Dr. H. Abdul Haris, M.Ag., selaku Rektor Universitas Islam Negeri Maulana Malik Ibrahim Malang.
- 2. Bapak Dr. H. Nur Asnawi, M.Ag selaku Dekan Fakultas Ekonomi UIN Maulana Malik Ibrahim Malang.
- 3. Bapak Eko Suprayitno, S.E., M.Si., Ph.D selaku Ketua Jurusan Perbankan Syariah S1 UIN Maulana Malik Ibrahim Malang dan juga selaku dosen pembimbing skripsi yang tidak pernah lelah dalam memberikan begitu banyak masukan kepada penulis dan selalu ikhlas meluangkan waktunya untuk membimbing serta memberikan arahan, petunjuk, dan saran yang sangat bermanfaat dalam menyelesaikan skripsi.
- 4. Bapak Ibu dosen Fakultas Ekonomi serta jurusan Perbankan Syariah S1 UIN Maulana Malik Ibrahim Malang yang telah memberi wawasan kepada penulis.
- 5. Terimakasih untuk teman-teman jurusan Perbankan Syariah S1 UIN Maulana Malik Ibrahim Malang angkatan 2014.
- 6. Dan seluruh pihak yang terlibat secara langsung maupun tidak langsung yang tidak bisa saya sebutkan satu persatu.

Tiada balasan yang dapat penulis berikan selain do'a dan ucapan terimakasih, semoga Allah SWT menerima amal baik dan memberi balasan yang setimpal atas segala jerih payah dan semoga kita semua dalam lindungan-Nya. Amiin.

Akhirnya, dengan segala kerendahan hati penulis menyadari bahwa penulisan ini masih jauh dari kata sempurna. Oleh karena itu penulis mengharapkan kritik dan

saran yang konstruktif demi kesempurnaan penulisan ini. Penulis berharap semua karya yang sederhana ini dapat bermanfaat dengan baik bagi semua pihak.

Malang, 04 Juni 2018

DAFTAR ISI

HALAMAN SAMPUL DEPAN	
HALAMAN JUDUL	i
HALAMAN PERSETUJUAN	
HALAMAN PENGESAHAN	
HALAMAN PERNYATAAN	iv
HALAMAN PERSEMBAHAN	V
HALAMAN MOTTO	vi
KATA PENGANTAR	vii
DAFTAR ISI	ix
DAFTAR TABEL	Xi
DAFTAR GAMBAR	xii
DAFTAR LAMPIRAN	
ABSTRAK (Bahasa Indonesia, Bahasa Inggris dan Bahasa Arab)	
BAB I PENDAHULUAN	
1.1 Latar Belakang	
1.2 Rumusan Masalah	
1.3 Tujuan	9
1.4 Batasan Penelitian	
BAB II KAJIAN TEORI	
2.1 Penelitian Terdahulu	
2.2 Kajian Teoritis	19
2.2.1 Mekanisme Transmisi Kebijakan Moneter Bank	
Indonesia	
2.2.2 Transmisi Kebijakan Moneter Jalur Kredit	
2.2.3 Operasi Pasar Terbuka	
2.2.4 Kebijakan Moneter Islam	
2.2.5 Sertifikat Bank Indonesia Syariah	24
2.2.6 Pasar Uang Antar Bank Syariah	
2.2.7 Dana Pihak Ketiga	28
2.2.8 Pembiayaan Bank Syariah	
2.2.9 Produk Domestik Bruto	
2.2.10 Inflasi	
2.2.11 Hubungan Antar Variabel	
2.3 Kerangka Konseptual	
2.4 Hipotesis Penelitian	
BAB III METODE PENELITIAN	
3.1 Jenis dan Pendekatan Penelitian	
3.2 Populasi dan Sampel	
3.3 Teknik Pengambilan Sampel	
3.4 Data dan Jenis Data	
3.5 Teknik Pengumpulan Data	
3.6 Definisi Operasional Variabel	
3.7 Analisis Data	
3.8 TEKIIK AIIAIISIS Data	48

BAB IV HASIL P	ENELITIAN DAN PEMBAHASAN	58
4.1 Hasil	Analisis	58
4.1.1	Analisis Deskriptif	59
	Pengujian Stasioneritas	
	Penentuan Lag Optimum	
4.1.4	Pengujian Kointegrasi	63
	Estimasi VECM	
4.1.6	Analisis Impulse Respon Function (IRF)	73
	Analisis Variance Decomposition Analysis	
4.2 Pemba	ahasan	103
4.2.1	Analisis Pengaruh Transmisi Kebijakan Monete	er Syariah
	Jalur kredit terhadap Inflasi di Indonesia	103
BAB V PENUTUI	P	111
5.1 Kesim	npulan	111
5.2 Saran	~	113
DAFTAR PUSTA	KA	
LAMPIRAN-LAN	MPIRAN	

DAFTAR TABEL

Tabel 1.1 Perbandingan Target Inflasi dan Aktual Inflasi	3
Tabel 1.2 Data Variabel Mekanisme Transmisi Kebijakan Moneter Ja	alur Kredi
Periode 2011-2017	5
Tabel 2.1 Ringkasan Penelitian Terdahulu	17
Tabel 3.1 Definisi Operasional Variabel	49
Tabel 4.1 Statistik Deskriptif	59
Tabel 4.2 Pengujian Stasioneritas	61
Tabel 4.3 Hasil Lag Optimum	
Tabel 4.4 Stabilitas Lag Optimum	64
Tabel 4.5 Hasil Uji Kontegrasi	65
Tabel 4.6 Hasil Estimasi Jangka Pendek	67
Tabel 4.7 Hasil Estimasi Jangka Panjang	73
Tabel 4.8 Hasil Analisis Variance Decomposition Inflasi	
Tabel 4.9 Hasil Analisis Variance Decomposition PDB	97
Tabel 4.10 Hasil Analisis Variance Decomposition SBIS	98
Tabel 4.11 Hasil Analisis Variance Decomposition PUAS	100
Tabel 4.12 Hasil Analisis Variance Decomposition DPK	102
Tabel 4.13 Hasil Analisis Variance Decomposition Pembiayaan	

DAFTAR GAMBAR

Gambar 1.1 Produk Domestik Bruto (PDB) 2010-2016	2
Gambar 2.1 Literature Review	
Gambar 2.2 Jalur Transmisi Kebijakan Moneter BI	20
Gambar 2.3 Kerangka Berpikir	
Gambar 3.1 Tahapan Analisis VAR dan VECM	
Gambar 3.2 Bagan Alir Teknik dan Uji Statistik Ekonometrika	53
Gambar 4.1 Tahapan Analisis Stasioneritas Data	62
Gambar 4.2 Tahapan Uji Kointegrasi	66
Gambar 4.3 Impluse Response Inflasi	75
Gambar 4.4 Impluse Response PDB	
Gambar 4.5 Impluse Response SBIS	82
Gambar 4.6 Impluse Response PUAS	
Gambar 4.7 Impluse Response DPK	89
Gambar 4.8 Impluse Response Pembiayaan	

DAFTAR LAMPIRAN

Lampiran 1 Data Penelitian

Lampiran 2 Analisis Deskriptif

Lampiran 3 Pengujian Stasioneritas

Lampiran 4 Pengujian Lag Optimum

Lampiran 5 Bukti Konsultasi

Lampiran 6 Analisis VECM

Lampiran 7 Analisis Impulse Respons Function (IRF)

Lampiran 8 Analisis Variance Decomposition

Lampiran 9 Biodata Peneliti

Lampiran 10 Bukti Konsultasi

Lampiran 11 Surat Keterangan Penelitian

Lampiran 12 Surat Keterangan Bebas Plagiarisme

Lampiran 13 Hasil Pengecekan Plagiarisme dengan Turnitin

ABSTRAK

Nur Kholilin Karima. 2018. SKRIPSI. Judul: "Analisis Mekanisme Transmisi

Kebijakan Moneter Syariah Jalur Kredit Terhadap Inflasi Di Indonesia

(2010.1 - 2017.12)"

Pembimbing: Eko Suprayitno, S.E., M.Si., Ph.D

Kata Kunci : Mekanisme Transmisi Kebijakan Moneter, Kebijakan Moneter

Syariah, Inflasi, Vector Error Correction Model (VECM)

Perekonomian yang stabil adalah perekonomian yang tidak mengalami gejolak harga. Apabila gejolak harga terus mengalami kenaikan maka akan terjadi inflasi. Pemerintah menggunakan kebijakan moneter sebagai pengendali inflasi. Selaras dengan meningkatnya bank syariah, maka Bank Indonesia (BI) harus menjalankan *dual financial system* yaitu kebijakan moneter konvensional dan syariah. Tujuan penelitian ini adalah untuk menganalisis mekanisme transmisi kebijakan moneter syariah jalur kredit terhadap inflasi pada periode Januari 2010 hingga Desember 2017.

Jenis penelitian ini adalah penelitian kuantitatif. Penelitian ini menggunakan data bulanan periode Januari 2010 hingga Desember 2017. Variabel yang digunakan dalam penelitian ini yaitu Sertifikat Bank Indonesia Syariah (SBIS), Pasar Uang Antar Bank Syariah (PUAS), Dana Pihak Ketiga (DPK) bank syariah, pembiayaan bank syariah, Produk Domestik Bruto (PDB), dan Inflasi. Alat analisis penelitian adalah VECM dengan menggunakan Eviews 9.

Hasil penelitian menunjukkan bahwa tidak terdapat hubungan jangka pendek pada transmisi kebijakan moneter syariah jalur kredit terhadap inflasi. Pada hubungan jangka panjang variabel SBIS, PUAS, DPK, pembiayaan memberikan pengaruh negatif terhadap inflasi. Dan variabel PDB pada jangka panjang berpengaruh positif terhadap inflasi.

ABSTRACT

 $Nur\ Kholilin\ Karima.\ 2018.\ THESIS.\ "Analysis\ of\ Transmission\ Mechanism\ of\ Shariah$

Monetary Policy on Credit Channel to Inflation in Indonesia (2010.1 -

2017.12)"

Advisor : Eko Suprayitno, S.E., M.Si., Ph.D

Keywords : Mechanism of Monetary Policy Transmission, Islamic Monetary

Policy, Inflation, Vector Error Correction Model (VECM)

A stable economy is an economy that does not have a price fluctuations. If price fluctuations continue to rise then inflation will occur. The government uses monetary policy as an inflation controller. In line with the increasing of sharia banks, central bank of Indonesia (Bank Indonesia/BI) must have a dual financial system are conventional and syariah monetary policy. The purpose of this research is to analyze the transmission mechanism of sharia monetary policy of credit channel in the period of January 2010 until December 2017.

This study is a quantitative research. This study uses monthly data from January 2010 to December 2017. Variables used in this research are Bank Indonesia Sharia Certificates (SBIS), Interbank Sharia Money Market (PUAS), Third Party Funds (DPK) of syariah bank, Islamic bank financing, Gross Domestic Product (GDP), and Inflation. The research analytical tool is VECM using Eviews 9.

The results show that on the short-term effect of sharia monetary policy transmission to inflation, does not have a relations between credit channel and inflation. In long term, SBIS, PUAS, DPK, financing variables have a negative effect on inflation. And the GDP variable has a positive effect on inflation.

المستخلص

نورخليل كريمة. ٢٠١٨. البحث الجامعي. "تحليل آلية انتقال الخط الائتماني لسياسة النقد الشرعي إلى التضخم في إندونيسيا (2017.12-2010.01)"

المشرف: إيكو سوبرايتنو الماجستير

الكلمات المفتاحية: آلية نقل السياسة النقدية ، السياسة الشرعية النقدية ، التضخم ، (VECM) Vector Error Correction Model

الاقتصاد المستقر هو اقتصاد لا يعاني من تقلبات الأسعار. إذا استمرت تقلبات الأسعار في الارتفاع فسوف يحدث التضخم. تستخدم الحكومة السياسة النقدية كمراقب التضخم. تماشيا مع زيادة المصرفية الشرعية ، يجب على مصرف إندونسيا (BI) أن يدير نظامًا ماليًا مزدوجًا ، ألا وهو السياسة النقدية التقليدية و الشريعة. الأهداف من هذا البحث هو تحليل آلية نقل السياسة الشرعية للخط الائتماني في الفترة من يناير ٢٠١٠ حتى ديسمبر ٢٠١٧.

هذا النوع من البحوث هو البحث الكمي. تستخدم هذه بحث البيانات الشهرية من يناير ٢٠١٠ إلى ديسمبر ٢٠١٠. المتغيرات المستخدمة في هذا البحث هي شهادات مصرف إندونسيا الشرعية (SBIS) ، سوق المال بين مصرف الشرعية (PUAS) ، أموال الطرف الثالث (DPK) لمصرف الشرعية ، التمويل المصرفي الشريعة ، المنتج المحلي الإجمالي (GDP) والتضخم. أداة التحليل البحثية هي VECM باستخدام Eviews 9.

تظهر النتائج أنه لا توجد علاقة قصيرة الأجل في نقل السياسة النقدية للإقراض الشرعي إلى التضخم. على المدى الطويل ، DPK ،PUAS ،SBIS ، متغيرات التمويل يكون لها تأثير سلبي على التضخم. ومتغير الناتج المحلي الإجمالي (PDB) له تأثير إيجابي على التضخم.

BAB I

PENDAHULUAN

1.1 Latar Belakang

Pertumbuhan ekonomi merupakan salah satu ukuran dari perkembangan perekonomian suatu negara. Perekonomian yang baik adalah suatu perekonomian yang terus menerus mengalami pertumbuhan dan tidak mengalami penurunan baik dalam periode triwulan maupun tahunan. Dengan ini, perekonomian tersebut dapat menimbulkan stabilisasi harga dan terbukanya kesempatan kerja yang luas (Rahadja dan Manurung, 2008: 223). Namun dalam kenyataannya kondisi perekonomian pada umumnya mengalami fluktuasi.

Selanjutnya pertumbuhan ekonomi suatu negara dapat dilihat dari proses produksi barang dan jasa yang ada di negara tersebut. Proses produksi barang dan jasa itu dapat dilihat lagi dari Produk Domestik Bruto (PDB) atau disebut juga *Gross Domestic Product* (GDP). PDB ini digunakan untuk memenuhi permintaan rumah tangga, pembentukan modal (investasi), konsumsi pemerintah, dan permintaan ekspor luar negeri (Sofilda dan Suparmoko, 2014: 14). Kenaikan PDB menunjukkan kegairahan ekonomi suatu negara karena ekonomi di negara tersebut telah bergerak dan memperluas sehingga dapat meningkatkan kesejahteraan masyarakat di negara tersebut.

PDB

16000000
14000000
12000000
10000000
8000000
4000000
20000000
0
2010 2011 2012 2013 2014 2015 2016 2017

Gambar 1.1 Produk Domestik Bruto (PDB) 2010-2016

Sumber: Badan Pusat Statistik 2017, GDP (Data diolah), (dalam miliar rupiah)

Berdasarkan grafik di atas diketahui bahwa, pertumbuhan ekonomi dilihat dari besarnya PDB tahun 2010-2017 mengalami peningkatan setiap tahunnya. Besarnya PDB setiap tahunnya menunjukan tingkat pertumbuhan ekonomi.

Perekonomian yang stabil adalah perekonomian yang tidak mengalami gejolak perubahan harga barang. Apabila harga barang stabil, baik pengusaha maupun konsumen lebih mudah dalam membuat rencana. Perusahaan membuat rencana produksi, rencana pembelian bahan mentah, rencana pembayaran upah tenaga kerja dan sebagainya. Apabila perekonomian mengalami kenaikan harga yang terus menerus maka akan terjadi inflasi. Inflasi yang deras akan pasti menghancurkan perekonomian, dimana barang-barang dan jasa yang tersedia dalam perekonomian semakin sedikit (Sofilda dan Suparmoko, 2014: 7).

Mengingat pentingnya pengendalian inflasi bagi ekonomi suatu Negara, maka sejak tahun 1990-an berbagai negara mulai menerapkan kebijakan *Inflation Targetting* yang bertujuan untuk membentuk dan mengarahkan

ekspektasi masyarakat (*inflation expectation*) kepada tingkat inflasi yang rendah sebagai target, dan memberikan pedoman kepada para pelaku pasar (baik konsumen maupun produsen) dan para pembuat kebijakan untuk ikut mewujudkan target inflasi ini (Rahadja dan Manurung, 2008: 374).

Target atau sasaran inflasi merupakan tingkat inflasi yang harus dicapai oleh Bank Indonesia. Target atau sasaran inflasi ini diatur melalui Peraturan Menteri Kuangan (PMK). Berdasaran PMK No.93/PMK.011/2014 tanggal 21 Mei 2014, sasaran inflasi yang ditetapkan oleh pemerintah untuk periode 2015-2017, masing-masing sebesar 4,0%, 4,0%, 3,5% masing-masing dengan deviasi sebesar ±1,0% (Bank Indonesia, 2017). Berikut ini tabel perbandingan target inflasi dan inflasi aktual:

Tabel 1.1
Perbandingan Target Inflasi dan Aktual Inflasi

Tahun	Target Inflasi	Inflasi Aktual (%, yoy)
2011	5 <u>±</u> 1%	3,79
2012	4,5 <u>+</u> 1%	4,30
2013	4,5 <u>+</u> 1%	8,38
2014	4,5 <u>+</u> 1%	8,36
2015	4 <u>+</u> 1%	3,35
2016	4 <u>+</u> 1%	3,02

Sumber: Bank Indonesia 2017, Inflasi

Pada tabel di atas diketahui bahwa inflasi aktual mengalami fluktuasi. Tahun 2011 dan 2012 tingkat inflasi aktual pada tingkat yang baik yaitu sebesar 3,79% dan 4,30%. Sedangkan pada tingkat inflasi aktual tahun 2013 dan 2014 menunjukan angka 8,38% dan 8,36% yang artinya inflasi pada tahun ini

menunjukan tingkat inflasi yang kurang baik karena jauh di atas target yang ditentukan. Kemudian pada tahun 2015 dan 2016 inflasi aktual menunjukan tingkat inflasi yang baik kembali karena mengalami penurunan dan di bawah target yaitu sebesar 3,35% dan 3,02%.

Pencapaian target inflasi yang rendah merupakan agenda besar yang saat ini sedang diemban oleh bank Indonesia. Target ini tentunya tidak terlepas dari strategi kebijakan moneter yang saat ini sedang diimplementasikan oleh bank sentral yaitu *Inflation Targetting* (IT). Namun, terdapat tantangan besar yang dihadapi oleh bank sentral dalam mengemban amanat IT (Ambarini, 2015: 206).

Langkah-langkah yang dilakukan BI untuk mencapai tujuan tersebut yaitu dengan mentransmisikannya melalui enam jalur, antara lain jalur suku bunga, kredit, harga aset, neraca pembayaran, nilai tukar dan ekspektasi inflasi. Jalur transmisi yang paling dekat dan memiliki kaitan kuat terhadap sektor riil adalah melalui jalur kredit atau pembiayaan perbankan. Hal ini sejalan dengan pemikiran para ahli ekonomi moneter, salah satunya adalah Bernanke dan Gertle yang menekankan mekanisme transmisi moneter pada saluran kredit (*Credit Channel*). Stabilitas moneter dan perbankan merupakan dua sisi yang saling berpengaruh dan menentukan antara satu dan lainnya. Keterkaitan antar kebijakan moneter dengan perbankan dapat dilihat dari interaksi bank sentral dengan perbankan dalam melakukan proses perputaran uang yang melibatkan pelaku ekonomi di sektor riil (Anjarsari, 2017).

Selaras dengan meningkatnya minat masyarakat terhadap bank syariah.

Perkembangan bank syariah di Indonesia dapat dilihat dari jumlah aset, Dana

Pihak Ketiga, dan pembiayaan. Hingga akhir tahun 2016, jumlah aset bank syariah telah mencapai 356.50 triliun rupiah, pembiayaan yang disalurkan mencapai 248.01 triliun rupiah dan DPK tumbuh mencapai 279.35 triliun rupiah (Otoritas Jasa keuangan, 2017). Hal ini membuktikan bahwa Perbankan Syariah setiap tahunnya terus mengalami peningkatan. Untuk menyeimbangkan pertumbuhan perbankan syariah, maka Bank Indonesia (BI) selaku pembuat kebijakan moneter harus bisa membuat dan menjalankan *dual financial system* yaitu otoritas moneter ganda yang dapat menjalankan kebijakan moneter konvensional maupun syariah.

Keterkaitan sektor keuangan dan sektor riil dapat melemah seiring dengan perkembangan sektor keuangan. Sebagian dana yang dimobilisasi oleh lembaga keuangan dapat terus berputar di sektor keuangan saja dan tidak berpengaruh terhadap sektor riil (Warjiyo, 2004). Meningkatnya pembiayaan perbankan syariah diharapkan dapat mendorong pertumbuhan sektor riil, karena tujuan dari aktivitas ekonomi yang Islami adalah untuk mendukung kegiatan produktif, membantu masyarakat dalam mengumpulkan modal, dan distribusi kekayaan untuk mencapai kesejahteraan bagi semua (Noviasari, 2012).

Adanya sistem moneter syariah diharapkan mampu menjadi solusi dari kegagalan yang diakibatkan oleh sistem moneter konvensional yang terpaku pada sistem bunga. Sistem bunga membawa kegiatan perekonomian dalam tindak spekulasi yang akan menghambat perekonomian sektor riil untuk berkembang dan akhirnya pertumbuhan ekonomi tinggi. Asumsinya adalah

dengan adanya kebijakan moneter syariah, kebijakan moneter Indonesia diharapkan dapat mencapai tujuan moneter yang lebih baik (Fauziah, 2015).

Hal yang membedakan sistem moneter Islam dengan sistem konvensional yaitu pertama adalah 100 persen reserve banking system merupakan sistem sebuah bank hanya menjadikan seluruh depositnya sebagai cadangan, sehingga tidak menciptakan uang baru bagi bank, semua cadangan diserahkan pada Bank sentral, yang pada akhirnya tidak akan menimbulkan daya beli baru yang diciptakan, dengan demikian konsep ini tidak mengandung adanya unsur riba dan tidak menimbulkan efek inflasi serta tidak ada pihak yang dirugikan. Kedua Full bodied money yaitu nilai intriksinya sama dengan nilai nominalnya (Dinar dan Dirham), atau jika menggunakan uang fiat, maka tetap harus diback-up 100 persen dengan sesuatu yang memiliki nilai stabil yang biasanya diasosiasikan dengan emas yang disimpan oleh otoritas penerbit uang (full back money). Sistem moneter Islam tidak menggunakan instrumen suku bunga, karena suku bunga dalam konsep ekonomi Islam menggandung unsur riba dan dilarang (haram). Sebagai pengantinya sistem moneter Islam menggunakan konsep bagi hasil (profit and loss sharing) (Noviasari, 2012).

Pemerintah melalui UU No. 3 Tahun 2004 Bank Indonesia diberi amanah sebagai otoritas ganda yang dapat menjalankan kebijakan moneter konvensional dan syariah secara bersamaan demi mendukung lembaga perbankan syariah. Langkah utama dimulai dengan pengenalan intrumen moneter baru pada Februari 2000, dengan Sertifikat Wadi'ah Bank Indonesia

(SWBI) dengan sistem pemberian bonus. Penentuan tingkatan bonus merupakan rate kebijakan moneter syariah (Sukmana dan Ascarya, 2010).

Namun kemudian diganti dengan Sertifikat Bank Indonesia Syariah (SBIS) dengan akad ju'alah pada tahun 2008. Dengan demikian penggunaan suku bunga pada kebijakan moneter konvensional dapat diganti dengan bagi hasil, *fee*, atau *margin*. Tingkat imbalan hasil SBIS mengacu kepada Sertifikat Bank Indonesia (SBI) satu bulan, namun bila SBI satu bulan tidak digunakan lagi, dapat mengacu kembali kepada SBIS dengan tenor terpendek (Sukmana dan Ascarya, 2012).

Data variabel yang digunakan sebagai indikator mekanisme transmisi kebijakan moneter dalam penelitian ini adalah sebagai berikut:

Tabel 1.2
Data Variabel Mekanisme Transmisi Kebijakan
Moneter Jalur Kredit Periode 2011-2017

Tahun	SBIS	PUAS	DPK	Pembiayaan
2011	3476	50	115.415	102.655
2012	3455	728	147.512	147.505
2013	4712	750	183.534	184.122
2014	8130	200	217.858	199.33
2015	6280	530	231.175	212.647
2016	10787.6	960	279.335	248.007

Sumber: Bank Indonesia dan Badan Pusat Statistik, 2017 (Data diolah), (Dalam Miliar Rupiah)

Tabel 1.2 di atas menunjukan bahwa pada variabel SBIS, DPK, dan pembiayaan cenderung mengalami kenaikan setiap tahunnya. Sedangkan pada variabel PUAS fluktuatif setiap tahunnya.

Hasil penelitian yang dilakukan oleh Ascarya (2012), menunjukkan bahwa variabel-variabel konvensional memicu inflasi dan menghambat pertumbuhan ekonomi, kecuali SBI. Variabel-variabel syariah mampu menahan inflasi dan mendorong pertumbuhan ekonomi. Pada penelitian lain yang dilakukan oleh Maharani (2017) alur mekanisme transmisi kebijakan moneter melalui jalur suku bunga model konvensional lebih baik dibanding dengan alur mekanisme transmisi kebijakan moneter melalui jalur suku model syariah dalam memengaruhi IPI sebagai salah satu indikator pertumbuhan ekonomi. Setiawan dan Karsinah (2016) Variabel syariah dapat menurunkan laju inflasi dan meningkatkan pertumbuhan ekonomi, sedangkan variabel konvensional dapat menurunkan laju inflasi tetapi menahan laju pertumbuhan ekonomi. Anjasari (2017) Transmisi kebijakan moneter jalur pembiayaan perbankan syariah kurang efektif.

Suatu kebijakan dibuat oleh pemerintah untuk membuat perekonomian Negara menjadi stabil dan tumbuh dengan baik. Harus dilakukan pengujian apakah kebijakan atau instrumen yang dibuat pemerintah khususnya pada kebijakan moneter syariah dapat memberikan pengaruh terhadap pertumbuhan perekonomian atau tidak. Berdasarkan latar belakang yang telah dipaparkan tersebut dan adanya inkonsistensi dari beberapa hasil penelitian terdahulu (research gap). Maka dari itu penulis tertarik untuk mengkaji lebih lanjut "Analisis mekanisme transmisi kebijakan moneter syariah jalur kredit terhadap inflasi di Indonesia".

1.2 Rumusan Masalah

Berdasarkan latar belakang masalah yang telah diuraikan di atas maka permasalahan pokok penelitian adalah:

- Bagaimana pengaruh Sertifikat Bank Indonesia Syariah (SBIS) terhadap inflasi ?
- 2. Bagaimana pengaruh Pasar Uang Antar Bank Syariah (PUAS) terhadap inflasi ?
- 3. Bagaimana pengaruh Dana Pihak Ketiga (DPK) pada bank syariah terhadap inflasi?
- 4. Bagaimana pengaruh pembiayaan bank syariah terhadap inflasi?
- 5. Bagaimana pengaruh Produk Domestik Bruto terhadap inflasi?

1.3 Tujuan

1.3.1 Tujuan Penelitian

Dari permasalahan yang dirumuskan, maka tujuan dari penelitian ini adalah sebagai berikut:

- 1. Untuk mengetahui pengaruh Sertifikat Bank Indonesia Syariah (SBIS) terhadap inflasi.
- 2. Untuk mengetahui pengaruh Pasar Uang Antar Bank Syariah (PUAS) terhadap inflasi.
- 3. Untuk mengetahui pengaruh Dana Pihak Ketiga pada bank syariah terhadap inflasi.
- 4. Untuk mengetahui pengaruh pembiayaan bank syariah terhadap inflasi
- 5. Untuk mengetahui pengaruh Produk Domestik Bruto terhadap inflasi.

1.3.2 Manfaat Penelitian

1. Manfaat Teoritis

Penelitian ini diharap dapat menjadi referensi bagi pengembang ilmu ekonomi khususnya ekonomi islam dan dapat memberi dukungan terhadap hasil penelitian sejenis sebelumnya. Bagi peneliti selanjutnya, penelitian ini dapat dijadikan sebagai salah satu sumber referensi maupun acuan bagi peneliti selanjutnya maupun pembaca dalam melakukan penelitian-penelitian selanjutnya mengenai kebijakan moneter islam dan pertumbuhan ekonomi.

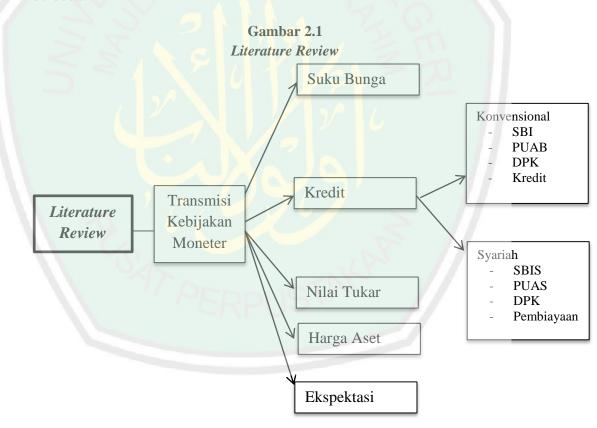
2. Manfaat Praktis

Penelitian ini diharapkan dapat memberi manfaat dengan mengetahui kebijakan moneter mana yang dapat memberi pengaruh pada pertumbuhan ekonomi di Indonesia.

1.4 Batasan Penelitian

Berdasarkan rumusan masalah yang telah penulis sebutkan di atas, penulis membatasi masalah yang akan diteliti, dimana penulis hanya fokus meneliti pada kebijakan moneter syariah jalur kredit. Ada dua jenis jalur kredit yang mempengaruhi transmisi kebijakan moneter dari sektor keuangan ke sektor riil, yaitu jalur kredit bank dan jalur neraca perusahaan. Pada penelitian ini jalur yang diambil adalah jalur kredit bank dimana instrumen kebijakan moneter berpengaruh terhadap kondisi likuiditas perbankan yang selanjutnya berpengaruh terhadap keputusan perbankan dalam memberi kredit. Variabel

yang digunakan pada penelitian ini adalah SBIS, PUAS, DPK,Pembiayaan, PDB dan inflasi.



BAB II

KAJIAN TEORI

2.1 Penelitian Terdahulu

Penelitian terdahulu merupakan suatu sumber yang dijadikan acuan dalam melakukan penelitian. Penelitian terdahulu yang digunakan berasal dari jurnal dan skripsi dengan melihat hasil penelitiannya dan akan dibandingkan dengan penelitian selanjutnya dengan menganalisa berdasarkan keadaan dan waktu yang berbeda.

Sumber: Bank Indonesia, 2017 (Data diolah)

Salina H. Kassim dan Raditya Sukmana (2010) dalam penelitian yang berjudul "Roles of the Islamic banks in the monetary transmission process in

Malaysia" menggunakan alat analisis VECM. Periode penelitian dari Januari 1994 hingga Mei 2007. Hasilnya menunjukkan bahwa baik deposito dan pembiayaan syariah terbukti signifikan secara statistik dalam menghubungkan indikator kebijakan moneter dengan output riil. Otoritas moneter juga harus mempertimbangkan bank-bank Islam dalam implementasi kebijakan moneter di Malaysia. Hasilnya juga menyiratkan bahwa stabilitas lembaga keuangan Islam sama pentingnya dengan lembaga keuangan konvensional untuk mencapai transmisi kebijakan moneter yang efektif dalam perekonomian.

Zamrah Hasin dan Abd. Majid Shabri (2011) dalam penelitiannya yang berjudul "The Importance of the Islamic Banks in the Monetary Transmission Mechanism in Malaysia". Penelitian ini menggunakan metode autoregressive distributed lag (ARDL) dan menggunakan data triwulan mulai dari 1991: Q1 hingga 2010: Q4. Subjek pada penelitian ini adalah transmisi kebijakan moneter syariah jalur pembiayaan di Malaysia. Pembiayaan syariah tidak terdistribusi secara merata ke sektor ekonomi sebagai respons terhadap guncangan kebijakan moneter. Selain itu, temuan juga mencerminkan bahwa perbankan Islam dalam sistem perbankan ganda, tidak terhindar dari tingkat suku bunga dan kondisi moneter negara. Ini jelas menunjukkan perilaku perbankan Islam yang tidak dapat menghindari suku bunga sementara operasinya menghapus dari suku bunga. Dalam merancang kebijakan moneter, bank sentral harus mempertimbangkan pembiayaan Islam sebagai alternatif atau saluran pelengkap untuk transmisi moneter karena saluran ini sama aktifnya dengan saluran pinjaman konvensional.

Penelitian Ascarya (2012) dengan judul "Transmission Channel and Effectiveness of Dual Monetary Policy in Indonesia" dengan menggunakan model

VAR. Hasil menunjukkan bahwa kebijakan moneter untuk pengurangan inflasi dengan pola syariah lebih efektif dari pada dengan pola konvensional. Pembiayaan syariah memberikan output positif.

Penelitian Wulan Asnuri (2013) yang berjudul "Pengaruh Instrumen Moneter Syariah dan Ekspor terhadap Pertumbuhan Ekonomi di Indonesia" dengan menggunakan ECM sebagai alat analisis dan menghasilkan temuan bahwa dalam jangka pendek, total pembiayaan bank syariah dan kontribusi ekspor tidak memengaruhi secara signifikan terhadap pertumbuhan ekonomi, sementara Sertifikat Bank Indonesia Syariah (SBIS) berpengaruh negatif secara signifikan terhadap pertumbuhan ekonomi pada periode 2007:1 – 2011:12. Sedangkan dalam jangka panjang ketiga variabel independent (total pembiayaan bank syariah,SBIS, dan kontribusi ekspor) berpengaruh negatif secara signifikan terhadap pertumbuhan ekonomi pada periode 2007:1 – 2011:12.

Qurroh Ayuniyyah, Irfan Syauqi Beik, Laily Dwi Arsyianti (2013) dalam penelitian yang berjudul "Dynamic Analysis of Islamic Bank and Monetary Instrument towards Real Output and Inflation in Indonesia". Penelitian ini menggunakan alat analisis VAR / VECM. Penelitian ini menggunakan data bulanan indeks produksi industri, indeks harga konsumen, deposito syariah dan bagi hasilnya, total pembiayaan Islam dan bagi hasilnya, sirkulasi uang dan Sertifikat Bank Indonesia Syariah, dari Januari 2004 hingga Desember 2009. Hasil pada penelitian ini menunjukkan bahwa semua variabel syariah memiliki dampak signifikan terhadap pertumbuhan sektor riil, tetapi tidak ditemukan variabel yang mempengaruhi inflasi. Tidak disarankan penggunaan suku bunga sebagai tolak ukur untuk deposito syariah dan Sertifikat Bank Indonesia Syariah.

Wulandari Sangidi (2014) dalam penelitian yang berjudul "Efektivitas Mekanisme Transmisi Moneter Melalui Jalur Pembiayaan Bank Syariah Di Indonesia", tujuan penelitian ini untuk menganalisis peran bank syariah dalam mekanisme transmisi moneter di Indonesia dan mengidentifikasi efek instrumen moneter syariah terhadap output dan inflasi melalui jalur pembiayaan bank syariah dengan metode VECM. Penelitian ini menggunakan data bulanan periode Januari 2004 hingga Maret 2008 untuk alur transmisi kebijakan moneter Sertifikat Wadiah Bank Indonesia (SWBI) dan periode April 2008 hingga Desember 2013 untuk alur transmisi kebijakan moneter Sertifikat Bank Indonesia Syariah (SBIS). Hasil penelitian menunjukkan bahwa perbankan syariah memiliki peran penting dalam transmisi kebijakan moneter di Indonesia.

Penelitian selanjutnya dilakukan oleh Rifky Yudi Setiawan dan Karsinah (2016) dengan judul "Mekanisme Transmisi Kebijakan Moneter Konvensional dan Syariah dalam Mempengaruhi Inflasi dan Pertumbuhan Ekonomi di Indonesia". Hasil penelitian menunjukkan jalur konvensional memiliki alur sesuai dengan teori transmisi kebijakan moneter yang ada hingga mempengaruhi inflasi dan pertumbuhan ekonomi, sedangkan jalur syariah belum mempunyai alur yang sesuai dengan teori kebijakan moneter yang ada. Berdasarkan hasil VECM, variabel syariah dapat menurunkan laju inflasi dan meningkatkan pertumbuhan ekonomi, sedangkan variabel konvensional menurunkan laju inflasi, akan tetapi menahan laju pertumbuhan ekonomi. Kemudian berdasarkan hasil FEVD jalur konvensional lebih berpengaruh dalam mengendalikan pertumbuhan ekonomi dan inflasi dengan masing-masing kontribusi sebesar 50.5 persen dan 19.97 persen, sedangkan jalur syariah masing-masing sebesar 29.07 persen dan 19.47 persen.

Sri Herianingrum dan Imronjana Syapriatama (2016) dalam penelitiannya yang berjudul "Dual Monetary System And Macroeconomic Performance In Indonesia", Penelitian ini menggunakan metode VAR (vector auto regressive) dengan data bulanan yang bersumber dari Bank Indonesia dari Januari 2010 sampai Desember 2013. Hasil IRF menjelaskan bahwa jalur suku bunga memiliki kesulitan untuk mencapai target makroekonomi sedangkan instrumen moneter Islam mengindikasikan adanya potensi pertumbuhan output dan menahan laju inflasi.

Penelitian selanjutnya dilakukan oleh Maharani (2017) dengan judul "Analisis Pengaruh Mekanisme Transmisi Kebijakan Moneter Konvensional Dan Syariah Terhadap Indeks Produksi Industri (IPI) Di Indonesia". Penelitian menggunakan alat analisis VAR ini menggunakan Uji Impulse Response Function (IRF) dan Uji Forecast Error Decomposition. Hasil uji IRF memperlihatkan bahwa dalam model konvensional, respon IPI terhadap gejolak SBI dan PUAB adalah positif dan permanen, begitu pula dalam model syariah di mana respon IPI terhadap gejolak SBIS dan PUAS adalah positif dan permanen. Fluktuasi yang terjadi pada transmisi kebijakan moneter syariah lebih cepat mereda bila dibandingkan dengan transmisi kebijakan moneter konvensional. Sedangkan untuk hasil uji FEVD menyatakan bahwa model konvensional memberikan kontribusi positif terhadap pertumbuhan ekonomi, yang dalam penelitian ini dicerminkan melalui IPI, terhitung pengaruhnya sebedar 37.51%. Kemudian, model syariah pun memberikan kontribusi positif terhadap IPI terhitung sebesar 7.14%.

Hasil penelitian Anjasari (2017) dengan judul "Analisis Pengaruh Instrumen Moneter Syariah Jalur Pembiayaan Perbankan Syariah Terhadap Pertumbuhan Ekonomi Di Indonesia Periode 2008:01-2015:12" Penelitian ini

menggunakan metode kuantitatif asosiatif dengan alat analisis *Vector Error Correction Model* (VECM). Hasil dari penelitian ini menunjukkan bahwa, *pertama*, berdasarkan uji kausalitas Granger, alur transmisi tidak dapat diidentifikasi dengan jelas, karena alur berhenti di FIN dan tidak dapat mempengaruhi IPI. *Kedua*, hasil estimasi VECM menunjukkan seluruh variabel hanya berpengaruh pada jangka panjang dan tidak berpengaruh pada jangka pendek. *Ketiga*, transmisi kebijakan moneter jalur pembiayaan perbankan syariah kurang efektif, hal ini dibuktikan dengan hasil simulasi IRF yang menunjukkan bahwa pengaruh guncangan pada variabel jalur pembiayaan (FIN) terhadap IPI, mereda dan stabil pada periode 10. Sedangkan dari hasil simulasi FEVD, variabel jalur pembiayaan (FIN) hanya memiliki kontribusi sebesar 0.14 persen terhadap IPI.

Adapun ringkasan penelitian terdahulu akan dijabarkan pada tabel di bawah ini:

Tabel 2.1 Ringkasan Penelitian Terdahulu

No	Nama, Tahun dan Judul Penelitian	Periode	Alat Analisis	Variabel
1.	Salina H. Kassim, Raditya Sukmana (2010) Roles of the Islamic banks in the monetary transmission process in Malaysia	1994.1- 2007.5	VECM	Pembiayaan IPI Islamic Deposits ONIGHT
2.	Zamrah Hasin, dan Shabri Abd. Majid (2011), The Importance of the Islamic Banks in the Monetary Transmission Mechanism in Malaysia	1999.Q1- 2010.Q4	Autoregressi ve distributed lag (ARDL)	Monetery Policy Financing Output Inflation Rate Exchange Rate
3.	Ascarya (2012), Transmission Channel and Effectiveness of Dual Monetary Policy in Indonesia	2003.1- 2009.9	Vector Autoregressi ve (VAR) atau Vector Error Correction Model (VECM)	SBI rSBIS rPUAB rPUAS Suku bunga kredit, PLS LOAN FINC IHK
4.	Wulan Asnuri (2013), Pengaruh Instrumen Moneter Syariah dan Ekspor terhadap Pertumbuhan Ekonomi di Indonesia	2007.1- 2011.12	VAR/VECM	PDB Pembiayaan SBIS Ekspor
5.	Qurroh Ayuniyyah, Irfan Syauqi Beik, Laily Dwi Arsyianti (2013), Dynamic Analysis of Islamic Bank and Monetary Instrument towards Real Output and Inflation in Indonesia	2004.1- 2009.12	VAR/VECM	IPI CPI FIN rFIN TID rTID M0 SBIS
6.	Wulandari Sangidi (2014),	2004.1- 2013.12	VAR/VECM	DPK Pembiayaan PUAS

	Efektivitas Mekanisme Transmisi Moneter Melalui Jalur Pembiayaan Bank Syariah Di Indonesia			SBIS IPI CPI
7.	Rifky Yudi Setiawan dan Karsinah	2006.1-	VAR/VECM	IHK
' '	(2016),	2014.12	, 1115 , DOI/1	IPI
	Mekanisme Transmisi Kebijakan			rSBI
	Moneter Konvensional dan Syariah			rPUAB
	dalam Mempengaruhi Inflasi dan			INT
	Pertumbuhan Ekonomi di Indonesia			CRD
				rSBIS
	18 8 181 2			rPUAS PLS
	THE PLAN			FINC
8.	Sri Herianingrum dan Imronjana	2010.1-	VAR	rBI
0.	Syapriatama (2016),	2010.12	VIII	rPUAB
	Dual Monetary System And	2013.12		Imbal hasil
	Macroeconomic	7.6		PUAS
	Performance In Indonesia	72.7		IHK
	1 erjormance in maonesia	121	-	IPI
9.	Annisa Devy Maharani (2017),	2013.1-	VAR/VECM	SBI
	Analisis Pengaruh Mekanisme	2016.12		PUAB
	Transmisi Kebijakan Moneter	U -		SBIS
	Konvensional Dan Syariah Terhadap			PUAS
	Indeks Produksi Industri (IPI) Di			IPI
	Indonesia	7	_//	
10.	Ida Fitri Anjasari (2017),	2008.1-	VAR/VECM	rSBIS
	Analisis Pengaruh Instrumen Moneter	2015.12		rPUAS
	Syariah Jalur Pembiayaan Perbankan	101		FIN
	Syariah Terhadap Pertumbuhan			IPI
	Ekonomi Di Indonesia Periode 2008:01-2015:12			

Dari beberapa penelitian di atas, terdapat beberapa persamaan dan perbedaan antara penelitian yang akan dilakukan dengan penelitian terdahulu, baik secara subjek maupun periode waktu. Persamaan dengan penelitian di atas adalah samasama menganalisis tentang instrumen kebijakan moneter. Sedangkan perbedaannya adalah focus peneliti adalah pada transmisi jalur kredit syariah

dimana variabel yang akan digunakan adalah SBIS, PUAS, DPK, Pembiayaan, PDB dan inflasi. Selain itu periode tahun yang digunakan mulai bulan Januari 2010 sampai Desember 2017 (2010:1-2017:12).

2.2 Kajian Teori

2.2.1 Mekanisme Transmisi Kebijakan Moneter Bank Indonesia

Mekanisme transmisi kebijakan moneter adalah saluran yang menghubungkan kebijakan moneter dan ekonomi. Pada dasarnya, mekanisme transmisi kebijakan moneter menggambarkan bagaimana kebijakan moneter yang ditempuh bank sentral memengaruhi berbagai aktivitas ekonomi dan keuangan sehingga pada akhirnya dapat mencapai tujuan akhir yang ditetapkan. Di mana, dalam konteks Indonesia, tujuan akhir Bank Indonesia sebagai bank sentral adalah mencapai dan memelihara kestabilan nilai rupiah, yakni kestabilan harga (inflasi) dan kestabilan nilai tukar. Dengan pertimbangan tersebut, pemahaman yang jelas mengenai mekanisme transmisi moneter sangat penting untuk meningkatkan kualitas dan efektivitas kebijakan moneter (Pohan, 2008: 12).

Suku Bunga
Deposito &
Kredit

Kredit yang
Disalurkan

Harga Asset

PDB

Nilai Tukar

Ekspektasi
Inflasi

INFLASI

Gambar 2.2 Jalur Transmisi Kebijakan Moneter BI

Sumber: Website BI, 2017

Dalam teori ekonomi moneter, mekanisme transmisi kebijakan moneter disebut sebagai "black box". Alasannya karena transmisi moneter ini banyak dipengaruhi oleh tiga faktor dominan, yaitu (1) perubahan perilaku bank sentral, industri perbankan dan pelaku ekonomi dalam berbagai kegiatan ekonomi dan keuangan; (2) lamanya tenggat waktu (time lag) sejak pelaksanaan otoritas kebijakan moneter sampai tercapainya sasaran terakhir; dan (3) terjadinya perubahan pada saluran-saluran transmisi moneter itu sendiri seiring dengan perkembangan ekonomi dan keuangan di negara bersangkutan (Pohan, 2008: 13).

2.2.2 Transmisi Kebijakan Moneter Jalur Kredit

Pendekatan mekanisme transmisi kebijakan moneter melalui saluran kredit didasarkan pada asumsi bahwa tidak semua simpanan masyarakat dalam bentuk uang (M1 dan M2), namun disalurkan oleh perbankan ke

masyarakat dalam bentuk kredit. Dengan kata lain, fungsi intermediasi perbankan tidak selalu berjalan sempurna, kenaikan simpanan masyarakat (dana pihak ketiga) tidak selalu diikuti dengan kenaikan secara proporsional pembiayaan yang disalurkan ke masyarakat (Pohan, 2008: 22).

Interaksi antara bank sentral dengan perbankan dan sektor riil diawali dengan interaksi antara bank sentral dan perbankan yang terjadi di pasar uang domestik. Interaksi ini tidak hanya mempengaruhi perkembangan suku bunga jangka pendek di pasar uang, tetapi juga berpengaruh terhadap *volume* dana yang dialokasikan oleh bank-bank dalam bentuk instrumen likuiditas dan dalam pemberian kredit (pembiayaan). Selanjutnya, transmisi kebijakan moneter dari perbankan ke sektor riil melalui pemberian pembiayaan, dipengaruhi oleh berbagai faktor, baik faktor internal maupun faktor eksternal. Oleh karena itu, pertumbuhan pembiayaan selanjutnya akan berpengaruh ke sektor riil, seperti kegiatan konsumsi, investasi dan produksi. Pada gilirannya mempengaruhi harga barang dan jasa (Anjasari, 2017).

2.2.3 Operasi Pasar Terbuka

Operasi pasar terbuka (OPT) merupakan instrument kebijakan moneter yang paling banyak digunakan oleh bank sentral atau otoritas moneter, baik di negara-negara berkembang termasuk di Indonesia (Bank Indonesia) dalam implementasi kebijakan moneter, karena instrumen ini lebih berorientasi pada pasar, keterlibatan peserta tidak mengikat, dan arah (*stance*) kebijakan mudah ditangkap oleh pelaku ekonomi serta tidak membebankan pajak pada bank (Natsir, 2014: 131).

Mekanisme pengendalian uang primer dilakukan melalui OPT yang dapat dilakukan oleh bank Indonesia melalui tiga cara, tiga cara yang dimaksud adalah sebagai berikut (Natsir, 2014: 133-134):

1. Lelang Surat Sertifikat Bank Indonesia (SBI)

Berdasarkan besaran sasaran sasaran uang primer yang telah ditetapkan, bank Indonesia melakukan OPT. Jumlah lelang SBI secara mingguan dimaksudkan untuk mencapai target uang primer yang telah ditetapkan. Untuk alasan itu, setiap minggu bank Indonesia akan memperkirakan perkembangan uang primer dan membandingkan dengan target yang ditetapkan, menentukan besarnya kelebihan likuiditas pasar uang yang diserap. Selanjutnya, bank Indonesia menghitung berapa jumlah SBI yang jatuh tempo, berapa ekspansi atau kontraksi dari sisi fiskal, mutasi cadangan devisa, serta bagaimana kondisi likuiditas di pasar uang.

2. Penggunaan Fasilitas Bank Indonesia (FASBI) di pasar uang rupiah

Selain lelang SBI secara mingguan, BI juga melakukan kegiatan secara langsung di pasar uang rupiah melalui FASBI. Kegiatan ini dilakukan secara harian, terutama apabila terjadi perkembangan di luar perhitungan yang dapat menyebabkan tidak tercapainya target uang primer melalui lelang SBI. Kegiatan BI secara langsung di pasar uang dilakukan dengan cara menawarkan kepada bank-bank untuk menanamkan kelebihan likuiditas di bank Indonesia yang jangka waktunya relatif pendek.

3. Sterilisasi atau intervensi di pasar valuta asing

Kegiatan ini dilakukan oleh BI apabila pemerintah akan membiayai kegiatan suatu proyek atau membutuhkan rupiah dengan cara menggunakan dana valuta asingnya yang disimpan sebagai cadangan devisa di bank Indonesia.

2.2.4 Kebijakan Moneter Islam

Berdasarkan konsep Islam, uang merupakan milik masyarakat (*public goods*). Penimbunan terhadap uang atau aktifitas yang tidak memproduktifkan uang akan mengakibatkan jumlah uang beredar berkurang, sehingga proses perekonomian akan terhambat. Di sisi lain, penumpukan uang atau harta akan mendorong manusia pada sifat tamak dan malas, serta akan berimbas terhadap kelangsungan perekonomian (Karim, 2007: 89).

Ruang lingkup teori sistem ekonomi Islam, keuangan Islam tidak mengenal instrumen suku bunga dan menerapkan sistem pembagian keuntungan dan kerugian (*profit and loss sharing*). Besar kecilnya keuntungan yang diperoleh nasabah perbankan Islam ditentukan oleh besar kecilnya pembagian keuntungan yang diperoleh bank dari kegiatan investasi dan pembiayaan yang dilakukan di sektor riil, sehingga sektor moneter memiliki ketergantungan pada sektor riil. Jika investasi dan produksi di sektor riil berjalan dengan baik, maka imbal hasil pada sektor moneter akan meningkat pula (Huda, 2008: 168).

Dasar pemikiran manajemen moneter Islam adalah terciptanya stabilitas permintaan uang dan mengarahkannya pada tujuan yang penting yaitu kegiatan produktif. Sehingga, setiap instrumen yang mengarah pada instabilitas dan pengalokasian sumber dana yang tidak produktif, akan ditinggalkan. Tujuannya untuk menjamin ekspansi moneter yang pas, tetapi cukup mampu menghasilkan pertumbuhan yang memadai dan dapat menghasilkan kesejahteraan yang merata bagi masyarakat. Laju pertumbuhan yang dituju haruslah bersifat kesinambungan, realistis serta mencakup jangka menengah dan jangka panjang (Huda, 2008: 170).

2.2.5 Sertifikat Bank Indonesia Syariah

Sebelumnya SBIS dikenal sebagai Sertifikat Wadiah Bank Indonesia Syariah (SWBI), Menurut Wirdyaningsih dkk (2005:149) SWBI merupakan instrumen kebijakan moneter yang bertujuan untuk mengatasi kesulitan kelebihan likuiditas pada bank yang beroperasi dengan prinsip syariah.

Berdasarkan Peraturan Bank Indonesia No. 2/9/PBI/2000, yang dimaksud dengan Sertifikat Wadiah Bank Indonesia (SWBI) adalah sertifikat yang diterbitkan Bank Indonesia sebagai bukti penitipan dana berjangka pendek dengan prinsip wadiah (Pasal 1 Ayat 4). Sedangkan yang dimaksud wadiah disini adalah perjanjian penitipan dana antara pemilik dana dengan pihak penerima titipan yang dipercaya untuk menjaga dana tersebut (Pasal 1 Ayat 3).

Selanjutnya perubahan perundang – undangan tentang pencabutan SWBI menjadi SBIS, berdasarkan PBI Nomor 10/11/PBI/2008, SBIS adalah surat berharga berdasarkan prinsip syariah berjangka waktu pendek dalam mata uang rupiah yang diterbitkan oleh Bank Indonesia. SBIS diterbitkan

sebagai salah satu insrumen operasi pasar terbuka dalam rangka pengendalian moneter yang dilakukan berdasarkan prinsip syariah dengan mengunakan akad ju'alah (Peraturan Bank Indonesia 2008).

Instrumen ini menjadi masukan yang positif bagi perbankan syariah. Pasalnya, sebelum diterbitkannya SBIS ini sebelumnya mengunakan Sertifikat Wadiah Bank Indonesia (SWBI) dimana jika dibandingkan dengan SBI konvensional memiliki perbedaan bonus atau return yang sangat berbeda. Untuk itu bank Indonesia menerbitkan SBIS sebagai ganti SWBI setelah mendapat izin dari Dewan Syariah Nasional (DSN). Dalam peraturan Bank Indonesia SBI Syariah diterbitkan melalui mekanisme lelang. Pihak yang berhak mengikuti lelang adalah Bank Umum Syariah (BUS) dan Unit Usaha Syariah (UUS) baru dapat mengikuti lelang SBIS jika memenuhi persyaratan *Financing to Deposit Ratio* (FDR) yang telah ditetapkan oleh bank indonesia sebagaimana terdapat pada pasal 7 ayat (1): BUS atau UUS dapat memiliki SBIS melalui penjualan pembelian SBIS secara langsung atau melalui perusahaan pialang pasar uang rupiah dan valuta asing.

- Karakteristik Sertifikat Bank Indonesia Syariah
- Menggunakan akad Ju'alah.
- Satuan unit sebesar Rp 1.000.000,00 (satu juta rupiah).
- Berjangka waktu paling kurang 1 (satu) bulan dan paling lama 12 (dua belas) bulan.
- Diterbitkan tanpa warkat.
- Dapat digunakan pada bank indonesia dan
- Tidak dapat diperdagangkan dipasar sekunder.

2.2.6 Pasar Uang Antar Bank Syariah

Menurut Antonio (2001:183) Pasar uang (money market) adalah di mana diperdagangkan surat-surat berharga jangka pendek. Pasar valuta asing (foregign exchange market) adalah pasar dimana diperdagangkan surat-surat berharga dalam satu mata uang dengan melibatkan mata uang lain. Sedangkan menurut Algaoud dan Lewis (2001:94) pasar uang adalah sarana yang menyediakan sumberdaya hasil tabungan bagi para investor.

Sedangkan, menurut Darmawi (2006:98) pasar uang antar bank atau sering disebut *interbank call money market* merupakan salah satu sarana untuk memenuhi likuiditas bank-bank karena kalah kliring. Pasar uang antar bank pada dasarnya adalah kegiatan pinjam-meminjam dana antar satu bank dengan bank lainnya. Transaksinya bisa dilakukan secara langsung melalui telepon atau lembaga kliring.

a. Mekanisme Pasar Uang

Mekanisme pasar uang berbeda dengan pasar modal yang tradingnya dilakukan melalui Bursa atau *Stock Exchange*. Sesuai dengan karakteristiknya maka pasar uang ini bersifat abstrak, tidak ada tempat khusus seperti halnya pada pasar modal. Transaksi pasar uang secara *over the counter market* (OTC), dilakukan oleh setiap peserta melalui *desk* atau *dealing room* masing-masing peserta.

Sarana yang digunakan dalam melakukan transaksi pasar uang dapat berupa:

1) Reuters monitor dealing screen (RDMS)

- 2) Telex
- 3) Telepon
- 4) Fax
- 5) Sarana telekomunikasi lain yang diperkenankan untuk transaksi tersebut.
- b. Transaksi Pasar Uang Antarbank Syariah

Menurut Veithzal (2007:859) PUAB adalah sarana pinjam meminjam yang dilakukan antarbank dengan menggunkan telepon atau melalui Ruter. Setiap bank yang meminjam akan menerbitkan promes, sedangkan bank pemberi akan menerbitkan nota kredit. Sedangkan PUAS adalah kegiatan investasi jangka pendek dalam rupiah antarpeserta pasar berdasarkan prinsip mudharabah (Mubarak, 2011).

Menurut Fatwa DSN MUI No. 37/DSN-MUI/2002, pengertian PUAS adalah kegiatan transaksi keuangan jangka pendek antarpeserta pasar berdasarkan prinsip-prinsip syariah.

Menurut Pasal 1 butir (4) Peraturan Bank Indonesia No. 2/8/PBI/2000, yang telah diubah menjadi No. 7/26/PBI/2005 pengertian PUAS adalah kegiatan investasi jangka pendek dalam rupiah antarpeserta pasar berdasarkan prinsip Mudharabah. Sedangkan penegrtian mudharabah pada Pasal 1 butir (5) PBI tersebut adalah "perjanjian antara penanam dana dan pengelola dana untuk melakukan kegiatan usaha guna memperoleh keuntungan, dan keuntungan tersebut akan dibagikan kepada kedua belah pihak berdasarkan nisbah yang telah disepakati sebelumnya (Wirdyaningsih dkk, 2005:142).

2.2.7 Dana Pihak Ketiga

Dana yang berasal dari masyarakat luas adalah dana pihak ketiga yang dititipkan pada bank. Pada umumnya motivasi utama orang menitipkan dana pada bank adalah untuk keamanan dana mereka dan memperoleh keleluasaan untuk menarik kembali dananya sewaktuwaktu (Arifin, 2009: 60). Dana yang dikuasai bank bersumber dari (Sinungan, 1997: 87):

- Dana modal sendiri, dana yang bersumber dari modal bank sendiri atau berasal dari para pemegang saham. Dana ini disebut dana pihak pertama.
- 2. Dana pinjaman dari pihak luar. Ini disebut dana pihak kedua.
- 3. Dana dari masyarakat. Dana ini disebut dengan dana pihak ketiga.

Bank syariah dapat menarik Dana Pihak Ketiga (DPK) atau masyarakat dalam bentuk (Arifin, 2006: 48):

1. Titipan (wadiah) simpanan yang dijamin keamanan dan pengembaliannya (guaranteed deposit) tetapi tanpa memperoleh imbalan atau keuntungan. Menurut Nurhayati dan Wasilah (2008: 230), wadiah adalah akad penitipan dari pihak yang mempunyai uang/barang kepada pihak yang menerima titipan dengan catatan kapanpun titipan diambil pihak penerima titipan wajib menyerahkan kembali uang/barang titipan tersebut dan yang dititipi menjadi penjamin pengembalian barang titipan.

- 2. Partisipasi modal berbagi hasil dan berbagi resiko (non guaranteed account) untuk investasi umum (general investment account/mudharabah mutlaqah) dimana bank akan membayar bagian keuntungan secara proporsionl dengan portofolio yang didanai dengan modal tersebut.
- 3. Investasi khusus (special investment account/mudharabah muqayyadah) di mana bank bertindak sebagai manajer investasi untuk memperoleh fee. Jadi bank tidak ikut berinvestasi sedangkan investor sepenuhnya mengambil resiko atas investasi.

2.2.8 Pembiayaan Bank Syariah

Pada dasarnya fungsi utama bank syariah tidak jauh beda dengan bank konvensional yaitu menghimpun dana dari masyarakat kemudian menyalurkannya kembali atau lebih dikenal sebagai fungsi intermediasi. Kegiatan pembiayaan (*financing*) merupakan salah satu tugas pokok bank, yaitu memberikan fasilitas penyediaan dana untuk memenuhi kebutuhan pihak-pihak yang merupakan *deficit unit* (Antonio, 2009: 160).

Menurut Undang-Undang No. 10 tahun 1998, pembiayaan adalah penyediaan uang atau tagihan yang dapat dipersamakan dengan itu, berdasarkan persetujuan atau kesepakatan antara bank dan pihak lain yang dibiayai untuk mengembalikan uang atau tagihan tersebut setelah jangka waktu tertentu dengan imbalan atau bagi hasil. Di dalam perbankan syariah, pembiayaan yang diberikan kepada pihak pengguna dana berdasarkan pada

prinsip syariah. Aturan yang digunakan yaitu sesuai dengan hukum Islam. Pembiayaan mempunyai beberapa tujuan (Muhammad, 2005: 55) yaitu:

- Mencapai tingkat profitabilitas yang cukup dan tingkat resiko yang rendah
- 2. Mempertahankan kepercayaan masyarakat dengan menjaga ag**ar posisi** likuiditas tetap aman.

2.2.9 Produk Domestik Bruto

Gross Domestic Product (GDP) dianggap sebagai ukuran terbaik dari kinerja perekonomian. Tujuan dari Gross Domestic Product (GDP) adalah meringkas aktivitas ekonomi dalam suatu nilai uang tertentu selama periode waktu tertentu. Gross Domestic Product (GDP) dapat dinilai sebagai pendapatan total dari setiap orang di dalam perekonomian dan dapat juga dilihat sebagai pengeluaran total atas output barang dan jasa perekonomian. Oleh karena itu, GDP dianggap sebagai cerminan dari kinerja ekonomi (Mankiw, 2013: 17).

Produk domestik bruto (PDB) adalah ukuran produksi barang dan jasa total suatu negara. Pertumbuhan PDB yang cepat merupakan indikasi terjadinya pertumbuhan ekonomi. Jika pertumbuhan ekonomi membaik, maka daya beli masyarakat punakan membaik, dan ini merupakan kesempatan bagi perusahaan-perusahaan untuk meningkatkan penjualannya. Dengan meningkatnya penjualan perusahaan, maka kesempatan perusahaan memperoleh keuntungan juga semakin meningkat (Tandelilin, 2010: 342).

Menurut Jamli (2001:22-23) Produk Domestik Bruto (PDB) dapat diinterpretasikan menurut tiga pendekatan yaitu:

- 1. Menurut pendekatan produksi, PDB adalah jumlah nilai barang dan jasa akhir yang dihasilkan oleh berbagai unit produksi di wilayah suatu negara dalam jangka waktu tertentu (biasanya satu tahun).
- 2. Menurut pendekatan pendapatan, PDB merupkan jumlah balas jasa yang diterima oleh faktor-faktor produksi yang ikut serta dalam proses produksi di suatu negara dalam jangka waktu tertentu (biasanya satu tahun).
- 3. Menurut pendekatan pengeluaran, PDB adalah komponen permintaan terakhir seperti, pengeluaran konsumsi rumah tangga dan lembaga swasta yang tidak mencari laba, konsumsi pemerintah, pembentukan modal tetap domestik bruto, perubahan stok dan ekspor netto dalam jangka waktu tertentu (biasanya satu tahun).

2.2.10 Inflasi

Secara umum, inflasi berarti kenaikan tingkat harga secara umum dari barang dan jasa dalam periode waktu tertentu. Menurut para ekonom modern, inflasi adalah kenaikan yang menyeluruh dari jumlah uang yang harus dibayarkan (nilai unit perhitungan moneter) terhadap barang dan jasa. Sebaliknya, jika yang terjadi adalah penurunan nilai unit perhitungan moneter terhadap komoditas dan jasa, maka disebut deflasi (Karim, 2008: 136).

Inflasi akan terus mendapat perhatian setiap negara, karena inflasi dapat dijadikan indikator kesehatan ekonomi negara tersebut.

Adakalanya tingkat inflasi meningkat dengan tiba-tiba atau wujud sebagai akibat dari peristiwa tertentu yang berlaku di luar ekspektasi pemerintah, misalnya efek dari pengurangan nilai uang (depresiasi nilai uang) yang sangat besar atau ketidakstabilan politik. Menghadapi masalah inflasi yang bertambah cepat ini, pemerintah akan menyusun langkah-langkah yang bertujuan agar kestabilan harga-harga dapat diwujudkan kembali (Sukirno, 2004: 333).

Inflasi umumnya memberikan dampak yang kurang menguntungkan dalam perekonomian. Akan tetapi, sebagaimana dalam salah satu prinsip ekonomi bahwa dalam jangka pendek ada *trade off* antara inflasi dan pengangguran menunjukkan bahwa inflasi dapat menurunkan tingkat pengangguran, atau inflasi dapat dijadikan salah satu cara untuk menyeimbangkan perekonomian negara dan sebagianya (Putong, 2003:264).

Inflasi dapat mempengaruhi tiga hal yaitu distibusi pendapatan (equity effect), alokasi sumber daya (efficiency effect) dan produk nasional (output effect), sebagai berikut (Jamli, 2001:163-164):

- 1. Distribusi pendapatan, pengaruh inflasi terhadap distribusi pendapatan sifatnya tidak merata, artinya ada pihak yang diuntungkan dan ada pihak yang dirugikan. Dengan kata lain inflasi seolah-olah merupakan pajak bagi pihak tetentu yang di rugikan dan merupakan subsidi bagi pihak tertentu yang diuntungkan.
- 2. Alokasi faktor-faktor produksi, inflasi terjadi bila permintaan akan barang tertentu menjadi lebih besar, yang pada akhirnya akan

menaikkan ongkos produksi barang tersebut. Kenaikan produksi ini akan mengubah pola alokasi faktor produksi yang sudah ada para ahli ekonom berpendapat bahwa inflasi dapat mengakibatkan alokasi produksi menjadi tidak efisien.

3. Produk nasional, antara inflasi dan output terdapat hubungan yang tidak langsung, di satu sisi inflasi dapat diikuti dengan kenaikan output dan disisi lain dapat dibarengi dengan penurunan output.

Selain itu inflasi juga memiliki dampak terhadap masyarakat dan perekonomian, antara lain (Karim, 2008: 139):

- Menimbulkan gangguan terhadap fungsi uang, terutama terhadap fungsi tabungan, fungsi dari pembayaran di muka, dan fungsi dari unit perhitungan.
- 2. Melemahkan semangat menabung dan sikap terhadap menabung bagi masyarakat.
- 3. Meningkatkan kecenderungan untuk berbelanja terutama nonprimer dan barang-barang mewah.
- 4. Mengarahkan investasi kepada hal-hal yang non produktif, yaitu penumpukan kekayaan seperti tanah, bangunan, dengan mengorbankan investasi produktif seperti pertanian, industri dan lain sebagainya.

2.2.11 Hubungan Antar Variabel

2.2.11.1 SBIS terhadap Inflasi

Kebijakan moneter memiliki tujuan untuk mengarahkan ekonomi makro ke kondisi yang diinginkan (yang lebih baik), dengan

mengatur jumlah uang yang beredar. Kebijakan uang ketat akan mengurangi jumlah uang yang beredar dalam masyarakat (Rahardja dan Manurung, 2002: 362).

Kebijakan pasar terbuka (*open market operation*) digunakan untuk menambah atau mengurangi jumlah uang beredar dengan cara pemerintah (dalam hal ini Bank Indonesia) turut serta dalam jual beli surat berharga. Jika ingin menambah jumlah uang beredar, maka pemerintah membeli surat berharga di pasar modal. Sedangkan jika pemerintah bermaksud mengurangi jumlah uang beredar, maka ia mengeluarkan surat berharga, misalnya dengan mengeluarkan SBIS (Sofilda dan Suparmoko, 2014: 121).

Menurut penelitian yang dilakukan oleh Sahriah (2010) menyatakan bahwa pada saat jumlah Sertifikat Bank Indonesia Syariah mengalami kenaikan, maka pada saat itu laju inflasi rendah atau mengalami penurunan.

SBIS diterbitkan oleh Bank Indonesia sebagai salah satu instrumen operasi pasar terbuka dalam rangka pengendalian moneter yang dilakukan berdasarkan prinsip syariah. Instrumen ini memberikan kesempatan yang bagi bank syariah untuk berpartisipasi di pasar uang dengan sistem yang sesuai dengan syariah. Hubungan SBIS dan inflasi terjadi saat bank syariah membeli SBIS, hal ini menyebabkan likuiditas yang dapat bank salurkan melalui pembiayaan berkurang karena uang mengendap yang dimiliki bank syariah diserap oleh SBIS sehingga tidak bisa dialokasikan pada masyarakat. Hal ini dapat mengurangi terlalu

banyaknya uang yang diedarkan ke masyarakat. Karena salah satu pemicu meningkatnya inflasi adalah banyaknya uang yang beredar.

H1: SBIS memberi pengaruh negatif pada inflasi.

2.2.11.2 PUAS terhadap Inflasi

PUAS ialah salah satu instrumen moneter yang digunakan sebagai sarana pemenuhan likuiditas bank syariah. Bank syariah hanya dapat melakukan transaksi jual beli surat berharga di saat bank tersebut mengalami kelebihan dana (*surplus*) ataupun kekurangan dana (*deficit*) (Pohan, 2008: 90).

PUAS memiliki fungsi yakni memberikan kemudahan bagi perbankan yang mengalami kesulitan likuiditas, baik berupa kekurangan maupun kelebihan likiditas. Sarana investasi yang digunakan oleh bank dalam transaksi PUAS ialah Sertifikat Investasi Mudharabah Antarbank dengan akad yang digunakan ialah mudharabah (Maharani, 2017).

Hubungan antara PUAS dan inflasi terjadi saat suatu bank mengalami kelebihan likuiditas kemudian melakukan transaksi PUAS dengan bank lain yang sedang mengalami kekurangan likuiditas. Likuiditas yang dimiliki, disalurkan bank tersebut untuk pembiayaan modal kerja, investasi, dan pembiayaan konsumsi. Menurut salah satu teori inflasi yakni teori strukturalis menyatakan bahwa pertambahan barang-barang produksi yang terlalu lambat dibanding dengan pertumbuhan kebutuhannya, dapat menyebabkan kenaikan harga bahan makanan. Akibat selanjutnya adalah kenaikan harga-harga barang lain, sehingga terjadi inflasi yang berkepanjangan. Maka dari itu adanya

transaksi PUAS untuk memenuhi permintaan pembiayaan tersebut diharapkan dapat mendorong peningkatan dalam kebutuhan barang produksi yang pada akhirnya akan berpengaruh pada penurunan tingkat inflasi.

H2: PUAS dari sisi pembiayaan memberi pengaruh negatif pada inflasi.

2.2.11.3 DPK terhadap Inflasi

Menurut kaum Klasik maupun Keynes menyetujui bahwa inflasi ada kaitannya dengan jumlah uang beredar. Oleh karena itu untuk menanggulangi inflasi yang utama ialah bagaimana menekan laju pertumbuhan jumlah uang yang beredar, atau dapat pula mengurangi jumlah uang yang beredar (Sofilda dan Suparmoko, 2014: 197).

Nilai DPK syariah memengaruhi pembiayaan, karena besarnya dana yang terhimpun dari para nasabah akan menentukan jumlah dana yang akan disalurkan kepada sektor riil. Hal tersebut merupakan cerminan dari fungsi intermediasi bank sebagai pihak yang menghubungkan antara pihak surplus dengan pihak defisit (Wulandari, 2014).

Hal ini menunjukan bahwa semakin tinggi dana masyarakat yang terkumpul pada dana pihak ketiga bank syariah dapat menurunkan tingkat inflasi. Karena semakin tinggi DPK artinya uang yang beredar di masyarakat berkurang. Selain itu dana masyarakat yang sebenarnya bisa digunakan untuk konsumsi, ketika disimpan pada bank syariah selanjutnya digunakan untuk penyaluran pembiayaan oleh bank. Pada akhirnya uang tersebut digunakan sebagai produksi.

H3: DPK memberi pengaruh negatif pada inflasi.

2.2.11.4 Pembiayaan Perbankan Syariah terhadap Inflasi

Perkembangan kredit atau pembiayan perbankan akan berpengaruh pada inflasi dan output melalui dua tahap. Pertama, pengaruh volume pembiayaan dan juga tingkat bagi hasil adalah bagian dari biaya modal terhadap aktivitas produksi perusahaan. Tahap kedua melalui perkembangan konsumsi yaitu pengaruh volume pembiayaan terhadap bagi hasil, konsumsi sektor rumah tangga baik karena efek subtitusi maupun efek pendapatan. Pengaruh melalui konsumsi dan investasi akan berdampak pada besarnya permintaan agregat yang pada akhirnya menentukan tingkat inflasi dan output (Natsir, 2014: 204).

Ketika bank sentral melakukan kebijakan moneter yang ekspansif dan aktifitas pembiayaan diarahkan untuk mendorong pertumbuhan sektor riil. Hal ini menyebabkan jumlah pembiayaan yang disalurkan oleh bank syariah meningkat, dimana peningkatan ini disebabkan oleh penurunan return SBIS oleh BI yang pada akhirnya mengakibatkan perbankan syariah lebih memilih menyalurkan dananya ke masyarakat daripada menyimpannya di BI. Dari peningkatan pembiayaan tersebut, maka modal yang dimiliki oleh perusahaan-perusahaan di Indonesia akan semakin banyak dan selanjutnya produktivitas perusahaan akan semakin meningkat karena proses produksi dapat dibiayai dengan modal tersebut. Dengan demikian, saat produksi riil mengalami kenaikan, akan meningkatkan output riil

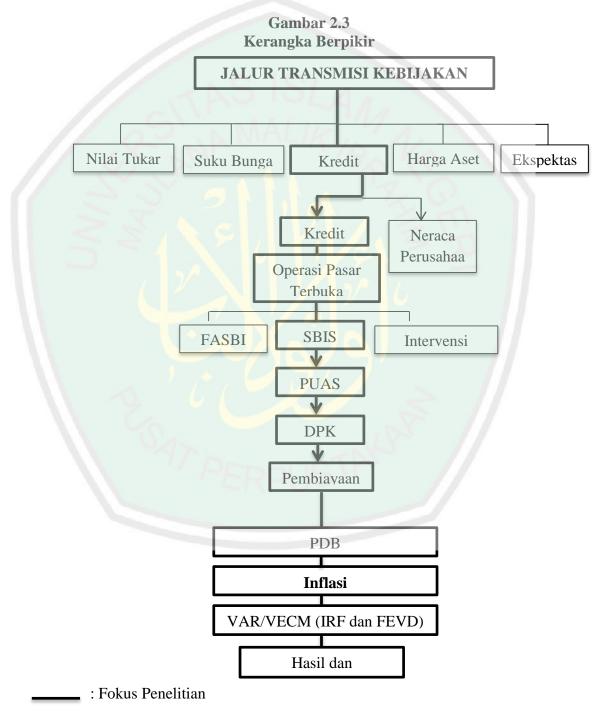
perekonomian di Indonesia yang pada akhirnya akan menurunkan tingkat inflasi (Anjasari, 2017).

Didukung penelitian yang dilakukan oleh Rusydiana (2009) semakin tinggi jumlah pembiayaan perbankan syariah Indonesia akan berpengaruh dan berkontribusi positif pada penurunan tingkat inflasi Indonesia. Hal ini sekaligus sebagai pembuktian terhadap hasil riset sejenis yang dilakukan Hardianto pada tahun 2004. Alasan bahwa pembiayaan syariah akan menurunkan tingkat inflasi adalah karena pembiayaan perbankan syariah khususnya pembiayaan produktif berprinsip bagi hasil akan memungkinkan terjadinya pertumbuhan yang seimbang antara sektor moneter dan sektor riil. Keseimbangan tersebut disebabkan oleh prinsip (*profit lost sharing*) yang membagi pendapatan (*revenue*) peminjam.

H4: Pembiayaan perbankan syariah memberi pengaruh negatif pada inflasi.

2.2.11.5 PDB terhadap Inflasi

Menurut Warjiyo (2004) dalam Natsir (2014: 200) Jika peningkatan permintaan agregat tidak dibarengi dengan peningkatan penawaran agregat, maka akan terjadi output gap, tekanan output gap akan berpengaruh terhadap tingkat inflasi sebagai tujuan akhir kebijakan moneter.


Tingkat inflasi yang tinggi biasanya dikaitkan dengan kondisi ekonomi yang telalu panas. Artinya kondisi ekonomi mengalami permintaan atas produk-produk yang melebihi kapasitas penawaran produknya, sehingga harga-harga cenderung mengalami kenaikan. Inflasi yang terlalu tinggi juga akan menyebabkan penurunan daya beli uang. Selain itu, inflasi yang tinggi juga bisa mengurangi tingkat pendapatan riil yang diperoleh investor dari investasinya (Tandelilin, 2010: 342).

H5: PDB memberi pengaruh positif pada inflasi.

2.3 Kerangka Konseptual

Berdasarkan uraian landasan teori di atas dalam tinjauan pustaka yang telah diuraikan sebelumnya, maka model kerangka kajian yang digunakan untuk memudahkan pemahaman konsep yang digunakan sebagai berikut:

Sumber: Gambar Diolah Peneliti, 2017

2.4 Hipotesis Penelitian

Berikut ini adalah hipotesis penelitian tentang pengaruh mekanisme transmisi kebijakan moneter syariah terhadap tingkat inflasi di Indonesia.

H1: SBIS memberi pengaruh negatif pada inflasi.

H2: PUAS dari sisi produksi memberi pengaruh negatif pada inflasi.

H3: DPK memberi pengaruh negatif pada inflasi.

H4: Pembiayaan perbankan syariah memberi pengaruh negatif pada inflasi.

H5: PDB memberi pengaruh positif pada inflasi.

BAB III

METODE PENELITIAN

3.1 Jenis dan Pendekatan Penelitian

Penelitian ini mengkaji tentang pengaruh mekanisme transmisi kebijakan moneter syariah terhadap inflasi. Pendekatan yang digunakan dalam penelitian ini adalah pendekatan kuantitatif dengan metode deskriptif. Penelitian ini menggunakan pendekatan kuantitatif karena dalam penyajian data berupa simbol-simbol matematik yang terdapat dalam laporan keuangan perusahaan kemudian dilakukan perhitungan-perhitungan terhadap data tersebut (Sugiyono, 2011:12).

Metode yang digunakan dalam mendapatkan data adalah metode pengumpulan data menggunakan studi dokumentasi, dengan melihat atau menganalisis dokumen-dokumen yang dibuat sendiri oleh subjek sendiri atau oleh orang lain tentang subyek. Data yang digunakan merupakan data yang berasal dari Otoritas Jasa Keuangan (OJK), Statistik Ekonomi dan Perbankan Indonesia Bank Indonesia (SEKI-BI), Statistik Perbankan Syariah Bank Indonesia (SPS-BI) dan Biro Pusat Statistik (BPS).

3.2 Populasi dan Sampel

Populasi menunjukan keadaan dan jumlah obyek penelitian secara keseluruhan yang memiliki karakteristik tertentu (Teguh, 2005: 125). Dalam penelitian ini yang menjadi populasi adalah seluruh kebijakan moneter Indonesia. Sampel penelitian ini adalah kebijakan moneter syariah jalur kredit periode Januari 2010 sampai Desember 2017 secara berturut-turut dan memiliki data yang lengkap

terkait dengan variabel-variabel yang digunakan dalam penelitian yaitu SBIS, PUAS, DPK, Pembiayaan Bank Syariah, dan Inflasi.

3.3 Teknik Pengambilan Sampel

Pengambilan sampel dalam penelitian ini dilakukan secara *purposive* sampling artinya metode pemilihan sampel dipilih berdasarkan pertimbangan (*judgement sampling*) yang berarti pemilihan sampel secara tidak acak yang informasinya diperoleh dengan pertimbangan tertentu (Darmawan, 2014: 152). Adapun kriteria penentuan sampel dalam penelitian ini adalah sebagai berikut:

- 1. Transmisi kebijakan moneter pada kebijakan moneter syariah.
- 2. Jalur transmisi kebijakan moneter syariah yang digunakan hanya jalur kredit.
- 3. Pada jalur kredit terdapat dua jalur, yaitu jalur kredit bank (bank lending channel) dan jalur neraca perusahaan (firms balance channel). Pada penelitian ini yang diguakan hanya pada jalur kredit bank.

3.4 Data dan Jenis Data

Penelitian ini menggunakan data sekunder. Data sekunder adalah data penelitian yang diperoleh dan digali melalui hasil pengolahan pihak kedua dari hasil penelitian lapangannya (Teguh, 2005: 121). Data yang digunakan dalam studi ini adalah data sekunder runtut waktu (*time series*) bulanan dari kebijakan moneter syariah, SBIS, PUAS, DPK perbankan syariah, pembiayaan perbankan syariah, PDB,dan inflasi. Periode januari 2010 sampai desember 2017. Data diperoleh dari Otoritas Jasa Keuangan (OJK), Statistik Ekonomi dan Perbankan Indonesia Bank

Indonesia (SEKI-BI), Statistik Perbankan Syariah Bank Indonesia (SPS-BI) dan Biro Pusat Statistik (BPS).

3.5 Teknik Pengumpulan Data

Teknik pengumpulan data penelitian ini adalah studi pustaka (dokumentasi). Dokumentasi adalah peneliti menyelidiki benda-benda tertulis, seperti buku-buku, majalah, dokumen, peraturan-peraturan, notulen rapat, catatan harian, dan sebagainya (Arikunto, 2006: 158). Dokumentasi pada penelitian ini bersumber pada buku-buku, majalah, dokumen, peraturan-peraturan, jurnal penelitian, website dan sebagainya yang terkait dengan obyek penelitian.

3.6 Definisi Operasional Variabel

Sebagaimana disebutkan sebelumnya, berikut ini definisi operasional variabel yang digunakan dalam penelitian:

1. Surat Berharga Indonesia Syariah

Sertifikat Bank Indonesia Syariah (SBIS) adalah surat berharga dalam mata uang rupiah yang diterbitkan oleh Bank Indonesia berjangka waktu pendek berdasarkan prinsip syariah. Penelitian ini menggunakan data bulanan posisi SBIS periode januari 2010 s.d. Desember 2017. Data tersebut diperoleh dari statistik perbankan syariah pada situs www.bi.go.id.

2. Pasar Uang Antar Bank Syariah

Menurut Pasal 1 butir (4) peraturan Bank Indonesia No. 2/8/PBI/2000, yang telah diubah menjadi No. 7/26/PBI/2005 pengertian PUAS adalah kegiatan investasi janga pendek dalam rupiah antar peserta pasar berdasarkan prinsip mudharabah. Data PUAS yang digunakan adalah data volume transaksi pasar

uang pada Bank syariah Indonesia periode Januari 2010 sampai Desember 2017. Data tersebut diperoleh dari statistik perbankan syariah pada situs www.bi.go.id.

3. Produk Domestik Bruto

Pada penelitian ini peneliti menggunakan produk domestik bruto (PDB). PDB adalah pendapatan total dari setiap orang di dalam perekonomian dan dapat juga dilihat sebagai pengeluaran total atas output barang dan jasa perekonomian. Produk Domestik Bruto atas dasar harga konstan tahun 2010-2017 dalam periode triwulanan dan kemudian dilakukan interpolasi dengan progam EViews menggunakan metode *quadratic match sum* menjadi data bulanan. Data diperoleh dari SEKI-BI yang dinyatakan dengan satuan milyar rupiah.

4. Dana Pihak Ketiga

Dana pihak ketiga ini adalah dana yang diperoleh bank dari masyarakat. pengumpulan dananya terbagi beberapa yaitu dalam bentuk titipan (wadiah), Investasi (Mudharabah), dan juga Investasi khusus (mudharabah muqayyadah). Data pengumpulan DPK periode bulanan dari januari 2010 sampai Desember 2017 dapat diperoleh pada website Otoritas Jasa Keuangan (OJK)

5. Pembiayaan Bank Syariah

Pembiayaan pada bank syariah yaitu total pembiayaan yang diberikan kepada pihak ketiga oleh industri perbankan syariah periode bulanan dari januari 2010 sampai Desember 2017 yang diperoleh dari Otoritas Jasa Keuangan (OJK).

6. Inflasi

Tingkat inflasi (INF) menggunakan data Indeks Harga Konsumen Indonesia (IHK) yang didapat dari Statistik Ekonomi dan Keuangan Indonesia BI (SEKI-BI) selama periode Januari 2010 hingga Desember 2017.

Tabel 3.1 Definisi Operasional Variabel

No	Variabel	Simbol	Pengukuran	Sumber
				Data
1.	Sertifikat Bank Indonesia Syariah	SBIS	Sertifikat Bank berdasarkan prinsip syariah berjangka waktu pendek dalam mata uang rupiah	Statistik Ekonomi dan Perbankan Indonesia
	AD.	SIS	yang diterbitkan oleh bank Indonesia	Bank Indonesia (SEKI-BI)
2.	Pasar Uang Antar Bank Syariah	PUAS	Transaksi Pasar Uang domestik pada periode bulanan	Statistik Ekonomi dan Perbankan Indonesia Bank Indonesia (SEKI-BI)
3.	Pembiayaan Syariah	FIN	Pembiayaan Murabahah+ Pembiayaan mudharabah+ Pembiayaan Istishna'+ Pembiayaan Ijarah	Otoritas Jasa Keuangan (OJK)
4.	Dana Pihak Ketiga Bank Syariah	DPK	DPK = Giro + Tabungan + Deposito	Otoritas Jasa Keuangan (OJK)
5.	Produk Domestik Bruto	PDB	PDB = konsumsi + investasi + pengeluaran pemerintah + (ekspor - impor)	Statistik Ekonomi dan Perbankan Indonesia Bank Indonesia (SEKI-BI)
.8.	Inflasi	INF	$INF = (IHK_{(n}-IHK_{(n-1)}) \times 100\%$ $IHK_{(n)} = IHK \text{ pada tahun dasar.}$ $IHK_{(n-1)} = IHK \text{ pada tahun sebelumnya.}$	Statistik Ekonomi dan Perbankan Indonesia Bank Indonesia (SEKI-BI)

Sumber: Tabel Diolah Peneliti, 2017

3.7 Analisis Data

Metode analisis yang digunakan dalam penelitian ini adalah metode *Vector Autoregression* (VAR) apabila data yang digunakan stasioner pada *level* namun, jika data yang digunakan stasioner pada *first difference* maka akan dilanjutkan dengan metode *Vector Error Correction Model* (VECM). Alasan menggunakan analisis VAR atau VECM adalah karena dampak kebijakan moneter terhadap perkembangan di sektor riil harus melalui mekanisme yang pada umumnya tidak dapat berdampak seketika itu juga, namun membutuhkan tenggang waktu tertentu (*lag*) dan karena transmisi merupakan sesuatu yang kompleks untuk dijelaskan secara teori karena saling berkaitan (Widarjono, 2013: 331).

3.8 Teknik Analisis data

3.8.1 Vector Autoregresisve (VAR)

Penyempurnaan persamaan simultan untuk mengidentifikasi variabel eksogen dan endogen pada sistem dikritisi oleh Cristoper A. Sims (1980). Tidak setiap teori mampu menjelaskan hubungan variabel ekonomi dengan baik, baik itu penjelasan teori terlalu rumit untuk menjelaskan fenomena yang ada ataupun fenomena yang terjadi terlalu sulit untuk dijelaskan dengan teori yang ada. Sims (1980) menyarankan penggunaan model *Vector Autoregression* (VAR) untuk melakukan peramalan pada data *time-series* yang bersifat tidak teoritis atau dikenal juga dengan model non-struktural. VAR merupakan model a-teori namun sangat berguna dalam menganalisis hubungan antar variabel di dalam data *time series*. Dalam model VAR ada dua hal yang perlu diperhatikan: (a) VAR mengasumsikan bahwa semua variabel merupakan variabel endogen, (b)

dalam melihat hubungan antara variabel dibutuhkan *lag optimum* (Widarjono, 2013: 332).

Vector Autoregression atau VAR merupakan salah satu metode time series yang sering digunakan dalam penelitian, terutama dalam bidang ekonomi. Menurut Gujarati (2004) ada beberapa keuntungan menggunakan VAR dibandingkan metode lainnya:

- 1. Lebih sederhana karena tidak perlu memisahkan variabel bebas dan terikat.
- 2. Estimasi sederhana karena menggunakan metode OLS (*Ordinary Least Square*) biasa.
- 3. Hasil estimasinya lebih baik dibandingkan metode lain yang lebih rumit. Alasan dipilihnya metode VAR adalah dengan pertimbangan sebagai berikut (Basuki, 2015: 2):
- 1. Metode regresi linier yang menyatakan bahwa variabel pertumbuhan diregresikan atas variabel ekspor atau variabel impor telah banyak dikritik dan merupakan metode yang sangat lemah sehingga hasil penggunaannya dapat menyesatkan. Dua kritik utama terhadap metode regresi linier adalah : Pertama, meregresikan variabel pendapatan nasional tahun berjalan atas ekspor tahun berjalan merupakan sebagian pendapatan nasional tahun berjalan yang bermakna bahwa kita meregresikan suatu variabel atas dirinya sendiri. Kedua, metode regresi linier tidak mendeteksi kausalitas antara variabel-variabel yang digunakan secara dinamis. Dapat terjadi kumulatif ekspor yang tidak mempunyai dampak positif terhadap pertumbuhan ekonomi (Halwani, 2002).

- 2. Data yang digunakan merupakan data time series yang menggambarkan fluktuasi ekonomi.
- 3. Dampak kebijakan moneter terhadap perkembangan di sektor riil melalui suatu mekanisme yang pada umumnya tidak berdampak seketika, biasanya membutuhkan tenggang waktu tertentu (lag). Ketiga persoalan ini dapat dijawab oleh model VAR sebagai salah satu bentuk model makroekonometrika yang paling sering digunakan untuk melihat permasalahan fluktuasi ekonomi.

Gambar 3.1
Tahapan Analisis VAR dan VECM

Sumber: Ascarya, 2010

3.8.2 Vector Error Correction Model (VECM)

Vector Error Correction Model (VECM) dilakukan apabila terdapat variabel yang stasioner (tidak terdapat pertumbuhan dan penurunan data yang signifikan atau fluktuasi data berada di sekitar suatu nilai rata-rata yang konstan) pada first different, mengandung unit root dan berkointegrasi (Rosadi, 2012: 2016). Dengan menggunakan metode VECM, maka diperoleh dampak jangka panjang dan jangka pendek. Selain itu, VECM digunakan untuk melihat tingkat perubahan tertentu dengan analisis Impulse Respond Function dan Variance Decomposition.

Berikut adalah tahapan yang dilakukan dalam penggunaan metode VECM, secara lebih ringkas digambarkan dalam gambar di bawah ini:

Gambar 3.2

Bagan Alir Teknik dan Uji Statistik Ekonometrika Tahap 1: Uji Stasioneritas: Analisa Graf dan Uji Root Test Augmented (URT) dari Variabel yang diteliti Dickey Fuller Tahap 2: Penentuan Panjang Lag. Akaike Information Criterion Johansen's Tahap 3: Uji Kointegrasi cointegration Tahap 4: Estimasi Model VECM Tahap 5c: Analisis VDC Tahap 5a: Uji dan Tahap 5b: Analisis IRF (variance decomposition) analisis kausalitas Tahap 6: Rekomendasi

Sumber: Basuki, 2015

1. Uji Stasioneritas Data : Uji Akar Satuan (*Unit Root Test*)

Langkah pertama yang harus dilakukan dalam estimasi model ekonomi dengan data *time series* adalah dengan menguji stasioneritas pada data atau disebut juga *stationary stochastic process*. Salah satu cara yang sering dipakai yaitu dengan menggunakan *Augmented Dickey Fuller* (ADF) test atau uji akar-akar unit (*unit root test*) hingga diperoleh suatu data yang stasioner, yaitu data yang variansnya tidak terlalu besar dan mempunyai kecenderungan untuk mendekati nilai rata-ratanya (Ajija, 2011: 165).

Menurut Gujarati (2003: 817) dalam Ajija, dkk (2011:165) menjelaskan bentuk persamaan uji stasioner dengan analisis ADF dalam persamaan berikut.

$$\Delta Y_{t} = \alpha_{o} + \gamma Y_{t-1} + \beta_{t} \sum_{i=1}^{p} \Delta Y_{t-i+1} + \varepsilon_{t}$$

Dimana:

Yt = Bentuk dari first difference

 $\alpha_0 = Intersep$

Y = Variabel yang diuji stasioneritasnya

P = Panjang lag yang digunakan dalam model

 $\varepsilon = Error term$

Hipotesis yang digunakan dalam pengujian ini adalah:

H0: $\gamma = 0$, artinya data tidak stasioner (mengandung unit root),

H1: $\gamma < 0$, artinya data stasioner (tidak mengandung unit root).

Dalam persamaan tersebut, kita ketahui bahwa H_0 menunjukan adanya unit root dan H_t menunjukan kondisi tidak adanya unit root. Jika dalam uji stasioneritas ini menunjukan nilai $ADF_{statistik}$ yang lebih besar daripada $Mackinnon\ critical\ value$, maka dapat diketahui bahwa data tersebut stasioner

karena tidak mengandung unit root. Sebaliknya jika nilai ADF_{statistik} yang lebih kecil daripada *Mackinnon critical value*, maka dapat disimpulkan data tersebut tidak stasioner pada derajat level. Dengan demikian, *differencing* data untuk memperoleh data yang stasioner pada derajat yang sama di *first different* I harus dilakukan, yaitu dengan mengurangi data tersebut dengan data periode sebelumnya (Ajija, 2011: 166).

2. Pemilihan Lag Optimum

Salah satu permasalahan yang terjadi dalam uji stasioneritas adalah penentuan *lag optimal*. Haris (1995:65) menjelaskan bahwa jika lag yang digunakan dalam uji stasioneritas terlalu sedikit, maka residual dari regresi tidak akan menampilkan proses white noise sehingga model tidak dapat mengestimasi *actual error* secara tepat. Akibatnya, γ dan standart kesalahan tidak diestimasi secara baik. Namun demikian, jika memasukkan terlalu banyak lag, maka dapat mengurangi kemampuan untuk menolak H₀ karena tambahan parameter yang terlalu banyak akan mengurangi derajat bebas (Ajija, 2011: 166).

3. Uji Kointegrasi

Jika fenomena stasioneritas berada pada tingkat *first difference*, maka perlu dilakukan pengujian untuk melihat kemungkinan terjadinya kointegrasi. Konsep kointegrasi pada dasarnya untuk melihat keseimbangan jangka panjang di antara variabel-variabel yang diobservasi. Terkadang suatu data yang secara individu tidak stasioner, namun ketika dihubungkan secara linier data tersebut menjadi stasioner. Hal ini yang kemudian disebut bahwa data tersebut terkointegrasi (Rusydiana, 2009: 357).

Keberadaan variabel nonstasioner menyebabkan kemungkinan besar adanya hubungan jangka panjang antara variabel di dalam sistem estimasi VAR. Berkaitan dengan hal tersebut maka langkah selanjutnya di dalam estimasi VAR adalah uji koentegrasi untuk mengetahui keberadaan hubungan antara variabel. Apabila data tidak stasioner pada tingkat level akan tetapi stasioner pada proses differensi data, maka kita harus menguji apakah data tersebut mempunyai hubungan dalam jangka panjang atau tidak dengan melakukan uji koentegrasi. Koentegrasi merupakan kombinasi hubungan linear dari variabel-variabel yang terintegrasi akan menunjukan bahwa variabel tersebut mempunyai trend stokhastik yang sama dan selanjutnya mempunyai arah pergerakan yang sama dalam jangka panjang (Widarjono, 2007:351).

4. Estimasi Model VAR dan VECM

Model umum, VAR dengan lag 1:

$$Y_t = \alpha_{1i} + \sum \beta_{1i} Y_{t-1} + \sum \gamma_{1i} X_{t-1} + \varepsilon_t$$

$$X_{t} = \alpha_{2i} + \sum_{i} \beta_{2i} Y_{t-1} + \sum_{i} \gamma_{2i} X_{t-1} + \varepsilon_{t}$$

Selanjutnya, dari hasil estimasi VAR, untuk melihat apakah variabel Y memengaruhi X dan demikian pula sebaliknya, kita dapat mengetahunya dengan cara membandingkan nilai t-statistik hasil estimasi dengan nilai t-tabel. Jika nilai t-statistik lebihbesar daripada nilai t-tabelnya, maka dapat dikatakan bahwa variabel Y mempengaruhi X (Ajija, 2011: 168).

VECM standar didapat dari model VAR dikurangi dengan Xt-1. Persamaan matematis ditunjukkan oleh persamaan berikut :

$$\Delta X_{t-1} = \mu_t + \prod X_{t-1} + \sum_{i=1}^{k-1} \Gamma_i \Delta X_{t-1} + \mu_t$$

 Π dan Γ adalah fungsi dari Ai, matriks Π bisa didekomposisi ke dalam 2 matriks berdimensi (n x r) α dan β; $\Pi = \alpha \beta^T$, dimana α disebut matriks penyesuaian dan β sebagai vektor kointegrasi dan r adalah rank kointegrasi. Hal ini bisa diuji dengan menggunakan uji akar unit. Saat tidak bisa ditemukan akar unit maka metode ekonometrik tradisional dapat diterapkan.

5. Impulse Respond Function (IRF)

Estimasi terhadap *Impulse Respond Funtion* (IRF) dilakukan untuk melihat respon guncangan atau *shock* dari variabel inovasi terhadap variabel-variabel lainnya. Selain itu, metode ini bertujuan untuk melihat seberapa lama goncangan dari satu variabel berpengaruh terhadap variabel lain (Rusydiana, 2009: 358).

6. Forecast Error Variance Decomposition (FEVD)

FEVD merupakan metode lain dari sistem dinamik dengan menggunakan VAR. Apabila respon terhadap adanya inovasi menunjukkan efek dari sebuah kebijakan (shock) variabel endogen terhadap variabel lain. Forecast Error Variance Decomposition (FEVD) atau dekomposisi ragam kesalahan peramalan menguraikan inovasi pada suatu variabel terhadap komponen-komponen variabel yang lain dalam VAR. Informasi yang disampaikan dalam FEVD adalah proporsi pergerakan secara berurutan yang diakibatkan oleh guncangan sendiri dan variabel lain (Basuki, 2015: 24).

BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

4.1 Hasil Penelitian

4.1.1 Analisis Deskriptif

Analisis deskriptif dimaksudkan untuk mengetahui karakteristik dari variabel yang diteliti, diantaranya mengetahui nilai minimum, maksimum, rata-rata, dan standard deviasi dari variabel yang diteliti :

Tabel 4.1
Analisis Deskriptif

	Minimum	Maximum	Mean	Std. Dev.
Inflasi	2.79	8.79	5.22	1.62
PDB	22.32	23.20	22.805	0.251
SBIS	6.32	9.45	8.484	0.662
PUAS	2.30	7.39	5.687	1.476
DPK	10.87	12.72	11.954	0.520
Pembiayaan	10.76	12.47	11.891	0.496

Sumber: Output spss diolah, 2018

Hasil analisis deskriptif tersebut menginformasikan bahwa inflasi Bulan Januari 2010 sampai Bulan Desember 2017 paling rendah sebesar 2.79% dan paling besar sebesar 8.79%. Rata-rata inflasi Bulan Januari 2010 sampai Bulan Desember 2017 sebesar 5.22% dengan simpangan baku sebesar 1.62%.

Kemudian PDB Bulan Januari 2010 sampai Bulan Desember 2017 paling rendah sebesar 22.32% dan paling besar sebesar 22.32%. Rata-rata PDB Bulan Januari 2010 sampai Bulan Desember 2017 sebesar 22.805% dengan simpangan baku sebesar 0.251%.

Selanjutnya SBIS Bulan Januari 2010 sampai Bulan Desember 2017 paling rendah sebesar 6.32% dan paling besar sebesar 9.45%. Rata-rata SBIS Bulan Januari

2010 sampai Bulan Desember 2017 sebesar 8.484% dengan simpangan baku sebesar 0.662%.

Selanjutnya PUAS Bulan Januari 2010 sampai Bulan Desember 2017 paling rendah sebesar 2.30% dan paling besar sebesar 7.39%. Rata-rata PUAS Bulan Januari 2010 sampai Bulan Desember 2017 sebesar 5.687% dengan simpangan baku sebesar 1.476%.

Kemudian DPK Bulan Januari 2010 sampai Bulan Desember 2017 paling rendah sebesar 10.87% dan paling besar sebesar 12.72%. Rata-rata DPK Bulan Januari 2010 sampai Bulan Desember 2017 sebesar 11.954%, dengan simpangan baku sebesar 0.520%.

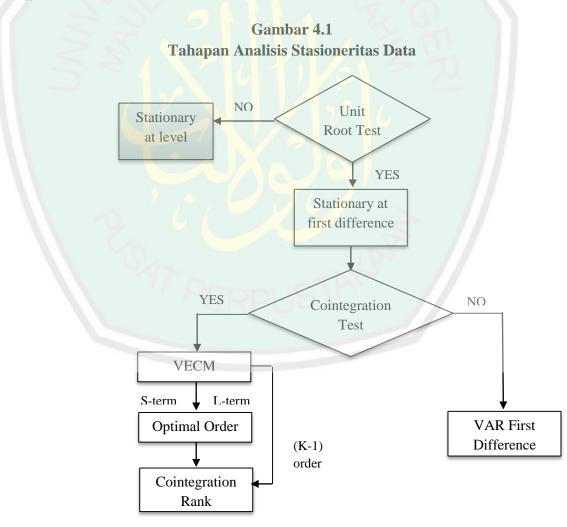
Selanjutnya pembiayaan Bulan Januari 2010 sampai Bulan Desember 2017 paling rendah sebesar 10.76% dan paling besar sebesar 12.47%. Rata-rata pembiayaan Bulan Januari 2010 sampai Bulan Desember 2017 sebesar 11.891% dengan simpangan baku sebesar 0.496%.

4.1.2 Pengujian Stasioneritas

Pengujian stasioneritas digunakan untuk mengetahui apakah data yang digunakan memiliki rata-rata dan ragam yang konstan atau tidak. Data dinyatakan stasioner apabila tidak terdapat pertumbuhan dan penurunan data yang signifikan atau fluktuasi data berada di sekitar suatu nilai rata-rata yang konstan. Apabila data deret waktu tersebut menghasilkan rata-rata dan ragam yang tidak konstan maka diidentifikasi adanya akar unit, sehingga data dinyatakan tidak stasioner, sebaliknya apabila data deret waktu memiliki rata-rata dan ragam yang konstan maka data tersebut dinyatakan stasioner. Pengujian kestasioneran data dalam penelitian ini menggunakan uji

Augmented Dickey-Fuller. Kriteria pengujian menyebutkan apabila nilai probabilitas dari statistik uji Augmented Dickey-Fuller < level of significant (alpha = 5%) maka data dinyatakan tidak mengandung akar unit, sehingga data tersebut stasioner.

Hasil uji kestasioneran dapat diketahui melalui ringkasan pada tabel berikut:


Tabel 4.2 Pengujian Stasioneritas

Variabel		ADF test	Prob.	Keterangan
SBIS	Level	-1.174	0.682	Non Stasioner
	1 st Difference	-8.233	0.000	Stasioner
PUAS	Level	-2.040	0.269	Non Stasioner
/ (V	1 st Difference	-10.894	0.000	Stasioner
DPK	Level	-2.833	0.0574	Non Stasioner
52	1st Difference	-9.052	0.000	Stasioner
Pembiayaan	Level	-5.670	0.000	Stasioner
PDB	Level	-0.824	0.806	Non Stasioner
	1st Difference	-1.936	0.314	Non Stasioner
	2 nd Difference	-16.488	0.0001	Stasioner
Inflasi	Level	-2.719	0.0745	Non Stasioner
11 3	1 st Difference	-7.263	0.0000	Stasioner

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan hasil analisis yang teringkas dalam tabel di atas dapat diketahui bahwa variabel SBIS diperoleh statistik uji Augmented Dickey-Fuller sebesar -8.233 dengan probabilitas 0.000 pada tingkat 1st *difference*, sehingga dapat dinyatakan variabel SBIS telah stasioner ditingkat 1st *difference*. Variabel PUAS diperoleh statistik uji Augmented Dickey-Fuller sebesar -10.894 dengan probabilitas 0.000 pada tingkat 1st *difference*, sehingga dapat dinyatakan variabel PUAS telah stasioner ditingkat 1st difference. Variabel DPK diperoleh statistik uji Augmented Dickey-Fuller sebesar -9.052 dengan probabilitas 0.000 pada tingkat 1st *difference*, sehingga dapat dinyatakan

variabel DPK telah stasioner ditingkat 1st difference. Variabel pembiayaan diperoleh statistik uji Augmented Dickey-Fuller sebesar -5.670 dengan probabilitas 0.000 pada tingkat level, sehingga dapat dinyatakan variabel pembiayaan telah stasioner ditingkat level. Variabel PDB diperoleh statistik uji Augmented Dickey-Fuller sebesar -16.488 dengan probabilitas 0.0001 pada tingkat 2nd difference, sehingga dapat dinyatakan variabel PDB telah stasioner ditingkat 2nd difference. Variabel inflasi diperoleh statistik uji Augmented Dickey-Fuller sebesar -7.263 dengan probabilitas 0.000 pada tingkat 1st difference, sehingga dapat dinyatakan variabel PUAS telah stasioner ditingkat 1st difference.

Sumber: Ascarya diolah, 2018

Setelah dilakukan pengujian stasioneritas data diketahui bahwa variabel SBIS, PUAS, DPK dan inflasi stasioner pada tingkat 1st *Difference*, sedangkan variabel pembiayaan pada tingkat level, dan pada PDB pada 2nd *difference*. Dikarenakan variabel stasioner pada tingkat 1st *Difference* maka uji yang digunakan selanjutnya adalah kointegrasi test untuk mengukur hubungan keseimbangan jangka panjang.

4.1.3 Penentuan Lag Optimum

Lag optimum merupakan jumlah lag yang diperkirakan mampu memberikan pengaruh yang signifikan untuk menghindari permasalahan autokorelasi maupun heteroskedastisitas. Kriteria untuk menentukan panjang lag dalam penelitian ini adalah *Akaike Information Criterion* (AIC). Lag yang memiliki nilai AIC terkecil maka lag tersebut merupakan lag optimum. Hasil pengujian panjang lag disajikan melalui tabel berikut:

Tabel 4.3
Hasil Lag Optimum

Lag	LR	FPE	AIC	SC	HQ
0	NA	1.98e-07	1.594276	1.759828	1.661066
1	1224.738	2.04e-13	-12.19473	-11.03587*	-11.72720*
2	83.66597	1.56e-13	-12.47616	-10.32399	-11.60790
3	75.30337	1.24e-13*	-12.73083	-9.585359	-11.46183
4	54.83025*	1.25e-13	-12.77038*	-8.631604	-11.10064
5	40.87023	1.52e-13	-12.66035	-7.528259	-10.58987

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan hasil yang tertera pada tabel di atas diketahui bahwa nilai AIC terkecil sebesar **-12.77038*** pada lag 4. Dengan demikian lag optimum yang dihasilkan

adalah 4 lag. Penentuan panjang lag juga digunakan untuk mengetahui stabilitas system VAR. Sistem VAR dikatakan stabil jika seluruh roots-nya memiliki modulus yang lebih kecil atau mendekati satu dan semua terletak pada *unit circle*.

Tabel 4.4 Stabilitas Lag Optimum

Root	Modulus
1.016347	1.016347
0.983052	0.983052
0.767723 - 0.111645i	0.775798
0.767723 + 0.111645i	0.775798
0.711448 - 0.280 <mark>7</mark> 72i	0.764847
0.711448 + 0.280772i	0.764847
-0.378157 - 0.058173i	0.382605
-0.378157 + 0.058173i	0.382605
0.361217	0.361217
0.225929 - 0.1667 <mark>22</mark> i	0.280785
0.225929 + 0.166722i	0.280785
0.035572	0.035572

Sumber: Output Eviews 9 diolah, 2018

Hasil pengujian di atas diketahui bahwa semua modulus diperoleh nilai yang lebih kecil atau mendekati satu. Dengan demikian lag optimum dinyatakan stabil.

4.1.4 Pengujian Kointegrasi

Pengujian kointegrasi dimaksudkan untuk mengukur hubungan keseimbangan jangka panjang (*long run equilibrium*) dari variabel-variabel yang tidak stasioner. Untuk menguji adanya kointegrasi dapat dilakukan menggunakan metode Johansen.

Apabila probabilitas dari *Trace* bernilai < level of significance (alpha=(α)) maka dinyatakan ada kointegrasi (signifikan), sehingga banyaknya probabilitas dari *Trace* yang signifikan dinyatakan sebagai banyaknya kointegrasi. Hasil pengujian kointegrasi dapat diketahui melalui tabel berikut:

Tabel 4.5 Hasil Uji Kointegrasi

Hypot	hesized	d Trace		
No. of CE(s)	Eigen Value	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.492418	151.8791	107.3466	0.0000
At most 1 *	0.350127	88.81616	79.34145	0.0081
At most 2	0.215688	48.73512	55.24578	0.1653
At most 3	0.193521	26.14094	35.01090	0.3197
At most 4	0.059288	6.138766	18.39771	0.8579
At most 5	0.004878	0.454778	3.841466	0.5001

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan tabel di atas diketahui ada 2 nilai trace yang menghasilkan probabilitas < alpha (α=5%). Dengan demikian dapat dinyatakan ada 2 kointegrasi yang digunakan dalam penelitian ini.

Tahapan Uji Kointegrasi YES NO Cointegratio n Test **VECM** L-term S-term VAR First Optimal Order (K-1)Difference order Cointegration Rank IRF & FEVD Sumber: Ascarya diolah, 2018

Gambar 4.2

Setelah melakukan uji kointegrasi didapatkan hasil bahwa terdapat 2 kointegrasi. Dengan demikian, dari hasil uji kontegrasi mengindikasikan bahwa di antara pergerakan SBIS, PUAS, DPK, pembiayaan, PDB dan inflasi memiliki hubungan stabilitas atau keseimbangan dan kesamaan pergerakan dalam jangka panjang. Artinya, dalam setiap periode jangka pendek seluruh variabel cenderung saling menyesuaikan untuk mencapai ekuilibrium jangka panjangnya. Sehingga model yang digunakan selanjutnya adalah model VECM.

4.1.5 Estimasi VECM

Pengujian *Vector error correction model* (VECM) dimaksudkan untuk mengetahui kesesuaian keseimbangan dalam jangka pendek menuju jangka panjang. Hasil Estimasi VECM disajikan dalam tabel berikut :

4.1.5.1 Estimasi Jangka Pendek

Tabel 4.6 Hasil Estimasi Jangka Pendek

	(Jangka Pendek)							
Error Correction:		D(INF) D(PDB) D(PEMBIAY.		D(PEMBIAYAAN)	D(DPK)	D(PUAS)	D(SBIS)	
	Koef	-0.045527	-0.000893	-0.001380	-0.000578	0.026305	0.019338	
CointEq1	SE	(0.02447)	(0.00026)	(0.00073)	(0.00070)	(0.03203)	(0.00467)	
	t stat	[-1.86023]	[-3.46850]	[-1.88100]	[-0.82655]	[0.82118]	[4.14076]	
	Koef	-7.333869	-0.154735	-0.180801	0.075801	-13.98057	1.707164	
CointEq2	SE	(4.40255)	(0.04630)	(0.13195)	(0.12572)	(5.76231)	(0.84009)	
	t stat	[-1.66582]	[-3.34224]	[-1.37021]	[0.60291]	[-2.42621]	[2.03212]	
	Koef	0.327494	0.000367	-0.004022	-0.000211	-0.319316	0.028735	
D(INFLASI(-1))	SE	(0.12119)	(0.00127)	(0.00363)	(0.00346)	(0.15863)	(0.02313)	
	t stat	[2.70223]	[0.28799]	[-1.10733]	[-0.06096]	[-2.01302]	[1.24252]	
20	Koef	-0.209217	0.000318	-0.000862	-0.001345	0.234525	-0.067798	
D(INFLASI(-2))	SE	(0.12493)	(0.00131)	(0.00374)	(0.00357)	(0.16352)	(0.02384)	
	t stat	[-1.67468]	[0.24176]	[-0.23034]	[-0.37697]	[1.43427]	[-2.84400]	
	Koef	-0.038065	-0.000920	0.002792	-0.003112	-0.244134	0.069745	
D(INFLASI(-3))	SE	(0.12947)	(0.00136)	(0.00388)	(0.00370)	(0.16946)	(0.02471)	
	t stat	[-0.29400]	[-0.67540]	[0.71954]	[-0.84157]	[-1.44064]	[2.82301]	
	Koef	0.006845	0.000930	-0.003697	0.001247	0.061600	0.001778	
D(INFLASI(-4))	SE	(0.12756)	(0.00134)	(0.00382)	(0.00364)	(0.16696)	(0.02434)	
	t stat	[0.05366]	[0.69293]	[-0.96702]	[0.34237]	[0.36895]	[0.07303]	
117	Koef	3.467913	0.725838	-0.135150	0.096520	4.938710	-1.232873	
D(PDB(-1))	SE	(10.7558)	(0.11311)	(0.32237)	(0.30716)	(14.0778)	(2.05241)	
	t stat	[0.32242]	[6.41726]	[-0.41924]	[0.31424]	[0.35082]	[-0.60070]	
	Koef	-0.808078	0.140020	0.434267	-0.807999	17.86475	0.205178	
D(PDB(-2))	SE	(10.6737)	(0.11224)	(0.31991)	(0.30481)	(13.9703)	(2.03674)	
	t stat	[-0.07571]	[1.24746]	[1.35748]	[-2.65082]	[1.27876]	[0.10074]	
	Koef	5.290187	-0.419918	-0.038275	0.591659	11.21128	0.118608	
D(PDB(-3))	SE	(11.3366)	(0.11921)	(0.33978)	(0.32374)	(14.8380)	(2.16324)	
	t stat	[0.46665]	[-3.52236]	[-0.11265]	[1.82756]	[0.75558]	[0.05483]	
	Koef	-0.108176	0.354010	-0.019399	0.232281	5.058360	-2.066716	
D(PDB(-4))	SE	(11.2831)	(0.11865)	(0.33817)	(0.32221)	(14.7680)	(2.15303)	
	t stat	[-0.00959]	[2.98359]	[-0.05736]	[0.72089]	[0.34252]	[-0.95991]	
	Koef	-3.604000	-0.004003	-0.100974	0.139035	0.297221	-0.642113	
D(PEMBIAYAAN(-1))	SE	(4.42573)	(0.04654)	(0.13265)	(0.12639)	(5.79265)	(0.84451)	

	t stat	[-0.81433]	[-0.08601]	[-0.76123]	[1.10008]	[0.05131]	[-0.76034]
	Koef	-4.780280	-0.035156	-0.042810	0.069502	-10.87968	0.155749
D(PEMBIAYAAN (-2))	SE	(4.38041)	(0.04606)	(0.13129)	(0.12509)	(5.73333)	(0.83586)
	t stat	[-1.09129]	[-0.76319]	[-0.32608]	[0.55560]	[-1.89762]	[0.18633]
	Koef	-3.002803	-0.070712	0.175165	0.220879	5.616942	0.950411
D(PEMBIAYAAN (-3))	SE	(5.11921)	(0.05383)	(0.15343)	(0.14619)	(6.70031)	(0.97684)
	t stat	[-0.58658]	[-1.31353]	[1.14165]	[1.51090]	[0.83831]	[0.97295]
	Koef	3.485478	-0.064507	-0.151517	0.202495	-0.002798	-0.342648
D(PEMBIAYAAN (-4))	SE	(5.02207)	(0.05281)	(0.15052)	(0.14342)	(6.57317)	(0.95830)
	t stat	[0.69403]	[-1.22146]	[-1.00663]	[1.41194]	[-0.00043]	[-0.35756]
	Koef	2.047704	-0.071335	0.088023	-0.273004	-6.236471	0.671103
D(DPK(-1))	SE	(4.69035)	(0.04932)	(0.14058)	(0.13394)	(6.13900)	(0.89501)
	t stat	[0.43658]	[-1.44627]	[0.62616]	[-2.03821]	[-1.01588]	[0.74983]
/ 50	Koef	5.650339	0.045549	0.032226	-0.012722	0.671971	1.344709
D(DPK (-2))	SE	(4.61901)	(0.04857)	(0.13844)	(0.13191)	(6.04562)	(0.88139)
	t stat	[1.22328]	[0.93774]	[0.23278]	[-0.09645]	[0.11115]	[1.52567]
2 2	Koef	-2.253911	-0.029937	0.191608	0.175053	-2.587016	0.466823
D(DPK (-3))	SE	(4.33247)	(0.04556)	(0.12985)	(0.12372)	(5.67058)	(0.82671)
	t stat	[-0.52024]	[-0.65709]	[1.47560]	[1.41487]	[-0.45622]	[0.56467]
	Koef	0.531214	0.035675	-0.255642	-0.065293	-2.558987	1.421918
D(DPK (-4))	SE	(4.34191)	(0.04566)	(0.13013)	(0.12399)	(5.68295)	(0.82852)
	t stat	[0.12235]	[0.78134]	[-1.96445]	[-0.52659]	[-0.45029]	[1.71622]
	Koef	0.071163	0.000996	-0.001660	-0.005031	-0.024880	0.060835
D(PUAS(-1))	SE	(0.16759)	(0.00176)	(0.00502)	(0.00479)	(0.21935)	(0.03198)
	t stat	[0.42463]	[0.56528]	[-0.33041]	[-1.05128]	[-0.11343]	[1.90235]
11	Koef	0.040431	-0.000447	0.002941	-0.002569	-0.092712	0.039865
D(PUAS (-2))	SE	(0.13543)	(0.00142)	(0.00406)	(0.00387)	(0.17726)	(0.02584)
	t stat	[0.29854]	[-0.31379]	[0.72457]	[-0.66423]	[-0.52303]	[1.54261]
	Koef	0.013822	0.000258	0.004400	0.001999	-0.191342	0.032499
D(PUAS (-3))	SE	(0.10783)	(0.00113)	(0.00323)	(0.00308)	(0.14114)	(0.02058)
	t stat	[0.12818]	[0.22795]	[1.36142]	[0.64921]	[-1.35569]	[1.57939]
	Koef	0.028186	-0.000169	0.000134	0.002668	-0.142037	0.036429
D(PUAS (-4))	SE	(0.07793)	(0.00082)	(0.00234)	(0.00223)	(0.10200)	(0.01487)
	t stat	[0.36170]	[-0.20609]	[0.05758]	[1.19884]	[-1.39256]	[2.44978]
	Koef	-0.702730	-0.007473	-0.011851	0.009646	0.281772	0.235022
D(SBIS(-1))	SE	(0.55805)	(0.00587)	(0.01673)	(0.01594)	(0.73041)	(0.10649)
	t stat	[-1.25926]	[-1.27339]	[-0.70855]	[0.60527]	[0.38577]	[2.20706]
D(SBIS (-2))	Koef	-0.201005	-0.000476	0.003164	0.005806	-0.964813	0.458378

	SE	(0.51153)	(0.00538)	(0.01533)	(0.01461)	(0.66952)	(0.0976
	t stat	[-0.39295]	[-0.08854]	[0.20635]	[0.39743]	[-1.44105]	[4.6960
	Koef	-0.214789	0.006733	-0.031173	-0.005562	0.695959	-0.3260
D(SBIS (-3))	SE	(0.60952)	(0.00641)	(0.01827)	(0.01741)	(0.79777)	(0.1163
	t stat	[-0.35239]	[1.05045]	[-1.70641]	[-0.31956]	[0.87238]	[-2.8035
	Koef	-0.801644	-0.016345	-0.006920	-0.020227	-0.135278	-0.0379
D(SBIS (-4))	SE	(0.55473)	(0.00583)	(0.01663)	(0.01584)	(0.72606)	(0.1058
	t stat	[-1.44512]	[-2.80195]	[-0.41620]	[-1.27683]	[-0.18632]	[-0.3583
	Koef	0.078999	0.009016	0.039522	0.013639	0.143258	-0.0712
C	SE	(0.39821)	(0.00419)	(0.01193)	(0.01137)	(0.52120)	(0.0759
	t stat	[0.19839]	[2.15301]	[3.31150]	[1.19936]	[0.27486]	[-0.9381
R-squared		0.280169	0.690053	0.510740	0.521182	0.723330	0.66453
Adj. R-squared		-0.028330	0.557219	0.301057	0.315975	0.604758	0.52076
Sum sq. resids	· P	27.55295	0.003047	0.024751	0.022470	47.20115	1.0032
S.E. equation	7	0.661323	0.006954	0.019821	0.018886	0.865578	0.12619
F-statistic		0.908169	5.194837	2.435770	2.539783	6.100310	4.6222
Log likelihood	7	-74.76229	339.7304	244.4207	248.8197	-99.25533	75.9730
Akaike AIC	1	2.258512	-6.851218	-4.756499	-4.853181	2.796820	-1.0543
Schwarz SC	7/	3.031084	-6.078646	-3.983927	-4.080609	3.569393	-0.2817
Mean dependent		-0.006044	0.008930	0.016431	0.019832	0.016701	0.0206
S.D. dependent		0.652150	0.010451	0.023708	0.022835	1.376811	0.18228

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan tabel di atas diketahui bahwa untuk persamaan inflasi, hanya variabel inflasi pada 1 periode sebelumnya yang menunjukkan pengaruh yang signifikan, dengan koefisien yang bernilai 0.3275. Sehingga dapat dinyatakan bahwa meningkatnya inflasi sebesar 1% pada 1 periode sebelumnya akan meningkatkan inflasi pada periode saat ini sebesar 0.3275%. Dan secara simultan juga tidak terdapat pengaruh yang signifikan antara inflasi, PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap inflasi pada periode saat ini. Nilai adj. R² sebesar -0.0283, dengan demikian dapat dikatakan bahwa kontribusi inflasi, PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap inflasi pada periode saat ini sebesar 2.83%.

Sementara pada persamaan PDB, terdapat beberapa variabel yang berpengaruh signifikan. Yaitu PDB pada 1, 3, dan 4 periode sebelumnya, dan SBIS pada 4 periode sebelumnya. Koefisien PDB pada 1 periode sebelumnya bernilai 0.726. Sehingga dapat dinyatakan bahwa meningkatnya PDB sebesar 1% pada 1 periode sebelumnya akan meningkatkan PDB pada periode saat ini sebesar 0.726%. Sementara koefisien PDB pada 3 periode sebelumnya bernilai -0.420. Sehingga dapat dinyatakan bahwa meningkatnya PDB sebesar 1% pada 3 periode sebelumnya akan menurunkan PDB pada periode saat ini sebesar 0.420%. Koefisien PDB pada 4 periode sebelumnya bernilai 0.354. Sehingga dapat dinyatakan bahwa meningkatnya PDB sebesar 1% pada 4 periode sebelumnya akan meningkatkan PDB pada periode saat ini sebesar 0.354% miliar. Koefisien SBIS pada 4 periode sebelumnya bernilai -0.016. Sehingga dapat dinyatakan bahwa meningkatnya SBIS sebesar 1% pada 4 periode sebelumnya akan menurunkan PDB pada periode saat ini sebesar 0.016%. Dan secara simultan juga terdapat pengaruh yang signifikan antara inflasi, PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap PDB pada periode saat ini. Nilai adj. R² sebesar 0.5572, dengan demikian dapat dikatakan bahwa kontribusi inflasi, PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap PDB pada periode saat ini sebesar 55.72%.

Pada persamaan SBIS, terdapat beberapa variabel yang berpengaruh signifikan. Yaitu inflasi pada 2 dan 3 periode sebelumnya, SBIS pada 1 dan 3 periode sebelumnya, dan PUAS pada 4 periode sebelumnya. Koefisien inflasi pada 2 periode sebelumnya bernilai -0.0678. Sehingga dapat dinyatakan bahwa meningkatnya inflasi sebesar 1% pada 2 periode sebelumnya akan menurunkan SBIS pada periode saat ini sebesar 0.0678%. Sementara koefisien inflasi pada 3 periode sebelumnya bernilai 0.0697.

Sehingga dapat dinyatakan bahwa meningkatnya inflasi sebesar 1% pada 3 periode sebelumnya akan meningkatkan SBIS pada periode saat ini sebesar 0.0697%. Koefisien SBIS pada 1 periode sebelumnya bernilai 0.235. Sehingga dapat dinyatakan bahwa meningkatnya SBIS sebesar 1% pada 1 periode sebelumnya akan meningkatkan SBIS pada periode saat ini sebesar 0.235%. Koefisien SBIS pada 2 periode sebelumnya bernilai 0.458. Sehingga dapat dinyatakan bahwa meningkatnya SBIS sebesar 1% pada 2 periode sebelumnya akan meningkatkan SBIS pada periode saat ini sebesar 0.458%. Sementara koefisien SBIS pada 3 periode sebelumnya bernilai -0.326. Sehingga dapat dinyatakan bahwa meningkatnya SBIS sebesar 1% pada 3 periode sebelumnya akan menurunkan SBIS pada periode saat ini sebesar 0.326%. Koefisien PUAS pada 4 periode sebelumnya bernilai 0.036. Sehingga dapat dinyatakan bahwa meningkatnya PUAS sebesar 1% pada 1 periode sebelumnya akan meningkatkan SBIS pada periode saat ini sebesar 0.036%. Dan secara simultan juga terdapat pengaruh yang signifikan antara inflasi, SBIS, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap SBIS pada periode saat ini. Nilai adj. R² sebesar 0.5207, dengan demikian dapat dikatakan bahwa kontribusi inflasi, PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap SBIS pada periode saat ini sebesar 52.07%.

Pada persamaan PUAS, terdapat variabel yang berpengaruh signifikan. Yaitu variabel SBIS pada 1 periode sebelumnya yang menunjukkan pengaruh yang signifikan, dengan koefisien yang bernilai -0.3193. Sehingga dapat dinyatakan bahwa meningkatnya SBIS sebesar 1% pada 1 periode sebelumnya akan menurunkan PUAS pada periode saat ini sebesar 0.3193%. Dan secara simultan terdapat pengaruh yang signifikan antara inflasi, PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4

periode sebelumnya terhadap PUAS pada periode saat ini. Nilai adj. R² sebesar 0.6048, dengan demikian dapat dikatakan bahwa kontribusi inflasi, PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap PUAS pada periode saat ini sebesar 60.48%.

Pada persamaan DPK, terdapat beberapa variabel yang berpengaruh signifikan. Yaitu variabel PDB pada 2 dan 3 periode sebelumnya, dan DPK pada 1 periode sebelumnya. Pada variable PDB pada 2 periode sebelumnya menunjukkan pengaruh yang signifikan, dengan koefisien yang bernilai -0.8079. Sehingga dapat dinyatakan bahwa meningkatnya PDB sebesar 1% pada 2 periode sebelumnya akan menurunkan DPK pada periode saat ini sebesar 0.8079%. Kemudian variabel PDB pada 3 periode sebelumnya yang menunjukkan pengaruh yang signifikan, dengan koefisien yang bernilai 0.5916. Sehingga dapat dinyatakan bahwa meningkatnya PDB sebesar 1% pada 3 periode sebelumnya akan meningkatkan DPK pada periode saat ini sebesar 0.5916%. Kemudian variabel DPK pada 1 periode sebelumnya yang menunjukkan pengaruh yang signifikan, dengan koefisien yang bernilai -0.273. Sehingga dapat dinyatakan bahwa meningkatnya DPK sebesar 1% pada 1 periode sebelumnya akan menurunkan DPK pada periode saat ini sebesar 0.273%. Dan secara simultan terdapat pengaruh yang signifikan antara inflasi, PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap DPK pada periode saat ini. Nilai adj. R² sebesar 0.3159, dengan demikian dapat dikatakan bahwa kontribusi inflasi, PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap DPK pada periode saat ini sebesar 31.59%.

Pada persamaan pembiayaan tidak terdapat beberapa variabel yang berpengaruh signifikan akan tetapi secara simultan terdapat pengaruh yang signifikan antara inflasi,

PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap DPK pada periode saat ini. Nilai adj. R² sebesar 0.3010, dengan demikian dapat dikatakan bahwa kontribusi inflasi, PDB, SBIS, PUAS, DPK, dan pembiayaan pada 1 hingga 4 periode sebelumnya terhadap pembiayaan pada periode saat ini sebesar 30.10%.

4.1.5.2 Estimasi Jangka Panjang

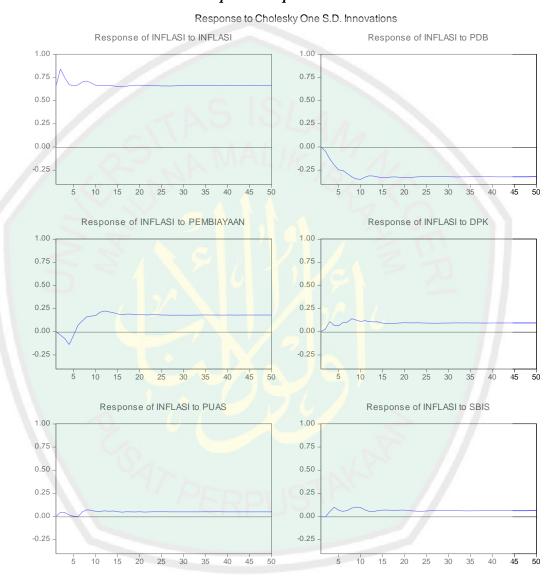
Tabel 4.7 Hasil Estimasi Jangka Panjang

(Ja <mark>n</mark> gka Panjang)								
Cointegrating Eq:	I I I I A	CointEq1	CointEq2					
INFLASI(-1)	1.000000	0.000000					
PDB(-1)	1111	0.000000	1.000000					
3/1	Koef	-10.81723	-0.024388					
SBIS(-1)	SE	(5.35901)	(0.03038)					
	t stat	[-2.01851]	[-0.80283]					
1 0	Koef	-8.708258	0.056123					
PUAS(-1)	SE	(2.24172)	(0.01271)					
1 /	t stat	[-3.88464]	[4.41666]					
79 6 1	Koef	-41.22125	0.307903					
DPK(-1)	SE	(44.5923)	(0.25277)					
1 9/12	t stat	[-0.92440]	[1.21812]					
17 P	Koef	70.91958	-0.554419					
PEMBIAYAAN(-1)	SE	(37.7207)	(0.21382)					
	t stat	[1.88013]	[-2.59296]					
С		-224.4517	-19.66670					

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan tabel di atas dapat diketahui bahwa nilai konstanta pada persamaan kointegrasi 1 sebesar -224.4517 menunjukkan bahwa pengaruh SBIS, PUAS, DPK, dan pembiayaan terhadap inflasi menuju keseimbangan jangka panjang. Pada analisis jangka panjang, variabel SBIS dan PUAS berpengaruh signifikan terhadap inflasi.

Koefisien variabel SBIS terhadap inflasi sebesar -10.817, menunjukkan bahwa dalam jangka panjang SBIS berpengaruh negatif dan signifikan terhadap inflasi. Artinya meningkatnya SBIS sebesar 1% dapat menurunkan inflasi sebesar 10.82%. Sedangkan pada koefisien variabel PUAS terhadap inflasi sebesar -8.708, menunjukkan bahwa dalam jangka panjang PUAS berpengaruh negatif dan signifikan terhadap inflasi. Artinya meningkatnya PUAS sebesar 1% dapat menurunkan inflasi sebesar 8.708%.


Kemudian nilai konstanta pada persamaan kointegrasi 2 sebesar -19.66670 menunjukkan bahwa pengaruh SBIS, PUAS, DPK, dan pembiayaan terhadap PDB menuju keseimbangan jangka panjang. Pada analisis jangka panjang, variabel PUAS dan pembiayaan yang berpengaruh signifikan terhadap PDB. Koefisien variabel PUAS terhadap PDB sebesar 0.056, menunjukkan bahwa dalam jangka panjang PUAS berpengaruh positif dan signifikan terhadap PDB. Artinya meningkatnya PUAS sebesar 1% dapat meningkatkan PDB sebesar 0.056%. Sementara koefisien variabel pembiayaan terhadap PDB sebesar -0.554, menunjukkan bahwa dalam jangka panjang pembiayaan berpengaruh negatif dan signifikan terhadap PDB. Artinya meningkatnya pembiayaan sebesar 1% dapat menurunkan PDB sebesar 0.554%.

4.1.6 Analisis Impulse Respon Function (IRF)

Analisis Impulse Respon Function (IRF) memberikan informasi tentang indikator transmisi, yaitu kecepatan atau berapa time lag yang dibutuhkan untuk merespon perubahan dan kekuatan variabel yang lain. Hasil analisis IRF disajikan dalam grafik berikut :

4.1.6.1 Analisis *Impulse Respon Function* (IRF) Variabel Inflasi terhadap Variabel Lainnya

Gambar 4.3
Impluse Response Inflasi

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan grafik di atas diperoleh hasil berikut :

1. Respon inflasi terhadap inflasi

Dari hasil IRF diketahui bahwa inflasi periode sebelumnya merespon positif perubahan inflasi. Pada periode pertama hingga periode ke-11 inflasi mengalami

fluktuasi akibat terjadi shock atau gejolak inflasi pada periode sebelumnya. Inflasi mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-12 hingga terjadi kondisi yang stabil. Dengan demikian inflasi membutuhkan waktu sekitar 1 tahun untuk kembali mencapai titik keseimbangan.

2. Respon inflasi terhadap PDB

Dari hasil IRF diketahui bahwa inflasi merespon negatif perubahan PDB. Pada periode pertama inflasi terjadi shock atau gejolak sehingga menyebabkan penurunan terhadap PDB hingga periode ke-10 dan PDB mengalami fluktuasi yang tidak signifikan pada periode ke-11 hingga periode ke-20. PDB mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-21 hingga terjadi kondisi yang stabil. Dengan demikian PDB membutuhkan waktu sekitar 1 tahun 8 bulan untuk kembali mencapai titik keseimbangan.

3. Respon inflasi terhadap SBIS

Dari hasil IRF diketahui bahwa inflasi merespon negatif perubahan SBIS pada periode ke-2. Pada periode pertama inflasi terjadi shock atau gejolak sehingga menyebabkan kondisi SBIS menurun hingga periode ke-2, kemudian periode berikutnya yaitu periode ke-3 inflasi merespon positif perubahan SBIS menuju periode ke-4 kondisi SBIS meningkat cukup signifikan. Periode ke-5 mengalami kondisi yang berfluktuasi hingga periode ke-25. SBIS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-26 hingga terjadi kondisi yang stabil. Dengan demikian dampak shock inflasi terhadap SBIS berlangsung selama 2 tahun 2 bulan.

4. Respon inflasi terhadap PUAS

Dari hasil IRF diketahui bahwa inflasi merespon positif perubahan PUAS. Pada periode pertama inflasi terjadi shock atau gejolak sehingga menyebabkan peningkatan

terhadap PUAS hingga periode ke-3. Periode berikutnya PUAS mengalami fluktuasi pada hingga periode ke-22. PUAS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-23 hingga terjadi kondisi yang stabil. Dengan demikian PUAS membutuhkan waktu sekitar 1 tahun 9 bulan untuk kembali mencapai titik keseimbangan.

5. Respon inflasi terhadap DPK


Dari hasil IRF diketahui bahwa inflasi merespon positif perubahan DPK. Inflasi mengalami shock atau gejolak sehingga menyebabkan kondisi DPK berfluktuasi hingga periode ke-14. DPK mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-15 hingga terjadi kondisi yang stabil. Dengan demikian DPK membutuhkan waktu sekitar 1 tahun 3 bulan untuk kembali mencapai titik keseimbangan.

6. Respon inflasi terhadap pembiayaan

Dari hasil IRF diketahui bahwa inflasi merespon negatif perubahan pembiayaan diawal periode hingga periode ke-5. Inflasi mengalami shock atau gejolak sehingga menyebabkan kondisi pembiayaan menurun signifikan hingga periode ke-4, kemudian pembiayaan periode ke-6 terjadi peningkatan hingga inflasi merespon positif yang menyebabkan pembiayaan mengalami kondisi yang berfluktuasi hingga periode ke-18. Pembiayaan mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-19 hingga terjadi kondisi yang stabil. Dengan demikian pembiayaan membutuhkan waktu sekitar 1 tahun 6 bulan untuk kembali mencapai titik keseimbangan.

4.1.6.2 Analisis *Impulse Respon Function* (IRF) Variabel PDB terhadap Variabel Lainnya

Gambar 4.4
Impluse Response PDB

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan grafik di atas diperoleh hasil berikut :

1. Respon PDB terhadap inflasi

Dari hasil IRF diketahui bahwa PDB memberikan respon yang cukup berfluktuatif terhadap perubahan inflasi. PDB memberikan respon yang negatif kemudian positif dan kembali negatif terhadap perubahan inflasi. Pada periode pertama PDB memberikan respon yang negatif hingga periode ke-5, dimana shock atau gejolak yang terjadi pada PDB menyebabkan penurunan terhadap inflasi hingga periode ke-5, kemudian inflasi mengalami peningkatan dimulai dari periode ke-6, hingga PDB memberikan respon yang positif yang menyebabkan peningkatan inflasi hingga periode ke-13. Kemudian PDB memberikan respon yang negatif yang menyebabkan penurunan inflasi berlanjut hingga periode ke-16. Pada periode berikutnya inflasi mengalami fluktuasi hingga periode ke-40. Inflasi mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-40 hingga terjadi kondisi yang stabil. Dengan demikian inflasi membutuhkan waktu sekitar 3 tahun 3 bulan untuk kembali mencapai titik keseimbangan.

2. Respon PDB terhadap PDB

Dari hasil IRF diketahui bahwa PDB periode sebelumnya memberikan respon yang sangat berfluktuatif terhadap perubahan PDB. PDB memberikan respon yang positif terhadap perubahan PDB. Periode pertama PDB memberikan respon yang positif, dimana shock atau gejolak yang terjadi pada PDB menyebabkan peningkatan signifikan terhadap PDB hingga periode ke-4, kemudian PDB mengalami penurunan yang sangat signifikan hingga periode ke-6. Pada periode berikutnya PDB mengalami fluktuasi hingga periode ke-29. PDB mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-29 hingga terjadi kondisi yang stabil. Dengan demikian PDB membutuhkan waktu sekitar 2 tahun 5 bulan untuk kembali mencapai titik keseimbangan.

3. Respon PDB terhadap SBIS

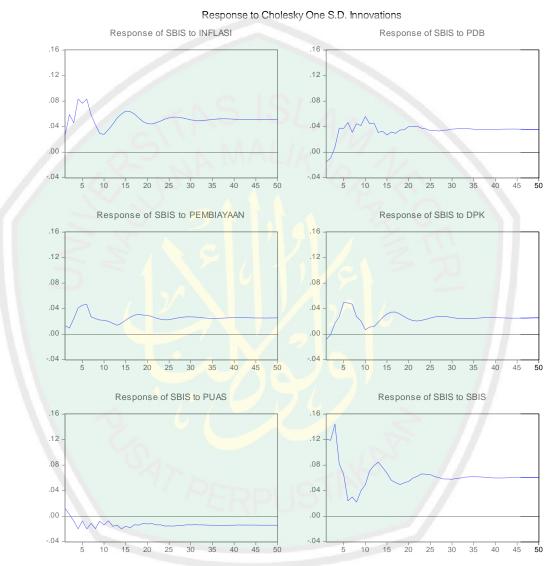
Dari hasil IRF diketahui bahwa PDB merespon positif perubahan SBIS. Shock atau gejolak yang terjadi pada PDB menyebabkan kondisi SBIS meningkat signifikan hingga periode ke-6. Periode ke-7 SBIS mengalami kondisi yang berfluktuasi hingga periode ke-27. SBIS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-28 hingga terjadi kondisi yang stabil. Dengan demikian dampak shock PDB terhadap SBIS berlangsung selama 2 tahun 3 bulan.

4. Respon PDB terhadap PUAS

Dari hasil IRF diketahui bahwa PDB memberikan respon yang sangat berfluktuatif terhadap perubahan PUAS. PDB memberikan respon yang positif kemudian negatif terhadap perubahan PUAS. Pada periode pertama hingga periode kedua PDB memberikan respon yang positif dimana PUAS terjadi peningkatan dan disertai penurunan hingga PDB memberikan respon negatif. Shock atau gejolak yang terjadi pada PDB menyebabkan kondisi PUAS sangat berfluktuatif hingga periode ke-31. PUAS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-32 hingga terjadi kondisi yang stabil. Dengan demikian PUAS membutuhkan waktu sekitar 2 tahun 8 bulan untuk kembali mencapai titik keseimbangan.

5. Respon PDB terhadap DPK

Dari hasil IRF diketahui bahwa PDB merespon negatif perubahan DPK diawal periode hingga periode ke-6. PDB mengalami shock atau gejolak sehingga menyebabkan kondisi DPK menurun signifikan hingga periode ke-4 kemudian meningkat signifikan hingga periode ke-9. Periode ke-8 PDB merespon positif perubahan DPK dan berlanjut meningkat hingga periode ke-11. Periode ke-15 DPK mengalami penurunan yang signifikan hingga periode ke-17 kemudian terjadi kondisi


yang berfluktuasi hingga DPK mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-30 hingga terjadi kondisi yang stabil. Dengan demikian DPK membutuhkan waktu sekitar 2 tahun 6 bulan untuk kembali mencapai titik keseimbangan.

6. Respon PDB terhadap pembiayaan

Dari hasil IRF diketahui bahwa PDB merespon negatif perubahan pembiayaan diawal periode hingga periode ke-7. PDB mengalami shock atau gejolak sehingga menyebabkan kondisi pembiayaan menurun signifikan hingga periode ke-6 kemudian meningkat signifikan hingga periode ke-9. Periode ke-8 PDB merespon positif perubahan pembiayaan dan berlanjut meningkat hingga periode ke-12. Periode ke-16 DPK mengalami penurunan yang signifikan hingga periode ke-18 kemudian terjadi kondisi yang berfluktuasi hingga pembiayaan mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-33 hingga terjadi kondisi yang stabil. Dengan demikian pembiayaan membutuhkan waktu sekitar 2 tahun 9 bulan untuk kembali mencapai titik keseimbangan.

4.1.6.3 Analisis *Impulse Respon Function* (IRF) Variabel SBIS terhadap Variabel Lainnya

Gambar 4.5
Impluse Response SBIS

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan grafik di atas diperoleh hasil berikut :

1. Respon SBIS terhadap inflasi

Dari hasil IRF diketahui bahwa SBIS merespon positif perubahan inflasi. Inflasi mengalami fluktuasi akibat terjadi shock atau gejolak SBIS. Inflasi mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-30 hingga terjadi

kondisi yang stabil. Dengan demikian inflasi membutuhkan waktu sekitar 1 tahun 7 bulan untuk kembali mencapai titik keseimbangan.

2. Respon SBIS terhadap PDB

Dari hasil IRF diketahui bahwa SBIS memberikan respon yang berfluktuatif terhadap perubahan PDB. SBIS memberikan respon yang negatif kemudian positif terhadap perubahan PDB. Pada periode pertama hingga periode ke-2 SBIS memberikan respon yang negatif dimana PDB terjadi peningkatan hingga SBIS memberikan respon positif dan PDB mengalami penurunan pada periode ke-4. Shock atau gejolak yang terjadi pada SBIS menyebabkan kondisi PDB berfluktuatif pada periode berikutnya hingga periode ke-37. PDB mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-37 hingga terjadi kondisi yang stabil. Dengan demikian PDB membutuhkan waktu sekitar 3 tahun 1 bulan untuk kembali mencapai titik keseimbangan.

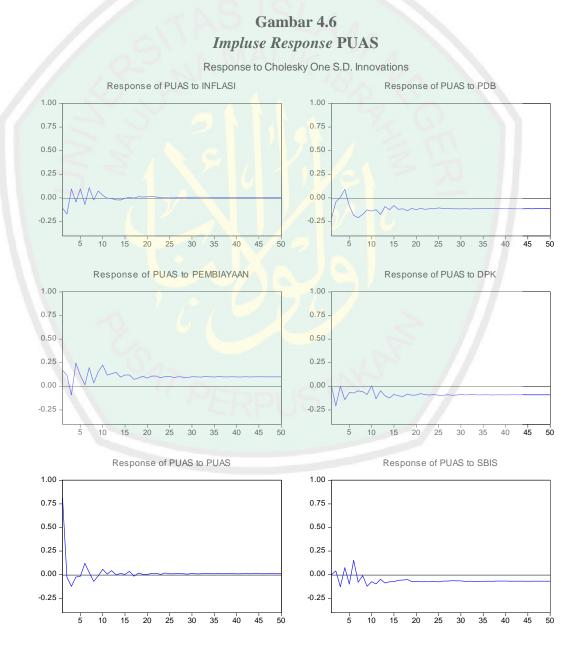
3. Respon SBIS terhadap SBIS

Dari hasil IRF diketahui bahwa SBIS periode sebelumnya memberikan respon yang positif terhadap perubahan SBIS. Periode pertama hingga periode ke-3 SBIS mengalami peningkatan yang signifikan, kemudian shock atau gejolak yang terjadi pada SBIS periode sebelumnya menyebabkan penurunan yang sangat signifikan terhadap SBIS hingga periode ke-8, kemudian SBIS mengalami kondisi yang fluktuatif hingga periode ke-30. SBIS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-31 hingga terjadi kondisi yang stabil. Dengan demikian dampak shock SBIS periode sebelumnya terhadap SBIS berlangsung selama 2 tahun 6 bulan

4. Respon SBIS terhadap PUAS

Dari hasil IRF diketahui bahwa SBIS memberikan respon yang positif diawal kemudian memberi respon negatif terhadap perubahan PUAS. Periode pertama hingga periode ke-2 PUAS mengalami peningkatan yang sangat signifikan, kemudian shock atau gejolak yang terjadi pada SBIS menyebabkan penurunan yang signifikan terhadap PUAS pada periode berikutnya hingga memberi respon negative dimulai periode ke-3, kemudian PUAS mengalami kondisi yang cukup fluktuatif hingga periode ke-24. PUAS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-25 hingga terjadi kondisi yang stabil. Dengan demikian PUAS membutuhkan waktu sekitar 2 tahun 1 bulan untuk kembali mencapai titik keseimbangan.

5. Respon SBIS terhadap DPK


Dari hasil IRF diketahui bahwa SBIS memberikan respon yang negative pada periode awal hingga merespon positif terhadap perubahan DPK mulai periode ke-3. Shock atau gejolak yang terjadi pada SBIS menyebabkan DPK mengalami peningkatan yang sangat signifikan pada periode pertama hingga periode ke-5, kemudian pada periode berikutnya DPK terjadi penurunan yang signifikan terhadap DPK pada periode ke-7 hingga periode ke-10. DPK mengalami kondisi yang fluktuatif pada periode berikutnya hingga periode ke-28. DPK mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-29 hingga terjadi kondisi yang stabil. Dengan demikian DPK membutuhkan waktu sekitar 2 tahun 5 bulan untuk kembali mencapai titik keseimbangan.

6. Respon SBIS terhadap pembiayaan

Dari hasil IRF diketahui bahwa SBIS memberikan respon yang positif terhadap perubahan pembiayaan. Shock atau gejolak yang terjadi pada SBIS menyebabkan

pembiayaan berfluktuasi pada periode pertama hingga periode ke-28. Pembiayaan mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-29 hingga terjadi kondisi yang stabil. Dengan demikian dampak shock SBIS terhadap pembiayaan berlangsung selama 1 tahun 15 bulan.

4.1.6.4 Analisis *Impulse Respon Function* (IRF) Variabel PUAS terhadap Variabel Lainnya

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan grafik di atas diperoleh hasil berikut :

1. Respon PUAS terhadap inflasi

Dari hasil IRF diketahui bahwa PUAS memberikan respon yang sangat berfluktuatif terhadap perubahan inflasi. PUAS memberikan respon yang negatif di periode ke-1 dan periode ke-2 kemudian positif kemudian kembali negatif terhadap perubahan inflasi pada periode ke-4, ke-6, ke-8, periode ke-11 hingga periode ke-15, dan juga periode ke-17. PUAS kembali memberikan respon yang positif hingga di akhir periode. Shock atau gejolak yang terjadi pada PUAS menyebabkan kondisi inflasi sangat berfluktuatif pada periode berikutnya hingga periode ke-42. SBIS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-43 hingga terjadi kondisi yang stabil. Dengan demikian SBIS membutuhkan waktu sekitar 3 tahun 7 bulan untuk kembali mencapai titik keseimbangan.

2. Respon PUAS terhadap PDB

Dari hasil IRF diketahui bahwa PUAS memberikan respon yang sangat berfluktuatif terhadap perubahan PDB. PUAS memberikan respon yang negatif kemudian positif kemudian kembali negatif terhadap perubahan PDB. Pada periode pertama hingga periode ke-2 PUAS memberikan respon yang negatif. PDB terjadi fluktuasi hingga PUAS memberikan respon positif pada periode ke-3 dan ke-4. PUAS kembali memberikan yang respon negatif hingga di akhir periode. Shock atau gejolak yang terjadi pada PUAS menyebabkan kondisi PDB sangat berfluktuatif pada periode berikutnya hingga periode ke-27. PDB mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-28 hingga terjadi kondisi yang stabil. Dengan demikian

PDB membutuhkan waktu sekitar 3 tahun 3 bulan untuk kembali mencapai titik keseimbangan.

3. Respon PUAS terhadap SBIS

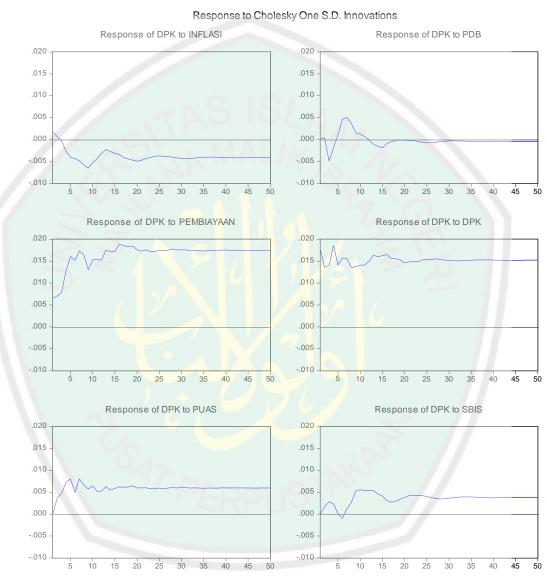
Dari hasil IRF diketahui bahwa PUAS memberikan respon yang sangat berfluktuatif terhadap perubahan SBIS. PUAS memberikan respon yang positif di periode ke-1 kemudian negatif kemudian kembali positif terhadap perubahan SBIS pada periode ke-4 dan ke-6. PUAS memberikan respon yang negatif hingga di akhir periode. Shock atau gejolak yang terjadi pada PUAS menyebabkan kondisi SBIS sangat berfluktuatif pada periode berikutnya hingga periode ke-34. SBIS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-35 hingga terjadi kondisi yang stabil. Dengan demikian SBIS membutuhkan waktu sekitar 2 tahun 9 bulan untuk kembali mencapai titik keseimbangan.

4. Respon PUAS terhadap PUAS

Dari hasil IRF diketahui bahwa di periode pertama PUAS memberikan respon yang positif terhadap perubahan PUAS. Dan pada periode ke-2 mengalami penurunan yang cukup signifikan, kemudian PUAS mengalami kondisi yang fluktuatif hingga periode ke-37. PUAS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-38 hingga terjadi kondisi yang stabil. Dengan demikian dampak shock PUAS periode sebelumnya terhadap PUAS berlangsung selama 3 tahun 2 bulan. Dan mulai periode ke-38 PUAS kembali mencapai titik keseimbangan.

5. Respon PUAS terhadap DPK

Dari hasil IRF diketahui bahwa PUAS memberikan respon yang sangat berfluktuatif terhadap perubahan DPK. PUAS memberikan respon yang positif di periode ke-1 dan periode ke-3. PUAS memberikan respon yang negatif hingga di akhir


periode. Shock atau gejolak yang terjadi pada PUAS menyebabkan kondisi DPK sangat berfluktuatif pada periode berikutnya hingga periode ke-29. DPK mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-30 hingga terjadi kondisi yang stabil. Dengan demikian DPK membutuhkan waktu sekitar 2 tahun 5 bulan untuk kembali mencapai titik keseimbangan.

6. Respon PUAS terhadap Pembiayaan

Dari hasil IRF diketahui bahwa PUAS memberikan respon yang sangat berfluktuatif terhadap perubahan pembiayaan. PUAS memberikan respon yang positif akan tetapi PUAS memberi respon negatif pada periode ke-3. Pada periode selanjutnya PUAS memberikan respon yang positif hingga di akhir periode. Shock atau gejolak yang terjadi pada PUAS menyebabkan pembiayaan berfluktuasi pada periode pertama hingga periode ke-39. Pembiayaan mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-40 hingga terjadi kondisi yang stabil. Dengan demikian dampak shock PUAS terhadap pembiayaan berlangsung selama 3 tahun 3 bulan. Dan mulai periode ke-40 pembiayaan kembali mencapai titik keseimbangan.

4.1.6.5 Analisis *Impulse Respon Function* (IRF) Variabel DPK terhadap Variabel Lainnya

Gambar 4.7
Impluse Response DPK

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan grafik di atas diperoleh hasil berikut :

1. Respon DPK terhadap inflasi

Dari hasil IRF diketahui bahwa DPK merespon positif perubahan inflasi kemudian respon berbalik menjadi negatif. Inflasi mengalami penurunan yang sangat signifikan dari periode pertama ke periode ke-2 saat DPK memberikan respon positif. Kemudian repon tersebut berbalik menjadi negative yang menyebabkan inflasi berfluktuasi hingga periode ke-32 akibat terjadi shock atau gejolak DPK. Inflasi mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-33 hingga terjadi kondisi yang stabil. Dengan demikian inflasi membutuhkan waktu sekitar 2 tahun 8 bulan untuk kembali mencapai titik keseimbangan.

2. Respon DPK terhadap PDB

Dari hasil IRF diketahui bahwa DPK memberikan respon yang cukup berfluktuatif terhadap perubahan PDB. DPK memberikan respon yang positif kemudian negatif kemudian positif dan kembali negatif terhadap perubahan PDB. Pada periode pertama hingga periode ke-2 DPK memberikan respon yang positif, dimana pada periode ke-2 PDB mengalami penurunan yang sangat signifikan hingga periode ke-9 yang menyebabkan inflasi menjadi negatif, kemudian PDB berbalik terjadi peningkatan yang sangat signifikan hingga periode ke-14 dan kembali mengalami penurunan hingga periode ke-20. PDB mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-33 hingga terjadi kondisi yang stabil. Dengan demikian PDB membutuhkan waktu sekitar 2 tahun 7 bulan untuk kembali mencapai titik keseimbangan.

3. Respon DPK terhadap SBIS

Dari hasil IRF diketahui bahwa DPK memberikan respon yang berfluktuatif terhadap perubahan SBIS. Shock atau gejolak yang terjadi pada DPK menyebabkan SBIS mengalami penurunan dan peningkatan yang signifikan terjadi pada periode ke-4 hingga periode ke-16, kemudian periode berikutnya SBIS tetap berfluktuasi yang tidak terlalu hingga periode ke-37. SBIS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-38 hingga terjadi kondisi yang stabil. Dengan demikian

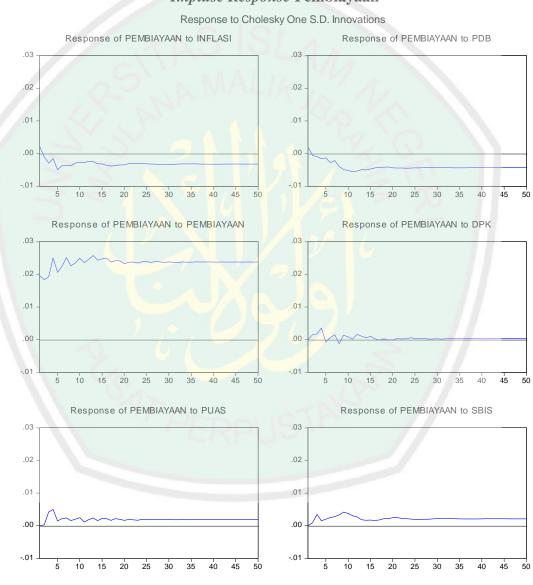
SBIS membutuhkan waktu sekitar 2 tahun 9 bulan untuk kembali mencapai titik keseimbangan.

4. Respon DPK terhadap PUAS

Dari hasil IRF diketahui bahwa DPK memberikan respon yang positif terhadap perubahan PUAS. Periode pertama hingga periode ke-5 PUAS mengalami peningkatan yang sangat signifikan, kemudian shock atau gejolak yang terjadi pada DPK menyebabkan PUAS berfluktuasi pada periode berikutnya hingga periode ke-26. PUAS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-27 hingga terjadi kondisi yang stabil. Dengan demikian PUAS membutuhkan waktu sekitar 2 tahun 3 bulan untuk kembali mencapai titik keseimbangan.

5. Respon DPK terhadap DPK

Dari hasil IRF diketahui bahwa DPK periode sebelumnya memberikan respon yang positif terhadap perubahan DPK. Periode pertama hingga periode ke-2 DPK mengalami penurunan yang cukup signifikan, kemudian shock atau gejolak yang terjadi pada DPK periode sebelumnya menyebabkan peningkatan yang signifikan terhadap DPK hingga periode ke-4, kemudian DPK mengalami kondisi yang fluktuatif hingga periode ke-19. DPK mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-24 hingga terjadi kondisi yang stabil. Dengan demikian dampak shock DPK periode sebelumnya terhadap DPK berlangsung selama 2 tahun.


6. Respon DPK terhadap pembiayaan

Dari hasil IRF diketahui bahwa DPK memberikan respon yang fluktuasi dan memberikan respon positif terhadap perubahan pembiayaan. Shock atau gejolak yang terjadi pada DPK menyebabkan pembiayaan berfluktuasi pada periode pertama hingga periode ke-19. Pembiayaan terjadi keseimbangan atau berada pada titik ekuilibrium

pada periode ke-20 hingga terjadi kondisi yang stabil. Dengan demikian dampak shock DPK terhadap pembiayaan berlangsung selama 1 tahun 7 bulan.

4.1.6.6 Analisis *Impulse Respon Function* (IRF) Variabel Pembiayaan terhadap Variabel Lainnya

Gambar 4.8 *Impluse Response* Pembiayaan

Sumber: Output Eviews 9 diolah, 2018

Berdasarkan grafik di atas diperoleh hasil berikut :

1. Respon pembiayaan terhadap inflasi

Dari hasil IRF diketahui bahwa pembiayaan memberikan respon yang positif terhadap perubahan inflasi pada periode ke-1. Inflasi mengalami fluktuasi akibat terjadi shock atau gejolak pembiayaan. Inflasi memberikan respon yang negatif pada periode ke-2 hingga akhir periode. Inflasi mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-25 hingga terjadi kondisi yang stabil. Dengan demikian inflasi membutuhkan waktu sekitar 2 tahun 1 bulan untuk kembali mencapai titik keseimbangan.

2. Respon pembiayaan terhadap PDB

Dari hasil IRF diketahui bahwa pembiayaan memberikan respon negatif terhadap perubahan PDB. Pada periode pertama PDB memberikan respon positif, akan tetapi pada periode ke-2 hingga periode terakhir PDB memberikan respon negatif terhadap pembiayaan. Pembiayaan mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-36 hingga terjadi kondisi yang stabil. Dengan demikian inflasi membutuhkan waktu sekitar 3 tahun untuk kembali mencapai titik keseimbangan.

3. Respon pembiayaan terhadap SBIS

Dari hasil IRF diketahui bahwa pembiayaan memberikan respon positif terhadap perubahan SBIS. SBIS mengalami fluktuasi akibat terjadi shock atau gejolak pembiayaan. Pembiayaan mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-22 hingga terjadi kondisi yang stabil. Dengan demikian inflasi membutuhkan waktu sekitar 1 tahun 10 bulan untuk kembali mencapai titik keseimbangan.

4. Respon pembiayaan terhadap PUAS

Dari hasil IRF diketahui bahwa pembiayaan memberikan respon yang positif terhadap perubahan PUAS. Periode ke-4 PUAS mengalami peningkatan yang cukup signifikan, kemudian shock atau gejolak yang terjadi pada pembiayaan menyebabkan penurunan yang signifikan terhadap PUAS pada periode ke-5. PUAS mengalami kondisi yang fluktuatif hingga periode ke-23. PUAS mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-24 hingga terjadi kondisi yang stabil. Dengan demikian PUAS membutuhkan waktu sekitar 2 tahun untuk kembali mencapai titik keseimbangan.

5. Respon pembiayaan terhadap DPK

Dari hasil IRF diketahui bahwa pembiayaan memberikan respon yang positif terhadap perubahan DPK. Akan tetapi pembiayaan memberikan respon negatif pada periode ke-5, ke-8, ke-17, ke-19, dan ke-20. Shock atau gejolak yang terjadi pada pembiayaan menyebabkan DPK berfluktuasi pada periode pertama hingga periode ke-31. DPK mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-32 hingga terjadi kondisi yang stabil. Dengan demikian dampak shock pembiayaan terhadap DPK berlangsung selama 2 tahun 7 bulan.

6. Respon pembiayaan terhadap pembiayaan

Dari hasil IRF diketahui bahwa pembiayaan memberikan respon yang positif terhadap perubahan pembiayaan. Shock atau gejolak yang terjadi pada pembiayaan menyebabkan pembiayaan berfluktuasi pada periode pertama hingga periode ke-22. Pembiayaan mengalami keseimbangan atau berada pada titik ekuilibrium pada periode ke-23 hingga terjadi kondisi yang stabil. Dengan demikian dampak shock pembiayaan terhadap pembiayaan berlangsung selama 1 tahun 11 bulan.

4.1.7 Analisis Variance Decomposition Analysis

Analisis *Variance Decomposition* memberikan informasi mengenai kontribusi setiap variabel dalam system VAR/VECM. Hasil analisis *Variance Decomposition* disajikan dalam tabel dari masing-masing variabel.

4.1.7.1 Analisis Variance Decomposition Analysis Variabel Inflasi

Tabel 4.8
Hasil Analisis Variance Decomposition Inflasi

Periode	S.E.	INFLASI	PDB	SBIS	PUAS	DPK	PEMBIAYAAN
1	0.661323	100.0000	0.000000	0.000000	0.000000	0.000000	0.00000
2	1.073226	99.48074	0.160756	0.001249	0.177586	0.077636	0.102032
3	1.323101	97.45046	1.044839	0.154439	0.219364	0.745047	0.385849
4	1.508664	94.86296	2.469006	0.564994	0.180782	0.782110	1.140147
5	1.668562	93.24075	4.206040	0.632768	0.148080	0.787170	0.985191
6	1.821029	91.83628	5.469966	0.625647	0.124325	0.959803	0.983982
7	1.980727	90.18828	6.733533	0.635714	0.170466	1.088319	1.183689
8	2.143078	88.06774	8.007069	0.722593	0.256934	1.361302	1.584367
9	2.291235	86.17128	9.265500	0.826932	0.310853	1.496890	1.928543
10	2.423381	84.60756	10.36455	0.899136	0.330589	1.548405	2.249757

Sumber: Output Eviews 9 diolah, 2018

Dari tabel di atas diketahui bahwa kontribusi terbesar yang mempengaruhi inflasi bersumber dari varians pertumbuhan dirinya sendiri. Kontribusi tertinggi sebesar 100.00% pada periode 1 hingga akhirnya terus mengalami penurunan menjadi 84.60% pada periode 10.

Kontribusi selanjutnya yang mempengaruhi inflasi adalah PDB. Kontribusi dimulai pada periode 2 yaitu sebesar 0.16% dan terus meningkat hingga periode 10 yaitu sebesar 10.36%. Sementara kontribusi SBIS terhadap inflasi juga dimulai pada

periode 2 yaitu sebesar 0.001% dan terus meningkat hingga periode 5. Namun pada periode 6 mengalami penurunan menjadi 0.62% dan terus meningkat hingga periode 10 yaitu mencapai 0.89%.

Kontribusi PUAS terhadap inflasi pun dimulai pada peride 2 yaitu sebesar 0.17%. Meskipun meningkat pada periode 3, penurunan kembali terjadi pada periode 4 hingga periode 6 menjadi 0.12%. Namun pada periode 7 hingga 10 mengalami peningkatan hingga mencapai 0.33%.

Kontribusi DPK terhadap inflasi dimulai dari periode 2 yaitu sebesar 0.07%. pada periode 2 hingga periode 10 kontribusi DPK terhadap inflasi mengalami peningkatan hingga 1.54%.

Kontribusi pembiayaan terhadap inflasi pada periode 2 sebesar 0.10%. Meskipun meningkat pada periode 3 hingga periode 4, penurunan kembali terjadi pada periode 5 menjadi 0.98%. Penurunan juga terjadi pada periode 6. Namun pada periode 6 hingga 10 mengalami peningkatan hingga mencapai 2.24%.

4.1.7.2 Analisis Variance Decomposition Analysis Variabel PDB

Tabel 4.9
Hasil Analisis *Variance Decomposition PDB*

Periode	S.E.	INFLASI	PDB	SBIS	PUAS	DPK	PEMBIAYAAN
1	0.661323	2.036558	97.96344	0.000000	0.000000	0.000000	0.000000
2	1.073226	2.627367	95.72799	0.305550	0.012203	1.323249	0.003639
3	1.323101	2.504951	93.78443	2.027087	0.393749	1.265518	0.024262
4	1.508664	2.483962	86.17822	8.696056	0.541929	1.735229	0.364603
5	1.668562	2.111854	78.85090	15.08669	1.249030	1.568300	1.133222
6	1.821029	1.788182	72.42862	21.01080	1.775545	1.331563	1.665293
7	1.980727	1.933639	69.03636	23.79037	2.382894	1.247762	1.608971
8	2.143078	2.334509	65.93307	26.04208	2.723045	1.490971	1.476320
9	2.291235	2.807729	63.40984	27.28773	2.956571	1.923368	1.614767
10	2.423381	2.944760	61.03014	28.52487	3.038737	2.402668	2.058826

Sumber: Output Eviews 9 diolah, 2018

Dari tabel di atas diketahui bahwa kontribusi terbesar yang mempengaruhi PDB bersumber dari varians pertumbuhan dirinya sendiri. Kontribusi tertinggi sebesar 97.96% pada periode 1 hingga akhirnya terus mengalami penurunan menjadi 61.03% pada periode 10.

Kontribusi selanjutnya yang mempengaruhi PDB adalah inflasi. Kontribusi dimulai pada periode 1 yaitu sebesar 2.03%. Meskipun meningkat pada periode 2, penurunan terjadi pada periode 3 sampai periode 6. Pada periode 10 kontribusi inflasi menjadi 2.94%

Sementara kontribusi SBIS terhadap PDB dimulai pada periode 2 yaitu sebesar 0.30% dan terus meningkat hingga periode 10 yaitu sebesar 28.52%. Kontribusi PUAS terhadap PDB pun dimulai pada periode 2 yaitu sebesar 0.01% dan terus meningkat hingga periode 10 menjadi 3.04%.

Kontribusi DPK terhadap PDB dimulai dari periode 2 yaitu sebesar 1.32%. Meskipun meningkat pada periode 3 dan 4, penurunan kembali terjadi pada periode 5 sampai 7. Dan dari periode 8 hingga periode 10 kontribusi DPK terhadap PDB mengalami peningkatan menjadi 2.40%.

Kontribusi pembiayaan terhadap PDB pada periode 2 sebesar 0.0036%. Peningkatan terus terjadi hingga periode 6, dan mengalami penurunan pada periode 7 dan 8. Namun periode 10 kembali terjadi peningkatan menjadi 2.06%.

4.1.7.3 Analisis Variance Decomposition Analysis Variabel SBIS

Tabel 4.10
Hasil Analisis Variance Decomposition SBIS

Periode	S.E.	INFLASI	PDB	SBIS	PUAS	DPK	PEMBIAYAAN
1	0.661323	4.410949	1.410869	91.67199	0.969662	0.418782	1.117752
2	1.073226	12.37312	0.922028	85.23095	0.478940	0.200999	0.793969
3	1.323101	10.89193	0.634947	85.95000	0.383651	0.630905	1.508564
4	1.508664	17.50787	2.363496	74.49741	0.811917	1.451773	3.367526
5	1.668562	20.81598	3.448431	66.10826	0.728268	3.874556	5.024513
6	1.821029	24.46024	5.009540	57.56272	1.009575	5.597609	6.360322
7	1.980727	25.66175	5.493302	54.13655	1.045583	7.111604	6.551211
8	2.143078	25.91224	6.863109	51.82318	1.310718	7.3801 79	6.710571
9	2.291235	25.53012	7.960523	50.94792	1.308215	7.424155	6.829075
10	2.423381	24.76335	9.886609	50.07944	1.384071	7.065542	6.820995

Sumber: Output Eviews 9 diolah, 2018

Dari tabel di atas diketahui bahwa kontribusi terbesar yang mempengaruhi SBIS bersumber dari varians pertumbuhan dirinya sendiri. Kontribusi tertinggi sebesar 91.67% pada periode 1 hingga akhirnya terus mengalami penurunan menjadi 50.08% pada periode 10.

Kontribusi selanjutnya yang mempengaruhi SBIS adalah inflasi. Kontribusi dimulai pada periode 1 yaitu sebesar 4.41%. Meskipun meningkat pada periode 2, penurunan kembali terjadi pada periode 3 menjadi 10.89%. Konstribusi inflasi naik terus berlangsung hingga periode 9. Dan pada periode 10 mengalami penurunan yaitu sebesar 24.76%

Sementara kontribusi PDB terhadap SBIS dimulai pada periode 1 yaitu sebesar 1.41%. Pada periode 2 dan periode 3 mengalami penurunan menjadi 0.63%. Peningkatan terjadi pada periode 4 sampai periode 10 yaitu sebesar 9.88%. Kontribusi PUAS terhadap SBIS dimulai dari periode 1 yaitu sebesar 0.97%. Penurunan pada periode 2 sampai 3. Kemudian Mengalami peningkatan pada periode 4 sampai periode 8. Penurunan terjadi kembali pada periode 10, di mana kontribusi PUAS terhadap SBIS menjadi 1.38%.

Kontribusi DPK terhadap SBIS juga dimulai dari periode 1 yaitu sebesar 0.42%. Peningkatan terus terjadi hingga periode 10, di mana kontribusi DPK terhadap SBIS menjadi 7.06%. Kontribusi pembiayaan terhadap SBIS pada periode 1 sebesar 1.12%. pada periode 2 mengalami penurunan akan tetapi peningkatan terjadi kembali hingga periode 10 yaitu sebesar 6.82%.

4.1.7.4 Analisis Variance Decomposition Analysis Variabel PUAS

Tabel 4.11
Hasil Analisis *Variance Decomposition* PUAS

Periode	S.E.	INFLASI	PDB	SBIS	PUAS	DPK	PEMBIAYAAN
1	0.661323	1.547733	6.111306	0.000000	88.46770	0.002777	3.870482
2	1.073226	4.852019	5.674383	0.198879	79.04314	5.156062	5.075517
3	1.323101	5.589670	5.365748	2.035764	76.37852	4.871457	5.758844
4	1.508664	5.227517	5.676706	2.402023	68.88939	6.408847	11.39551
5	1.668562	5.886317	6.114416	3.270845	65.98561	6.568749	12.17407
6	1.821029	5.892795	8.702991	5.116922	62.44781	6.536823	11.30266
7	1.980727	6.385535	11.58409	5.196725	57.08839	6.158930	13.58634
8	2.143078	6.221345	13.61393	5.037558	55.66365	6.212663	13.25086
9	2.291235	6.312932	14.13640	5.910120	52.80758	6.466329	14.36664
10	2.423381	6.007232	14.72319	5.964064	50.04239	6.100861	17.16227

Sumber: Output Eviews 9 diolah, 2018

Dari tabel di atas diketahui bahwa kontribusi terbesar yang mempengaruhi PUAS bersumber dari varians pertumbuhan dirinya sendiri. Kontribusi tertinggi sebesar 88.46% pada periode 1 hingga akhirnya terus mengalami penurunan menjadi 50.04% pada periode 10.

Kontribusi selanjutnya yang mempengaruhi PUAS adalah inflasi. Kontribusi dimulai pada periode 1 yaitu sebesar 1.54%. Meskipun meningkat pada periode 2 dan 3, penurunan kembali terjadi pada periode 4 menjadi 5.23%. Fluktuasi naik turun terus berlangsung hingga periode 10 menjadi 6.01%.

Sementara kontribusi PDB terhadap PUAS dimulai pada periode 1 yaitu sebesar 6.11%. Terjadi menurun pada periode 2 dan 3. Mulai periode 4 hingga periode 10 kontribusi PDB terhadap PUAS terus mengalami peningkatan sampai sebesar 14.72%.

Kontribusi SBIS terhadap PUAS dimulai dari periode 2 yaitu sebesar 0.19%. Peningkatan tersebut terjadi hingga periode 7, namun dari periode 8 mengalami penurunan dan pada periode 10 terjadi peningkatan hingga kontribusinya sebesar 5.96%. Kontribusi DPK terhadap PUAS juga dimulai dari periode 1 yaitu sebesar 0.002%. Peningkatan terjadi pada periode 2, dan menurun pada periode 3. Begitu juga pada periode 4 sampai 9 kembali mengalami kenaikan, walaupun sempat menurun di periode 7. Hingga pada periode 10 kontribusi DPK terhadap PUAS sebesar 6.10%.

Kontribusi pembiayaan terhadap PUAS dimulai pada periode 1 yaitu sebesar 3.87%. Meskipun terus mengalami peningkatan hingga periode 5, penurunan terjadi pada periode 6 menjadi 11.30%. Peningkatan kembali terjadi pada periode 7 dan menurun hingga periode 8. Dan kontribusi pembiayaan terhadap PUAS pada periode 10 sebesar 17.16%.

4.1.7.5 Analisis Variance Decomposition Analysis Variabel DPK

Tabel 4.12
Hasil Analisis *Variance Decomposition* DPK

Periode	S.E.	INFLASI	PDB	SBIS	PUAS	DPK	PEMBIAYAAN
1	0.661323	0.866013	0.019876	0.000000	0.000000	87.23544	11.87867
2	1.073226	0.590362	0.035443	0.474505	2.179863	81.55263	15.16720
3	1.323101	0.399669	2.665401	1.209408	3.837757	75.21740	16.67037
4	1.508664	0.718918	1.859955	1.097552	5.876831	69.18844	21.25830
5	1.668562	1.336054	1.423515	0.807019	7.473936	60.70344	28.25604
6	1.821029	1.790269	1.940731	0.675226	6.844216	57.47335	31.27621
7	1.980727	2.140929	2.343426	0.583254	7.444064	53.28956	34.19877
8	2.143078	2.719935	2.360770	0.686972	7.546245	50.36132	36.32475
9	2.291235	3.420077	2.163032	1.266296	7.493097	49.29013	36.36737
10	2.423381	3.613030	1.955312	1.771915	7.527713	47.94612	37.18591

Sumber: Output Eviews 9 diolah, 2018

Dari tabel di atas diketahui bahwa kontribusi terbesar yang mempengaruhi DPK bersumber dari varians pertumbuhan dirinya sendiri. Kontribusi tertinggi sebesar 87.23% pada periode 1 hingga akhirnya terus mengalami penurunan sampai periode 10, dengan konribusi sebesar 47.94%

Kontribusi selanjutnya yang mempengaruhi DPK adalah inflasi. Kontribusi dimulai pada periode 1 yaitu sebesar 0.86%. Meskipun menurun pada periode 2 sampai 3, peningkatan kembali terjadi pada periode 4 hingga 10 menjadi 3.61%.

Kontribusi PDB terhadap DPK dimulai pada periode 1 yaitu sebesar 0.02%. Meskipun meningkat pada periode 2 dan 3, penurunan kembali terjadi pada periode 4 hingga periode 5 yaitu sebesar 1.42%. Pada periode 6 hingga 8 mengalami kenaikan. Pada periode 10 kembali mengalami penurunan menjadi 2.16%. Kontribusi SBIS terhadap DPK dimulai dari periode 2 yaitu sebesar 0.47%. Peningkatan terjadi pada

periode 2, namun dari periode 3 sampai 7 terjadi penurunan hingga kontribusinya sebesar 0.58%. kontribusi kembali meningkat hingga periode 10, yaitu sebesar 1.26%

Kontribusi PUAS terhadap DPK dimulai dari periode 2 yaitu sebesar 2.18%. Peningkatan terjadi hingga periode 5, dan kembali menurun pada periode 6. Pada periode 7 hingga periode 8 tejadi peningkatan, dan kembali menurun pada periode 9. Namun pada periode 10 meningkat hingga sebesar 7.52%.

Kontribusi pembiayaan terhadap DPK dimulai pada periode 1 yaitu sebesar 11.87%. Kontribusi pembiayaan terhadap DPK terus mengalami peningkatan hingga periode 10 sebesar 37.18%.

4.1.7.6 Analisis Variance Decomposition Analysis Variabel Pembiayaan

Tabel 4.13
Hasil Analisis Variance Decomposition Pembiayaan

Periode	S.E.	INFLASI	PDB	SBIS	PUAS	DPK	PEMBIAYAAN
1	0.661323	1.188505	0.949861	0.000000	0.000000	0.000000	97.86163
2	1.073226	0.764944	0.550970	0.111152	0.009402	0.311536	98.25200
3	1.323101	1.230389	0.423513	1.120161	1.554306	0.465606	95.20602
4	1.508664	0.901717	0.406537	0.835374	2.349638	0.978301	94.52843
5	1.668562	1.803898	0.399932	0.844228	1.972067	0.801810	94.17806
6	1.821029	1.948412	0.600337	0.907017	1.763386	0.663428	94.11742
7	1.980727	1.948905	0.618219	0.961254	1.590314	0.598096	94.28321
8	2.143078	2.026223	0.919551	1.104654	1.434626	0.551958	93.96299
9	2.291235	1.938867	1.317714	1.337017	1.334289	0.520283	93.55183
10	2.423381	1.822275		1.430718	1.277750	0.467052	93.35336

Sumber: Output Eviews 9 diolah, 2018

Dari tabel di atas diketahui bahwa kontribusi terbesar yang mempengaruhi pembiayaan bersumber dari varians pertumbuhan dirinya sendiri. Kontribusi tertinggi sebesar 97.86% pada periode 1 hingga dan terus mengalami penurunan sampai periode 10 menjadi 93.35%.

Kontribusi selanjutnya yang mempengaruhi pembiayaan adalah inflasi. Kontribusi dimulai pada periode 1 yaitu sebesar 1.18%. Meskipun menurun pada periode 2, peningkatan kembali terjadi pada periode 3. Fluktuasi naik turunnya kontribusi terjadi hingga periode 10 yaitu sebesar 1.82%.

Kontribusi PDB terhadap pembiayaan dimulai pada periode 1 yaitu sebesar 0.94%. Penurunan tersebut terjadi pada periode 2 hingga periode 5 yaitu sebesar 0.39%. Pada periode 6 hingga 10 mengalami peningkatan yaitu sebesar 1.65%. Kontribusi SBIS terhadap pembiayaan dimulai dari periode 2 yaitu sebesar 0.11%. Peningkatan terjadi pada periode 2 dan 3, namun dari periode 4 terjadi penurunan hingga kontribusinya sebesar 0.83%. Fluktuasi tersebut terus berlangsung hingga periode 10 yaitu sebesar 1.43%.

Kontribusi PUAS terhadap pembiayaan dimulai dari periode 2 yaitu sebesar 0.009%. Peningkatan terjadi pada periode 2 hingga periode 4. Pada periode 5 terjadi penurunan hingga periode 10 menjadi sebesar 1.27%. Kontribusi DPK terhadap pembiayaan dimulai pada periode 2 yaitu sebesar 0.31%. Peningkatan terjadi pada periode 2 hingga 4, namun terjadi penurunan dari periode 5 hingga peiode 10 yaitu sebesar 0.47%.

4.2 Pembahasan

Setelah mengetahui hasil dari penelitian di atas, maka penulis dapat menginterpretasikan penelitian ini sebagai berikut:

4.2.1 Pengaruh Transmisi Kebijakan Moneter Syariah Jalur kredit terhadap Inflasi di Indonesia

4.2.1.1 Pengaruh Jangka Pendek

Menurut Natsir (2014: 198), bekerjanya mekanisme transmisi kebijakan moneter memerlukan waktu tunda (*time lag*) yang berbeda antara satu jalur dengan jalur lainnya. Jalur nilai tukar biasanya bekerja lebih cepat dari jalur lainnya termasuk jalur kredit. Apabila perbankan melihat risiko perekonomian cukup tinggi, maka respons perbankan terhadap penurunan suku bunga BI *rate* biasanya sangat lambat.

Berdasarkan analisis data hasil uji estimasi VECM yang melihat pengaruh jangka pendek transmisi kebijakan moneter syariah jalur kredit terhadap inflasi, hasil estimasi pada pengaruh terhadap inflasi tidak menjelaskan adanya hubungan jangka pendek. Semua variabel baik pada lag satu sampai lag empat memiliki angka probabilitas yang kecil dari tingkat signifikansi, kecuali pada variabel inflasi itu sendiri pada lag pertama memberi pengaruh jangka pendek sebesar 0.32%.

Penelitian ini mendukung penelitian Anjasari (2017) dan Wulandari (2014) yang menyatakan bahwa tidak adanya pengaruh jangka pendek pada jalur transmisi kebijakan moneter pada lag yang telah diuji.

Hal ini terjadi karena model pada penelitian ini ialah model transmisi kebijakan moneter, suatu variabel membutuhkan tenggang waktu atau lag yang cukup lama untuk bereaksi pada variabel lain, sehingga reaksi suatu variabel terhadap variabel lainnya terjadi dalam waktu jangka panjang.

4.2.1.2 Pengaruh Jangka Panjang

Pengaruh jangka panjang transmisi kebijakan moneter syariah jalur kredit terhadap inflasi dapat dilihat dari hasil uji estimasi VECM pada tabel 4.7, hasil penelitian ini menunjukan:

1. Pengaruh SBIS terhadap inflasi

Kebijakan pasar terbuka (*open market operation*) digunakan untuk menambah atau mengurangi jumlah uang beredar dengan cara pemerintah (dalam hal ini Bank Indonesia) turut serta dalam jual beli surat berharga. Jika ingin menambah jumlah uang beredar, maka pemerintah membeli surat berharga di pasar modal. Sedangkan jika pemerintah bermaksud mengurangi jumlah uang beredar, maka ia mengeluarkan surat berharga, misalnya dengan mengeluarkan SBIS (Sofilda dan Suparmoko, 2014: 121).

Kebijakan moneter memiliki tujuan untuk mengarahkan ekonomi makro ke kondisi yang diinginkan (yang lebih baik), dengan mengatur jumlah uang yang beredar. Kebijakan uang ketat akan mengurangi jumlah uang yang beredar dalam masyarakat (Rahardja dan Manurung, 2002: 362).

Berdasarkan hasil estimasi VECM, dapat diketahui bahwa variabel SBIS memiliki pengaruh negatif yang signifikan sebesar -10.81723. Pada saat SBIS meningkat sebesar satu persen, maka inflasi akan mengalami penurunan sebesar 10.8%.

Hasil penelitian ini sejalan dengan penelitian Sahriah (2010) yang menyatakan bahwa pada saat jumlah Sertifikat Bank Indonesia Syariah mengalami kenaikan, maka pada saat itu laju inflasi rendah atau mengalami penurunan.

Hubungan SBIS dan inflasi terjadi saat bank syariah membeli SBIS, hal ini menyebabkan likuiditas yang dapat bank salurkan melalui pembiayaan berkurang karena uang mengendap yang dimiliki bank syariah diserap oleh SBIS sehingga tidak bisa dialokasikan pada masyarakat. Hal ini dapat mengurangi terlalu banyaknya uang yang diedarkan ke masyarakat.

2. Pengaruh PUAS terhadap inflasi

PUAS ialah salah satu instrumen moneter yang digunakan sebagai sarana pemenuhan likuiditas bank syariah. Bank syariah hanya dapat melakukan transaksi jual beli surat berharga di saat bank tersebut mengalami kelebihan dana (*surplus*) ataupun kekurangan dana (*deficit*) (Pohan, 2008: 90).

Berdasarkan hasil estimasi VECM, dapat diketahui bahwa variabel PUAS memiliki pengaruh negatif yang signifikan sebesar -8.708258. Pada saat PUAS meningkat sebesar satu persen, maka inflasi akan mengalami penurunan sebesar 8.7%.

Penelitian ini tidak sejalan dengan penelitian yang telah dilakukan oleh Andarini *et al.* (2016) yang menyatakan bahwa PUAS memiliki pengaruh terhadap inflasi signifikan searah. Hal ini tidak sesuai dengan harapan bahwa PUAS mampu menekan laju Inflasi, yaitu berpengaruh tidak searah atau negatif.

Hubungan antara PUAS dan inflasi terjadi saat suatu bank mengalami kelebihan likuiditas kemudian melakukan transaksi PUAS dengan bank lain yang sedang mengalami kekurangan likuiditas. Likuiditas disalurkan bank tersebut untuk pembiayaan modal kerja atau investasi. Pembiayaan yang diberikan oleh perbankan syariah lebih banyak untuk sektor produktif dan berdasarkan akad mudharabah atau musyarakah. Pembiayaan tersebut mampu mendorong peningkatan dalam sektor riil (output riil) yang pada akhirnya akan berpengaruh pada penurunan tingkat inflasi.

3. Pengaruh DPK terhadap inflasi

Menurut kaum Klasik maupun Keynes menyetujui bahwa inflasi ada kaitannya dengan jumlah uang beredar. Oleh karena itu untuk menanggulangi inflasi yang utama ialah bagaimana menekan laju pertumbuhan jumlah uang yang beredar, atau dapat pula mengurangi jumlah uang yang beredar (Sofilda dan Suparmoko, 2014: 197).

Berdasarkan hasil estimasi VECM, diketahui bahwa variabel DPK memiliki pengaruh yang tidak signifikan. Akan tetapi dilihat dari analisis IRF diketahui bahwa DPK terhadap inflasi memberikan respon negatif dan permanen dalam jangka panjang. Respon DPK terhadap inflasi mencapai kestabilan setelah 33 periode atau sekitar 2 tahun 8 bulan.

Hasil penelitian ini diperkuat dengan penelitian yang dilakukan oleh Ascarya (2010) yang menunjukkan bahwa dana pihak ketiga yang dihimpun bank syariah memberikan dampak positif menurunkan inflasi secara permanen dalam jangka panjang.

Penelitian ini menunjukan bahwa semakin tinggi dana masyarakat yang terkumpul pada dana pihak ketiga bank syariah dapat menurunkan tingkat inflasi. Karena semakin tinggi DPK artinya uang yang beredar di masyarakat berkurang. Selain itu dana masyarakat yang sebenarnya bisa digunakan untuk konsumsi, ketika disimpan pada bank syariah selanjutnya digunakan untuk penyaluran pembiayaan oleh bank. Pada akhirnya uang tersebut digunakan sebagai produksi.

4. Pengaruh Pembiayaan terhadap inflasi

Perkembangan kredit atau pembiayan perbankan akan berpengaruh pada inflasi dan output melalui dua tahap. Pertama, pengaruh volume pembiayaan dan juga tingkat bagi hasil adalah bagian dari biaya modal terhadap aktivitas produksi perusahaan. Tahap kedua melalui perkembangan konsumsi yaitu pengaruh volume pembiayaan terhadap bagi hasil, konsumsi sektor rumah tangga baik karena efek subtitusi maupun efek pendapatan. Pengaruh melalui konsumsi dan investasi akan berdampak pada besarnya permintaan agregat yang pada akhirnya menentukan tingkat inflasi dan output (Natsir, 2014: 204).

Berdasarkan hasil penelitian diketahui bahwa estimasi VECM variabel pembiayaan tidak memiliki pengaruh yang signifikan, akan tetapi pada hasil uji IRF diketahui bahwa pembiayaan memiliki pengaruh negatif. Pembiayaan memberikan respon negatif dan permanen dalam jangka panjang. Respon pembiayaan terhadap inflasi mencapai kestabilan setelah 25 periode atau 2 tahun 1 bulan.

Hasil penelitian ini sejalan dengan Rusydiana (2013) yang menunjukkan bahwa inflasi dan pembiayaan dari perbankan syariah adalah negatif, di mana semakin tinggi pembiayaan perbankan syariah maka semakin rendah tingkat inflasi di Indonesia.

Penelitian ini menunjukan bahwa ketika bank sentral melakukan kebijakan moneter yang ekspansif dan aktifitas pembiayaan diarahkan pada pertumbuhan sektor riil. Hal ini menyebabkan jumlah pembiayaan yang disalurkan oleh bank syariah meningkat. Dari peningkatan pembiayaan ini, maka modal usaha masyarakat di Indonesia melalui pembiayaan semakin banyak dan selanjutnya produktivitas usaha akan semakin meningkat karena proses produksi dapat dibiayai dengan modal tersebut. Dengan demikian, saat produksi riil mengalami kenaikan, akan meningkatkan *output riil* perekonomian di Indonesia dan pada akhirnya akan menurunkan tingkat inflasi.

5. Pengaruh PDB terhadap inflasi

Menurut Warjiyo (2004) dalam Natsir (2014: 200) Jika peningkatan permintaan agregat tidak dibarengi dengan peningkatan penawaran agregat, maka akan terjadi *output gap*, tekanan *output gap* akan berpengaruh terhadap tingkat inflasi sebagai tujuan akhir kebijakan moneter.

Berdasarkan hasil penelitian diketahui bahwa pada uji IRF diketahui bahwa PDB memiliki pengaruh positif. PDB memberikan respon positif dan permanen dalam jangka panjang. Respon PDB terhadap inflasi mencapai kestabilan setelah 40 periode atau 3 tahun 4 bulan.

Penelitian ini tidak sejalan dengan penelitian yang telah dilakukan oleh Sarinastiti (2012) variabel produk domestik bruto dalam jangka pendek tidak berpengaruh terhadap inflasi di Indonesia, namun dalam jangka panjang berpengaruh negatif terhadap inflasi di Indonesia. Hal ini dikarenakan setiap kenaikan inflasi tidak diiringi kenaikan Produk Domestik Bruto

Penelitian ini menunjukan bahwa apabila permintaan masyarakat akan produk-produk melebihi kapasitas penawaran produknya, maka harga-harga cenderung mengalami kenaikan. Untuk mencegah naiknya inflasi yang semakin tinggi maka harus diimbangi dengan peningkatan penawaran agregat.

BAB V

PENUTUP

5.1 Kesimpulan

Sesuai dengan hasil analisis data dan pembahasan yang dilakukan, maka dapat ditarik kesimpulan sebagai berikut:

- 1. Variabel Sertifikat Bank Indonesia Syariah (SBIS) tidak memiliki pengaruh pada jangka pendek, tetapi memiliki pengaruh negatif yang signifikan dalam jangka panjang terhadap inflasi. Ketika bank membeli SBIS menyebabkan likuiditas bank berkurang karena uang mengendap yang dimiliki bank syariah diserap oleh SBIS sehingga tidak bisa disalurkan pada masyarakat. Hal ini dapat mengurangi terlalu banyaknya uang yang beredar di masyarakat.
- 2. Variabel Pasar Uang Antar Bank Syariah (PUAS) tidak memiliki pengaruh pada jangka pendek, tetapi memiliki pengaruh negatif yang signifikan dalam jangka panjang terhadap inflasi. Saat suatu bank mengalami kelebihan likuiditas kemudian melakukan transaksi PUAS dengan bank lain yang sedang mengalami kekurangan likuiditas. Likuiditas disalurkan bank tersebut untuk pembiayaan modal kerja. Pembiayaan tersebut mampu mendorong peningkatan dalam sektor riil (output riil) yang pada akhirnya akan berpengaruh pada penurunan tingkat inflasi.
- 3. Variabel Dana Pihak Ketiga (DPK) bank syariah tidak memiliki pengaruh pada jangka pendek, tetapi memiliki pengaruh negatif dan permanen dalam jangka panjang terhadap inflasi. Semakin tinggi dana masyarakat yang terkumpul pada

dana pihak ketiga bank syariah dapat menurunkan tingkat inflasi. Karena semakin tinggi DPK artinya uang yang beredar di masyarakat berkurang. Selain itu dana masyarakat yang sebenarnya bisa digunakan untuk konsumsi, ketika disimpan pada bank syariah selanjutnya digunakan untuk penyaluran pembiayaan oleh bank. Pada akhirnya uang tersebut digunakan sebagai produksi.

- 4. Variabel pembiayaan bank syariah tidak memiliki pengaruh pada jangka pendek, tetapi memiliki pengaruh negatif dan permanen dalam jangka panjang terhadap inflasi. Ketika pembiayaan pada perbankan syariah meningkat, maka modal usaha masyarakat di Indonesia melalui pembiayaan semakin banyak dan selanjutnya produktivitas usaha akan semakin meningkat karena proses produksi dapat dibiayai dengan modal tersebut. Dengan demikian, saat produksi riil mengalami kenaikan, akan meningkatkan *output riil* perekonomian di Indonesia dan pada akhirnya akan menurunkan tingkat inflasi.
- 5. Variabel Produk Domestik Bruto (PDB) tidak memiliki pengaruh jangka pendek, tetapi memiliki pengaruh positif pada jangka panjang. Apabila permintaan masyarakat akan produk-produk melebihi kapasitas penawaran produknya, maka harga-harga cenderung mengalami kenaikan. Untuk mencegah naiknya inflasi yang semakin tinggi maka harus diimbangi dengan peningkatan penawaran agregat.

5.2 Saran

Berikut adalah saran yang dapat diberikan melalui hasil penelitian ini:

- Instrumen pengendalian moneter melalui penelitian ini terbukti bahwa instrumen moneter syariah memberikan konstribusi positif terhadap stabilitas ekonomi yang diukur melalaui inflasi. Oleh karena itu, baik BI maupun OJK diharapkan lebih mengembangkan lagi instrumen syariah dalam pelaksanaan mekanisme transmisi moneter di Indonesia.
- 2. Bagi peneliti selanjutnya diharapkan dapat meneliti jalur-jalur yang lain pada mekanisme transmisi kebijakan syariah, untuk mengetahui jalur mana yang lebih efektif dalam memutuskan kebijakan moneter.

DAFTAR PUSTAKA

- Ajija, Shochrul R dkk. (2011). *Cara Cerdas Menguasai Eviews*. Jakarta: Salemba Empat.
- Ambarini, Lestari. (2015). Ekonomi Moneter. Bogor: In Media
- Andarini *et al.* (2016). Pengaruh Sbis Dan Puas Terhadap Tingkat Inflasi **Melalui** Operasi Moneter Syariah Pada Periode 2011-2015. *Jurnal Ekonomi Syariah Teori dan Terapan*, 3 (6), 474-489
- Anjasari, Ida Fitri. (2017). **Analisis Pengaruh Instrumen Moneter Syariah Jalur Pembiayaan Perbankan Syariah Terhadap Pertumbuhan Ekonomi Di Indonesia Periode 2008:01-2015:12**. Skripsi. Fakultas Ekonomi dan Bank Islam Universitas Muhammadiyah Yogyakarta: Yogyakarta
- Antonio, M. Syafii. (2009). Bank Syariah: Dari Teori Ke Praktik. Jakarta: Gema Insani Press.
- Arifin, Zainul. (2009). Dasar-dasar Manajemen Bank Syariah. Jakarta: Alfabeta
- Arikunto, Suharsimi. (2006). *Prosedur Penelitian Suatu pendekatan Praktik*. **Jakarta**: PT Asdi Mahasatya
- Ascarya. (2012). Alur Transmisi dan Efektifitas Kebijakan Moneter Ganda di Indonesia. Jakarta: Pusat Pendidikan dan Studi Kebanksentralan (PPSK) BI.
- Basuki, Tri Agus. (2015). *Analisis Regresi Dalam Penelitian Ekonomi & Bisnis*. Yogyakarta: Rajawali Pers
- Asnuri, Wulan. (2013). Pengaruh Instrumen Moneter Syariah dan Ekspor terhadap Pertumbuhan Ekonomi di Indonesia. *Jurnal Al-Iqtishad*. 5 (2)
- Ayuniyyah Qurroh, Irfan Syauqi Beik, dan Laily Dwi Arsyianti. (2013). *Dynamic Analysis of Islamic Bank and Monetary Instrument towards Real Output and Inflation in Indonesia*. Hannover: Proceding of Sharia Economics Conference.
- Boediono. (1990). Ekonomi Moneter. Yogyakarta: BPFE UGM
- Darmawan, Deni. (2014). *Metode Penelitian Kuantitatif*. Bandung: PT Remaja Rosdakarya Offset
- Darmawi, Herman. (2006). Pasar Financial Dan Lembaga-Lembaga Finansial. Jakarta: Bumi Aksara
- Fauziah, Farah. (2015). Analisis Mekanisme Transmisi Kebijakan Moneter Konvensional dan Syariah Melalui Jaur harga Aset Terhadap Inflasi di Indonesia Periode 2011-2014. Skripsi UIN Syarif Hidayatullah.

- Hamid, Abdul. (2014). Analisis Variabel Pembangunan Ekonomi Dan Sosial Daerah Provinsi Sumatera Selatan Periode 1980-2013 (Sebuah Kajian Dengan Pendekatan ECM Dan VECM). *Jurnal bisnis dan Manajemen (ESENSI)*, 4 (1)
- Huda, Nurul dkk. (2008). *Ekonomi Makro Islam Pendekatan Teoritis*. Jakarta: Kencana Pranada Media Group
- Ikatan Bankir Indonesia. (2015). *Mengelola Bisnis Pembiayaan Bank Syariah*. **Jakarta**: PT Gramedia Pustaka Utama
- Jamli, Ahmad. (2001). Teori Ekonomi Makro. Yogyakarta: BPFE
- Karsinah, dan Setiawan Yudi Rifky. (2016). *Me*kanisme Transmisi Kebijakan Moneter Dalam Mempengaruhi Inflasi Dan Pertumbuhan Ekonomi Di Indonesia. *Economics Development Analysis Journal*
- Karim, Adiwarman. (2008). Ekonomi Makro Islam. Jakarta: RajaGrafindo
- Maharani, Devy Annisa. (2017). Analisis Pengaruh Mekanisme Transmisi Kebijakan Moneter Konvensional Dan Syariah Terhadap Indeks Produksi Industri (IPI) Di Indonesia. Skripsi. Fakultas Ekonomi Dan Bisnis Universitas Islam Negeri Syarih Hidayatullah: Jakarta
- Mankiw. (2013). Pengantar Ekonomi Makro. Jakarta: Salemba Empat
- Majid M. Shabri Abd, Hasin Zamrah. (2011). The Importance of the Islamic Banks in the Monetary Transmission Mechanism in Malaysia. International Conference on Islamic Economics and Finance
- Mubarak, Husni. (2011). Analisis Inflasi, Sertifikat bank Indonesia Syariah (SBIS)

 Dan Pasara Uang Antar Bank Syariah (PUAS) Terhadap Financing To

 Deposit Ratio (FDR) Serta Imlikasinya Kepada Return On Assets (ROA)

 Bank Syariah Di Indonesia. Skripsi. Fakultas Ekonomi Dan Bisnis

 Universitas Islam Negeri Syarih Hidayatullah: Jakarta
- Muhammad. (2005). Manajemen Bank Syariah. Yogyakarta: UPP STIM YKPN
- Nastiti, Sari. (2012). Analisis Pengaruh JUB, Kurs, dan Produk Domestik Bruto Terhadap Inflasi di Indonesia Tahun 1967-2010 Pendekatan Error Correction Model. Skripsi. Fakultas Ekonomi Universitas Negeri Semarang
- Natsir. (2014). Ekonomi Moneter & Kebanksentralan. Jakarta: Mitra Wacana Media
- Noviasari, Anisa. (2012). Efektifitas Mekanisme Transmisi Kebijakan Moneter Ganda Di Indonesia. *Jurnal Media Ekonomi*, 20 (3), 23-46
- Peraturan Bank Indonesia (PBI) Nomor 10/11/PBI/2008 Tentang SBIS (Sertifikat Bank Indonesia Syariah)
- Peraturan Bank Indonesia (PBI) Nomor 2/9/PBI/2000 Tentang Sertifikat Wadiah Bank Indonesia (SWBI)

- Pratama, Yoghi Citra. (2014). Effectiveness of Conventional and Syariah Monetary Policy Transmission. *Tazkia Islamic Finance and Business Review*, 8 (1).
- Pohan, Aulia. (2008). *Kerangka Kebijakan Moneter & Implementasinya di Indonesia*. Jakarta: PT Raja Grafindo Persada.
- Putong, Iskandar. (2003). *Pengantar Ekonomi Mikro dan Makro*. Edisi II, Jakarta: Ghalia Indonesia.
- Rahardja, Pratama dan Manurung, Mandala. (2008). *Teori Ekonomi Makro: Suatu Pengantar*. Jakarta: FE UI.
- Rusydiana, Aam Slamet. (2009). *Mekanisme Transmisi Syariah Pada Sistem Moneter Ganda di Indonesia*. Bogor: Tazkia University College of Islamic Economics.
- Sahriah. (2010). **Pemodelan Sertifikat Bank Indonesia Syariah Dengan Metode System Dynamics**. Skripsi. Fakultas Ekonomi Dan Bisnis Universitas Islam
 Negeri Syarih Hidayatullah: Jakarta
- Samuelson, Paul A. & William D. Nordhaus. (2002). *Makro Ekonomi*. Jakarta: Erlangga.
- Sinungan, Muchdarsyah. (1997). Managemen Dana Bank. Jakarta: PT. Bumi Aksara
- Sofilda, Eleonora dan Suparmoko. (2014). *Pengantar Ekonomi Makro*. Tanggerang: In Media
- Sugiyono. (2011). *Metode Penelitian Kuantitatif, Kualitatif, dan R&D*. Bandung: AFABETA
- Sukirno, Sadono. (2004). *Makro Ekonomi Teori Pengantar*. Jakarta: PT Raja Grafindo Persada.
- Sukmana, Raditya, dan Ascarya. (2010). The Role of Islamic Stock Market in the Monetary Transmission Process in the Indonesian Economy. *Paper. 2nd INSANIAH-IRTI International Conference LIFE (Langkawi International Finance an Economics)*,
- Syapriatama Imronjana, dkk. (2016). Dual Monetary System And Macroeconomic Performance In Indonesia. *Al-Iqtishad: Jurnal Ilmu Ekonomi Syariah* (*Journal of Islamic Economics*), 8 (1)
- Tandelilin, Eduardus. (2010). Portofolio Dan Investasi. Yogyakarta: Kanisius
- Teguh, Muhammad. (2005). *Metodologi Penelitian Ekonomi Teori dan Aplikasi*. Jakarta: PT Raja Grafindo Persada
- Veithzal, Rivai, et al. (2007). Bank and Financial Institution Management, Conventional and Sharia System. Jakarta; PT. Raja Grafindo Persada.
- Warjiyo, Perry. (2004). *Mekanisme Transmisi Kebijakan Moneter di Indonesia*. Jakarta: Pusat Pendidikan dan Studi Kebanksentralan (PPSK) BI.

Widarjono, Agus. (2009). Ekonometrika Pengantar dan Aplikasinya. Yogyakarta: Ekonisia

Wirdyaningsih, et al. (2005). Bank dan Asuransi Islam di Indonesia. Jakarta: Kencana

http://www.bi.go.id/, diakses 25 februari 2018

http://www.bps.go.id/, diakses pada 27 februari 2018

http://www.ojk.go.id/, diakses pada 17 februari 2018

Lampiran 1: Data Penelitian

Data Sertifikat Bank Indonesia Syariah (SBIS), Pasar Uang Antar Bank Syariah (PUAS), Dana Pihak Ketiga (DPK) pada bank syariah, Pembiayaan bank syariah, PDB (Produk Domestik Bruto), dan Inflasi. Bulan Januari tahun 2010 sampai Desember 2017

Tahun	Bulan	SBIS (Milyar Rupiah)	PUAS (Milyar Rupiah)	DPK (Milyar Rupiah)	Pembiayaan (Milyar Rupiah)	PDB (Milyar Rupiah)	Inflasi (%)
	Januari	4113	520	53163	47140		3.72
	Februari	3272	258	53299	48479	1501126	3.81
	Maret	2345	130	52811	50206		3.43
	April	2859	110	54043	51651		2.91
	Mei	1535	175	55067	53223	1582918	4.16
2010	Juni	1445	90	58078	55801	NO	5.05
2010	Juli	555	15	60462	57633		6.22
	Agustus	715	0	60972	60275	1668353	6.44
	September	755	889	63912	60970		5.80
	Oktober	1776	10	66478	62995		5.67
	November	2401	65	69086	65942	1670521	6.33
	Desember	2997	0	76036	68181		6.96
	Januari	3296	30	75814	69724	7/	7.02
	Februari	3326	150	75085	71449	1750865	6.84
	Maret	3376	50	79651	74253		6.65
1	April	3701	50	79567	75726		6.16
	Mei	3271	95	82861	78619	1823554	5.98
	Juni	3042	30	87025	82616		5.54
2011	Juli	1604	41	89786	84556		4.61
	Agustus	1819	67	92021	90540	1931108	4.79
	September	1989	100	97756	92839		4.61
	Oktober	2574	89	101811	96805		4.42
	November	3144	20	105330	99427	1921560	4.15
	Desember	3476	50	115415	102655		3.79
2012	Januari	3799	20	116518	101689	1975475	3.65
2012	Februari	3806	40	114616	103713	19/34/3	3.56

	Maret	3567	203	114318	109116		3.97
	April	3155	89	114018	108767		4.50
	Mei	3160	80	115206	112844	2051048	4.45
	Juni	3115	540	119279	117592		4.53
	Juli	2662	76	121018	120910		4.56
	Agustus	2372	432	123673	124946	2119649	4.58
	September	2495	426	127678	130357	1 1	4.31
	Oktober	2382	245	134453	135581		4.61
	November	2763	620	138671	140318	2095693	4.32
	Desember	3455	728	147512	147505		4.30
	Januari	3970	728	148731	149672		4.57
	Februari	4595	630	150795	154072	2143672	5.31
	Maret	4855	310	156964	161080		5.90
	April	4958	690	158519	163407		5.57
	Mei	5048	393	163858	167259	2212724	5.47
2013	Juni	4623	620	163966	171227		5.90
2013	Juli	4423	679	166453	174486	N	8.61
	Agustus	3848	1115	170222	174537	2119649	8.79
	September	3610	660	171701	177320	1 //	8.40
	Oktober	4472	1065	174018	179284		8.32
	November	4467	730	176292	179284	2367929	8.37
	Desember	4712	964	183534	179284		8.38
	Januari	4847	750	177930	189998		8.22
	Februari	5237	1145	178154	181772	2613109	7.75
	Maret	5377	750	180945	184964		7.32
	April	5977	1625	185508	188063	7	7.25
1	Mei	6414	770	190783	189690	2613109	7.32
2014	Juni	6792	830	191594	193008		6.70
2014	Juli	5890	895	194299	194079		4.53
	Agustus	6120	795	195959	193983	2739466	3.99
	September	6490	350	197141	196563		4.53
	Oktober	6680	715	207121	196491]	4.83
	November	6530	292	209644	198376	2690241	6.23
	Desember	8130	290	217858	199330		8.36
	Januari	8050	200	210761	197279		6.96
2015	Februari	9040	1055	210297	197543	2728289	6.29
	Maret	8810	700	212988	200712		6.38

	April	9130	860	213973	201526		6.79
	Mei	8857	860	215339	203894	2868797	7.15
	Juni	8457	1335	213477	206056		7.26
	Juli	8162	520	216083	204843		7.26
	Agustus	8585	352	216356	205874	2992674	7.18
	September	7720	1217	219580	207829		6.83
	Oktober	7330	625	219478	207768		6.25
	November	6495	1173	220635	209124	2941958	4.89
	Desember	6280	530	231175	212996		3.35
	Januari	6275	167	229094	211221		4.14
	Februari	7287	153	231820	211571	2931446	4.42
	Maret	7037	680	232657	213482		4.45
	April	7682	788	233808	214322		3.60
	Mei	7225	758	238366	217858	3075135	3.33
2016	Juni	7470	1223	241336	222175		3.45
2016	Juli	8130	941	243184	220143		3.21
	Agustus	8946	1050	244843	220452	3205452	2.79
	September	9441	1166	263522	235005		3.07
	Oktober	10332	878	264678	2 37024		3.31
	November	11027	592	270480	2 40381	3194776	3.58
	Desember	10787	960	279335	248007		3.02
	Januari	11878	866	277714	231392		3.49
	Februari	12683	150	281084	232904	3227021	3.83
	Maret	12273	1605	286178	237393	//	3.61
	April	11533	1120	291889	239130		4.17
	Mei	10446	345	295606	243983	3365396	4.33
	Juni	9421	1158	302013	252877		4.37
2017	Juli	10966	175	307638	252215		3.88
	Agustus	11716	172	309006	255269	3502311	3.82
	September	12626	699	318574	259448		3.72
	Oktober	11555	589	319124	237393		3.58
	November	10387	893	322715	237393	3561850	3.30
	Desember	10017	800	334719	237393		3.61

Lampiran 2. Analisis Deskriptif

	Minimum	Maximum	Mean	Std. Dev.
Inflasi	2.79	8.79	5.22	1.62
PDB	22.32	23.20	22.805	0.251
SBIS	6.32	9.45	8.484	0.662
PUAS	2.30	7.39	5.687	1.476
DPK	10.87	12.72	11.954	0.520
Pembiayaan	10.76	12.47	11.891	0.496

Lampiran 3. Pengujian Stasioneritas

SBIS

LEVEL

Null Hypothesis: SBIS has a unit root

Exogenous: Constant

Lag Length: 9 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-1.174151	0.6825
Test critical values:	1% level	-3.508326	
	5% level	-2.895512	
	10% level	-2.584952	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(SBIS) Method: Least Squares Date: 04/21/18 Time: 07:10

Sample (adjusted): 2010M11 2017M12 Included observations: 86 after adjustments

D(SBIS(-1)) -0.042758 0.094665 -0.451682 0.6528 D(SBIS(-2)) 0.049213 0.090851 0.541685 0.5896 D(SBIS(-3)) -0.228428 0.089026 -2.565853 0.0123 D(SBIS(-4)) -0.171095 0.083703 -2.044059 0.0445 D(SBIS(-5)) -0.102120 0.085803 -1.190178 0.2377 D(SBIS(-6)) -0.170543 0.083337 -2.046424 0.0442 D(SBIS(-7)) -0.041698 0.073608 -0.566481 0.5728 D(SBIS(-8)) -0.130212 0.070467 -1.847842 0.0686 D(SBIS(-9)) -0.330789 0.069972 -4.727451 0.0000 C 0.239551 0.166596 1.437917 0.1546 R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion <	Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SBIS(-1)) -0.042758 0.094665 -0.451682 0.6528 D(SBIS(-2)) 0.049213 0.090851 0.541685 0.5896 D(SBIS(-3)) -0.228428 0.089026 -2.565853 0.0123 D(SBIS(-4)) -0.171095 0.083703 -2.044059 0.0445 D(SBIS(-5)) -0.102120 0.085803 -1.190178 0.2377 D(SBIS(-6)) -0.170543 0.083337 -2.046424 0.0442 D(SBIS(-7)) -0.041698 0.073608 -0.566481 0.5728 D(SBIS(-8)) -0.130212 0.070467 -1.847842 0.0686 D(SBIS(-9)) -0.330789 0.069972 -4.727451 0.0000 C 0.239551 0.166596 1.437917 0.1546 R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion <	SBIS(-1)	-0.022775	0.019397	-1.174151	0.2440
D(SBIS(-2)) 0.049213 0.090851 0.541685 0.5896 D(SBIS(-3)) -0.228428 0.089026 -2.565853 0.0123 D(SBIS(-4)) -0.171095 0.083703 -2.044059 0.0445 D(SBIS(-5)) -0.102120 0.085803 -1.190178 0.2377 D(SBIS(-6)) -0.170543 0.083337 -2.046424 0.0442 D(SBIS(-7)) -0.041698 0.073608 -0.566481 0.5728 D(SBIS(-8)) -0.130212 0.070467 -1.847842 0.0686 D(SBIS(-9)) -0.330789 0.069972 -4.727451 0.0000 C 0.239551 0.166596 1.437917 0.1546 R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter -1.63149	· ·	-0.042758	0.094665	-0.451682	0.6528
D(SBIS(-4)) -0.171095 0.083703 -2.044059 0.0445 D(SBIS(-5)) -0.102120 0.085803 -1.190178 0.2377 D(SBIS(-6)) -0.170543 0.083337 -2.046424 0.0442 D(SBIS(-7)) -0.041698 0.073608 -0.566481 0.5728 D(SBIS(-8)) -0.130212 0.070467 -1.847842 0.0686 D(SBIS(-9)) -0.330789 0.069972 -4.727451 0.0000 C 0.239551 0.166596 1.437917 0.1546 R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter. -1.631492	` ` ` ' '	0.049213	0.090851	0.541685	0.5896
D(SBIS(-5)) -0.102120 0.085803 -1.190178 0.2377 D(SBIS(-6)) -0.170543 0.083337 -2.046424 0.0442 D(SBIS(-7)) -0.041698 0.073608 -0.566481 0.5728 D(SBIS(-8)) -0.130212 0.070467 -1.847842 0.0686 D(SBIS(-9)) -0.330789 0.069972 -4.727451 0.0000 C 0.239551 0.166596 1.437917 0.1546 R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter. -1.631492	D(SBIS(-3))	-0.228428	0.089026	-2.565853	0.0123
D(SBIS(-6)) -0.170543 0.083337 -2.046424 0.0442 D(SBIS(-7)) -0.041698 0.073608 -0.566481 0.5728 D(SBIS(-8)) -0.130212 0.070467 -1.847842 0.0686 D(SBIS(-9)) -0.330789 0.069972 -4.727451 0.0000 C 0.239551 0.166596 1.437917 0.1546 R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter. -1.631492	D(SBIS(-4))	-0.171095	0.083703	-2.044059	0.0445
D(SBIS(-7)) -0.041698 0.073608 -0.566481 0.5728 D(SBIS(-8)) -0.130212 0.070467 -1.847842 0.0686 D(SBIS(-9)) -0.330789 0.069972 -4.727451 0.0000 C 0.239551 0.166596 1.437917 0.1546 R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter. -1.631492	D(SBIS(-5))	-0.102120	0.085803	-1.190178	0.2377
D(SBIS(-8)) -0.130212 0.070467 -1.847842 0.0686 D(SBIS(-9)) -0.330789 0.069972 -4.727451 0.0000 C 0.239551 0.166596 1.437917 0.1546 R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter. -1.631492	D(SBIS(-6))	-0.170543	0.083337	-2.046424	0.0442
D(SBIS(-9)) -0.330789 0.069972 -4.727451 0.0000 0.239551 0.166596 1.437917 0.1546 R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter1.631492	D(SBIS(-7))	-0.041698	0.073608	-0.566481	0.5728
C 0.239551 0.166596 1.437917 0.1546 R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter. -1.631492	D(SBIS(-8))	-0.130212	0.070467	-1.847842	0.0686
R-squared 0.473334 Mean dependent var 0.020115 Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter. -1.631492	D(SBIS(-9))	-0.330789	0.069972	-4.727451	0.0000
Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter1.631492	С	0.239551	0.166596	1.437917	0.1546
Adjusted R-squared 0.403112 S.D. dependent var 0.122540 S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter1.631492	R-squared	0.473334	Mean depende	ent var	0.020115
S.E. of regression 0.094672 Akaike info criterion -1.757833 Sum squared resid 0.672215 Schwarz criterion -1.443905 Log likelihood 86.58683 Hannan-Quinn criter1.631492	Adjusted R-squared	0.403112			0.122540
Log likelihood 86.58683 Hannan-Quinn criter1.631492		0.094672	Akaike info crit	erion	-1.757833
•	Sum squared resid	0.672215	Schwarz criteri	on	-1.443905
F-statistic 6 740519 Durbin-Watson stat 1 866577	Log likelihood	86.58683	Hannan-Quinn	criter.	-1.631492
1. Classic Bulbin Watcom class 1.000077	F-statistic	6.740519	Durbin-Watson	stat	1.866577
Prob(F-statistic) 0.000000	Prob(F-statistic)	0.000000			

1^{s1} DIFFERENCE

Null Hypothesis: D(SBIS) has a unit root

Exogenous: Constant

Lag Length: 8 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-8.233437	0.0000
Test critical values:	1% level	-3.508326	
	5% level	-2.895512	
	10% level	-2.584952	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(SBIS,2) Method: Least Squares Date: 04/21/18 Time: 07:10

Sample (adjusted): 2010M11 2017M12
Included observations: 86 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SBIS(-1))	-2.197378	0.266885	-8.233437	0.0000
D(SBIS(-1),2)	1.155069	0.220398	5.240837	0.0000
D(SBIS(-2),2)	1.202390	0.187163	6.424303	0.0000
D(SBIS(-3),2)	0.970681	0.169010	5.743344	0.0000
D(SBIS(-4),2)	0.791877	0.152729	5.184838	0.0000
D(SBIS(-5),2)	0.685739	0.121755	5.632139	0.0000
D(SBIS(-6),2)	0.511170	0.099806	5.121617	0.0000
D(SBIS(-7),2)	0.467006	0.097335	4.797942	0.0000
D(SBIS(-8),2)	0.334563	0.070072	4.774567	0.0000
C	0.044451	0.012041	3.691674	0.0004
R-squared	0.686062	Mean depende	ent var	-0.010368
Adjusted R-squared	0.648885	S.D. depender		0.160169
S.E. of regression	0.094908	Akaike info crit		-1.762874
Sum squared resid	0.684572	Schwarz criteri	ion	-1.477485
Log likelihood	85.80359	Hannan-Quinn	criter.	-1.648018
F-statistic	18.45400	Durbin-Watsor	stat	1.874408
Prob(F-statistic)	0.000000			

PUAS

LEVEL

Null Hypothesis: PUAS has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.040123	0.2695
Test critical values:	1% level	-3.502238	
	5% level	-2.892879	
	10% level	-2.583553	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PUAS) Method: Least Squares Date: 04/21/18 Time: 07:15

Sample (adjusted): 2010M04 2017M12 Included observations: 93 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PUAS(-1) D(PUAS(-1)) D(PUAS(-2)) C	-0.180117 -0.581355 -0.190383 1.049242	0.088287 0.116730 0.103726 0.512363	-2.040123 -4.980358 -1.835446 2.047850	0.0443 0.0000 0.0698 0.0435
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.391294 0.370776 1.080939 103.9902 -137.1552 19.07059 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.019538 1.362694 3.035596 3.144525 3.079578 2.098297

1^{s1} DIFFERENCE

Null Hypothesis: D(PUAS) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-10.89464	0.0000
Test critical values:	1% level	-3.502238	
	5% level	-2.892879	
	10% level	-2.583553	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PUAS,2)

Method: Least Squares Date: 04/21/18 Time: 07:17

Sample (adjusted): 2010M04 2017M12 Included observations: 93 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(PUAS(-1)) D(PUAS(-1),2) C	-1.953706 0.248803 0.029283	0.179327 0.101431 0.114049	-10.89464 2.452936 0.256756	0.0000 0.0161 0.7980
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.796829 0.792315 1.099764 108.8533 -139.2805 176.4888	Akaike info criterion		0.006188 2.413218 3.059795 3.141492 3.092782 2.144817
Prob(F-statistic)	0.000000			

DPK

LEVEL

Null Hypothesis: DPK has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.833663	0.0574
Test critical values:	1% level	-3.500669	
	5% level	-2.892200	
	10% level	-2.583192	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(DPK) Method: Least Squares Date: 04/21/18 Time: 07:21

Sample (adjusted): 2010M02 2017M12 Included observations: 95 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DPK(-1) C	-0.012322 0.166579	0.00 <mark>434</mark> 9 0.051999	-2.833663 3.203500	0.0056 0.0019
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.079478 0.069580 0.021811 0.044241 229.6203 8.029647 0.005644	Mean depender S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	it var erion on criter.	0.019368 0.022612 -4.792007 -4.738241 -4.770282 2.010851

1^{s1} DIFFERENCE

Null Hypothesis: D(DPK) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-9.052586	0.0000
Test critical values:	1% level	-3.501445	
	5% level	-2.892536	
	10% level	-2.583371	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(DPK,2) Method: Least Squares Date: 04/21/18 Time: 07:21

Sample (adjusted): 2010M03 2017M12 Included observations: 94 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(DPK(-1)) C	-0.9 <mark>42</mark> 345 0.018440	0.104097 0.003081	-9.052586 5.984637	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.471110 0.465362 0.022750 0.047616 223.2505 81.94932 0.000000	Mean depender S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.000361 0.031114 -4.707457 -4.653344 -4.685599 2.007339

PEMBIAYAAN

LEVEL

Null Hypothesis: PEMBIAYAAN has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-5.670643	0.0000
Test critical values:	1% level	-3.500669	
	5% level	-2.892200	
	10% level	-2.583192	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PEMBIAYAAN)

Method: Least Squares Date: 04/21/18 Time: 07:22

Sample (adjusted): 2010M02 2017M12 Included observations: 95 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PEMBIAYAAN(-1) C	-0.023890 0.300987	0.004213 0.050120	-5.670643 6.005282	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.256928 0.248938 0.020258 0.038165 236.6376 32.15619 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.017017 0.023375 -4.939740 -4.885974 -4.918014 2.237766

PDB

LEVEL

Null Hypothesis: PDB has a unit root

Exogenous: Constant

Lag Length: 10 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.824126	0.8069
Test critical values:	1% level	-3.509281	
	5% level	-2.895924	
	10% level	-2.585172	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PDB) Method: Least Squares Date: 04/21/18 Time: 07:24

Sample (adjusted): 2010M12 2017M12 Included observations: 85 after adjustments

Variable	Coefficient	Std. Error	t-Sta <mark>ti</mark> stic	Prob.
PDB(-1)	-0.001720	0.002087	-0.824126	0.4126
D(PDB(-1))	0.898721	0.066529	13.50871	0.0000
D(PDB(-2))	0.028895	0.062881	0.459518	0.6472
D(PDB(-3))	-0.918774	0.063136	-14.55230	0.0000
D(PDB(-4))	0.813181	0.083446	9.744999	0.0000
D(PDB(-5))	0.016117	0.073092	0.220498	0.8261
D(PDB(-6))	-0.896378	0.074029	-12.10850	0.0000
D(PDB(-7))	0.791136	0.083898	9.429708	0.0000
D(PDB(-8))	0.005316	0.061941	0.085825	0.9318
D(PDB(-9))	-0.890231	0.062768	-14.18284	0.0000
D(PDB(-10))	0.786347	0.065792	11.95208	0.0000
С	0.042393	0.048500	0.874088	0.3849
R-squared	0.898953	Mean depende	ent var	0.008946
Adjusted R-squared	0.883727	S.D. dependen		0.010316
S.E. of regression	0.003518	Akaike info criterion		-8.331953
Sum squared resid	0.000903	Schwarz criterion		-7.987108
Log likelihood 366.10		Hannan-Quinn	criter.	-8.193246
F-statistic Prob(F-statistic)	59.03972 0.000000	Durbin-Watson	stat	1.978456

1^{s1} DIFFERENCE

Null Hypothesis: D(PDB) has a unit root

Exogenous: Constant

Lag Length: 9 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-1.936062	0.3145
Test critical values:	1% level	-3.509281	
	5% level	-2.895924	
	10% level	-2.585172	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PDB,2) Method: Least Squares Date: 04/21/18 Time: 07:26

Sample (adjusted): 2010M12 2017M12 Included observations: 85 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(PDB(-1))	-0.293323	0.151505	-1.936062	0.0567
D(PDB(-1),2)	0.213033	0.122676	1.736560	0.0866
D(PDB(-2),2)	0.238898	0.120993	1.974475	0.0521
D(PDB(-3),2)	-0.681901	0.120537	-5.657185	0.0000
D(PDB(-4),2)	0.150204	0.091384	1.643651	0.1045
D(PDB(-5),2)	0.163766	0.091658	1.786714	0.0781
D(PDB(-6),2)	-0.733365	0.091897	-7.980311	0.0000
D(PDB(-7),2)	0.077977	0.059426	1.312168	0.1935
D(PDB(-8),2)	0.081566	0.059807	1.363823	0.1768
D(PDB(-9),2)	-0.808471	0.059935	-13.48910	0.0000
С	0.002440	0.001420	1.718235	0.0899
R-squared	0.887054	Mean depende	ent var	-5.78E-05
Adjusted R-squared	0.871791	S.D. depender	nt var	0.009802
S.E. of regression	0.003510	Akaike info criterion		-8.346221
Sum squared resid	0.000912	Schwarz criterion		-8.030113
Log likelihood	365.7144	Hannan-Quinn	criter.	-8.219074
F-statistic	58.11815	Durbin-Watsor	stat	2.005371
Prob(F-statistic)	0.000000			

2nd DIFFERENCE

Null Hypothesis: D(PDB,2) has a unit root

Exogenous: Constant

Lag Length: 8 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-16.48801	0.0001
Test critical values:	1% level	-3.509281	
	5% level	-2.895924	
	10% level	-2.585172	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PDB,3) Method: Least Squares Date: 04/21/18 Time: 07:29

Sample (adjusted): 2010M12 2017M12 Included observations: 85 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(PDB(-1),2)	-3.596949	0.218155	-16.48801	0.0000
D(PDB(-1),3)	2.591195	0.201220	12.87741	0.0000
D(PDB(-2),3)	2.614393	0.179981	14.52597	0.0000
D(PDB(-3),3)	1.717482	0.160354	10.71056	0.0000
D(PDB(-4),3)	1.724166	0.140959	12.23168	0.0000
D(PDB(-5),3)	1.744389	0.114624	15.21841	0.0000
D(PDB(-6),3)	0.867118	0.084405	10.27332	0.0000
D(PDB(-7),3)	0.872625	0.070175	12.43498	0.0000
D(PDB(-8),3)	0.881218	0.047542	18.53557	0.0000
C	-0.000209	0.000388	-0.538029	0.5922
R-squared	0.948984	Mean depende	ent var	-0.000258
Adjusted R-squared	0.942862	S.D. depender	nt var	0.014950
S.E. of regression	0.003574	Akaike info crit	erion	-8.320339
Sum squared resid	0.000958	Schwarz criter	ion	-8.032968
Log likelihood	363.6144	Hannan-Quinn	criter.	-8.204750
F-statistic	155.0150	Durbin-Watsor	stat	2.055949
Prob(F-statistic)	0.000000			

Inflasi

LEVEL

Null Hypothesis: INFLASI has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.719468	0.0745
Test critical values:	1% level	-3.501445	
	5% level	-2.892536	
	10% level	-2.583371	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(INFLASI)

Method: Least Squares Date: 04/21/18 Time: 07:30

Sample (adjusted): 2010M03 2017M12 Included observations: 94 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
INFLASI(-1) D(INFLASI(-1)) C	-0.109027 0.334664 0.572759	0.040091 0.099152 0.220255	-2.719468 3.375251 2.600436	0.0078 0.0011 0.0109
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.146556 0.127799 0.614453 34.35723 -86.07555 7.813425 0.000739	Mean depender S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	et var erion on criter.	-0.002128 0.657931 1.895224 1.976393 1.928011 1.875580

1^{s1} DIFFERENCE

Null Hypothesis: D(INFLASI) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=11)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-7.263413	0.0000
Test critical values:	1% level	-3.502238	
	5% level	-2.892879	
	10% level	-2.583553	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(INFLASI,2)

Method: Least Squares Date: 04/21/18 Time: 07:30

Sample (adjusted): 2010M04 2017M12 Included observations: 93 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(INFLASI(-1)) D(INFLASI(-1),2) C	-0.892221 0.238092 0.003474	0.122838 0.102452 0.064566	-7.263413 2.323941 0.053802	0.0000 0.0224 0.9572
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.396918 0.383516 0.622634 34.89058 -86.37349 29.61671 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	0.007419 0.792998 1.922011 2.003707 1.954997 2.010653

Lampiran 4. Pengujian Lag Optimum

LAG OPTIMUM

VAR Lag Order Selection Criteria

Endogenous variables: INFLASI PDB PEMBIAYAAN DPK PUAS SBIS

Exogenous variables: C Date: 04/21/18 Time: 07:40 Sample: 2010M01 2017M12 Included observations: 91

Lag	LogL	LR	FPE	AIC	SC	HQ
0 1 2 3 4 5	-66.53957 596.8601 645.6653 693.2528 731.0525 762.0457	NA 1224.738 83.66597 75.30337 54.83025* 40.87023	1.98e-07 2.04e-13 1.56e-13 1.24e-13* 1.25e-13 1.52e-13	1.594276 -12.19473 -12.47616 -12.73083 -12.77038* -12.66035	1.759828 -11.03587* -10.32399 -9.585359 -8.631604 -7.528259	1.661066 -11.72720* -11.60790 -11.46183 -11.10064 -10.58987

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Lampiran 5. Pengujian Stabilitas

STABILITAS LAG OPTIMUM

Roots of Characteristic Polynomial Endogenous variables: INFLASI PDB PEMBIAYAAN

DPK PUAS SBIS Exogenous variables: C

Lag specification: 1 2 Date: 04/21/18 Time: 07:45

Root	Modulus
1.016347	1.016347
0.983052	0.983052
0.767723 - 0.111645i	0.775798
0.767723 + 0.111645i	0.775798
0.711448 - 0.280772i	0.764847
0.711448 + 0.280772i	0.764847
-0.378157 - 0.058173i	0.382605
-0.378157 + 0.058173i	0.382605
0.361217	0.361217
0.225929 - 0.166722i	0.280785
0.225929 + 0.166722i	0.280785
0.035572	0.035572

Warning: At least one root outside the unit circle. VAR does not satisfy the stability condition.

Lampiran 5. Pengujian Kointegrasi

Uji Kointegrasi (Johansen)

Date: 04/22/18 Time: 07:36 Sample: 2010M01 2017M12 Included observations: 93

Series: INFLASI PDB PEMBIAYAAN DPK PUAS SBIS

Lags interval: 1 to 2

Selected (0.05 level*) Number of Cointegrating Relations by Model

Data Trend:	None	None	Linear	Linear	Quadratic
Test Type	No Intercept	Intercept	Intercept	Intercept	Intercept
/ " \	No Trend	No Trend	No Trend	Trend	Trend
Trace	4	4	3	3	2
Max-Eig	4	3	3	3	2

Information Criteria by Rank and Model

Data Trend:	None	None	Linear	Linear	Quadratic
Rank or	No Intercept	Intercept	Intercept	Intercept	Intercept
No. of CEs	No Trend	No Trend	No Trend	Trend	Trend
	Log Likelihood by Rank (rows) and Model (columns)			NAP.	
0	597.7498	597.7498	611.0390	611.0390	623.0043
1	628.0882	629.4701	639.7301	642.7632	654.5358
2	647.1803	650.3111	659.2505	662.8038	674.5763
3	664.0711	668.1616	676.6785	681.8080	685.8734
4	674.2969	678.5901	683.7870	692.7926	695.8745
5	677.2268	685.6887	687.1269	696.2115	698.7165
6	677.3134	687.7145	687.7145	698.9439	698.9439

	Information Criteria by Rank (rows) and Model (columns)				
0	-11.30645	-11.30645	-11.46321	-11.46321	-11.59149
1	-11.70082	-11.70903	-11.82215	-11.86588	-12.01152
2	-11.85334	-11.87766	-11.98388	-12.01729	-12.18444*
3	-11.95852	-11.98197	-12.10061	-12.14641	-12.16932
4	-11.92036	-11.92667	-11.99542	-12.10307	-12.12633

Akaike

5 6	-11.72531 -11.46911	-11.79976 -11.56375	-11.80918 -11.56375	-11.89702 -11.67621	-11.92939 -11.67621
	Schwarz Criteria by Rank (rows) and Model (columns)				
0	-9.345725	-9.345725	-9.339089	-9.339089	-9.303982
1	-9.413312*	-9.394293	-9.371250	-9.387740	-9.397227
2	-9.239044	-9.208897	-9.206191	-9.185132	-9.243354
3	-9.017435	-8.959191	-8.996137	-8.960235	-8.901451
4	-8.652492	-8.549869	-8.564155	-8.562873	-8.531676
5	-8.130649	-8.068937	-8.051130	-8.002810	-8.007943
6	-7.547662	-7.478915	-7.478915	-7.427982	-7.427982

Date: 04/21/18 Time: 17:23

Sample (adjusted): 2010M04 2017M12
Included observations: 93 after adjustments
Trend assumption: Quadratic deterministic trend
Series: INFLASI PDB PEMBIAYAAN DPK PUAS

SBIS

Lags interval (in first differences): 1 to 2

Unrestricted Cointegration Rank Test (Trace)

Hypothesize d No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None * At most 1 * At most 2 At most 3 At most 4	0.492418 0.350127 0.215688 0.193521 0.059288	151.8791 88.81616 48.73512 26.14094 6.138766	107.3466 79.34145 55.24578 35.01090 18.39771	0.0000 0.0081 0.1653 0.3197 0.8579
At most 5	0.0039200	0.454778	3.841466	0.5001

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesize d No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None * At most 1 * At most 2	0.492418	63.06296	43.41977	0.0001
	0.350127	40.08104	37.16359	0.0225
	0.215688	22.59418	30.81507	0.3567
At most 3	0.193521	20.00217	24.25202	0.1654
At most 4	0.059288	5.683988	17.14769	0.8462
At most 5	0.004878	0.454778	3.841466	0.5001

Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level $\,$

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):

		PEMBIAYAA				
INFLASI	PDB	N	DPK	PUAS	SBIS	
-0.043108	-29.10780	15.61693	-13.04372	-1.068116	3.887443	
0.066326	-14.07514	12.32367	-7.328862	-1.466607	-1.993752	
-0.263729	45.89607	5.960775	-9.654247	-0.595044	1.743542	
-0.885075	-1.999761	14.33200	-15.04926	-0.243729	-0.055326	
0.127150	-5.198656	9.890820	-19.59821	-0.659270	1.045899	
-0.104536	-7.352145	35.42264	-43.44565	-0.552325	1.306257	
Unrestricted	Adjustment (Coefficients (alp	oha):			
OTH COLITOCOC !	rajaotinoni	oomolorito (alp		1/1//		
D(INFLASI)	0.050611	-0.070322	-0.090002	0.188468	-0.037302	0.022233
D(PDB) D(PEMBIAY	0.003555	-0.001134	-0.002569	-0.000673	0.000664	-5.65E-05
AAN)	-0.002638	-0.000690	-0.002261	0.004694	-0.000261	-0.001057
D(DPK)	-0.008021	-0.001429	8.45E-05	0.004036	0.003291	-0.000114
D(PUAS)	0.306458	0.401236	0.130500	0.105943	0.032544	-0.007304
D(SBIS)	-0.070451	0.070528	-0.022975	-0.008371	-0.009540	0.001043
1 Cointegration	ng	Log	654 5359			
1 Cointegratir Equation(s):	ng	likelihood	654.5358	1,4	/	
Equation(s): Normalized co				n	6	
Equation(s):		likelihood		n	<u>. </u>	
Equation(s): Normalized co		likelihood	andard error i		SBIS	
Equation(s): Normalized coparentheses) INFLASI	ointegrating o	likelihood coefficients (sta	andard error i	PUAS	SBIS -90.17907	
Equation(s): Normalized coparentheses)	Dintegrating of PDB	likelihood coefficients (sta	andard error i		SBIS -90.17907 (13.1605)	
Equation(s): Normalized coparentheses) INFLASI 1.000000	PDB 675.2289 (149.104)	likelihood coefficients (sta PEMBIAYAA N -362.2741	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000	PDB 675.2289 (149.104)	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses)	PDB 675.2289 (149.104)	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses)	PDB 675.2289 (149.104) pefficients (st	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses) D(INFLASI)	PDB 675.2289 (149.104) pefficients (st -0.002182 (0.00294)	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses) D(INFLASI)	PDB 675.2289 (149.104) pefficients (st -0.002182 (0.00294) -0.000153	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses) D(INFLASI) D(PDB)	PDB 675.2289 (149.104) pefficients (st -0.002182 (0.00294) -0.000153	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses) D(INFLASI) D(PDB) D(PEMBIAY	PDB 675.2289 (149.104) pefficients (st -0.002182 (0.00294) -0.000153 (3.7E-05)	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses) D(INFLASI) D(PDB) D(PEMBIAY	PDB 675.2289 (149.104) Defficients (st -0.002182 (0.00294) -0.000153 (3.7E-05) 0.000114 (9.5E-05) 0.000346	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses) D(INFLASI) D(PDB) D(PDB) D(PEMBIAY AAN) D(DPK)	PDB 675.2289 (149.104) Defficients (st -0.002182 (0.00294) -0.000153 (3.7E-05) 0.000114 (9.5E-05)	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses) D(INFLASI) D(PDB) D(PDB) D(PEMBIAY AAN)	PDB 675.2289 (149.104) Defficients (st -0.002182 (0.00294) -0.000153 (3.7E-05) 0.000114 (9.5E-05) 0.000346	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses) D(INFLASI) D(PDB) D(PDB) D(PEMBIAY AAN) D(DPK) D(PUAS)	PDB 675.2289 (149.104) Defficients (st -0.002182 (0.00294) -0.000153 (3.7E-05) 0.000114 (9.5E-05) 0.000346 (9.0E-05)	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	
Equation(s): Normalized coparentheses) INFLASI 1.000000 Adjustment coparentheses) D(INFLASI) D(PDB) D(PDB) D(PEMBIAY AAN) D(DPK)	PDB 675.2289 (149.104) Defficients (st -0.002182 (0.00294) -0.000153 (3.7E-05) 0.000114 (9.5E-05) 0.000346 (9.0E-05) -0.013211	PEMBIAYAA N -362.2741 (109.302)	DPK 302.5821 (131.994)	PUAS 24.77765	-90.17907	

2 Cointegratir Equation(s):	ng	Log likelihood	674.5763			
Normalized co	ointegrating o	coefficients (sta	andard error i	n		
	555	PEMBIAYAA	DDI/	DUAG	0010	
INFLASI	PDB	N 54.74440	DPK	PUAS	SBIS	
1.000000	0.000000	54.74410	-11.71891	-10.89952	-44.43625	
0.000000	1.000000	(71.1865) -0.617595	(90.1448) 0.465473	(3.73322) 0.052837	(9.23513) -0.067744	
0.000000	1.000000	(0.15090)	(0.19108)	(0.00791)	(0.01958)	
Adjustment co	pefficients (st	andard error ir	1			
parentheses)						
D(INFLASI)	-0.006846	-0.483370				
	(0.00536)	(2.18959)				
D(PDB)	-0.000228	-0.087511				
	(6.7E-05)	(0.02751)				
D(PEMBIAY	//>_ \	1/100				
AAN)	6.80E-05	0.086490				
	(0.00017)	(0.07095)				
D(DPK)	0.000251	0.253593				
	(0.00017)	(0.06748)				
D(PUAS)	0.013401	-14.56777				
	(0.00671)	(2.74294)				
D(SBIS)	0.007715	1.057976				
	(0.00123)	(0.50351)				
3 Cointegratir Equation(s):	ng	Log likelihood	685.8734			
	ointegrating o	coefficients (sta	andard error i	n		
parentheses)		DEMOLAYAA				
INFLASI	PDB	PEMBIAYAA N	DPK	PUAS	SBIS	
1.000000	0.000000	0.000000	26.58821	-4.279295	-36.72458	
1.000000	0.000000	0.000000				
0.000000	1.000000	0.000000	(13.5893) 0.033312	(1.83276) -0.021849	(5.68419) -0.154743	
0.000000	1.000000	0.000000	(0.06857)	(0.00925)	(0.02868)	
0.000000	0.000000	1.000000	-0.699749	-0.120930	-0.140868	
0.000000	0.000000	1.000000	(0.13565)	(0.01829)	(0.05674)	
A -1:			·	(
parentheses)	benicients (st	andard error ir	1			
D(INFLASI)	0.016890	-4.614113	-0.612727			
D(IINFLASI)						
D/DDD)	(0.01843)	(3.75867)	(1.39040) 0.026224			
D(PDB)	0.000449	-0.205424				
D(PEMBIAY	(0.00022)	(0.04489)	(0.01660)			
AAN)	0.000664	-0.017292	-0.063174			
, v=(*)	(0.00060)	(0.12236)	(0.04526)			
D(DPK)	0.000229	0.257473	-0.142375			
D(DI IV)	(0.000229	(0.11716)	(0.04334)			
D(PUAS)	-0.021015	-8.578347	10.50851			
D(1 0A0)	(0.02300)	(4.68999)	(1.73491)			
D(SBIS)	0.013774	0.003494	-0.368014			
D(0010)	(0.00423)	(0.86200)	(0.31887)			

4 Cointegratir Equation(s):	ng	Log likelihood	695.8745		
Normalized of parentheses)		coefficients (sta	andard error i	n	
		PEMBIAYAA			
INFLASI	PDB	N	DPK	PUAS	SBIS
1.000000	0.000000	0.000000	0.000000	-0.927999	7.425026
0.000000	1 000000	0.000000	0.000000	(0.49379)	(1.73833)
0.000000	1.000000	0.000000	0.000000	-0.017650	-0.099429
0.000000	0.000000	1.000000	0.000000	(0.00649) -0.209130	(0.02286) -1.302797
0.000000	0.000000	1.000000	0.000000	(0.06019)	(0.21188)
0.000000	0.000000	0.000000	1.000000	-0.126044	-1.660496
0.000000	0.000000	0.000000	1.000000	(0.06912)	(0.24334)
		andard error ir) A I		
parentheses)		1 40	NALI	5.7.	
D(INFLASI)	-0.149918	-4.991004	2.088397	-2.112171	
D(DDD)	(0.05882)	(3.56488)	(1.60124)	(1.47946)	
D(PDB)	0.001045	-0.204077	0.016575	-0.003121	
D/DEMPLAY	(0.00074)	(0.04471)	(0.02008)	(0.01855)	
D(PEMBIAY AAN)	-0.003490	-0.026678	0.004094	-0.009342	
AAIN)	(0.00196)	(0.11874)	(0.05334)	(0.04928)	
D(DPK)	-0.003344	0.249401	-0.084530	0.053544	
D(DI It)	(0.00189)	(0.11439)	(0.05138)	(0.04747)	
D(PUAS)	-0.114782	-8.790207	12.02688	-9.792192	
= (: 0/:0)	(0.07663)	(4.64433)	(2.08609)	(1.92744)	
D(SBIS)	0.021183	0.020234	-0.487987	0.749838	
(/	(0.01420)	(0.86090)	(0.38669)	(0.35728)	
			MA	/W/	
5 Cointegratin	ng	Log			
Equation(s):		likelihood	698.7165	<u> </u>	
		coefficients (sta	andard error i	n	
parentheses)		PEMBIAYAA			
INFLASI	PDB	N	DPK	PUAS	SBIS
1.000000	0.000000	0.000000	0.000000	0.000000	25.42530
					(4.38366)
0.000000	1.000000	0.000000	0.000000	0.000000	0.242928
					(0.05513)
0.000000	0.000000	1.000000	0.000000	0.000000	2.753666
0.000000	0.000000	0.000000	1.000000	0.000000	(0.56078) 0.784371
0.000000	0.000000	0.000000	0.000000	1.000000	(0.26718) 19.39686
0.000000	0.000000	0.000000	0.000000	1.000000	(3.39312)
Adjustment co	oefficients (st	andard error ir	1		
parentheses)					
D(INFLASI)	-0.154661	-4.797087	1.719455	-1.381128	0.081289
	(0.05924)	(3.57217)	(1.71604)	(1.92846)	(0.12883)
D(PDB)	0.001129	-0.207532	0.023147	-0.016143	-0.000879
D/DEMEDIAN	(0.00074)	(0.04470)	(0.02147)	(0.02413)	(0.00161)
D(PEMBIAY	0.002522	-0.025322	0.001515	0.004220	0.004203
AAN)	-0.003523	-0.025322	0.001515	-0.004230	0.004203

	(0.00198)	(0.11924)	(0.05728)	(0.06437)	(0.00430)
D(DPK)	-0.002925	0.232290	-0.051975	-0.010963	0.007460
	(0.00187)	(0.11294)	(0.05425)	(0.06097)	(0.00407)
D(PUAS)	-0.110644	-8.959391	12.34877	-10.42999	-1.040718
	(0.07727)	(4.65954)	(2.23841)	(2.51548)	(0.16805)
D(SBIS)	0.019970	0.069830	-0.582347	0.936809	-0.006186
	(0.01430)	(0.86243)	(0.41430)	(0.46559)	(0.03110)

Lampiran 6. Analisis VECM

VECM

Vector Error Correction Estimates Date: 04/22/18 Time: 07:46

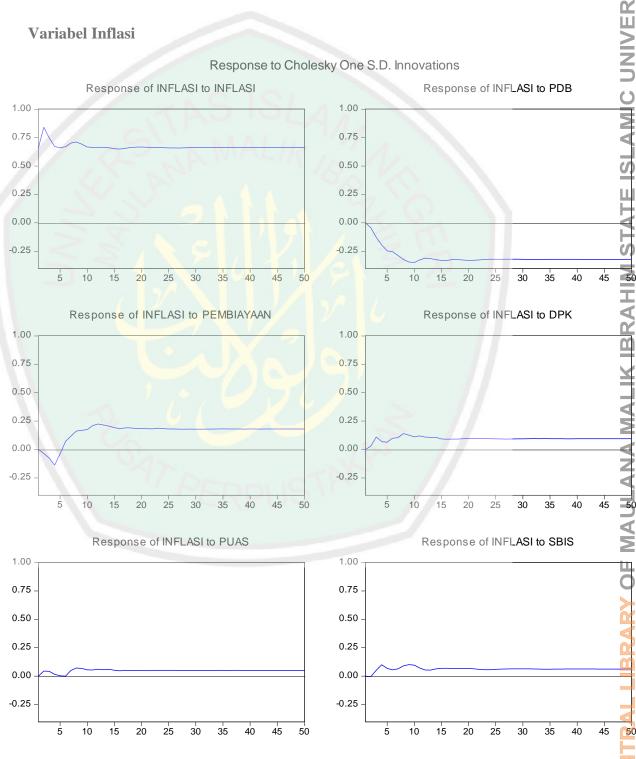
Sample (adjusted): 2010M06 2017M12 Included observations: 91 after adjustments Standard errors in () & t-statistics in []

andard errors in () & 1	t-statistics in []					Ц
Cointegrating Eq:	CointEq1	CointEq2				
INFLASI(-1)	1.000000	0.000000				
PDB(-1)	0.000000	1.000000				
PEMBIAYAAN(-1)	70.91958 (37.7207) [1.88013]	-0.554419 (0.21382) [-2.59296]				
DPK(-1)	-41.22125 (44.5923) [-0.92440]	0.307903 (0.25277) [1.21812]				
PUAS(-1)	-8.708258 (2.24172) [-3.88464]	0.056123 (0.01271) [4.41666]				
SBIS(-1)	-10.81723 (5.35901) [-2.01851]	-0.024388 (0.03038) [-0.80283]				<u>.</u>
@TREND(10M01)	0.172900	-0.006848				}
С	-224.4517	-19.66670				5
Error Correction:	D(INFLASI)	D(PDB)	D(PEMBIAYA AN)	D(DPK)	D(PUAS)	D(SBIS)
CointEq1	-0.045527 (0.02447) [-1.86023]	-0.000893 (0.00026) [-3.46850]	-0.001380 (0.00073) [-1.88100]	-0.000578 (0.00070) [-0.82655]	0.026305 (0.03203) [0.82118]	0.019338 (0.00467) [4.14076]
CointEq2	-7.333869 (4.40255) [-1.66582]	-0.154735 (0.04630) [-3.34224]	-0.180801 (0.13195) [-1.37021]	0.075801 (0.12572) [0.60291]	-13.98057 (5.76231) [-2.42621]	1.707164 (0.84009) [2.03212]
D(INFLASI(-1))	0.327494 (0.12119) [2.70223]	0.000367 (0.00127) [0.28799]	-0.004022 (0.00363) [-1.10733]	-0.000211 (0.00346) [-0.06096]	-0.319316 (0.15863) [-2.01302]	0.028735 (0.02313 [1.24252]
D(INFLASI(-2))	-0.209217 (0.12493) [-1.67468]	0.000318 (0.00131) [0.24176]	-0.000862 (0.00374) [-0.23034]	-0.001345 (0.00357) [-0.37697]	0.234525 (0.16352) [1.43427]	-0.067798 (0.02384 [-2.84400
D(INFLASI(-3))	-0.038065 (0.12947) [-0.29400]	-0.000920 (0.00136) [-0.67540]	0.002792 (0.00388) [0.71954]	-0.003112 (0.00370) [-0.84157]	-0.244134 (0.16946) [-1.44064]	0.069745 (0.02471 [2.82301

						4
D(INFLASI(-4))	0.006845	0.000930	-0.003697	0.001247	0.061600	0.001778
	(0.12756)	(0.00134)	(0.00382)	(0.00364)	(0.16696)	(0.02434)
	[0.05366]	[0.69293]	[-0.96702]	[0.34237]	[0.36895]	[0.07303]
D(PDB(-1))	3.467913	0.725838	-0.135150	0.096520	4.938710	-1.232873
	(10.7558)	(0.11311)	(0.32237)	(0.30716)	(14.0778)	(2.05241)
	[0.32242]	[6.41726]	[-0.41924]	[0.31424]	[0.35082]	[-0.60070]
D(PDB(-2))	-0.808078	0.140020	0.434267	-0.807999	17.86475	0.205178
	(10.6737)	(0.11224)	(0.31991)	(0.30481)	(13.9703)	(2.03674)
	[-0.07571]	[1.24746]	[1.35748]	[-2.65082]	[1.27876]	[0.10074]
D(PDB(-3))	5.290187	-0.419918	-0.038275	0.591659	11.21128	0.118608
	(11.3366)	(0.11921)	(0.33978)	(0.32374)	(14.8380)	(2.16324)
	[0.46665]	[-3.52236]	[-0.11265]	[1.82756]	[0.75558]	[0.05483]
D(PDB(-4))	-0.108176	0.354010	-0.019399	0.232281	5.058360	-2.066716
	(11.2831)	(0.11865)	(0.33817)	(0.32221)	(14.7680)	(2.15303)
	[-0.00959]	[2.98359]	[-0.05736]	[0.72089]	[0.34252]	[-0.95991]
D(PEMBIAYAAN(-1))	-3.604000	-0.004003	-0.100974	0.139035	0.297221	-0.642113
	(4.42573)	(0.04654)	(0.13265)	(0.12639)	(5.79265)	(0.84451)
	[-0.81433]	[-0.08601]	[-0.76123]	[1.10008]	[0.05131]	[-0.76034]
D(PEMBIAYAAN(-2))	-4.780280	-0.035156	-0.042810	0.069502	-10.87968	0.155749
	(4.38041)	(0.04606)	(0.13129)	(0.12509)	(5.73333)	(0.83586)
	[-1.09129]	[-0.76319]	[-0.32608]	[0.55560]	[-1.89762]	[0.18633]
D(PEMBIAYAAN <mark>(-3))</mark>	-3.002803	-0.070712	0.175165	0.220879	5.616942	0.950411
	(5.11921)	(0.05383)	(0.15343)	(0.14619)	(6.70031)	(0.97684)
	[-0.58658]	[-1.31353]	[1.14165]	[1.51090]	[0.83831]	[0.97295]
D(PEMBIAYAAN(-4))	3.485478	-0.064507	-0.151517	0.202495	-0.002798	-0.342648
	(5.02207)	(0.05281)	(0.15052)	(0.14342)	(6.57317)	(0.95830)
	[0.69403]	[-1.22146]	[-1.00663]	[1.41194]	[-0.00043]	[-0.35756]
D(DPK(-1))	2.047704	-0.071335	0.088023	-0.273004	-6.236471	0.671103
	(4.69035)	(0.04932)	(0.14058)	(0.13394)	(6.13900)	(0.89501)
	[0.43658]	[-1.44627]	[0.62616]	[-2.03821]	[-1.01588]	[0.74983]
D(DPK(-2))	5.650339	0.045549	0.032226	-0.012722	0.671971	1.344709
	(4.61901)	(0.04857)	(0.13844)	(0.13191)	(6.04562)	(0.88139)
	[1.22328]	[0.93774]	[0.23278]	[-0.09645]	[0.11115]	[1.52567]
D(DPK(-3))	-2.253911	-0.029937	0.191608	0.175053	-2.587016	0.466823
	(4.33247)	(0.04556)	(0.12985)	(0.12372)	(5.67058)	(0.82671)
	[-0.52024]	[-0.65709]	[1.47560]	[1.41487]	[-0.45622]	[0.56467]
D(DPK(-4))	0.531214	0.035675	-0.255642	-0.065293	-2.558987	1.421918
	(4.34191)	(0.04566)	(0.13013)	(0.12399)	(5.68295)	(0.82852)
	[0.12235]	[0.78134]	[-1.96445]	[-0.52659]	[-0.45029]	[1.71622]
D(PUAS(-1))	0.071163	0.000996	-0.001660	-0.005031	-0.024880	0.060835
	(0.16759)	(0.00176)	(0.00502)	(0.00479)	(0.21935)	(0.03198)
	[0.42463]	[0.56528]	[-0.33041]	[-1.05128]	[-0.11343]	[1.90235]
D(PUAS(-2))	0.040431	-0.000447	0.002941	-0.002569	-0.092712	0.039865

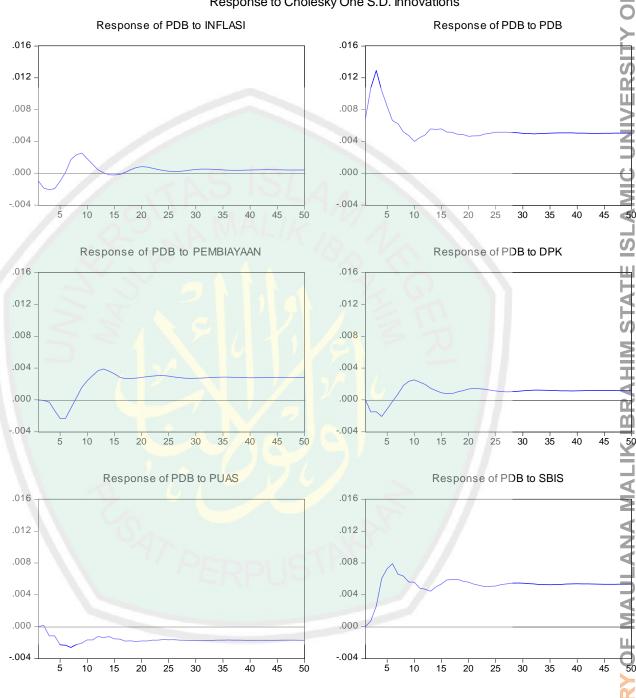
	(0.13543) [0.29854]	(0.00142) [-0.31379]	(0.00406) [0.72457]	(0.00387) [-0.66423]	(0.17726) [-0.52303]	(0.02584) [1.54261]
	[[0.0.0.0]	[,	[[0.0_00]	Ľ.
D(PUAS(-3))	0.013822	0.000258	0.004400	0.001999	-0.191342	0.032499
	(0.10783)	(0.00113)	(0.00323)	(0.00308)	(0.14114)	(0.02058)
	[0.12818]	[0.22795]	[1.36142]	[0.64921]	[-1.35569]	[1.57939]
D(PUAS(-4))	0.028186	-0.000169	0.000134	0.002668	-0.142037	0.036429
· · · · //	(0.07793)	(0.00082)	(0.00234)	(0.00223)	(0.10200)	(0.01487)
	[0.36170]	[-0.20609]	[0.05758]	[1.19884]	[-1.39256]	[2.44978]
D/CDIC/ 4))	0.700700	0.007470	0.011051	0.000040	0.004770	0.005000
D(SBIS(-1))	-0.702730 (0.55805)	-0.007473 (0.00587)	-0.011851 (0.01673)	0.009646 (0.01594)	0.281772 (0.73041)	0.235022 (0.10649)
	[-1.25926]	[-1.27339]	[-0.70855]	[0.60527]	[0.38577]	[2.20706]
	[1.20020]	[1.27000]	[0.7 0000]	[0.00027]	[0.00077]	[2.207 00]
D(SBIS(-2))	-0.201005	-0.000476	0.003164	0.005806	-0.964813	0.458378
	(0.51153)	(0.00538)	(0.01533)	(0.01461)	(0.66952)	(0.09761)
	[-0.39295]	[-0.08854]	[0.20635]	[0.39743]	[-1.44105]	[4.69604]
D(SBIS(-3))	-0.214789	0.006733	-0.031173	-0.005562	0.695959	-0.326067
D(3BI3(-3))	(0.60952)	(0.00641)	(0.01827)	(0.01741)	(0.79777)	(0.11631)
	[-0.35239]	[1.05045]	[-1.70641]	[-0.31956]	[0.87238]	[-2.80350]
	[0.00200]	[1.000 .0]	[00]	[0.0.000]	[0.07200]	[2.00004]
D(SBIS(-4))	-0.801644	-0.016345	-0.006920	-0.020227	-0.135278	-0.037936
	(0.55473)	(0.00583)	(0.01663)	(0.01584)	(0.72606)	(0.10585)
	[-1.44512]	[-2.80195]	[-0.41620]	[-1.27683]	[-0.18632]	[-0.35838]
С	0.078999	0.009016	0.039522	0.013639	0.143258	-0.071287
ŭ	(0.39821)	(0.00419)	(0.01193)	(0.01137)	(0.52120)	(0.07599)
	[0.19839]	[2.15301]	[3.31150]	[1.19936]	[0.27486]	[-0.93817]
OTDENB((OMO))	0.000400	7.055.05	0.000470	5.075.05		<u>m</u>
@TREND(10M01)	-0.002409	-7.35E-05	-0.000478	-5.27E-05	-0.003936	0.000646
	(0.00440) [-0.54694]	(4.6E-05) [-1.58617]	(0.00013) [-3.62044]	(0.00013) [-0.41906]	(0.00577) [-0.68277]	(0.00084) [0.76824]
	[0.0 100 1]	[1.00017]	[0.020 1 1]	[0.11000]	[0.00277]	[0.7 002 1]
R-squared	0.280169	0.690053	0.510740	0.521182	0.723330	0.664536
dj. R-squared	-0.028330	0.557219	0.301057	0.315975	0.604758	0.520766
Sum sq. resids	27.55295	0.003047	0.024751	0.022470	47.20115	1.003250
S.E. equation	0.661323	0.006954	0.019821	0.018886	0.865578	0.126193
-statistic	0.908169	5.194837	2.435770 244.4207	2.539783	6.100310	4.622213
og likelihood Akaike AIC	-74.76229 2.258512	339.7304 -6.851218	-4.756499	248.8197 -4.853181	-99.25533 2.796820	75.97305 -1.054353
Schwarz SC	3.031084	-6.078646	-3.983927	-4.080609	3.569393	-0.281781
Mean dependent	-0.006044	0.008930	0.016431	0.019832	0.016701	0.020613
S.D. dependent	0.652150	0.010451	0.023708	0.022835	1.376811	0.182289
						<u> </u>
Determinant resid covaria		2.40E-14				O
Determinant resid covaria	ance	2.64E-15 752.5911				

752.5911 -12.58442 -7.617884

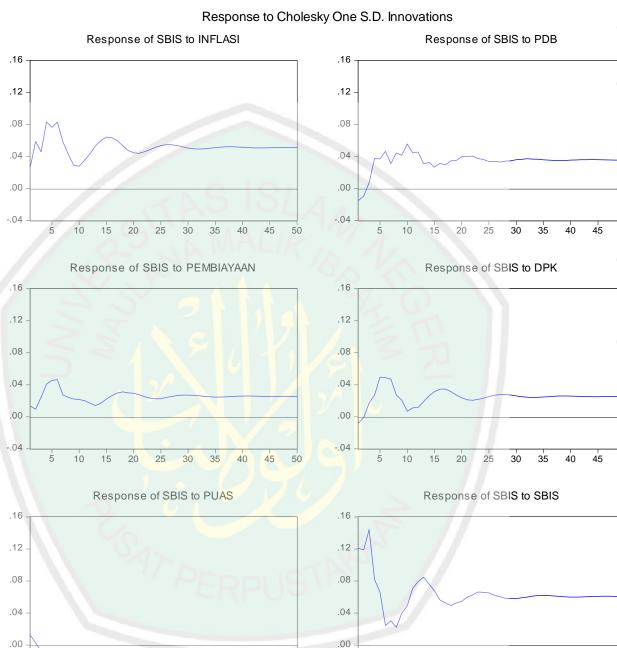

Akaike information criterion

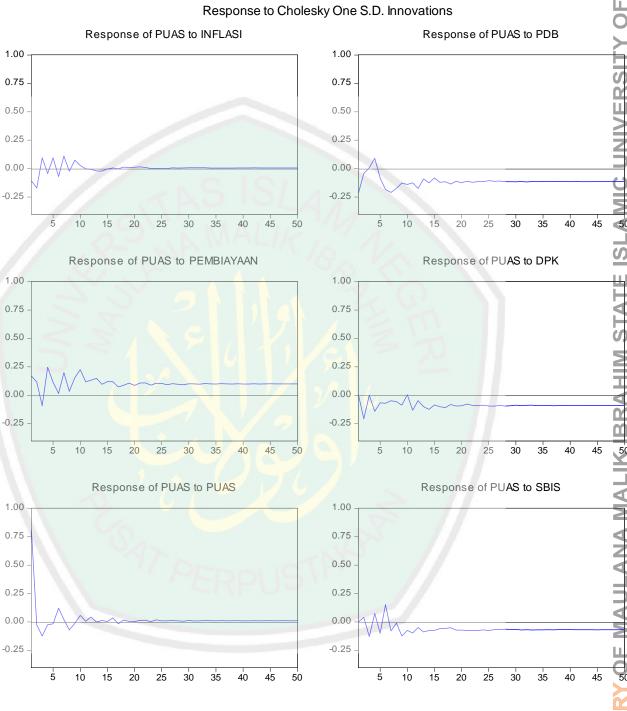
Log likelihood

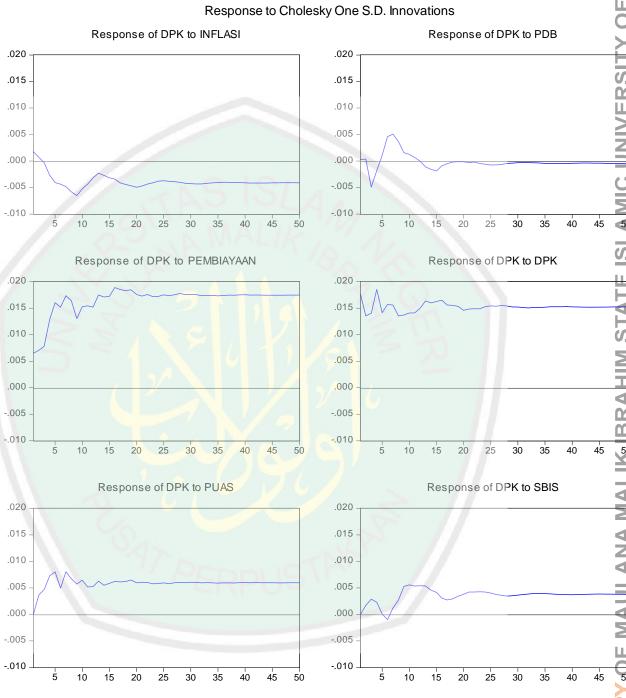
Schwarz criterion


Lampiran 7. Analisis Impulse Respons Function (IRF)

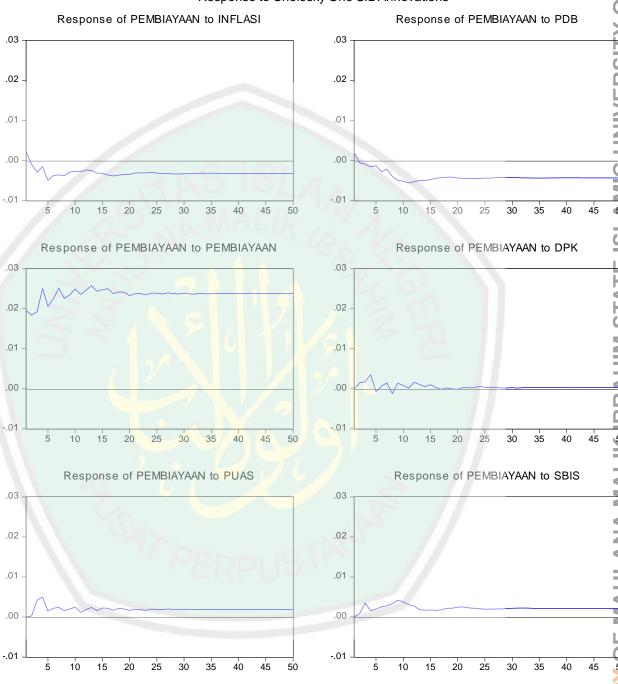
Impulse Respons Function (IRF)


Variabel PDB




Variabel SBIS

-.04


-.04

Variabel Pembiayaan

Response to Cholesky One S.D. Innovations

Lampiran 8. Analisis Variance Decomposition

Analisis Variance Decomposition

Variabel Inflasi

61323 73226 23101 08664 68562 21029 80727 43078 91235 23381 47102 63601 74860 81452 81654 77488 71469	100.0000 99.48074 97.45046 94.86296 93.24075 91.83628 90.18828 88.06774 86.17128 84.60756 83.39466 82.47509 81.74231 81.06164 80.48372	0.000000 0.160756 1.044839 2.469006 4.206040 5.469966 6.733533 8.007069 9.265500 10.36455 11.03090 11.45569 11.83660 12.24567	0.000000 0.102032 0.385849 1.140147 0.985191 0.983982 1.183689 1.584367 1.928543 2.249757 2.715275 3.193763	0.000000 0.077636 0.745047 0.782110 0.787170 0.959803 1.088319 1.361302 1.496890 1.548405 1.621039	0.000000 0.177586 0.219364 0.180782 0.148080 0.124325 0.170466 0.256934 0.310853 0.330589	0.000000 0.001249 0.154439 0.564994 0.632768 0.625647 0.635714 0.722593 0.826932 0.899136
23101 08664 68562 21029 80727 43078 91235 23381 47102 63601 74860 81452 81654 77488	97.45046 94.86296 93.24075 91.83628 90.18828 88.06774 86.17128 84.60756 83.39466 82.47509 81.74231 81.06164	1.044839 2.469006 4.206040 5.469966 6.733533 8.007069 9.265500 10.36455 11.03090 11.45569 11.83660	0.385849 1.140147 0.985191 0.983982 1.183689 1.584367 1.928543 2.249757 2.715275 3.193763	0.745047 0.782110 0.787170 0.959803 1.088319 1.361302 1.496890 1.548405	0.219364 0.180782 0.148080 0.124325 0.170466 0.256934 0.310853 0.330589	0.154439 0.564994 0.632768 0.625647 0.635714 0.722593 0.826932
08664 68562 21029 80727 43078 91235 23381 47102 63601 74860 81452 81654 77488	94.86296 93.24075 91.83628 90.18828 88.06774 86.17128 84.60756 83.39466 82.47509 81.74231 81.06164	2.469006 4.206040 5.469966 6.733533 8.007069 9.265500 10.36455 11.03090 11.45569 11.83660	1.140147 0.985191 0.983982 1.183689 1.584367 1.928543 2.249757 2.715275 3.193763	0.782110 0.787170 0.959803 1.088319 1.361302 1.496890 1.548405	0.180782 0.148080 0.124325 0.170466 0.256934 0.310853 0.330589	0.564994 0.632768 0.625647 0.635714 0.722593 0.826932
68562 21029 80727 43078 91235 23381 47102 63601 74860 81452 81654 77488	93.24075 91.83628 90.18828 88.06774 86.17128 84.60756 83.39466 82.47509 81.74231 81.06164	4.206040 5.469966 6.733533 8.007069 9.265500 10.36455 11.03090 11.45569 11.83660	0.985191 0.983982 1.183689 1.584367 1.928543 2.249757 2.715275 3.193763	0.787170 0.959803 1.088319 1.361302 1.496890 1.548405	0.148080 0.124325 0.170466 0.256934 0.310853 0.330589	0.632768 0.625647 0.635714 0.722593 0.826932
21029 80727 43078 91235 23381 47102 63601 74860 81452 81654 77488	91.83628 90.18828 88.06774 86.17128 84.60756 83.39466 82.47509 81.74231 81.06164	5.469966 6.733533 8.007069 9.265500 10.36455 11.03090 11.45569 11.83660	0.983982 1.183689 1.584367 1.928543 2.249757 2.715275 3.193763	0.787170 0.959803 1.088319 1.361302 1.496890 1.548405	0.1243 25 0.170466 0.2569 34 0.3108 53 0.3305 89	0.625647 0.635714 0.722593 0.826932
80727 43078 91235 23381 47102 63601 74860 81452 81654 77488	91.83628 90.18828 88.06774 86.17128 84.60756 83.39466 82.47509 81.74231 81.06164	6.733533 8.007069 9.265500 10.36455 11.03090 11.45569 11.83660	1.183689 1.584367 1.928543 2.249757 2.715275 3.193763	1.088319 1.361302 1.496890 1.548405	0.170466 0.256934 0.310853 0.330589	0.635714 0.722593 0.826932
43078 91235 23381 47102 63601 74860 81452 81654 77488	88.06774 86.17128 84.60756 83.39466 82.47509 81.74231 81.06164	8.007069 9.265500 10.36455 11.03090 11.45569 11.83660	1.183689 1.584367 1.928543 2.249757 2.715275 3.193763	1.361302 1.496890 1.548405	0.2569 34 0.3108 53 0.3305 89	0.722593 0.826932
91235 23381 47102 63601 74860 81452 81654 77488	88.06774 86.17128 84.60756 83.39466 82.47509 81.74231 81.06164	8.007069 9.265500 10.36455 11.03090 11.45569 11.83660	1.584367 1.928543 2.249757 2.715275 3.193763	1.361302 1.496890 1.548405	0.2569 34 0.3108 53 0.3305 89	0.722593 0.826932
91235 23381 47102 63601 74860 81452 81654 77488	86.17128 84.60756 83.39466 82.47509 81.74231 81.06164	9.265500 10.36455 11.03090 11.45569 11.83660	2.249757 2.715275 3.193763	1.496890 1.548405	0.3108 53 0.3305 89	0.826932
23381 47102 63601 74860 81452 81654 77488	84.60756 83.39466 82.47509 81.74231 81.06164	10.36455 11.03090 11.45569 11.83660	2.715275 3.193763	1.548405	0.330589	
47102 63601 74860 81452 81654 77488	83.39466 82.47509 81.74231 81.06164	11.03090 11.45569 11.83660	2.715275 3.193763			
63601 74860 81452 81654 77488	82.47509 81.74231 81.06164	11.45569 11.83660	3.193763		0.344896	0.893234
74860 81452 81654 77488	81.74231 81.06164	11.83660		1.648818	0.367717	0.858922
81452 81654 77488	81.06164		3.544844	1.667324	0.380056	0.828867
81654 77488		12.2400/	3.795076	1.683740	0.395302	0.818576
77488		12.66798	3.961909	1.668157	0.400085	0.818150
	80.01344	13.04417	4.072906	1.651449	0.398936	0.819100
	79.62364	13.32465	4.195871	1.637677	0.401810	0.816356
64069	79.29565	13.56274	4.302446	1.624692	0.402872	0.811601
54893	79.00394	13.79167	4.372899	1.618272	0.402591	0.810629
44066	78.72136	14.01137	4.437992	1.616112	0.403997	0.809166
30092	78.47828	14.21049	4.491831	1.612711	0.403298	0.803390
13485	78.27216	14.37835	4.541651	1.610268	0.403532	0.794038
94828	78.09131	14.51096	4.600101	1.609572	0.405403	0.782658
73769	77.93496	14.63102	4.648538	1.605959	0.406839	0.772692
50724	77.79141	14.74612	4.686210	1.601893	0.408360	0.766008
25995	77.65682	14.85325	4.720782	1.597348	0.410101	0.761701
99592	77.53852	14.95265	4.748164	1.591056	0.410958	0.758658
72130	77.43107	15.04226	4.772370	1.586157	0.411678	0.756456
43817	77.33067	15.12330	4.796596	1.582552	0.4124 43	0.754443
14483	77.23630	15.20257	4.816462	1.579295	0.4126 73	0.752694
84194	77.14487	15.27911	4.834681	1.577536	0.4129 14	0.750885
52846	77.05675	15.35096	4.854175	1.576287	0.413361	0.748464
20308	76.97489	15.41809	4.872992	1.574912	0.4136 57	0.745460
86714	76.89735	15.47982	4.892263	1.574005	0.414225	0.742336
52066	76.82388	15.53709	4.911891	1.572863	0.414939	0.739338
16350	76.75483	15.59211	4.929437	1.571266	0.415520	0.736834
79710	76.68923	15.64421	4.945899	1.569685	0.416149	0.734827
42213	76.62727	15.69335	4.961603	1.567932	0.416725	0.733118
03910	76.56937	15.74009	4.975654	1.566125	0.417120	0.731643
						0.730331
						0.729047
						0.727767
						0.726418
84852						0.724977
84852 43795						0.723524
84852 43795 02047						0.723324
84852 43795 02047 59610						0.720809
	3795 2047	5237 76.46124 4852 76.41074 3795 76.36214 2047 76.31565 9610 76.27136 6524 76.22885	5237 76.46124 15.82689 4852 76.41074 15.86795 3795 76.36214 15.90707 2047 76.31565 15.94429 9610 76.27136 15.97979 6524 76.22885 16.01355	5237 76.46124 15.82689 5.001642 4852 76.41074 15.86795 5.013298 3795 76.36214 15.90707 5.024774 2047 76.31565 15.94429 5.036093 9610 76.27136 15.97979 5.046929 6524 76.22885 16.01355 5.057572	5237 76.46124 15.82689 5.001642 1.563337 4852 76.41074 15.86795 5.013298 1.562150 3795 76.36214 15.90707 5.024774 1.561219 2047 76.31565 15.94429 5.036093 1.560321 9610 76.27136 15.97979 5.046929 1.559438 6524 76.22885 16.01355 5.057572 1.558619	5237 76.46124 15.82689 5.001642 1.563337 0.417845 4852 76.41074 15.86795 5.013298 1.562150 0.418094 3795 76.36214 15.90707 5.024774 1.561219 0.418381 2047 76.31565 15.94429 5.036093 1.560321 0.418673 9610 76.27136 15.97979 5.046929 1.559438 0.418952 6524 76.22885 16.01355 5.057572 1.558619 0.419279

48	5.328439	76.14945	16.07686	5.077398	1.556790	0.419885	0.719617
49	5.383512	76.11227	16.10651	5.086629	1.555893	0.420177	0.718525
50	5.438029	76.07671	16.13496	5.095396	1.554982	0.420436	0.717511
Choles ky Orderin							

g: INFLAS I PDB PEMBI AYAAN DPK PUAS SBIS

Variabel PDB

Period	S.E.	INFLASI	PDB	PEMBIAYAAN	DPK	PUAS	SBIS
1	0.661323	2.036558	97.96344	0.000000	0.000000	0.000000	0.000000
2	1.073226	2.627367	95.72799	0.003639	1.323249	0.012203	0.305550
3	1.323101	2.504951	93.78443	0.024262	1.265518	0.393749	2.027087
4	1.508664	2.483962	86.17822	0.364603	1.735229	0.541929	8.696056
5	1.668562	2.111854	78.85090	1.133222	1.568300	1.249030	15.08669
6	1.821029	1.788182	72.42862	1.665293	1.331563	1.775545	21.01080
7	1.980727	1.933639	69.03636	1.608971	1.247762	2.3828 94	23.79037
8	2.143078	2.334509	65.93307	1.476320	1.490971	2.723045	26.04208
9	2.291235	2.807729	63.40984	1.614767	1.923368	2.9565 71	27.28773
10	2.423381	2.944760	61.03014	2.058826	2.402668	3.0387 37	28.52487
11	2.547102	2.896810	59.45481	2.777365	2.712997	3.1220 77	29.03594
12	2.663601	2.756180	58.19584	3.752176	2.883504	3.084219	29.32808
13	2.774860	2.604530	57.42769	4.734816	2.895627	3.066269	29.27107
14	2.881452	2.468275	56.62836	5.461717	2.844086	3.021494	29.57607
15	2.981654	2.342643	55.86492	5.939148	2.752574	3.031094	30.06962
16	3.077488	2.230026	54.94130	6.197535	2.660397	3.052453	30.91829
17	3.171469	2.127124	54.08534	6.368147	2.577715	3.123545	31.71813
18	3.264069	2.046874	53.20803	6.536182	2.529162	3.181965	32.49778
19	3.354893	1.992959	52.43560	6.714477	2.507741	3.263211	33.08601
20	3.444066	1.956196	51.68419	6.910733	2.519497	3.323485	33.60590
21	3.530092	1.919810	51.05743	7.131757	2.542293	3.384758	33.96395
22	3.613485	1.876525	50.52159	7.364484	2.562044	3.426087	34.24927
23	3.694828	1.826838	50.11613	7.600448	2.569664	3.463161	34.42376
24	3.773769	1.774312	49.76859	7.823213	2.563575	3.483214	34.58710
25	3.850724	1.721412	49.47717	8.006322	2.543463	3.505678	34.74595
26	3.925995	1.670380	49.17847	8.145913	2.517014	3.523057	34.96517
27	3.999592	1.622286	48.88811	8.251875	2.487375	3.546233	35.20412
28	4.072130	1.578504	48.58397	8.333768	2.460219	3.5702 78	35.47326
29	4.143817	1.540060	48.28846	8.407105	2.438838	3.598701	35.72684
30	4.214483	1.506890	47.99012	8.481048	2.424999	3.6251 54	35.97179
31	4.284194	1.477645	47.70954	8.557512	2.417026	3.653384	36.18489
32	4.352846	1.450361	47.44105	8.639906	2.413739	3.6773 72	36.37757
33	4.420308	1.423602	47.20050	8.727864	2.411349	3.699928	36.53676
34	4.486714	1.396653	46.97980	8.816933	2.408078	3.7184 76	36.68006
35	4.552066	1.369626	46.78151	8.904305	2.402644	3.7351 51	36.80676
36	4.616350	1.342793	46.59348	8.985722	2.394914	3.749180	36.93391
37	4.679710	1.316626	46.41559	9.058300	2.385180	3.7633 75	37.06093
38	4.742213	1.291565	46.23961	9.123123	2.374924	3.7766 47	37.19413
39	4.803910	1.267948	46.06857	9.181783	2.364775	3.790768	37.32615
40	4.864920	1.245940	45.89900	9.236104	2.355846	3.804754	37.45835
41	4.925237	1.225508	45.73449	9.288650	2.348476	3.819040	37.58384
42	4.984852	1.206365	45.57412	9.340536	2.342615	3.832730	37.70364
43	5.043795	1.188174	45.42146	9.392213	2.337803	3.846201	37.81415
44	5.102047	1.170621	45.27573	9.444100	2.333649	3.858523	37.91738
45	5.159610	1.153502	45.13879	9.495474	2.329473	3.870222	38.01254
46	5.216524	1.136736	45.00855	9.545388	2.325069	3.880933	38.10333
47	5.272791	1.120346	44.88486	9.593277	2.320264	3.891090	38.19017
48	5.328439	1.104392	44.76557	9.638489	2.315117	3.900695	38.27574
49	5.383512	1.088969	44.65046	9.680936	2.309805	3.910152	38.35967
50	5.438029	1.074152	44.53821	9.721074	2.304608	3.919306	38.44265

Choles ky Orderin g: INFLAS I PDB PEMBI AYAAN DPK PUAS SBIS

Variabel Pembiayaan

Period	S.E.	INFLASI	PDB	PEMBIAYAAN	DPK	PUAS	SBIS
1	0.661323	1.188505	0.949861	97.86163	0.000000	0.000000	0.000000
2	1.073226	0.764944	0.550970	98.25200	0.311536	0.009402	0.111152
3	1.323101	1.230389	0.423513	95.20602	0.465606	1.554306	1.120161
4	1.508664	0.901717	0.406537	94.52843	0.978301	2.349638	0.835374
5	1.668562	1.803898	0.399932	94.17806	0.801810	1.972067	0.844228
6	1.821029	1.948412	0.600337	94.11742	0.663428	1.763386	0.907017
7	1.980727	1.948905	0.618219	94.28321	0.598096	1.5903 14	0.961254
8	2.143078	2.026223	0.919551	93.96299	0.551958	1.434626	1.104654
9	2.291235	1.938867	1.317714	93.55183	0.520283	1.334289	1.337017
10	2.423381	1.822275	1.648847	93.35336	0.467052	1.277750	1.430718
11	2.547102	1.767073	2.006079	93.19143	0.419839	1.169990	1.445592
12	2.663601	1.676049	2.235467	93.14893	0.418051	1.106689	1.414817
13	2.774860	1.598431	2.353670	93.25373	0.393608	1.075991	1.324573
14	2.881452	1.593382	2.481227	93.28384	0.365918	1.0209 74	1.254662
15	2.981654	1.591365	2.554188	93.30792	0.349618	1.002524	1.194387
16	3.077488	1.616576	2.578107	93.36063	0.325477	0.982287	1.136927
17	3.171469	1.667479	2.604780	93.37255	0.305681	0.949968	1.099542
18	3.264069	1.692663	2.614373	93.38753	0.287979	0.938367	1.079086
19	3.354893	1.708082	2.620767	93.41681	0.271896	0.920286	1.062160
20	3.444066	1.724734	2.654083	93.40328	0.258444	0.898063	1.061395
21	3.530092	1.718784	2.682877	93.40793	0.246703	0.884309	1.059398
22	3.613485	1.711641	2.710373	93.42391	0.235580	0.868249	1.050246
23	3.694828	1.706319	2.742288	93.43448	0.225841	0.851437	1.039632
24	3.773769	1.694847	2.764128	93.45550	0.218464	0.841882	1.025177
25	3.850724	1.690718	2.779739	93.48033	0.210287	0.830897	1.008032
26	3.925995	1.692952	2.796760	93.49303	0.202755	0.8205 59	0.993948
27	3.999592	1.694599	2.803814	93.51077	0.196013	0.8141 77	0.980625
28	4.072130	1.700563	2.809134	93.52560	0.189041	0.806585	0.969081
29	4.143817	1.706960	2.815702	93.53443	0.182667	0.798808	0.961431
30	4.214483	1.709432	2.820599	93.54425	0.176855	0.793289	0.955572
31	4.284194	1.712013	2.827648	93.55218	0.171239	0.786198	0.950726
32	4.352846	1.712915	2.837774	93.55638	0.166186	0.779428	0.947313
33	4.420308	1.711082	2.846366	93.56403	0.161621	0.773932	0.942970
34	4.486714	1.709880	2.855834	93.57136	0.157207	0.767814	0.937901
35	4.552066	1.708565	2.865205	93.57794	0.153219	0.7623 17	0.932751
36	4.616350	1.707054	2.872540	93.58605	0.149491	0.7578 70	0.926994
37	4.679710	1.707247	2.879322	93.59331	0.145794	0.7530 79	0.921247
38	4.742213	1.707940	2.885430	93.59925	0.142337	0.7488 91	0.916152
39	4.803910	1.708643	2.889901	93.60596	0.139020	0.745205	0.911273
40	4.864920	1.710054	2.894523	93.61132	0.135779	0.741267	0.907057
41	4.925237	1.711054	2.899097	93.61591	0.132748	0.737653	0.903535
42	4.984852	1.711546	2.903386	93.62065	0.129863	0.734293	0.900262
43	5.043795	1.712052	2.908146	93.62471	0.127093	0.730747	0.897250
44	5.102047	1.712059	2.912980	93.62853	0.124513	0.727508	0.894407
45	5.159610	1.711801	2.917447	93.63284	0.122055	0.724451	0.891411
46	5.216524	1.711739	2.922012	93.63674	0.119693	0.721386	0.888434
47	5.272791	1.711604	2.926226	93.64062	0.117466	0.718599	0.885485
48	5.328439	1.711596	2.929994	93.64460	0.115315	0.715974	0.882517
49	5.383512	1.711875	2.933607	93.64822	0.113232	0.713371	0.879693
50	5.438029	1.712148	2.936911	93.65167	0.111244	0.710979	0.877047

Choles ky Orderin g: INFLAS I PDB PEMBI AYAAN DPK PUAS SBIS

Variabel DPK

Period	S.E.	INFLASI	PDB	PEMBIAYAAN	DPK	PUAS	SBIS
1	0.661323	0.866013	0.019876	11.87867	87.23544	0.000000	0.000000
2	1.073226	0.590362	0.035443	15.16720	81.55263	2.179863	0.474505
3	1.323101	0.399669	2.665401	16.67037	75.21740	3.8377 57	1.209408
4	1.508664	0.718918	1.859955	21.25830	69.18844	5.876831	1.097552
5	1.668562	1.336054	1.423515	28.25604	60.70344	7.473936	0.807019
6	1.821029	1.790269	1.940731	31.27621	57.47335	6.844216	0.675226
7	1.980727	2.140929	2.343426	34.19877	53.28956	7.444064	0.583254
8	2.143078	2.719935	2.360770	36.32475	50.36132	7.546245	0.686972
9	2.291235	3.420077	2.163032	36.36737	49.29013	7.493097	1.266296
10	2.423381	3.613030	1.955312	37.18591	47.94612	7.527713	1.771915
11	2.547102	3.619927	1.775030	38.09067	47.06977	7.304882	2.139726
12	2.663601	3.468630	1.615824	38.64162	46.70398	7.120316	2.449636
13	2.774860	3.202394	1.472952	39.49554	46.16688	7.013760	2.648477
14	2.881452	3.030945	1.380500	40.23030	45.80703	6.835828	2.715392
15	2.981654	2.914775	1.313348	40.81539	45.51374	6.725530	2.717212
16	3.077488	2.813439	1.215573	41.70893	45.02094	6.635416	2.605706
17	3.171469	2.801121	1.131166	42.51015	44.48229	6.574496	2.500774
18	3.264069	2.816523	1.056520	43.14722	44.02138	6.534103	2.424257
19	3.354893	2.849095	0.990026	43.72841	43.51952	6.527813	2.385137
20	3.444066	2.917019	0.936199	44.16925	43.09283	6.498422	2.386283
21	3.530092	2.960022	0.888621	44.48194	42.77679	6.474811	2.417822
22	3.613485	2.968470	0.844654	44.81212	42.47849	6.451468	2.444796
23	3.694828	2.964018	0.807507	45.07097	42.26558	6.417041	2.474888
24	3.773769	2.939642	0.774213	45.27488	42.13057	6.3832 7 0	2.497422
25	3.850724	2.909826	0.744303	45.49212	41.99240	6.357360	2.503989
26	3.925995	2.890751	0.717264	45.68705	41.88258	6.324809	2.497540
27	3.999592	2.874113	0.691042	45.87182	41.77572	6.304479	2.482825
28	4.072130	2.864119	0.665177	46.07844	41.64281	6.288355	2.461092
29	4.143817	2.866072	0.641475	46.25659	41.51693	6.273815	2.445123
30	4.214483	2.870323	0.619041	46.41729	41.39387	6.2643 70	2.435113
31	4.284194	2.876996	0.598176	46.57138	41.26618	6.256399	2.430867
32	4.352846	2.884742	0.579058	46.70159	41.15683	6.245349	2.432429
33	4.420308	2.886360	0.561162	46.81863	41.06052	6.236383	2.436940
34	4.486714	2.884253	0.544481	46.93247	40.97237	6.225616	2.440812
35	4.552066	2.880509	0.529241	47.03068	40.90078	6.2138 73	2.444912
36	4.616350	2.873916	0.514854	47.12480	40.83691	6.203215	2.446310
37	4.679710	2.867958	0.501310	47.21904	40.77365	6.1931 17	2.444923
38	4.742213	2.863660	0.488476	47.30751	40.71537	6.183121	2.441862
39	4.803910	2.859953	0.476128	47.39463	40.65611	6.1754 17	2.437768
40	4.864920	2.858297	0.464315	47.48076	40.59499	6.168106	2.433531
41	4.925237	2.858252	0.453125	47.55954	40.53690	6.161429	2.430757
42	4.984852	2.858261	0.442410	47.63506	40.47970	6.155633	2.428930
43	5.043795	2.858618	0.432257	47.70675	40.42441	6.149794	2.428171
44	5.102047	2.858560	0.422636	47.77249	40.37426	6.143761	2.428299
45	5.159610	2.857423	0.413482	47.83517	40.32711	6.138177	2.428640
46	5.216524	2.855942	0.404795	47.89505	40.28313	6.132273	2.428809
47	5.272791	2.854139	0.404795	47.95105	40.24293	6.126549	2.428794
48	5.328439	2.852045	0.388630	48.00578	40.24293	6.121201	2.428136
49	5.383512	2.850319	0.381054	48.05879	40.20421	6.116017	2.420130
49 50	5.438029	2.848892	0.361054	48.10953	40.18674	6.111150	2.427077
	J.7JUUZ3	2.070032	0.07.07.7	TO. 10300	1 0.13003	0.111130	2.723023

Choles ky Orderin g: INFLAS I PDB PEMBI AYAAN DPK PUAS SBIS

Variabel PUAS

Period	S.E.	INFLASI	PDB	PEMBIAYAAN	DPK	PUAS	SBIS
1	0.661323	1.547733	6.111306	3.870482	0.002777	88.46770	0.000000
2	1.073226	4.852019	5.674383	5.075517	5.156062	79.04314	0.198879
3	1.323101	5.589670	5.365748	5.758844	4.871457	76.37852	2.035764
4	1.508664	5.227517	5.676706	11.39551	6.408847	68.88939	2.402023
5	1.668562	5.886317	6.114416	12.17407	6.568749	65.98561	3.270845
6	1.821029	5.892795	8.702991	11.30266	6.536823	62.44781	5.116922
7	1.980727	6.385535	11.58409	13.58634	6.158930	57.08839	5.196725
8	2.143078	6.221345	13.61393	13.25086	6.212663	55.663 65	5.037558
9	2.291235	6.312932	14.13640	14.36664	6.466329	52.80758	5.910120
10	2.423381	6.007232	14.72319	17.16227	6.100861	50.04239	5.964064
11	2.547102	5.773585	15.22399	17.45845	7.054133	48.09560	6.394241
12	2.663601	5.567883	16.69036	17.99267	6.945810	46.48224	6.321027
13	2.774860	5.421906	16.70067	18.84870	7.366882	45.03883	6.623007
14	2.881452	5.295118	17.18657	18.88398	8.101739	43.75502	6.777578
15	2.981654	5.187955	17.23785	19.36464	8.373830	42.86336	6.972356
16	3.077488	5.055605	17.65575	19.70718	8.754787	41.82745	6.999233
17	3.171469	4.956595	18.07543	19.62762	9.270690	41.02076	7.048906
18	3.264069	4.865383	18.75411	19.67185	9.455686	40.20189	7.051090
19	3.354893	4.767944	19.03859	19.89684	9.752914	39.35618	7.187535
20	3.444066	4.679820	19.50445	19.90650	10.01832	38.56367	7.327233
21	3.530092	4.601897	19.78473	20.14337	10.14714	37.83371	7.489154
22	3.613485	4.509836	20.12587	20.34608	10.34681	37.04963	7.621777
23	3.694828	4.428710	20.42830	20.38977	10.59893	36.38307	7.771220
24	3.773769	4.346012	20.71654	20.56561	10.78332	35.71820	7.870314
25	3.850724	4.266460	20.89120	20.73122	11.03175	35.06855	8.010824
26	3.925995	4.193836	21.15216	20.79291	11.29236	34.47636	8.092388
27	3.999592	4.125055	21.37135	20.94685	11.48068	33.903 76	8.172302
28	4.072130	4.056218	21.63567	21.03991	11.70417	33.33670	8.227328
29	4.143817	3.992644	21.90102	21.09490	11.91323	32.80315	8.295052
30	4.214483	3.930371	22.16166	21.21825	12.06206	32.27382	8.353847
31	4.284194	3.869007	22.38312	21.32042	12.23777	31.75066	8.439024
32	4.352846	3.810085	22.63455	21.40262	12.38997	31.252 21	8.510570
33	4.420308	3.752215	22.84282	21.52848	12.52321	30.762 21	8.591053
34	4.486714	3.694233	23.05705	21.62214	12.67889	30.283 41	8.664275
35	4.552066	3.639143	23.25461	21.70882	12.82920	29.828 59	8.739643
36	4.616350	3.584969	23.44183	21.81747	12.96757	29.383 47	8.804693
37	4.679710	3.532663	23.61652	21.90344	13.12295	28.952 72	8.871697
38	4.742213	3.482631	23.80541	21.98053	13.26490	28.539 94	8.926590
39	4.803910	3.434009	23.97852	22.07042	13.39904	28.136 15	8.981864
40	4.864920	3.386653	24.15898	22.14114	13.53640	27.74304	9.033783
41	4.925237	3.341218	24.33275	22.21355	13.66215	27.36316	9.087166
42	4.984852	3.296639	24.50099	22.29397	13.77924	26.99004	9.139131
43	5.043795	3.253222	24.66273	22.36374	13.89928	26.62723	9.193807
44	5.102047	3.210976	24.82421	22.43425	14.01050	26.27492	9.245148
45	5.159610	3.169573	24.97358	22.50908	14.11981	25.93043	9.297528
46	5.216524	3.129129	25.12219	22.57447	14.23123	25.59546	9.347522
47	5.272791	3.089906	25.26431	22.64146	14.33769	25.27035	9.396278
48	5.328439	3.051543	25.40246	22.70852	14.44239	24.95271	9.442379
49	5.383512	3.014269	25.53797	22.76886	14.54758	24.64386	9.487469
50	5.438029	2.978026	25.67251	22.82938	14.64721	24.34309	9.529797

Choles ky Orderin g: INFLAS I PDB PEMBI AYAAN DPK PUAS SBIS

Variabel SBIS

Period	S.E.	INFLASI	PDB	PEMBIAYAAN	DPK	PUAS	SBIS
1	0.661323	4.410949	1.410869	1.117752	0.418782	0.969662	91.67199
2	1.073226	12.37312	0.922028	0.793969	0.200999	0.478940	85.23095
3	1.323101	10.89193	0.634947	1.508564	0.630905	0.3836 51	85.95000
4	1.508664	17.50787	2.363496	3.367526	1.451773	0.8119 17	74.49741
5	1.668562	20.81598	3.448431	5.024513	3.874556	0.728268	66.10826
6	1.821029	24.46024	5.009540	6.360322	5.597609	1.0095 75	57.56272
7	1.980727	25.66175	5.493302	6.551211	7.111604	1.045583	54.13655
8	2.143078	25.91224	6.863109	6.710571	7.380179	1.310718	51.82318
9	2.291235	25.53012	7.960523	6.829075	7.424155	1.3082 15	50.94792
10	2.423381	24.76335	9.886609	6.820995	7.065542	1.3840 71	50.07944
11	2.547102	24.10857	10.67021	6.681037	6.713115	1.3348 82	50.49219
12	2.663601	23.63554	11.26730	6.387909	6.322645	1.4032 34	50.98337
13	2.774860	23.68797	11.03854	6.050209	6.086024	1.4225 73	51.71469
14	2.881452	24.13269	10.90631	5.808667	6.064178	1.550133	51.53802
15	2.981654	24.90476	10.64250	5.724924	6.229178	1.589349	50.90929
16	3.077488	25.63500	10.58607	5.779160	6.502687	1.672720	49.82436
17	3.171469	26.19036	10.52394	5.941253	6.786940	1.681179	48.87632
18	3.264069	26.46308	10.66006	6.151299	6.970086	1.703315	48.05216
19	3.354893	26.52817	10.82960	6.331012	7.050917	1.700509	47.55979
20	3.444066	26.45536	11.14158	6.482353	7.044143	1.704505	47.17206
21	3.530092	26.33657	11.40848	6.569811	6.984404	1.700352	47.00038
22	3.613485	26.24315	11.66226	6.585436	6.904665	1.714160	46.89033
23	3.694828	26.21147	11.78151	6.558978	6.837588	1.723468	46.88699
24	3.773769	26.26849	11.85229	6.513456	6.793962	1.750602	46.82120
25	3.850724	26.39179	11.85031	6.470943	6.787602	1.772449	46.72690
26	3.925995	26.56416	11.85496	6.458797	6.813431	1.797582	46.51107
27	3.999592	26.73447	11.85125	6.472655	6.858117	1.812960	46.27054
28	4.072130	26.88018	11.88138	6.508425	6.904610	1.827855	45.99756
29	4.143817	26.97825	11.92376	6.557638	6.944096	1.833772	45.76248
30	4.214483	27.03560	12.00145	6.606920	6.963728	1.841350	45.55095
31	4.284194	27.06103	12.08370	6.646847	6.969426	1.8452 51	45.39374
32	4.352846	27.07306	12.17698	6.676116	6.962521	1.851409	45.25991
33	4.420308	27.08443	12.25262	6.690217	6.950234	1.857167	45.16533
34	4.486714	27.10639	12.31722	6.693446	6.938055	1.866084	45.07881
35	4.552066	27.14212	12.35942	6.691999	6.931120	1.874164	45.00118
36	4.616350	27.19161	12.39374	6.690154	6.929751	1.884365	44.91038
37	4.679710	27.24923	12.41753	6.691998	6.935582	1.892756	44.81291
38	4.742213	27.30866	12.44340	6.700135	6.945331	1.900982	44.70150
39	4.803910	27.36317	12.46903	6.712438	6.956592	1.907446	44.59132
40	4.864920	27.40930	12.50121	6.727898	6.966704	1.913458	44.48143
41	4.925237	27.44588	12.53586	6.744387	6.974162	1.918093	44.38162
42	4.984852	27.47484	12.57508	6.759311	6.977963	1.922989	44.28982
43	5.043795	27.49888	12.61306	6.771671	6.979341	1.927261	44.20980
44	5.102047	27.52128	12.65018	6.781245	6.978865	1.931979	44.13645
45	5.159610	27.54432	12.68248	6.787870	6.977999	1.936653	44.07068
46	5.216524	27.56953	12.71149	6.792995	6.977780	1.941657	44.00656
47	5.272791	27.59693	12.73623	6.797685	6.978793	1.946434	43.94393
48	5.328439	27.62595	12.75922	6.802668	6.981007	1.951317	43.87984
49	5.383512	27.65514	12.78040	6.808612	6.984376	1.955714	43.81576
	5.438029	27.68331	12.80187	6.815569	6.988102	1.959947	.5.51070

Choles ky Orderin g: INFLAS I PDB PEMBI AYAAN DPK PUAS SBIS

Lampiran 9

BIODATA PENELITI

Nama Lengkap : Nur Kholilin karima Tempat, tangggal lahir : Malang, 26 April 1996

Alamat Asal : Jl. Raya Sumberpasir No. 53, Pakis, Kab. Mala**ng**Alamat Kos : Jl. Joyo Utomo no. 36 Merjosari, Lowokwaru

Telepon/HP : 08986375137

E-mail : <u>lilin.karima@gmail.com</u>

Facebook/Instagram : lilin karima

Pendidikan Formal

2002 – 2008 : MINU Sumberpasir Pakis

2008 – 2011 : MTsN Rejoso Peterongan Jombang

2011 – 2014 : MAN 1 Kota Malang

2014 – 2018 : Jurusan Perbankan Syariah (S1) Fakultas Ekonomi

Universitas Islam Negeri Maulana Malik Ibrahim Malang

Pendidikan Non Formal

2014 – 2015 : Program Khusus Perkuliahan Bahasa Arab (PKPBA) UIN

Maulana Malik Ibrahim Malang

2015 – 2016 : English Language Center (ELC) UIN Maulana Malik Ibrahim

Malang

Pengalaman Organisasi

 Sekertaris SESCOM (Sharia Economic Student Community) UIN Maulana Malik Ibrahim Malang, 2016-2017

KEMENTERIAN AGAMA RI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG **FAKULTAS EKONOMI**

JURUSAN PERBANKAN SYARIAH (S1)

Terakreditasi "B" SK BAN-PT No: 004/SK/BAN-PT/Akred/S1/2015 Jalan Gajayana 50 Malang Telepon (0341) 558881 Faksimile (0341) 558881

BUKTI KONSULTASI

Nama

: Nur Kholilin Karima

NIM/Jurusan : 14540061/Perbankan Syariah (S1)

Pembimbing : Eko Suprayitno, SE., M.Si., Ph.D

Judul Skripsi : Analisis Mekanisme Transmisi Kebijakan Moneter Syariah Jalur Kredit

Terhadap Inflasi di Indonesia (2010.1 – 2017.12)

No.	Tanggal	Materi Konsultasi	Tanda Tangan Pembimbing
1	12 Oktober 2017	Pengajuan Outline	
2	26 September 2017	Proposal Bab I, II dan III	10
3	27 November 2017	Revisi dan Acc Proposal	5)
4	15 November 2017	Seminar Proposal	(3)
5	27 November 2017	Revisi dan Acc Proposal	5)
6	11 April 2018	Skripsi Bab IV dan V	(5)
7	19 April 2018	Revisi dan Acc Bab IV dan V	14
8	24 Mei 2018	Seminar Hasil	
9	28 Mei 2018	Revisi dan Acc Hasil	
10	07 Juni 2018	Ujian Skripsi	100
11	29 Juni 2018	Revisi dan Ace Skripsi	5)

Malang, 29 Juni 2018

vlengetahui, ua Jurusan,

Vitno, SE., M.Si., Ph.D 51109 199903 1 003

KEMENTERIAN AGAMA UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG FAKULTAS EKONOMI

Terakreditasi "A" SK BAN-PT Depdiknas Nomor : 4828/BAN-PT/Akred/S/XII/2017 Jalan Gajayana Nomor 50 Malang 65144, Telepon: (0341) 558881, Faksimile: (0341) 558881

Nomor: 1433.../F.EK/PP.00.9/96/2018

Malang, 29 Juni 2018

Hal : Surat Keterangan Penelitian

SURAT KETERANGAN

Pengelola Galeri Investasi BEI-UIN, Fakultas Ekonomi Universitas Islam Nege**ri** Maulana Malik Ibrahim Malang menerangkan bahwa tersebut di bawah ini:

Nama

: Nur Kholilin Karima

NIP

: 14540061

Fakultas/Jurusan

: Ekonomi/S1 Perbankan Syariah

Universitas

: Universitas Islam Negeri Maulana Malik Ibrahim Malang

Judul Penelitian

: Analisis Mekanisme Transmisi Kebijakan Moneter Syariah Jalur

Kredit Terhadap Inflasi di Indonesia (2010.1-2017.2)

Mahasiswi tersebut telah melaksanakan penelitian di Galeri Investasi BEI-UIN, Fakultas Ekonomi, Universitas Islam Negeri Maulana Malik Ibrahim Malang.

Demikian surat keterangan ini dibuat untuk dipergunakan semestinya.

Wassalamualaikum Wr. Wb. a.n.Dekan,

Ketua GI BEI-UIN,

KEMENTERIAN AGAMA RI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG FAKULTAS EKONOMI

JURUSAN PERBANKAN SYARIAH (S1)

Terakreditasi "B" SK BAN-PT No: 004/SK/BAN-PT/Akred/S1/2015 Jalan Gajayana 50 Malang Telepon (0341) 558881 Faksimile (0341) 558881

SURAT KETERANGAN BEBAS PLAGIARISME

Yang bertanda tangan di bawah ini:

Nama

: Eko Suprayitno, SE., M.Si., Ph.D

NIP

19751109 199903 1 003

Jabatan

: Pembimbing Skripsi

Menerangkan bahwa Mahasiswa berikut:

Nama

: Nur Kholilin Karima

NIM

: 14540061

Handphone

: 08986375137

Konsentrasi

: Keuangan

Judul Skripsi

Analisis Mekanisme Transmisi Kebijakan Moneter Syariah

Jalur Kredit Terhadap Inflasi di Indonesia

2010.1-2017.12

Menerangkan bahwa penulisan skripsi mahasiswa tersebut di nyatakan *BEBAS PLAGIARISME* dari *TURNITIN* dengan nilai *Originaly report*:

SIMILARTY	INTERNET	PUBLICATIONS	STUDENT
INDEX	SOURCES		PAPERS
20%	17%	3%	9%

Demikian surat pernyataan ini dibuat dengan sebenar-benarnya dan diberikan kepada yang bersangkutan untuk dipergunakan sebagaimana mestinya.

Malang, 2 Juli 2018 Pembimbing,

Eko Suprayitno, SE., M.Si., Ph.D NIP 19751109 199903 1 003

SKRIPSI

	0% RITY NDEX	17% INTERNET SOURCES	3% PUBLICATIONS	9% STUDENT PA	PERS
PRIMAR	renosita	ry.uinjkt.ac.id			0
1	Internet Sour				8
2	etheses.	uin-malang.ac.id	SLAM		4
3	Submitte Yogyaka Student Pape		Muhammadiy	ah	3
4	Submitte Indonesi Student Pape		konomi Univer	sitas	1
5	123doc.	_			1
6	ekonom Internet Sour	etrikblog.files.wo	rdpress.com		1
7	etd.uwc.				1
8	issuu.co		TAK	~ //	1

